Bill Gates Weg zu Natrium

Bill Gates hat schon frühzeitig die Bedeutung der Energieversorgung erkannt. Anders, als viele andere, hat er auf die Zukunft der Kernenergie gesetzt und bereits 2006 sein Unternehmen TerraPower gegründet. Es sollte kein Reaktorhersteller, sondern ein Unternehmen für Innovationen sein. Heute, nach eineinhalb Jahrzehnten scheint sich seine Vision durch den Bau eines Kernkraftwerks zu verwirklichen. Bill Gates war immer eine Verkaufskanone, der die Nachfrage des Marktes sehr gut einschätzen konnte. Er brachte die Betriebssysteme MS-DOS und Windows zum Betrieb von Schreibtisch-Computern über uns – ein Milliardengeschäft und es entstand eine ganz neue Industrie. Übertragen auf die Kernenergie lautete sein Konzept:

  • Weg von dem zentralen Großkraftwerk, hin zu dem „persönlichen“ Kleinreaktor in der Gemeinde.
  • Weg von der durch Hollywood verunglimpften Megawatt-Maschine des Leichtwasser-Reaktors, hin zu einer unvorbelasteten (neuen) Technik.
  • Umschiffung der „Atommüll-Problematik“.
  • Kein Kampf gegen die populäre Wind- und Sonnenenergie, sondern deren Vereinnahmung durch die Ausnutzung ihrer grundlegenden Schwäche der Dunkel-Flaute.
  • Geringer Preis durch große Serien.

Der Traveling Wave Reactor (TWR)

Der TWR spukt schon seit den 1950er Jahren durch die Fachwelt. Das Konzept geht von einer Spaltung mit schnellen Neutronen aus. Der Trick besteht nun darin, eine Zone mit hoher Anreicherung zu betreiben, die von abgereichertem Uran umgeben ist. Der Neutronenüberschuss in dieser Spaltungszone erbrütet in der angrenzenden Zone mit abgereichertem Uran Plutonium. So wie Spaltstoff verbraucht bzw. erbrütet wird, wandert die Welle durch den Reaktorkern. Bei einer linearen Anordnung wird gern die Analogie einer abbrennenden Kerze benutzt. Bei einer klassischen Anordnung mit Brennstäben in konzentrischer Schichten wird der Wanderweg noch komplexer und schwieriger vorhersehbar. Der Charme liegt nun darin, daß man theoretisch einen Reaktor bauen könnte, der mit nur einer Beladung versehen ist und sein Uran vollständig aufbrauchen könnte. Es würde keine Wiederaufbereitung benötigt und es bliebe nur (wenig) „nukleare Asche“ zur Endlagerung übrig. Leider konnte bisher niemand einen solchen Reaktor bauen.

Eine beträchtliche Vereinfachung kann man durch den Übergang zu einer „stehenden Welle“ erzielen. Dabei werden in bestimmten Zeitabständen die Brennelemente – wie bei einem Leichtwasserreaktor – umgelagert, aber nicht ausgelagert. Die Spalt- und Brutzonen bleiben dadurch örtlich definiert. Diese Umlagerung geschieht mit einer Lademaschine im Reaktor, ohne diesen öffnen zu müssen. Der gesamte Brennstoff verbleibt für (geplant) 40 Jahre im Reaktor. Es befinden sich sogar einige „frische“ Brennelemente mit abgereichertem Uran im Reaktor als Reserve, für den Fall, daß beschädigte Brennelemente ersetzt werden müssen. Während dieses ein bis zwei Wochen dauernden “fuel shuffling” muß der Reaktor allerdings außer Betrieb bleiben. Das gezielte Durchmischen der Brennelemente dient drei Zwecken:

  1. Der Kontrolle der Leistungsverteilung im Reaktorkern und des Abbrandes, damit die Brennstäbe stets in ihrem sicheren Betriebsbereich verbleiben. Eine technische Herausforderung ist dabei die unterschiedliche Wärmeproduktion in den Spalt- und Brutzonen, die zu unterschiedlichen lokalen Kühlmitteltemperaturen führen. Um diese zu vergleichmäßigen, müssen die Strömungsgeschwindigkeiten entsprechend angepaßt werden. Die Feineinstellung soll durch verstellbare Drosselkörper in den Brennelementen geschehen.
  2. Durch die Bildung von Plutonium verändert sich (lokal) die Reaktivität. Das Umsetzen in Verbindung mit Regelstäben sorgt für die Einhaltung der Betriebszustände.
  3. Die Lebensdauer des Kerns wird vergrößert. Sie hängt maßgeblich von der Anzahl der Brennelemente mit abgereichertem Uran im Kern ab.

Der Betrieb und die Konstruktion von TWR ist erst durch die heute (kostengünstig) verfügbare Rechenleistung möglich. Üblicherweise muß der Kern in 20 000 bis 40 000 Zellen örtlich unterteilt werden. Für jede Zelle wird über Monte-Carlo Simulationen die Absorption der Neutronen berechnet. Dabei müssen die Querschnitte von mehreren hundert Spaltprodukten und deren Zerfallsketten (etwa 3400 Nuklide) zeit- und energieabhängig berücksichtigt werden. TerraPower verwendet dafür ein Computer-Cluster mit 1104 Kernen, die parallel rechnen können.

Einschub: Die Nachhaltigkeit

Was auch immer mit dieser Förster Erkenntnis bei der Kernenergie genau gemeint sein mag, beziehen sich doch „Atomkraftgegner“ meist auf die Uranvorräte und die Energiekosten. Bekannt ist der Werbeslogan: „Die Sonne schickt keine Rechnung“ – ganz neben bei, die Uranlagerstätte auch nicht. Bei einem Preis von $50 für ein pound Yellocake (U3 O8), entsprechend $130 pro kg Uran, ergibt das Kosten von $0.0025 pro kWhel bei einem Leichtwasserreaktor. Dies macht lediglich einen Anteil von 5% an den Strom-Gestehungskosten aus. Selbst bei einem TWR ohne Wiederaufbereitung können etwa 50% des abgereicherten Urans genutzt werden. Daraus folgt eine rund 50fache bessere Ausnutzung des Natururans. Der Urananteil sinkt auf vernachlässigbare $0,00005 pro kWhel .

Jetzt zu den Beständen: In 2009 gab es bereits 1 500 000 to abgereichertes Uran und 270 000 to abgebrannter Brennelemente. Bisher „Atommüll“, aber in schnellen Reaktoren nutzbar. Allein im Meer sind 4 Milliarden to Uran gelöst (3,3 Mikrogramm pro Liter). Praktisch eine unerschöpfliche Quelle, da allein die Flüsse über 10 000 to Uran jährlich in die Meere spülen, wiederum gespeist aus der Verwitterung der Erdkruste. Unter Einbeziehung einer Wiederaufbereitung reichen die Vorkommen für mehr als eine Milliarde Jahre, um den gesamten Energiebedarf der heutigen Menschheit zu liefern. Ist das nachhaltig genug? Von Thorium ist bisher noch keine Rede gewesen. Die Sonne brennt auch nur noch 10 Milliarden Jahre, hat aber bereits in ca. 5 Milliarden Jahren die Erde verbrannt.

Der Natrium-Reaktor

Der TWR mutet als ein etwas theoretisches Konzept an, war aber ausreichend genug, um die chinesische Regierung darauf anspringen zu lassen. Im Jahr 2015 unterzeichnete TerraPower mit China National Nuclear Corporation einen Vertrag über den Bau eines TWR als Versuchsanlage nördlich von Peking. Ein genialer Schachzug. Im Jahr 2019 wurde der Vertrag auf Druck der US-Regierung wegen des Diebstahls geistigen Eigentums wieder aufgelöst. Allerdings war nun die US-Regierung unter Zugzwang, zumal TerraPower bereits eine halbe Milliarde in die Entwicklung investiert hatte.

Der Natrium-Reaktor unterscheidet sich von üblichen schnellen Brütern durch einen zusätzlichen Kreislauf aus Solarsalz (Natriumnitrat etc.). Das hat einen sicherheitstechnischen und betriebstechnischen Vorteil: Die Brennstäbe werden durch Natrium gekühlt, das dabei kurzzeitig radioaktiv wird. Noch im Reaktorbehälter befinden sich Wärmeübertrager, die die Energie an einen sekundären Natriumkreislauf übertragen, der nicht mehr radioaktiv ist. Beide Kreisläufe sind nahezu drucklos. Bei einem konventionellen Brüter wird nun die Energie im Dampferzeuger an den unter hohem Druck stehenden Dampfkreislauf übertragen. Durch den hohen Druck kann bei einem Schaden das Wasser in den Natriumkreislauf eindringen und heftig mit dem Natrium reagieren. Beim Natrium-Reaktor gibt der sekundäre Natriumkreislauf seine Energie an einen ebenfalls drucklosen Kreislauf aus Salzschmelze ab. Damit hat man eine klare sicherheitstechnische Schnittstelle: Ab dem Solarsalz ist alles konventionelle Kraftwerkstechnik. Ein entscheidender Kostenfaktor. Der nukleare Teil – mit all seinen Genehmigungs- und Überwachungsanforderungen – ist bei so einem SMR nur klein. TerraPower geht z. B. für seinen Reaktor mit 80% weniger „nuklearem Beton“ aus.

Ein weiterer Grund ist das geplante Eindringen in den Markt für Solarkraftwerke. Schon heute haben die Solarkraftwerke, z. B. in Kalifornien, ernsthafte wirtschaftliche Schwierigkeiten. Da für alle der Sonnenstand gleich ist, produzieren alle zur Mittagszeit den meisten Strom und des Nachts gar nichts. Dies führt zu entsprechend geringen Preisen bei der Netzeinspeisung. Derzeitiger Trend ist daher die Installation von Batteriespeichern, um wenigstens eine Zeitverschiebung von etwa zwei Stunden – weg von der maximalen Produktion, hin zu der Spitzen-Nachfrage im Netz („duck curve“) – zu erzielen. Mehr ist mit Batterien kaum sinnvoll. Hier setzt TerraPower an: Der Natrium-Reaktor soll eine Nennleistung von 345 MWel haben. Er kann aber auch bis auf etwa 240 MWel (z. B. in Schwachlastzeiten in der Nacht) zurück genommen werden, indem er die Wärme teilweise in den Salzspeicher einlagert. In den Zeiten hoher Preise an der Strombörse, kann er für etwa 5 1/2 Stunden die Leistung auf 500 MWel durch zusätzliche Entnahme aus dem Speicher steigern (Hinweis für Connaisseure: Eine Dampfturbine läßt sich im Bereich von 50% bis 100% nahezu ohne Einbußen beim Wirkungsgrad betreiben.).

Wer steht hinter dem Natrium-Reaktor?

Nachdem das China-Abenteuer beendet war, sind GE Hitachi Nuclear Energy und Bechtel massiv in das Projekt eingestiegen. Alle drei zusammen haben sich gemeinsam für das Advanced Reactor Demonstration Program (ARDP) beworben. TerraPower ist der „Erfinder“, GE Hitachi hat Jahrzehnte Erfahrung mit natriumgekühlten schnellen Reaktoren (z. B. PRISM) und Bechtel ist ein erfahrener „Erbauer“ zahlreicher Kernkraftwerke – nicht zuletzt stehen Milliarden Kapital und zehntausende Fachkräfte dahinter. TerraPower und GE Hitachi sind auch mit dem Idaho National Laboratory wegen des Neubaus des „Versatile Test Reactor“ eng verbunden.

Beim Kühlmittel Natrium bietet sich die Verwendung einer metallischen Uran-Zirkon-Legierung für die Brennstäbe an. Anders als bei Leichtwasserreaktoren, die Uranoxid verwenden. Außerdem erfordert die Erstausstattung eine Anreicherung von bis zu 20% U235 in der Spaltzone („Zündung“). Dafür lassen sich diese Brennstäbe später besonders elegant durch Aufschmelzen (Abscheidung aller leicht flüchtigen Spaltprodukte) und elektro-chemische Verfahren reinigen. Man erhält ein Uran-Plutonium-Gemisch, das zu neuen Brennstäben verarbeitet werden kann. Darüberhinaus sind die Plutonium-Isotopen, wegen der langen Verweilzeit im Reaktor, ohnehin völlig ungeeignet zur Waffenproduktion (Proliferation). Fürs erste hat man sich mit Centrus Energy für die Brennstoffentwicklung zusammen getan. Centrus verfügt in seinem Werk in Piketon, Ohio bereits über AC-100M Zentrifugen, die für das Department of Energy (DOE) HALEU (High Assay Low Enriched Uranium) produzieren.

Bereits als potentielle Kunden und Betreiber sind die Versorger PacifiCorp, (eine Tochter des legendären Investors Warren Buffett’s mit seinem Berkshire Hathaway Fond; Großinvestor in Sonnenenergie), Energy Northwest und Duke Energy als Stromversorger mit an Bord.

Kemmerer, Wyoming: Kohle zu Kernkraft

Kemmerer ist eine Kleinstadt, etwa 100 km nordöstlich von Salt Lake City. Das dortige Kohlekraftwerk Naughton (3 Blöcke, 823 MWel) soll 2025 stillgelegt werden. Aus vier Standorten wurde dieses Kraftwerk für den ersten Natrium-Reaktor ausgewählt. Die vorhandene Infrastruktur (Hochspannungsnetz, Kühlwasser etc.) kann weiter genutzt werden. Ferner beabsichtigt man das Betriebspersonal nach erfolgter Umschulung weiter zu beschäftigen. Für den Bau werden etwa 2000 Menschen benötigt, später etwa 250 Dauerarbeitsplätze im Kernkraftwerk geschaffen. Es ist also nicht verwunderlich, daß TerraPower mit offenen Armen empfangen wurde. Wyoming produziert rund 40% der Kohle in den USA, aber die Förderung ist in 2020 um 1/3 gegenüber 2018 eingebrochen.

Man meint es immer noch sehr ernst mit der Weiterentwicklung der Kerntechnik in den USA. Es gibt kaum einen Unterschied zwischen Trump und Biden. Im Oktober 2020 wählte das DOE zwei Typen (Natrium und Xe-100) für sein Advanced Reactor Demonstration Program (ARDP) aus. Diese beiden bekommen jeweils etwa die Hälfte der Baukosten als Fördermittel für ihren ersten Reaktor im kommerziellen Betrieb. Der Pferdefuß dabei ist, sie müssen innerhalb von fünf bis sieben Jahren am Netz sein – von der Konstruktion über das Genehmigungsverfahren bis zur Montage. Ein enormer wirtschaftlicher Druck, für ein Projekt mit geschätzt über fünf Milliarden Kosten. TerraPower hat im März 2021 den Vertrag mit Fertigstellungstermin 2028 unterschrieben. TerraPower erwartet die Baugenehmigung 2023 und die Betriebsgenehmigung 2026.

Der Bundesstaat Wyoming hat ein Gesetz erlassen (House Enrolled Act 60), das es erlaubt Kohle- und Erdgaskraftwerke durch SMR mit gleicher Leistung zu ersetzen. Es ist bereits die Stilllegung der PacifiCorp Kraftwerke: Dave Johnston (922 MWel), Jim Bridger (2442 MWel), Naughton (832 MWel) und Wyodak (402 MWel) beschlossen.