LNT – Drei Buchstaben, die die Welt bestimmen

Diese drei Buchstaben sind die Abkürzung für: linear no-threshold (LNT) model. Wohl die teuerste und verhängnisvollste Buchstabenkombination in der Menschheitsgeschichte. Nun sieht es für einen Augenblick so aus, als könnte sie an den Ort ihrer Erschaffung zurückkehren. Man kann zum Wert von Petitionen stehen wie man will, aber sie sind ein Zeichen für das „nicht vertreten sein“ von Bürgern in der Welt der Gesetze. Ursprünglich ein Ventil im Obrigkeitsstaat, beginnen sie sich im Internetzeitalter zu einem Kampagneninstrument zu wandeln. Letzte Woche tauchte eine Petition bei „We the people, your voice in our government“ (damit kein Mißverständnis aufkommt: Es ist nicht die Seite einer ehemaligen Pionierleiterin, sondern von Barack Obama) zum LNT auf. Sie gipfelt in dem Satz zum Schluss: …es ist notwendig die Vorschriften der (amerikanischen) Umweltschutzbehörde im Einklang mit wissenschaftlichen Erkenntnissen zu bringen… Starker Tobak, ohne Zweifel. Es wäre wünschenswert, daß 100.000 US Bürger innerhalb von 30 Tagen unterzeichnen würden, denn dann gäbe es eine offizielle Stellungnahme. Bei solch einem „Randthema“ eher unwahrscheinlich. Aber, warum kommt plötzlich solch ein spezielles Thema aus dem Elfenbeinturm der Wissenschaften in die Niederungen der Politik herabgestiegen? Ganz offensichtlich braucht jedes Thema seine Zeit. Es gibt immer einen Anlass, bei dem sich der viel bemühte „Gesunde Menschenverstand“ plötzlich und unerwartet zu Wort meldet. In den USA scheint der Auslöser die Diskussion um die Evakuierungsmaßnahmen infolge der Fukushima-Ereignisse und dem Stopp des Yucca Mountain Projektes gewesen zu sein.

Das Modell

Das LNT-Modell wird allgemein im Strahlenschutz verwendet um die individuelle Strahlenbelastung zu erfassen und praktikable Grenzwerte festlegen zu können. Die Betonung liegt hierbei auf praktikabel – im Sinne von einfach zu handhaben. Wenn man einen linearen Zusammenhang von Dosis und Wirkung unterstellt, kann man einzelne Strahlenbelastungen einfach addieren. Man legt eine Dosis fest, die ein Mitarbeiter in einem Jahr erhalten darf. Der Wert ist so bemessen, daß man mit Sicherheit von keiner Schädigung in einem Berufsleben ausgehen kann. Mit anderen Worten, er ist bewußt sehr niedrig angesetzt, denn für einen effektiven Schutz müssen auch noch die sonstigen Strahlenbelastungen (z. B. Röntgenuntersuchungen, Urlaubsflüge etc.) einbezogen werden. Jetzt rüstet man jeden Mitarbeiter mit einer entsprechenden Meßtechnik aus und registriert täglich, wöchentlich, monatlich usw. die ermittelten Dosiswerte. Ab dem Tag, an dem der vorgeschriebene Grenzwert erreicht ist, ist erst einmal Zwangsurlaub angesagt. So weit, so gut – ganz ohne Ironie. Im Berufsalltag muß eine Sicherheitsvorschrift einfach und eindeutig zugleich sein; so wie: „Auf der Baustelle besteht Helmpflicht“. Ganz egal, an welcher Stelle der Baustelle man sich befindet.

Aber, ist es wirklich egal, ob man unterschiedliche Leistungen einfach zu einer Gesamtenergie aufaddiert? Jeder Lehrer würde wohl schon von Grundschülern nur ein mitleidiges Lächeln ernten, wenn er die Dauer eines Marathonlaufes aus der Zeit für ein Rennen über Hudert Meter durch eifache Addition berechnen wollte. Schon jedem Kind ist aus eigener Erfahrung der Unterschied zwischen einer kurzzeitigen hohen Leistung und einer geringen Dauerleistung klar – jedenfalls spätestens nach dem ersten „Muskelkater“. Man kann mit einer hohen Strahlungsleistung Bakterien im vorbeifahren sicher abtöten und damit z. B. Gewürze haltbar machen. Würde man sie über Monate verteilt in einem Regal der gleichen Strahlungsenergie aussetzen, würden sie munter vor sich hin gammeln. Ja, die gesamte Strahlenmedizin beruht auf diesem Zusammenhang: Eine Krebsgeschwulst muß einer so hohen Energie ausgesetzt werden, daß sie abstirbt. Gleichzeitig darf aber das umliegende gesunde Gewebe nicht (nachhaltig) geschädigt werden. Man erreicht dies, durch eine unterschiedliche Einwirkzeit. Es gibt also ganz offensichtlich einen Zusammenhang zwischen Dosis und Zeitraum. Dieser ist auch biologisch erklärbar, doch dazu später.

Zu ganz abenteuerlichen Ergebnissen gelangt man, wenn man die als linear unterstellte Abhängigkeit von Dosis und Wirkung auf Kollektive, also große Gruppen von Menschen überträgt. Sie besagt nichts anderes, als das die gleiche Strahlungsenergie immer zur gleichen Zahl von Schäden (Krebsfälle) führt. Die Absurdität dieser Aussage offenbart sich schon jedem Laien: Wenn bei einer bestimmten Strahlendosis ein zusätzlicher Krebsfall pro 1000 Untersuchten auftritt, kann man wohl kaum davon ausgehen, daß, wenn man 1 Million Menschen mit einem Tausendstel dieser Dosis bestrahlt, wieder genau ein zusätzlicher Krebsfall auftritt oder gar, wenn man 1 Milliarde Menschen mit einem Millionstel bestrahlt. Genau dieser Unsinn, wird uns aber tagtäglich in den Medien aufgetischt. Nur durch diese Zahlendreherei gelangt man zu den bekannten Studien, die uns z. B. „tausende Tote“ durch Reaktorunglücke wie Fukushima und Tschernobyl vorrechnen wollen.

Die Entstehungsgeschichte

Wenn man sich mit Strahlenschutz beschäftigt, muß man sich vergegenwärtigen, daß es sich um ein relativ junges Fachgebiet handelt. Natürliche Strahlungsquellen gibt es schon immer. Insofern hat die Biologie auch gelernt damit umzugehen und Gegenmaßnahmen zu ergreifen. Wäre das nicht so, gebe es überhaupt kein Leben auf der Erde. Die technische Nutzung hingegen, begann erst mit der Entdeckung der Röntgenstrahlung 1895 und der Kernspaltung in den 1930er Jahren. Bereits 1902 erschienen die ersten Veröffentlichungen zum Gesundheitsrisiko durch Röntgenstrahlen. Im Jahr 1927 beobachtete Hermann Joseph Muller die spontane Mutation von Genen und konnte durch Röntgenstrahlen Mutationen bei Taufliegen herbeiführen. Er zeigte, daß energiereiche Strahlung zu einer Veränderung des Erbgutes führen kann. Für diese Entdeckung wurde er 1946 mit dem Nobelpreis für Medizin ausgezeichnet.

Bereits 1925 wurde der erste Grenzwert zum Strahlenschutz für Röntgenärzte auf 680 mSv/Jahr festgelegt. Dieser Grenzwert hatte über 30 Jahre bestand. Man war – und ist heute eigentlich noch immer – der Meinung, daß bis zu einem Schwellwert von etwa 700 mSv pro Jahr keine dauerhafte gesundheitliche Schädigung nachweisbar ist. Im Vergleich hierzu gelten heute für beruflich strahlenexponierte Personen 20 mSv/Jahr bzw. 50 mSv/Jahr im Einzelfall. Für Feuerwehrleute gilt pro Einsatz 15mSv, im Lebensrettungsfall 100 mSv und im Katastrophenfall (einmal im Leben) 250 mSv. Der letzte Wert, ist übrigens exakt der Gleiche, den die Japanischen Sicherheitsbehörden nach dem Unfall in Fukushima als Grenzwert für die mit der Schadensbeseitigung beschäftigten Personen angesetzt haben. In Fukushima wurden bisher zwei Elektriker durch radioaktives Wasser im Turbinenraum mit 170 mSv und 30 weitere mit mehr als 100 mSv verstrahlt. So viel zu den (erträumten?) Tartarenmeldungen in deutschen „Qualitätsmedien“ zur „Reaktorkatastrophe in Fukushima“.

Nach dem 2. Weltkrieg und den ersten Atombombenabwürfen wurde ionisierende Strahlung von der Politik zu einem wissenschaftlichen Rätsel ausgebaut. Der kalte Krieg befeuerte die Angst vor einem Atomkrieg und langsam wurde eine Radiophobie erschaffen. Die begleitenden Untersuchungen der Opfer von Hiroshima und Nagasaki zeigten ein eindeutiges und erwartetes Bild: Bei hohen Dosen ergab sich ein linearer Zusammenhang zwischen Dosis und Krebserkrankung. Aber ebenso eindeutig war, daß unterhalb 200 mSv (20 rem) keine erhöhten Raten feststellbar waren. Unterhalb von 100 mSv (10 rem) waren sie sogar kleiner als in den Kontrollgruppen.

Schon damals verlagerte man solche Probleme gerne in die UNO. Das United Nations Scientific Committee on the Effects of Atomic Radiation, verabschiedete insbesondere auf Betreiben der Sowjetunion, die lineare Dosis-Wirkungsbeziehung ohne Schwellwert (LNT) (UNSCEAR 1958). Die Begründung war so einfach und klar wie der Klassenstandpunkt: Die bei hohen Dosen gemessene Dosis-Wirkungs-Beziehung wird linear hin zu kleinen Dosen extrapoliert. Es gibt keinen Schwellwert, da schon kleinste Mengen ionisierender Strahlung irgendeinen biologischen Effekt auslösen. Besonders der zweite Teil ist so aussagefähig wie: Nachts ist es dunkel. Da man ungern der UNO widerspricht, wurde ein Jahr später das LNT-Modell von der International Commission on Radiation Protection übernommen (ICRP 1959). Bemerkenswert ist nur das „Klein gedruckte“ des Berichts, das deshalb im Original wiedergegeben werden soll [National Council on Radiation Protection and Measurements. Principles and Application of Collective Dose in Radiation Protection. NCRP Report No. 121. Bethesda, MD. NCRP, 1995;45]:

„…essentially no human data, can be said to provide direct support for the concept of collective dose with its implicit uncertainties of nonthreshold, linearity and dose-rate independence with respect to risk. The best that can be said is that most studies do not provide quantitative data that, with statistical significance, contradict the concept of collective dose… Ultimately, confidence in the linear no threshold dose-response relationship at low doses is based on our understanding of the basic mechanisms involved. …[Cancer] could result from the passage of a single charged particle, causing damage to DNA that could be expressed as a mutation or small deletion. It is a result of this type of reasoning that a linear nothreshold dose-response relationship cannot be excluded. It is this presumption, based on biophysical concepts, which provides a basis for the use of collective dose in radiation protection activities“.

Soll wohl heißen, wir wissen selbst, daß das Blödsinn ist was wir hier beschließen, aber wir können (aus politischen Gründen?) nicht anders. Interessant sind die beiden Hauptsätze der Lehre vom Strahlenschutz. Wenn man auf einem weißen Blatt Papier keine Buchstaben erkennen kann, darf man trotzdem nicht ausschließen, daß es sich um eine Tageszeitung handeln könnte. Eine Argumentationsweise, die man sonst nur aus der Homöopathie oder Esoterik gewöhnt ist. Um es noch einmal ganz deutlich zu sagen, es gibt keine Messung, die eine erhöhte Krebsrate infolge kleinster Dosen ionisierender Strahlung nachweist. Eher das Gegenteil ist der Fall (Hormesis)! Alles spricht für einen Schwellwert. Allenfalls die Höhe des Grenzwertes ist strittig. Geschulte „Atomkraftgegner“ wissen um diese Zusammenhänge und weichen solchen Diskussionen schnell aus. Die Meldungen von dubiosen Leukämiefällen in der Nähe von Kernkraftwerken sind ähnlich dem Ungeheuer vom Loch Ness aus der Mode gekommen. Sie taugen nicht einmal mehr fürs Sommerloch. Immer weniger „Atomexperten“ mögen öffentlich an ihre Prophezeiungen über „Millionen von zusätzliche Krebstoten in ganz Europa“ infolge der Reaktorunglücke in Tschernobyl und Fukushima erinnert werden. Zu offensichtlich ist der Unsinn. Jede noch so gruselige Gespenstergeschichte nutzt sich schnell ab, wenn man das Gespenst nicht vorführen kann.

Nicht nur „Atomkraftgener“, sondern auch andere interessierte Kreise beschränken sich deshalb heute auf den zweiten Hauptsatz des Strahlungsschutzes: Jedes einzelne Photon oder radioaktive Partikel kann zu einem Bruch in der Erbsubstanz führen. Dies ist unbestritten der Fall. Nur, führt jede kaputte Zündkerze zum Totalschaden eines Autos? Natürlich nicht. Entscheidend ist, wie schnell man den Schaden erkennt und ihn repariert. Die entscheidende Frage für die Beurteilung des Risikos durch ionisierende Strahlung ist deshalb, wie viele Schäden ohnehin in einer Zelle auftreten und wie die Reparaturmechanismen funktionieren. Mit den heute zur Verfügung stehenden Methoden kann man die Kopie der Erbsubstanz in lebenden Zellen beobachten. Es ist beileibe kein mechanischer Kopiervorgang, sondern eine „Chemiefabrik“ in aggressiver Umgebung. Ohne auf die Zusammenhänge hier im Einzelnen eingehen zu können, kann man zusammenfassend sagen, die täglich auftretenden Fehler durch Radikale, Temperatur etc. gehen in die Milliarden – in jeder einzelnen Zelle, wohl gemerkt. Wenn also ein einzelner Fehler tatsächlich ausreichen würde, um Krebs auszulösen, wäre längst jedes Leben ausgestorben. Ähnlich kann man heute die Schäden durch die natürliche Hintergrundstrahlung bestimmen. Sie beträgt ungefähre o,oo5 DNA-Fehler pro Zelle oder andersherum: Alle 200 Tage wird jede Zelle durch die natürliche Radioaktivität nachhaltig geschädigt. Selbst von diesen Schäden (Doppelbrüche) ist nur jeder 500ste nicht reparierbar und führt zu Mutationen. Anschließend greift der Mechanismus der Selbstvernichtung: Über 99% der mutierten Zellen werden entfernt. Kennt man diese Zusammenhänge, ist einsichtig, warum es einen entscheidenden Unterschied zwischen einer kurzzeitigen hohen Dosis und einer geringen dauerhaften Belastung gibt. Im ersten Fall hat der Körper einfach zu wenig Gelegenheit für Reparaturmaßnahmen.

Zusammenfassend kann man sagen, daß die Anzahl der Mutationen infolge unserer Körpertemperatur, Nahrungsaufnahme und Atmung millionenfach höher ist, als die durch die natürliche Strahlung hervorgerufenen Mutationen. Wie soll also eine noch geringere zusätzliche Strahlung das Krebsrisiko merklich erhöhen?

Die Yucca Mountain Frage

Yucca Mountain ist das traurige Gegenstück zum Endlagerstandort Gorleben. Im Jahr 2011 wurde das Endlager unter der Regierung von Präsident Obama aufgegeben. Seit dem bricht auch in den USA eine erneute Diskussion zur „Atommüllfrage“ los. Interessant ist hierbei, daß die US-Umweltbehörde 2001 eine maximale Strahlenbelastung von 15 mrem pro Jahr für 10.000 Jahre nach Schließung des Lagers gefordert hatte. Im Jahre 2009 erweiterte sie nach gerichtlichen Auseinandersetzungen den Zeitraum auf 1.000.000 Jahre. Für diesen zusätzlichen Zeitraum wurde eine maximale Belastung von 100 mrem gefordert.

Eine jährliche Strahlenbelastung von 15 mrem entspricht 1/20 der (durchschnittlichen) natürlichen Strahlenbelastung in den USA. Erstmalig wird auch in der Presse die Sinnhaftigkeit solcher Grenzwerte hinterfragt. Es wird der Vergleich mit jemandem gezogen, den man an eine viel befahrene Kreuzung stellt und zur Lärmminderung auffordert, leiser zu Atmen, da man mit einem Stethoskop deutlich seine Atemgeräusche hören könne. Ich finde, treffender kann man es nicht in die durch unsere Sinne unmittelbar erfahrene Alltagswelt übersetzen.

Die mörderische Kraft der Angst

Noch zwei Jahre nach dem Reaktorunglück in Fukushima sind 160.000 Menschen aus der „Schutzzone“ evakuiert und 70.000 Menschen ist die dauerhafte Rückkehr verwehrt. Eine Tatsache, die immer mehr Kritik hervorruft. Nach offiziellen Zahlen sind bereits 1.100 Menschen infolge der Evakuierung gestorben. Die Bandbreite der Todesursachen geht von mangelnder medizinischer Versorgung während der Evakuierung, bis hin zum Suizid infolge der psychischen Belastung durch die „Wohnumstände“. Ein Phänomen, das bereits hinlänglich durch die Evakuierungen in Tschernobyl bekannt war. Lang andauernde Evakuierungen erzeugen die gleichen psychischen Belastungen wie Flucht und Vertreibung.

Es erscheint daher sinnvoll, die Freisetzung mal in bekannte Maßeinheiten zu übersetzen. In Fukushima wurden etwas über 40 Gramm I131 freigesetzt, die überdies bis heute längst wieder zerfallen sind. Ebenso knapp 4 kg Cs137. Ein wegen seiner Halbwertszeit von 30 Jahren relevantes Nuklid. Verstreut und damit verdünnt, über hunderte von Quadratkilometern Land und offenes Meer. Die biologische Halbwertszeit im menschlichen Körper für Cäsium beträgt übrigens nur 70 Tage. Durch gezieltes Essen von „freigemessenen“ Lebensmitteln wäre die Strahlenbelastung damit fast beliebig klein zu halten. Zugegeben, hören sich diese Mengen in „Greenpeace-Sprech“ gleich viel gruseliger an: Es wurden 199.800.000.000.000.000 Bq des Schilddrüsenkrebs auslösenden Jod-131 und 12.950.000.000.000.000 Bq des stark radioaktiven Cäsium-137 bei der Explosion des Katastrophenreaktors ausgestoßen. Wer sich allein durch große Zahlen in Furcht und Schrecken versetzen läßt, sollte zukünftig besser nicht mehr über Voodoo-Zauber oder den Glauben an Hexen lächeln.

ALARA oder AHARS

Risiken sind immer relativ. Jeder Fünfte von uns, wird bis zu seinem 70sten Lebensjahr an Krebs erkrankt sein. Jeder Dritte, eine Herz- Kreislauferkrankung erleiden. Demgegenüber beträgt das Risiko an Krebs zu sterben, nach einer Bestrahlung mit 1 Sv (100 rem) etwa 1:100 oder nach einer Bestrahlung mit 10 mSv (1 rem) weniger als 1:1.000.000.

Was bedeutet es für jemanden, der ein persönliches Risiko von 1:100 hat zu sterben, wenn diesem ohnehin vorhandenem Risiko noch eine Wahrscheinlichkeit von 1:1 Million hinzugefügt wird? Das ist die entscheidende Frage, die gestellt werden muß und die letztlich jeder für sich beantworten muß. Oder noch eindeutiger formuliert: Auf welche Lebensqualität ist jeder einzelne bzw. eine Gesellschaft bereit zu verzichten, um die Wahrscheinlichkeit an Krebs zu sterben, um (beispielsweise) ein Millionstel zu verringern? Wenn man gewisse Risikosportarten oder Tabak- und Alkoholkonsum in unserer Gesellschaft betrachtet, kann man gespannt auf die Antwort sein. Wem das zu abstrakt ist, dem mag vielleicht folgende Rechnung etwas mehr sagen: In den letzten 40 Jahren wurden allein in den USA mehr als 150 Milliarden Euro für den Strahlenschutz ausgegeben. Eine Abschätzung nach LNT ergibt, daß dadurch etwa 100 „virtuelle Leben“ gerettet worden sind. In wie vielen Fällen war unsere Gesellschaft bereit, für die Lebensverlängerung eines realen Lebens 1.500 Millionen Euro auszugeben? Wem es jetzt vor Empörung von seinem weichen Sofa, in seiner warmen Stube reist, sollte sich mal anschauen wie viele Kinder immer noch sterben müssen, weil ihnen eine Hand voll Dollar für Medikamente oder Trinkwasser fehlen. Ganz neben bei, erhält er noch die Antwort, warum immer mehr Länder nach „billiger“ Kernenergie streben und Wind- und Sonnenstrom bestenfalls für ein Luxusgut halten. Jemanden, der ohnehin nur eine Lebenserwartung von weniger als 50 Jahren hat, läßt ein theoretisches Krebsrisiko ab 90 ziemlich kalt.

Bisher wurde in der Kerntechnik immer nach dem Prinzip „As Low As Reasonably Achievable (ALARA)“ (so niedrig wie vernünftigerweise erreichbar) gearbeitet. Ein in sich schlüssiges Prinzip, so lange man davon ausgeht, daß es keinen Schwellwert gibt und alle Dosen additiv wirksam sind. Inzwischen diskutiert man immer mehr einen Übergang zu „As High As Reasonably Safe (AHARS)“ (so hoch, wie sicherheitstechnisch erforderlich). Für die Frage der Evakuierung nach Unfällen, erscheint ein Übergang zu AHARS zwingend erforderlich. Eine Evakuierung kann immer auch tödlich sein. Das Risiko steigt ganz erheblich an, wenn sie überhastet oder mit starker Angst verbunden, erfolgt. Die Ausdehnung auf unnötig große Gebiete oder unnötig lange Zeiträume verstärkt diesen Effekt noch. Beispielsweise zeigen sich bereits heute „soziale Schäden“ bei Kindern und Jugendlichen in Fukushima. Hervorgerufen, durch die zwangsweise Unterbringung in Notunterkünften und erschwerte Ausbildungsbedingungen. Man kann sich teilweise des Eindrucks nicht erwehren, daß dies politisch gewollt ist. Insbesondere, wenn man immer wieder liest, daß der oberste Wunsch bei den „Vertriebenen“, die möglichst schnelle Rückkehr in ihre alte Umgebung ist. Gleiches kennt man auch aus Tschernobyl. Bemerkenswert ist dabei, daß der Gesundheitszustand der illegalen (inzwischen längst geduldeten) Rückkehrer in die Verbotene Zone, deutlich besser als der, der zwangsweise Umgesiedelten ist. Obwohl die Rückwanderer sogar Landwirtschaft zur Eigenversorgung auf dem „verseuchten“ Grund betreiben.

Etwas anders stellt sich das ALARA Prinzip beim Arbeitsschutz dar. Natürlich sollte jede gesundheitliche Belastung am Arbeitsplatz möglichst klein gehalten werden. Man sollte aber nicht so blauäugig sein zu glauben, es ginge nicht auch um wirtschaftliche Interessen. Rund um den Strahlenschutz hat sich eine ganze Industrie etabliert. Auf jeder Messe werden neue Mittelchen vorgestellt, die noch ein paar Promille Verbesserung versprechen. In Behörden sind ganze Kariereplanungen auf eine stetige Ausweitung aufgebaut. Gerade, wenn sich die Anzahl der Objekte durch einen „Ausstieg aus der Kernenergie“ verringert, ist der Stellenkegel nur zu halten, wenn man ständig neue Probleme schafft, die man vorgibt anschließend zu lösen. Ein Schelm, wer hier an die Asse denkt. Trotzdem gilt auch hier, man kann jeden Euro nur einmal ausgeben. Was man für den Strahlenschutz ausgibt, kann man nicht mehr für andere Zwecke verwenden und jeden dieser Euros müssen wir selbst bezahlen. Dabei ist es gleich, ob aus Steuermitteln oder höheren Energiepreisen. Es lohnt sich also schon, einmal selbst darüber nach zu denken und sich eine eigene Meinung zu bilden.

Korea und die Wiederaufbereitung

Im Fahrwasser der aktuellen Krise mit Nord-Korea, bahnt sich für die USA ein hausgemachtes Problem mit Süd-Korea an. Es ist ein schönes Beispiel dafür, wenn Regierungen meinen, sie könnten dauerhaft über andere Nationen bestimmen und ihre ideologische Sicht zur einzig selig machenden zu erklären. Im nächsten Jahr läuft das Abkommen zur Nicht-Weiterverbreitung von Kernwaffen nach 40 Jahren aus. Im Rahmen dieses Abkommens hat Süd-Korea auf Anreicherung und Wiederaufbereitung abgebrannter Brennelemente verzichtet. Es muß neu verhandelt werden.

Ironie der Geschichte ist, daß dies zu einem Zeitpunkt geschehen muß, an dem die USA offen von Nord-Korea mit einem „Atomschlag“ bedroht werden. Nord-Korea hat gezeigt, wie es in der realen Welt zu geht: Wenn ein Diktator bereit ist, sein eigenes Volk wirtschaftlich zu ruinieren, dann baut er sich ganz einfach seine eigenen Kernwaffen. Wenn er über genug Öleinnahmen verfügt – wie Iran – braucht er dafür nicht einmal sein Land an den Rand von Hungersnöten zu führen. Ist das Land vermögend – wie Saudi Arabien – kann es sogar den mühseligen Weg der Eigenentwicklung überspringen und unverhohlen damit drohen, sich gegebenenfalls fertige Kernwaffen (z. B. aus Pakistan) zu kaufen.

Selbst die Supermacht USA kann das offensichtlich nicht verhindern. Mit Verträgen, UNO und leeren Drohungen ist es schon gar nicht möglich, im Internetzeitalter (!) das Wissen der 1940er Jahre geheim halten zu wollen. Der pakistanische Basar der „Atomtechnologie“ ist noch in frischer Erinnerung. Der Versuch, gegen Unterstützung bei der friedlichen Nutzung der Kernenergie – sprich dem Bau von Kernkraftwerken – einen Verzicht auf Anreicherung und Wiederaufbereitung erkaufen zu können, war und ist aberwitzig. Er hat offensichtlich nur zu einer Brüskierung eines der engsten Verbündeten der USA geführt. Was anderes sollte es heißen, als Süd-Korea, wir trauen euch nicht. Wir erinnern uns: Deutschland wurde auch der Verzicht auf Kernwaffen geglaubt, obwohl es eine Wiederaufbereitungsanlage in Karlsruhe betrieben hat und noch heute Zentrifugen zur Anreicherung betreibt. Japan baut eifrig an einer kommerziellen Wiederaufbereitung und diskutiert gleichzeitig, offen wie nie, eine atomare Bewaffnung – wegen der potentiellen Bedrohung durch Nord-Korea und China.

Wie konnte es dazu kommen, daß sich die USA in eine solche diplomatische Sackgasse manövriert haben? 1974 wurde Indien (nahezu aus eigener Kraft) zur Atommacht. Übrigens aus Reaktion auf die atomare Bewaffnung von China, mit dem man noch wenige Jahre zuvor, Krieg führen mußte. Die Welt war verblüfft über den Weg: Man hatte in aller Stille, einen von Kanada gelieferten CANDU-Reaktor zur Produktion von waffengrädigem Plutonium missbraucht. Bis heute, wirkt diese Tat in den internationalen, kerntechnischen Beziehungen nach. Es stehen sich Pragmatiker (Indien ist nun mal Atommacht, das läßt sich nicht zurückdrehen, deshalb freier Handel und Wissensaustausch) und Moralisten (Belohnung des „Fehlverhalten“, Präzedenzfall der die Proliferation zu nichte macht) teilweise unversöhnlich gegenüber. Jeder muß sich da ein eigenes Urteil bilden. Tatsache ist jedoch, daß die Zeit der „drei Welten“ mit dem Zusammenbruch des Kommunismus vorbei ist. Heute bestehen die Probleme eher in der Golfregion oder der koreanischen Halbinsel mit ihrer regionalen und globalen Gemengelage.

Es gab aber auch hausgemachte Gründe. Man muß die erste Hälfte der 1970er Jahre als unmittelbare Nachfolge der sog. „68er Bewegung“ verstehen. Greenpeace z.B. entstammt der Friedensbewegung mit dem Spezialgebiet: Kernwaffen und Umweltbelastung durch Kernwaffentests in der Atmosphäre. Besonders der zweite Punkt machte die Bewegung in kürzester Zeit weltberühmt. Durch die diversen Teststoppabkommen kam dieses Geschäftsmodell immer mehr aus der Mode. Der Übergang zur zivilen Nutzung der Kernenergie und die Konstruktion eines Zusammenhangs mit dem Bau von Atombomben schien folgerichtig. Es entwickelte sich die Gleichung: Links plus friedensbewegt gleich „Atomkraftgegner“. In Deutschland gipfelte dies sogar in der Gründung einer Partei.

In USA beschwor eine Kampagne die Gefahr von möglichen hunderten „Atomanschlägen“ auf Großstädte hervor. Alle versorgt durch Diebstähle aus Wiederaufbereitungsanlagen. Ein neues Buhwort war erschaffen: Plutonium. Künstlich hergestellt, irrsinnig giftig und ganz, ganz gefährlich. Jimmy Carter, ein Erdnussfarmer, der in seiner aktiven Zeit bei der Marine zumindest für Kurse in Kerntechnik angemeldet worden war, stoppte das Clinch River Projekt (Vorstufe eines Schnellen Brüters, der Strom aus recyceltem Brennstoff produzierte) und zwang ein privates Konsortium mehr als 250 Millionen Dollar für eine Wiederaufbereitungsanlage in Barnwell über Nacht abzuschreiben. Er wollte ein Zeichen des „guten Amerikaners“ setzen, der keine Kosten scheuend voranschreitet, um die Welt zu retten. Ähnlichkeiten mit deutschen „Energiewendern“ sind rein zufällig. Jedenfalls gelang es ihm die „Proliferation“ und das Problem, was wir heute als „ungelöste Atommüllfrage“ bezeichnen, zu erschaffen. Ironischerweise ist Jimmy Carter der gleiche Präsident, der durch sein „Geiseldrama“ im Iran nicht unwesentlich zu der heutigen Situation im und mit dem Iran beigetragen hat.

Aber wie hat sich die Welt seit dem verändert? Inzwischen baut eine französische Firma in USA eine Fabrik für MOX-Brennelemente. Solche Mischoxid-Brennelemente dienen zur Verbrennung von Plutonium in konventionellen Leichtwasserreaktoren. In diesem Fall handelt es sich sogar um waffengrädiges Plutonium aus der ehemaligen Sowjetunion. Dies war – wieder zur Verhinderung von Terrorismus – von den USA aufgekauft und ins eigene Land verbracht worden.

Wie kann sich die USA aus den eigenen Fallstricken befreien? Süd-Korea hat sich mit amerikanischer Anschubhilfe zu einer der führenden Nationen im Bau und Betrieb von Kernkraftwerken entwickelt. Spätestens seit dem Auftrag über 20 Milliarden Dollar für vier Reaktoren aus den Vereinigten Arabischen Emiraten ist dies vielen schmerzlich bewußt geworden. Würde es kein neues Abkommen geben, wäre die Versorgung mit angereichertem Uran aus den USA nicht mehr gesichert. Wäre das aber wirklich ein Problem für Süd-Korea? Auf Kanada, Australien und Kasachstan entfallen etwa ⅔ der Weltproduktion an Uran, auf die USA lediglich 4%. Anreicherungsanlagen besitzen mehr als ein Dutzend Staaten. In diesem Sinne würde ein Ausweichen auf andere Lieferanten das „Problem der Weiterverbreitung“ eher anheizen.

Bleibt die Frage der Wiederaufbereitung. Ob Süd-Korea eine Plutonium-Bombe baut oder nicht, ist eine rein politische Frage, die nicht zwingend etwas mit Wiederaufbereitung zu tun hat. Es sind andere Verfahren denkbar, die völlig ungeeignet zum Bau von Kernwaffen sind. Auch hier, hat Süd-Korea bereits viel Forschung und Entwicklung investiert. Süd-Korea hat die Chance, erstes Land auf der Welt mit einer garantiert reinen zivilen Nutzung der Kernenergie zu werden. Bisher sind alle Länder (auch Deutschland und Japan) den bequemeren Weg des bereits etablierten PUREX-Verfahrens gegangen. Nur ist dieses Verfahren genau zur Produktion von waffengrädigem Plutonium entwickelt worden. Natürlich kann man mit einem Panzer auch ein Feld pflügen, nur sollte man sich nicht wundern, wenn andere den Verdacht äußern, man wolle mit solch einem Trecker vielleicht eines Tages auch mal schießen. Ganz gewiß werden sich die Süd-Koreaner nicht der angeblich „ungelösten Atommüllfrage“ hingeben. Sie haben ganz einfach nicht die selbe Vorgeschichte und brauchen auch keine Rücksichtnahme auf die Befindlichkeiten politische Parteien mit dem Gründungsmythos der „Anti-Atombewegung“ nehmen. Übrigens, hat in ganz Asien keine Regierung dieses Problem. Es erfordert deshalb keine prophetische Gabe, wenn man die Renaissance der Kernenergie aus Asien kommen sieht. Wer sehen will, kann schon heute die Anzeichen erkennen.

Wie tödlich ist ihre kWh?

Diese makaber anmutende Frage stellte das Forbes-Magazin seinen Lesern schon vor geraumer Zeit (http://www.forbes.com/sites/jamesconca/2012/06/10/energys-deathprint-a-price-always-paid/) und fügte folgende Tabelle hin zu:

Energiequelle Tote pro Billion kWh Anteil an der Stromerzeugung
Kohle (weltweit) 170.000 50% weltweit
Kohle (China) 280.000 75% in China
Kohle (USA) 15.000 44% in USA
Öl 36.000 36% Energie, 8% Elektro
Erdgas 4.000 20% weltweit
Biomasse 24.000 21% Energie weltweit
Solar (PV) 440 1% weltweit
Wind 150 1% weltweit
Wasserkraft 1.400 15% weltweit
Kernenergie 90 17% weltweit

Die Redaktion hat diese Tabelle aus verschiedenen Quellen, wie z. B. der WHO zusammengetragen. Es lohnt nicht, die Zahlen im einzelnen diskutieren zu wollen. Man versinkt zu schnell in dem Sumpf der Statistik: Unterschiedliche Zugänglichkeit von Daten (z. B. China oder USA) und unterschiedliche Ansichten über Langzeitwirkungen. Besonders deutlich wird dies z. B. an den Opfern der Kernenergie. Hier wurden die Schätzungen von potentiellen Krebsopfern infolge der Reaktorunglücke in Tschernobyl und Fukushima eingearbeitet. Tatsache ist jedoch, in Fukushima ist bisher kein Opfer und in Tschernobyl sind zwischen 20 und 200 – je nach Zählweise – Strahlentote zu verzeichnen. Die Zukunft wird zeigen, welche Zahlen realistisch sind.

Trotzdem ist eine solche Tabelle als Denkanstoß (aber bitte nicht mehr!) sinnvoll. Sie macht auf den ersten Blick klar: Es gibt keine Energieerzeugung ohne Opfer. Energiegewinnung fordert wie alle anderen menschlichen Tätigkeiten immer auch Todesopfer. Wir gehen individuell völlig selbstverständlich mit einer Risiko/Nutzen – Abwägung um. Jeder, der in den Urlaubsflieger steigt, tut dies in vollem Bewußtsein, daß es sein absolut letzter Flug sein könnte. Nur bei der Energieversorgung kommt es plötzlich zu völlig irrationalen Reaktionen. Es wird nur noch das (vermeintliche) Risiko gesehen. Der Nutzen wird völlig verdrängt. Kann es sein, daß dies maßgeblich auf eine politisch gewollte und geförderte Sichtweise zurückzuführen ist? Der gesunde Menschenverstand reagiert anders. Würde man eine Umfrage unter Hausfrauen und Hausmännern machen, ob sie sich einen Haushalt ohne jeden elektrischen Strom vorstellen könnten, wäre das Ergebnis wohl eindeutig: Die Waschmaschine und der Staubsauger erscheinen nicht nur als unentbehrlich.

Selbstverständlich wünschen wir uns alle eine Energieversorgung, die möglichst wenige Opfer fordert. Wir sollten jedoch nie vergessen, daß auch immer Dachdecker bei der Installation eines Sonnenkollektors vom Dach fallen werden, genauso wie es Unfälle in Kernkraftwerken geben wird. Wer jetzt gleich wieder in seinen Reflex verfällt, „aber Atomkraftwerke haben ein Restrisiko von Millionen Toten und zehntausende Jahre unbewohnbaren Landstrichen“ sollte einfach zur Kenntnis nehmen, daß das nichts weiter als schlechte Propaganda ist. Die Betonung liegt dabei auf „schlecht“, wie die Reaktorunfälle von Tschernobyl und Fukushima gezeigt haben. Parallel zum Reaktorunglück in Fukushima brannte zwei Wochen lang in der Bucht von Tokio eine Raffinerie. Bei den Löscharbeiten sind mehr als ein Dutzend Feuerwehrleute getötet worden und eine riesige Umweltverschmutzung ergoss sich über das Meer. Das hält aber bis heute, keinen der „Berufenen“ davon ab, der Bevölkerung immer wieder etwas von den „tollen Gaskraftwerken“ als Alternative zur bösen Kernenergie ins Ohr zu säuseln. Erst recht wird nicht hinterfragt, wie viele Menschenleben man pro Jahr mit den Milliarden Mehrkosten für fossile Brennstoffe in Japan (infolge der vorübergehenden Reaktorstilllegungen) retten könnte. Plötzlich sind all die Kreise, die stets mit ein paar Milliarden mehr für Bildung, Gesundheit und „soziales“, alles Elend der Welt glauben beseitigen zu können, ganz still.

Die Tabelle gibt uns aber noch einen weiteren wertvollen Hinweis: Den Zusammenhang zwischen Wohlstandsniveau und Arbeitssicherheit und Umweltschutz. Es ist kein Zufall, daß die Anzahl der Opfer pro Einheit Energie in China höher, als in den USA ist. Es gibt in China (noch nicht) einen vergleichbaren Arbeitsschutz, wie in den Bergwerken der USA. Auch die Rauchgasreinigung ist in China (noch nicht) auf dem gleichen Niveau, wie z. B. in Deutschland. Folgerichtig sind die Atemwegserkrankungen durch Abgase entsprechend höher. Und nicht zuletzt hat in diesem Zusammenhang auch der massive und konsequente Ausbau der Kernenergie in China seine Begründung. Es ist nicht abwegig, wenn andere Entwicklungsländer diesen Weg als vorbildlich ansehen. Vor allem, wenn die Konsequenzen der Deindustriealisierung im „energiegewendeten“ Deutschland erst voll sichtbar werden.

Abgebrannte Brennelemente für die Sterilisation

Abgebrannte Brennelemente haben so viel mit Müll zu tun, wie die Tageszeitung von Vorgestern. Selbstverständlich sind beide für den Nutzer (Kraftwerk oder Leser) Abfall. Sie sind für diese nicht mehr zu gebrauchen, aber sie sind bei leibe alles andere als Müll. Sie lassen sich wieder aufarbeiten. Bei einem Brennelement sogar mit einer höheren Quote als bei Papier.

Es gibt sogar noch Zwischennutzungen bis zur Wiederaufbereitung. Beim Papier z. B. als Verpackungsmaterial. Auch für genutzte Brennstäbe zeichnet sich jetzt eine solche Zwischennutzung ab. An der Oregon State University hat man einen Weg ersonnen, die Strahlung zur Sterilisation von medizinischen Produkten nutzbar zu machen. Dies ist ein beständig wachsender Bereich. Bisher wird Cobalt (Co-60) verwendet, um insbesondere Einwegspritzen und Verbandmaterial zu behandeln. Dabei ist zu beachten, daß Cobalt-60 ein stark radioaktives Material ist, welches extra in Reaktoren hergestellt wird. Bewußt und kostspielig hergestellter „Atommüll“ (Halbwertszeit 5,3 Jahre) so zu sagen.

Inzwischen gibt es ein junges Unternehmen, welches das Verfahren weiterentwickelt hat und gerade durch Patente absichern läßt. Im Prinzip sollen die gebrauchten Brennstäbe in Spezialbehälter umgesetzt werden. Diese Behälter sorgen für einen zusätzlichen Schutz vor Beschädigung und sorgen für die Abfuhr der Nachzerfallswärme. Diese Behälter werden dann in einen Bestrahlungsraum gestellt, durch den vollautomatisch die zu bestrahlenden Güter hindurchgefahren werden. Man verwendet angeblich weitestgehend die in der Brennelementehandhabung und etablierten Bestrahlungstechnik angewendeten Verfahren. Das Unternehmen geht davon aus, daß es mit den Brennelementen nur eines einzigen Kernkraftwerks einen jährlichen Umsatz von über 10 Millionen US-Dollar erzielen könnte. Da das Verfahren wesentlich kostengünstiger als die Co-60-Methode sein soll, glaubt man an eine schnelle Ausweitung auch auf andere Anwendungen.

Mögen die Aussichten der Firma G-Demption LLC auch etwas optimistisch sein, wenn man weiß, wie kompliziert und langwierig Genehmigungsverfahren in der Kerntechnik sind. Andererseits ist es fast eine Gesetzmäßigkeit, daß aus Abfällen irgendwann begehrte Rohstoffe werden, denn der einzig wirklich unerschöpfliche Rohstoff ist der menschliche Erfindergeist.

Fusion: 100 MW in Serie?

Wer die Entwicklung der Kernfusion beobachtet, hat den Eindruck einer unendlichen Geschichte. Mit Milliardenaufwand werden riesige Maschinen gebaut, die in jeweils etwa 50 Jahren Strom liefern sollen.

Hin und wieder tauchen von irgendwelchen Erfindern ganz neue, revolutionäre Konzepte auf, die sich bei näherem hinsehen, stets eher als Perpetuum Mobile, denn als Idee für ein Kraftwerk entpuppen. Genau das, habe ich gedacht, als ich die Meldung las: Kleine Fusionsanlage, Energie für jedermann. 100 MW Fusions-Reaktor, so groß wie eine konventionelle Gasturbine. Anlage in etwa fünf Jahren produktionsreif.

Normalerweise lese ich an diesem Punkt nicht mehr weiter. Science Fiction ödet mich an. Aber halt, der Vortrag (siehe Link zum Mitschnitt unten) ist von Lockheed Martin’s „Skunk Works“, einem Verein, der alles andere, als aus Aufschneidern besteht. Ich kann mich noch sehr gut an die immer wieder auftauchenden Berichte über die Entwicklung von „Tarnkappenbombern“ in den 1980er Jahren erinnern. Und auf einmal waren sie am Himmel: Die F-117 Nighthawk oder die B2 Spirit. Flugzeuge, schon in ihrer äußeren Form so revolutionär anders, daß man kaum glauben mochte, daß diese Maschinen überhaupt fliegen können.

Deswegen ist mir dieses Video eine Meldung auf der Wiese wert. Die „Stinktiere“ treten jedenfalls nie ohne Grund an die Öffentlichkeit. Irgendetwas brüten sie offensichtlich auf dem Energiesektor aus.

Erneut über 1000 Menschenleben durch Deutsche Kernkraftwerke gerettet!

Sie glauben das nicht? Das behauptet aber Greenpeace und Greenpeace hat immer recht, das sind doch die guten Menschen, die immer die Wale beschützen. Die immer gegen die Kernenergie gekämpft haben. Die mit den „Atomexperten“ und neuerdings auch noch „Kohleexperten“.

Am Mittwoch trat Greenpeace wieder medienwirksam mit dieser Tatarennachricht an die Öffentlichkeit:

…Der Schadstoffausstoß deutscher Kohlekraftwerke verursache unter anderem Atemwegs- und Herz-Kreislauf-Erkrankungen, die rechnerisch zum Verlust von 33.000 Lebensjahren führten, erklärte Greenpeace. Das seien statistisch etwa 3100 vorzeitige Todesfälle pro Jahr. Betroffen seien auch die Nachbarländer….

Wenn Greenpeace das sagt, muß es ja stimmen. Bisher gab es nur zaghaften Widerspruch vom Verband VGB Power aus Essen meldet „strom magazin“ das Zentralorgan der Sonnenmännchen:

….Daher seien vor allem Abgase aus dem Verkehr und den Heizungen von Wohnhäusern zu beachten, erklärte der VGB in Essen…

Wenn das alles ist. Es gab mal eine Zeit, da war die Vereinigung der Großkesselbesitzer (VGB e.V.) eine international angesehene Institution in Forschung und Entwicklung. Eine Stellungnahme auf dem Niveau: Die anderen sind aber auch böse, wir sind nicht allein schlecht, wäre undenkbar gewesen.

Uran-Fracking , Unwort zum Quadrat?

Ein neuer Kampfbegriff geistert bereits durch einschlägige Postillen in den USA: Uran fracking. Seit mehr als 70 Jahren wird bei Ölquellen durch das Aufbrechen von undurchlässigen Gesteinsschichten der Durchfluss verbessert. Niemand hat sich dafür interessiert. Erst als durch Anwendung dieser Technik gewaltige Gaslagerstätten nutzbar gemacht werden konnten, ging die Empörung los. Es war für bestimmte Kreise nur schwer erträglich, daß die fossilen Energieträger nun doch nicht in wenigen Jahren aufgebraucht sind. In gemeinsamer Anstrengung mit Hollywood gelang es in wenigen Monaten diesen technischen Begriff zu einem echten Aufreger zu machen. Nach dem dieses Werk vollbracht war, muß es wohl naheliegend sein, ihn mit einem zweiten Unwort zu kombinieren: Uran-Fracking. Sicherlich können deutsche „Qualitätsmedien“ nicht lange widerstehen. Es scheint mir daher sinnvoll, schon mal etwas näher auf die Zusammenhänge einzugehen.

Eagle Ford Shale

Der Eagle Ford Ölschiefer ist eine fast 100 km breite und 80 m dicke Schicht, die sich in 1200 bis 3700 m Tiefe über 650 km von der Mexikanischen Grenze in den Osten von Texas erstreckt. Neben Erdgas enthält sie schätzungsweise 3 Milliarden Barrel Öl. Inzwischen werden in diesem Gebiet rund 375.000 barrel pro Tag gefördert. Ein ordentlicher Ertrag für die Landbesitzer. Denn nach guter, alter Texas-Sitte, gilt immer noch „a quarter to a third“. Meint, selbst wenn der Landbesitzer nur sein Land zur Verfügung stellt und keinen Cent selbst investiert, bekommt er ¼ der Öleinnahmen. Bei solchen Gesetzen, kann man die Bevölkerung nur schwer aufhetzen, zumal man in Texas schon 100 Jahre mit der Ölförderung lebt – und das, recht gut.

Uranvorkommen

Texas ist aber nicht nur mit fossilen Brennstoffen gesegnet, sondern auch mit Uran. Man besitzt darüber sehr gute Kenntnisse, weil in den Zeiten des Kalten Krieges alle Ölbohrungen auch auf ihren Urangehalt hin untersucht werden mußten. Vor 45 Millionen Jahren haben Vulkane Unmengen von Asche über den Süden der USA ausgestoßen. Aus dieser Asche wurde das Uran langsam ausgewaschen und bildete Lagerstätten. Und nun kommt die Geschichte zusammen: Aufsteigendes Erdgas hat dieses Uran in Jahrmillionen wieder ausgetrieben und oberhalb der Ölschieferschicht in dortige poröse Schichten angereichert. Diese Schichten berühren teilweise die Schichten, aus denen die Rancher ihr Trinkwasser beziehen. Wie sensibel Rancher auf ihre Brunnen reagieren, ist hinlänglich aus Western bekannt. Zumal sie mit Uranbergbau in der Zeit von 1950 bis 1980 keine guten Erfahrungen gemacht haben. Die Minen in Karnes County und Falls City sind in ganz Texas für ihre Umweltsünden bekannt. Sie hinterließen große Teiche, randvoll mit giftigen Schlämmen aus der Produktion. Damals wurde das Erz im Tagebau abgebaut, zu Staub vermahlen und mit Schwefelsäure aufgeschlossen. Die Produktionsrückstände enthalten nicht nur Uran und seine Zerfallsprodukte, sondern auch Kadmium, Kobalt, Nickel, Fluoride usw. Ab 1967 wurde versucht, das Palangana Vorkommen „in situ“ auszubeuten. Dazu bohrte man tausende Löcher bis in die uranhaltige Schicht und leitete Ammoniak ein. Die entstehende Lauge sollte das Uran lösen, um das Uran an die Oberfläche pumpen zu können. Dieses Verfahren erwies sich als nicht sonderlich erfolgreich.

Das Goliad Projekt

In diesem Jahr konnte Uranium Energy (UEC) nach langjährigen juristischen Auseinandersetzungen sein Goliad Projekt in Betrieb nehmen. Gegner gingen durch alle Instanzen, um dieses Projekt zu verhindern. Jedoch ohne Erfolg. Warum dieser erhebliche Widerstand? Wasser ist in Texas ein äußerst kostbares Gut. Ohne Brunnen ist in diesen Gebieten nicht einmal Viehzucht möglich. Die uranführende Schicht liegt an dieser Stelle nur gut 120 m unter der Erde. Diese Schicht ist porös und wasserhaltig. Das Wasser könnte mit darüber liegenden Grundwasserleitern in Kontakt kommen. Tatsächlich ist in diesen Gegenden das Trinkwasser immer uran- und radonhaltig. Geplant ist nur die ohnehin nicht als Trinkwasser geeigneten Wässer abzusaugen und über Ionentauscher zu leiten. Nachdem sich dort das Uran abgelagert hat, soll das Wasser wieder in die Schicht zurückgepumpt werden. Im laufe der Zeit würde sich das Wasser wieder auf natürliche Weise mit Uran anreichern. Um den Prozeß zu beschleunigen, wird das Wasser mit Sauerstoff angereichert. Der Sauerstoff mobilisiert das Uran im Boden und beschleunigt diesen Vorgang. Durch die Anordnung von Förder- und Schluckbrunnen wird gewährleistet, daß immer nur Wasser in Richtung der Förderbrunnen fließt. Dies wird durch Messstellen rund um das Gebiet überwacht. Außerdem darf sich die Zusammensetzung (mit Ausnahme des Urangehaltes natürlich) des zurückgeführten, nicht von dem des geförderten Wassers unterscheiden. Hierdurch soll eine Anreicherung mit Schwermetallen, Selen, Fluor usw. verhindert werden.

Bis zum Ende des Jahrzehnts strebt UEC in Texas eine Förderung von 3 Millionen pound Uranoxid (U3O8, Yello cake) pro Jahr an. Dies entspricht immerhin einem Energieäquivalent von über 100 Millionen barrel Rohöl pro Jahr, wenn man nur das darin enthaltene U235 nutzt, sonst (Brüter) fast 100 mal mehr. Glückliches Texas.

Zentral, Dezentral, …egal?

Heute reicht die Bandbreite bei der Stromerzeugung von der Photovoltaik auf dem Dach oder dem „Mini-BHKW“ im Keller des Einfamilienhauses bis zum Windpark in der Nordsee oder gar der Solarfarm in der Sahara. Die konventionelle Stromversorgung liegt irgendwo dazwischen. In Deutschland ist die Diskussion darüber hoch emotional und ideologisch aufgeladen. Wenn man jedoch ein wenig darüber nachdenkt, kann man durchaus Kriterien für eine Entscheidung finden.

Energienachfrage

Betrachtet man ein Versorgungsgebiet, wie z. B. Deutschland, so erkennt man eine höchst ungleiche Nachfrage nach elektrischer Energie: Es gibt Verbrauchsschwerpunkte und Regionen mit weit unterdurchschnittlicher Nachfrage. Man verwendet in der Energiewirtschaft nicht ohne Grund die Kennzahl Energieverbrauch pro Kopf. Sie wird für alle möglichen Energieformen ermittelt. In Städten ist die Bevölkerungsdichte und damit der Energiebedarf sehr hoch. Unsere Urgroßväter haben dies schon erkannt und Kraftwerke mitten in der Stadt gebaut (Berlin, Hamburg, München etc.). Lange vor der Erfindung der Ökologie haben sie bereits ihre Abwärme zur Heizung von Gebäuden genutzt. Umgekehrt ist der Verbrauch an elektrischer Energie in ländlichen Regionen nur gering und dünn gestreut. Eine Elektrifizierung ist hier auch in Deutschland wesentlich später erfolgt. Diese Entwicklung kann man auch heute noch in den Entwicklungsländern beobachten.

Energievorkommen

Elektrische Energie kommt leider nicht in verwertbaren Mengen in der Natur vor. Man kann deshalb die Frage „woher“ nicht vom „wie“ trennen. Will man man die Art der Erzeugung vorschreiben, muß man sich geeignete Vorkommen suchen. Mögen sie auch noch so weit entfernt sein. Das ist die Realität der Energiewende!

Energieart

Elektrische Energie muß erst durch Umwandlung aus anderen Energieformen gewonnen werden. Man steht damit vor der Wahl: Transportiert man den Primärenergieträger oder die elektrische Energie? Letztendlich, ist das auch nur eine Frage der Wirtschaftlichkeit. Man kann aber schon mit Physik und Technik eine Tendenz erkennen. Sind die Primärenergieträger gar nicht transportierbar (Wind, Sonne, Wasserkraft), bleibt nur der Transport der elektrischen Energie. Dies ist der einzige Grund, warum für die „Energiewende“ das Leitungsnetz drastisch ausgebaut werden muß. Ohne die ideologische Festlegung auf Sonnenenergie und ihre Ableger, wäre eine Verdrahtung der Landschaft in bisher unvorstellbarem Ausmaß gar nicht nötig. Haben die Energieträger nur einen geringen Heizwert, wie Biomasse oder auch Braunkohle, müssen sie vorher veredelt werden. Wer will schon Sand und Wasser transportieren? Das Zauberwort hieß früher Brikett und heute Biogas. Leider kostet jede Veredelung auch Energie, die man anschließend leider nicht mehr verkaufen kann. Deshalb ist auch hier meist der Transport der elektrischen Energie die wirtschaftlichere Lösung.

Energiedichte

Die Energiedichte ist der Dreh- und Angelpunkt in der Energiewirtschaft. Schon die antike Stadt war nicht in der Lage, die benötigte Energie innerhalb ihrer Stadtmauern zu erzeugen. Die Bevölkerungsdichte war einfach zu hoch. Wollte man heutige Metropolen mit ihrer Industrie ausschließlich durch Wind, Sonne und Biomasse versorgen, müsste man auch noch auf die letzten unbewohnten Gebiete der Erde zurückgreifen. Will man den Windpark im heimischen Landschaftsschutzgebiet nicht haben, bleibt eben nur die Palmölplantage im Regenwald oder die Sonnenfarm in der Sahara.

Die Transportfrage

Man kann es drehen und wenden wie man will: Die Energie muß immer von der Förderstelle zum Verbraucher transportiert werden. Jeder Transport erfordert Energie und kostet Geld. Förderstellen und Verbraucher müssen durch Transportsysteme miteinander verbunden sein. Das können Straßen, Eisenbahnen, Rohrleitungen oder elektrische Netze sein. Die vorhandene Infrastruktur beeinflußt maßgeblich die Auswahl des Kraftwerktyps. Ein Kohlekraftwerk erfordert einen leistungsfähigen Eisenbahnanschluß, ein Gaskraftwerk eine Hochdruckleitung entsprechender Kapazität und ein Wasserkraftwerk geeignete geologische Verhältnisse. Einzige Ausnahme bildet ein Kernkraftwerk: Wegen der ungeheuren Energiedichte, reichen einige LKW-Ladungen im Jahr aus. Ein Vorteil, der zukünftig immer größere Bedeutung gewinnen wird. So hat z. B. der Ballungsraum Shanghai heute schon mehr Einwohner als Österreich. Die Infrastruktur ist chronisch überlastet. Baugrund ist viel zu kostbar, um ihn für zusätzliche Eisenbahnstrecken für Kohlenzüge zu verwenden.

Stromnetze

Jeder Erzeuger muß mit jedem Verbraucher durch Leitungen verbunden sein. Es entsteht ein Stromnetz. Jede Minderproduktion oder jeder Mehrverbrauch wirkt sich sofort im ganzen Netz aus. Ein Stromnetz ist deshalb viel mehr als nur ein Gewirr von Drähten. Je mehr Störungen auf ein Netz wirken, um so komplizierter und teurer wird es. Ein weiterer Fluch der „Energiewende“. Früher brauchte der Kraftwerkseinsatz nur nach den Verbrauchsgewohnheiten geplant zu werden. Heute müssen die Störgrößen Wind- und Sonnenenergie zwangsweise aufgenommen werden. Man muß sich die Konsequenz so veranschaulichen: Verschiedene Fluggesellschaften entwickeln gemäß der Verbrauchernachfrage feste Flugpläne, die notwendigerweise sehr eng mit den Flugplätzen und der Luftverkehrsüberwachung abgestimmt sind. Ein sehr komplexes und langwieriges Verfahren. Jetzt macht der Staat ein Gesetz zur Förderung nahestehender Flugzeugbesitzer. Grün angestrichene Flugzeuge dürfen ab sofort starten und landen wann und wo sie wollen. Flughäfen müssen ausdrücklich nicht grün angestrichene Flugzeuge so lange am Boden warten lassen oder in der Luft kreisen lassen, bis kein grün angestrichenes Flugzeug mehr starten oder landen will. Dieses Recht gilt stets und ausnahmslos. Wenn die Kapazität eines Flughafens nicht mehr ausreicht, muß er sofort erweitert werden. Zur Beschleunigung des Ausbaues wird das geltende Verwaltungsrecht stark eingeschränkt. Die Kosten werden unmittelbar auf alle Fluggäste umgelegt. Die Luftverkehrsüberwachung muß sehen, wie sie mit dem neuen Chaos fertig wird. Selbstverständlich werden vom fürsorglichen Staat keine Sicherheitseinbußen tolleriert. Wenn sie meinen, daß diese Darstellung überzogen sei, haben sie sich noch nicht mit dem „EEG“ und den einschlägigen Vorschriften zum Netzausbau beschäftigen müssen.

Aber zurück zum Problem der Entfernung. Es macht einen sehr großen Unterschied, ob die Kraftwerke möglichst nahe bei den Verbrauchern errichtet werden oder weit davon entfernt. Es seien hier nur die wichtigsten Gründe erwähnt:

  • Mit jedem Meter Leitungslänge steigen die Verluste.
  • Je größer die über weite Entfernungen zu transportierende Leistung ist, um so mehr steigen die Kosten und um so höher wird deshalb die Spannung gewählt. Jedes mal, wenn die Spannungsebene geändert werden muß, ist eine Transformation mit zusätzlichen Verlusten nötig.
  • Je mehr elektrische Energie hin und her geschoben wird, um so mehr Verluste treten auf und erhöhen sich die Investitionen: Wegen der geringen Energiedichte müssen viele Leitungen erstmal die Energie von den unzähligen Windmühlen und Sonnenkollektoren einsammeln. Weil die Energie am Entstehungsort gar nicht gebraucht wird, wird sie nach der Sammlung hochtransformiert (bei Photovoltaik über alle Spannungsebenen) um diesen Vorgang weit entfernt wieder rückwärts ablaufen zu lassen.
  • Jedes Drehstromnetz überträgt nicht nur Wirkleistung (das ist das, was der Kunde eigentlich haben will), sondern auch Blindleistung. Je länger die Kabel, um so größer die erforderliche Kompensation. Diese Kompensation haben bisher die konventionellen Kraftwerke übernommen. Ziel ist aber gerade deren Stilllegung mit wachsendem Anteil der „Erneuerbaren“. Der Windpark in der Nordsee wirkt daher doppelt auf die zukünftigen Netzkosten.
  • Manche sehen ihr Heil in Höchstspannugs-Gleichstrom-Übertragung. Diese kann aber nur Strom von Punkt zu Punkt transportieren. Dies ist ungefähr so, als ob die Bahn zur Entlastung ihres Netzes neue Breitspurtrassen von Norddeutschland nach Süddeutschland bauen würde. Die Güter würden dann in Norddeutschland mit der vorhandenen Eisenbahn eingesammelt, am Kopfbahnhof umgeladen, nach Süddeutschland mit der Breitspurbahn zum dortigen Kopfbahnhof gefahren, dort wieder umgeladen und mit der vorhandenen Eisenbahn in Bayern feinverteilt. Für ein so kleines Land wie Deutschland, erscheint mir das keine sinnvolle Lösung.

Fazit

Das Stromnetz und der Kraftwerkspark, den wir bisher in Deutschland hatten, ist nicht zufällig entstanden, sondern das Ergebnis eines rund hundert Jahre alten Entwicklungsprozesses. Dieses System verkörpert das Gehirnschmalz einer Legion von Ingenieuren. Stromnetze sind nicht zufällig überall auf der Welt recht ähnlich. Es gilt halt überall die gleiche Physik. Es gibt in der Energietechnik auch keine allein selig machende Lösung. Jeder Energieträger und jedes Versorgungsprinzip hat seine ganz speziellen Vor- und Nachteile. Es kann stets nur eine optimierte Lösung für das gesamte System aus Netz, Erzeuger und Verbraucher gefunden werden. Für Ideologien ist kein Platz vorhanden.

Simulator für SVBR-100 in Betrieb gegangen

Das russische Unternehmen AKME-Engineering, eine Tochter von Rosatom, teilte vor Ostern mit, daß der von ihm entwickelte und gebaute Simulator erfolgreich in Betrieb genommen wurde. Die Inbetriebnahme eines Simulators ist ein wichtiger Meilenstein bei der Entwicklung eines neuen Reaktortyps. Ähnlich wie Flugsimulatoren dienen sie zur Ausbildung und dem laufenden Training der Bedienungsmannschaft. Darüber hinaus finden auf ihnen auch Testläufe für das Genehmigungsverfahren und eine stetige Weiterentwicklung des „System Kraftwerk“ statt. Während der Entwicklungsphase fließen Erkenntnisse in die Konstruktion ein, bzw. werden konstruktive Änderungen in den Simulator eingebaut und auf ihre Auswirkungen auf das Gesamtsystem getestet.

SVBR-100

Bei diesem Kernkraftwerk handelt es sich um eine Neuentwicklung eines mit flüssigem Metall gekühlten Reaktors. Durch die Kühlung mit flüssigem Metall an Stelle von Wasser, bleiben die bei der Kernspaltung freigesetzten Neutronen „schnell“. Schnelle Neutronen besitzen eine höhere kinetische Energie und können damit auch Aktinoide spalten. Aktinoide sind für die langen Halbwertszeiten von abgebrannten Brennelementen aus Leichtwasserreaktoren verantwortlich. Stark vereinfacht gesagt, könnte man diese Brennstäbe nach erfolgter Wiederaufbereitung in einem solchen Reaktor „nach verbrennen“ und so das angeblich unlösbare und Jahrtausende andauernde Problem mit dem „Atommüll“ auf höchstens einige hundert Jahre zusammen schrumpfen. Heute mehr denn je, ein verlockendes Konzept. Ganz neben bei, gewinnt man dabei noch unvorstellbare Energiemengen. Wie hat Bill Gates so treffend auf die Frage geantwortet, ob er „Atomkraft“ zu den „Erneuerbaren Energien“ zählen würde: Kernenergie ist nicht erneuerbar, sondern unendlich.

Für eine Kühlung mit flüssigen Metallen kommt aus neutronenphysikalischer Sicht praktisch nur eine eutektische Blei/Bismut Legierung oder Natriumverbindungen in Frage. Die Russen verfolgen beide Schienen mit Nachdruck. Natrium hat den Nachteil, daß es sowohl mit Wasser als auch mit Luft sehr heftig reagiert. Blei/Wismut dagegen, muß stets auf über 124 °C gehalten werden, da es sonst einfriert. Die russischen U-Boote der Alfa-Klasse hatten hierfür extra Hilfsdampferzeuger im Hafen.

Damit sind wir beim nächsten Vorteil dieses Reaktortyps: Das Kühlmittel verdampft erst bei etwa 1680 °C. Da technische Temperaturen weit unterhalb liegen, gibt es ein weites Anwendungsspektrum z. B. in der chemischen Industrie. Bei diesem Entwicklungsschritt nutzt man die Fähigkeit erstmal dazu, überhitzten Dampf zu erzeugen. Mit diesem überhitzten Dampf lassen sich ganz konventionelle Dampfturbinen verwenden.

Der SVBR-100 soll voll integriert sein. Damit ist gemeint, daß sich alle nuklearen Komponenten, Dampferzeuger etc. in einem drucklosen, mit flüssigem Metall gefüllten Behälter befinden. Trotz einer elektrischen Leistung von 100 MW baut dieser so klein und leicht (drucklos), daß er problemlos mit der Eisenbahn transportiert werden kann. Wie schon gesagt: Dieses komplette Kraftwerk war ja bereits in U-Booten eingebaut. Dort hat man auch höher angereichertes Uran verwendet, womit es möglich war, ohne Nachladung 7–8 Jahre zu fahren. Man spricht deshalb auch von einer „nuklearen Batterie“. Es gibt durchaus Überlegungen, einen Brennstoffwechsel gar nicht mehr vor Ort auszuführen, sondern den kompletten Reaktor zurück zum Hersteller zu schaffen. So, wie auch ein Schiff zur Generalüberholung und Modernisierung alle paar Jahre eine Werft anläuft.

Ich hoffe, durch diesen Zusammenhang ist deutlich geworden, warum mir die Inbetriebnahme eines Simulators eine Meldung wert erschien. Jedenfalls will AKME-Engineering das erste Kraftwerk 2017 in Betrieb nehmen und ab 2019 kommerziell vertreiben.