Kernkraft und Arbeit

Kernkraftwerke erzeugen nicht nur elektrische Energie, sondern bieten auch — meist überdurchschnittlich bezahlte — Arbeitsplätze. Dies ist der breiten Öffentlichkeit nicht so bewußt, weshalb viele „Ökos“ kopfschüttelnd vor Bürgern stehen, die sich für den Erhalt „ihres Reaktors“ (z. B. Fessenheim) einsetzen oder sich gar um ein „atomares Endlager“ (Schweden, Finnland) bewerben. Es erscheint daher sinnvoll, dieser Frage mal etwas näher nachzugehen.

Wo sind die Arbeitsplätze?

Weltweit gibt es verschiedenste Studien zu dieser Fragestellung. Die Beantwortung ist nicht ganz einfach. Irgendwie muß man in komplexen und zudem noch international verknüpften Volkswirtschaft, die unzähligen Arbeitsverhältnisse aufdröseln. Um eine Systematik in die Angelegenheit zu bringen, unterscheidet man grundsätzlich drei Bereiche:

  • Direkte Arbeitsplätze sind noch am leichtesten zu erfassen. Das sind die unmittelbar in einem Kernkraftwerk tätigen Menschen oder die auf der Baustelle beim Neubau oder Abriss arbeiten. Analoges gilt für die Herstellung von Brennelementen oder die Lagerung und Behandlung von Abfällen.
  • Indirekte Arbeitsplätze. Hier wird die Sache schon komplizierter und undurchsichtiger: Beim Bau eines Kernkraftwerkes werden z. B. große Mengen Zement und Betonstahl benötigt. Dies sind handelsübliche Produkte. Die Hersteller arbeiten deshalb nicht nur für Kernkraftwerke. In der Praxis ist es damit gar nicht so einfach, die für ein bestimmtes Objekt notwendigen indirekten oder zugelieferten Arbeitsstunden zu ermitteln.
  • Induzierte Arbeitsplätze. Das sind die Arbeitsplätze, die ganz besonders die Gemeinden am Standort einer kerntechnischen Anlage interessieren. Die Menschen, die in einem Kernkraftwerk arbeiten, geben einen großen Teil ihres Einkommens auch vor Ort aus: Sie kaufen in den lokalen Geschäften ein, bauen sich ein Häuschen oder wohnen im Hotel, wenn sie als Monteure im Kraftwerk (zeitweise) beschäftigt sind. Diese „Kaufkraft“ schafft zusätzliche Arbeitsplätze, die nur über Statistiken umzurechnen sind — ein breites Betätigungsfeld für Volkswirtschaftler.

All diese Arbeitsplätze fallen lokal, regional, national und international an. Wo sie anfallen, hängt vor allem vom Entwicklungsstand einer Volkswirtschaft ab. In Deutschland konnte man einst alles von der letzten Schraube bis zur kompletten Dampfturbine „zu Hause“ kaufen. In Rußland oder China ist das durchaus heute noch nicht der Fall. Viele Komponenten müssen noch im Ausland zugekauft oder zumindest gegen Lizenzgebühren „nachgebaut“ werden. Dies gilt natürlich auch in umgekehrter Richtung: Baut man keine Kernkraftwerke mehr, muß man sich nicht wundern, warum beispielsweise der eigene Turbinenbau verschwindet. Diese Tatsache haben viele Gewerkschaftsfunktionäre und Kombinatsleiter in Deutschland offensichtlich völlig unterschätzt.

Man kann all diese Zusammenhänge in herrliche Computermodelle stecken und tolle Bilder — für welchen Zweck auch immer — damit erzeugen. Wie so oft im Leben, hilft einem aber eine einfache qualitative Überlegung weiter: Die Kosten des einen — und Kernkraftwerke sind bekanntlich richtig teuer — sind immer auch der Umsatz der anderen. Dies ist ein maßgeblicher Grund, warum z. B. Großbritannien massiv neue Kernkraftwerke bauen will. Wohlstand fällt nicht vom Himmel. Auch die schicke Bibliothek, das Schwimmbad und letztendlich sogar der „Biobäcker“ müssen erstmal finanziert werden. Wie man sieht, sind schon viele „Dörfler“ weiter und sehen ein Kernkraftwerk deshalb nicht (mehr) als Bedrohung, sondern als Chance zur Entwicklung.

Das Zeitdauer-Problem

Bei Kernkraftwerken unterscheidet man vier Lebensphasen: Bau, Betrieb, Rückbau und Endlagerung. Die Bauzeit wird international in die zwei Phasen „Baustellenvorbereitung“ und „Errichtung“ (ab dem ersten Beton für die Grundplatte bis zur Übergabe) mit jeweils fünf Jahren angesetzt. Die Betriebszeit mit 50 Jahren. Der Rückbau ebenfalls in zwei Phasen von je fünf Jahren (nuklearer Teil und konventioneller Abriß). Für die Endlagerung 40 Jahre (Zwischenlagerung, Verpackung und sicherer Einschluß der Abfälle). Dies sind Mittelwerte, die sich aus der bisherigen weltweiten Erfahrung gebildet haben. Im Einzelfall können sich erhebliche Abweichungen ergeben. Zukünftig sind Veränderungen angesagt: So wird bei der Betriebsdauer für neue Kraftwerke bereits von 60 bis 80 Jahren ausgegangen. Entsprechend würden sich die Zahlen für die Beschäftigten verschieben.

Der Praktiker liebt Kennzahlen, mit deren Hilfe er grobe Überschlagsrechnungen ausführen kann. Dies wird — im Zeitalter der Computermodelle — (zumindest) für Plausibilitätskontrollen immer wichtiger. So wird z. B. im „Kleingedruckten“ für die direkte Beschäftigung eine Fehlerbandbreite von ± 10%, bei der indirekten Beschäftigung von ± 20% und bei der induzierten Beschäftigung von ± 30% angegeben. Ganz schlimm wird es, wenn Politiker Vergleichsstudien für unterschiedliche Energiesysteme in Auftrag geben. Solche „Vergleichsabschätzungen“ weisen aus Erfahrung Abweichungen von ± 50% auf.

Diese Bandbreiten sind nicht verwunderlich. Beruhen doch alle Daten auf Statistiken aus der Vergangenheit. Neben Fehlern bei der Datenerfassung ergeben sich immer Veränderungen aus technologischen Gründen über so lange Zeiträume (10+50+10+40=110 Jahre). Ganz besonders mit Vorsicht zu genießen, sind die Daten zu den induzierten Arbeitsplätzen. Hier erfolgt die Verknüpfung mit den direkten und indirekten Arbeitsplätzen über das Einkommen bzw. die Preise. Wer aber wieviel, für was, in einer Gesellschaft ausgibt, ist äußerst variabel. Bei so langen Betrachtungszeiträumen sind sogar Systembrüche (z. B. DDR in BRD) nicht auszuschließen.

Ein paar Anhaltswerte

Die USA betreiben über 100 Reaktoren, haben bereits mehrere abgerissen und verfügen vor allen Dingen über einen kompletten Brennstoffkreislauf, vom Uranbergwerk bis zur Endlagerung. Sie verfügen damit über ausreichend Daten. Allerdings ist dabei der Zeitraum von mehreren Jahrzehnten (Technologiesprünge, Inflationsraten usw.) zu beachten. Um die Werte für Überschlagsrechnungen besser handhabbar zu machen, wurden sie als Mannjahre pro 1000 MWel (MJ) normiert. Mannjahre ist dabei ein in der Industrie geläufiger Begriff: Es werden eigentlich die angefallenen Arbeitsstunden registriert und anschließend durch die zulässigen Jahresarbeitszeiten (Feiertage, Urlaub etc.) geteilt. Auf die Bauzeit entfallen 12 000 MJ, auf den Betrieb 30 000 MJ, auf den Rückbau 5000 MJ und auf die „Endlagerung“ 3000 MJ. In der Summe also 50 000 MJ an direkt angestellten Arbeitskräften. Hinzu kommen noch einmal die gleiche Anzahl in der Zulieferindustrie. Insgesamt sind damit 100 000 Mannjahre pro GWel über den Lebenszyklus eines Kernkraftwerks in den USA nötig. Diese induzieren noch weitere Arbeitsplätze, sodaß die Statistiker auf über 400 Millionen Arbeitsstunden für jeden Reaktor (mit 1000 MWel ) in der Volkswirtschaft kommen.

Statistische Auswertungen in Korea und Frankreich kommen zu ähnlichen Ergebnissen. So sind für den Bau von Reaktoren der II. Generation in Frankreich 26 600 MJ, in Korea 28 300 MJ und in den USA 24 473 Mannjahre auf den Baustellen und in der Zulieferindustrie pro installiertem GWel angefallen. Wen wundert es da, daß in Frankreich und den USA kaum jemand auf den „Industriezweig Kerntechnik“ verzichten mag? Ganz im Gegenteil: Man will in beiden Ländern neue Kernkraftwerke bauen.

Noch ein weiterer Gesichtspunkt mag verdeutlichen, warum in immer mehr Gemeinden in den USA inzwischen Bürgerinitiativen für den Weiterbetrieb „ihres“ Kernkraftwerks kämpfen: Im Jahr 2013 arbeiteten 62 170 Angestellte in den 104 Kernkraftwerken in den USA. Das macht im Mittel 598 Beschäftigte pro Kraftwerk (Bandbreite zwischen 400 bis 700) mit einem Durchschnittseinkommen von 95 000 US$ pro Jahr (von der Küchenfee bis über den Direktor gemittelt). Neben den Steuerausfällen reißt der Kaufkraftverlust eine Gemeinde nach der Abschaltung schnell in den wirtschaftlichen Abgrund.

Wenn man schon mal mit Zahlenspielereien beschäftigt ist, kann man auch ruhig mal die Betrachtungen andersherum anstellen: Ein Leichtwasserreaktor benötigt etwa 185 to Natururan jährlich (pro 1000 MWel ) für seine Stromerzeugung. Wenn man die Weltdaten (384 GW und 65 000 Minenarbeiter) nimmt, ergibt das etwa 170 Angestellte im Uranbergbau und weitere 100 Angestellte in der Brennstoffherstellung (Konversion, Anreicherung und Brennelementfertigung). Jedenfalls unter 300 Angestellte für die gesamte Brennstoffversorgung. Man vergleiche diese Produktivität mal mit der Förderung und dem Transport von Steinkohle für den Betrieb eines gleich großen Kohlekraftwerks. Auch hier wieder eine Antwort, warum China, Indien — und selbst die USA — gar nicht auf Kohlekraftwerke verzichten können. Geschehe die Umstellung etwa innerhalb nur eines Jahrzehntes, wären die sozialen Verwerfungen unvorstellbar.

Oder noch einmal die Zahlen von weiter oben andersherum: Für die Erzeugung von 4000 KWh elektrischer Energie in einem Kernkraftwerk — die auch noch jederzeit auf Wunsch verfügbar sind — benötigt man nur etwa eine Arbeitsstunde über den gesamten Lebenszyklus gerechnet. Auch dies eine Antwort, warum die Energiewende nur ein Hirngespinst sein kann.

Schlusswort

Wer bisher immer noch glaubt, die „Anti-Atom-Bewegung“ besteht aus verhuschten Theaterwissenschaftlerinnen, die ganz, ganz viel Angst vor Strahlung haben oder sonstigen Menschen, die sich echt dolle Sorgen um die Welt und die Wale machen, ist ein Narr. Überwiegend handelt es sich bei den Verantwortlichen in den einschlägigen Parteien um marxistisch geschulte Kader, die sich ganz bewußt die Kernenergie als Angriffsobjekt auf diese Gesellschaftsordnung ausgesucht haben. Erst Ausstieg aus der Kernenergie, dann Ausstieg aus der Kohle und parallel Angriff auf die Autoindustrie. Verbündet mit Schlangenölverkäufern, die sich auf Kosten von Kleinrentnern und Kleinverdienern .(ständig steigende Stromrechnungen und gesperrte Anschlüsse!) gierig die Taschen füllen. Getreu dem Grundsatz aller Sozialisten: Erst mal die Probleme schaffen, die man anschließend vorgibt zu lösen. Von Venezuela lernen, heißt Untergang lernen. Dunkle Aussichten für Michel, es sei denn, er kriegt doch noch die Kurve an der Wahlurne.

Micro-Reactor, die Renaissance made in USA?

Langsam zeichnet sich ab, welchen Weg die Trump-Administration für die Kernenergie vor hat. Nachdem die Fesseln des Obama-Zeitalters für die fossilen Energien erfolgreich durchschnitten wurden, wird der Umbau der Energieerzeugung nun auch konsequent auf die Kernenergie ausgedehnt. Die Reihenfolge war folgerichtig: Die meisten Arbeitsplätze und das schnellste Wirtschaftswachstum konnte kurzfristig nur über die Öl- und Gasindustrie geschaffen werden. Hier traf alles zusammen: Hohe Nachfrage zu akzeptablen Preisen auf dem Weltmarkt mit vorhandenem Wissen und Kapital im eigenen Land. Nebenbei wurde noch die Kohleindustrie stabilisiert und die überbordende Förderung für „alternative Energien“ zurechtgestutzt. Ein einziger Albtraum für jeden gläubigen „Klimaschützer“. Nachdem der Präsident nun das sichere Fundament für seine Wiederwahl gelegt hat, kehrt etwas Ruhe ein und man kann sich langfristigen Projekten wie der Kernenergie widmen.

Die Lage der Kerntechnik in den USA

Der Schock kam mit dem Desaster der Neubauprojekte Vogtle und Summers. Die USA sind nicht mehr in der Lage, einen in den USA entwickelten Reaktortyp fristgerecht und zu den vereinbarten Preisen fertigzustellen. Zu aller Schande wurden die gleichen Reaktoren in Lizenz in China errichtet und sind inzwischen am Netz. Es gibt in den USA — wie in Deutschland und Frankreich — keine leistungsfähige Industrie mehr, die solch komplexe Projekte unter den speziellen Randbedingungen der Kerntechnik durchziehen kann. Der Faden ist durch die jahrzehntelange Zwangspause beim Neubau einfach abgerissen. Man lernt in Vogtle und Olkiluoto genauso wieder von vorn, wie in den fünfziger und sechziger Jahren. Da sich auch in den USA keine weiteren Kernkraftwerke als Anschlussaufträge abzeichnen, droht eine Abwärtsspirale.

Wie immer, wenn man in einer Sackgasse steckt, muß man die Situation analysieren und neu denken. Es ist etwas von dem „Apple-Geist“ nötig, der mitten in der Krise der Computerindustrie das Smartphone erfunden hat. Heutige Kernkraftwerke erfordern riesigen Kapitaleinsatz, lange Bauzeiten (vom ersten Genehmigungsantrag bis zur Fertigstellung), große Stäbe von erfahrenen Fachkräften. Solche Randbedingungen sind heute nur noch in Staatswirtschaften zu realisieren. Will man verhindern, daß China und Rußland das weltweite Monopol für Kernkraftwerke erhalten, muß man deshalb genau hier ansetzen. Der eingeschlagene Weg läuft über eine Serienproduktion anstelle einer Kosteneinsparung über einen „Größenvorteil“. Ein revolutionärer Ansatz, wie einst der Umstieg vom „Handy“ auf das Smartphone. Ganz wichtig ist hierbei die Schaffung eines Zusatznutzens, der für sich allein einen Kaufanreiz darstellt — zumindest für eine vorhandene kaufkräftige Konsumentengruppe als Starter.

Tot geschriebene, leben länger

Die kerntechnische Industrie in den USA ist noch lange nicht tot. Jedenfalls so lange, wie sie über einschlägige Forschungszentren mit zehntausenden (der besten) Fachleute weltweit verfügt und eine — etwas im Verborgenen blühende — Reaktorindustrie vorhanden ist. Wenig beachtet, existiert das „Büro für Schiffsreaktoren“, welches 82 Kriegsschiffe mit Kernreaktoren unterhält, über sechs Werften, vier Übungsreaktoren an denen jährlich 3500 Studenten ausgebildet werden, zwei eigenen Forschungszentren (Bettis/Knolls), hunderten von klassifizierten Zulieferern und einem eigenen, kompletten Brennstoffkreislauf, verfügt. Dort weht immer noch der Geist von Admiral Rickover. Völlig geräuschlos — und vor allem ohne spektakuläre Unfälle — wird dort Reaktortechnik auf höchstem und sonst weltweit unerreichtem Niveau betrieben. Allein diese Organisation kann (wieder) als Keimzelle einer neuen Industrie dienen. Außerdem hat sich offensichtlich der öffentliche Wind gedreht: Es gibt mehr als 70 neugegründete Unternehmen, die sich mit den unterschiedlichsten Reaktortypen beschäftigen. Universitäten brauchen sich keine Sorgen mehr über den Nachwuchs zu machen.

In diesem Umfeld fehlt es nur noch an politischem Willen. Dieser scheint nun endlich in der Gestalt von Präsident Trump gekommen zu sein. Er hat das Zeug zu einem Kennedy der Kerntechnik zu werden. So, wie einst die Mondlandung zu einer Explosion der Raumfahrt geführt hat, könnte heute der „Micro-Reactor“ eine Initialzündung für einen neuen Industriezweig auslösen.

Was macht dieses Konzept so anders?

Grundgedanke ist die Serienfertigung. Die heutigen (unvorhersehbaren) Bauzeiten für Kernkraftwerke in westlichen Ländern sind für jeden Investor völlig indiskutabel. Zwar bekommt man nicht einmal ein Gaskraftwerk beim Kaufmann um die Ecke, aber zumindest Termingerecht in einem überschaubaren Zeitraum. Die unvorhersehbaren Zeiträume sind die Hauptursache für die hohen Kosten. Dies zeigen die Preise für baugleiche Kraftwerke in China überdeutlich — z. B. gegenüber den ewigen Baustellen in USA (Vogtel), Frankreich (Flamanville) und Finnland (Olkiluoto).

Die notwendige Erstinvestition für eine kleine Leistung ist entsprechend gering gegenüber einem großen konventionellen Kernkraftwerk. Das wirtschaftliche Risiko ist dadurch leichter handhabbar. In wie weit die Serienfertigung hierbei mit einer Kostendegression durch Größe mithalten kann, wird die Zukunft zeigen. Viel wichtiger ist jedoch, daß sich durch die geringen Leistungen völlig neue Märkte für die Kerntechnik erschließen. Auch die Großraumflugzeuge haben in der Luftfahrt nicht die Neuentwicklung kleiner Jets verhindert. Im Gegenteil, haben die kleinen Flugzeuge völlig neue Märkte erschlossen und damit die Luftfahrt insgesamt belebt.

Die Brennstoffkosten sind bei Kernkraftwerken vernachlässigbar — ausdrücklich auch unter Einschluß der notwendigen Entsorgungskosten! Man sollte deshalb nicht den Wirkungsgrad, sondern die Investitionskosten und die Robustheit in den Vordergrund stellen. Lange Betriebszeiten (geplant mindestens 10 Jahre) zwischen den Brennstoffwechseln ergeben schnell geringere Stromkosten zu festen Preisen (Leistung in kW x Betriebsstunden = produzierte Kilowattstunden) gegenüber Windmühlen und Sonnenkollektoren. Aber das absolute Killerargument gegenüber allen wetterabhängigen Verfahren ist: Immer wenn der Schalter umgelegt wird, ist die benötigte elektrische Leistung vorhanden. Ganz ohne Speicher und sonstigen teuren Ballast und auch noch ohne Luftbelastung.

Der ungesehene Markt

Alle Kleinreaktoren leiden unter dem „Henne-Ei-Problem“: Größere Stückzahlen sollen über eine Serienfertigung die Preise drastisch senken. Es fehlt aber der Kunde, der für einen ersten Reaktor bereit ist, das volle Risiko und den notwendigerweise erhöhten Preis zu tragen. Ein Problem, das der Flugzeugindustrie wohl bekannt ist. Es gibt jedoch einen Kunden, der mit diesem Phänomen gewohnt ist umzugehen und überdies noch durch den Steuerzahler gedeckt ist: Das Militär.

Für das US-Militär ist die Versorgung mit Energie stets ein strategisches Problem gewesen. Jeder Versorger muß im Ernstfall durch Kampftruppen (z. B. Begleitung von Konvois) geschützt werden — bindet also Kampfkraft. Außerdem schreitet mit stark zunehmender Geschwindigkeit die Elektrifizierung des Militärs voran (Kommunikation, Radargeräte usw., bis hin zu Waffensystemen selbst). Gleichzeitig werden die vorhandenen Stromnetze auch in USA durch den vermehrten Einsatz von „Erneuerbaren“ immer störungsanfälliger und die Stromkosten steigen immer weiter. Der Scheidepunkt zwischen immer mehr zusätzlicher Notstromversorgung zur Absicherung und Eigenversorgung rückt immer näher. Das US-Verteidigungsministerium ist für über 500 Liegenschaften mit mehr als einem Megawatt Anschlussleistung allein auf dem eigenen Staatsgebiet Auftraggeber und somit einer der größten Stromkunden überhaupt (ca. 21% des gesamten öffentlichen Verbrauchs). 90% dieser Objekte kann mit 4 x 10 MWel voll versorgt werden. Hinzu kommen noch langfristig Heizwärme und Trinkwasser (Meerwasserentsalzung). Im ersten Schritt wird aber eine reine Stromversorgung angestrebt. Da die Spitzenlast nur im Ernstfall benötigt wird, kann sich Zukünftig eine Umkehrung anbieten: Das militärische Kraftwerk speist Überschußstrom ins Netz und senkt damit die eigenen Kosten. Somit ergeben sich folgende Anforderungen:

  • Kleine Abmessungen und geringes Gewicht, damit die „Kleinkraftwerke“ später auch im Feld folgen können.
  • Um möglichst viele Anwendungsfälle zu erschließen, nur eine kleine Leistung — bis 10 MWel derzeit angestrebt.
  • Inhärente („walk away“) Sicherheit.
  • Möglicher Betrieb über den vollen Lastbereich mit hoher Änderungsgeschwindigkeit um Inselbetrieb zu gewährleisten.
  • Langzeit-Dauerbetrieb mit Brennstoff Wechselintervallen von mindestens 10 Jahren („Batterie“). Dies macht eine höhere Anreicherung von nahezu 20% (HALEU) nötig.
  • Weitestgehend vollautomatischer Betrieb durch Soldaten — nach kurzer Schulung und Einarbeitung.
  • Möglichst eine zivile Zulassung durch die NRC um die potentiellen Stückzahlen zu erhöhen und eine Einspeisung ins öffentliche Netz zu ermöglichen.

Das Genehmigungsverfahren

Heutzutage eine Genehmigung für einen neuen Reaktortyp zu erlangen, gleicht einem einzigen Hindernislauf mit ungewissem Ausgang. Von einer Behörde, die ein Monopol hat und überwiegend im Stundenlohn (rund 280$/h) arbeitet, kann man keine Sprünge erwarten. Sie wird sich noch grundlegend umorganisieren müssen um sich den neuen — teilweise noch in Arbeit befindlichen — Randbedingungen anzupassen: Bei Reaktoren so kleiner Leistung ist die Menge radioaktiver Stoffe (Spaltprodukte) so klein, daß auch im ungünstigsten Fall eine Gefährdung von Personen außerhalb des Betriebsgeländes ausgeschlossen werden muß. Eine schlimme Kröte für alle „Atomkraftgegner“! Eine inhärente Sicherheit, d. h. keine nukleare Explosion und auch keine Notkühlung ist erforderlich. Ein vollautomatischer Betrieb, der keine Fehlbedienung erlaubt. In diesem Zusammenhang ist interessant, daß die gesetzlichen Bestimmungen über die Nuklearversicherung bald routinemäßig auslaufen und zwangsläufig überarbeitet werden müssen. Es bietet sich an, für solche Reaktoren die Haftpflicht nur noch rein kommerziell auszugestalten. Eine (spezielle) Industrieversicherung mit kalkulierbar geringeren Kosten. Auch das wird für „Atomkraftgegner“ nur schwer verdaulich sein, da es doch zu deren Grundüberzeugungen zählt, daß Kernkraftwerke gar nicht zu versichern seien!

Wer an dieser Stelle glaubt, das seien alles nur Wunschträume, der täuscht sich gewaltig. Die NRC steht unter Druck. Sie hat schon lange den Bogen überspannt. Ganz entscheidend ist aber, daß sich mit der Wahl von Präsident Trump der Wind von gegen, in pro Kernenergie gedreht hat. Der Präsident ist nämlich in dieser Frage sehr mächtig: Nach dem Atomic Energy Act of 1954 kann er das Verteidigungsministerium (DoD) anweisen, einen solchen Reaktor für militärische Zwecke zu bauen und zu betreiben (siehe 42 U.S.C. §2121(b)). Es bedarf dazu ausdrücklich keiner Genehmigung durch die NRC (siehe 42 U.S.C. §2140(b)).

Allerdings ist der Eigenbau gar nicht gewollt. Es geht um die Wiederbelebung der kerntechnischen Industrie. Dafür ist aber eine Genehmigung und Überwachung durch die NRC nötig. Im Gespräch sind private Investoren und Betreiber. Das Militär würde nur für 40 Jahre den Strom zu einem festgelegten Preis kaufen. Das Kraftwerk könnte in unmittelbarer Nähe des Stützpunktes errichtet werden und von dieser wirtschaftlichen Basis aus, sein Geschäft erweitern. Ein Vorbild ist auch die NASA, die eng mit privaten Raketenherstellern zusammenarbeitet und von diesen Nutzlast kauft.

Der Zeitplan

Aktuell geht man von einer Realisierung innerhalb von 5 bis 10 Jahren für den „Neuen Reaktor“ einschließlich Brennstoffkreislauf, Genehmigungen und Bau aus. Für einen Kerntechniker hört sich das wie Science Fiction oder einer Geschichte aus vergangenen Zeiten (erstes Atom-U-Boot Nautilus etc.) an. Vielleicht knüpft Präsident Trump aber bewußt an diese Traditionen an. Ein solches Projekt ist weniger eine Frage der Ingenieurleistungen sondern viel mehr des politischen Willens. Gelingt es ihm, hat er wahrlich „America Great Again“ gemacht. Wenn Amerika wirklich wollte, hat es immer das Unmögliche geschafft: Manhattan Project, Nautilus, Apollo usw.

Nun ist es auch nicht so, als wenn man bei Stunde Null mit diesem Projekt anfängt. Technisch gibt es kaum Unwägbarkeiten. Politisch sind auch bereits die entscheidenden Gesetze durchgebracht. Es ist halt der unvergleichliche Donald Trump Regierungsstil: Immer viel Kasperletheater als Futter für die Medien und sonstige schlichte Gemüter, bei gleichzeitig harter Sacharbeit im Hintergrund.

Atomwaffen als Preis für Klimaschutz?

Michael Shellenberger bezeichnet sich selbst als „Umweltaktivist“ der sich für „CO2 freie Energie“ zur „Klimarettung“ einsetzt. Er sagt von sich selbst, daß er ursprünglich ein Anhänger von „Atomkraft-Nein-Danke“ war und heute aktiv für die Erhaltung von Kernkraftwerken kämpft — vom Saulus zum Paulus sozusagen. Gerade deswegen genießt er hohes Ansehen unter Aktivisten für die Kernenergienutzung.

Nun hat er sich mit dem Artikel Wer sind wir, daß wir schwachen Nationen Kernwaffen vorenthalten, die sie für ihre Selbstverteidigung benötigen? und einer noch dolleren Fortsetzung Für Nationen die Kernenergie anstreben ist der Bau von Kernwaffen eine Fähigkeit und kein Fehler im Forbes-Magazin auf sehr abschüssiges Gelände begeben. In Anbetracht der großen Auflage und dem Bekanntheitsgrad des Autors kann man seine Thesen nicht unkommentiert lassen. Dafür wird einfach zu viel durcheinander gerührt. Der geübte Erzähler beginnt seinen Artikel mit der Schilderung einer Szene aus einem Hollywoodfilm, in der die SS brutal eine jüdische Familie im besetzten Frankreich abschlachtet. Er läßt seine Schilderung mit der selbst beantworteten Frage enden, warum sich die französische Familie überhaupt im Keller verstecken mußte: Sie hatten keine Abschreckung. Er spannt den erzählerischen Bogen weiter über den July 1942, in dem die kollaborierende französische Polizei fast 13000 Juden in einem Stadion zusammenpferchte und anschließend nach Deutschland deportieren ließ. Es folgt die Feststellung, daß von den fast 76000 französischen Juden die Gaskammern von Ausschwitz nur 2000 überlebt haben. Dramaturgisch geschickt, aber äußerst geschmacklos — wenn man erst einmal die spätere Gleichsetzung von Israel und Iran gelesen hat — kommt er zu seiner ersten These:

Die Atombombe als Waffe der Schwachen.

Wie hätte ein schwacher Staat wie Frankreich der 1930er Jahre die Ungleichheit gegenüber dem nationalsozialistischen Deutschland aufheben können? Durch den Besitz einer Waffe, mit der er ihre größten Städte hätte ausradieren können. Wow! Mal abgesehen, daß solche historischen Betrachtungen genauso sinnvoll sind, wie die Fragestellung, was wäre aus der Welt geworden, wenn die Saurier schon Konserven gehabt hätten, ist dies schon der erste Widerspruch in seiner gesamten Argumentation. Shellenberger hat die Nukleare-Abschreckung, wie sie z. B. im Kalten-Krieg vorlag, gar nicht verstanden: Sie funktioniert nur, wenn jeder genug Waffen hat, den Gegner auch dann sicher auszulöschen, wenn dieser bereits sein ganzes Arsenal abgefeuert hat (Zweitschlagfähigkeit). Nur in der Märchenwelt verfügt ausschließlich der Edle und Schwache über Schwert und Rüstung — was ihn automatisch nicht mehr schwach sein läßt. Solange also nicht jeder Staat über das Potential verfügt, die ganze Welt zu vernichten, gibt es keine funktionierende Abschreckung. Wer ist ernsthaft für solch einen Irrsinn?

Das ganze Vorspiel mit Frankreich bekommt plötzlich Sinn, wenn man die Überleitung mit Charles de Gaulle über die nukleare Bewaffnung von Frankreich liest. Shellenberger sieht sie als logische Konsequenz des Überfalls von Frankreich durch Deutschland. Aus dieser Position leitet er die vermeintlich unmoralische Haltung der USA 1962 ab: Das französische Ansinnen sei „töricht oder teuflisch — oder beides“ (frei nach Kennedy). Warum konnten die USA Frankreich den Wunsch absprechen, sich selbst zu verteidigen? Eine moralisch triefende rhetorische Frage, die er für seine weitere Argumentation braucht. Er blendet einfach die historischen Tatsachen aus: Die Panzer der Sowjetunion standen an der Elbe — also unmittelbar vor den Toren Frankreichs. Charles de Gaulle sprach in diesem Zusammenhang bewußt von Lyon und Hamburg. Er wollte das Europa der Vaterländer — zusammen mit dem „Erbfeind“ Deutschland — als Bollwerk gegen weitere innereuropäische Kriege und die äußere Bedrohung durch den Kommunismus. Demgegenüber stand die nordatlantische Wertegemeinschaft mit dem atomaren Schutzschirm der USA als Alternative.

Der nukleare Schutzschirm

Damit kommen wir zu seiner zweiten These, mit der er Kernwaffen für jeden Staat begründet: Kein Staat würde einen „Atomkrieg“ riskieren, wenn einer seiner Verbündeten durch einen anderen Staat mit Atomwaffen angegriffen würde. Ausgerechnet den deutschen Professor Christian Hacke führt er hierfür als Zeuge an. Ein Typ, die schon mal gerne Donald Trump in einem Interview mit dem Deutschlandfunk (Wo auch sonst, als im GEZ-Funk?) als „Kotzbrocken, der für die Unterseite der amerikanischen Zivilisation steht“ bezeichnet. Schlimmer noch, diese Lichtgestalt eines deutschen Politologen verbreitet seine kruschen Thesen auch noch international:

Germany is, for the first time since 1949, without nuclear protection provided by the United States, and thus defenseless in an extreme crisis. As such, Germany has no alternative but to rely on itself. A nuclear-armed Germany would be for deterrence only. A nuclear Germany would stabilize NATO and the security of the Western World, but if we cannot persuade our allies then Germany should go it alone.

Kurz und knapp: Wegen der neuerdings unzuverlässigen USA — die staatliche Propaganda des GEZ-Rundfunks zeigt zumindest bei diesem Herrn Früchte — braucht Deutschland eigene Kernwaffen!

Die Politik der USA hat sich bisher nicht verändert: Es sind zahlreiche US-Truppen in Deutschland stationiert. Zusätzlich wurde der Schutzschirm noch bis in die baltischen Staaten ausgedehnt. Dies ist der „Pearl-Harbor-Knopf“ der USA! Putin-Versteher bezeichnen das als Bedrohung Russlands durch die „Nato-Ost-Erweiterung“. Zum Glück ist Putin als KGB-Offizier in der dritten Generation nicht ein solcher Einfaltspinsel. Gleichwohl ist das Säen von Zwietracht ein ewiges Bemühen dieser Organisation und ihrer Helfer im Westen. Wer sich dafür interessiert, dem sei z. B. ein Studium des „NATO-Doppelbeschlusses“ empfohlen. Noch heute kämpft die SED-Nachfolgepartei gegen die Lagerung von US-Atombomben auf deutschem Grund. Sie sollten nach Freigabe durch die USA von Bundeswehrflugzeugen gegen die Sowjetarmee eingesetzt werden können. Nichts weiter, als ein deutliches Argument, daß das Spiel „New York gegen Berlin“ nicht funktioniert. Nukleare Abschreckung ist halt etwas komplexer als mancher Politologe glaubt zu wissen.

Alle Staaten sollen gleich sein

Staaten sind nicht gleich gefährlich. Es ist wie mit Messern, Schusswaffen und allem anderen auch: Es ist z. B. ein Unterschied, ob ein Pfadfinder ein Messer bei sich hat oder ein „männlicher unbegleiteter Migrant“ auf einem Volksfest. Insofern ist es bestenfalls naiv, alle Staaten in einen Topf zu werfen.

Man mag ja noch verstehen, daß in Nord Korea die Kernwaffen letztendlich nur zur Ausbeutung und Unterdrückung des eigenen Volkes durch seinen Diktator dienen sollen: Wenn ihr mir mein Volk wegnehmen wollt, beschmeiß ich euch mit Atombomben. Aber Iran und Israel in einen Topf zu schmeißen, ist schon nicht mehr unverständlich: Israel ist eine Demokratie — Iran ein antisemitisches Mullah-Regime, das immer wieder mit der Auslöschung Israels droht; Israel hat bisher ausschließlich unter großen Opfern lokale Verteidigungskriege führen müssen — Iran führt aus religiösem Antrieb Krieg in Jemen, Irak und Syrien und unterstützt aktiv Terroristen. Man hätte wirklich kein dämlicheres Beispiel für die Befriedung durch frei verfügbare Kernwaffen finden können. Iran ist erst durch sein Streben nach Kernwaffen zum Problem geworden. Mit Rationalität im Zusammenhang mit gläubigen Schiiten sollte man auch nicht zu erwartungsvoll sein: Was soll ein Gleichgewicht des Schreckens jemandem sagen, der davon überzeugt ist, 72 Jungfrauen zu bekommen, wenn er sich selbst in die Luft sprengt?

Libyen, Irak und die Ukraine sind ebenfalls schlechte Beispiele zur Untermauerung der These von „Frieden schaffen durch Kernwaffen“. Libyen und Irak hätten es aus eigener Kraft gar nicht geschafft Kernwaffenstaat zu werden. Dafür haben ihre technischen und finanziellen Möglichkeiten nicht ausgereicht. Die Ukraine hat lediglich die sowjetischen Kernwaffen, die auf ihrem Territorium stationiert waren, an den Nachfolgestaat Rußland zurück gegeben. Der Unterhalt hätte sie nur finanziell aufgefressen. Putin hätte sich von einer Destabilisierung auch durch ein paar olle Raketen nicht abhalten lassen. Auf Grund seiner praktischen Erfahrung als KGB-Offizier in der DDR, kann er einfach kein freies und wirtschaftlich erfolgreiches Land als Leuchtfeuer in seiner Nähe dulden.

Warum uns Kernwaffen friedlich machen sollen

Atomwaffen dienen nicht zur Verteidigung sondern als Strafe“. Wieder so ein markanter Irrtum. „Friedensbewegte“ würden lieber von der drohenden atomaren Apokalypse sprechen. Wieso eigentlich? Hiroshima und Nagasaki sind schon lange wieder belebte Städte. Einzig und allein die Fähigkeit einen Gegner mit Sicherheit auch im Zweitschlag zu vernichten, kann eine Abschreckung auslösen. Aber kann Korea die USA auslöschen oder China Indien? Für eine nukleare Strafaktion wäre es wohl viel zu spät. China und Pakistan haben daher ständig Grenzscharmützel, nur wird hier darüber kaum berichtet. Frieden jedenfalls, sieht anders aus.

Ferner sind Kernwaffen nicht alles. Da ist z. B. eine funktionierende Raketenabwehr, über die im Moment praktisch nur die USA und Israel verfügen. Glaubt jemand ernsthaft daran, daß es (zumindest heute und in naher Zukunft) Korea gelingen würde, eine Interkontinentalrakete zum amerikanischen Festland durchzubringen?

Selbst eine so simple Eigenschaft wie die Fläche eine Landes spielt eine Rolle: Für Breschnew war Deutschland stets ein Problem von drei Wasserstoffbomben. Israel könnte wohl kaum eine aushalten. Dem großen Führer von Nord Korea wäre es wohl egal, ob sein Land in einen Parkplatz umgewandelt würde, solange er in irgendeinem Bunker überleben könnte. Iran ist zwar ziemlich groß, aber seine Führungsclique erstrebt ohnehin einen Platz im eingebildeten Paradies.

Kernkraftwerke und die Bombe

Die abgedroschene Behauptung der Verknüpfung von Kernkraftwerken und nuklearer Aufrüstung ist schlicht weg Unsinn. Der einzige Fall einer Verknüpfung (über die Nutzung von Schwerwasserreaktoren zur Produktion von waffengrädigem Plutonium) war und ist Indien. Die Welt hat daraus gelernt (z. B. „123-Abkommen“ mit den Vereinigten Emiraten). Selbst Korea, Iran und vormals Süd-Afrika haben ein eigenes Waffenprogramm unterhalten. Eher das Gegenteil ist der Fall: Ein paralleles Programm zum Aufbau von friedlicher und militärischer Nutzung ist für die meisten Länder der Welt schlicht zu kostspielig. Auch Saddam Hussein, Muammar al-Gaddafi und Assad konnten nur an der Bombe basteln. Wie wichtig Geld ist, zeigt das Beispiel Vietnam, dort mußte man von dem geplanten Bau von Kernkraftwerken auf Kohlekraftwerke umschwenken. Wären die Theorien von Shellenberger zutreffend, hätte Vietnam alles daran setzen müssen Kernkraftwerke zu bauen, befindet es sich doch in einem latenten Kriegszustand mit China.

Der Brennstoffkreislauf

In der Tat ist der Aufbau eines Brennstoffkreislaufes wesentlich sensibler. Dies betrifft sowohl die Anreicherung von Uran auf Waffenfähigkeit (Pakistan) wie auch die Wiederaufbereitung (Indien). Sowohl die USA (Vereinigte Emirate), wie auch Rußland (Türkei, Ägypten) achten beim Verkauf von Kernkraftwerken durch die Lieferung und Rücknahme des benötigten Brennstoffs auf eine Einschränkung des Kreises.

Umgekehrt kann man nicht den Schluß ziehen, daß jedes Land mit einem Brennstoffkreislauf auch Kernwaffen anstrebt. Paradebeispiel dafür war gerade Deutschland. Wie unverantwortlich und dämlich daher beispielsweise das Politologengeschwafel eines Christian Hacke ist, zeigt bereits Shellenbergers Artikel: Er listet nur drei Staaten (Polen, Ungarn und Finnland) auf, denen er kein Streben nach Kernwaffen unterstellt.

Ebenso sollte man eigentlich denken, daß die Gleichsetzung von Plutonium und Kernwaffen langsam aus der Welt ist. Sehr ungerecht ist in diesem Zusammenhang gerade die Erwähnung von Japan. Japan hat sich für einen geschlossenen Brennstoffkreislauf entschieden. Hat aber bisher seine abgebrannten Brennelemente in Frankreich und GB aufarbeiten lassen. Diese beiden Länder sind die Garanten, daß es sich bei den zitierten 6000 to ausschließlich um Reaktorplutonium und keinesfalls um waffengrädiges Plutonium handelt.

Nachwort

Kernwaffen sind Massenvernichtungswaffen, deren militärischer Nutzen ohnehin eingeschränkt ist — Friedensstifter sind sie keineswegs. Sie gehören genauso geächtet wie Chemiewaffen. Da aber die reale Welt ist wie sie ist, können nur beharrliche Abrüstungsverhandlungen zum Ziel führen. Bis dahin ist konsequent die Weiterverbreitung zu verhindern oder wenigstens zu behindern. Es ist zumindest ein Zeitgewinn.

Was Michael Shellenberger anbetrifft: Man kann ja gerne glauben, daß CO2 zur „Klimakatastrophe“ führt. Es ist auch ein lobenswerter Entwicklungsschritt, wenn man zur Erkenntnis gekommen ist, daß man nicht mit Wind und Sonne die Welt mit ausreichend Energie versorgen kann. Insofern sei sein jahrelanger Einsatz für die Nutzung der Kernenergie keinen Millimeter geschmälert. Es ist aber schlichtweg nicht zulässig, wenn man zur „Klimarettung“ Kernwaffen als Friedensstifter glorifiziert.

U-Battery aus Europa

Auch in Europa geht (noch) die Reaktorentwicklung weiter. Es begann 2008 an den Universitäten: University of Manchester (UK) und Technology University of Delft (NL). Es ging um die Entwicklung eines Reaktors zur Stromerzeugung und zur gleichzeitigen Auskopplung von Wärme (mit Temperaturen bis 750 °C) für Heiz- und industrielle Zwecke. Vorgabe war eine optimale Lösung für das Dreieck aus: Sicherheit, Wirtschaftlichkeit und Umweltfreundlichkeit zu finden.

Interessant ist schon mal die Erschließung völlig neuer Marktsegmente durch die Reaktorleistung (hier 10 MWth und 4 MWel) und die nutzbare Temperatur (hier 750 °C). Diese neue Klasse wird als MMR (.micro modular reactor) bezeichnet. Wie schon die Bezeichnung „Uran-Batterie“ andeutet, wird ferner eine ununterbrochene Betriebszeit von mindestens 5 – 10 Jahren vorgesehen. Hiermit wird das Marktsegment der Kraft-Wärme-Kopplung auf der Basis von „Schiffsdieseln“ und kleinen Gasturbinen angestrebt. Ein sich in der Industrie immer weiter (steigende Strompreise und sinkende Versorgungssicherheit durch Wind und Sonne) verbreitendes Konzept. Hinzu kommen die Inselnetze in abgelegenen Regionen (Kleinstädte), Bergwerke und Produktionsplattformen auf dem Meer, Verdichterstationen in Pipelines usw. Hierfür kann ebenfalls auch die hohe Betriebstemperatur — selbst bei reiner Stromproduktion — von Vorteil sein, da sie problemlos Trockenkühlung (Wüstengebiete) erlaubt.

Die treibende Kraft hinter diesem Projekt ist — in diesem Sinne sicherlich nicht ganz zufällig — das Konsortium URENCO. Ein weltweiter Betreiber von Urananreicherungsanlagen. Solche Kaskaden aus Zentrifugen brauchen kontinuierlich gewaltige Mengen elektrische Energie. Man sucht also selbst nach einer Lösung für die immer teurere Versorgung.

Der Reaktor

Wieder ein neuer „Papierreaktor“ mehr, könnte man denken. Ganz so ist es aber nicht. Man hat von Anfang an auf erprobte Technik gesetzt. Es ist reine Entwicklungsarbeit — insbesondere für die Nachweise in einem erfolgreichen Genehmigungsverfahren — aber keine Forschung mehr zu leisten. Insofern ist der angestrebte Baubeginn 2024 durchaus realisierbar.

Fangen wir mit dem Brennstoff an. Es sind [TRISO] (TRISO) Brennelemente vorgesehen. Dieser Brennstofftyp ist bereits in mehreren Ländern erfolgreich angewendet worden. Diese Brennelemente überstehen problemlos Temperaturen von 1800 °C. Dadurch sind solche Reaktoren inhärent sicher. Gemeint ist damit, daß die Kettenreaktion auf jeden Fall infolge des Temperaturanstiegs zusammenbricht und eine Kernschmelze durch die Nachzerfallswärme (Fukushima) ausgeschlossen ist. Man braucht somit keine Notkühlsysteme, dies spart Kosten und vor allem: Was man nicht hat, kann auch nicht kaputt gehen oder falsch bedient werden. Der Sicherheitsgewinn ist dadurch so groß, daß sich alle denkbaren Unfälle nur auf den Reaktor und sein schützendes Gebäude beschränken. Nennenswerte Radioaktivität kann nicht austreten und damit beschränken sich alle Sicherheitsanforderungen nur noch auf das Kraftwerksgelände selbst. Eine „revolutionäre Feststellung“, der sich die Genehmigungsbehörden langsam anschließen. Dies hat erhebliche Auswirkungen auf die möglichen Standorte, Versicherungsprämien etc. Ein nicht mehr umkehrbarer Schritt auf dem Weg zu einem „normalen Kraftwerk“ oder einer „üblichen Chemieanlage“. Die Errichtung solcher Reaktoren in unmittelbarer Nähe zu Städten (Fernwärme) oder Industrieanlagen (Chemiepark, Automobilwerk etc.) ist nur noch eine Frage der Zeit.

Als Kühlmittel ist Helium vorgesehen. Der Reaktorkern wird aus sechseckigen Brennelementen als massiver Block aufgebaut. Mit dieser Technik besitzt GB eine jahrzehntelange Erfahrung. Kein Land besitzt mehr Betriebsjahre mit Reaktorgraphit. Der Vorteil gegenüber einem Kugelhaufen sind definierte Kanäle für das Kühlmittel und die Regelstäbe. Vor allen Dingen ergibt sich aber kein Staubproblem aus dem Abrieb der Kugeln während des Betriebs. Die notwendigen Rohrleitungen und das Gebläse zur Umwälzung des Heliums bleiben sauber. Dies erleichtert etwaige Wartungs- und Reparaturarbeiten. Der komplette Reaktor kann in einer Fabrik gebaut und getestet werden und mit einem LKW einsatzbereit auf die Baustelle gebracht werden.

Als Brennstoff dient angereichertes Uran. Die Anreicherung (< 20% U235) erlaubt einen mehrjährigen Betrieb ohne einen Brennstoffwechsel („Batterie“). Ob der Brennstoff vor Ort im Kraftwerk gewechselt werden muß oder der gesamte Reaktor zurück zum Hersteller gebracht werden kann, ist noch nicht abschließend geklärt (Strahlenschutz). Der Ansatz einer „Batterie“ verringert jedenfalls die Größe eines etwaigen Brennelementenlagers am Kraftwerk und schließt eine mißbräuchliche Nutzung praktisch aus (Proliferation). Damit ist ein solches Kraftwerk auch problemlos in „zwielichtigen Staaten“ einsetzbar. Ferner verringert sich der Personalaufwand im Kraftwerk. Ein solches Kraftwerk wäre halbautomatisch und fernüberwacht betreibbar. Was den Umfang des erforderlichen Werkschutzes anbelangt, sind die Genehmigungsbehörden noch gefragt. Eine Chemieanlage — egal wie gefährlich — kommt heutzutage mit einem üblichen Werkschutz aus, während von Kernkraftwerken erwartet wird, eine komplette Privatarmee zu unterhalten. Alles Ausgeburten von „Atomkraftgegnern“ um die Kosten in die Höhe zu treiben. Verkauft wird so etwas als Schutz gegen den Terrorismus.

Der konventionelle Teil

Man plant keinen Dampfkreislauf, sondern eine Gasturbine als Antrieb des Generators. Kein ganz neuer Gedanke, aber bisher ist z. B. Südafrika an der Entwicklung einer Heliumturbine gescheitert. Helium ist thermodynamisch zu eigenwillig und außerdem ist bei einem Kugelhaufenreaktor mit einer radioaktiven Staubbelastung zu rechnen. Bei der U-Battery hat man sich deshalb für einen sekundären Kreislauf mit Stickstoff entschieden. Vordergründig kompliziert und verteuert ein zusätzlicher Wärmeübertrager zwischen Reaktorkreislauf (Helium) und Turbinenkreislauf (Stickstoff) das Kraftwerk, aber man hat es sekundärseitig nur noch mit einem sauberen und nicht strahlenden Gas zur beliebigen Verwendung zu tun. Stickstoff ist nahezu Luft (rund 78% N2) und man kann deshalb handelsübliche Gasturbinen verwenden. Auch an dieser Stelle erscheint das wirtschaftliche Risiko sehr gering. Der Wärmeübertrager Helium/Stickstoff übernimmt lediglich die Funktion der Brennkammer eines Flugzeugtriebwerkes (Leistungsklasse). Bei der vorgesehenen hohen Temperatur von 750°C des Stickstoffs bleibt nach der Turbine noch jegliche Freiheit für die Verwendung der Abwärme (Fernwärme, Prozessdampf etc.). Die immer noch hohe Temperatur am Austritt einer Gasturbine erlaubt problemlos eine Kühlung mit Umgebungsluft ohne große Verschlechterung des Wirkungsgrades. Ein immenser Vorteil für alle ariden Gebiete.

Die Projektierer

Eine zügige Verwirklichung scheint durch die Zusammensetzung der beteiligten Unternehmen nicht unwahrscheinlich: Amec Foster Wheeler (über 40000 Mitarbeiter in 50 Ländern) mit umfangreicher Erfahrung in Öl- und Gasprojekten. Cammel Laird als Werft. Laing O’Rourke als Ingenieurunternehmen. Atkins für Spezialtransporte. Rolls Royce als international führender Produzent von Gasturbinen (Flugzeuge und Schiffe), darüberhinaus mit umfangreicher Erfahrung in der Kerntechnik.

Bemerkenswert ist die Ausweitung des Projektes auf den Commonwealth. Kanada und Indien sind bereits dabei. Läßt der „Brexit“ hier grüßen? Nach bisherigem Stand der Dinge, könnte der erste Reaktor in Chalk River in Kanada gebaut werden. Dies ist auch kein Zufall, da in Kanada bereits über 200 potentielle Standorte für einen solchen MMR ermittelt wurden. Für diese potentiellen Kunden ist bereits ein neuartiges Geschäftsmodell in Arbeit: Sie bezahlen nur die gelieferte Wärme und und die elektrische Energie. Das Kraftwerk wird dann von einer Zweckgesellschaft finanziert, gebaut und betrieben. So kann dem Kunden das wirtschaftliche Risiko abgenommen werden. Es ist nicht anzunehmen, daß irgendein Bergwerk oder eine Ölraffinerie bereit ist in das „Abenteuer Kerntechnik“ einzusteigen. Andererseits sind solche sog. „Betreibermodelle“ in der einschlägigen Industrie lange bekannt und erprobt.

Noch ein paar Daten

Der Reaktor hat einen Durchmesser von etwa 1,8 m und eine Länge von etwa 6 m. Er ist damit problemlos auf einem LKW transportierbar. Das Helium soll einen Betriebsdruck von ca. 40 bar haben und eine Austrittstemperatur von 750 °C. Damit ergibt sich eine notwendige Wandstärke von unter 100 mm. Dies ist wichtig, weil hierfür keine speziellen Schmieden bzw. Rohlinge erforderlich sind. Nur wenige Unternehmen weltweit können demgegenüber Druckbehälter für Leichtwasserreaktoren schmieden.

Als Brennstoff soll auf knapp 20% angereichertes Uran (high assay, low enriched uranium (HALEU)) verwendet werden. Damit werden die TRISO-Kügelchen hergestellt, die zu Tabletten mit einer Höhe von ca. 40 mm und einem Außendurchmesser von ca. 26 mm gepreßt werden. Aus diesen werden die sechseckigen Brennelemente mit einer Kantenlänge von 36 cm und einer Höhe von 80 cm aufgebaut. Sie enthalten alle Kanäle für Regelstäbe, Instrumentierung usw. Der Kern des Reaktors besteht aus je 6 Brennelementen in 4 Lagen übereinander. Er beinhaltet etwa 200 kg Uran. Dies reicht für einen ununterbrochenen Vollastbetrieb von 5 Jahren.

Eine Doppelblockanlage (2 x 4 MWel) erfordert einen Bauplatz von ca. 10 x 12 m (Reaktoren, Wärmeübertrager und Turbinen im „Keller“, Halle für Wartungsarbeiten darüber). Hinzu käme noch Platz für Schaltanlagen, Kühler, Büros etc.

Es wird von Baukosten zwischen 45 bis 78 Millionen € für eine Doppelblockanlage ausgegangen (5600 bis 9750 €/KW). Das mag auf den ersten Blick hoch anmuten, aber man bewegt sich mit dieser Leistung von 8 MWel im Marktsegment der sog. Dieselmotoren-Kraftwerke. Hinzu kommen in entlegenen Standorten noch die meist höheren Kosten für den Dieselkraftstoff. Der für die „U-Battery“ ermittelte Strompreis von 9 Cent/KWh dürfte somit für den angepeilten Kundenkreis sehr attraktiv sein.

Inzwischen gibt es eine sehr enge Kooperation zwischen Kanada und GB. Ein paralleles, aber kooperatives Genehmigungsverfahren zeichnet sich ab. Weiterhin sind Indien, Japan, Polen, USA und Neuseeland bereits mit im Boot. Vielleicht schon die erste Morgendämmerung, wohin die Reise von GB nach dem Brexit geht? Jedenfalls nicht in das Rest-Europa, in dem unsere Kanzlerin so gut und gerne lebt.

Weitere Nutzung für „Atommüll“

Während in Deutschland weiterhin abgebrannte Brennelemente als „Atommüll“ verteufelt werden, hat China bereits einen weiteren Weg für deren Nutzung eingeschlagen. Zwischen dem Betreiber von zwei Candu 6 Reaktoren in Quinshan TQNPC (China National Nuclear Corporation subsidy Third Quinshan Nuclear Power Company) und der kanadischen SNC-Lavalin wurde ein Vertrag zur Lieferung von Brennelementen aus 37M NUE (Natural Uranium Equivalent) abgeschlossen. Dies ist das Ergebnis einer mehr als zehnjährigen gemeinsamen Forschung und Entwicklungsarbeit. Seit 2008 werden im Reaktor QP III immer wieder NUE-Brennelemente als Dauertest eingesetzt. Diese praktischen Versuche dienten der Anpassung einiger Sicherheitsparameter und der Durchführung des Genehmigungsverfahrens. Jetzt sind die Arbeiten abgeschlossen und der Betrieb mit recyceltem Uran kann beginnen.

Die Reaktoren

Bei den Candu Reaktoren in Quinshan handelt es sich um mit schwerem Wasser (D2O) gekühlte und moderierte Reaktoren. Dieser Reaktor hat im Gegensatz zu Leichtwasserreaktoren keinen Druckbehälter in dem sich die Brennelemente befinden, sondern viele Druckröhren in denen jeweils nur eine Reihe einzelner Brennelemente stecken. Die Druckröhren sind waagerecht und sitzen wiederum in einem mit Schwerwasser gefüllten drucklosen Tank. Vorteil dieser Konstruktion ist, daß man kein dickwandiges Druckgefäß benötigt, sondern lediglich druckfeste Röhren von etwa 10 cm Durchmesser. Druckbehälter können nur eine Handvoll Schmieden weltweit fertigen. Deshalb kann diesen Reaktortyp z. B. Indien selbst herstellen. Als Nachteil erkauft man sich dieses Prinzip mit einem Gewirr von Rohrleitungen: Jede Druckröhre muß mit Vorlauf- und Rücklaufleitung mit den Dampferzeugern verbunden werden. Insgesamt ist die Herstellung aufwendiger und damit teurer.

Durch den Einsatz von Schwerwasser als Kühlmedium und Moderator gehen wesentlich weniger Neutronen verloren als bei Leichtwasserreaktoren. Man kommt deshalb mit Natururan als Brennstoff aus. Eine Anreicherung ist nicht nötig. Darüberhinaus ist das Konzept so flexibel, daß auch andere Brennstoffe wie Thorium oder eben abgebrannte Brennelemente aus Leichtwasserreaktoren eingesetzt werden können. (Siehe hierzu auch den Artikel Reaktortypen in Europa – Teil6, CANDU in diesem Blog.)

Die Wiederaufbereitung

Wenn Brennelemente „abgebrannt“ sind, müssen sie entnommen werden und durch frische Brennelemente ersetzt werden. Sie sind aber keinesfalls Abfall, sondern können und sollten recycelt werden. Auch in Deutschland war deshalb eine eigene Wiederaufbereitungsanlage nach dem PUREX-Verfahren vorgesehen. Übergangsweise hat man Brennelemente in Frankreich und GB aufbereiten lassen. Aus bekannten ideologischen Gründen ist man davon abgegangen. Der Kampf gegen das Atom ist der zentrale Gründungsmythos von Bündnis 90 / Die Grünen.

Die Kerntechnik war der erste Industriezweig der nicht einfach Abfall produzieren wollte, sondern vielmehr der Begründer des industriellen Recyclings. In einem „abgebrannten“ — oder besser abgenutzten und für seinen ursprünglichen Verwendungszweck nicht mehr geeigneten — Brennelement sind lediglich rund 5 % Spaltprodukte. Das ist die „Asche“ der nuklearen Energieherstellung. Aber über 93% des Urans und zusätzlich rund 1% Plutonium sind für die Energiegewinnung wiederverwendbar!

Bei dem PUREX-Verfahren werden die Brennstäbe aufgelöst und anschließend durch eine mehrstufige flüssig-flüssig Extraktion in möglichst reines Uran und Plutonium zerlegt. Alles andere ist bei diesem Verfahren Abfall, wird in Glas eingeschmolzen und ist zur Endlagerung vorgesehen. Das Plutonium wird seit Jahrzehnten — auch in Deutschland — zusammen mit abgereichertem Uran zu sogenannten Mischoxid-Brennelementen verarbeitet und erneut in Leichtwasserreaktoren zur Energiegewinnung eingesetzt. Das zurückgewonnene Uran wird bisher fast ausschließlich eingelagert. Man kann es als „Ersatz“ für Natururan in Anreicherungsanlagen einsetzen. Es muß dazu aber in Uranhexafluorid umgewandelt werden. Ein, bei den heutigen Preisen für Natururan nicht wirtschaftlicher Weg.

Der NUE-Weg

Das Uran für Leichtwasserreaktoren hat eine ursprüngliche Anreicherung von 3% bis 5% U235. Im Reaktor wird sowohl U235 als auch Pu239 gespalten. Das Plutonium bildet sich kontinuierlich aus dem U238 durch das (parasitäre) Einfangen von Neutronen. Ein Teil davon, wird sofort wieder im Reaktor gespalten. Deshalb kann nicht alles U235 aufgebraucht werden bevor die zulässige Betriebsdauer des Brennelements erreicht ist. Oft hat das recycelte Uran noch einen höheren Anteil davon als das Natururan (0,7% U235). Es kann daher noch in Schwerwasserreaktoren eingesetzt werden. Allerdings ist die Natur immer etwas komplizierter als die Theorie. Nicht jeder U235 Kern wird auch gespalten, wenn er von einem Neutron getroffen wird. Es bildet sich auch U236 und sogar Spuren von U234. Alle diese Isotope haben ihre charakteristischen neutronenphysikalischen Eigenschaften. Es wird deshalb durch Verschneiden mit abgereichertem Uran ein dem „Natururan entsprechendes Äquivalent“ (NUE) hergestellt. Dies ist aber eine reine Frage der Analyse (welche Isotopenzusammensetzung?), der Rechnung (neutronenphysikalische Bestimmung) und der Mischung. Ein vergleichbar geringer Aufwand, verglichen z. B. mit einer Anreicherung.

Man kann etwa mit dem recycelten Uran aus vier Leichtwasserreaktoren einen zusätzlichen Schwerwasserreaktor betreiben. Die zusätzliche Energie wird ohne zusätzlichen Verbrauch von Natururan erzeugt — Energie aus „Atommüll“. China betrachtet ihr kerntechnisches Programm offensichtlich von Anfang an als System. Im Zentrum stehen die Leichtwasserreaktoren und eine Wiederaufbereitung des „Atommülls“. Nach dem Vorbild von Frankreich wird dadurch der endgültig zu lagernde Abfall beträchtlich entschärft und verringert. Das anfallende Plutonium wird über Mischoxid wieder den Leichtwasserreaktoren zugeführt. Das zurückgewonnene Uran den Schwerwasserreaktoren. Mittelfristig soll eine weitere Nutzung über natriumgekühlte Reaktoren mit schnellem Neutronenspektrum erfolgen. Beachtenswert ist die Vorgehensweise: Zwar in voller Breite aller am Weltmarkt erhältlichen Reaktortypen, aber stets in kleinen Schritten in enger Kooperation mit internationalen Partnern. Ganz nebenbei ist dadurch eine der bedeutendsten kerntechnischen Industrien der Welt aufgebaut worden. Ein nicht zu unterschätzender und bewußt angestrebter Nebeneffekt. Kerntechnik ist eine Schlüsseltechnologie, die weit in die industrielle Welt ausstrahlt. So war es einst auch in Deutschland, aber hier wird dieser Vorteil zusehends aufgebraucht. Manch ein Grüner wird sich noch die Augen reiben, wie schnell der „Exportweltmeister“ zu einem mittelmäßigen Industriestandort verkommen sein wird.

Neutronen als Spürhund

Neutronen sind schon seltsame Geschöpfe. Sie haben eine recht große Masse und keine elektrische Ladung. Sie sind deshalb in der Lage, viele Materialien nahezu ungehindert zu durchdringen. Ganz im Gegenteil zu den Protonen — ihren Gegenstücken im Kern — die eine positive Ladung besitzen. Sie haben zwar fast die gleiche Masse, werden aber wegen ihrer elektrischen Ladung stark beim Durchtritt durch Materie beeinflußt. Elektronen sind nur leicht und sind elektrisch negativ geladen. Wegen ihrer Ladung sind sie gut zu beschleunigen und auszurichten, dringen aber wegen ihrer geringen Masse nur wenig in Materialien ein. Sie werden deshalb z. B. zum Schweißen verwendet. Ein Partikelstrahl aus Neutronen würde den Stahl einfach durchdringen, ihn aber nicht zum Schmelzen bringen.

Da Neutronen keine Ladung besitzen, lassen sie sich nicht beschleunigen und in ihrer Flugrichtung beeinflussen. Sie lassen sich nur „mechanisch“ durch Zusammenstöße abbremsen. Sinnigerweise nur leicht, wenn sie mit schweren Kernen zusammenstoßen und sehr stark, wenn sie mit möglichst leichten Kernen zusammentreffen. Ihre „Reaktionsfreude“ hängt wiederum von ihrer Energie, d. h. ihrer Geschwindigkeit ab. Aufgrund dieses Zusammenhanges entsann der Mensch die Neutronenwaffe: Schnelle Neutronen sollten nahezu ungehindert Panzer durchdringen und erst mit den darin sitzenden Menschen (tödlich) reagieren.

Neutronen zur Analyse

Wenn Neutronen mit Atomkernen reagieren, entstehen immer irgendwelche charakteristischen γ-Quanten. Diese kann man recht einfach und sehr genau messen. Sprengstoffe bestehen wesentlich aus Wasserstoff, Stickstoff, Sauerstoff und Kohlenstoff in bestimmten chemischen Verbindungen. Wird ein solcher Stoff mit Neutronen beschossen, ergibt sich ein eindeutiger „Fingerabdruck“ in der Form des gemessenen γ-Spektrums. Sehr genau und sehr zuverlässig. Man kann nicht nur sagen, daß es Sprengstoff ist, sondern genau die Sorte angeben. Fehlalarme sind nahezu ausgeschlossen — wenn man genug Neutronen hat und über die erforderliche Meßtechnik verfügt.

In der Forschung — und teilweise der Forensik — ein seit Jahrzehnten erfolgreich angewendetes Verfahren. Man kann z. B. noch Gifte in Konzentrationen finden, bei denen chemische Analyseverfahren längst versagen. Solche Untersuchungen finden meist in kerntechnischen Einrichtungen statt, denn man benötigt neben der Meßtechnik Zeit und viele geeignete Neutronen — üblicherweise aus einem Forschungsreaktor.

Während des Irak-Krieges erlitten die Truppen die meisten Verluste durch „Eigenbau-Sprengfallen“ die unmittelbar neben den Straßen gelegt wurden. Wenn eine LKW-Kolonne vorbeifuhr, wurden sie (meist über Funk) ausgelöst. Schutz gegen solche Sprengfallen bieten nur gepanzerte Fahrzeuge. Die größten Verluste hatten deshalb nicht die kämpfenden Truppen an der Front, sondern die Versorgungseinheiten, die in Kolonnen durch endloses Feindesland fahren mußten. Nach amerikanischem Muster wurde deshalb richtig Geld in die Hand genommen, um dieses Problem zu lösen. Eine Lösung ist heute die Neutronenaktivierungsanalyse: Sie wirkt auch gegen versteckte und eingegrabene Sprengkörper aus schwer detektierbaren Materialien wie z. B. Kunststoff und Holz in einer vermüllten Umwelt. Für eine praktische Anwendung ist die sichere und schnelle Erkennung aus einem (langsam) fahrenden Fahrzeug und sicherer Entfernung von etlichen Metern erforderlich. In der Messdauer und der Entfernung liegt aber die Herausforderung.

Die „Neutronenkanone“

Will man größere Mengen Neutronen in einer möglichst kleinen Anlage erzeugen, bleibt praktisch nur die Kernfusion. Man schießt in einem Beschleuniger z. B. H2 – Kerne auf H3 – Kerne, wodurch ein Neutron mit hoher Energie freigesetzt wird. Das Problem solch einer Kernreaktion ist aber, daß die entstandenen Neutronen sich in einer beliebigen Richtung davonmachen. Ganz ähnlich wie die Lichtquanten einer Glühbirne. Es ist gleichmäßig hell im gesamten Raum um die Glühbirne. Diese großräumige Verteilung hat zur Folge, daß die Helligkeit sehr schnell mit dem Quadrat der Entfernung abnimmt. Will man eine bestimmte Stelle „ausleuchten“, muß man den Lichtstrahl darauf konzentrieren. Genau dies ist aber bei Neutronen nicht so einfach. Ein Spiegel funktioniert — anders als bei Licht — praktisch nicht. Eine Ablenkung durch Magnetfelder funktioniert wegen der nicht vorhandenen Ladung — anders als bei dem Elektronenstrahl einer Röhre — auch nicht. Eine solch einfache Neutronenquelle hätte nur eine sehr geringe Reichweite und wäre damit unbrauchbar.

Wenn es aber trotzdem gelänge den größten Teil der Neutronen gezielt auf ein Objekt zu lenken anstatt sie sinnlos im Raum zu verteilen, sehe die Sache anders aus. Je mehr Neutronen den Sprengkörper treffen, um so stärker sendet dieser seine charakteristischen γ-Quanten aus und die erforderliche Messdauer verkürzt sich, was dem Suchfahrzeug eine höhere Geschwindigkeit erlaubt. Neutronen sind zwar schwer auf Kurs zu bringen, dafür halten sie aber um so sturer ihren Kurs (große Masse und keine Ladung) und fliegen mit einer Geschwindigkeit von über 40 000 km/s davon.

Neutronen kann man praktisch nicht mehr beeinflussen. Dies ist ein Vorteil und Nachteil zugleich: Positiv ist, daß sie gegenüber allen anderen Partikeln eine außergewöhnliche Reichweite besitzen, da sie durch die Luftmoleküle nahezu unbeeinflußt hindurch fliegen. Neutronen sind gegenüber Atomen winzig klein, sodaß die Atmosphäre für sie ein nahezu leerer Raum ist. Die vielen Elektronen die um die Kerne schwirren, sind für sie kein Hindernis, da sie selbst keine elektrische Ladung besitzen und ihre Masse (Zusammenstoß) gegenüber den Elektronen riesig anmutet. Man muß sie nur einheitlich ausrichten um einen wirksamen Partikelstrahl zu erhalten.

Dies geht jedoch über einen Trick aus der Quantenphysik. Neutronen besitzen einen sog. Spin: Anschaulich gesagt, rotieren sie wie ein Kreisel um ihre Achse. Ein solcher Spin ist eine Erhaltungsgröße, d. h. der Spin eines Atomkerns überträgt sich nach dem Aussenden des Neutrons aus dem fusionierten Kern auf dieses Neutron. Normalerweise sind die Spins der Atomkerne nicht einheitlich. Deshalb schwirren die Neutronen normalerweise in alle Richtungen des Raumes davon. Wenn man jedoch vor der Fusion allen Atomkernen den gleichen Spin aufzwingt und sie wie eine Perlenkette ausrichtet, fliegen auch alle Neutronen wie ein Strahl von der Neutronenquelle davon. Dies alles gelingt inzwischen in so kleinen Gerätschaften, daß man sie einschließlich der nötigen Energieversorgung etc. auf einem Klein-LKW unterbringen kann. Diese „Neutronenkanonen“ erzeugen einen mehr als tausendfachen Neutronenfluß in eine Richtung.

Die Teilchenstrahlungswaffe

Momentan ist die „Neutronenkanone“ so klein und einsatzbereit, daß sie mit allem notwendigen Zubehör auf einen Kleinlastwagen zum Auffinden von Sprengfallen am Straßenrand in den Einsatz geht. Die Entwicklung wird aber massiv in die Richtungen: Kleiner, leistungsfähiger und billiger vorangetrieben. Der nächste Schritt ist ein Gerät, welches sich in ein Flugzeug einbauen läßt.

Vordringlich ist aber ein weiteres Einsatzfeld: Die Analyse von Kernwaffensprengköpfen. Eine einfache Maßnahme gegen die immer erfolgreichere Raketenabwehr ist das Ausstoßen von zusätzlichen Attrappen. Bei den bisherigen Raketenabwehrsystemen muß man sich noch auf das Erreichen des Scheitelpunktes einer ballistischen Rakete beschränken. Erst dann kann man erst sicher die Flugbahn berechnen und das Ziel voraussagen. Eine einfache Abwehrmaßnahme ist der gleichzeitige Ausstoß von mehreren Attrappen. Heute kann man noch nicht Sprengkopf und Attrappen unterscheiden. Man müßte also alle Objekte sicher abschießen, was schnell eine Raketenabwehr — zumindest wirtschaftlich — überfordern würde. Hier kommt wieder die „Neutronenkanone“ ins Spiel. Genau wie eine Sprengfalle könnte man den Sprengkopf sicher identifizieren.

An dieser Stelle drängt sich eine weitere Lösung auf. Ein Sprengkopf ist nicht einfach ein Klumpen aus Plutonium, sondern ist vollgestopft mit Elektronik (Zünder), Sprengstoff und sonstigen Hilfsmitteln. Wenn der Neutronenstrahl stark genug wäre, könnte er den Sprengkopf nicht nur identifizieren sondern sogar unbrauchbar machen.

Neutronen können gerade auf Halbleiter eine verheerende Wirkung haben. In moderne Phasenradargeräten (Raketen- und Flugabwehr) werden Halbleiter aus Galliumnitrid (GaN) verwendet. Ein Beschuß mit Neutronen kann diese Halbleiter schnell zerstören. Dies bezieht sich nicht nur auf das Rausschlagen von Elektronen, sondern Gallium hat auch recht große Einfangquerschnitte, was bedeutet, daß durch Kernumwandlung und Strahlung der Halbleiter dauerhaft zerstört wird.

Lückenpresse oder doch mehr?

Am Montag dem 23.7.2018 um 20.00 Ortszeit brach der fast fertiggestellte Staudamm Xepian-Xe Nam Noy in Laos. 5 Milliarden Kubikmeter Schlamm und Wassermassen ergossen sich über mehrere Dörfer. Offizielle Bilanz: (angeblich nur) 27 Tote, aber Hunderte vermisste Personen — zumeist Kinder — und fast 7000 Obdachlose. Eine schreckliche Tragödie. Solche Unglücke im Zusammenhang mit der Gewinnung elektrischer Energie und Naturereignissen — hier außergewöhnliche Regenfälle — wird es immer wieder geben. Nur Laien glauben an „gute“ und „böse“ Arten von Energie. Es soll hier nicht um die technischen Aspekte gehen, sondern das Warum steht hier im Vordergrund und die (zweifelhafte) Reaktion der Medien in Deutschland.

Die Demokratische Volksrepublik Laos ist einer der ärmsten Länder in Asien. Ein vom Kommunismus gebeuteltes Land. Mehr als 23% der Bevölkerung haben weniger als 2 US$ pro Tag zur Verfügung. Von einschlägigen Kreisen wird es wegen seiner Topographie gern als „Batterie Südostasiens“ bezeichnet. Der Mekong durchfließt das Land auf rund 2000 km Länge. Zahlreiche laotische Flüsse münden in ihm. Besonders diese Nebenflüsse werden mit Stauseen zur Stromerzeugung gepflastert. Geld hierfür fließt zur Zeit in Strömen — nicht nur aus China — denn Staudämme sind wie Windräder gut für das Klima. Besonders all die Anleger, die aus der „bösen Kohle“ aussteigen, brauchen dringend neue profitable Geldanlagen. Der gerade zusammengebrochene Xepian-Damm hat bereits über eine Milliarde US$ verschlungen. Er sollte eine Leistung von 410 MWel haben und 1860 GWh pro Jahr liefern. Dies ergibt aufschlußreiche Zahlen: Die spezifischen Investitionskosten betragen somit etwa 2400 US$ pro KWel. Aber halt, da ist ja noch eine zweite Zahl: Geplante Produktion 1860 GWh pro Jahr. Hoppla, das sind ja gerade 4536 Vollbenutzungsstunden. So ist das halt mit den wetterabhängigen Umweltenergien. Ein Kernkraftwerk läuft mindestens 7885 Vollaststunden pro Jahr, also fast doppelt so lange. Und dies immer dann, wenn man den Strom braucht und nicht wenn der Wettergott Lust hat. Somit dürften die gleichwertigen Investitionskosten also rund 4200 US$ pro kWel betragen. Das ist die Antwort, warum ganz Asien Kernkraftwerke (nahezu keine Brennstoffkosten, aber entsprechende Infrastruktur erforderlich) oder Kohlekraftwerke baut.

Hinzu kommt noch ein anderes Problem: Konventionelle Kraftwerke sind nahezu standortunabhängig und benötigen nur wenig Fläche. Wasserkraftwerke können praktisch nur noch in Diktaturen gebaut werden: In diesem Fall mußten sechs Dörfer mit ihren Einwohnern verschwinden. Entschädigung? Es handelte sich um eine Minderheit von Bergstämmen. Wer bekommt den Strom? Die „Eingeborenen“ wären gar nicht in der Lage die elektrische Energie zu bezahlen. Deshalb sollen 90% der Stromproduktion nach Thailand exportiert werden. Langfristige Verträge über 27 Jahre sichern den Banken ihren Rückfluß des eingesetzten Kapitals — plus einer netten Rendite. Umweltbelastung? Bei einem Wasserkraftwerk kommt zwar kein „böses CO2“ aus dem Schornstein, aber jeder Staudamm belastet das „Ökosystem Fluß“. Wenn man dutzende miteinander verbundene Wasserkraftwerke baut, wird das einen erheblichen Einfluß auf Flora und Fauna haben. Der Mekong ist aber die Lebensader für die Flußanrainer von China bis Vietnam.

Die Berichterstattung in unserem Lande

Erinnern sie sich noch an Fukushima? Von morgens bis abends gab es kein anderes Thema. Nun ist Laos auch nicht weiter als Japan. In beiden Fällen war die Ursache ein Naturereignis. In Laos ein Tropensturm mit außergewöhnlichen Niederschlägen und in Japan ein Tsunami. Die immerwährenden Wasserschäden halt. Naturgewalt wird man nie ausschließen können, lediglich sich dagegen durch viel Technik wappnen können. In beiden Fällen entstand erheblicher Sachschaden. Nicht nur für die Anlagenbetreiber, sondern auch für viele völlig unbeteiligte Personen in weiterer Entfernung. In einem Fall wahrscheinlich hunderte Tote durch die direkte Einwirkung der Anlage, im anderen Fall sind keine Menschenleben zu beklagen. Was macht nun den Unterschied in der Wahrnehmung beider Ereignisse aus?

In der Wahrnehmung „normaler Menschen“ gibt es kaum einen Unterschied. Im Gegenteil dürfte das Mitfühlen für die Angehörigen der Todesopfer (überwiegend Kinder) in Laos eher größer sein. Man erinnere sich nur an die Kinder-Fußballmannschaft in Thailand. Weltweit wurde tagelang mit den in der Höhle eingeschlossenen mitgefiebert. Aus aller Welt traf Unterstützung ein. Warum also, reagierten die Medien in Deutschland — das muß ausdrücklich betont werden — so desinteressiert? Es ist ja nicht so, daß kein Bildmaterial oder Hintergrundinformationen vorhanden sind. Es liegt alles vor für eine „Enthüllungs-Geschichte“ a la „Panama-Papers“ etc.: Diktatoren, Indigene Minderheiten, Ausbeutung der „3. Welt“, Banken, internationale Konzerne, großräumige Umweltzerstörung usw. Kurz, alles was einen Linken elektrisiert. Ne richtige „Spiegel Story“ so zu sagen.

Man könnte die Antwort in einem Satz geben: Was nicht sein darf, findet auch nicht statt. Die totale Realitätsverweigerung. Wie einst in der DDR. Tschernobyl hielt erst mit tagelanger Verzögerung Einzug in die Aktuelle Kamera. So funktionieren halt staatliche Medien. Nur mit dem Unterschied, daß die DDR sich selbst gegenüber so ehrlich war, ihre Medien direkt aus dem Staatshaushalt und nicht über eine Zwangsabgabe für Wohnungen zu finanzieren. Die Wirkung ist die gleiche: Von den Regierenden mit üppigen Mitteln und unzähligen Privilegien ausgestattet, weiß man auch ohne direkte Anweisung, was zu tun ist.

Die Vorgabe ist einfach und auch von „Nachrichten-Vorlesern“ mit geringer Bildung auszuführen: Die Energiewende ist um jeden Preis zu verteidigen. Kernenergie und Kohle sind beides Teufelszeug, müssen daher mit allen Mitteln — besser gesagt Gruselgeschichten — madig gemacht werden. Einzig selig machend ist Wind- und Sonnenenergie mit (noch zu erfindenden) Speichern und deshalb darf der Bruch eines Staudammes nicht stattfinden. Höchsten als Randnotiz, sonst könnte der Bürger noch auf abwegige Gedanken kommen.

Das „GEZ-Fernsehen“ ist schon länger auf dem Niveau der Prawda angekommen: Immer mal rein schauen, damit man weiß, was einem die Regierung zum Thema Energie mitteilen will. Aber als Informationsmedium absolut unbrauchbar. Wer glaubt, was einem dort verkauft wird, macht sich selbst und freiwillig zum Deppen.

Wer Informationen sucht, muß sich notgedrungen im kapitalistischen Ausland umschauen. Dort sind Nachrichten immer noch eine Ware und keine ideologischen Verlautbarungen zur Volksertüchtigung. Deshalb war in wenigen Stunden das Staudammunglück verbreitet — samt Hintergrundinformationen: Wer hat den Damm gebaut, wer hat die Finanzierung gemacht, wie haben sich deren Aktienkurse entwickelt usw. Im Internetzeitalter alles was man braucht, um seinen eigenen Ansprüchen entsprechend weiter zu recherchieren. Genau die journalistische Arbeit, die im Deutschen Fernsehen immer mehr verweigert wird — ob schlicht aus Faulheit oder aus Boshaftigkeit sei dahingestellt. Überdeutlich wird dies immer wieder im Zusammenhang mit Donald Trump: Bevor man sich seine Rede selbst anhört, verwendet man lieber einen Beitrag eines klassenbewußten „Experten“ darüber, was der Präsident angeblich gesagt haben soll. Sicher ist sicher, wie bei der Energiewende. Wenn man mit den Wölfen heult und immer nur das nach quatscht, was die einschlägigen „Größten Denker“ vorgekaut haben, ist man immer auf der richtigen Seite. Schlimmstenfalls haben sich halt alle anderen auch geirrt. Die üppige Pension ist damit, gemäß deutscher Tradition, auf jeden Fall gesichert. Später sagt man einfach, wenn man das gewußt hätte….

Grundgesetz und Kernenergie

Vor einigen Tagen hat mir ein Leser eine Unterrichtung durch die Bundesregierung mit der Bitte um eine Stellungnahme zum Kapitel Kernenergie zugeschickt. Hierbei handelt es sich um ein Sondergutachten des Sachverständigenrates für Umweltfragen: Wege zur 100 % erneuerbaren Stromversorgung vom 18. Februar 2011. Warum nun eine so olle Kammelle aus der Zeit der Koalition von CDU/CSU und FDP? Geschichtlich von Bedeutung ist die Tatsache, daß das Unglück von Fukushima erst am 11. März 2011 stattfand. Also erst einen Monat nach dem Druck dieses Gutachtens. Ganz offensichtlich ein willkommener Anlaß für den schon lange geplanten und gewünschten Ausstieg aus der Kernenergie. Wohlgemerkt, maßgeblich mit geplant und umgesetzt durch die FDP (17. Wahlperiode vom 27.10.09 – 22.10.13).

Es gibt aber noch einen aktuelleren Grund: Immer mehr Bürger fragen sich, ob die Energiewende überhaupt mit dem Artikel 20a unseres Grundgesetzes vereinbar ist:

„Der Staat schützt auch in Verantwortung für die künftigen Generationen die natürlichen Lebensgrundlagen und die Tiere im Rahmen der verfassungsmäßigen Ordnung durch die Gesetzgebung und nach Maßgabe von Gesetz und Recht durch die vollziehende Gewalt und die Rechtsprechung„.

Genau darum geht es nämlich in dem Sondergutachten. Es soll die Energiewende als zwingend durch das Grundgesetz vorgeschriebenes Staatsziel legitimieren. Es ist sicherlich kein Zufall, da gerade die FDP eine Partei mit überdurchschnittlich hohem Anteil an Juristen ist. Man hat dieses „Gutachten“ — nach der immer noch bewährten Methode — bei besonders linientreuen Scharlatanen in Auftrag gegeben. Das Verzeichnis der Personen spricht Bände: Ausgesucht keine einschlägige Berufsausbildung oder fachliche Qualifikation auf dem Gebiet der „Stromversorgung“, dafür aber ideologisch um so gefestigter. Fachkenntnisse — oder gar andere Ansichten — hätten die Auftragsarbeit sicherlich nur behindert und das schon im Titel geforderte Ergebnis vielleicht sogar gefährdet. Politik in Deutschland des 21. Jahrhunderts. Ähnlichkeiten mit Staat und Papsttum des Mittelalters sind sicherlich rein zufällig.

Kurzfassung für Entscheidungsträger

Früher nannte man einen solch zeitsparenden Überblick noch „Minister-Seite“. Heute braucht Politiker*in über fünf Seiten „Fakten“ und bunte Bilder um in einer Talkshow sitzen zu können oder gar den Qualitätsmedien Fachkunde vorspielen zu können. Für das Durchwinken eines Gesetzes ist nicht einmal das nötig, denn da folgt man immer schön dem Beschluss der eigenen Fraktion — damit kann man sicher nichts verkehrt machen. Um die Sache noch einmal für den letzen Hinterbänkler zu verdichten, lautet gleich der erste Satz:

„Die Klimapolitik steht vor der Herausforderung, dass die Treibhausgasemissionen der Industrieländer um 80 bis 95 % reduziert werden müssen, um eine als gefährlich angesehene globale Temperaturerhöhung von über 2°Celsius gegenüber dem vorindustriellen Niveau zu vermeiden“.

Alles klar? Es geht also um die Weltrettung. Dass dieser Satz gleich mehrfach Blödsinn ist — selbst in dieser Studie — erfährt man erst beim vollständigen lesen der fast 400 Seiten. Aber welcher Parlamentarier hat schon so viel Zeit. Da ist es doch besser, man zeigt ihm gleich wo die Mehrheiten sitzen:

„In Deutschland besteht ein weitgehender Konsens, dass eine nachhaltige Entwicklung des Energiebereichs langfristig eine möglichst vollständig auf regenerativen Energieträgern basierende Elektrizitätsversorgung erfordert.“

Das versteht er. Ist zwar auch bloß eine Sprechblase — die zudem auch noch mehr als diskussionswürdig ist — aber Mainstream ist immer gut für die Wiederwahl. Was aber, wenn Volksvertreter*in gerade keine Lesebrille auf hat? Deshalb die alles entscheidende und beruhigende Aussage noch einmal im Fettdruck:

„100 % Vollversorgung mit Strom aus erneuerbaren Energien ist möglich, sicher und bezahlbar.

Basta! Wie ein anderer Bundeskanzler und heutiger Vertreter für Russengas immer zu meckernden Parteimitgliedern zu sagen pflegte. Gleichnamigem Kanzler und seinem „Kellner“, dem Diplom-Sozialwirt Jürgen Trittin, ist übrigens die Besetzung des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit mit solch großen Denkern und Forschern zu verdanken. Vorgänger dieses Ministers war übrigens eine gewisse Angela Merkel. Sage keiner, es gäbe keine Kontinuität in diesem Sachgebiet. Man ist aber fair genug, selbst in dieser Kurzfassung, noch eine Duftmarke seiner politischen Gesinnung zu hinterlassen:

„Die Einsparung von Strom kann als die wichtigste Brückentechnologie auf dem Weg zur regenerativen Vollversorgung betrachtet werden. Die Bundesregierung sollte daher ein absolutes Verbrauchsziel für den Stromverbrauch setzen. Ein geeignetes Instrument zur deutlichen Stärkung der Marktanreize für ein solches Ziel könnte die Einführung von Stromkundenkonten sein.“

Nur zur Erinnerung: Koalitionspartner war die FDP. Der Austausch der Sprache im Orwellschen Sinne findet nicht erst seit heute statt: Hier wird aus „planwirtschaftlichem Bezugssytem der staatlichen Mangelwirtschaft“ flugs „Marktanreize durch Stromkundenkonten“ gemacht. Frau Claudia Kemfert — die unvergleichliche Denkerin des DIW — hätte es nicht besser sagen können. Freilich hätte sie als ausgewiesene Artistin des Denglish lieber vom „Smart Grid“ und „Smart Meter“ geschwärmt.

Nachhaltigkeitsbewertung verschiedener Optionen der Energieerzeugung: Kernenergie

Jetzt ist eine kunstvolle Pirouette gefragt. Sie erinnern sich noch an den ersten Satz der Kurzfassung? Vielleicht sollten sie noch mal das Zitat weiter oben genau lesen, damit sie auch in den vollen Genuß der geistigen Verrenkungen kommen. Es geht um nichts weniger als die Errettung vor dem bösen CO2. Oh Schreck, jetzt taucht auf Seite 46 des Gutachtens eine Tabelle über „Gesamte durchschnittliche Treibhausgas-Emissionen von Stromerzeugungsoptionen“ auf. Ihre Einheit ist „Emissionen in g/kWhel CO2 Äquivalente“. Spitzenreiter sind die bösen Braunkohle-Kraftwerke, die auch noch die Stromnetze verstopfen, mit sagenhaften 1153. Aber selbst die „AKW mit Uran aus Russland“ geben nur 63 her. Nur dreimal so viel wie die ideologisch guten Windparks mit 23 und nur gut die Hälfte von den ebenfalls ideologisch einwandfreien „Solarzelle (multikristallin)“ mit 101. Wohlgemerkt, diese Tabelle ist nicht von der bösen „Atomlobby“ erschaffen, sondern vom Öko-Institut errechnet, der Glaubenskongregation aller „Umweltschützer und Atomkraftgegner“. Auch deshalb muß man an dieser Stelle zu dem glasklaren Schluß kommen:

„Stromerzeugung aus Kernenergie ist weniger schädlich für das globale Klima als die Kohleverstromung; die im Lebenszyklus auftretenden Treibhausgasemissionen pro erzeugter Kilowattstunde liegen in der Größenordnung von denen erneuerbarer Energien. Dennoch ist die Kernenergie aus mehreren Gründen, insbesondere aufgrund der Entsorgungsproblematik und der Risiken beim Betrieb, als nicht nachhaltig einzustufen.“

Wow! So geht also Wissenschaft heute. Wenn die selbst errechneten Zahlen nicht zum eigenen Weltbild passen, werden sie einfach durch „Argumente“ ersetzt. Der Auftritt der Tochter des „Solarpapstes“ Hermann-Scheer (SPD) Dr. Nina Scheer (SPD) im Bundestag war also doch kein Ausreißer.

Es gibt also zwei „Argumente“: „Entsorgungsproblematik“ und „Risiken beim Betrieb“, die die Kernenergie aus dem Kreis der „CO2 armen“ Technologien ausschließen. Dabei muß wieder einmal die Förster-Weisheit von der „Nachhaltigkeit“ herhalten. Dieses Wort besitzt für jeden Gutdenker die gleiche Zauberkraft wie „Neo-Liberal, Kasino-Kapitalismus etc.“. Man weiß sofort, auf welcher Seite man zu stehen hat.

Der geneigte Leser wird jetzt vielleicht ein paar Argumente erwarten, aber weit gefehlt.

Endlagerung

Dieses Unterkapitel nimmt in diesem „Sondergutachten“ weniger als eine halbe Seite ein. Der einzige Inhalt zur Begründung besteht aus dem Satz:

„Starke Radioaktivität, hohe chemische Toxizität, lang anhaltende Wärmeproduktion und die durch Korrosion und mikrobielle Vorgänge hervorgerufene Gasbildung stellen hohe Anforderungen an das Rückhaltevermögen der Barriereelemente.“

Raten sie mal, was als Quelle für den „weltweiten“ Stand der Forschung zu diesem Komplex angegeben wird? Der Sachverständigenrat für Umweltfragen (SRU 2000). Das ist die Steigerung des Echoraumes, das selbstverliebte Eigenzitat. Von unfreiwilliger Komik ist der sich direkt anschließende Satz:

„Eine Bewertung der langfristigen Sicherheit von Endlagerstandorten muss sich notwendigerweise auf Annahmen und Modellrechnungen stützen. Die Ergebnisse solcher Untersuchungen sind mit umso größeren Unsicherheiten behaftet, je weiter die betrachteten Zeitpunkte in der Zukunft liegen.“

Hoppla! Wie hieß es noch im ersten Satz der Kurzfassung für Entscheidungsträgerglobale Temperaturerhöhung von über 2°Celsius“. Was auch immer eine „globale Temperaturerhöhung“ sein soll, jedenfalls wird diese ebenfalls durch mit Annahmen gefütterte Modellrechnungen bestimmt. Allerdings mit einem kleinen, aber gewichtigen Unterschied: Kein einziges „Klimamodell“ ist in der Lage, die „Klimaverläufe“ der Vergangenheit auch nur annähernd nachzubilden. Demgegenüber stellen die Rechenprogramme der Geologen ihre Brauchbarkeit nahezu täglich unter Beweis: Sonst hätten wir längst kein Öl und kein Erdgas mehr zur Verfügung.

Die letzten zwei Sätze dieses Kapitels geben in einem Zirkelschluss noch einmal den Auftrag wieder:

„Somit ist nicht auszuschließen, dass die Lebensgrundlagen kommender Generationen durch heute eingelagerten radioaktiven Abfall in katastrophalem Ausmaß beschädigt werden. Die Kernenergie ist damit im Sinne der Generationengerechtigkeit und der Risikovorsorge als nicht nachhaltig einzustufen.“

Wenn man — ich bin ausdrücklich kein Jurist — die vorhergehenden Kapitel über den Artikel 20a GG in diesem Sondergutachten gelesen hat, soll damit wohl suggeriert werden, daß die Kernenergie gegen das Grundgesetz verstößt.

Störfallrisiko

Es ist ja nicht so, daß die Kerntechnik keine Erfahrungen mit Störfällen und Unglücken hätte. Sie ist der am stärksten überwachte und durch Vorschriften reglementierte Industriezweig weltweit. Spätestens nach der Katastrophe von Tschernobyl wissen wir, daß die Propaganda der Angstindustrie „Millionen-Tote, für-zehntausende-Jahre-unbewohnbar“ einfach nur ein Märchen ist. Was bitte, ist denn noch denkbar, als ein Reaktor der explodiert, brennt und fast seine ganze Radioaktivität wie ein Vulkan ausspeit? Selbst mehrere Reaktoren wie in Fukushima stellen kein Sicherheitsrisiko für die Bevölkerung dar. Auch an unseren Gutachtern sind diese Tatsachen sicherlich nicht ganz spurlos vorbeigegangen. Sie beschließen dieses Kapitel deshalb lieber etwas schwammig:

„Die Charakterisierung des Risikos mit einer bestimmbaren und niedrigen Eintrittswahrscheinlichkeit sowie einem bestimmbaren und großen Schadensausmaß ist daher nicht mehr zeitgemäß. Vielmehr sind weder die Eintrittswahrscheinlichkeiten noch die möglichen Schadenswirkungen genau bestimmbar. Das Kernenergierisiko ist außerdem gekennzeichnet durch hohe Persistenz, Ubiquität und Irreversibilität“.

Wieder ist die Quelle dieser Aussage der eigene Echoraum: Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU 1998). Aber der Bildungshorizont unserer Gutachter geht natürlich noch viel weiter — man Beachte auch die Quellenangaben in diesem wörtlichen Zitat:

„Das Prinzip der Nachhaltigkeit erfordert Priorität für die Vermeidung solcher Risiken. Wenn die Möglichkeit katastrophaler Auswirkungen existiert, stößt die wissenschaftliche Bewertung der Risiken und Kosten an Grenzen – formale Kosten-Nutzen-Rechnungen sind in einem solchen Fall keine adäquate Grundlage für Abwägungsentscheidungen (vgl. Paul Krugman im New York Times Magazin vom 7. April 2010). Stattdessen muss die Vermeidung von Großrisiken auch bei sehr geringen Eintrittswahrscheinlichkeiten als Nachhaltigkeitskriterium Vorrang haben (Tz. 27). Für die Stromerzeugung sind demnach Technologien vorzuziehen, die technisch realisierbar, wirtschaftlich vertretbar, aber mit deutlich geringeren Sicherheitsrisiken verbunden sind.“

Welche Technologien wohl damit gemeint sind? Etwa die wetterabhängigen Umweltenergien Wind und Sonne? Wo sind die technisch realisierten Speicher gebaut worden? Wie hoch die Kosten für diesen Unsinn sind, kann jeder selbst aus seiner eigenen Stromrechnung nachvollziehen.

Umwelt- und Gesundheitsbelastungen durch den Uranabbau

Allseits bekannt ist ja, daß Deutschland sich immer sehr um fremde Länder sorgt. Neuerdings wollen wir ja sogar Fluchtursachen beseitigen:

„Viele Uranabbaugebiete liegen in Entwicklungsländern und auf dem Gebiet indigener Völker. Die Einhaltung sozialer und Umweltstandards, etwa ein angemessener Schutz der Minenarbeiter, kann für importierte Uranbrennstoffe nur schwer kontrolliert werden.“

Die Generatoren der Windmühlen und die Photovoltaik benötigen große Mengen exotischer Materialien. Wie hoch war doch noch mal der Mindestlohn im Kongo? Wie sah noch mal der Umweltschutz bei der Gewinnung seltener Erden in China aus? Wo wird der Abfall aus der Produktion beseitigt? Auch Windmühlen und Sonnenkollektoren haben nur eine endliche Lebensdauer. Fragen über Fragen…

Verbrauch nicht-erneuerbarer Ressourcen

Man scheut aber auch in dieser Unterrichtung durch die Bundesregierung nicht vor dreisten und dummen Lügen zurück:

„Kernenergie kann aufgrund der Endlichkeit der Ressourcen für Kernbrennstoffe bestenfalls als Übergangstechnologie genutzt werden. Die gängigen Schätzungen gehen davon aus, dass die bekannten Uranreserven die weltweite Versorgung noch für einige Jahrzehnte sicherstellen können…. Insgesamt ist angesichts der begrenzten Uranvorkommen auch der Verbrauch dieser nicht-erneuerbaren Ressource ein Kriterium, das bei der Nachhaltigkeitsbewertung dieser Option berücksichtigt werden muss.“

Kernbrennstoffe werden aus Uran, Plutonium und Thorium hergestellt. Auf der Basis der heutigen weltweiten Energienachfrage ist Uran und Thorium in der Erdkruste und den Weltmeeren für mindestens Zehntausende von Jahren vorhanden. Bestenfalls liegt hier der ewige „Peak-Irrtum“ vor. Die gewinnbaren Rohstoffvorkommen hängen immer von den erzielbaren Preisen und der sich ständig weiter entwickelnden Technik ab. Wegen der außerordentlich hohen Energiefreisetzung bei der Kernspaltung ist die Grenze fast beliebig nach oben ausweitbar.

Abgesehen davon, gilt die Försterweisheit von der Nachhaltigkeit nur dann, wenn man auch tatsächlich den Wald erhalten will. Hätten unsere Vorfahren so gehandelt, müßten wir heute noch auf den Bäumen leben. Niemand kann aber die Zukunft vorhersagen. Deshalb ist das Schonen von Ressourcen bestenfalls anmaßend und zeugt von eindimensionalem Denken oder wie weiland ein Ölminister bemerkte: Die Steinzeit ist nicht aus Mangel an Steinen zu ihrem Ende gekommen.

Kosten

Der Schlußsatz des etwa dreiseitigen Kapitels zur Bewertung der Kernenergie lautet:

„Insgesamt besteht bei der Kernenergie große Unsicherheit hinsichtlich der Kostenentwicklung sowie eine große potenzielle Diskrepanz zwischen den gesellschaftlichen Kosten und den Kosten für die Betreiber. Dass die Kosten langfristig sinken werden, kann als unwahrscheinlich betrachtet werden.“

Kosten sind Kosten. Immer wenn von „externen Kosten“ oder „gesellschaftlichen Kosten“ die Rede ist, versuchen irgendwelche Vulgärmarxisten ein „Marktversagen“ zu konstruieren um ihre unpopulären gesellschaftlichen Vorstellungen durchzudrücken.

Abschließende Betrachtung

Es ist schon so eine Sache mit unserem Grundgesetz: Es wächst und wächst. Teilweise hat es einen bemerkenswerten Detaillierungsgrad erreicht. So hat sich sogar der Tierschutz mit einem eigenen Paragraphen eingeschlichen. Es war sicherlich einfach, für die „niedlichen Welpen“ eine erforderliche Mehrheit zu finden. Wer möchte schon in seinem Wahlkreis als Tierquäler verdächtigt werden. Die meisten Parlamentarier haben wahrscheinlich gar nicht gemerkt, daß es sich dabei um ein Trojanisches Pferd gehandelt hat. Denn viel bedeutender ist die erste Hälfte des Satzes über die Lebensgrundlagen. Der Duden sagt zur Bedeutung des Wortes: Materielle Grundlage, Voraussetzung des Lebens.

Das Gutachten spricht von „abiotischen Elementen wie Luft, Wasser, Böden und auch das Klima“. Was ist mit Flora und Fauna oder mit etwas eher ästhetischem wie Landschaft oder gar den Menschen und ihrem Naturrecht nach Glück zu streben? Das Gutachten geht noch weiter, man schwadroniert von der Lebensgrundlage kommender Generationen, von Generationengerechtigkeit und Risikovorsorge. Am besten gefällt mir die Generationengerechtigkeit als Staatsziel. Ich dachte bisher, die Parlamentarier hätten sich im Zusammenhang mit der Rentenfrage bereits daran abgearbeitet. Man verzeih mir als einfachem Ingenieur, daß ich mir wenig unter einer „generationengerechten Stromversorgung“ vorstellen kann.

Je länger ich mich mit diesem Machwerk beschäftigt habe, komme ich zu dem Schluß, daß es hier nur um die Durchsetzung einer ganz bestimmten — allenfalls laienhaften — Vorstellung über eine Energieversorgung geht. Wenn nicht sogar um schlimmeres. Vordergründig geht es um den „Atomausstieg“, längerfristig um die „große Transformation“. Wohin eigentlich genau: Bloß in Maos „Großen Sprung“ oder gleich in die steinzeitkommunistischen Utopien des „Bruder Nummer Eins“?

Robuste Kraftwerke für robuste Netze

Für eine robuste Stromversorgung („Grid Resilience“) unter den erschwerten Bedingungen von Wind- und Sonnenenergie ergeben sich auch besondere Anforderungen an die Kraftwerke. Wind und Sonneneinstrahlung sind Wetterphänomene und damit nicht vom Menschen beeinflußbar. Sie sind mehr (Wind) oder weniger (Sonne) zufällig. Sie widersprechen dadurch allen Anforderungen an eine zivilisierte Gesellschaft. Will man sie aus (ideologischen Gründen) trotzdem zur Erzeugung elektrischer Energie heranziehen, ergeben sich drei Notwendigkeiten:

  1. Der Einspeisevorrang: Die Sonne scheint bei uns nur selten (nachts ist es dunkel, tagsüber oft schlechtes Wetter) und der Wind weht in der überwiegenden Zeit nur schwach. Man kann deshalb nicht auch noch auf den Bedarf Rücksicht nehmen (negative Börsenpreise), sondern muß produzieren wenn es der Wettergott gestattet. Ganz genau so, wie schon der Müller und die Seefahrer im Altertum ihr Leben fristen mußten.
  2. Man muß ein komplettes Backup System für die Zeiten der Dunkelflaute bereithalten. Wirtschaftlich ein absolut absurder Zustand. Es ist ein komplettes System aus Kraftwerken und Stromleitungen vorhanden — man darf es plötzlich nur nicht mehr benutzen! In der Stromwirtschaft sind aber die Kapitalkosten der mit Abstand dickste Brocken. Weit vor den Personalkosten und meist sogar den Brennstoffkosten. Wenn man ausgerechnet die Nutzungsdauer verringert, treibt man damit die spezifischen Energiekosten (€/kWh) in die Höhe. Umgekehrt kann man sagen, der maximal mögliche Wert elektrischer Energie aus „regenerativen Quellen“ kann immer nur den Brennstoffkosten entsprechen.
  3. „Regenerative Energien“ besitzen nur eine sehr geringe Energiedichte und benötigen deshalb riesige Flächen. Diese Flächen sind nicht an den Verbrauchsschwerpunkten (Städte, Industriegebiete) bereitzustellen. Heute muß man bereits auf das offene Meer ausweichen. Es sind deshalb riesige Netze zum Einsammeln der elektrischen Energie und anschließend noch die berüchtigten „Stromautobahnen“ für den Ferntransport nötig. Alles sehr kapitalintensiv, pflegebedürftig und verwundbar. Oft wird auch noch vergessen, daß diese Anlagen selbstverständlich nur die gleiche geringe Auslastung, wie die Windmühlen und Sonnenkollektoren besitzen können.

Das Speicherdrama

Wind und Sonne können nur die Schildbürger speichern. Elektrische Energie ist die verderblichste Ware überhaupt (Kirchhoffsche Gesetze). Wer also von Speichern faselt, meint in Wirklichkeit Speicher für chemische (Batterien, Power to Gas etc.) oder mechanische Energie (Schwungräder, Pump-Speicher usw.). Es ist also immer eine zweifache Umformung — elektrische Energie in das Speichermedium und anschließend wieder das Speichermedium zurück in elektrische Energie — mit den jeweiligen Verlusten erforderlich. Es geht bei diesen Umformungen mindestens 50% des ohnehin sehr teuren Sonnen- bzw. Windstromes unwiederbringlich verloren. Mit anderen Worten, der Strom der aus dem Speicher kommt, ist dadurch schon mal doppelt so teuer, wie der vor dem Speicher. Das wäre aber nicht einmal der Bruchteil der Kosten: Die „Chemieanlagen“ oder „Speicherseen“ müßten gigantisch groß sein. Sie müssen ja schließlich in der kurzen Zeit, in der sie wetterbedingt überhaupt nur produzieren können (<15%), die elektrische Energie für die gesamte Zeit (100%) herstellen können. Betriebswirtschaftlich eine Katastrophe. Niemand wird eine solch absurde Investition tätigen. Die Schlangenölverkäufer setzen auch hier wieder auf den Staat. Das bekannte „Windhundrennen“ setzt ein: Wer pumpt am schnellsten die „Staatsknete“ ab, bis das System unweigerlich in sich zusammenbricht. Selbstverständlich ist auch hier für einige wenige wieder ein Schlösschen drin.

Auch Wasserkraft ist wetterabhängig. Die Trockenphasen wechseln sich mit Hochwassern ab. Fast alle Staudämme sind deshalb zur Flussregulierung gebaut worden. Selbst das gigantische Drei-Schluchten-Projekt in China. Die Vorstellung, man könnte Wasserkraftwerke wie Gasturbinen nach Bedarf an und abstellen, ist absurd. Abgesehen von technischen Restriktionen sprechen Sicherheitsbelange (Schifffahrt, Wassersportler etc.) und der Umweltschutz dagegen. Ein Fluß ist keine technische Batterie, sondern ein sensibles Ökosystem. Genau aus diesen Gründen werden die Speicherkraftwerke in den Alpen — wie alle konventionellen Kraftwerke — durch die Windenergie aus Deutschland in die roten Zahlen getrieben. Man kann eben nicht immer den Stausee in den Stunden negativer Börsenpreise (Entsorgungsgebühren) schlagartig für die Dunkelflaute befüllen. Im Gegenteil, oft muß man gerade dann den eigenen Strom verkaufen. Und noch einmal für alle Milchmädchen: In den wenigen Stunden, in denen der Wind im Überfluß weht, müßte man die gesamte Energie für die überwiegenden Schwachwindzeiten einspeichern — ein betriebswirtschaftlicher Albtraum.

Die Frage des Brennstoffs

Wenn man ein Kraftwerk benutzen will, muß man Brennstoff am Ort zur Verfügung haben. Alles andere als eine triviale Frage. Alte West-Berliner kennen noch die Tanklager und die sich ständig selbst entzündenden Kohlenhalden gegen eine etwaige „Russenblockade“. Jedenfalls sind Tanklager und Halden noch relativ billig anzulegen.

Bei Erdgas stellt sich die Sache schon ganz anders dar. Ein Gaskraftwerk ist auf eine ziemlich dicke Rohrleitung angewiesen. Das gesamte System vom Bohrloch, über die Aufbereitung, bis zum Endkunden ist nicht viel weniger Komplex als die Stromversorgung. In unseren Breiten wird das meiste Erdgas zur Beheizung unserer Gebäude verwendet. Die Winterspitze ist maßgeblich für die Dimensionierung. Zum Ausgleich setzt man unterirdische Speicher ein. Diese sind aber (bezogen auf den Jahresverbrauch) relativ klein. Jeder eingelagerte Kubikmeter Gas ist totes Kapital. Man steuert deshalb den Absatz über den Preis. Im Sommer ist der Großhandelspreis gering — damit die Gaskraftwerke verstärkt produzieren — und im Winter — wenn es kalt ist und die Nachfrage nach Heizgas ansteigt — hoch. Die Gaskraftwerke ziehen sich dann wieder zurück und überlassen den Kohlekraftwerken die Produktion. Dieses Zusammenspiel hat bis zur Energiewende zu aller Zufriedenheit funktioniert. Man konnte im Sommer sehr gut Revisionen bei den Kohle- und Kernkraftwerken durchführen. Bis die Laiendarsteller kamen und etwas von notwendigen flexiblen Gaskraftwerken für die Energiewende geschwafelt haben. Heute kann man die Investitionsruinen an verschiedenen Standorten besichtigen. Man muß es eigentlich nicht besonders erwähnen, daß die grünen Fachpersonen der Stadtwerke (es haftet ja der Steuerzahler) besonders eifrig auf den Leim gekrochen sind. Um ihre Missetaten zu vertuschen, krähen sie heute besonders laut über die „Klimakatastrophe“ und das „klimafreundliche“ Erdgas.

Das Kraftwerk der großen Transformation

Je länger der Wahnsinn der „Energiewende“ anhält, um so mehr wird der Wettergott das Kommando übernehmen. Prinzipiell nimmt in einem technischen System mit der Häufigkeit der Störungen und der Größe einzelner Störungen die Wahrscheinlichkeit eines Ausfalls zu. Will man ein solchermaßen malträtiertes Stromnetz wieder robust machen, stellen sich in diesem Sinne („Grid Resilience“) zwei Anforderungen an die Kraftwerke:

  1. Die Kraftwerke müssen von der Konstruktion (z. B. Brennstoffe) her und bezüglich der Fahrweise (z. B. angedrosselt) robust gebaut und betrieben werden. Beides verursacht erhebliche Kosten, die ohne die „Energiewende“ gar nicht entstanden wären. Hinzugerechnet werden muß noch der Umsatzausfall durch den Einspeisevorrang. Werden diese Zusatzkosten nicht vergütet, müssen die Kraftwerke geschlossen werden. Mit jedem konventionellen Kraftwerk das vom Netz geht, wird das gesamte Stromnetz instabiler, was den Aufwand weiter in die Höhe treibt.
  2. Das Netz muß nach schweren Störungen (Brown oder Black Out) möglichst schnell wieder hochgefahren und in einen neuen stabilen Zustand versetzt werden. Dafür müssen die Kraftwerke technisch (z. B. Schwarzstartfähigkeit) und personell jederzeit in der Lage sein. Die Wiederinbetriebnahme muß nach den Anforderungen der Netzleitzentrale erfolgen. Etwaige Überprüfungen, Wartungen oder gar Reparaturen müssen selbstverständlich vorher erfolgt sein. Dies gilt insbesondere für Schäden, die durch den außergewöhnlichen Netzzustand entstanden sind.

Es ist daher nichts weiter als bösartige und schlechte Propaganda, wenn Scharlatane von dem „Kohlestrom, der die Netze verstopft“ erzählen. Je mehr konventionelle Kraftwerke stillgelegt werden (müssen), desto weniger notwendige Reserven gibt es. Schon jetzt verlassen wir uns auf Kraftwerke im benachbarten Ausland. Man kann nicht erwarten, daß das kostenlos erfolgt. Je mehr wir das System komplizieren und ausweiten, um so mehr koppeln unerwartete Ereignisse auf das Stromnetz zurück: Es gab schon Brände in Erdgasspeichern, die diese für Monate lahmlegten oder Engpässe durch Drosselung in den niederländischen Erdgasfeldern (Mikrobeben) oder Pipelinebrüche. Ganz zu schweigen von der politischen Abhängigkeit gegenüber ausländischen Lieferanten. Kohle und Kernenergie besitzen schon durch ihre einfache Lagerung einen entscheidenden Trumpf.

Das robuste Kernkraftwerk für ein „nervöses Netz“

Kernkraftwerke besitzen eine Reihe von Eigenschaften, die besonders wertvoll für „nervöse Stromnetze“ mit einem hohen Anteil von wetterabhängigen Energien sind. Dies mag „Atomkraftgegner“ erschüttern, aber nur Reaktoren können die extremen Lastschwankungen (z. B. 3. Potenz von der Windgeschwindigkeit) sicher verkraften. Nur sie können extremen Wettersituationen sicher widerstehen. Es waren immer die Kernkraftwerke, die als letzte vom Netz mußten (Tsunami und Erdbeben in Japan, Wirbelstürme in den USA, Eiseskälte in Rußland). Es ist allerdings unverständlich, warum man bei den geringen Urankosten die Kernkraftwerke überhaupt drosseln soll, wenn mal die Sonne scheint oder der Wind in der richtigen Stärke weht…

Für Kernkraftwerke, die in einem „nervösen Netz“ zur Stabilisierung betrieben werden, ergeben sich folgende Anforderungen:

Robuste Lastfolge

Je schneller und erfolgreicher (noch) kleine Störungen ausgeregelt werden, um so besser für das Netz. Heutige Leichtwasserreaktoren haben große Leistungen. Der im Bau befindliche Turbosatz des Kraftwerks Hinkley Point in GB mit 2 x 1770 MWel hat eine gewaltige Schwungmasse, die zur Frequenzstabilisierung mehrerer Windparks dienen kann und soll. Hinzu kommen die gespeicherten Wärmemengen im Wasser-Dampf-Kreislauf. Automatisch greift bei einem Leichtwasserreaktor die Selbstregulierung über den Zusammenhang von Dichte des Kühlwassers und Moderation der Neutronen. Zusammengenommen ergibt das die steilsten Leistungstransienten aller Kraftwerkstypen. Die alte Greenpeace Propaganda von den „viel zu starren Atomkraftwerken“ beruhte bestenfalls auf der Verwechslung von Technik mit Betriebswirtschaft. Mit anderen Worten: Frankreich kann sich ruhig noch ein paar Windmühlen für das bessere Gewissen erlauben, Deutschland hingegen, geht mit der weiteren Abschaltung immer unruhigeren Zeiten entgegen. Fatal wird es in dem Moment, wenn unsere Nachbarn nicht mehr bereit sind, die Kosten für die Stabilisierung unseres nationalen Stromnetzes zu bezahlen.

Abwehr äußerer Einflüsse

Fukushima hat eindrucksvoll gezeigt, wie zerstörerisch Naturgewalten sein können. Eine weltweite Überprüfung aller Kernkraftwerke gegen jegliche Wasserschäden (Starkregen, Überflutungen etc.) war die Folge. Eine Nachrüstung in Richtung „U-Boot“ wurde durchgeführt. Seit dem, haben bereits mehrere Reaktoren einen Betrieb „inmitten von Wasser“ unter Beweis gestellt. Oft waren sie die einzigen noch betriebsbereiten Kraftwerke: Kohlenhalden hatten sich in Schlamm verwandelt, Gaspipelines waren durch die Wassermassen ausgefallen.

Gerade auch Netzstörungen (Sturmschäden, Blitzschlag etc.) wirken oft auf ein Kraftwerk von außen ein. Ein Kraftwerk ohne Netz kann noch so gut funktionieren, aber es kann seine elektrische Energie nicht mehr ausliefern. Oft lösen die Netzstörungen auch Schäden in der Kraftwerksanlage aus. Bei einem Kernkraftwerk sollte keine Schnellabschaltung durch solche Ereignisse ausgelöst werden.

Sicherer Inselbetrieb

Egal was mit dem Netz passiert, das Kernkraftwerk sollte automatisch in den Inselbetrieb übergehen. Nur so kann bei einer schnellen Reparatur die Produktion unverzüglich wieder aufgenommen werden. Dies erfordert, daß wirklich alle elektrischen Verbraucher des Kraftwerks (verschiedene Spannungsebenen) dauerhaft über den eigenen Generator versorgt werden können.

Unendliche Notkühlung

Die Besonderheit eines Kernreaktors ist die anfallende Nachzerfallswärme auch nach vollständiger Abschaltung. Die mangelnde Wärmeabfuhr (Ausfall der Kühlmittelpumpen) war die Ursache für den Totalschaden in den Reaktoren von Fukushima. Neuere Reaktoren mit passiven Notkühlsystemen bieten hierfür einen unschätzbaren Vorteil. Alte Kraftwerke müssen mit ausreichender Eigenstromversorgung (mehrfache Notstromaggregate mit ausreichendem Tanklager) nachgerüstet werden. Die eigenen Schaltanlagen für den Notbetrieb müssen — im Gegensatz zu Fukushima — entsprechend geschützt werden.

Schwarzstartfähigkeit

Ein Kernkraftwerk benötigt für die Inbetriebsetzung eine gewaltige Menge elektrischer Energie. Üblicherweise wird diese dem Netz entnommen. Ist ein Netz im Katastrophenfall schon überlastet, dürfte dies kaum möglich sein. Es müßte also eine Eigenstromversorgung (z. B. Gasturbine) vorhanden sein, wenn ein Schwarzstart für die Robustheit eines Teilnetzes gefordert ist.

Normalerweise ist das Anfahren eines Kernkraftwerkes ein streng reglementierter und langwieriger Vorgang. Unzählige Prüfungen müssen durchgeführt, bestimmte Haltepunkte eingehalten werden. Immer nach dem Grundsatz „Safety First“. Alles andere als ideal für die Wiederherstellung eines Netzes nach einem „Blackout“. Deshalb sollte die Schnellabschaltung unbedingt vermieden werden. Gegebenenfalls ein Schnellverfahren für Notfälle geschaffen werden. Jedenfalls kommt noch eine Menge Arbeit auf die Überwachungs- und Genehmigungsbehörden zu. Aber es ist uns ja nichts zu schwer und zu teuer um wenigstens teilweise wieder ins Mittelalter zurückzukehren.

Die Robustheit eines Stromnetzes

In den USA hat die ideologisch bedingte („Klimakatastrophe“) Subventionierung von Wind- und Sonnenkraftwerken zu ähnlichen Problemen wie in Deutschland geführt: Immer mehr konventionelle Kraftwerke arbeiten mit Verlusten und drohen deshalb mit Schließung. Präsident Trump hat versucht dem mit verschiedenen Erlassen entgegen zu wirken. Inzwischen gibt es in verschiedenen Bundesstaaten ebenfalls konkrete Maßnahmen, insbesondere um die Schließung von Kernkraftwerken zu verhindern. Es hat der bekannte planwirtschaftliche Teufelskreis eingesetzt: Die Verzerrung des Marktes durch Subventionen wird mit weiteren Subventionen an anderer Stelle bekämpft. Das Ergebnis sind allgemein steigende Kosten, die zu überhöhten Preisen und letztendlich zum Schaden der Gesellschaft wirken.

Das neue Modewort „Resilience

Der Begriff „Resilience“ kommt eigentlich aus den Gesellschaftswissenschaften. Man versteht darunter die Fähigkeit eines technischen Systems oder einer Gesellschaft Veränderungen oder zerstörerischen Ereignissen zu widerstehen, indem es die negativen Einflüsse dämpft (absorptive capability), sich selbst verändert und anpasst (adaptive capability) oder letztendlich durch eine Wiederherstellung (restorative capability). Es wird deshalb hier das Wort „Robustheit“ als Übertragung ins Deutsche verwendet.

Um dem ganzen einen wissenschaftlichen Anstrich zu verleihen, wird gern ein Bild gezeichnet, welches als „System Resilience Curve (SRC)“ bezeichnet wird. Darunter versteht man die bauchige Kurve der „Performance“ über der Zeit. Dem gewöhnlichen Ingenieur sei dringend empfohlen, sich mit diesem neuen Wieselwort vertraut zu machen, da es nur eine Frage der Zeit sein kann, bis es zum Standardrepertoire eines jeden Dampfplauderers gehört. Es werden üblicherweise vier Phasen definiert:

  1. Zum Zeitpunkt t1 tritt eine Störung auf. Bis zum Zeitpunkt t2 kämpft das System mit dieser Störung. Man bezeichnet diese Phase noch als Normalbetrieb, solange die Auswirkungen auf die „Performance“ noch im Rahmen der Toleranzen bleiben.
  2. Zum Zeitpunkt t2 beginnt der teilweise Zusammenbruch des Systems. Gegenmaßnahmen zur Stabilisierung werden ergriffen und die „Performance“ erreicht zum Zeitpunkt t4 ihren Tiefpunkt.
  3. Ab dem Zeitpunkt t4 beginnt die Wiederherstellung des Systems im Notbetrieb, die zum Zeitpunkt t5 abgeschlossen ist. Die „Performance“ erreicht aber nicht wieder den Wert im Normalbetrieb.
  4. Ab dem Zeitpunkt t4 beginnt die Reparaturphase bis zum Zeitpunkt t5 an dem ein neuer Normalbetrieb erreicht wird.

So theoretisch, so schön und gut. Nur, dem Techniker dürstet es immer nach konkreten Zahlenwerten und genauen Definitionen. Mit Geschwurbel kann man zwar in den Gesellschaftswissenschaften hervorragend Geld und Anerkennung verdienen, aber in der realen Welt bringt man damit keine Maschine zum Laufen — geschweige ein so komplexes System wie ein Stromnetz. Zumal Experimente nur sehr eingeschränkt möglich sind: Es wären Operationen am „offenen Herzen einer Gesellschaft“.

Was bitte, ist die .„Performance“ eines Stromnetzes?

In einer Marktwirtschaft sollte man immer zuerst nach den Anforderungen der Kunden fragen. Der Kunde — das sind wir alle selbst — will zu jedem Zeitpunkt, an jeder Steckdose, seine georderte Leistung haben. Er will selbst und frei entscheiden, wann er das Licht oder seinen Computer einschaltet oder was sonst er mit elektrischer Energie alles machen will. Für uns seit Jahrzehnten eine Selbstverständlichkeit. Vielleicht zu selbstverständlich, als das wir die heraufziehenden Gefahren „Der-schönen-neuen-Welt“ des Öko-Sozialismus noch wahrnehmen.

Wir sollen uns an einen Systemwechsel gewöhnen: Zukünftig geht es nicht mehr um die Interessen der Kunden, sondern ausschließlich um die Interessen der Lieferanten. Aus dem Kunden wird ein lästiger „Strom-Bittsteller“, dessen einzige Aufgabe noch darin besteht, mit seiner ständig steigenden Stromrechnung diejenigen zu mästen, die besonders gut und gerne von diesem Land leben — die Sonnen- und Windbarone.

In der guten alten Zeit, in der noch die Energieversorgung im Vordergrund stand, war die Aufgabenstellung einfach und klar definiert: Priorität hatte stets die Stabilität des Netzes. Auch die Verantwortung war über die Gebietsmonopole eindeutig geregelt. Jeder Versorger hatte von der Erzeugung (Kraftwerke) über den Transport (Netz) bis zur Abrechnung (Zähler usw.) alles bereitzustellen. Robustheit war so selbstverständlich, daß niemand darüber reden mußte. Die Bewertung der Performance war einfach: Wie oft und für wie lange ist die Stromversorgung in einem Gebiet ausgefallen?

Alles eine Frage der Verantwortlichkeit

Ein klassisches Energieversorgungs-Unternehmen mußte selbst entscheiden, in welchen Kraftwerkspark (Kohle-, Kernkraft-, Gaskraftwerke etc.) in welcher Zusammensetzung (Optimierung der Erzeugungskosten) es investierte. Welche Kraftwerke es in Betrieb hatte, welche in Reserve, wann Wartungsarbeiten, wann Modernisierungen etc. durchgeführt wurden. In der Praxis oft schwierig zu beantwortende Fragen, aber durch entsprechend große Stäbe an Ingenieuren handhabbar. Ein über alle Kulturkreise und sogar Gesellschaftssysteme erfolgreiches Modell.

Eine alte Volksweisheit besagt: Wenn es dem Esel zu wohl geht, geht er aufs Eis tanzen. Die „Große Transformation“ zurück ins Mittelalter ward erschaffen: Plötzlich wurde die Technik zwangsweise durch die vom Menschen nicht bestimmbare Kraft des Wetters ersetzt. Absurderweise auch noch mit der Begründung, genau diese Naturgewalt dadurch beeinflussen zu können und zu müssen („Klimakatastrophe“). Da kein Energieversorgungsunternehmen so blöd war, sich weiterhin für ein robustes Stromnetz verantwortlich machen zu lassen, aber die Stellhebel ausschließlich dem „Wettergott“ zu überlassen (100% Wind und Sonne), mußte die „Strommarktliberalisierung“ erschaffen werden. Eine herrliche Wortschöpfung um den verbrannten Begriff „Planwirtschaft“ zu vermeiden. Die Vorgehensweise ist und bleibt immer gleich: Zerschlage erstmal das funktionierende System und bilde möglichst viele Einheiten (Energieerzeugung, Netzgesellschaft etc.) mit möglichst gegensätzlichen und unterschiedlichen Interessen — auch als Teile und Herrsche bekannt. Damit die Sache beschleunigt wird, sorge für möglichst viele „Schlangenölverkäufer“ (EE-Gesetz) und Agitprop-Einheiten (Greenpeace, Klimainstitute usw.). [Einschub: Warum fällt mir an dieser Stelle bloß eine Paraderolle mit Mario Adorf ein: Ich sch… dich zu mit Geld.] In diesem Punkt unterscheidet sich der „Öko-Sozialismus“ von seinen eher armen Vorgängern. Man hat in diesem (noch) erfolgreichen System einfach mehr Geld anderer Leute — auch Steuern und Abgaben genannt — zur Verfügung.

Wofür dient die SRC wirklich?

Bisher hat man einfach den Bedarf gedeckt. Störungen für das Stromnetz haben sich aus technischen Fehlern (Kraftwerk, Trafo etc.), aus höherer Gewalt (Bagger) und zum geringeren Maße durch das Wetter (Sturm, Vereisung, Blitzschlag etc.) ergeben. Alles sehr gut beherrschbar, weil man stets selbst die Hoheit über die Produktion und Verteilung besessen hat. Man hat sich fast immer und ausschließlich in der ersten Phase des Normalbetriebes bewegt. Die Öffentlichkeit hat meist nichts von etwaigen Schwierigkeiten mitbekommen. Stromausfällen gab es — wenn überhaupt — nur lokal und kurzfristig.

Nun hat man — nicht aus Not, sondern nur aus ideologischen Gründen — die Erzeugung in die Hand des „Wettergottes“ übergeben. Dort geht aber die Bandbreite der Stromproduktion von nahezu Null (Dunkelflaute) bis zur maximalen installierten Leistung, die manchmal höher als der Gesamtbedarf sein kann. Mit zunehmendem Ausbau in Europa werden die notwendigen Abschaltungen immer weiter zunehmen. Wirtschaftlich eine sich selbst verstärkende Katastrophe. Mit jeder notwendigen Zwangsabschaltung wird die — ohnehin geringe — Arbeitsausnutzung (Strommenge, die die entsprechenden Anlagen pro Jahr produzieren) geringer und die Kosten der erzeugten Kilowattstunden steigen dadurch entsprechend an. Noch einmal in einem kurzen Merksatz zusammengefaßt: Je mehr Windmühlen und Sonnenkollektoren in Betrieb gehen, um so teurer werden die damit erzeugten Kilowattstunden! Ganz im Gegensatz zur geltenden Propaganda, die von immer weiter sinkenden Preisen faselt. Jeder Investor, der sich heute noch mit dem Gedanken trägt in Wind und Sonne zu gehen, sollte diesen Zusammenhang beherzigen. Ist der Redeschwall und die Zahlenakrobatik der Schlangenölverkäufer auch noch so verführerisch.

In diesem Zusammenhang ist die Einbeziehung des Wirtschaftsraumes Europa nicht zu vernachlässigen. Je weiter auch dort der Ausbau von „regenerativen Energien“ fortschreitet, um so mehr werden die Entsorgungsgebühren (negative Strompreise an den Börsen) ansteigen. Die von den Stromkunden in Deutschland bezahlten Entsorgungsgebühren machen die Preise für den Windstrom in unseren Nachbarländern immer weiter kaputt und erhöhen damit die dort fälligen Subventionen. Auch das, eine weitere Todesspirale für die „regenerativen Energien“. Die alte Propagandalüge „irgendwo-weht immer-der Wind“ ist längst als solche enttarnt. Was Meteorologen schon immer wußten, daß Großwetterlagen nicht an den nationalen Grenzen halt machen, ist heute bereits in den Übertragungsnetzen meßbar: Die Produktion von Windenergie in den zentraleuropäischen Staaten verläuft bemerkenswert synchron.

Wenn also der Wettergott die Produktion übernimmt, muß man von tagelangen und großräumigen Flauten ausgehen. Speicher in dieser Größe gibt es nicht. Wenn man zudem in der kurzen Zeit, in der der Wind genug weht und die Sonne scheint (Arbeitsausnutzung <15% in der Summe beider), nicht nur die aktuelle Nachfrage abdecken muß, sondern auch noch die zu speichernde Energie einschließlich der Verluste (mindestens 50%) produzieren muß, benötigt man gigantische installierte Leistungen. Dabei muß man auch noch beachten, daß die Vollbenutzungsstunden der Wandlungsanlagen (Batterien, Power to Gas oder was auch immer) und Übertragungsnetze ebenfalls sehr gering ausfallen müssen (Produktion minus Nachfrage), was bei den ohnehin sehr hohen Investitionskosten für Speicher- und Übertragungssysteme zu gigantischen spezifischen Kapitalkosten (€/kWh) führt.

Die Antwort liegt in Phase 2 der SRC

Jeder Fachmann weiß, daß bei immer weniger konventionellen Kraftwerken am Netz, zukünftig der Punkt 2 der SRC-Kurve immer häufiger zu dem Ergebnis führt, daß Störungen eben nicht mehr ausgeregelt werden können. Störungen sind zukünftig nicht mehr nur technische Fehler im System, sondern vielmehr auch noch die Launen des Wettergottes. Wenn erst einmal kein „Kohlestrom mehr die Netze verstopft“ und die Kernkraftwerke abgeschaltet sind, bleibt nur noch der Abwurf von Verbrauchern. Dieser muß in Sekundenschnelle erfolgen, sonst bricht — gemäß den Kirchhoffschen Regeln — das gesamte Netz großflächig (Europaweit?) zusammen.

Unsere Fachpersonen an den Schaltstellen der großen Transformation haben natürlich auch darauf eine Antwort: Man schwadroniert vom „Smart Grid“ und von „Smart Metering“. Dahinter verbirgt sich nichts anderes, als der elektronische Bezugsschein der Mangelwirtschaft. Auch die fanatischsten „Transformatoren“ sehen durchaus das Problem von großflächigen Stromabschaltungen. Deshalb wollen sie gemäß Dringlichkeit abstellen. Wer im Dunkeln sitzen muß, entscheidet wohl der örtliche Parteisekretär oder schlicht der Geldbeutel. Der dumme Michel wird schon zahlen, wenn er unbedingt die Sportschau sehen will oder sein Gefriergut retten muß. In Afrika überleben die Menschen schließlich auch irgendwie.

Wenn nun der Wind wieder richtig weht und der Tag nach einer langen Winternacht anbricht, kann man langsam in die Phase 3 übergehen. Es ist nämlich gar nicht so einfach ein Netz wieder zu stabilisieren. Man kann dann schrittweise die Notstromaggregate in den Krankenhäusern, Unternehmen usw. abstellen und die Verbraucher wieder aufs Netz schalten. Wie die „Performance“ aussieht, wird sich zeigen. Als letztes kommt dann mit Phase 4 die Beseitigung der entstandenen Schäden im Netz.

Ausblick

Der nächste Artikel wird sich mit den Konsequenzen für die Kernkraftwerke in dieser neuen Welt befassen. Mit Sicherheit wird es noch eine jahrelange Übergangszeit geben, bis man mit dem Spuk der „Regenerativen Energien“ wieder Schluß macht. Es gilt diese Zeit möglichst elegant aus zu sitzen.