SMR-2021, KP-FHR

Hinter der sperrigen Abkürzung KP-FHR (Kairos Power – Fluoride salt cooled High Temperature Reactor) verbindet sich ein eher neuartiges Konzept, das hohe Temperaturen anstrebt, aber dabei auf erprobte Komponenten setzen will: Die Kombination von TRISO-Brennelementen mit Salzschmelze als Kühlmittel. Ursprünglich wollte man damit eine konventionelle Gasturbine antreiben, indem man Luft auf etwa 700 °C erhitzt und gegebenenfalls noch durch Verbrennung von Erdgas zur Abdeckung von Spitzenlasten weiter erhitzt. Für Kernreaktoren sollte damit ein neues Einsatzgebiet erschlossen werden. Für die Grundlast wäre weiterhin billige Kernenergie eingesetzt worden (Turbine läuft nur mit Luft) und zusätzliches Erdgas bei Lastspitzen (analog eines Nachbrenners bei Flugzeugen). Insgesamt wäre ein hoher Wirkungsgrad durch die erprobte Kombination von Gasturbine mit nachgeschaltetem Dampfkreislauf gewährleistet worden. Wie schon bei anderen Hochtemperaturreaktoren ist die Nutzung von Gasturbinen (vorläufig) gescheitert. Nunmehr geht man auch hier (vorläufig?) nur von einem konventionellen Dampfkreislauf aus. Allerdings mit höheren Dampfzuständen, wie sie in konventionellen Kohlekraftwerken üblich sind.

Der Stand der (finanziellen) Entwicklung

Kairos geht auf Forschungsprojekte an der University of California, Berkeley (UCB), dem Massachusetts Institute of Technology und der University of Wisconsin zurück. Alles unter der Koordination – und finanziellen Förderung – des U.S. Department of Energy im Rahmen eines Integrated Research Project (IRP). Wie so oft, entstehen aus solchen Forschungsprojekten neu gegründete Unternehmen, in denen die maßgeblich beteiligten „Forscher“ ihre Erkenntnisse kommerzialisieren. Selbstverständlich bleiben sie ihren alten Universitäten dabei eng verbunden. Im Falle von Kairos sind die Arbeiten nun soweit fortgeschritten, daß das „Energieministerium“ (schrittweise) einen Prototyp anstrebt. Es soll innerhalb von sieben Jahren der Demonstrationsreaktor „Hermes Reduced-Scale Test Reactor“ auf dem Gelände des East Tennessee Technology Park in Oak Ridge für geplant $629 realisiert werden. Das „Energieministerium“ hat dafür $303 Millionen Dollar fest in seinem Haushalt (verteilt über sieben Jahre) eingestellt. Das Geld wird fällig, wenn Kairos die andere Hälfte von privaten Investoren auftreibt. Dies ist ein in den USA erprobtes pragmatisches Förderungsmodell: Das Risiko wird hälftig von Investoren und Staat geteilt – gegenseitig wirkt die Zusage als Qualitätskriterium. Außerdem kann bei solchen Summen davon ausgegangen werden, daß die Entwicklung zielstrebig vorangetrieben wird. Die privaten Investoren lockt schließlich der wirtschaftliche Erfolg. Anders als in Deutschland, sind Gewinne in den USA nichts unanständiges.

Der Kugelhaufen

Die Kugeln für diesen Reaktor werden wahrscheinlich etwas kleiner (3 cm) als die üblichen TRISO-Elemente (4,3 cm) und enthalten rund 1,5 gr Uran verteilt in 4750 kleinsten mit einer Schutzschicht überzogenen Körnchen. Sie können damit über 11 000 kWh elektrische Energie produzieren, was etwa dem Verbrauch von 8 to Steinkohle oder 17 to Braunkohle entspricht. Wegen ihrer hohen Energiedichte sind diese Elemente nach ca. 1,4 Jahren abgebrannt und müssen ausgewechselt werden. In einem mit Helium gekühlten Hochtemperatur-Reaktor verbleiben die Kugeln etwa 2,5 Jahre und in Leichtwasserreaktoren rund drei Jahre.

Die Kugeln sollen einen etwas anderen Aufbau als klassische TRISO-Elemente haben: Der Kern besteht aus 25 mm porösem Graphit, umgeben von einer Kugelschale aus Brennstoffkörnern und einer äußeren Schutzschicht aus besonders widerstandfähigem Graphit. Die Brennstoffkörner haben einen Durchmesser von lediglich 400 Mikrometern und enthalten auf 19,75% angereichertes Uran. Die Geschwindigkeit mit der Spaltprodukte im Graphit wandern, hängt wesentlich von der Temperatur ab. Da die Betriebstemperatur hier mit 650°C deutlich geringer als beim AVR in Deutschland mit 950°C ist und die Verweilzeit der Kugeln kleiner, kann von einer wesentlich geringeren Verunreinigung des Kühlmittels – hier reaktionsfreudige Salzschmelze, damals Edelgas Helium – ausgegangen werden. Dies ist bei einem Reaktorunglück für die Freisetzung radioaktiver Stoffe in die Umwelt von ausschlaggebender Bedeutung. Die neutronenphysikalische Auslegung des Reaktors ist so angelegt, daß bei etwa 800°C Temperatur die Kettenreaktion ohne Eingriffe in sich zusammenbricht (stark negative Temperaturkoeffizienten). Man könnte also den Reaktor jederzeit verlassen, ohne ihn abzustellen. Demgegenüber sind die Brennelemente bei bis zu 1800°C ohne größere Schäden getestet worden. Der Siedepunkt der Salzschmelze liegt bei nur 1430°C. Dies ergibt zusammen eine wesentlich höhere Sicherheitsmarge als bei Leichtwasserreaktoren.

Das Kühlmittel

Bei diesem Reaktortyp wird weder mit Wasser noch mit Helium, sondern einem geschmolzenen Salz gekühlt. Dies stellt viele sicherheitstechnische Betrachtungen auf den Kopf: Nicht ein unzulässiges Verdampfen des Kühlmittels wird zum Problem, sondern das „Einfrieren“. Das hier verwendete „FLiBe-Salz“ hat einen Schmelzpunkt von 459°C, d. h. alle Komponenten müssen elektrisch beheizbar sein um den Reaktor überhaupt anfahren zu können. Außerdem muß unter allen Betriebszuständen und an allen Orten diese Temperatur sicher aufrecht erhalten bleiben, damit sich keine Ausscheidungen und Verstopfungen bilden. Andererseits ist diese Temperatur so hoch, daß Wartungs- und Inspektionsarbeiten schnell zu einem Problem werden.

Wesentliches Problem ist aber bei allen Salzschmelzen die Korrosion. Zwar hat man heute ein besseres Verständnis der Werkstofftechnik und jahrzehntelange Erfahrungen z. B. in Raffinerien, andererseits liegen aber immer noch keine Langzeiterfahrungen bei Kernreaktoren vor. Hier versucht man zumindest das Problem durch eine scharfe Trennung von Brennelement und Kühlmittel einzugrenzen. Bei einem Kernreaktor hat man es tatsächlich mit dem gesamten Periodensystem zu tun. Wie all diese Stoffe chemisch mit der Salzschmelze, den Reaktorwerkstoffen und untereinander reagieren, ist ein ingenieurtechnischer Albtraum. Deshalb versucht man hier ganz klassisch alle Spaltprodukte etc. im Brennelement zu halten. Andererseits geht man davon aus, daß die Diffusion von Cs137, Silber etc., die zu einem radioaktiven Staub bei mit Helium gekühlten Reaktoren führen, die den gesamten Reaktor verdrecken, besser beherrschbar ist, weil diese „Schadstoffe“ sofort im Salz gelöst werden.

FLiBe ist – wie der Name schon andeutet – ein Salz mit den Bestandteilen Fluor, Lithium und Beryllium. Die Arbeitsschutzvorschriften für Beryllium (Atemschutz, Schutzkleidung etc.), sind nicht kleiner als für radioaktive Stoffe – es ist nur schwerer zu erkennen. Besonders problematisch ist jedoch das Lithium. Lithium hat die unschöne Eigenschaft, daß es durch Neutronen Tritium bildet. Man kann zwar durch eine Anreicherung von Li7 auf 99,995% die Bildung erheblich verringern, aber nicht ausschließen. So bilden FLiBe-Reaktoren etwa 1000 bis 10 000 mal soviel Tritium wie Leichtwasserreaktoren. Dies kann zu grundsätzlichen Schwierigkeiten bei der Genehmigung führen. Auch bei diesem Problem wirkt sich die Trennung von Brennstoff und Kühlmittel positiv aus. Das Graphit zieht das Tritium an und absorbiert es an dessen Oberflächen. Deshalb sind zusätzlich noch Filterkatuschen in den Kühlmittelleitungen vorgesehen.

Der Zwischenkreislauf

Das FLiBe-Salz wird – unabhängig von eindiffundierten Spaltprodukten und Tritium – während seines Durchlaufs durch den Reaktorkern immer radioaktiv. Aus Fluor wird O19(26,9s Halbwertszeit) und N16 (7,1s Halbwertszeit) gebildet. Beides γ-Strahler mit 1,4 MeV bzw. 6,1 MeV. Von ausschlaggebender Bedeutung ist F20 (11,0s Halbwertszeit). Hinzu kommen noch aktivierte Korrosionsprodukte. Um die Bereiche mit Strahlenschutz klein zu halten, ist ein Zwischenkreislauf mit „Sonnensalz“ vorgesehen. Als „solar salt“ bezeichnet man üblicherweise eine Mischung aus 60% Natriumnitrat NaNO3 und 40% Kaliumnitrat KNO3. Sie hat einen Schmelzpunkt von 240°C und eine maximale Temperatur von etwa 565°C. So ist z. B. im Solar-Turmkraftwerk „Solar One“ ein Spitzenlast-Speicher mit zwei Tanks in denen 1400 to Solar-Salz gelagert sind in Betrieb. Diese Anlage kann 107 MWhth speichern und erzeugt damit 11 MWel für drei Stunden. Damit ergibt sich ein weiteres Anwendungsfeld: Bei entsprechender Auslegung der Turbine kann ein solcher SMR auch zur Abdeckung von Lastspitzen im Netz bzw. zur Auskopplung von Wärme für industrielle Zwecke eingesetzt werden.

Der Reaktorkern

Eine weitere Besonderheit gegenüber mit Helium gekühlten Reaktoren ist, daß die Brennstoffkugeln im Reaktor schwimmen. Sie werden deshalb von unten zugeführt und oben wieder abgefischt. Insbesondere die „Abfischmaschine“ ist noch nicht im Detail konstruiert. Sie muß den Reaktor nach oben sicher abdichten, die Kugeln einfangen, transportieren, reinigen und überprüfen – das alles beständig bei 650°C. Für 100 MWel sind etwa 440 000 Brennstoffkugeln (TRISO) und 204 000 Moderatorkugeln (aus reinem Graphit) im Reaktor. Jede Brennstoffkugel durchläuft etwa 8 mal den Reaktor und verbleibt bei voller Leistung rund 1,4 Jahre im Reaktor, bis sie abgebrannt ist (gemeint ist damit, bis das in ihr vorhandene Uran gespalten ist, die Kugel erscheint unverändert). Jede Kugel braucht ungefähr 60 Tage auf ihrem Weg von unten nach oben. Nach dem Abfischen verbleibt sie noch 4 Tage zur Abkühlung, bis sie wieder zurückgeführt wird. Bei voller Leistung müssen etwa 450 Kugeln pro Stunde entnommen und überprüft werden, das ergibt ungefähr 8 Sekunden pro Vorgang. Jeden Tag sind rund 920 Kugeln verbraucht und müssen durch frische ersetzt werden. Für eine vollständige Entleerung ist ein „Schnellgang“ vorgesehen, der etwa 3600 Kugel pro Stunde entnimmt. Abgesehen von Wartungsarbeiten könnte somit der Reaktor kontinuierlich in Betrieb bleiben.

Der Reaktor ist im Wesentlichen ein Zylinder von etwa 3,5 m Durchmesser und 12 m Höhe mit einer Wandstärke von 4 bis 6 cm. Der Kern – die eigentliche Wärmequelle – ist wesentlich kleiner. Er besteht aus einem Doppel-Hohlzylinder. In dessen innerem Ring schwimmen die Brennstoffkugeln, in seinem äußeren Ringraum die Moderatorkugeln. Der Innenraum ist gefüllt mit einem Reflektor aus Graphit in dem sich auch die Regelstäbe befinden. Der gesamte Einbau ist durch Graphitblöcke von dem Reaktortank isoliert. Genau diese festen Einbauten aus Graphit sind eine bekannte Schwachstelle bei all diesen Reaktortypen. Sie sind z. B. auch der Tod der britischen AGR-Reaktoren. Unter ständigem Neutronenbeschuss altert der Graphit. Heute hat man zwar ein besseres Verständnis der Vorgänge – gleichwohl bleibt die Lebensdauer begrenzt. Hier ist deshalb vorgesehen, irgendwann die Graphiteinbauten zu erneuern. Ob das dann wirtschaftlich ist, wird sich zeigen. Im Prinzip sind die Graphit-Volumina aus einzelnen Blöcken zusammengesetzt. Diese besitzen aber wegen der nötigen Einbauten, Kanäle fürs Salz etc. und der zu berücksichtigenden Wärmedehnung eine komplizierte Geometrie und erfordern sehr enge Fertigungstoleranzen. Aber es ist ja der Sinn von SMR, all diese Arbeiten in einer Fabrik und nicht auf der Baustelle auszuführen

Werkstoffe

Alle Hochtemperaturreaktoren tragen das gleiche Problem in sich, die hohen Temperaturen. Mit der Temperatur steigen die Probleme (z B. Zeitstandsfestigkeit, Korrosion) und damit die Kosten exponentiell an. Wäre dies nicht so, hätte man bereits fossile Kraftwerke mit ganz anderen Wirkungsgraden. Es stellt sich deshalb immer die Frage, wofür man überhaupt so hohe Temperaturen braucht. Hier beschränkt man sich bewußt auf eine Spanne von 550°C bis 650°C um nicht vollständig konventionelle Werkstoffe verlassen zu müssen. Man darf ja nicht vergessen, daß alles genehmigungsfähig – d. h. berechenbar und durch Versuche nachweisbar – sein muß. Hierin liegt ja gerade der Charme von Salzschmelzen: Nicht so hohe Temperaturen ohne zusätzliche Druckprobleme, bei hoher Wärmespeicherung. Geplant ist weitesgehend SS 316 (handelsüblicher austenitischer Edelstahl) zu verwenden.

Ein wesentliches Problem aller FLiBE-Reaktoren ist die hohe Tritiumproduktion. Über den Daumen gerechnet, produziert dieser kleine SMR (100 MWel) jeden Tag soviel Tritium, wie ein Leichtwasserreaktor (1000 MWel) in einem ganzen Jahr. Will man auf gleiche Werte kommen, müßte also 99,9% des Tritium zurückgehalten werden. Man setzt hier auf die Absorption am Graphit. Das ändert aber nichts daran, daß Tritium bei solchen Temperaturen sehr gut durch Stahl hindurch diffundiert. Bisher hat man gute Erfahrung mit einer Beschichtung aller Rohrleitungen mit Aluminiumoxid gemacht. Es bildet eine Sperrschicht, die sogar beim Kontakt mit Luft selbstheilend ist. Gleichwohl ist hier noch viel Forschung nötig, wenn man die Aufregung um das Tanklager in Fukushima berücksichtigt. Es könnte sich sonst eine (politisch) unüberwindliche Hürde für die Genehmigung von FLiBe-Reaktoren ergeben.

Einschätzung

Kairos ist ein „Startup“ mit dem Selbstverständnis eines Ingenieurunternehmens. Sie haben nicht vor, jemals einen solchen SMR selbst zu fertigen. Von Anfang an haben sie starke Partner mit ins Boot geholt. So übernimmt Materion die Entwicklung und Herstellung des FLiBe-Salzes und BWXT die Produktion der Brennelemente. Für den kritischen Bereich „Tritium“ sind seit September 2020 die Canadian Nuclear Laboratories (CNL) eingestiegen. Kanada hat mit Tritium große und jahrzehntelange Erfahrungen durch den Betrieb seiner Candu-Reaktoren. Darüberhinaus will Kanada einen SMR in Chalk River bauen. Kairos ist dafür in die engere Wahl gekommen. Das Genehmigungsverfahren (stark unterschiedlich zu den USA) wird von der kanadischen Regierung mit mehreren Millionen gefördert. Seit 2018 läuft das Genehmigungsverfahren in den USA. Nächster Schritt wird der Bau eines kleinen Demonstrationsreaktors im East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Hier geht es vor allem darum, die Kosten für die Serienproduktion modellhaft zu testen.

Es dürften keine „Killer-Kriterien“ mehr im Genehmigungsverfahren auftreten. Dafür liegen zu viele Forschungsergebnisse aus mehreren Jahrzehnten vor. Besonders traurig ist, daß selbst im Genehmigungsverfahren auf die Betriebsergebnisse des AVR in Jülich zurückgegriffen wird. Deutschland hätte sicherlich auch heute noch ein geschätzter Partner sein können, wenn nicht wahnsinnige Laiendarsteller den Weg zurück ins Mittelalter propagiert hätten.

Seit 10 Jahren Fukushima

Eigentlich wollte ich nichts zum „Fukushima-Jubiläum“ schreiben. Es ist alles gesagt. Wer will, kennt die Fakten. Man muß nur ein wenig im Internet stöbern. Wäre da nicht das ZDF hinter dem Busch hervorgekrochen mit seiner Sendung „Der ewige Gau? 10 Jahre Fukushima“. Gäbe es einen Karl-Eduard Richard Arthur von Schnitzler – auch Sudel Ede genannt – Preis, das ZDF hätte ihn mit Sicherheit in der Tasche. In bester Tradition schneidet man alte Aufnahmen des West-Fernsehens neu zusammen und läßt sie von den einschlägig Verdächtigen: Green Peace, Partei Bündnis 90/Die Grünen usw. kommentieren. Selbst der alte Lehrer Arnie Gunderson mit seiner Verschwörungstheorie von dem explodierten Brennelemente-Lagerbecken darf nicht fehlen. Die Verknüpfung „Atombombe“ gleich „Atomkraftwerk“ ist einfach zu verlockend. Als Staatsfunker braucht man nicht einmal elementare handwerkliche Fähigkeiten zu beachten: Eine simple Google-Abfrage und man hätte Aufnahmen des besenreinen Lagerbeckens von Block 4 senden können. Ausgewogenheit – also die Berücksichtigung von Pro und Kontra – ist mit der Einführung der Wohnungssteuer „Rundfunkgebühr“ sowieso nicht mehr nötig. Man dient nur seinem Herrn, der die nächste Gebührenerhöhung festsetzt. Sollen die Zuschauer doch abschalten, wenn sie soviel Propaganda nicht ertragen.

Was geschah am 11. März 2011?

Um 14:46 (Japan Standard Time) erschütterte das “Tohoku Earthquake” den Osten Japans mit einer Magnitude von 9.0 auf der Richterskala. Das Epizentrum lag etwa 130 km östlich der Oshika Halbinsel in 24 km Tiefe. Quelle war ein Sprung der ineinander verhakten nordamerikanischen und pazifischen Platte. Dieser Sprung löste einen Tsunami aus, der über die japanische Küste hereinbrach. Er zerstörte mehr als eine Million Gebäude, tötete 19 729 Menschen, weitere 2 559 Opfer blieben bis heute vermißt und verletzte 6 233 Menschen zum Teil schwer. Ganze Landstriche waren innerhalb von Minuten dem Erdboden gleich gemacht. Für uns Mitteleuropäer eine unvorstellbare Naturkatastrophe von apokalyptischem Ausmaß.

Im Zusammenhang mit dem Reaktorunglück ist nur von Bedeutung, daß solche Tsunamis in Japan nicht unwahrscheinlich sind. Mit anderen (deutlichen) Worten: Dieses Kraftwerk hätte so nie an diesem Ort gebaut werden dürfen. Dies war unter Fachleuten – bitte nicht verwechseln mit „Atomexperten“ – bekannt. Es gab sogar einige wenige, die unter Inkaufnahme erheblicher beruflich Konsequenzen dabei nicht mitgespielt haben.

Die Ereignisse im Kernkraftwerk

Im Kernkraftwerk Fukushima waren drei der sechs Blöcke in Betrieb. Block 4 war bereits vollständig entladen für einen Brennstoffwechsel mit Wartungsarbeiten. Die Blöcke 5 und 6 waren in Vorbereitung zum Wiederanfahren nach erfolgtem Brennelementewechsel. Durch das Erdbeben wurden alle sechs Hochspannungstrassen unterbrochen. Die Notstromdiesel zur Eigenversorgung im Inselbetrieb starteten.

Für das Verständnis der Abläufe ist wichtig, daß zuerst alles nach Plan verlief: Durch die Erdbebensensoren wurde eine Schnellabschaltung ausgelöst und auch in Fukushima startete die Notversorgung – wie in fast allen japanischen Kernkraftwerken. Es wäre nichts passiert, wenn die Flutwelle nicht gekommen wäre oder man das Kraftwerk „wasserdicht“ gebaut hätte. Der Vorgang einer Schnellabschaltung infolge eines Erdbebens ist in Japan Routine. Die Betriebsmannschaft war allerdings bezüglich des Tsunami so ahnungslos, daß sie sogar die Abkühlung des Blocks 1 noch verzögerte, um – wie erwartet – möglichst schnell wieder ans Netz zu kommen. Dies war leider eine fatale Fehlentscheidung, wie sich bald herausstellen sollte. Es verstrich fast eine wertvolle Stunde in Ahnungslosigkeit. Hier zeigt sich, wie wichtig ein Kommunikationssystem ist, das auch bei schweren Naturkatastrophen intakt bleibt: Wäre die Betriebsmannschaft über die Gefahr eines schweren Tsunami informiert worden, hätte sie mit Sicherheit ganz anders reagiert. Bei den Reaktoren 2 und 3 wurde die Isolation der Reaktoren von dem konventionellen Teil des Kraftwerks automatisch durchgeführt und die notwendigen Notkühlsysteme ausgelöst. Bis zu diesem Zeitpunkt waren alle drei Reaktoren in einem sicheren Zustand und auch die Notkühlung funktionierte wie geplant.

Etwa 50 Minuten nach dem Erdbeben (das hätte die „goldene Stunde“ sein können) brach eine Wasserwand auf das Kraftwerk ein und schlug alle Außeneinrichtungen der Blöcke 1 bis 4 kurz und klein. Dies war die Folge des bekannten Konstruktionsfehlers: Die Lage des Kraftwerks über dem Meeresspiegel war viel zu niedrig. Bereits in den etwas abgelegenen (neueren) Blöcke 5 und 6 waren die Zerstörungen wesentlich geringer. Sämtliche Kühlwasserpumpen der Blöcke 1 bis 4 sind abgesoffen und damit war keine Außenkühlung mehr möglich. Die Notstromdiesel, die Schaltanlagen und alle Batterien im Keller des Turbinengebäudes wurden durch das hereinbrechende Meerwasser zerstört. Zunächst überlebten die Diesel von Block 2 und 4, bis sie durch die zerstörten Schaltanlagen außer Gefecht gesetzt wurden. Die Batterien von Block 3 hielten noch durch, bis sie erschöpft waren. Es gab sogar einen zusätzlichen luftgekühlten Generator für den Block 6 – wenn man nur den Strom hätte nutzen können. Durch den totalen Stromausfall (station blackout) war die Mannschaft blind und kraftlos. Man hatte bald keine Informationen durch die Messgeräte mehr und konnte auch keine elektrischen Stellglieder mehr betätigen. So ließ sich das Ventil, welches man im Block 1 geschlossen hatte, um die Abkühlung zu verringern, nun nicht mehr öffnen. Hilfe von außen ließ auf sich warten, weil die Feuerwehr erstmal die zerstörten und verschütteten Straßen räumen mußte um sich zum Kraftwerk vorkämpfen zu können. Die Kernschmelze setzte etwa 5 Stunden später in Block 1 ein. Unter den hohen Temperaturen zersetzten sich die Brennstabhüllen durch eine chemische Reaktion zwischen Wasserdampf und Zirconium. Der Kern des Reaktors – eine Konstruktion mit Toleranzen von weniger als einem Millimeter – fällt nun unkontrolliert in sich zusammen. Da die Nachzerfallswärme immer noch weiter wirkt, schmelzen Teile sogar auf. Es entsteht ein „Corium“, eine Legierung aus allen Bauteilen des Kerns, die nach dem Erkalten eine lavaähnliche Schlacke bildet. Deren Beseitigung ist die zentrale Herausforderung des Rückbaus. Man hat nicht mehr eine verfahrenstechnische Anlage vor sich, sondern einen Stahlbehälter mit einer harten, widerborstigen Masse, die man zerkleinern und bergen muß. Sinnvollerweise wird dies erst in Jahrzehnten mit noch zu entwickelnden Robotern erfolgen.

Durch den ansteigenden Druck wurde der Deckel im Reaktor 1 undicht und es entwich Wasserstoff in das obere Stockwerk. Eine ganz normale Industriehalle und kein „Betonbunker“, wie er in modernen Kraftwerken üblich ist. Etwa nach 24 Stunden explodierte das gebildete Knallgas und lieferte die spektakulären und immer wieder gern gezeigten Bilder. Nur hat dies nichts mit Kerntechnik zu tun, sondern ist eher ein Vorgeschmack auf die viel gepriesene „Wasserstoffwirtschaft“.

Im Block 2 funktionierte die Notkühlung noch drei Tage. Allerdings stieg auch dort Druck und Temperatur an, weil durch den Ausfall der Kühlwasserpumpen die Wärme nicht mehr an die Umwelt abgegeben werden konnte. Der Versuch einer Druckentlastung damit die Feuerwehr Wasser einleiten konnte, scheiterte und es kam ebenfalls zu einer Teilschmelze. Allerdings weniger schlimm als in Block 1. Es gab auch keine Knallgasexplosion, da der „Schuppen“ über dem Reaktordruckbehälter schon durch die Explosion in Block 1 soweit zerstört war, daß der Wasserstoff abziehen konnte.

In Block 3 konnte man mittels Strom aus Batterien die Notkühlung noch etwas steuern. Da aber die Wärmesenke Meerwasser nicht mehr zur Verfügung stand, kam es auch dort zu einer Kernschmelze. Hier strömte das gebildete Knallgas nicht nur in den „Schuppen“ oberhalb des Blocks 3, sondern auch über die gemeinsamen Lüftungskanäle in den „Schuppen“ des gar nicht in Betrieb befindlichen Block 4. Wieder zwei spektakuläre Explosionen von Knallgas. Nun waren alle „Schuppen“ zerstört wie nach einem Bombenangriff und der Schutt in alle Brennelemente-Lagerbecken gefallen. Um die Brennelemente bergen zu können, muß erstmal der Schutt beräumt werden. Davor wiederum mußten erstmal neue Gebäude gebaut werden um etwaige Verseuchungen bei den Bergungsarbeiten zu verhindern. Das alles brauchte und braucht Zeit.

Der Irrsinn der Evakuierung

Völlig überhastet und von „Strahlungsangst“ getrieben, ordnete man großräumige Evakuierungen an. Infolge dieser Evakuierungen kam es zu zahlreichen Todesfällen, weil man Schwerkranke von Intensivstationen und hochbetagte Pflegefälle einem Transport und Notunterkünften aussetzte. Nachweislich ist aber kein Mensch durch Strahlung gestorben. Die Strahlungsdosen sind so gering, daß man nicht einmal mit einer erhöhten Rate von Krebsfällen rechnen kann. Anfangs lagen die Strahlendosen im Sperrgebiet bei 50 bis 100mSv/year. Durch Dekontaminierung wurden die Werte auf 1 bis 20 mSv/year gesenkt. Ein wahnsinniger Aufwand, der eher an „Buße“ als an Strahlenschutz erinnert.

So ist es halt, wenn man den Weg der Wissenschaft verläßt und sich dem Populismus hingibt. Geht man den Agitatoren von Green Peace und Co auf den Leim, wird es einem nicht vergönnt, sondern die Berge von abgetragenem – und sorgfältig in Säcke verpacktem – Mutterboden (!) werden als tödliche Strahlenquellen genüßlich vorgeführt. Man hinterfragt keine Sekunde die Prognosen über „Strahlentote“ und „Krebsopfer“ unmittelbar nach dem Unglück. Nein, die gleichen Angstmacher dürfen von der „Beinahe-Katastrophe“ in Tokio schwadronieren. Man sollte das tunlichst nicht einfach als Spinnereien ewig Unbelehrbarer abtun. Ganz im Gegenteil, es ist die Vorbereitung für z. B. den Kampf gegen den Bau von Kernkraftwerken nahe Danzig. Die Antifanten müssen rechtzeitig aufgestachelt werden. Mit Angst läßt sich nicht nur hervorragend regieren, sondern auch Spannungen mit (nicht folgsamen) Nachbarländern schüren. Die „Energiewende“ ist längst zu einem politisch-wirtschaftlichen Geschwür geworden, neben dem jede „Masken-Affäre“ wie Tauschgeschäfte unter Kindern auf dem Schulhof anmuten. Gerade dieses Filmchen und die darin auftretenden Darsteller sind ein Beispiel dafür, wie inzwischen eine ganze Generation „Angstmacher“ sich lukrative Posten ergattert hat, die diese wahrscheinlich nie mit ihren studierten Berufen hätten erreichen können.

Die Moritat vom Atommüll

Unsere Filmschaffenden vom ZDF-Kollektiv „schneide und sende“ haben beharrlich alte Wochenschauberichte von Arbeitsmännern, die durch Ruinen kraxeln, endlosen Tanklagern, Berge von Plastiksäcken etc. zusammengeschnitten. Man kennt diesen Arbeitsstil noch von der Berichterstattung über Trump: Immer wurde nur Material anderer (gleichgesinnter) Sender „nachgesendet“, niemals jedoch eine Rede von Trump im Original gesendet. Ist das einfach nur Faulheit oder hat Betreutes-Denken-TV Angst, die Zuschauer könnten zu viel von der tatsächlichen Welt erfahren? Wo sind die Aufnahmen vom Kraftwerksgelände heute, wo man sich längst ohne jede Schutzkleidung bewegen kann? Wo sind die Aufnahmen von den Ingenieuren vor Ort in ihren Computer Räumen (von denen manche deutsche Universität nur träumen kann), die die Arbeiten steuern und überwachen? Es wird doch sonst so gern von künstlicher Intelligenz, Robotertechnik, Simulationstechnik etc. geschwätzt. All das hätte man im Einsatz in der Ruine von Fukushima filmen können. Dazu hätte man sich vor Ort noch mit den führenden internationalen Fachleuten auf diesen Gebieten unterhalten können. Paßt natürlich alles nicht in das ideologisch gewünschte Bild einer sterbenden Technik. Ahnungslose Rentner (die Zielgruppe des ZDF) hätten sonst noch glauben können, sie hätten einen Bericht von der Hannover Messe gesehen.

Stattdessen Luftbilder von einem Tanklager. Eigentlich ein Beweis, wie umsichtig man vorgeht. Man hat nicht einfach das radioaktive Wasser ins Meer gekippt – was nebenbei gesagt, kein großer Schaden gewesen wäre – sondern hat es aufwendig zur Aufbereitung zwischengelagert. Hat man so etwas schon mal bei einem Unfall in einem Chemiewerk gesehen? Wie wäre es gewesen, wenn man mal die Reinigungsanlagen gefilmt hätte und die betreuenden Wissenschaftler z. B. aus Russland und Frankreich befragt hätte, wieviel Gehirnschmalz dafür notwendig war, Konzentrationen in Trinkwasserqualität zu erzielen? Stattdessen minutenlanges Gejammer über Tritium. Aber Vorsicht, das Narrativ vom unbeherrschbaren Atommüll hätte bei manch einem Zuschauer hinterfragt werden können.

Die Konsequenzen

Die Welt hat nach Fukushima erstmal den Atem angehalten. Man ist wie nie zuvor in der Technikgeschichte zusammengerückt und hat die tragischen Ereignisse analysiert. Heute gehen selbstverständlich russische, chinesische und amerikanische Fachleute gegenseitig in ihren Kernkraftwerken ein und aus. Suchen Schwachstellen und beraten sich gegenseitig. Dies geschieht über alle politischen Gegensätze und Spannungen hinweg. Fukushima war ein Ereignis für die Kerntechnik, wie der Untergang der Titanic für die Seefahrt. Schrecklich, aber nicht zerstörend. Nur unsere Führerin hat den „Mantel der Geschichte wehen gespürt“. Sie, die als so bedächtig dargestellte, hat sofort fest zugegriffen. Man könnte auch sagen, wie ein Skorpion tödlich zugestochen, um ihre öko-sozialistischen Träume zu beschleunigen. Milliardenwerte mit einem Federstrich vernichtet und Deutschland international ins Abseits gespielt. Chapeau Frau Merkel, sie werden ihren Platz in der Geschichte einnehmen.

SMR-2021 Einleitung

Die Kerntechnik bekommt gerade einen unerwarteten Aufschwung: Immer mehr junge Menschen drängen in die einschlägigen Studiengänge, es entstehen unzählige neu gegründete Unternehmen und es steht plötzlich auch viel privates Kapital zur Verfügung. Darüberhinaus zeigt dieser Winter in Texas auch dem gutgläubigsten Menschen, daß eine Stromversorgung (nur) aus Wind, Sonne und Erdgas ein totes Pferd ist.

  • Texas ist nahezu doppelt so groß wie Deutschland, hat aber nur etwa ein Drittel der Einwohner, die sich überwiegend in einigen Großstädten ballen. Windparks waren deshalb höchstens ein Thema für Vogelfreunde und Landschaftsschützer. Texas ist darüberhinaus auch noch sehr windreich durch seine Lage „zwischen Golf und mittlerem Westen“.
  • Texas liegt etwa auf der „Breite der Sahara“ (Corpus Christi 27°N, Amarillo 35°N; Kanarische Inseln 28°N, Bagdad 33°N). Mal sehen, wann in Deutschland wieder von der Photovoltaik in der Sahara gefaselt wird.
  • In Texas kommt das Erdgas aus der Erde. Trotz der inzwischen gigantischen Verflüssigungsanlagen für den Export, muß immer noch Erdgas abgefackelt werden. Das alles ändert aber nichts an der Tatsache, daß im Ernstfall nur das Gas am Anschluss des Kraftwerks zählt. Kommt noch parallel zum Strombedarf der Bedarf für die Gebäudeheizungen hinzu, ist schnell die Grenze erreicht. Wohl gemerkt, das Gas kommt in Texas aus der Erde und nicht aus dem fernen Russland.

Das Kapital ist bekanntlich ein scheues Reh. Nach den Milliarden-Pleiten in Texas wird man sich schnell umorientieren. Darüberhinaus fängt die Bevölkerung an zu fragen, warum man eigentlich zig Milliarden Steuergelder mit Wind und Sonne versenkt hat.

Was sind SMR?

SMR (Small Modular Reactor) sind kleine Kernkraftwerke mit einer elektrischen Leistung von bis zu 300 MWel. Eine ziemlich willkürliche Grenze, die auf kleine Reaktoren abzielt, die gerade noch mit der Eisenbahn (in den USA) transportierbar sein sollen. Eine weitere Untergruppe sind Mikroreaktoren mit einer elektrischen Leistung von bis zu etwa 10 MWel. Bei den bisherigen Kernkraftwerken hat man immer größere Leistungen (z. B. EPR mit 1650 MWel) angestrebt, um die in der Verfahrenstechnik üblichen Skaleneffekte zu erzielen. Problem dabei ist, daß man einen erheblichen Montageaufwand auf der Baustelle hat, da alle Bauteile sehr groß werden. Bei den SMR geht man umgekehrt den Weg, das Kraftwerk weitesgehend in Fabriken in Serie zu fertigen und zu testen. Es steht also Kosteneinsparung durch Skaleneffekte gegen Serienfertigung (wie z. B. im Flugzeugbau). Welcher Weg letztlich kostensparender ist, kann vorab gar nicht gesagt werden. Vielmehr kann durch SMR ein völlig neuer Markt der „kleinen Netze“ erschlossen werden. Das betrifft beileibe nicht nur Schwellenländer, sondern vielmehr lernen wir in Deutschland gerade, welche enormen Netzkosten entstehen, wenn man zentrale Windparks baut. Ferner ist die Finanzierung wegen des kleineren (absoluten) Kapitalbedarfes weniger risikoreich und damit leichter handhabbar. Ein „Kraftwerk von der Stange“ erfordert eine wesentlich kürzere Zeitspanne – also Vorfinanzierung – von der Bestellung bis zur Inbetriebnahme. Hinzu kommt, daß die kleineren Bauteile auch nur kleinere Fertigungsanlagen erfordern. Beispielsweise baut Indien zur Zeit 15 Schwerwasserreaktoren, da dafür alle Komponenten im eigenen Land hergestellt werden können. Der ursprünglich angedachte Bau von konventionellen Druckwasserreaktoren wurde aufgegeben, da dafür wesentliche Komponenten (z.B. Reaktordruckbehälter) im Ausland gegen Devisen gekauft werden müßten. Aus gleichem Grund treffen SMR auch in Europa (z. B. Tschechien, Großbritannien) auf großes Interesse.

Die Sicherheitsfrage

Bei kleineren Kraftwerken kann man näher an die Städte heranrücken und damit Kraft-Wärme-Kopplung in vorhandenen Fernwärmenetzen abgasfrei betreiben. Finnland z. B. plant mittelfristig die vorhandenen Kraftwerke in den Ballungszentren durch SMR zu ersetzen. Analog gelten die gleichen Überlegungen für Fernkälte und Meerwasserentsalzungsanlagen z. B. in der Golfregion. Will man jedoch in der Nähe von Großstädten bauen, müssen solche Kernkraftwerke zwingend „walk away“ sicher sein, damit sie überhaupt genehmigungsfähig sind. Dazu gehört insbesondere der Verzicht auf eine aktive Notkühlung. Reaktoren kleiner Leistung kommen dem physikalisch entgegen: Um die Leistung zu produzieren, ist eine entsprechende Anzahl von Kernspaltungen notwendig. Bei der Kernspaltung entstehen radioaktive Spaltprodukte, die auch nach der Abschaltung noch Zerfallswärme produzieren. Bei kleinen Reaktoren ist diese Nachzerfallswärme so gering, daß sie problemlos passiv abgeführt werden kann – oder anders ausgedrückt, die Temperatur im abgeschalteten Reaktor steigt nur so weit an, daß keine Grenzwerte erreicht werden. Dies war z. B. beim Unfall in Fukushima völlig anders. Dort hat die Nachzerfallswärme gereicht, um eine Kernschmelze auch noch nach der Abschaltung der Reaktoren auszulösen.

Damit Kernkraftwerke in oder in unmittelbarer Nähe zu Städten akzeptiert werden, muß faktisch gewährleistet sein, daß keine (nennenswerte) Radioaktivität das Betriebsgelände überschreitet. Damit an dieser Stelle kein Missverständnis entsteht: Es gibt keine absolute Sicherheit. Es wird auch zukünftig Unfälle in Kernkraftwerken geben, genauso wie immer wieder Flugzeuge abstürzen werden. Trotzdem fliegen Menschen. Der Mensch ist nämlich durchaus in der Lage, Risiken und Vorteile für sich abzuwägen – solange er nicht ideologisch verblödet wird. Selbst eine ideologische Verblödung kann aber nicht unendlich lange aufrecht erhalten werden: Gerade durch Tschernobyl und Fukushima sind die Märchen der „Atomkraftgegner“ von „Millionen-Toten“ etc. als Propaganda entlarvt worden. Auffällig still ist es in den letzten Jahren um die „Gefahren durch Atomkraft“ geworden. Übrig geblieben ist einzig die Lüge von dem „Millionen Jahre strahlenden Atommüll, für den es keine Lösung gibt“. Auch dieser Unsinn wird sich von selbst widerlegen.

Die Vielzahl der Entwürfe

Es gibt unzählige Entwürfe von Kernreaktoren. Jeder Professor, der etwas auf sich hält, erfindet einen neuen Reaktor zu Übungszwecken. Der Weg zu einem Kernkraftwerk ist aber lang. Irgendwann stirbt die überwiegende Anzahl wegen irgendwelcher unvorhergesehenen Detailprobleme. Hier werden nur Entwürfe betrachtet, für die ausreichend Unterlagen aus Genehmigungsverfahren, Veröffentlichungen etc. zur Verfügung stehen. Immerhin blieben noch über 90 Konzepte übrig, die sich auf dem Weg zu einem Prototypen befinden. Für jedes einzelne Konzept wurde bereits mindestens ein zweistelliger Millionenbetrag investiert und ein Unternehmen gegründet. Als erstes soll etwas Systematik in dieses Angebot gebracht werden. In späteren Folgen werden dann einzelne Entwürfe näher vorgestellt und diskutiert werden.

Neutronenspektrum

Je langsamer Neutronen sind, je höher ist die Wahrscheinlichkeit einer Spaltung eines U235 – Kerns. Demgegenüber können alle schnellen Neutronen auch Kerne von U238 bzw. anderer Aktinoiden spalten. Schnelle Reaktoren haben den Vorteil, daß sie mit „Atommüll“ (so verunglimpfen „Atomkraftgegner“ immer die abgebrannten Brennelemente aus Leichtwasserreaktoren) betrieben werden können. Eine verlockende Perspektive: Betrieb der Kernkraftwerke mit „Abfall“, bei gleichzeitiger Entschärfung der „Endlagerproblematik“ auf wenige Jahrzehnte bis Jahrhunderte. Nur hat alles seinen Preis, gerade kleine Reaktoren (im räumlichen Sinne, nicht nur im übertragenen, bezogen auf die Leistung) sind schwierig als schnelle Reaktoren zu bauen. Es ist deshalb nicht verwunderlich, daß 59 Entwürfe mit thermischem Spektrum und nur 20 als schnelle Reaktoren ausgeführt sind.

Die angestrebten geringen Abmessungen (Transport) sind faktisch auch bei thermischen Reaktoren nur über eine höhere Anreicherung realisierbar. Mit der bei heutigen Druckwasserreaktoren üblichen Anreicherung von weniger als 5% lassen sich kaum SMR bauen. Man hat deshalb den neuen Standard HALEU mit einer Anreicherung von knapp unter 20% eingeführt. Der Begriff „thermisch“ im Zusammenhang mit der Geschwindigkeit von Neutronen bezieht sich auf die Geschwindigkeitsverteilung der brownschen Molekularbewegung. Je höher deshalb die Betriebstemperatur eines Reaktors ist, um so höher auch die Geschwindigkeit der Neutronen und damit um so geringer die Wahrscheinlichkeit einer Spaltung eines Urankernes. Deshalb sind „Hochtemperaturreaktoren“ schon wegen der neutronenphysikalischen Auslegung anspruchsvoller.

Moderatoren

Wenn man Neutronen abbremsen will, benötigt man einen Moderator. Bei den Leichtwasserreaktoren ist das das Arbeitsmedium Wasser. Die einfachste Konstruktion ist der Siedewasserreaktor, bei dem der im Reaktor erzeugte Dampf unmittelbar die Turbine antreibt (5 Entwürfe). Demgegenüber wird beim Druckwasserreaktor erst in einem zusätzlichen Wärmeübertrager der Dampf erzeugt (24 Entwürfe). Eine gewisse Sonderstellung nehmen Schwerwasserreaktoren ein, in denen Deuterium die Funktion des Moderators übernimmt (2 Entwürfe). Bei Mikroreaktoren kommen noch andere Moderatoren zum Einsatz.

Kühlmittel

Bei thermischen Reaktoren kommen Wasser, Helium und Salzschmelzen zur Anwendung. Bei Wasser sind die erreichbaren Temperaturen durch die abhängigen Drücke begrenzt (31 Entwürfe). Für eine reine Stromerzeugung ist das jedoch kein Hinderungsgrund. Will man hohe Temperaturen erreichen, bleibt Helium (20 Entwürfe) oder eine Salzschmelze (13 Entwürfe). Bei beiden kommt man mit relativ geringem (Helium) oder gar Atmosphärendruck (Salze) aus. Will man schnelle Reaktoren bauen, bleibt nur Helium (2 Entwürfe), Blei (9 Entwürfe), Natrium (5 Entwürfe) oder Salzschmelzen (3 Entwürfe). Tauscht man Wasser gegen andere Kühlmittel, wird man zwar den hohen Druck und den Phasenübergang los – was oft als Sicherheitsgewinn dargestellt wird – handelt sich aber damit eine Menge neuer Probleme ein: Einfrieren bei Raumtemperatur (Blei und Salzschmelzen), Korrosion (Blei und Salzschmelzen), Staub (Helium), Brandgefahr (Natrium), Zeitstandsfestigkeit usw. Es verwundert deshalb nicht, daß die Überzahl der Entwürfe bei Wasser als Moderator und Kühlmittel bleibt. Durch die überragenden thermodynamischen Eigenschaften des Wasser-Dampf-Kreisprozesses ist das für eine Stromproduktion auch kein Hinderungsgrund. Oft gehörte Argumente von möglichen höheren Wirkungsgraden sind bei den geringen Brennstoffkosten eher Scheinargumente. Anders sieht es mit der Entwicklung von schnellen Reaktoren aus. Blei und Natrium haben hier eine überragende Stellung. Allerdings sind die Preise für Natururan immer noch im Keller und die Zwischenlagerung abgebrannter Brennelemente ist ebenfalls konkurrenzlos billig. In einigen Jahren könnte jedoch ein geschlossener Brennstoffkreislauf aus politischen Gründen (Angst vor Atommüll) zum Renner werden. Momentan liegt Russland bei dieser technischen Entwicklung mit großem Abstand vorn. Die USA haben das erkannt und starten gerade eine beeindruckende Aufholjagd.

Brennstoff

Standard ist immer noch Uran. Bei schnellen Reaktoren kann man den „Abfall“ der konventionellen Reaktoren weiter nutzen. Thorium bleibt vorläufig auch weiter ein Exot. Das Uran kann in unterschiedlichen chemischen Verbindungen (metallisch, Uranoxid, Urannitrid, Legierungen usw.) im Reaktor verwendet werden und in unterschiedlichen geometrischen Formen (als Brennstäbe, als TRISO-Elemente, im Kühlmittel aufgelöst usw.) eingebaut werden. Der Brennstoff ist in seiner chemischen Zusammensetzung und seiner geometrischen Form bestimmend für die maximale Betriebstemperatur. Ferner ist er das erste Glied der Sicherheitskette: Er bindet während des Betriebs die Spaltprodukte und soll diese auch bei einem Störfall zurückhalten. SMR benötigen wegen der höheren Anreicherung mehr Natururan und sind wegen der höheren Trennarbeit teurer in der Herstellung als konventionelle Brennelemente.

Die Hersteller

Mit deutlichem Abstand sind die beiden führenden Länder in der Entwicklung von SMR Russland und die USA.

Alle Projekte befinden sich in einer unterschiedlichen Realisierungsphase von Konstruktion, Genehmigungsverfahren, über Bau bis Probebetrieb. Der chinesische SMR vom Typ ACPR50S (Druckwasserreaktor in klassischer Bauweise mit 50 MWel) ist fast fertiggestellt. Er soll bei Serienfertigung als schwimmender Reaktor auf einem Ponton verwendet werden. Der argentinische SMR Carem (integrierter Druckwasserreaktor mit 30 MWel) ist eine Eigenentwicklung und soll 2023 in Betrieb gehen.

Land LWR Gas Blei Natrium Salz Summe
Argentinien– – – – 1
China– – 7
Dänemark– – – – 
Finnland– – – 
Frankreich1– – – 
GB1– – – 
Indonesien– – – 
Japan– 
Kanada– – 
Luxemburg– – – – 
Russland11 – 17 
Schweden– – – – 
Südafrika– – – – 
Süd Korea– – – 
USA21 
Summe29 17 13 – 
Betrachtete SMR-Entwürfe nach Ländern und Typen geordnet.

Der chinesische HTR-PM (Hochtemperaturreaktor, Kugelhaufen mit Helium, 105 MWel) befindet sich im Testbetrieb. Sein Vorläufer HTR-10 von der Tsinghua University, China (Kugelhaufen mit 2,5 MWel) ist seit 2018 in Betrieb. Der japanische HTTR 1 (prismatischer Hochtemperaturreaktor, Helium, 30 MWth) ist seit 2007 mit Unterbrechungen für Umbauten in Betrieb. Der russische RITM-200M (modularer Druckwasserreaktor mit 50 MWel) ist seit 2020 auf Eisbrechern in Betrieb und soll bis 2027 in Ust-Kuyga in Sibirien als Kraftwerk in Betrieb gehen. Der russische KLT-40S (Druckwasserreaktor in klassischer Bauweise, 35 MWel) ist zweifach auf einem schwimmenden Ponton seit 2020 in Pevek in Chukotka als Heizkraftwerk in Betrieb.