Reaktoren als Schiffsantrieb

In den letzten Monaten verstärkt sich international die Suche nach „alternativen“ Schiffsantrieben. Ursache sind immer strengere Umweltschutzvorschriften auch auf hoher See (Schwefeldioxid, Stickoxide, Ruß etc.) und der „Kampf gegen CO2 zur Weltenrettung“. Bisher gibt es drei Wege:

  1. Ausrüstung der Schiffe mit Wäschern, wie sie schon seit Jahren in Kraftwerken üblich sind. Diese nehmen aber viel Platz ein und sind aufwendig im Betrieb. Vorteil: Man kann weiterhin Kraftstoffe minderer Qualität (z. B. hoher Schwefelgehalt) verwenden.
  2. Die Umstellung auf Gas-Diesel-Motoren, die mit über 98% Erdgas gefahren werden. Wegen des kleineren Energiegehalts (≈65% von Diesel) erfordern sie jedoch größere Tankanlagen, die überdies auch noch für LNG (-164°C) geeignet sein müssen. Abgesehen von hohen Investitionen, schlechterer Infrastruktur und höheren Betriebskosten, ergibt das weniger Schadstoffe und auch weniger CO2. Bislang galt es deshalb als Königsweg. Bis – erfahrene Energietechniker ahnen es – die „Grünen“ die „schlechte Klimabilanz von Methan“ aus dem Hut zogen: In der üblichen Manier wurden nun so hohe Schlupfraten unterstellt, daß solche Schiffe angeblich noch „klimaschädlicher“ sind.
  3. Die Verwendung von „alternativen Kraftstoffen“, wie Methanol (≈50% von Diesel), Wasserstoff (≈20% von Diesel) oder gar Ammoniak (bei -33°C oder 9bar, ≈33% von Diesel). Sie sollen mittels „Grünstrom“ aufwendig produziert werden. Abgesehen von ihrer Giftigkeit (CH4 O, NH3) erscheint das als eine Schnapsidee. Wo sollen die gewaltigen Mengen „Grünstrom“ eigentlich herkommen? In Wirklichkeit doch aus Kohle und Kernenergie?

Es verwundert daher nicht, daß immer mehr Reeder Kernreaktoren als Antrieb wieder entdecken.

Der Istzustand

Man muß zwischen militärischer (U-Boote, Flugzeugträger, Kreuzer) und ziviler Nutzung unterscheiden. Bisher sind die USA, Russland, Frankreich, GB, China und Indien nukleare Seemächte. Es wurden mehrere hundert Reaktoren von diesen Staaten für solche Schiffe gebaut. Wegen der speziellen Anforderungen sind diese Reaktoren für die zivile Nutzung ungeeignet. Es wurden überwiegend Druckwasserreaktoren mit hoher Anreicherung (>93% U235) und auch schnelle Reaktoren von den USA (USS Seawolf SSN-575 mit Natrium zur Kühlung) und Russland (Alfa-Klasse mit Blei-Wismut als Kühlmittel) eingesetzt. Eindeutig dominiert jedoch der Druckwasserreaktor.

Die zivile Nutzung setzte frühzeitig mit der Savannah (USA, 1962–1972), der Otto Hahn (D, 1968–1997), der Mutsu (Japan, 1974–1992) und der Sevmorput (UDSSR, 1988–2007 und wieder seit 2016) ein. Letzterer ist ein Container/Lash-Carrier, der immer noch in Betrieb ist. Die anderen sind aus wirtschaftlichen Gründen einen frühen Tod gestorben. Eine Sonderstellung nehmen die russischen Eisbrecher ein: Die Lenin (1959–1989) und die Taimyr Sovetskiy Soyuz (1989–2014) sind nicht mehr im Dienst. Jedoch der Taimyr (1989), der Vaygach (1990), der Yamal (1992), der 50 Let Pobedy (2007) und der Arktika (2020). Weitere sind in Planung. Es gibt also genug Betriebserfahrung.

Anforderungen an einen Schiffsantrieb

Für alle Antriebe gelten folgende Gesichtspunkte:

  • Energiedichte: Jedes Schiff muß nicht nur sein komplettes Antriebssystem bei sich tragen, sondern auch den gesamten Kraftstoffvorrat. Das daraus resultierende Gewicht bzw. Volumen geht einem Schiffskörper als Fracht verloren.
  • Wirkungsgrad: Bezieht sich nicht nur auf die Umwandlung des Kraftstoffs, sondern auch auf den gesamten Antriebsstrang.
  • Umweltbelastung: Während des Betriebs (z.B. Abgase) und auch bei Unglücken (z. B. Ölverschmutzung).
  • Sicherheit: Feuer, Kollisionen etc. Auf einem Schiff kann man weder weglaufen noch einfach die Feuerwehr rufen.
  • Verfügbarkeit: Ausfall der Antriebsanlage bedeutet automatisch Seenot. Aber auch Liegezeiten für Wartungsarbeiten oder Sicherheitsüberprüfungen bedeuten keine Auslastung und meist hohe Kosten.
  • Lastwechsel und Anfahren: Schiffsantriebe müssen den gesamten Geschwindigkeitsbereich von Null bis Höchstgeschwindigkeit ohne all zu große Verluste verändern können und dies muß möglichst schnell geschehen (Revierfahrt). Die Zeit bis zur Einsatzfähigkeit (Hafen, Kanaleinfahrten etc.) soll möglichst klein sein.
  • Wirtschaftlichkeit: Hängt maßgeblich von den Investitionskosten und dem Brennstoffverbrauch über die gesamte Lebensdauer ab (Öltanker oder Kreuzfahrer). Dies ist nur schwer im Voraus kalkulier- und optimierbar. Schiffe haben meist eine relativ kurze Lebensdauer (ca. 20 Jahre).

Reaktoren

Kernreaktoren sind sehr klein und leicht verglichen mit einem Schiffsdiesel. Das notwendige Gewicht kommt aber von der notwendigen Abschirmung gegen Strahlung. Man muß von etwa 2000 Tonnen ausgehen. Hinzu kommt noch der eigentliche Antrieb in Form einer Dampf- oder Gasturbinenanlage nebst Hilfsaggregaten. Für Handelsschiffe kommen in absehbarer Zeit nur Druckwasser- (PWR), Hochtemperatur- (HTR) oder Salzschmelze-Reaktoren (SSR) in Betracht. Druckwasserreaktoren haben so geringe Temperaturen, daß nur eine Dampfturbine verwendet werden kann. Die beiden anderen könnten auch Gasturbinen verwenden. PWR und HTR stehen unter Druck und sind damit auf einen entsprechend großen Sicherheitsbehälter angewiesen. HTR auf der Basis von Helium als Kühlmittel sind voluminös. PWR erfordern etwa alle zwei Jahre einen mehrwöchigen Hafenaufenthalt zum Wechseln der Brennelemente. HTR als Kugelhaufenreaktoren könnten kontinuierlich „abgebrannte“ Kugeln ersetzen. SSR könnten sogar die gesamte Lebensdauer des Schiffs ohne Brennstoffwechsel auskommen.

Abgesehen davon, daß bisher noch kein HTR und kein SSR auf einem Schiff eingebaut worden ist, ist die Auswahl des Reaktortyps nur im Zusammenhang mit Schiffstyp und Antriebsstrang möglich.

Antriebssystem

Dampf- (Rankine-Prozess) und Gasturbinen (Brayton-Prozess) sind erprobte Schiffsantriebe. Sie wirken üblicherweise über ein Untersetzungsgetriebe direkt auf die Schiffsschraube. Solche Getriebe sind komplex, teuer und oft auch störanfällig. Die Reaktoranlage sollte aus Stabilitätsgründen mitschiffs eingebaut werden. Damit ergibt sich eine sehr lange Welle. Moderne Containerschiffe haben einen Bedarf an elektrischer Energie von etwa 25% der Antriebsleistung. Es stellt sich damit die Frage, ob man nicht gleich zu einem vollelektrischen Antrieb übergeht, durch den man konstruktive Freiheit gewinnt. Man hätte dann das kleine „Kernkraftwerk“ gut und sicher in der Mitte des Schiffs eingebaut und könnte sogar sogenannte „Pods“ verwenden. Das sind Elektromotoren in 360° drehbaren Gondeln unter Wasser. Solche Schiffe brauchen keine Ruderanlage.

Verwendet man Reaktoren mit höheren Betriebstemperaturen (HTR ca. 700°C, SSR ca. 580 °C) könnte man auf Gasturbinen übergehen. Es sind offener und geschlossener Kreisprozess zu unterscheiden. Bei offenen Gasturbinen wird Luft angesaugt, in der Brennkammer erhitzt und diese tritt nach getaner Arbeit als Abgas aus dem Schornstein aus. Solche Gasturbinen sind im Schiffbau Stand der Technik. Die eigentliche Turbine ist nur sehr klein, das erforderliche Beiwerk (z. B. Luftfilter) aber durchaus voluminös. Wollte man nun Kernenergie einsetzen, müßte man die Brennkammer durch einen geeigneten Wärmeübertrager ersetzen. Es empfiehlt sich, einen HTR mit möglichst hohen Temperaturen zu verwenden, da der Wirkungsgrad solcher Turbinen stark temperaturabhängig ist. Solch eine Turbine erscheint für den Betrieb eines Handelsschiffs eher ungeeignet.

Eine vielversprechende Alternative ergibt ein geschlossener Kreislauf mit überkritischem scCO2 (supercritical). Bei CO2 in einem Betriebsbereich oberhalb des Kritischen Punkts (31°C und 74bar) erhält man – verglichen mit Dampfturbinen – eine extrem kleine Turbine mit viel weniger Stufen, da das scCO2 eine Dichte wie die Flüssigkeit, aber gleichzeitig die (geringe) Viskosität des Gases, hat. Bei 550°C und 80 bar Druck, kann man theoretisch Wirkungsgrade von bis zu 50% – gegenüber nur etwa 30% bei kleinen Druckwasserreaktoren – erreichen. Allerdings laufen solche Turbinen mit 40 bis 75 Tausend Umdrehungen pro Minute. Es erscheint deshalb nur die Verwendung als vollelektrischer Antrieb möglich. Kosten und Betriebssicherheit könnte nur ein realisiertes Schiff zeigen.

Lastwechsel und Anfahren

Ein Schiff muß von Stillstand im Hafen bis volle Fahrt betrieben werden. Außerdem ergibt sich eine unterschiedliche Belastung, je nach Beladung (Ballast), Strömung, Seegang etc. Ein Schiff muß auch jederzeit (Reede) anfahrbar sein. Auch das ist keine triviale Forderung. Ein Dieselmotor ist in diesen Disziplinen unschlagbar – ein Grund, warum er auch bei großen Schiffen die Dampfturbine verdrängt hat (Vorwärmung). Heute liegt die Grenze bei Dieselmotoren für Containerschiffe bei rund 80 MW Wellenleistung. Wie weit das noch zu steigern ist (Fertigung), wird sich zeigen. Die verfügbaren Motoren begrenzen jedoch die (sinnvolle) Größe eines Handelsschiffes.

Druckwasserreaktoren von Kernkraftwerken lassen sich nicht einfach auf Schiffe übertragen. Ein wesentlicher Faktor ist das Wieder-Anfahren nach Abschaltung. Durch den Zerfall der Spaltprodukte Jod und Tellur bilden sich Xenon und Samarium – zwei Elemente mit außerordentlich großen Einfangquerschnitten für Neutronen. Abhängig von der „Überschußreaktivität“ kann sich eine Totzeit von mehreren Stunden ergeben, bis der Reaktor überhaupt wieder in Betrieb gehen kann. Dies ist mit ein Grund, warum Marine-Reaktoren eine so hohe – aber unerwünschte (Proliferation) – Anreicherung besitzen.

Sicherheit und Verfügbarkeit

Die Vorschriften, die Überwachung und die Ausbildung müssen genauso streng sein, wie bei Kernkraftwerken an Land. Insbesondere die US-Marine beweist seit Jahrzehnten, daß ein unfallfreier Betrieb möglich ist. Schlechtes Gegenbeispiel ist die russische Marine. Schlechte Ausbildung, Schlamperei und Mangelwirtschaft haben sogar zu mehreren Totalverlusten und unzähligen Unfällen geführt. Auf nuklearen Schiffen muß ausreichend Redundanz bei technischen Anlagen vorhanden sein. So sollten mehrere Notdiesel vorhanden sein, die das gesamte Schiff, den Reaktor und sogar einen kleinen Notmotor (für eine Langsamfahrt bis zum nächsten Hafen oder wenigstens in ein sicheres Gebiet) mit elektrischer Energie versorgen können.

Brennstoffwechsel, notwendige (umfangreiche) Wartungsarbeiten und Sicherheitsüberprüfungen ergeben über die Nutzungsdauer erhebliche Ausfälle und erzeugen damit beträchtliche Kosten. Russische Eisbrecher mit ihren Saisoneinsätzen haben diese Probleme nicht. Es sind daher Konzepte ohne Brennelementewechsel erforderlich. Auch hier weisen Marineschiffe den Weg: Dort ist der Brennstoffwechsel erst nach der halben geplanten Nutzungsdauer nach etwa 20 Jahren vorgesehen. Dieser wird mit einer generellen Überholung und Modernisierung des Schiffs kombiniert. Nach der mehrmonatigen Liegezeit verläßt praktisch ein „neues“ Schiff die Werft.

Umweltbelastungen

Bei konventionellen Schiffen sind diese in Form von Abgasen und Abwässern permanent. Hier hat sich zwar gewaltiges getan (Primärmaßnahmen oder Abgasreinigung, Müllverbrennung, Kläranlage usw.), aber wegen der hohen Anzahl sind sie immer noch deutlich spürbar. Es ist abzuwarten, was den „Ökos“ noch alles einfällt. Es sei nur an das Schicksal des Dieselmotors bei PKW erinnert. Darüber hinaus ist durch die Erschaffung neuer Abgaben (CO2 Abgabe, Energiesteuer) die Kostenschraube stets gezielt überdehnbar.

Die Angst vor einem „Atomunfall“ ist ziemlich unbegründet. Wie die Totalverluste mit U-Booten gezeigt haben, ist das Strahlenrisiko sogar weit geringer als an Land. Wasser ist eine nahezu ideale Abschirmung (siehe Abklingbecken) und es würden sich bei einer Freisetzung in den Weiten der Meere radioaktive Stoffe sehr schnell verdünnen (siehe Kernwaffenversuche sogar unter Wasser im Pazifik). Die biologischen Auswirkungen wären kleiner als bei den bekannten Tanker- und Bohrinsel Unglücken.

Rechtliche Situation

Grundsätzlich muß jedes Schiff durch eine Klassifizierungsgesellschaft zugelassen sein. Ansonsten ist es frei auf der Hohen See zu fahren. Allerdings kann jeder Hafen die Erlaubnis zum Einlaufen verwehren. Das ist in der Tat grundsätzlich und in bestimmten Fällen geschehen. Wie sich das entwickelt, wird die Zukunft zeigen. Würde den Einsatz aber nicht grundsätzlich verhindern, da die großen Handelsrouten ohnehin zwischen den „Atommächten“ verlaufen. Allerdings ist eine möglichst enge Abstimmung zwischen möglichst vielen Staaten der beste Garant für eine (schnelle) Verbreitung.

Die Wirtschaftlichkeit

Letztendlich hängt immer alles von der Wirtschaftlichkeit ab. Man sollte sich durch das Scheitern von Savannah, Otto Hahn und Mutsu nicht täuschen lassen. Das waren lediglich Demonstrations- und Werbeobjekte. Dies gilt insbesondere für die Savannah, die eher eine schnittige Jacht als ein Handelsschiff war. Sie haben allerdings alle drei unter Beweis gestellt, daß ein Handelsschiff mit Kernenergieantrieb möglich ist.

Die Investitionskosten können heute nicht sicher abgeschätzt werden. Sie sind mit Sicherheit höher als bei einem konventionellen Schiff. Andererseits wäre mit einer steilen Lernkurve zu rechnen. Laufen erstmal ein paar Schiffe erfolgreich, ist schnell mit größeren Bestellungen zu rechnen. Standardisierungen sind dabei sehr hilfreich. In diesem Sinne ergibt sich gerade auf dem Land mit den SMR (Kleine Reaktoren bis 300 MWel und Kleinstreaktoren bis 20 MWel) eine förderliche Situation: Umstellung der Genehmigungsbehörden auf „kleine“ Reaktoren und Aufbau einer Industrie mit „Massenfertigung“. Der Schritt – insbesondere für Nationen mit nuklearer Marine – aufs Meer ist dann nur noch kurz.

Es müssen Betriebsmannschaften ausgebildet werden. Auch hier haben die Nationen mit nuklearer Marine einen entscheidenden Vorteil: Sie verfügen über solche Ausbildungsstätten, haben jahrzehntelange Erfahrung und sogar erfahrene „Gediente“. Außerdem hat sich seit dem Jahrhundert der Savannah und Otto Hahn eine Menge auf dem Gebiet der Automatisierung und Überwachung (Computer) und Fernwirktechnik (Satellitenkommunikation) getan.

Der wesentliche Faktor für die Betriebskosten eines Schiffs ist der Brennstoff. Fossile Brennstoffe werden teurer werden – nicht zuletzt wegen Umweltauflagen. Bei Kernreaktoren hingegen, spielen die Brennstoffkosten (Uran, Anreicherung, Entsorgung) schon heute eine nahezu vernachlässigbare Größe. Gehen die „modernen“ Reaktoren, die heutigen „Atommüll“ weiter nutzen, erst einmal in Betrieb, werden die Brennstoffkosten absehbar noch weiter sinken.

Bei Schiffen kommt noch eine Besonderheit hinzu: Die Antriebsleistung steigt mit der dritten Potenz (doppelte Geschwindigkeit, achtfache Leistung). Aus diesem Grund ist man in den letzten Jahrzehnten zu immer langsameren Schiffen übergegangen. Langsam, bedeutet aber weniger Umläufe pro Jahr (z. B. Shanghai – Wilhelmshaven – Shanghai) und das führt bei den Reedern zu mehr Schiffen und damit zu höheren Kosten. Ein weiterer Vorteil hoher Reisegeschwindigkeit sind kurze Transportzeiten. Es gibt genug Güter, wo das ein Kostenvorteil an sich ist. Deshalb gibt es Luftfracht oder Eisenbahntransporte sogar von China nach Duisburg. Mit steigenden Zinsen nimmt dieser Trend wieder zu. Insofern verwundert es nicht, daß man bereits Studien für ein nukleares Containerschiff mit 37,5 Knoten (über 1600 km pro Tag) gemacht hat. Solche Fahrzeiten müssen sogar gegen die Nutzungsgebühren und Passagedauern von Suez und Panama Kanal gegengerechnet werden. Dies ist nur ein Beispiel dafür, daß Wirtschaftlichkeit in der Logistik ein komplexes Thema ist.

Kleinreaktoren in Mikronetzen

Bisher war es Stand der Technik, möglichst große Stromnetze über Ländergrenzen hinweg zu bilden. In diese speisten zahlreiche lokale Kraftwerke ein. So konnte „preiswerte“ elektrische Energie aus Wasserkraft, Braunkohle, Steinkohle etc. optimal genutzt werden. Durch die vielen Erzeuger erhöhte sich darüberhinaus die Verfügbarkeit für alle. Auf die Spitze getrieben wurden diese Netze in den USA, der Sowjetunion und neuerdings in China. Sie sind so ausgedehnt, daß sogar Zeitzonen ausgenutzt werden konnten. Das war die „gute, alte Zeit“ mit ausschließlich nachfrageorientierter Versorgung.

In dem Moment, als man die fixe Idee einer Vollversorgung durch Wind und Sonne ersonnen hatte, wurde alles schlagartig anders: Der Zufall trat als bestimmende Größe auf den Plan. Heute soll nicht mehr produziert werden, wenn der Kunde eine Nachfrage hat, sondern ausschließlich, wenn der Wettergott es will. Es ist wieder so, wie vor der Erfindung der elektrischen Arbeit. Geistige Größen wie Claudia Kemfert bezeichnen das verniedlichend als „dargebotenes Wirtschaften“. Soll heißen, wenn der Wind weht, soll der Arbeiter am Fließband arbeiten, bis er umfällt, dafür kann er ja bei Windstille „Überstunden abfeiern“. Willkommen zurück im Mittelalter.

Definition nach IEEE

Für alle Nutzer, die auf eine kontinuierliche Stromversorgung angewiesen sind, ist die Entwicklung hin zu „Erneuerbaren“ ein einziger Albtraum. Die logische Antwort darauf heißt Microgrid in Anlehnung der IEEE 2030.7 (IEEE Standard for Specification of Microgrid Controllers):

Ein Microgrid (kleines Stromnetz oder besser noch Energienetz) sind miteinander verbundene Verbraucher und Erzeuger mit elektrisch eindeutiger Abgrenzung, die als eine regelbare Einheit verstanden werden können. Sie können mit dem öffentlichen Stromnetz verbunden und von diesem getrennt werden (Inselbetrieb), sind aber stets in sich regelbar.

IEEE 2030.7 (IEEE Standard for Specification of Microgrid Controllers

Das ist die Antwort der IEEE (Institute of Electrical and Electronic Engineers) auf die zunehmende Verwundbarkeit unserer Stromnetze durch „extreme Wetterereignisse“ oder menschengemachte Unglücke. Das geht über die Absicherung einzelner Objekte – z. B. Krankenhaus mit Notstromdiesel – weit hinaus. Denkbar ist z. B. eine Stadt mit Wohngebäuden, Gewerbe, Industrie etc. und verschiedenen Quellen: Photovoltaik, „Kleinkraftwerke“, Abwärmenutzung usw. Durch die Vernetzung ist es darüberhinaus möglich, Primärenergie durch Kraft-Wärme-Kopplung zu sparen. Im Gegensatz zu elektrischer Energie, läßt sich Wärme nur im Nahbereich wirtschaftlich nutzen. Das war vielfach der Hinderungsgrund (z.B. großes Kernkraftwerk, weit ab von Städten) für Koppel-Prozesse oder den heutigen Schnapsideen (z. B. in Berlin) die Überproduktion aus den fernen Windparks auf dem Meer in riesigen Tauchsieder für die Fernwärme zu verbraten.

Die Widerstandsfähigkeit

Man muß es immer wieder in aller Deutlichkeit sagen: Ein Stromnetz nur mit Wind- und Sonne zu betreiben, ist technisch unmöglich. Es ist immer ein Backup-System für die Dunkelflaute nötig. Selbst ein Einfamilienhaus läßt sich – zumindest wirtschaftlich – nicht nur durch eine Photovoltaik versorgen. Es müßte eine riesige, entsprechend teure Batterie installiert werden, damit jederzeit Strom genutzt werden kann – auch in der Nacht im Winter. In der Praxis schnorren solche Installationen deshalb im öffentlichen Netz: Es wird elektrische Energie zu einem geringen Preis pro kWh bezogen. Die Investitionen für die Leistung werden allen anderen Stromkunden in Rechnung gestellt. Ein Zustand, über den man bisher, wegen der geringen Anzahl, hinwegsehen konnte. Je mehr (wohlhabende) Schlaumeier sich aber eine Photovoltaik aufs Dach setzen, um so unsozialer wird diese Form der Umverteilung. Kurz über lang wird man deshalb einen (saftigen) Bereitstellungspreis für diese Form der Bereicherung einführen müssen. Dies ist z. B. für die Industrie schon immer der Fall. Sorry, liebe „grün-alternativen“ Hausbesitzer, wenn ihr den Schlangenölverkäufern auf den Leim gegangen seid. „Öko“ mag zwar fürs eigene Image gut sein, man muß es sich nur leisten können.

Schon länger in der Industrie und neuerdings auch bei Stadtwerken, rückt die Versorgungssicherheit noch vor den Energiepreisen ins Blickfeld. Jahrzehntelang kam in Deutschland der Strom aus der Steckdose. Plötzlich setzt sich die Erkenntnis durch, daß kein Strom (Blackout) die teuerste Variante ist. Egal ob die verwundbar gewordenen Netze durch außergewöhnliches Wetter oder durch wechselnde Politiker (drohen) zusammen zu brechen. Eigentlich keine neue, sondern allenfalls vergessene Erkenntnis. Jedem West-Berliner ist das Problem noch aus der Zeit des kalten Kriegs vertraut. Man unterhielt riesige Kohlenhalden, einen eigenen Erdgasspeicher und zusätzliche Tanklager um einen Inselbetrieb zu ermöglichen. Strenge Winter wurden damit überstanden (einfrieren der Wasserwege und der Kohle in den Eisenbahnwagons) und sie dienten auch als wirksame Abschreckung gegenüber russischen Blockaden. Die wirksamste und preiswerteste Lösung ist das Speichern der Primärenergie (Kohle, Gas, Öl, Uran) und nicht erst der Endenergie (elektrische Energie, Wärme). Der beschleunigte Ausbau der Windkraft in Deutschland ist in diesem Sinne der Versuch einen Brand mit Benzin zu löschen. Je mehr Windparks, um so anfälliger wird das öffentliche Netz. Speicher für die Überbrückung der in Zentraleuropa regelmäßig auftretenden tagelangen Dunkelflauten sind nicht einmal technisch möglich, geschweige denn finanzierbar. Da sich diese Erkenntnis langsam rumspricht, ward das nächste Schlangenöl geboren: Wasserstoff aus Kanada, Strom aus der Sahara.

Die Optimierung

Wenn man darüber hinaus noch glaubt, daß (moderne) fossile Kraftwerke schädlicher für die Umwelt seien als Windparks apokalyptischen Ausmaßes – man betrachte nur die Planungen für Nord- und Ostsee – was bleibt dann? Wenn man nicht völlig ideologisch vernagelt ist, nur die Kernenergie. Sie ist ohnehin die umweltfreundlichste Energieerzeugung und reicht für Jahrtausende um den heutigen Primärenergieverbrauch der Welt zu decken. Es gab bis heute allerdings das Problem der „Megawatt-Maschine“. Man mußte erstmal ein großes Netz haben, damit man überhaupt Kernkraftwerke bauen konnte. Das ist das Problem aller abgelegenen Regionen bzw. Entwicklungsländer.

Nun kommt unerwartete Hilfe von professionellen Investoren (Waren Buffet, Bill Gates etc.). Sie haben sich mit Milliarden Subventionen aus Steuermitteln die Investition in Wind- und Sonne versüßen lassen. Wohl wissend, daß sich diese „Geldanlagen“ nur wegen der Subventionen rechnen. Diese laufen aber absehbar aus. Der Rückbau dieser Anlagen kostet auch noch Geld, also muß eine Lösung her, diese wenigstens auf dem Papier weiter betreiben zu können. Dafür bieten sich Microgrids mit Kleinreaktoren an. Im ersten Schritt listet man alle Verbraucher – Wärme und Elektro – in dem betrachteten Gebiet auf, ebenso alle Energiequellen, wie Windmühlen, Sonnenkollektoren, Biogasanlagen und was sonst noch immer geht. Die Aufgabe all das zu optimieren, nimmt heute ein Programm wie XENDEE ab. Mit ihm kann man nicht nur die finanziell optimale Lösung finden, sondern auch nach ökologischen Gesichtspunkten optimieren, was für das Marketing äußerst wichtig ist: Selbstverständlich kann der minimale CO2-Fußabdruck gefunden werden.

Jetzt kommt die Kernenergie ins Spiel. Sie kann das betrachtete Versorgungsgebiet nahezu CO2 frei machen. Wozu man dann überhaupt noch Wind und Sonne braucht? Man kappt ja nicht die Verbindung zum öffentlichen Netz, sondern bezieht gelieferte bzw. bezogene elektrische Leistung ein. Ein simpler Weg ist die Lieferung bei Spitzenpreisen bzw. der Bezug, immer dann, wenn der Preis im öffentlichen Netz unter dem der Eigenerzeugung liegt. Dieses Zubrot kann man noch durch Wärme- und Kältespeicher ausbauen. Eigentlich gar nicht etwas so neues, sondern das, was Stadtwerke (z. B. Bewag in Berlin oder HEW in Hamburg) in der guten alten Zeit schon immer gemacht haben.

Der Einsatz von Kleinreaktoren

Wichtig zum Verständnis ist die unmittelbare Nähe zum Verbraucher. Nur so kann man überhaupt Kraft-Wärme-Kopplung als die energetisch sinnvollste Methode der Energiewandlung betreiben. Genau das Gegenteil von deutscher „Energiewende“: Es wird nicht die Nutzenergie in der fernen Nordsee oder gar im fernen Kanada produziert, sondern erst unmittelbar vor Ort. Abgesehen von der Einsparung großer Transportverluste muß man auch nicht elektrisch heizen. Die Verwendung der Edelenergie „elektrischer Strom“ ist wirtschaftlicher (Umrüstung alter Gebäude auf Wärmepumpen) Unsinn bzw. die „Heizung durch elektrische Tauchsieder“ thermodynamischer Frevel (Exergie).

Wenn Kernreaktoren in unmittelbarer Nähe von Wohngebieten akzeptiert werden sollen, müssen sie „inherent sicher“ sein. Sie müssen vollautomatisch betrieben werden können und dürfen – egal was auch immer passiert – keine gefährdende radioaktive Strahlung über ihre Grundstücksgrenze hinweg abgeben. Ferner sollte ihre Leistung möglichst klein (<20 MWel) sein, damit möglichst viele Kleinnetze gebildet werden können. Bezüglich der wirtschaftlichen Größe kann bisher noch kein abschließendes Urteil gefällt werden. Selbst die SMR (<300 MWel) sind wegen ihrer Leistung nur für Metropolen oder Industriegebiete geeignet. Sie sind eher für die Eingliederung in konventionelle Netze – z. B. Ersatz bestehender fossiler Kraftwerke – erdacht worden.

Der Krieg als Vater aller Dinge

Immer wenn es um Militär geht, spielt Geld praktisch keine Rolle. Nichts erscheint zu teuer. Zweistellige Millionenbeträge sind z. B. bei Kampfflugzeugen die Regel. Generäle denken in anderen „Einheiten“. Ihr Leitgedanke gipfelt in der schon alten Überzeugung: Schlachten werden durch die Infanterie, Kriege aber durch die Logistik gewonnen. Dieser Gedanke ist im Zeitalter der Präzisionsraketen aktueller denn je, wie der Ukraine-Krieg gerade zeigt: Die Stützpunkte lassen sich relativ einfach verteidigen, nicht aber die Eisenbahnlinien und die LKW-Kolonnen für Munition und Treibstoff. Ferner elektrifiziert sich auch der Krieg immer mehr: Elektrische Antriebe wegen ihrer geringeren Wärme- und Geräuschabstrahlung, Radargeräte, elektronische Geräte zur Aufklärung und Störung, bis hin zu Lasern zur Drohnenabwehr. Allen Militärs ist klar, nicht die Stromerzeugung im Feld ist das Problem, sondern die dauerhafte Energieversorgung unter Kriegsbedingungen.

Favorit sind mobile Kleinreaktoren, die sich mit Flugzeugen und LKW transportieren lassen. Im ersten Schritt will man Flughäfen und Raketenabwehr im fernen Alaska versorgen. Auch das kein so neuer Gedanke, war alles schon mal in den 1950er Jahren da. Heute steht aber eine ganz andere Reaktortechnik zur Verfügung. Solche Militärstützpunkte verfügen bereits über ein Microgrid. Auch auf dem Gebiet der Netze hat sich durch die Elektronik enorm viel getan. Der letzte fehlende Baustein ist nur noch der Kleinreaktor.

Wenn man sieht, mit welcher Intensität in den letzten Jahren in den USA geforscht und entwickelt wird und vor allen Dingen, wie breit die finanzielle Unterstützung der Politik geworden ist, wird man in den nächsten Jahren mit den ersten realisierten Projekten rechnen können. Da in den USA eine grundsätzlich andere Einstellung zur „Geheimhaltung“ als in sozialistischen Systemen herrscht, wird die zivile Anwendung unmittelbar folgen. Sobald das Militär die technische Realisierbarkeit vorgemacht hat, werden sich die Investoren auf dieses neue Gebiet stürzen. Wehe den Staaten, die ihren Wohlstand mit ihren gigantischen „Windparks“ verbrannt haben. Es wäre nicht das erste Mal in der Geschichte, daß ganze Kulturen wegen technisch-wirtschaftlicher Fehlentscheidungen in sich zusammengebrochen sind.