SMR-2021, Linglong One (ACP100)

Im July startete offiziell der Bau des ersten Small Modular Reactors (SMR) in Changjiang auf der Insel Hainan. Es wird der weltweit erste landgestützte SMR. Das Kraftwerk besteht aus zwei Blöcken vom Typ „Linglong One“ (ACP100) mit je 125 MWel. China National Nuclear Corporation (CNNC) plant die Inbetriebnahme für 2026 (geplante Bauzeit 58 Monate). Die Entwicklung dieses Reaktors läuft seit 2010. Es war der erste SMR, der schon 2016 eine Zulassung durch die International Atomic Energy Agency (IAEA) erhielt. Der Reaktor gilt als ein „Schlüssel-Projekt“ des 12. Fünf-Jahr-Plans. Er kann über eine Milliarde kWh pro Jahr produzieren, was für über 500 000 chinesische Haushalte ausreicht. Man setzt große Hoffnungen in eine Serienproduktion für zentralchinesische Städte als Ersatz für Kohlekraftwerke. Eine schwimmende Version – nach russischem Vorbild – ist in Zusammenarbeit mit der Lloyd’s-Schiffs-Klassifikation ebenfalls in Vorbereitung. Es ist überdeutlich, daß man mit den frühzeitigen internationalen Zulassungen auch auf den Export setzt. Hat China erstmal ein Kraftwerk im Betrieb vorzuzeigen, können die Investoren kommen und Bestellungen aufgeben. Für diese Leistungsklasse gibt es in Schwellen- und Entwicklungsländern einen gewaltigen Markt. Serienproduktion wiederum senkt die Kosten – nach diesem Muster hat China schon die Weltmärkte auf ganz anderen Gebieten erobert.

Der ACP100

Dieser SMR ist kein revolutionärer Entwurf, sondern ein integrierter Druckwasserreaktor. Die Dampferzeuger sitzen ebenfalls im Reaktordruckgefäß. Dies wird möglich, da sich der Reaktorkern mit der Leistung verkleinert. Es handelt sich um 16 OTSG (once-through steam generator) als Rohr in Rohr Konstruktion. Der Bruch einer Hauptkühlmittelleitung – ein wesentliches Auslegungskriterium bei konventionellen Druckwasserreaktoren – ist damit ausgeschlossen. Der Dampf verläßt wie bei einem Siedewasserreaktor den Druckbehälter. Der Druck im Reaktor beträgt 150 bar, der Druck des Dampfes nur 40 bar. Die Eintrittstemperatur des Wassers in den Kern beträgt 286,5 °C, die Austrittstemperatur 319,5 °C. Die Austrittstemperatur des Dampfes beträgt mindestens 290 °C. Das mag nicht viel erscheinen, reicht aber für die Stromerzeugung und viele Anwendungen aus. Der Gesamtwirkungsgrad ist mit 32% gering, aber kein großer Nachteil, da Uran als Brennstoff billig ist. Andererseits sind Wandstärken und Werkstoffe besonders kostengünstig (Investition). Die vier Spaltrohrpumpen sind außen an das Druckgefäß angeflanscht.

Der Kern besteht aus 57 Brennelementen in einer 17×17 Anordnung und ist nur 2,15 m hoch. Das Druckgefäß hat eine Höhe von 10 m bei einem Durchmesser von 3,35 m. Dies führt zu einem Naturumlauf im Falle der Not- und Nachkühlung. Die Pumpen werden nur für die Umwälzung im Betrieb benötigt. Dies führt zu einer passiven Sicherheit im Falle eines Black-Out (Fukushima). Die Reaktivität wird über Regelstäbe, abbrennbare Gifte und die Borkonzentration im Kühlwasser geregelt. Die 21 Regelstäbe werden über Elektromagnete gehalten und fallen bei einem Stromausfall automatisch in den Kern. Die Urananreicherung beträgt 1,9 bis 4,95%. Damit ist ein Ladezyklus von 24 Monaten möglich (hohe Verfügbarkeit).

Sicherheitssysteme

Der ACP100 übernimmt die Sicherheitsphilosophie seiner „größeren Brüder“ der Megawatt-Klasse. Das passive Sicherheitssystem besteht wesentlich aus:

  • Abfuhr der Nachzerfallswärme. Das PDHRS (passive decay heat removal system) dient zur sicheren Abfuhr der Nachzerfallswärme auch bei einem völligen Stromausfall, dem Ausfall der Speisewasserversorgung oder dem Zusammenbruch der Wärmesenke (Tsunami in Fukushima). Die Nachwärme wird über den im Containment vorhandenen Sicherheitstank abgeführt. Der Wärmetransport geschieht über Naturumlauf. Das System ist so ausgelegt, daß sieben Tage lang keine Eingriffe nötig sind.
  • Notkühlung. Fällt die Kühlung durch z. B. eine Leckage aus, übernimmt automatisch das ECCS (emergency core cooling system). Es besteht aus den zwei Vorratstanks CST (coolant storage tanks), den zwei Druck-Einspeisungen SIT (safety injection tanks) und dem Sicherheitstank IRWST (in-refuelling water storage tank), der auch zur Abfuhr der Nachzerfallswärme dient. Ausgetretener Dampf kondensiert am Sicherheitsbehälter. Die Wärmeabfuhr geschieht passiv über dessen Oberfläche an die Außenluft.
  • Notstrom. Die Stromversorgung bei einem Störfall wird komplett für 72 Stunden aus Batterien abgedeckt. Die Batterien werden durch Notstromaggregate nachgeladen. Der Diesel-Vorrat reicht für sieben Tage.
  • Sicherheitstank. Der IRWST befindet sich auf der Grundplatte des Reaktors. Er enthält das borhaltige Wasser zur Befüllung aller Kammern bei einem Brennelementewechsel, zum Ersatz bei Kühlmittelverlusten durch Rohrbrüche etc. und zur Flutung der Reaktorkammer bei extrem schweren Störfällen. Er übernimmt auch die Niederschlagung des Dampfes beim Abblasen im Falle von Überdruck im System.
  • Brennelemente-Becken. Es befindet sich ebenfalls im Sicherheitsbehälter. Es ist so bemessen, daß es selbst bei der Lagerung von abgebrannten Brennelementen aus zehnjährigem Betrieb, keinerlei Eingriffe für sieben Tage erfordert.
  • Containment. Der Sicherheitsbehälter verhindert bei Störfällen den Austritt von radioaktiven Gasen. Er ist so groß, daß er die anfallende Kondensationswärme bei einem Störfall über seine Oberfläche an die Umgebung abgeben kann. Er umschließt den Reaktor mit all seinen Sicherheitssystemen. Zur Verhinderung von Knallgasexplosionen (Fukushima) ist er mit passiven Regeneratoren für Wasserstoff versehen.

Die ermittelte Wahrscheinlichkeit für Kernschäden CDF (Core damage frequency) wird mit einmal in einer Million Betriebsjahren angegeben und die Wahrscheinlichkeit für die Freisetzung größerer Mengen radioaktiver Stoffe LRF (Large Release frequency) mit weniger als einmal in zehn Millionen Betriebsjahren (Hinweis: 2 Reaktoren für ein Jahr, ergibt 2 Betriebsjahre in diesem Sinne). Diese Reaktoren sind nach chinesischer Auffassung so sicher, daß sie unmittelbar in chemischen Anlagen oder nahe Wohngebieten betrieben werden sollen.

Die Anwendungspalette

Die Auslegungslebensdauer beträgt 60 Jahre. Bei entsprechender Pflege und Nachrüstung kann von mindestens 100 Jahren ausgegangen werden. Photovoltaik- oder Windkraftanlagen sind nach wenigen Jahrzehnten Schrott, erfordern also vielfache Neuinvestitionen in diesem Zeitraum. Hinzu kommt, daß diese Reaktoren – wann immer man will – mit einer Verfügbarkeit von mindestens 90% laufen. Sie sind nicht wetterabhängig. Strebt man demgegenüber eine Vollversorgung nur durch Wind und Sonne an, muß man ein zigfaches dieser Leistung (Speicher- und Umwandlungsverluste) bauen und finanzieren. Wegen des gigantischen Flächenbedarfs scheidet eine dezentrale Versorgung von Großverbrauchern aus. Hinzu kommen deshalb noch die notwendigen Hochspannungstrassen. Diese SMR sind nicht exotisch, sondern bestehen aus Werkstoffen und Bauteilen die Industriestandard sind. Die integrierten Reaktoren sind dabei so klein (Länge mal Breite ca. 12m x 4m, 300 to Gewicht), daß sie problemlos über vorhandene Transportketten geliefert werden können. Durch die Fertigung in der Fabrik, sind die Montagezeiten nur gering. Die Rohbauten können durch Firmen vor Ort unter Anleitung (Schwellenländer) ausgeführt werden. Man darf auf die Preise gespannt sein.

Wer nun denkt, SMR ist gleich winzig, dem sollen einige Zahlen die möglichen Verwendungen aufzeigen. Jeder dieser Reaktoren kann z. B.:

  • als reines Kraftwerk rund eine Million MWh elektrische Energie produzieren,
  • oder eine Chemieanlage mit 600 Tonnen Heißdampf pro Stunde von 40bar und 290°C versorgen,
  • oder als „Kombi-Kraftwerk“ nur 300 to/h Heißdampf liefern, aber dafür noch zusätzlich rund 62 MW Strom,
  • oder in ariden Gebieten (Kalifornien, Israel, Golfregion) über eine angeschlossene Umkehrosmose 65 000 Kubikmeter Trinkwasser pro Tag liefern,
  • oder für landwirtschaftliche Zwecke 100 000 Kubikmeter pro Tag voll entsalztes Wasser über eine Entspannungsverdampfung herstellen und zusätzlich noch über 80 MW Strom liefern.
  • ähnliche Überlegungen gelten für eine Kraft-Wärme-Kopplung zur Fernwärme oder Fernkälte-Versorgung einer Großstadt bei gleichzeitiger Stromversorgung.
  • bzw. zur dezentralen Herstellung von Wasserstoff mit einem Elektrolyseur für den Verkehr, die Industrie oder zur Spitzenstromerzeugung in einer Region (rund 600 000 Nm3 pro Tag).