Könnte Deutschland die große Schweiz werden?

Die Bürger der Schweiz haben sich gegen eine vorzeitige Abschaltung ihrer Kernkraftwerke entschieden. Ein Anlass, einmal über die Verhältnisse in Deutschland (neu) nachzudenken.

Der Istzustand

Vielen Menschen in Deutschland ist gar nicht bewußt, daß immer noch acht Blöcke am Netz sind (Isar 2, Brokdorf, Philippsburg 2, Grohnde, Emsland, Neckarwestheim 2, Gundremmingen B und C) und in aller Stille reichlich zur Energieversorgung in Deutschland beitragen. Sie haben immerhin zusammen die stolze Leistung von 10.799 MWel. und produzieren damit durchschnittlich 86.595.052.800 kWh elektrische Energie jährlich. Wohl gemerkt, jedes Jahr, unabhängig davon, wie stark der Wind bläst oder die Sonne scheint. Halt Energie nach den Bedürfnissen der Menschen und nicht „auf Bezugsschein“ irgendwelcher Schlangenölverkäufer mit (meist) öko-sozialistischer Gesinnung. Ganz neben bei, tragen sie durch ihre gewaltigen Generatoren auch noch zur Netzstabilität bei. Wie wichtig und kostenträchtig allein dieser Aspekt ist, werden unsere Laiendarsteller erst merken, wenn diese Kraftwerke endgültig abgeschaltet sind.

Wieviel Volksvermögen vernichtet werden soll

Fangen wir mal mit dem letzten Aspekt an: Die Standorte zukünftiger Windparks und Photovoltaikanlagen können – wegen der geringen Energiedichte von Wind und Sonne – gar nicht den Kernkraftwerken entsprechen. Das vorhandene Stromnetz muß daher komplett umgebaut bzw. erweitert werden. In der Öffentlichkeit wird wohlweislich nur von den neuen „Stromautobahnen“ gesprochen, die den „Windstrom“ von Norddeutschland nach Süddeutschland transportieren sollen. Freilich sind bereits dafür Milliarden erforderlich. Kaum ein Wort über die Frequenzregelung und die Niedervolt Netze zum Einsammeln des flächigen Angebots (z. B. Sonnenkollektoren auf den Dächern).

Wir reden hier nicht von irgendwelchen „Schrottreaktoren“, sondern ausnahmslos von Kernkraftwerken, die erst zwischen 1984 und 1989 ans Netz gegangen sind. Für solche Kraftwerke geht man heute international von einer Betriebszeit von 60 bis 80 Jahren aus. Sie hätten also eine „Restlaufzeit“ bis in die zweite Hälfte dieses Jahrhunderts vor sich – wenn sie nicht in Deutschland, sondern bei unseren Nachbarn stehen würden! Warum nur, fällt mir an dieser Stelle, der alte Witz-über-die-Geisterfahrer ein?

Um es klar und deutlich zu sagen, sie verfügen über Sicherheitseinrichtungen, die heute noch international Spitze sind. Teilweise werden japanische und osteuropäische Kernkraftwerke gerade erst auf dieses Niveau nachgerüstet. Selbst noch im Bau befindliche Reaktoren in China und den Emiraten, sind keinesfalls sicherer. Das alles, obwohl es in Deutschland weder schwere Erdbeben noch Tsunamis gibt.

Wenn man als Wiederbeschaffungswert die Baukosten der koreanischen Reaktoren in den Vereinigten Emiraten ansetzt (4 x 1400 MW für 20 Milliarden US-Dollar), werden hier mal eben rund 35 Milliarden Euro verbrannt. Zugegeben eine grobe Abschätzung, aber wie war das noch mal mit dem Rentenniveau für die kommende Generation? Es ist ja offensichtlich nicht so, als wäre in diesem Land überhaupt kein Kapital mehr vorhanden oder anders: Der Kleinrentner soll auch noch durch überteuerten „Ökostrom“ zusätzlich bluten.

Der energetische Ersatz

Ein beliebter Vergleich der Schlangenölverkäufer ist immer die produzierte Energie. Lassen wir die Zahlen für sich sprechen: Im Jahr 2015 wurden insgesamt 86 TWh Windenergie erzeugt. Dazu waren 27.147 Windmühlen mit einer Gesamtleistung von 44,95 GW notwendig gewesen. Wollte man die acht verbliebenen Kernkraftwerke durch Windmühlen ersetzen, müßte man also noch einmal die gleiche Anzahl zusätzlich bauen. Besser kann man den Irrsinn nicht verdeutlichen. Schon allein unsere Vogelwelt könnte 20.000 zusätzliche Schredderanlagen nicht verkraften. Welche Wälder sollen noch gerodet werden?

Wollte man die gleiche Energie mit Photovoltaik erzeugen, müßte man über 82 GW zusätzlich installieren. Trotzdem wäre es weiterhin des Nachts dunkel.

Die Speicherfrage erübrigt sich, denn allen ökologischen Sturmgeschützen zum Trotz: Es gibt sie wirklich, die Dunkel-Flaute. Jawohl, besonders bei Hochdruck-Wetterlage im Winter weht tagelang kein Wind – auch großflächig nicht.

Andererseits wird es den berühmten Muttertag (8.5.2016) auch immer wieder geben: Sonnenschein mit Starkwind an einem verbrauchsarmen Sonntag, der die Entsorgungskosten an der Strombörse auf -130 EUR/MWh hochgetrieben hat. Wie hoch dürfte die Entsorgungsgebühr wohl sein, wenn der Ausbau noch einmal verdoppelt wird? Sind dann unsere Nachbarn überhaupt noch bereit, unseren „Strommüll“ für uns zu entsorgen? Ich glaube nicht. Zwangsweise Abschaltungen wären die Folge: Die Abwärtsspirale immer schlechter werdender Auslastung für die „Erneuerbaren“ wird immer steiler werden. Das Rennen nach der Fabel von Hase und Igel hat ja bereits längst begonnen. Dies sei allen Traumtänzern gesagt, die von einer Vollversorgung durch Wind und Sonne schwadronieren.

Der notwendige Ersatz

Wie gesagt, es gibt sie wirklich, die Dunkel-Flaute. Speicher in der erforderlichen Größe sind nicht vorhanden. Das seit Jahren erklingende Geraune von der „Wunderwaffe-der-Großspeicher“ wabert konsequenzlos durch die deutschen „Qualitätsmedien“. Physik läßt sich halt nicht durch den richtigen Klassenstandpunkt ersetzen. Es müssen deshalb neue Grundlastkraftwerke gebaut werden. Kurzfristig kann man elektrische Energie aus dem Ausland hinzukaufen – „Atomstrom“ und „Dreckstrom“ aus den östlichen Nachbarländern – bzw. vorhandene Mittellastkraftwerke im Dauerbetrieb verschleißen.

Will man 11 GWel durch Kombikraftwerke mit Erdgas als Brennstoff ersetzen, sind dafür etwa 20 Blöcke notwendig. Würde man sie an den vorhandenen Standorten der Kernkraftwerke bauen, könnte man zwar die elektrischen Anlagen weiter nutzen, müßte aber neue Erdgaspipelines bauen. Die Mengen können sich sehen lassen: Für 86 TWh braucht man immerhin etwa 15 Milliarden Kubikmeter Erdgas jedes Jahr. Wo die wohl herkommen? Wieviel das Erdgas für die Heizung wohl teurer wird, wenn die Nachfrage derart angekurbelt wird?

Will man 11 GWel durch Kombikraftwerke mit Erdgas als Brennstoff ersetzen, sind dafür etwa 20 Blöcke notwendig. Würde man sie an den vorhandenen Standorten der Kernkraftwerke bauen, könnte man zwar die elektrischen Anlagen weiter nutzen, müßte aber neue Erdgaspipelines bauen. Die Mengen können sich sehen lassen: Für 86 TWh braucht man immerhin etwa 15 Milliarden Kubikmeter Erdgas jedes Jahr. Wo die wohl herkommen? Wieviel das Erdgas für die Heizung wohl teurer wird, wenn die Nachfrage derart angekurbelt wird?

Wahrscheinlicher ist der Ersatz durch Steinkohlekraftwerke. Um die 8 noch laufenden Kernkraftwerke zu ersetzen, wären etwa 14 Blöcke vom Typ Hamburg-Moorburg nötig. Die würden etwa 28 Millionen to Steinkohle pro Jahr fressen. Die müssen nicht nur im Ausland gekauft, sondern auch bis zu den Kraftwerken transportiert werden.

Will man wenigstens die Versorgungssicherheit erhalten, bleibt nur die eigene Braunkohle. Man müßte nur etwa 10 neue Braunkohleblöcke vom Typ BoA-Neurath bauen. Die würden allerdings über 84 Millionen to Braunkohle pro Jahr verbrauchen. Unsere Grünen würde das sicherlich freuen, man müßte die Braunkohleförderung nicht einmal um die Hälfte erhöhen. Wieviele schöne „Demos“ gegen neue Tagebaue könnte man veranstalten!

Politik

Das Wahljahr 2017 (Landtagswahl in NRW und Bundestagswahl) kommt immer näher. Zwischen März und Juli soll der geplante Wahnsinn mit der Abschaltung von Gundremmingen beginnen. Da in Deutschland das Regulativ einer Volksabstimmung (über lebenswichtige Fragen) fehlt, bleibt nur die Auseinandersetzung in einer Parteien-Demokratie. Parteitage und Walkämpfe bieten die Möglichkeit Parteien zu zwingen „Farbe zu bekennen“. Dies gelingt aber nur, wenn die Bürger auch (öffentlich und nachdrücklich) Fragen stellen. Gerade in Deutschland neigt man eher zu „Man-hat-doch-nichts-davon-gewußt“ oder „innerlich-war-man-auch-dagegen“. Zumindest der ersten Lebenslüge, soll dieser Artikel entgegenwirken.

Die Forderung an alle Parteien kann nur lauten: Schluß mit der Kapitalvernichtung durch Abschaltung moderner Kernkraftwerke. Bis 2022 ist es weder möglich geeignete Groß-Speicher zu erfinden, das Stromnetz völlig umzukrempeln, noch fossile Kraftwerke in der benötigten Stückzahl als Ersatz zu bauen. Nicht einmal die Verdoppelung der Windenergie in nur vier Jahren ist möglich – jedenfalls nicht ohne bürgerkriegsähnliche Zustände heraufzubeschwören. Parteien, die dies nicht einsehen wollen, sind schlicht nicht wählbar. In einer indirekten Demokratie, in der dem Bürger das Recht auf Entscheidungen – in überlebenswichtigen Fragen — abgesprochen wird, kann sich der Bürger nur an der Wahlurne wehren. Nichts tut den etablierten Parteien mehr weh, als der Mandatsverlust. Dies ist halt die Kehrseite der Allmachtsphantasien der „indirekten Demokraten“.

Was ist eigentlich Atommüll?

Wenn man sich z.B. mit dem Thema Endlagerung beschäftigen will, ist es sinnvoll zu wissen, was „Atommüll“ eigentlich ist und wie er entsteht.

Alles entsteht im Reaktor

Im Reaktor eines Kernkraftwerks werden Atomkerne gespalten. Dies ist sein Sinn. Um Wärme-Leistungen von mehreren Gigawatt (GWth.) in einem so kleinen Behälter zu erzeugen, sind gewaltige Flüsse von Neutronen notwendig. Die Neutronen entstehen überwiegend bei den Spaltungen und lösen weitere Spaltungen aus. Eine sich selbst erhaltende Kettenreaktion. Sie läuft solange weiter, bis zu viel „Spaltstoff“ verbraucht wurde. Der Brennstoff muß erneuert werden, d. h. die „abgebrannten Brennelemente“ (spent fuel) müssen durch frische ersetzt werden.

Auf ihrem Weg von einer Spaltung zu einem weiteren spaltbaren Kern, treffen die meisten Neutronen auch auf andere Atomkerne. Das sind all die anderen Materialien, aus denen der Reaktor besteht: Brennstabhüllen, Wasser, Regelstäbe, Einbauten im Reaktor, das Reaktorgefäß selbst etc. Nun kann es passieren, daß sie nicht nur mit einem Atomkern zusammenstoßen und wieder abprallen – gestreut werden – sondern von diesem dauerhaft eingefangen werden. Es entsteht ein neues chemischen Element oder ein Isotop. Man nennt das Aktivierung, da diese neu erschaffene Elemente radioaktiv sind.

Bewegen sich solche radioaktiven Stoffe durch das Kernkraftwerk, können sie Bauteile, Werkzeuge etc. kontaminieren. Kontaminierung und Aktivierung werden oft miteinander verwechselt: Kontaminierte Gegenstände bleiben unverändert, sie werden nur mit radioaktiven Stoffen verunreinigt. Sie können auch wieder gereinigt werde. Die Reinigung kann aber so aufwendig und damit kostenintensiv sein, daß es billiger ist, das Teil als „Atommüll“ zu deklarieren und einfach komplett wegzuwerfen.

Unterschiedliche Formen der Strahlung

Man unterscheidet γ-Strahlung, β-Strahlung (Elektronen) und α-Strahlung (Helium-Kern). Die beiden letzten können kaum Materie durchdringen. Für γ-Strahlung gilt: Eine Abschirmung aus möglichst dichtem Material (z. B. Blei) und schlichtweg Abstand einhalten. Jedenfalls reicht in einem Brennelemente-Lagerbecken die Wassertiefe als Abschirmung vollkommen aus. Es wäre gefahrlos möglich, in einem solchen Becken zu schwimmen.

Aus vorgenannten Gründen reicht meist ganz normale Schutzkleidung – bestehend aus Atemschutz, Schutzanzug, Handschuhen und Brille – beim Umgang mit Atommüll aus. Solange man radioaktive Stoffe nicht in seinen Körper aufnimmt, ist Atommüll relativ harmlos. Umgekehrt gilt, wenn man Atommüll sicher einschließt, ist der Umgang ohne Schutzkleidung möglich. Typisches Beispiel ist der Castor-Behälter: Seine dicken Stahlwände, spezielle Neutronenabsorber und sein gasdichter Verschluß machen auch die Handhabung stark strahlender Brennelemente gefahrlos möglich.

Die Dosis macht das Gift

Wie bei allen anderen Stoffen auch, ist die biologische Wirkung von Strahlung immer von der Dosis abhängig. Schon die Erfahrung mit dem Sonnenlicht macht diesen Zusammenhang deutlich: Ein wenig Sonne ist belebend (z. B. Bildung von Vitamin D), zu viel davon, erzeugt einen Sonnenbrand mit der Zerstörung von Hautschichten. Zuviel und häufige Strahlung kann sogar Hautkrebs erzeugen.

Der menschliche Körper verfügt über zahlreiche Reparaturmechanismen. Wäre das nicht so, hätte es überhaupt kein Leben auf der Erde geben können, denn die Strahlung war vor Millionen von Jahren noch wesentlich höher als heute. Jedenfalls ist die Vorstellung, schon ein einziges Plutonium-Atom könnte Krebs auslösen oder gar vererbbare Genveränderungen, ein Hirngespinst, das nur zur Erzeugung von Angst dienen soll. Wäre Radioaktivität tatsächlich so gefährlich, dürften wir nichts essen und trinken. Es gibt Mineralwässer, die enthalten mehr radioaktive Stoffe, als das Wasser in einem Brennelemente-Lagerbecken oder gar das Kondensat in einem Kernkraftwerk. Wir dürften keine Bananen oder Tomatenmark essen, denn die enthalten radioaktives Kalium. Unsere Bauern dürften vor allem keinen mineralischen Dünger aufs Land streuen, denn der enthält beträchtliche Mengen Uran, der ihre Felder im Laufe der Zeit zu „Atommüll-Deponien“ macht.

Es gibt heute umfangreiche Tabellen, die angeben, wieviel man von einem Stoff ohne Krankheitsrisiko zu sich nehmen kann. In diesen Tabellen ist noch ein weiterer Zusammenhang berücksichtigt, die sog. biologische Halbwertszeit. Es ist z. B. ein Unterschied, ob man radioaktives Wasser trinkt, welches ständig aus dem Körper ausgeschieden wird und durch frisches Wasser ersetzt wird oder radioaktives Strontium, welches gern in Knochen eingelagert wird und dort für Jahrzehnte verbleiben kann.

Konzentration oder Verdünnung

Beim Umgang mit „Atommüll“ spielen die Begriffe Verdünnung und Konzentration eine große Rolle. Im Sinne einer biologischen Wirksamkeit ist eine Verdünnung – wie bei jedem anderen Gift auch – eine bedeutende Schutzmaßnahme. Im Prinzip kann man jeden Stoff soweit verdünnen und damit unschädlich machen, daß er Trinkwasser oder Nahrungsmittelqualität besitzt. Deshalb besitzt z. B. jedes Kernkraftwerk einen hohen Abluftkamin. Radioaktive Abgase werden ordentlich verdünnt, bevor sie aus großer Höhe wieder auf den Boden gelangen oder von Menschen eingeatmet werden können.

Das Prinzip der Verdünnung, war bis in die 1960er Jahre der bestimmende Gedanke bei der Abgabe radioaktiver Stoffe ins Meer. Allerdings war von Anfang an klar, daß man durch die beständige Abgabe ins Meer, die Konzentration radioaktiver Stoffe dort erhöhen würde. Man vollzog deshalb eine 180-Grad-Wende: Von nun an war die Aufkonzentrierung das Mittel der Wahl. Bis aktuell in Fukushima. Dort dampft man radioaktives Wasser ein, welches nahezu Trinkwasserqualität hat, um auch geringste Mengen radioaktiver Stoffe vom Meer fern zu halten. Vom naturwissenschaftlichen Standpunkt aus betrachtet, schlicht Irrsinn. Aber zugegeben ein Irrsinn, mit dem sich trefflich Geld verdienen läßt und man am Ende auch noch behaupten kann, Kernenergie sei schlicht zu teuer.

Allerdings muß man an dieser Stelle festhalten, daß die Kerntechnik der erste Industriezweig ist, der versucht, Schadstoffe konsequent aus der Umwelt fern zu halten. Gleiches kann man von der Chemie oder den fossilen Energieverwendern (international) noch lange nicht behaupten.

Spent fuel

Nach einiger Zeit im Reaktor, ist jedes Brennelement „abgebrannt“. Es muß deshalb entfernt werden und durch ein neues ersetzt werden. Die frisch entnommenen Brennelemente strahlen so stark, daß man sie nur unter Wasser handhaben kann. Würde man sie nicht kühlen, könnten sie sogar schmelzen oder zumindest glühen. Dies hat zwei Ursachen:

  • Alle Spaltprodukte sind radioaktiv. Die Strahlung wandelt sich beim Kontakt mit Materie in Wärmeenergie um. Letztendlich wandeln sich die Spaltprodukte in stabile (nicht radioaktive) Kerne um. Dies geschieht jedoch meist nicht in einem Schritt, sondern in mehreren Schritten. Dabei können sogar chemisch unterschiedliche Elemente entstehen. Jede Stufe sendet die ihr eigene Strahlung mit ihrer charakteristischen Energie aus.
  • Der radioaktive Zerfall ist im Einzelfall rein zufällig und durch nichts zu beeinflussen. Betrachtet man aber eine sehr große Anzahl von Atomen eines bestimmten Stoffes, kann man sehr wohl eine sog. Zerfallskonstante ermitteln. Für den praktischen Gebrauch hat sich die sog. Halbwertszeit eingebürgert: Das ist die Zeitdauer, nach der genau die Hälfte der ursprünglichen Menge zerfallen ist. Für den Umgang mit Atommüll ergibt das eine wichtige Konsequenz: Stoffe, die eine geringe Halbwertszeit haben, sind schnell zerfallen. Wegen ihrer hohen Zerfallsrate senden sie aber auch sehr viel Strahlung pro Zeiteinheit aus.

Für abgebrannte Brennelemente ergibt sich daraus der übliche Zyklus: Erst werden sie in ein tiefes Becken mit Wasser gestellt. Das Wasser dient dabei zur Abschirmung der Strahlung und als Kühlmittel. Nach ein paar Jahren ist bereits so viel radioaktives Material zerfallen, daß man die Brennelemente in trockene Behälter (z. B. Castoren) umlagern kann. Es beginnt die beliebig ausdehnbare Phase der „Zwischenlagerung“.

Wiederaufbereitung

Ein abgebranntes – und damit nicht mehr nutzbares – Brennelement eines Leichtwasserreaktors, besteht nur zu rund 4% aus Spaltprodukten – quasi der nuklearen Asche – aber immer noch aus dem Uran und einigem neu gebildeten Plutonium. Uran und Plutonium können weiterhin zur Energieerzeugung genutzt werden.

Vom Standpunkt der Abfallbehandlung ergibt eine Wiederaufbereitung deshalb eine Verringerung des hochaktiven Abfalls (gemeint ist damit das abgebrannte Brennelement) um den Faktor Zwanzig, wenn man die Spaltprodukte abtrennt.

Man dreht aber damit auch gleichzeitig an der Stellschraube „Zeitdauer der Gefahr“. Der radioaktive Zerfall verläuft nach einer e-Funktion. D. h. zu Anfang nimmt die Menge stark ab, schleicht sich aber nur sehr langsam dem Grenzwert „alles-ist-weg“ an. In diesem Sinne tritt die Halbwertszeit wieder hervor. Plutonium-239 z. B., hat eine Halbwertszeit von über 24.000 Jahren. Man muß also mehr als 250.000 Jahre warten, bis nur noch ein Tausendstel der ursprünglichen Menge vorhanden wäre. Geht man von einem Anfangsgehalt von 1% Plutonium in den Brennstäben aus, sind das immer noch 10 Gramm pro Tonne. Nach den berühmten eine Million Jahren, beträgt die Konzentration etwa zwei Nanogramm pro Tonne. Auch nicht die Welt. Gleichwohl senkt das Abscheiden von Uran und Plutonium den Gefährdungszeitraum ganz beträchtlich.

Die Spaltprodukte sind im Wesentlichen nach maximal 300 Jahren zerfallen. Das „radioaktive Glas“ für die Endlagerung strahlt dann nur wenig mehr als ein gehaltvolles Uranerz wie z. B. Pechblende, aus dem Madame Curie einst das Radium chemisch extrahiert hat.

Eine Wiederaufbereitung erzeugt keinen zusätzlichen Atommüll, sondern ist ein rein chemisches Verfahren. Atommüll wird nur in Reaktoren „erzeugt“. Richtig ist allerdings, daß die Anlage und alle verwendeten Hilfsstoffe mit Spaltprodukten etc. verschmutzt werden. Heute wirft man solche kontaminierten Teile nicht mehr einfach weg, sondern reinigt bzw. verbrennt sie.

Die minoren Aktinoide

Heute werden die minoren Aktinoide (Neptunium, Americium, Curium, Berkelium, Californium) ebenfalls noch als Abfall betrachtet und in der Spaltproduktlösung belassen. Sie sind für die Strahlung nach 300 Jahren wesentlich verantwortlich. Dies ist eine Kostenfrage, da sie sich nur sehr aufwendig aus einer Spaltproduktlösung abtrennen lassen.

Sie bilden sich im Reaktor, weil nicht jedes eingefangene Neutron auch zu einer Spaltung führt. Je länger der Brennstoff im Reaktor verbleibt, um so weiter kann der Aufbau fortschreiten: aus Uran-235 wird Uran-236 und daraus Uran-237 gebildet bzw. aus Plutonium-239, Plutonium-240 usw.

Setzt man Uran und Plutonium aus der Wiederaufbereitung erneut in Leichtwasserreaktoren ein, verlängert sich quasi die Verweilzeit und die Menge der minoren Aktinoide im Abfall nimmt entsprechend zu. So geht man heute davon aus, Mischoxide aus Uran und Plutonium nur einmal in Leichtwasserreaktoren zu verwenden.

Grundlegend Abhilfe können hier nur Reaktoren mit schnellem Neutronenspektrum leisten. Will man ganz bewußt Plutonium „verbrennen“, um den ständig wachsenden Bestand auf der Welt zu verringern, bleibt nur der Einsatz solcher Reaktoren (z. B. der Typ PRISM) übrig. Reaktoren mit Wasser als Moderator sind viel zu gute „Brüter“. Handelsübliche Leichtwasserreaktoren haben eine sog. Konversionsrate von 0,6. Mit anderen Worten: Wenn man zehn Kerne spaltet, erzeugt man dabei automatisch sechs neue spaltbare Kerne – hauptsächlich durch Umwandlung von Uran-238 in Plutonium-239. Wenn man also reines Mischoxid einsetzt, hat man immer noch 0,6 x 0,6 = 36% der ursprünglichen Plutonium-Menge. Zum Überdruss auch noch in einer unangenehmeren Isotopenzusammensetzung. Keine besonders wirksame Methode, wenn man die Plutoniumvorräte auf der Welt drastisch verringern will. Völlig absurd in diesem Sinne, ist die Endlagerung kompletter Brennelemente, wie das in Deutschland geschehen soll. Bei dieser Methode sind die Anforderungen an ein Endlager am höchsten.

An dieser Stelle soll Thorium nicht unerwähnt bleiben. Thorium erzeugt den kurzlebigsten Abfall, da der Weg ausgehend von Uran-233 sehr viel länger als von Uran-238 ist und über das gut spaltbare Uran-235 führt. Ein Thorium-Reaktor erzeugt kaum minore Aktinoide, sondern hauptsächlich kurzlebige Spaltprodukte.

Der deutsche Sonderweg

Ursprünglich sind wir in Deutschland auch von einer Wiederaufbereitung der Brennelemente ausgegangen. Wir haben sogar rund 7.000 to in Frankreich und England aufbereiten lassen. Der hochaktive Müll – bestehend aus in Glas gelösten Spaltprodukten und minoren Aktinoiden – wird und wurde bereits nach Deutschland zurückgeliefert. Es werden etwa 3.600 solcher Kokillen in Deutschland in ungefähr 130 Castoren (28 Kokillen pro Castor ) „zwischengelagert“. Bis zum geplanten Ausstieg im Jahre 2022 werden noch etwa 10.000 to Brennelemente hinzugekommen sein.

Die Umstellung von Wiederaufbereitung zu direkter Endlagerung ist ein politischer Geniestreich Rot/Grüner-Ideologen gewesen: Deutschland hat nun das künstlich erschaffene Problem, ein – oder gar zwei – Endlager für zwei verschiedene hochaktive Abfallsorten zu erfinden. Beide von (wirtschaftlich) geringer Menge. Die verglasten Abfälle aus der Wiederaufbereitung sind ziemlich unempfindlich gegenüber Wasser (lediglich Auslaugung) und erfordern einen sicheren Einschluß für lediglich ca. 10.000 Jahre. Direkt eingelagerte Brennelemente müssen wegen ihres Gehalts an Spaltstoff (Uran und Plutonium) sicher vor Wassereinbrüchen geschützt sein, um einen Kritikalitätsunfall zu verhindern. Die schwedische Methode der Kupferbehälter mag ein Hinweis in diese Richtung sein. Teuerer geht nimmer, aber das ist ja auch Programm, damit die Behauptung der „teueren Kernenergie“ erfüllt werden kann. Zu allem Überdruss muß der sichere Einschluß auf diesem Weg für mindestens 200.000 Jahre erfolgen (Faktor 20!), um auf eine gleiche Gefährdung zu kommen. Aber auch das ist ja ausdrücklich gewollt, um die Angstindustrie kräftig anzuheizen.

Endlager auf französisch

Im Gegensatz zu Deutschland, geht der Bau eines Endlagers in Frankreich zielstrebig voran: Bei uns, endloses Geschwafel von ausgesuchten Laien, dort konsequente Forschung und Entwicklung.

Die Rolle der Öffentlichkeit

Im Jahr 1991 verabschiedete das französische Parlament den sog. Bataille Act, in dem die Forderung nach einer langfristigen und sicheren Lösung für radioaktive Abfälle festgeschrieben wurde. Dabei sollten zukünftige Generationen nicht durch das heutige Vorgehen belastet werden.

Im ersten Schritt des Verfahrens wurden unterschiedliche Wege untersucht. Für hochaktiven und mittelaktiven Abfall wurde sowohl eine oberirdische Lagerung in Gebäuden als auch eine geologische Tiefenlagerung als machbar ermittelt. Nach Abschluss dieser Phase entschied man sich für eine unterirdische Lagerung, da nur bei ihr kommende Generationen von Lasten befreit sind.

Die nächste Phase erstreckte sich auf die Suche eines geeigneten Standorts in Frankreich. Unter den in Frage kommenden, entschied man sich für eine Einlagerung in die Tonschichten von Bure im Departement Haute-Marne und Meuse. Das Parlament beschloß im Jahr 2006 die Einrichtung eines geologischen Tiefenlabors (Bergwerk) zur endgültigen Abklärung der Eignung. Die endgültige Entscheidung durch das Parlament ob an diesem Standort das Endlager errichtet wird, ist für 2018 vorgesehen.

Wichtig an der Vorgehensweise ist die Aufteilung in Etappen. Für jede Phase gab es einen klar vorgegebenen Auftrag, der im Parlament diskutiert und beschlossen wurde. Voraus gingen öffentliche Anhörungen, Forschungsberichte und Kritik durch Umweltschutzorganisationen etc. Für die Untersuchungen am Standort Bure wurde eine unabhängige Organisation – die CLIS – geschaffen, die für die Vermittlung zwischen Öffentlichkeit und zuständigen Behörden zuständig ist. Sie wird hälftig aus Steuergeldern und durch Umlagen der „Müllerzeuger“ finanziert. Sie hat eigene Räume, feste Mitarbeiter und eine Bibliothek vor Ort, die für jedermann frei zugänglich sind. Mitglieder sind fast hundert Vertreter aus den betroffenen Gemeinden: Bürgermeister, Behörden, Feuerwehr, Gesundheitseinrichtungen, Gewerkschaftsvertreter etc. Zur Zeit knapp 100 Mitglieder. Sie versammeln sich mindestens vier mal pro Jahr, um sich auszutauschen. Darüberhinaus kann jeder Bürger sich an die CLIS wenden. Diese Versammlungen sind öffentlich und von jedem übers Internet mitzuverfolgen. Alle Behörden sind gegenüber der CLIS auskunftspflichtig. Zu den Anhörungen werden regelmäßig externe Fachleute eingeladen. Diese Transparenz hat maßgeblich zu der Gelassenheit in der örtlichen Bevölkerung beigetragen. Demonstrationen und gewalttätige Auseinandersetzungen – wie wir sie aus Wackersdorf und Gorleben kennen – sind bisher völlig ausgeblieben. Hier könnte Deutschland eine Menge von Frankreich lernen. Momentan wird die Quote auf etwa 20% Befürworter, 20% Gegner und einer Mehrheit von noch Unentschlossenen bzw. Gleichgültigen eingeschätzt. Jedenfalls lange nicht so aufgeputscht, wie in Gorleben. Widerstand wird nur von außen in die Gemeinden hereingetragen.

Das unterirdische Versuchsbergwerk und die oberirdischen Labore sind nach Voranmeldung zu besichtigen. Wer will, kann sich also ein eigenes Bild vor Ort machen und die entwickelten Gebinde, Transport-Roboter, Abbaumaschinen etc. im Original besichtigen.

Das Versuchslabor

Es wurden zwei Bergwerksschächte bis in die 500 Meter tiefe und etwa 150 m dicke Tonstein-Schicht abgeteuft. Dort unten, werden verschiedenste Gänge und Einrichtungen erbaut die zur Erforschung der geologischen Verhältnisse und der Einlagerungsverfahren und Gerätschaften dienen. Es wird mit Originalgebinden – allerdings ohne Atommüll – gearbeitet. Zur Simulation werden die Gebinde teilweise sogar beheizt. Für jede Methode werden mindestens zwei Alternativen gleichzeitig untersucht. Ziel ist bei allem, Entscheidungen möglichst lange offen zu halten, um Sackgassen oder notwendige „faule Kompromisse“ zu verhindern. Bis zur endgültigen Entscheidung, ob hier das Endlager errichtet wird, wird man über mehr als zehn Jahre praktische Erfahrungen verfügen.

Ein Tiefenlager ist kein Bergwerk

Zwischen einem Bergwerk (Kohle, Salz etc.) und einem geologischen Tiefenlager besteht ein deutlicher Unterschied: Ein Bergwerk folgt den Kohlenflözen oder Mineraladern. Es orientiert sich nicht an den Erfordernissen von Fahrzeugen und Robotern etc. Nach dem Abbau können die Hohlräume ruhig einstürzen. Ein Endlager für Atommüll ähnelt jedoch eher einem System aus Straßentunneln. In diesem Fall besitzen die Tunnel einen Durchmesser zwischen sechs und acht Metern, bei einer Wandstärke von gut 30 cm Stahlbeton. Sie sollen mindestens 150 Jahre stabil bestehen bleiben. Das Lager ist für stärkste Erdbeben ausgelegt.

Ausgehend von diesen Tunneln, werden beidseitig, horizontal etwa 90 m lange Bohrungen mit rund 75 cm Durchmesser hergestellt, in die später die Gebinde mit hochaktivem Abfall eingeschoben werden. Um auch hier die Rückholbarkeit für mindestens 100 Jahre zu gewährleisten, werden diese Bohrungen sofort mit Stahlrohren ausgekleidet. Man kann sich einen solchen Abschnitt wie ein Stück Pipeline für Gas oder Öl vorstellen. Es gelten hier ganz ähnliche Qualitätsanforderungen. Mit einer „Müllkippe“ für Fässer – wie z. B. in der Asse – hat das alles nichts zu tun. Vielleicht liegt in diesem Missverständnis ein wesentlicher Grund für die breite Ablehnung eines Endlagers in der deutschen Öffentlichkeit?

Für die mittelaktiven Abfälle werden Kammern – oder sollte man vielleicht besser unterirdische Betonbunker sagen – gebaut, in die die Blöcke mit radioaktiven Abfällen gestapelt werden. Auch diese Abfälle müssen für mindestens 100 Jahre rückholbar sein. Das ganze ähnelt den „Zwischenlagern“, wie man sie bereits heute an der Oberfläche betreibt. Nur eben 500 m unter der Erde, in einer über 100 m dicken Tonschicht.

Rückholbarkeit

Die Franzosen gehen Schritt für Schritt vor. Jeder Schritt muß umkehrbar sein. So soll das Endlager z. B. mindestens 5 Jahre im Versuchsbetrieb ohne radioaktive Abfälle laufen. Erst wenn in der Praxis gezeigt wurde, daß alle technischen Einrichtungen so funktionieren, wie auf dem Reißbrett erdacht, kann mit der tatsächlichen Einlagerung von radioaktiven Abfällen begonnen werden. Nach heutigem Kenntnisstand erst in der zweiten Hälfte dieses Jahrhunderts.

In diesem Sinne, ist die geforderte Rückholbarkeit des Atommülls für mindestens 100 Jahre zu verstehen. Sind doch „Rückholbarkeit“ und „Endlager“ zwei gegensätzliche Forderungen. Weiterhin steht die endgültige, sichere und wartungsfreie Lagerung im Vordergrund. Vor der endgültigen Versiegelung führt man eine Beobachtungsphase über 100 Jahre ein, um sicher zu gehen, weder etwas übersehen, noch etwas falsch gemacht zu haben. Läuft die Sache nicht wie geplant, kann man anhalten und sogar einen Schritt zurückgehen, um eine neue Richtung einzuschlagen.

Besonders wichtig bei technischen Projekten, die sich über so lange Zeiträume hinziehen, ist die Flexibilität. Keiner hat vor 100 Jahren den heutigen Stand der Robotertechnik oder das Niveau im Tunnelbau vorhersehen können. Die Kerntechnik gab es noch nicht einmal. Vielleicht will man in 200 Jahren den „Atommüll“ gar nicht mehr verbuddeln, sondern als Rohstoff nutzen? Auch das gehört zur viel bemühten „Nachhaltigkeit“: Zukünftigen Generationen Entscheidungen offen zu lassen und (einfach) möglich zu machen.

Hochaktiver Abfall

Der HLW (High-Level Waste) besteht hauptsächlich aus den Spaltprodukten. Sie werden noch in der Wiederaufbereitungsanlage in geschmolzenem Glas gelöst und in Kannen aus rostfreiem Stahl abgefüllt. Eine solche Kanne ist ein Zylinder mit einem Durchmesser von 43 cm und einer Höhe von 130 cm. In ihm befinden sich ungefähr 400 kg Glas und 70 kg Abfall. Jede volle Kanne wiegt somit etwa eine halbe Tonne. Es sind die gleichen Kannen, die auch im Zwischenlager Gorleben auf ihr Schicksal warten. Ein Kernkraftwerk vom Typ Emsland (geplant noch bis 2022 am Netz) hinterläßt rund 20 solcher Kannen pro Jahr – wenn denn die abgebrannten Brennelemente aufbereitet werden dürften.

In Frankreich lagern diese Kannen in speziellen Bunkern auf dem Gelände der Wiederaufbereitungsanlage. Dort können sie solange abkühlen, bis ihre Oberflächentemperatur auch nach der Endlagerung maximal 90 °C beträgt. Zum Transport werden sie in spezielle Transportbehälter verpackt, die die Strahlung auf maximal 0,1 mSv/h begrenzen. Außerdem schützen sie die Kannen auch bei schwersten Unglücken. Sie sollen mit Sonderzügen zum Endlager nach Bure gefahren werden.

Im Eingangsbereich werden die Kannen ferngesteuert ausgeladen und auf ihren bestimmungsgemäßen Zustand und Inhalt überprüft. Für die Endlagerung werden sie in einen Zylinder verpackt. Dieser Zylinder dient dem Schutz bei der Einführung in die Endlager-Pipelines. Außerdem haben diese Zylinder spezielle Anschlüsse, die es den Beschickungsmaschinen erlauben, sie sicher zu halten und zu manövrieren. Außen sind sie mit Kufen aus Keramik versehen, die auch eine „gewaltsame“ Rückholung aus einem verbogenen Rohr ermöglichen würde. Solche Situationen werden bereits heute mit „kalten“ Kannen ausgiebig getestet.

Für den Transport aus dem oberirdischen Bereich in das Endlager werden diese Einheiten zum Schutz gegen Beschädigung und für den Strahlenschutz noch in einen Transportbehälter verpackt. Erst die Lademaschine entnimmt sie und schiebt sie in eine Lager-Pipeline. Ist die Pipeline voll, wird sie abschließend gegenüber dem Zufahrtstunnel versiegelt. Ab diesem Moment können keine radioaktiven Stoffe mehr aus der Pipeline (25 mm Wandstärke hat das Stahlrohr) austreten, bzw. kein Wasser etc. in sie eindringen. Erst nach einer eventuellen Zerstörung müssen die Barrieren Ton und Deckgebirge wirksam werden.

Mittelaktiver Abfall

Neben dem HLW soll auch der ILW (Intermediate-Level long-lived Waste) endgelagert werden. Typische Vertreter sind die alten Brennstabhüllen oder Filterrückstände aus Kraftwerken und Wiederaufbereitung. Diese Abfälle werden verdichtet und ebenfalls in Kannen aus rostfreiem Stahl eingeschweißt. Da sie keine fühlbare Wärme entwickeln, könnten sie sofort endgelagert und dichter gepackt werden.

Nachdem sie überprüft sind, werden sie in rechteckige Betonblöcke (je vier Kannen) eingesetzt. Diese dienen dem Schutz vor mechanischen Belastungen und dem Strahlenschutz. Diese Betonblöcke werden in den dafür vorgesehenen Kammern dicht gestapelt. Dafür sollen ebenfalls „Straßentunnel aus Beton“ im Ton gebaut werden. Diese werden Abschnittsweise beladen und anschließend versiegelt.

Aufbau des Endlagers

Oberirdisch wird die Anlage in zwei örtlich getrennte Bereiche unterteilt: Den nuklearen und den bergbaulichen Teil. Der „Bergbau“ wird aus fünf Schachtanlagen mit allen notwenigen Einrichtungen und den Abraumhalden bestehen. Der nukleare Teil umfaßt alle Einrichtungen, die zum Verpacken, überwachen und zur Wartung und Weiterentwicklung nötig sind. Dieser Teil ist mit dem unterirdischen Endlager durch eine etwa fünf Kilometer lange Rampe verbunden. Alle radioaktiven Stoffe werden durch eine Schienenbahn in diesem schrägen Tunnel nach unten geschafft. Während des Betriebs sind unterirdisch der nukleare und der bergbauliche Teil voneinander isoliert. Dies dient dem Arbeits- und Umweltschutz. Der nukleare Teil wird einem Kontrollbereich in einem Kernkraftwerk entsprechen.

Wird das Endlager – wahrscheinlich erst in ein paar hundert Jahren – endgültig außer Betrieb genommen, werden alle unterirdischen Gänge sorgfältig wieder verfüllt und die oberirdischen Anlagen abgebrochen. Bis zu diesem Zeitpunkt, bietet die Anlage einige hundert Dauerarbeitsplätze.

Sicherheit

Bei dem französischen Weg, über eine Wiederaufbereitung der abgebrannten Brennstäbe das Uran und Plutonium abzuscheiden und nur die Spaltprodukte und minoren Aktinoide als Abfall zu „endlagern“, reduziert sich der Gefährdungszeitraum auf etwa 100 000 Jahre. Nach Ablauf dieses Zeitraumes sind fast alle radioaktiven Stoffe zerfallen und der „Atommüll“ hat nur noch das Gefährdungspotential von Natururan.

Gesetzlich ist der Nachweis vorgeschrieben, daß die maximale Strahlenbelastung in der Umgebung des Lagers für den gesamten Zeitraum auf 0,01 mSv begrenzt bleibt. Selbst bei allen denkbaren Störfällen muß die Belastung auf 0,25 mSv beschränkt bleiben.

Zum Verständnis eines Endlagers ist das Zusammenspiel von Zeitdauer und Konzentration wichtig. Das Glas müßte z. B. durch Grundwässer aufgelöst werden. Hierdurch findet eine Verdünnung statt. Je geringer die Konzentration der radioaktiven Stoffe in diesem Wasser ist, desto harmloser ist es. Im Normalfall hätte dieses Wasser noch Trinkwasserqualität (Auflösung und Auslaugung von Glas in Wasser geht nur sehr langsam vor sich). Jetzt müßte dieses Wasser und die radioaktiven Stoffe aber noch 500 m Deckgebirge durchwandern, bevor es in die Biosphäre gelangt. Dabei wird es aber nicht einfach befördert, sondern tauscht sich beständig mit den Bodenschichten aus. Auf dieser langen Reise schreitet jedoch der radioaktive Zerfall kontinuierlich fort. Was z. B. in einem Trinkwasserbrunnen ankommen kann, ist – insbesondere bei den ausgesucht idealen Bedingungen am Standort – nur noch verschwindend gering und damit harmlos. Viele Mineralwässer sind höher belastet und werden sogar als gesundheitsfördernd eingestuft.

Zusammenfassung

Frankreich verfolgt zielstrebig seine „Endlagerpolitik“. Sie ist durch folgende Punkte charakterisiert:

  • Abgebrannte Brennelemente werden wieder aufbereitet. Durch die Abtrennung von Uran und Plutonium verringert sich die Menge an hochaktivem Abfall beträchtlich. Das Endlager kann kleiner werden. Der erforderliche Zeitraum für einen sicheren Einschluß reduziert sich deutlich auf rund 100.000 Jahre
  • Die übrig bleibenden Spaltprodukte und minoren Aktinoide werden verglast und in der Wiederaufbereitungsanlage zwischengelagert. Wegen des relativ kleinen Volumens kann die Zwischenlagerung beliebig lange erfolgen. Die abnehmende Radioaktivität vereinfacht den notwendigen Strahlenschutz bei Transport und Handhabung.
  • Von der Entstehung des ersten Mülls bis zur Inbetriebnahme des Endlagers sind (wahrscheinlich) 100 Jahre vergangen. Der Müll ist damit soweit abgeklungen, daß problemlos Temperaturen von 90 °C auch im Endlager eingehalten werden können.. Dies entschärft die Anforderungen an das Wirtsgestein ganz beträchtlich. Auch hier gilt die Politik der kleinen Schritte: Ab 2025 soll maximal 5% eingelagert werden und mindestens für 50 Jahre beobachtet werden, bis die Freigabe für die restlichen 95% erfolgt.
  • Die Entwicklung der Technologie ist weit fortgeschritten. Dies ist auf das konsequente Vorgehen in kleinen, gut überschaubaren und klar definierten Schritten zurückzuführen. In jeder Phase wurden mehrere Alternativen untersucht.
  • Im Gegensatz zu Deutschland, wurde großer Wert auf Transparenz und Öffentlichkeitsarbeit gelegt. Alle wesentlichen Schritte werden im Parlament behandelt und entschieden. Dabei beschränkt sich die Politik auf Grundsatzfragen, wie z. B. die Entscheidung zwischen oberirdischen technischen Lagern oder geologischem Tiefenlager. Dies ist eine rein ethische Entscheidung nach dem Muster: Traut man mehr der Gesellschaft oder der Geologie und sie ist deshalb vom Parlament zu fällen.
  • Die Durchführung der Beschlüsse wird ausschließlich durch ausgewiesene Fachleute ausgeführt und beurteilt.. Selbsternannte „Atomexperten“ können, wie alle anderen Laien auch, ihre Einwände über die Anhörungen einbringen.
  • Alle Forschungsergebnisse werden veröffentlicht und bewußt auch den internationalen Fachgremien zur Beurteilung zur Verfügung gestellt.
  • Frankreich hat sich ein enormes Fachwissen zur geologischen Endlagerung erarbeitet. Es hat sich damit bedeutende Exportchancen erschlossen,. denn „Endlagerung“ ist eine weltweite Aufgabe.

Ausblick

Im nächsten Teil wird noch näher auf die Entstehung von Atommüll und die unterschiedlichen Behandlungsweisen und Klassifizierungen eingegangen.