Nord Stream oder LNG?

In den letzten Monaten wurde plötzlich die Erweiterung der Nord Stream Pipeline durch die Ostsee wieder neu diskutiert. Meist sehr oberflächlich auf dem Niveau Trump gegen Putin. Ist die Sache wirklich so einfach oder geht es um grundlegende Zusammenhänge?

Nord Stream

Diese Leitung soll jährlich 110 Milliarden Kubikmeter Erdgas aus Rußland unterhalb der Ostsee nach Deutschland transportieren. Dies ist der erste Streitpunkt: Sie umgeht damit die bisherigen Transportwege durch Drittländer. Diese Länder verlieren damit beträchtliche Transitgebühren und Dienstleistungen. Genau das ist ein Ziel der russischen Regierung: Sie will auch weiterhin über den Gashahn ihre Nachbarn disziplinieren können. Unvergessen sind die Liefereinschränkungen in die Ukraine in kalten Wintern. Diese Gefahr besteht heute so nicht mehr, da die „Pufferstaaten“ durchweg von Westen aus beliefert werden können.

Der Gasmann Schröder als ehemaliger Bundeskanzler und heutiger bester Freund und gut dotierter Günstling von Putin wird nicht müde zu betonen, welch zuverlässiger Handelspartner doch Rußland sei. Selbst im Kalten-Krieg sei immer Gas geliefert worden. Das ist zwar richtig, aber heute haben wir einen heißen Krieg in der Ost-Ukraine und gewaltsame Verschiebungen von Grenzen auf der Krim.

Das alles ficht echte deutsche Putin-Versteher nicht an. Um so geringer ist das deutsche Verständnis für den US-Steuerzahler: Dem geht es nämlich schon lange – nicht erst seit Trump Präsident geworden ist – mächtig gegen den Strich, daß sich Deutschland gern auf seine Kosten verteidigen läßt und gleichzeitig Russlands Aufrüstung auch noch mit den dafür dringend benötigten Devisen fördert. Die Politik unserer gelernten Agit-Prop-Sekretärin alles zu unterschreiben – ob Stickoxid Grenzwerte oder Zusagen zu Verteidigungsausgaben (2%-Kriterium) – wird nicht mehr lange gut gehen.

Die Energiewende

Deutschland steigt aus der Kernenergie aus, will möglichst schnell die Braunkohlekraftwerke abschalten und bereitet schon den Ausstieg aus der Steinkohle vor. Was bleibt, ist faktisch nur noch Erdgas als Primärenergieträger. Energiemix und Versorgungssicherheit war gestern.

Auch bildungsresistente Politiker sollten inzwischen verstanden haben, daß Wind Wetter ist. Entweder er weht oder er weht nicht. Da kann man so viele Windmühlen gegen bauen wie man will. Hier liegt nämlich genau die Crux: Wenn er weht, produzieren ganz viele Windmühlen ganz viel elektrische Leistung – demnächst mehr, als überhaupt verbraucht wird. Wenn er aber nicht weht, dann keine einzige. Noch mal in einfacher Sprache: Die mögliche Bandbreite bewegt sich zwischen Null Produktion (Windstille) und maximaler momentaner Nachfrage (durch alle Stromkunden zu einem Zeitpunkt). Die Natur läßt sich nicht durch Menschen steuern: Oft weht der Wind gerade besonders stark, wenn wenig elektrische Energie benötigt wird (Nachts, Sonntags) und umgekehrt.

Noch schlimmer geht es in unseren Breiten mit dem Sonnenlicht zu. Im Winter ist es bis zu 16 Stunden täglich dunkel. Deshalb ist es auch noch kalt und der Energiebedarf steigt stark an.

Ich kann die Einwände von Annalena und Anton schon hören: Wenn erstmal unsere Führerin ihre Wunderwaffe Speicher hat, ist auch der Endsieg in der Energiewende sicher. Hat sie aber nicht und wird sie auch auf absehbare Zeit nicht kriegen. So einfach, aber auch so grausam, ist die Natur.

Die besondere Rolle des Erdgases

Kohle, Kernenergie und Öl sind leicht transportierbar und einfach zu speichern. Erdgas als Gas aber nicht. Kohle und Kernenergie sind besonders preiswert, aber heute praktisch nur in Kraftwerken zur Stromproduktion einsetzbar. Mineralöl ist mit Abstand am flexibelsten einsetzbar und deshalb auf Grund der hohen Nachfrage am teuersten.

Nun stellen sie sich einfach mal vor, sie verfügen über riesige, schier unerschöpfliche Vorräte an Erdgas. Pech nur, sie sind völlig wertlos, weil weit von den Verbrauchszentren entfernt. Oft sogar Müll, wenn sie als Begleitgas der Ölförderung noch entsorgt werden müssen, was überdies meist sehr belastend für die Umwelt ist und deshalb schon in vielen Gebieten mit hohen Strafgebühren belegt ist. Glück, wenn ihre Förderanlagen in der Nähe von dicht besiedelten Wohngebieten liegen (z. B. „Hollandgas“, Niedersachsen etc.), dann können sie den Konkurrenten Heizöl über etwas günstigere Preise aus dem Markt drücken.

Die Achillesferse des Erdgases ist dessen Transport. Rohrleitungen und Verflüssigungsanlagen sind extrem kapitalintensiv. So soll allein Nord Stream zwischen 15 und 20 Milliarden Baukosten erfordern. Hinzu kommt noch der Energieverbrauch für den Transport, Transitgebühren, Wartung etc. Kein Mensch tätigt solche Investitionen für ein paar Kubikmeter oder will solche Anlagen nur ein paar Jahre nutzen. Die Transportkapazität von 110 Milliarden Kubikmeter pro Jahr (≈ 9,27 Bcf/d) entspricht einer Leistung von knapp 140 GWBrennstoff . Richtig erkannt, das ist eine ganze Menge. Mit der Wärmeversorgung von Einfamilienhäusern richtet man da wenig aus. Es muß also ein richtiger Absatz her.

Im Jahr 2017 betrug der Erdgasverbrauch in Deutschland 3230 PJ (897 TWhBrennstoff). Damit wurden neben Heizung und Industrie auch etwa 86 TWh elektrischer Energie erzeugt. Die Stromerzeugung aus Kernenergie betrug 76 TWh, aus Steinkohle 93 TWh und aus Braunkohle 148 TWh. Jetzt überschlagen wir mal den möglichen Erdgaseinsatz: Braunkohle- und Kernenergie- sind Grundlastkraftwerke. Man könnte sie durch modernste Gasturbinenkraftwerke mit Abhitzekesseln ersetzen. Es wird deshalb ein Wirkungsgrad von 60% angesetzt. Steinkohle übernimmt schon heute die Mittellast, d. h. Kraftwerke müssen dem Netz folgen und teilweise ganz abgeschaltet werden (Sonntags, Nacht). Dies würde den Erdgaskraftwerken nicht anders ergehen. Es wird für diese Betriebsweise ein Wirkungsgrad von 40% angesetzt. Macht also locker 606 TWhBrennstoff bzw. 2182 PJ zusätzlich. Der Erdgasverbrauch Deutschlands steigert sich auf 168%. Der Durchschnittspreis für Erdgas betrug in Deutschland 6,1 Cent pro kWh (2017). Davon entfielen 49,1% auf die Beschaffungskosten. Das sind also über 18 Milliarden zusätzliche Importkosten für Erdgas jährlich. Allerdings ohne Kohle und Kernenergie keine Versorgungssicherheit mehr – wenn Gas weg (aus welchen Gründen auch immer), auch Strom weg. Die gewaltigen Investitionskosten für neue Kraftwerke bezahlt selbstverständlich der Stromkunde. Die Investitionskosten für notwendige Gas-Infrastruktur der Gaskunde. Der wehrlose Haushaltskunde wird gleich zweimal zur Kasse gebeten. Bei einer steigenden Zahl von Kleinrentnern, prekär Beschäftigten und absehbaren Arbeitslosen (noch nicht integrierten Flüchtlingen, abgeschafften Autowerkern, eingeschränktem Konsum durch immer weniger frei verfügbare Einkommen etc.).

Bevor sich jetzt alle Blitzdenker zu Wort melden: Natürlich werden die „Regenerativen Energien“ weiter ausgebaut – dafür sorgen schon die Schlangenölverkäufer. Das ändert aber nichts an der Tatsache, daß wenn der Wind mal weht und die Sonne scheint, trifft das alle Anlagen. Man kann aber nicht mehr elektrische Leistung einspeisen als gerade verbraucht wird. Die Wunderwaffe Speicher gibt es nicht. Damit ändert sich aber auch nichts an der erforderlichen Leistung aus konventionellen Kraftwerken, da sich weder die Jahreszeiten noch das Wetter durch den Menschen beeinflussen lassen, auch nicht (wesentlich) die möglichen Betriebsstunden. Man kann die Lücke – vornehm ausgedrückt: Residuallast – nur über Erdgas abdecken. Eigentlich ganz einfach, könnten sogar die Annalenas verstehen, wenn sie denn wollten.

Aber noch einmal einen Schritt zurück. Wenn sie ihr Erdgas aus abgelegenen Weltgegenden zu den Verbrauchsschwerpunken (Kraftwerke) bringen wollen, wird das sehr teuer. Entweder ewig lange Pipelines oder Verflüssigungsanlagen mit entsprechender Transportkette. Sie können es drehen wie sie wollen, aber mit Kohle und Kernenergie können sie nicht konkurrieren. Da sie nicht billiger werden können, haben sie nur eine Chance: Sie müssen dafür sorgen, daß die anderen Energieformen teurer werden und/oder verunglimpft werden. Sie erfinden beispielsweise den „menschengemachten Klimawandel“. Sie fördern – ganz unverdächtig – massiv „regenerative Energien“ und sponsern ihre politischen Vertreter, weil sie (die offensichtlich nicht) genau wissen, daß mit Wetter-Energie gar keine zuverlässige Stromversorgung möglich ist. Gleichzeitig kehren sie ihren Nachteil in einen (vermeintlichen) Vorteil um: Der höchste Wasserstoffgehalt unter den Brennstoffen, der ihr Produkt zu einem schwer handhabbaren Gas macht, wird jetzt zum kleineren „CO2 Fußabdruck“ umgedeutet (Neudeutsch framing).

Trump’sche Energiewende

Für Trump ist Energieverbrauch nicht per se schlecht. Ganz im Gegenteil: „Billige“-Energie hebt den Lebensstandard. Für den Privatmann bedeutet eine kleinere Energierechnung mehr Geld für andere Dinge des Lebens übrig zu haben. Für die Industrie weniger Kosten und damit mehr Geld für Investitionen und Gehälter.

Er hat das gemacht, was Politiker machen können, er hat alle unsinnigen und hemmenden Vorschriften wieder abgeschafft. Achtung, Wähler aufgepaßt: Das ist jederzeit in einer Demokratie möglich. Es ist also sinnvoll, vor einer Wahl die unterschiedlichen Wahlprogramme zu studieren und den Politikern aufmerksam zuzuhören.

Von den Fesseln befreit, ist die Öl- und Gasindustrie in den USA förmlich explodiert. Die USA sind auf dem Weg größter Ölproduzent (noch vor Saudi Arabien und Rußland) der Welt zu werden. Kann sich noch jemand an „peak oil“, die andere sozialistische Erfindung zum „Marktversagen“ erinnern? Nach dieser verquasten Theorie müßten die Ölvorräte der USA längst erschöpft sein. Tatsache ist jedoch, daß der bisherige Förderrekord aus den 1970er Jahren gerade übertroffen wurde. Das Ergebnis ist eine steigende Beschäftigung bei steigenden Einkommen. Gerade auch bei Minderheiten – die Flut hebt bekanntlich alle Boote. Wirtschaftspolitik ist immer noch die wirksamste Sozialpolitik. Leider gilt das auch anders herum, wie man gerade im Energiewende-Deutschland beobachten kann.

Die USA schwimmen zur Zeit in Öl und Gas. Dies hat zu einem Preisverfall in den USA geführt. Eine ungesunde Entwicklung, die zur Senkung der Produktion mit umgekehrten Konsequenzen führen würde. So beträgt der Rohölpreis in den USA (West Texas Intermediate) rund 90% des Referenzpreises in Europa (Brent). Die Antwort darauf ist ein Ausbau der Häfen in Texas für Supertanker zum Export von Rohöl. Noch schlimmer ist die Situation beim Erdgas. Alles begann mit dem Shale Gas Boom (Appalachian region). Parallel kam die zunehmende Ölförderung aus der Bakken-Formation (North Dakota) und dem Permian Basin (Texas, New Mexico) hinzu. Dort fallen nämlich gewaltige Mengen als Begleitgas an. Das Ergebnis ist ein Referenzpreis (Henry Hub, März 2019) für Erdgas von rund 2,82 $/MMBtu (0,0865 Eurocent/kWh). Da dieser Preis sogar unter dem von Kesselkohle liegt, drängt das Erdgas zeitweise die Kohlekraftwerke aus dem Markt. Es ist aber gar nicht beabsichtigt auf Kohle oder Kernkraft zu verzichten (Versorgungssicherheit). Auch hier bleibt nur der Export als Ausweg. Es mag sich zwar paradox anhören, aber die hohen Weltmarktpreise ziehen die heimatlichen Erdgaspreise über die zusätzliche Nachfrage aus dem Export nach oben und sichern damit der heimischen Industrie auch langfristig günstige Rohstoff- und Energiepreise.

Der LNG-Boom

Die USA können ihr Erdgas über Rohrleitungen nur nach Kanada (ist selbst ein Nettoexporteur) und Mexiko exportieren. Also bleibt nur der Seeweg. Der Gesamtexport im Jahr 2018 betrug 9,9 Bcf/d. Damit sind die USA zum ersten Mal seit 60 Jahren zum Nettoexporteur geworden und der Bezug über Rohrleitungen ist seit 20 Jahren zum ersten Mal kleiner als die Lieferungen ins Ausland.

Der Ausbau der Verflüssigungsanlagen geht schnell voran. Im Jahr 2018 wurde noch ganzjährig durchschnittlich 3,1 Bcf/d (878 Millionen m3 pro Tag) Gas verflüssigt. Dieses Jahr gehen noch weitere Anlagen in Sabine Pass, Corpus Christi, Cameron, Freeport und Elba Island in Betrieb. Damit dürfte sich die Kapazität auf etwa 9 Bcf/d (2,55 Milliarden m3 pro Tag) Gas erhöhen.

Hat man Erdgas verflüssigt (Liquefied Natural Gas, LNG), hat man einen Quantensprung in der Flexibilität erreicht: Man ist nicht mehr auf starre Rohrleitungen angewiesen, sondern kann es mit Tankern weltweit und sogar mit Tankwagen in die hintersten Ecken transportieren. Ebenso benötigt man keine aufwendigen und energieintensiven geologischen Speicher mehr um die Lastspitzen an kalten Tagen (Bedarf der Heizungen) ausgleichen zu können. Schon heute werden stationäre Tankanlagen für die Glättung solcher Spitzen eingesetzt. Je mehr sich LNG in der Fläche ausbreitet, um so mehr Schiffe und LKW können es dann als (billigen) Treibstoff nutzen. LNG hat rund 60% der Energiedichte von Dieselkraftstoff und etwa 70% von Benzin.

Der Weltmarkt für LNG wächst schnell. 2017 gab es bereits 19 exportierende und 40 importierende Länder. Die drei größten Exporteure waren Qatar (77.5 MT, Millionen to), Australia (55.6 MT) and Malaysia (26.9 MT) und die drei größten Importeure Japan (83.5 MT), China (39 MT) and South Korea (37.8 MT). Der Bedarf in China wird weiter steigen, da China dringend den Kohleverbrauch in Haushalten und Industrie senken muß. Der Verbrauch in Japan wird demgegenüber mit jedem Kernkraftwerk, das wieder in Betrieb geht, weiter sinken. Durch LNG werden sich analog zu Rohöl die Erdgaspreise weltweit angleichen. Ist das LNG erstmal im Tanker, kann es weltweit umdisponiert werden – immer in Richtung der lokal höchsten Preise. Dies gilt auch dann, wenn beispielsweise ein japanischer Gasversorger feste Verträge mit einer Laufzeit über zwei Jahrzehnte mit einem US-Anbieter hat. Gibt es z. B. ein günstigeres „Tages-Angebot“ aus Australien, kann er seine Ladung aus den USA umleiten. Im Ölgeschäft ist es nicht unüblich, daß ein Tanker auf seiner Reise mehrfach verkauft wird.

Der Erdgaspreis hat auch eine wichtige Konsequenz für die „Alternativen Energien“. Die maximal zulässigen Stromkosten aus Wind und Sonne entsprechen (über dem dicken Daumen) ungefähr dem doppelten Erdgaspreis. Das Gaskraftwerk hat feste Kosten für Personal und Kapitaldienst – ob es nun läuft oder nicht. Das einzige was es spart, wenn es durch Wind und Sonne aus dem Netz gedrängt wird, ist der verringerte Gasverbrauch. Für den Süden der USA ergibt das bei einem aktuellen Erdgaspreis von 2,75 $/MMBtu, weniger als 2 Eurocent für eine Kilowattstunde „Wetterstrom“. Viel Spaß bei der Arbeit, liebe Schlangenölverkäufer. Damit kein Mißverständnis entsteht, noch einmal mit anderen Worten: Deutlich unter zwei Cent pro kWh darf eure elektrische Energie in der Herstellung (ohne Subventionen!) nur kosten, sonst seit ihr sehr bald wieder vom Markt verschwunden. Mit Kohle und Kernenergie hofft ihr ja bald ohnehin nicht mehr konkurrieren zu müssen.

Rückbau kerntechnischer Anlagen

Weltweit sind über 450 Kernreaktoren in Betrieb und bereits 156 stillgelegt. Hinzu kommen noch zahlreiche Anreicherungsanlagen, Wiederaufbereitungsanlagen, Forschungseinrichtungen usw. Es ist daher mit einem starken Anstieg der Projekte zu rechnen: Über 250 Reaktoren sind älter als 30 Jahre und ab 2040 ist damit zu rechnen, daß der überwiegende Teil stillgelegt werden soll. Deshalb beschloß die Waste Management & Decommissioning Working Group of World Nuclear Association einen Bericht zu veröffentlichen, der die internationalen Erfahrungen weltweit nutzbar macht.

Vorbemerkungen

Damit man die Probleme richtig einordnen kann, sind vorab einige Begriffe zu erklären. Es wird hier bei stillgelegten Kernkraftwerken nicht „von strahlenden Atomruinen“ im Framing-Sprech der Zwangsgebühren-Medien gesprochen, weil es sich mitnichten um Ruinen handelt, sondern um weiterhin gepflegte, be- und überwachte technischen Anlagen. Ferner wird im Zusammenhang mit der Beseitigung das schöne deutsche Wort Rückbau verwendet, welches den Vorgang trefflich beschreibt: Es wird hier nämlich nicht mit Dynamit oder der Abrissbirne gearbeitet, sondern vorsichtig rückwärts wieder abgebaut.

Im Zusammenhang mit radioaktiven Stoffen muß sorgfältig zwischen Aktivierung und Kontaminierung unterschieden werden. Aktiviert werden können nur Stoffe, wenn sie Neutronen einfangen. Das kann deshalb nur in der Nähe des Kerns (Reaktoreinbauten, Steuerstäbe, Reaktordruckgefäß etc.) geschehen. Kontaminierung hingegen, ist lediglich eine Verschmutzung mit bereits vorhandenen radioaktiven Stoffen. Man kann solche Bauteile reinigen und damit aus „Atommüll“ ganz gewöhnlichen Abfall machen.

Von entscheidender Bedeutung ist auch der Faktor Zeit. Der radioaktive Zerfall geht immer nur in eine Richtung und ist durch nichts zu beeinflussen. Irgendwann ist jeder radioaktive Stoff verschwunden. Das Maß für diesen Zeitraum ist die Halbwertszeit. Nach zehn Halbwertszeiten kann man das Radionuklid als nicht mehr vorhanden (weniger als 1 Promille der Ausgangsmenge) betrachten. Für den Arbeitsschutz ist wichtig, daß je schneller ein Nuklid zerfällt, desto heftiger strahlt es. Es kann sich deshalb lohnen, mit dem Rückbau eine angemessene Zeit zu warten. Eine in Ländern mit viel Platz (USA, Rußland) durchaus bevorzugte Praxis. Dort hat man – um Überwachungskosten zu sparen und eine Gefährdung der Umwelt einzuschränken – Anlagenteile einfach in Gräben eingemörtelt. Eine endgültige Beseitigung – wenn überhaupt – ist erst in Jahrhunderten geplant.

Ebenso wichtig sind die Begriffe Verdünnung und Konzentration. Im Prinzip läßt sich jeder radioaktive Stoff durch Verdünnung biologisch „unschädlich“ machen. Die Dosis ist entscheidend. Demgegenüber ist die Propaganda von „Atomkraftgegnern“ – schon ein einzelnes Atom Plutonium kann Krebs auslösen – schlichtweg Unsinn. Gleichwohl gilt auch der andere Grundsatz, keine radioaktiven Stoffe unnötig in die Umwelt zu entlassen um z. B. Anreicherungen über die Nahrungskette zu vermeiden. Wie verbissen dieser Konflikt in der Praxis ausgetragen wird, kann man derzeit in Fukushima beobachten: Dort befinden sich große Abwassermengen in Tankanlagen, die bereits Trinkwasserqualität erreicht haben. Trotzdem scheut man sich diese in das Meer einzuleiten.

Die verschiedenen Abfallsorten

In der Kerntechnik unterteilt man die radioaktiven Abfälle grob in drei Klassen: Schwach aktiver Abfall (Very low-level waste, VLLW und Low-level waste, LLW), mittelaktiver Abfall (Intermediate-level waste, ILW) und hochaktiver Abfall (High-level waste, HLW). Diese Unterteilung beruht maßgeblich auf dem Arbeitsschutz. Mit schwach aktivem Abfall kann man ohne besonderen Schutz (man sollte jedoch stets die Inkorporation vermeiden, d. h. Mundschutz, Handschuhe etc. tragen oder sichere Gebinde verwenden) umgehen. Mittelaktiver Abfall erfordert eine zusätzliche Abschirmung, z. B. Betonabschirmung um ein Faß mit ILW. Hochaktiver Abfall erzeugt soviel Zerfallswärme, daß eine Kühlung erforderlich ist, da sonst der Abfall sich selbst physikalisch/chemisch zersetzen kann.

Eher ein Kuriosum ist die Klasse VLLW (Abfall von sehr geringer Aktivität). Hier sind schon eher Juristen als Strahlenschützer und Ingenieure am Werk. Es gibt in der Natur praktisch nichts, was nicht radioaktiv ist. Selbst jeder Mensch strahlt (etwa 8000 Bq) und gar nicht zu reden von Dünger, Baustoffen, Bohrschlämme, Aschen etc. In diese Kategorie fällt daher alles, was zwischen „strahlt gar nicht“ bis „schwach radioaktiv“ liegt, also eher in Verdacht steht, „Atommüll“ sein zu können. Solche Gegenstände (z. B. alte Armbanduhren und Meßgeräte mit selbstleuchtenden Ziffern) werden deshalb meist auf Sondermülldeponien entsorgt.

Der Arbeitsschutz ist aber nur ein Gesichtspunk. Würde man nur die Strahlung berücksichtigen, so wäre beispielsweise Plutonium lediglich schwach aktiver Abfall. Zweiter wesentlicher Faktor ist die „Lebensdauer“: Sie ist der Maßstab für eine Deponierung. Die „Lebensdauer“ bestimmt die Zeitdauer, in der die Deponie überwacht werden muß und dieses Gelände nicht frei nutzbar ist. Die Klassifizierung ist leider heute noch nicht international genormt, sondern ist von Land zu Land verschieden. In Frankreich definiert man pragmatisch den „α-freien-Abfall“ (α-Strahler sind besonders langlebig), der auf einfachen Deponien mit geringer Erdüberdeckung (Abschirmung gegen Strahlung) endgelagert wird. Nach 100 Jahren sollen solche Deponien sogar für die Bebauung mit Wohnungen wieder verwendet werden können. In Rußland nimmt man die β-Strahlung als Indikator (z. B. LLW mit bis zu 104 Bq/g). In den USA wird der schwach aktive Abfall noch in drei Klassen unterteilt. Hier zählt nicht nur die Gesamtaktivität, sondern es sind für bestimmte Nuklide noch spezielle Grenzwerte angegeben, die jeder für sich nicht überschritten werden dürfen. Ziel ist eine oberflächennahe Deponie (Klasse A) oder bestimmte geologische Erfordernisse und eine Mindestüberdeckung von mehreren Metern (Klasse B und C). Sie sollen nach 100 bis 500 Jahren wieder frei verfügbar – weil auf das Niveau der Hintergrundstrahlung abgeklungen – sein.

Wie absurd demgegenüber die Lage in Deutschland geworden ist, kann man an der Diskussion um die Asse erkennen: In diesem ehemaligen Kalibergwerk wurde weniger Radioaktivität eingelagert, als vorher in der Form von Kalisalz entnommen wurde. Der „Atommüll“ lagert nicht oberflächennah, sondern hunderte Meter darunter. Auf welcher Deponie sollte er denn anschließend sicherer gelagert werden? Wer trägt das Risiko für die Bergleute, die diese sinnlose Arbeit ausführen sollen? Grüße aus Absurdistan bzw. geht es bei der „notwendigen Rückholung“ um ganz andere Dinge.

Planung und Betrieb

Heute beginnt die Planung der Entsorgung bei kerntechnischen Anlagen bereits mit dem Entwurf. In den Anfangstagen der Kerntechnik war dies durchaus noch nicht der Fall. Dies führt heute zu einem erheblichen Aufwand bei „Altlasten“, verbunden mit extremen Kosten.

Die Planung – und damit der Strahlenschutz – beginnt schon mit der Materialauswahl. Heute werden Legierungen, die Stoffe enthalten die leicht zu aktivieren sind, möglichst vermieden. Es wird auch größte Sorgfalt auf den Korrosionsschutz verwendet. „Rost“ bei aktivierten Bauteilen, wird über die gesamte Anlage verschleppt und kontaminiert andere Bereiche. Man hat auch sehr viel durch den jahrzehntelangen Betrieb hinzugelernt. Ergebnis in diesem Sinne, ist beispielsweise die komplexe Wasserchemie in Druckwasserreaktoren. Analyse von biologischen Schilden von abgebrochenen Reaktoren hat ergeben, daß die aktivierten Stoffe nicht aus dem Stahlbeton im eigentlichen Sinne stammen, sondern maßgeblich aus Verunreinigungen der Zuschlagsstoffe. Man achtet auch auf gut zu reinigende Oberflächen (keine konventionellen Isolierungen, Auskleidung von Becken mit Edelstahl usw.).

Schon während des Betriebes fällt radioaktiver Müll an: Filter, Arbeitsbekleidung, Werkzeuge, Ersatzteile etc. Diese müssen langfristig sicher verpackt und eventuell zwischengelagert werden. Auf eine sehr genaue Dokumentation ist dabei zu achten, da jede spätere Analyse oder gar ein Umpacken für die Endlagerung zu unnötigen Belastungen führt. Auch hier wurde in der Vergangenheit oft zu wenig getan.

Berücksichtigt man schon bei der Konstruktion den Rückbau, erleichtert dies die später notwendigen Arbeiten und spart enorme Kosten: Dies betrifft insbesondere die Zugänglichkeit und klare Materialgrenzen, denn selbstverständlich unterliegt ein Kernkraftwerk auch den normalen Abfallvorschriften (Hausmüll, Plastikmüll, Asbest etc.).

Beim Entwurf gilt Wiederverwendung vor Recycling vor Endlagerung. So ist es heute z. B. Standard, komplette Dampferzeuger nicht mehr als „Atommüll“ endzulagern, sondern sie zu Spezialfirmen (z. B. Cyclife in Schweden) zur Entsorgung zu transportieren. Dort werden diese mehrere hundert Tonnen schweren Objekte in Hallen möglichst automatisch zerlegt, sortenfrei getrennt und gereinigt. Alle nicht radioaktiven Teile „frei gemessen“ und über konventionelle Altmetallhändler dem Wertstoffkreislauf wieder zugeführt. Die radioaktiven Reste werden vor Ort eingeschmolzen und die radioaktiven Barren an den Auftraggeber zur Endlagerung wieder zurückgegeben. Aus einem Bauteil, so groß wie ein Mehrfamilienhaus, wird so „Atommüll“ im Volumen eines Kühlschranks. So viel nur zu den Phantasiemengen, die in Deutschland über notwendige Endlagerkapazitäten von interessierten Parteien in die Welt gesetzt werden.

Endlager und Deponien

Grundsätzlich besteht bei „Atommüll“ die gleiche Optimierungsaufgabe zwischen erforderlichem Deponieraum und Nachbehandlungskosten, wie in der gesamten Abfallwirtschaft. Früher hat man (billige) Arbeitsbekleidung und Arbeitsmittel aus dem Kontrollbereich eines Kraftwerks einfach in Fässer gesteckt und auf einer Deponie für schwach aktive Abfälle entsorgt. Man kann aber solche Abfälle – wie bei konventionellem Abfall üblich – vorher (in Spezialanlagen) verbrennen und erzielt somit eine gewaltige Volumenreduzierung. Anschließend kann man die „aufkonzentrierte Radioaktivität“ – sprich Asche – noch weiter behandeln: Ist sie nur schwach aktiv, kann man sie vor der Endlagerung zu einem Mörtel verarbeiten, ist sie hoch aktiv oder extrem langlebig in Glas einschmelzen bzw. in Synroc (künstlicher Stein auf der Basis von Titanaten) verwandeln. Endlagerkapazität ist also ein relativer Begriff, der je nach landestypischen Gegebenheiten flexibel gehandhabt werden kann. In den Weiten der USA oder Sibiriens sicher anders, als in dicht besiedelten mitteleuropäischen Ländern. Weltweit betrachtet, könnte die Frage von Endlagern damit ganz anders gestellt werden – sie ist allerdings hoch politisch und damit unbestimmbar.

Gerade in dicht besiedelten Ländern sollten Endlagerkapazitäten als wertvolle Ressourcen behandelt werden. Insofern ist eine Reduzierung der Volumina geboten. Im Prinzip gilt hier der gleiche Ansatz wie in der konventionellen Abfallwirtschaft.

Die vorhandenen Deponien und Tiefenlager koppeln stark auf die angewendeten Strategien zurück. Spektakulär war der aufgetretene Fall der Selbstentzündung im WIPP (Endlager in einem Salzstock in New Mexico, USA). Weltweit ist es üblich, Chemikalien durch Katzenstreu auf Bentonitbasis (enorme Saugwirkung und Bindung durch Ionentausch) unschädlich zu machen. Ein übereifriger Laborant in Los Alamos hatte aber biologische Streu verwendet. Diese wurde langsam durch die aufgesaugten Chemikalien zersetzt, was letztendlich zum Platzen eines „Atommüllfasses“ geführt hat. Die Vorschriften für organische Stoffe in Endlagergebinden für das WIPP wurden daraufhin entscheidend verschärft. Solche nachträglichen Änderungen bzw. die nicht sinngemäße Einhaltung individueller Einlagerungsbestimmungen können schnell zu einer Kostenexplosion führen. Auch dieser Fall zeigt wieder, wie wichtig eine akribische Dokumentation aller Inhalte ist. Es sind dabei nicht nur die nuklearen Inhalte, sondern auch die physikalischen und chemischen Eigenschaften zu erfassen und nach Möglichkeit in einer zugänglichen Datenbank abzulegen.

Angestrebter Endzustand

Sehr wichtig für die Planung und Durchführung einer Rückbaumaßnahme ist der angestrebte Endzustand.

Grüne Wiese

Wenn alle radioaktiven Stoffe entfernt und in Endlager verbracht sind, kann eine abschließende Beurteilung durch die Überwachungsbehörden durchgeführt werden und die Liegenschaft wieder dem freien Grundstückshandel übergeben werden.

Braune Wiese

In diesem Zustand ist das Grundstück nicht vollständig beräumt worden. Entweder steht noch ein Teil der radioaktiv belasteten Anlagen oder es wurden bewußt noch radioaktive Abfälle auf der Liegenschaft belassen. Dies kann aus Gründen des Arbeitsschutzes sinnvoll sein, damit die vorhandene Radioaktivität weiter abklingen kann. Oft ist auch die Verteilung der notwendigen Finanzmittel über einen längeren Zeitraum das Ziel. So wurde diese Methode durchweg bei allen Vorhaben aus der nuklearen Rüstung angewandt. Allerdings muß die Liegenschaft über den gesamten Zeitraum weiter bewacht und von den Genehmigungsbehörden betreut werden. Diese Kosten wiegen meist den erhöhten Aufwand für den Strahlenschutz bei einer sofortigen Beseitigung nicht auf.

Nur in seltenen Fällen (große Forschungseinrichtung, Kraftwerk mit vielen Reaktoren) können die Anlagen sogar für andere Zwecke umgenutzt werden.

Nuklearer Friedhof

Bei dieser Methode wird ein Teil der Anlage unterirdisch belassen und dient als „nukleare Grabstätte“. Man schließt sie nur mit einem Betondeckel als Abschirmung ab bzw. um einen unberechtigten Zugang zu verhindern. Diese Methode wurde oft als Not- und Übergangslösung bei schweren Havarien gewählt. Letztendlich handelt es sich dabei nur um eine Verschiebung der Probleme und Kosten in die Zukunft. Die Liegenschaft ist auch weiterhin als kerntechnisch Anlage zu betrachten (Überwachung, Bewachung, Wartung etc.). Sie kommt eher einem Zwischenlager für hochaktive Abfälle gleich.

Baubeginn von Hinkley Point C

In Deutschland weitgehend unbeachtet, startete kurz vor Weihnachten die Betonierung der Grundplatte des Reaktors. Abschnitt eins umfasste 2000 m3 Nuklearbeton. Es sind vier weitere Abschnitte nötig um die 3,2 m dicke Grundplatte herzustellen. Beim Bau eines Kernkraftwerks ist dies nach internationaler Definition der offizielle Baubeginn. Ab jetzt tickt die Uhr. Das Kraftwerk soll 2025 in Betrieb gehen. Es wäre dann der erste Neubau seit 30 Jahren in Großbritannien. Das ist fast ein gesamtes Berufsleben. Genau darin steckt eine Schwierigkeit dieses Projektes: Für die meisten am Bau Mitwirkenden ist es das erste Kernkraftwerk überhaupt. Aber auch das ist eine ganz bewußte Entscheidung der Regierung. Völlig anders als in Deutschland, hat man längst die Bedeutung einer kerntechnischen Industrie für eine moderne Volkswirtschaft erkannt und hat deshalb richtig Geld in die Hand genommen, um neue Ausbildungsplätze vom Facharbeiter bis zum Ingenieur zu schaffen. Es ist übrigens längst die Überzeugung beider britischen Parteien – Labour und Conservative Party – daß eine ganze Volkswirtschaft nicht von Dienstleistung (Finanzzentrum London) leben kann. Nur so war es möglich – gegen alle Widerstände aus dem In- und Ausland – über mehrere Wahlperioden hinweg, den Neueinstieg zu schaffen. In Hinkley Point sollen zwei Reaktoren des französischen Typs EPR in seiner „britischen Version“ mit zusammen 3200 MWel gebaut werden.

Die Eigentümer

Von Anfang an war klar, daß ein umfangreiches Neubauprogramm von vielleicht 16 Reaktoren nicht aus der Staatskasse bezahlt werden könnte. Es mußte also privates Eigenkapital und andere Staatsunternehmen mobilisiert werden. Sir John Armitt von der Olympic Delivery Authority (ODA), die die Sportstadien der Olympiade in London errichtet hatte, hat schon 2013 den Bau von Kernkraftwerken nach diesem Modell vorgeschlagen. Bau durch eine staatliche Zweckgesellschaft und erst die Privatisierung nach Fertigstellung. Damit wollte man das Risiko hoher und unkalkulierbarer Baukosten bei Kernkraftwerken umschiffen. Demgegenüber stehen recht geringe Betriebs- und Brennstoffkosten bei einem stetigen Umsatz. Ein gefragtes Investment z. B. für Pensionsfonds. Genau nach diesem Modell verkauft Rußland seine Reaktoren an Finnland (Hanhikivi 1), die Türkei (Akkuyu 1–4) und Ägypten (El Dabaa 1–4). Die durch ein russisches Staatsunternehmen gebauten Reaktoren werden (fast) vollständig durch den russischen Staat finanziert und zeitweilig sogar betrieben. Dies sichert Rußland über Jahrzehnte feste Devisenströme.

Aus politischen Gründen kam Rußland als Investor für Großbritannien nicht in Frage. Man entschied sich für den staatlichen französischen Konzern EDF. Politisch unbestritten, da EDF schon jetzt die vorhandenen Kernkraftwerke mit zusammen 11 GW Leistung in GB erfolgreich betreibt. Allerdings war der finanzielle Brocken für die kapitalschwache EDF viel zu groß. Es mußte also ein Partner gefunden werden. Schon 2013 verkündete Chancellor George Osborne bei einem Besuch in China die mögliche Partnerschaft. Technisch betrachtet, die ideale Partnerschaft, da schon die Chinesen und EDF Partner beim Bau von Taishan sind. Hierbei handelt es sich ebenfalls um zwei Reaktoren vom Typ EPR. Baubeginn war 2009 und kommerzielle Inbetriebnahme 2018. Man verfügt also über ausreichend gemeinsame Erfahrungen. Allerdings sind jetzt die Rollen vertauscht. Bei Taishan waren die Mehrheitseigentümer Chinesen mit 70% und EDF mit 30%, bei Hinkley Point ist EDF der Mehrheitseigentümer mit 66,5% und China General Nuclear International (CGN) mit 33,5% in der Minderheit. Auch die wirtschaftliche Dimension ist eine andere: Bei Taishan ging es um 8 Milliarden Euro und bei Hinkley Point um 18 Milliarden Pfund. Für China ist das der politisch angestrebte massive Einstieg in Energieprojekte in Europa. Parallel wird der Bau zweier weiterer EPR in Sizewell bis zur endgültigen Investitionsentscheidung vorangetrieben. Das eigentliche Bonbon für die Chinesen ist aber die Unterstützung von EDF beim eingeleiteten Genehmigungsverfahren für die chinesische Eigenentwicklung HPR-1000UK. Man schreitet dort sehr ehrgeizig voran und plant die Inbetriebnahme eines solchen Reaktors für 2030 in Bradwell. Gelänge dies, wäre das ein nicht zu überschätzender Exportschlager, der China endgültig die Vormachtstellung sichern würde. Frankreich tut gut daran, wenigstens den Juniorpartner in diesem internationalen Spiel zu geben. Spätestens nach dem Brexit, wird diese eigenartige EU den Anschluß an dem Weltmarkt der Kerntechnik verloren haben. Einst war EPR als Abkürzung für European Pressurized Reactor entstanden, ein Gemeinschaftsprojekt von Siemens und Areva. Bis Siemens dem Ruf der Kanzlerin folgte, aus der Kerntechnik ausstieg und bei den Alternativen mit „voran gehen“ wollte. Man könnte auch sagen, wenn es dem Esel zu wohl geht, geht er aufs Eis tanzen.

Auftragsvergabe

Wie brutal schnell die globalisierte Industrie über Aussteiger hinweg walzt, zeigt sich deutlich am EPR. Der erste Reaktor – die ewige Baustelle Olkiluoto – hatte noch eine Turbine und einen Generator von Siemens. Nach dem Ausstieg kein weiterer mehr. Der Auftrag für die konventionellen Teile von Hinkley Point C (HPC) ging an General Electric Steam Power Systems (GE). HPC wird die größten Generatorsätze der Welt mit je 1770 MWel erhalten. Wie lohnend der Einstieg in diesen Bereich ist, zeigt sich auch daran, daß GE die Aufträge für die russischen Kraftwerke in Akkuyu, Türkei und El Dabaa in Ägypten erhalten hat. Kann sich noch einer an die hochtrabenden Pläne von Siemens über eine Produktion von Turbinen für den russischen Markt erinnern? Hier ist Siemens nicht „voran gegangen“, sondern schlicht „weg gegangen“ worden.

Kerntechnik bietet aber auch Chancen für Länder, von denen man das vielleicht nicht so ohne weiteres erwartet. Die Aufträge für die Reaktorgefäßeinbauten und den Neutronenreflektor – alles Schwermaschinenbau in höchster Präzision – ist, wie schon bei Olkiluoto und Taishan, wieder an Skoda vergeben worden. Die spanische Company Equipos Nucleares (Ensa) hat den Auftrag für die beiden Druckhaltesysteme und weitere 14 Komponenten erhalten.

Wie schon öfters erwähnt, ist die Kerntechnik einer der führenden Innovatoren für die gesamte Industrie. So wurde im November der größte Baustellen-Kran der Welt mit einer Tragfähigkeit von 5000 to, einer Auslegerhöhe von bis zu 250 m bei einem Arbeitsradius von 275 m für Hinkley Point C von Sarens in Belgien fertiggestellt.

Für GB ist HPC ein gewaltiges Konjunkturprogramm. Man geht davon aus, daß 60% der Bauleistungen in GB erbracht werden. Während der Bauphase ergibt das etwa 25 000 Arbeitsplätze, mit einer Spitze von ca. 5600 Beschäftigten auf der Baustelle und 900 Dauerarbeitsplätzen im fertiggestellten Kraftwerk. Dies soll die erste Stufe einer international konkurrenzfähigen kerntechnischen Industrie sein. Im Rahmen der durch den Brexit notwendig gewordenen Neuverhandlungen internationaler Abkommen, baut man konsequent seine Bindungen außerhalb der EU aus. Möge Europa doch in Windrädern und Sonnenkollektoren versinken.

Schon jetzt geht der Nutzen für die britische Industrie über HPC hinaus. Der architect-engineer (Generalplaner für das gesamte Kraftwerk) ist EDF, und für die Lieferung der Reaktorsysteme, des Brennstoffs und für I&C (Steuerung und Regelung) verantwortlich. Neu gegründet wurde das Joint Venture MEH aus Altrad, Balfour Beatty Bailey, Cavendish Nuclear and Doosan Babcock. Ein Ingenieur-Unternehmen mit insgesamt über 20 000 Spezialisten auf den unterschiedlichsten Fachgebieten. Kurzfristiges Ziel ist ein gegenseitiges Schieben der Verantwortlichkeiten beim Projekt HPC zu verhindern. Darüberhinaus verbirgt sich dahinter ein gewaltiges Stück Industriepolitik: Die Arbeitsweise und Datenverarbeitung der beteiligten Planungsbüros soll harmonisiert werden, eine enge Kooperation mit Forschungsinstituten und Universitäten gepflegt werden. Darüberhinaus wird die Kooperation mit den chinesischen Unternehmen, die Taishan erfolgreich errichtet haben, weiter vertieft. Auch hier das Ziel, enger auf dem außereuropäischen Markt zu kooperieren. Ob wirklich nur GB der Verlierer beim Brexit ist?

Die Kosten

Man einigte sich abschließend auf einen „strike price“ von £92,50 pro MWh bzw. £89,50 (Preisbasis 2012, indexiert mit dem Verbraucherpreisindex von GB) – wenn das Kraftwerk Sizewell auch noch gebaut wird. Das besagt, wenn der aktuelle Großhandelspreis an der Strombörse in GB unter diesen Wert sinkt, bekommt der Betreiber – ähnlich dem EEG in Deutschland – trotzdem diesen Betrag vergütet. Diese Regelung gilt für 35 Jahre ab dem Jahr 2023 (also keine Verlängerung bei etwaigen Bauzeitverzögerungen). Umgekehrt gelten die Grenzwerte auch als Obergrenze – anders als in Deutschland – für 60 Jahre nach Fertigstellung. Sind die (sehr wahrscheinlich) erzielten Strompreise höher, sind die Überzahlungen an die Verbraucher weiterzugeben. Diese Regelung stellt also eine umfangreiche Absicherung der zukünftigen Energiepreise in GB dar – egal wieviel konventionelle Kraftwerke man aus welchen Gründen auch immer abschaltet.

Gegen den „strike price“ von £92,50 pro MWh hat die gesamte Wind- und Sonnenindustrie verzweifelt aus allen Rohren geschossen. Parallel sind aber inzwischen von der Regierung 34 Programme für „alternative Energien“ von gleicher Größenordnung (jeweils 7% des Stromverbrauchs in GB) abgeschlossen worden. Die Bandbreite bewegt sich bei £120 – £130 je MWh. Hinzu kommen noch ca. £10 – £15 pro MWh für den notwendigen Netzausbau (weit weniger als in Deutschland, wegen der günstigeren Geographie). Wobei der „Strom aus Wind und Sonne“ wetterabhängige Zufallsproduktion, ohne jeden Bezug zum realen Bedarf ist. Sie kann daher lediglich eine Ergänzung, niemals aber eine vollständige Energieversorgung sein. Es müssen deshalb trotzdem konventionelle Kraftwerke für die Dunkelflaute und zur Netzstabilisierung betrieben werden. Wer glaubt eigentlich noch immer, daß „Strom aus Wind und Sonne“ eine Zukunftstechnologie ist?

Es gibt aber noch einen gewaltigen Unterschied: Im Preis für Hinkley Point C sind die erforderlichen Rücklagen für den vollständigen Rückbau zur grünen Wiese und das „waste management“ enthalten. Wer wird die Windmühlen und die Sonnenkollektoren zurück bauen und deren Sondermüll beseitigen?

Der Preis beruht auf folgender Kalkulation: 14 Milliarden Baukosten plus 2 Milliarden für Nebenkosten (Grundstücke, Lagerung der verbrauchten Brennelemente, Ausbildung und Gehälter für die Betriebsmannschaft usw.) auf der Preisbasis von 2012. Dies ist als Festpreis zu verstehen, es gibt ausdrücklich keine Nachträge bei Verzögerung des Projekts und die Verbraucher zahlen erst bei Energielieferung. Umgekehrt garantiert die britische Regierung keine zusätzlichen Steuern etc. und garantiert die Entschädigung bei Veränderung staatlicher Randbedingungen. Für die Gesamtkosten werden gebührenpflichtige Staatsbürgschaften in Höhe von 65% bis zur Fertigstellung gewährt (aus heutiger Sicht wahrscheinlich 34 Milliarden Pfund inklusive Kapitalkosten). Dem Betreiber wird auf dieser Basis ein kalkulatorischer Gewinn von 10% zugestanden. Kostensteigerungen gehen also zu Lasten des Betreibers. Stromexporte (nach Öko-Deutschland?) sind in Abstimmung mit dem Netzbetreiber gestattet. Höhere, über dem „Strike Price“ erzielte Vergütungen, gehen vollständig zum Vorteil der britischen Verbraucher und Steuerzahler.

Inzwischen sind 450 Verträge mit über 200 000 Seiten unterschrieben, die £12 Milliarden durch EDF und die £6 Milliarden durch die chinesischen Partner bereitgestellt und die ersten Mittel bereits an die Auftragnehmer abgeflossen.

Die Rolle der EU

Wer sich immer noch fragt, warum GB den Brexit durchzieht, kann hier neben der Merkelschen Flüchtlingspolitik einen weiteren wesentlichen Grund registrieren. Die bekannten links-grünen Politiker haben mit allen Mittel versucht ihre Energiepolitik GB aufzuzwingen. Es wurde wirklich jedes Propagandaregister der „Anti-Atomkraft-Bewegung“ gezogen. Zu guter letzt auch noch vor dem Europäischen Gerichtshof geklagt. Es half alles nichts, man konnte die eingereichten Zahlen und Argumente nicht widerlegen. Zum Schluß mußte in einem 70 Seiten Papier das o. k. gegeben werden. Das hält aber die deutschen Qualitätsmedien nicht davon ab, unbeirrt weiter mit fake news gegen das Projekt zu hetzen.

Dabei ist es eher umgekehrt: Gäbe es nicht die – maßgeblich von Deutschland beeinflußte – völlig verquaste Energiepolitik der EU, mit Einspeisevorrang für wetterabhängige Energieformen, Wahnvorstellungen über CO2 in Verbindung mit profitgierigen Schlangenölverkäufern, hätte man die benötigte Kraftwerkskapazität weltweit und öffentlich ausschreiben können. Bei der nächsten „Europawahl“ bietet sich die Gelegenheit, den Bürokraten und Politikern in Brüssel mal kräftig die Meinung zu sagen. Eine Demokratie lebt davon, unfähige Politiker einfach abzuwählen.

Der Kampf gegen unsere Gesellschaft nimmt Fahrt auf

Pünktlich zum Klimazirkus in Kattowitz macht auch Brüssel wieder von sich reden: Ab 2030 (also in nur 12 Jahren!) soll für neue PKW und Kleintransporter (Handwerker aufgepaßt!) nur noch eine maximale Freisetzung von kapp 60 Gramm CO2 pro Kilometer erlaubt sein. Sie können gar nichts mit diesem Wert anfangen? Das genau, ist die Absicht. Je alltagsferner die Maßeinheit, um so besser für die Propaganda geeignet. Dies wußten schon die „Atomkraft-Gegner“. Übersetzen wir deshalb mal schleunigst diesen geplanten Grenzwert in Maßeinheiten, die jedem Autofahrer nur zu vertraut sind: 60 gr CO2 / km entspricht etwa einem Verbrauch von rund 2,5 Liter Benzin bzw. 2,3 Liter Diesel pro 100 km. Dämmert es jetzt, wohin die Reise gehen soll?

Damit sind Kraftfahrzeuge – wie wir sie heute kennen – gestorben! Nehmen wir mal als stellvertretendes Beispiel einen Golf-Diesel. Der Verbrauch bewegt sich seit dem ersten Modell bis bis zum heutigen Tage um die 6,5 Liter. Dies mag für Annalena und Svenja nur an den Konzernen liegen, aber weit gefehlt Mädels: Es gibt da etwas, was ihr besser nicht abgewählt hättet, das nennt sich Physik! In der Natur verläuft Aufwand und Nutzen immer in der Form von Exponentialfunktionen, die sich einem Grenzwert annähern. Der Volksmund sagte früher: Gott läßt keine Bäume in den Himmel wachsen! In diesem Fall ist der Grenzwert die Leistung (kW!), die man benötigt um ein Auto zu beschleunigen bzw. gegen die Widerstände in Bewegung zu halten. Jetzt kommt auch noch die Zeit (h) mit ins Spiel, die man benötigt um 100 km zurückzulegen. Mal relativ schnell (Autobahn) und mal im „Stop and Go“ (Stadtverkehr) mit ständiger „Kraftstoffvernichtung“ durchs Bremsen. Simsalabim haben wir die benötigte Bewegungs-Energie (kWh!). Nun ist aber Energie, nicht gleich Energie! Die benötigte Antriebsenergie muß erst noch im Fahrzeug (!) erzeugt werden. Diese liegt stets in chemischer Form vor. Gleichgültig ob als Benzin, Diesel, Akku, Wasserstoff oder sonst etwas. Für die Umwandlung setzt die Thermodynamik eindeutige und nicht überwindbare Grenzen. Heutige Verbrennungsmotoren sind nahezu ausgereizt.

Die Energiedichte

Jedes Kraftfahrzeug muß neben seinem Antrieb (Motor, Getriebe und notwendiges Zubehör) auch noch seinen ganzen Energievorrat mitführen. Dieses notwendige Eigengewicht treibt wiederum den Verbrauch selbst in die Höhe. Lange Rede, kurze Aussage: Ein Kraftfahrzeug mit etwa 2 Liter Verbrauch könnte nur ein moderner Trabant sein: Ein Auto mit nur vier Sitzen, aus Plastik und einer Höchstgeschwindigkeit von ca. 100 km/h. Immerhin ein Zugeständnis an die Handwerker, für die bisher ein Lastenfahrrad vorgesehen ist (Kein Witz! Der Rot-Rot-Grüne Berliner Senat fördert bereits Lastenfahrräder für Handwerker und Paketdienste). Wer noch die alte DDR kennt, weiß was alles möglich ist, wenn man nicht anders kann.

Genau das ist der Grund, warum Elektrofahrzeuge ein Flop waren, sind und immer sein werden. Man kann nicht oft genug daran erinnern, daß der erste Porsche einen Elektroantrieb (mit Nabenmotor!) hatte, weil es damals noch keine brauchbaren Verbrennungsmotoren gab. Als es diese gab, war das Konzept schlagartig mausetot. Im Krieg hatte man LKW mit Batterien und Oberleitungsbusse, weil der Treibstoff an der Front gebraucht wurde. Nach dem Krieg war der Spuk wieder vorbei. Die Sache ist eigentlich ganz einfach: Entweder man hat ein Fahrzeug mit geringer Reichweite (kleine Batterie) oder geringer Nutzlast.

Alle Schlaumeier, die nun einfach öfters laden wollen, tappen sofort in die nächste Falle: Die Betankung mit Benzin und Dieselkraftstoff dauert wegen deren hoher Energiedichte (rund 10 kWh/l) nur wenige Minuten. Wollte man gleiches mit elektrischer Energie machen, bräuchte man gewaltige Anschlussleistungen. Hochspannung am Straßenrand, in öffentlich zugänglichen Zapfsäulen?

Ähnliche Überlegungen gelten auch für alle Gase. Hier bleibt nur der Weg über Verflüssigung (LNG). Will man über verdichtete Gase gehen, braucht man große Verdichter (mehrere MW Antriebsleistung bei einer üblichen Autobahntankstelle) und senkt trotzdem die Reichweite auch noch weiter deutlich ab (zwangsläufige Erwärmung im Tank durch die Verdichtung). Wenn es Benzin und Diesel nicht geben würde, müßte man sie halt erfinden. Das das kein Scherz ist, kann man schon an den Kohlehydrieranlagen im Kriegsdeutschland und in Südafrika erkennen.

Mit Wind fahren?

Der größte Witz der Windindustrie ist, man könne doch mit ihrem Abfallstrom CO2 -frei fahren. Scheinbar überschreitet es die geistigen Fähigkeiten von „Ökos“ nachhaltig, den Unterschied zwischen Leistung und Energie zu begreifen. Es ist völlig unbedeutend, wie viel elektrische Energie mit Wind und Sonne erzeugt wird, vielmehr entscheidend ist, welche Leistung wann erzeugt wird. Am anschaulichsten ist es noch bei der Photovoltaik: Nachts ist es dunkel, also Stromproduktion gleich Null. Folglich könnte man damit kein einziges Fahrzeug nachts aufladen – mag die installierte Leistung (dank Subventionen) auch unendlich groß werden.

Ähnlich verhält es sich mit dem Wind. Bläst er tatsächlich mal und die Produktion übersteigt die verwertbare Leistung, hilft nur Abschalten. Man kann doch nicht wirklich glauben, daß sich jemand ein teures Elektroauto kauft um darauf zu warten, daß mal der Wind stark genug bläst. Noch abwegiger ist, die Autobatterien als Netzspeicher zu verwenden. Man stelle sich vor, man muß zur Arbeit, aber die Autobatterie ist leer – gleichgültig ob nicht genug Energie zum Laden vorhanden war oder das Netz mangels Wind noch zusätzlich gezapft hat.

Noch abwegiger ist die Schnapsidee, mit Wind und Sonne Gase herstellen zu wollen. Alle Verfahren sind sehr kapitalintensiv. Die Auslastung einer solchen Anlage ist aber noch deutlich geringer, als die des Windrades selbst. Es soll ja nur dessen „Überschuss-Strom“ eingelagert werden.

Die Stromversorgung

Wenn tatsächlich mehr als 2/3 aller Autos Elektroautos wären, müßten dafür gewaltige Mengen elektrischer Energie zusätzlich produziert werden und noch mehr Leistung (d. h. mehr Kraftwerke) bereitgestellt werden. Praktisch müßte für jedes Auto in der Nähe der eigenen Wohnung oder des Arbeitsplatzes eine Ladestation vorhanden sein. Dafür ist aber das vorhandene Stromnetz gar nicht ausgelegt. Es müßten gewaltige Investitionen in das Nieder- und Mittelspannungsnetz getätigt werden. Überwiegend in den bereits völlig dichten Städten (Erd- und Straßenbauarbeiten). Bei dem heutigen Zustand unseres Landes, eine Aufgabe für Jahrzehnte. Wer trägt dafür die Kosten? Doch wohl letztendlich der Autofahrer selbst.

An dieser Stelle erkennt man auch, wie durchtrieben der Begriff „Flottenverbrauch“ ist. Ein Hersteller der Golf-Klasse müßte für jedes produzierte Auto ein bis zwei Elektromobile verkaufen um den Flottenverbrauch (Elektroautos werden per Definition mit 0,0 COangesetzt, selbst wenn der Strom aus einem Kohlekraftwerk stammt. Alles klar???) zu erreichen. Woher sollen diese Käufer kommen? Für die meisten Familien, die sich höchstens ein Auto finanziell leisten können, dürfte ein Elektromobil völlig ungeeignet sein. Als Zweitwagen mit eigener Garage (Aufladung) oder Arbeitgeberparkplatz mag es ja noch gehen, aber für die Fahrt mit der Familie in den Urlaub?

Da hilft auch keine Mischkalkulation oder Strafzahlungen nach Brüssel. Elektroautos lassen sich nicht verkaufen, wahrscheinlich nicht einmal verschenken.

Gesellschaftliche Konsequenzen

Das Auto soll dem Bürger endgültig mies gemacht werden. Es steckt die allen Sozialisten gemeine Angst vor dem sich frei bewegenden Bürgern dahinter. Michel wird schon noch zu spüren bekommen, wie wahr der alte Slogan „Freie Fahrt für Freie Bürger“ einst war. Man stelle sich mal vor, nur die Hälfte der heutigen Autofahrer müssen auf das nicht vorhandene – bis völlig marode – öffentliche Verkehrssystem umsteigen. Was würden die Konsequenzen für die Vorstädte und ländlichen Räume sein? Nur noch Rentner und Transferleistungsempfänger oder Slums am Rande der Großstädte für die noch arbeitenden?

Der angepeilte Zeitraum von zwölf Jahren ist der ideale Zeitraum für eine „Verschleißstrategie a la DDR“. Man tätigt keine Neuinvestitionen mehr und reduziert Wartung und Instandhaltung um möglichst wenig Wertverlust am Ende zu haben. Parallel investiert man außerhalb dieser seltsamen EU. Die USA – und bald auch GB – stehen schon bereit. Die Europäer können sich dann ausländische Fahrzeuge kaufen oder es bleiben lassen. Wer der Politik auf dem Leim geht – wie einst die Energieversorger mit Energiewende und „Atomausstieg“ – wird untergehen. Jeder in Elektroautos investierte Euro ist zum Fenster rausgeschmissen. Jeder, der jünger als ca. 55 Jahre ist und in der Automobilindustrie oder bei den einschlägigen Zulieferern arbeitet, sollte seine persönliche Lebensplanung dringend überdenken – entweder rechtzeitig den Beruf wechseln oder mit der Industrie ins Ausland gehen. Mit „sozialverträglich“ – wie bei Stahlarbeitern und Steinkohlebergbau, die übrigens hart dafür kämpfen mußten – ist nicht mehr. Dafür ist die Dimension viel zu groß. Rezession ist, wenn dein Nachbar arbeitslos wird, Depression ist, wenn du selbst deinen Arbeitsplatz verlierst.

Umweltschutz auf den Meeren

In weniger als einem Jahr tritt die letzte Stufe der Begrenzung des Schwefelgehaltes für Schiffstreibstoffe in Kraft. Auf den ersten Blick ein energietechnischer Nebenschauplatz. Zumindest aber ein gutes Beispiel dafür, wie Umweltschutznormen entstehen, sich beständig verschärfen und weltweite Folgen für die Wirtschaft haben – weit über das gedachte Anwendungsgebiet hinaus. In diesem Fall bis hin zur Stromerzeugung.

Der Schadstoff Schwefel

Wenn Schwefel verbrannt wird, entsteht Schwefeldioxid (SO2) und Schwefeltrioxid (SO3). In Verbindung mit Wasser bildet sich daraus Schwefelsäure (H2 SO4). Im grünen Deutschland einst – unter dem Kampfbegriff „Waldsterben“ – sehr populär. Im Zusammenhang mit Dieselmotoren soll besonders SO3 eine herausragende Rolle spielen: Es gilt als ein wesentlicher Verursacher des Dieselrußes. Der Vorläufer des aktuellen Aufregers Stickoxide im Kampf gegen den Verbrennungsmotor.

Wenn Abgase den Schornstein verlassen, beginnen sie sich unmittelbar zu verdünnen. Eine nicht zu vernachlässigende Tatsache, insbesondere auf Hoher See. Dort werden sie vom Regen ausgewaschen und stellen kein Problem für die Meeres Flora und Fauna dar. Anders verhält es sich in Küstennähe und auf Flüssen oder in Hafenstädten. Dort können die Abgase zumindest für einige Menschen lästig sein.

Die Entwicklung der Grenzwerte

Besonders in der Bucht von Tokio, in den Häfen der Westküste der USA und in Nord- und Ostsee begann man deshalb Emission Control Areas (ECA) zu definieren. In solchen Gebieten durfte ab July 2010 nur noch Treibstoff mit einem maximalen Gehalt von 1% Schwefel verwendet werden. Dieser Grenzwert wurde ab Januar 2015 weiter auf 0,1% verschärft. Hat man erst einmal einen Schadstoff gefunden, kann man die Grenzwerte immer weiter verschärfen. Wer will schon auf Gremien, Kongresse und Dienstreisen verzichten?

Der nächste Schritt ist dann, die gesamte Erde zu beglücken. So hat die International Maritime Organization (IMO) – müßig zu erwähnen, eine Sonderorganisation der Vereinten Nationen (UN) – schon im Januar 2012 den Schwefelgehalt weltweit auf 3,5% (ehemals 4,5%) begrenzt. Vorsichtshalber hat man gleich beschlossen, daß ab Januar 2020 nur noch ein Grenzwert von 0,5% Schwefel für Schiffstreibstoffe zulässig ist. Ein echter Kostentreiber: Bisher war es üblich, einerseits HSFO (high-sulfur fuel oil mit 3,5% Schwefel) für das offene Meer zu tanken und andererseits schwefelarmen Treibstoff für die ECA-Zonen. Nach dem Verlassen der Küstengewässer wurde umgeschaltet. Zumindest im Sinne von Menschenschutz ein sinnvolles Vorgehen zu optimalen Kosten.

Wohin die Reise geht, kann man schon an den Grenzwerten für Benzin und Dieselkraftstoff nach DIN EN 590 erkennen. Hier sind nur noch 0,001% Schwefel zulässig. Bei den Kraftfahrzeugen mit Abgaskatalysator (nächster Schritt im Schiffsbetrieb?) eine technische Notwendigkeit. Für unser Heizöl Extra Leicht schwefelarm (HEL) sind noch 0,005% Schwefelgehalt zulässig. Hier ist es das Kondensat aus den Brennwertkesseln und die Kanalisation. Lediglich die Luftfahrt scheint noch ein wenig widerspenstig. Für deren Triebwerke gilt ein Grenzwert von 0,03% Schwefel für Jet A1.

Das Rohöl und seine Verarbeitung

Erdöl ist ein Naturprodukt und unterliegt damit großen Schwankungen in seiner Zusammensetzung. Im Handel unterscheidet man leichte (light crude oil) und schwere Rohöle (heavy crude oil), sowie den Schwefelgehalt (sweet oder sour crude oil). Raffinerien müssen sich entsprechend ihrer Verfahrenstechnik und ihrer Kundenwünsche das geeignete Rohöl zusammenkaufen. Der Preis stellt sich am Weltmarkt nach Angebot und Nachfrage ein. Von der Tendenz her, sind dünnflüssige und schwefelarme Rohöle teurer.

Der erste – und in vielen Ländern auch der einzige – Verfahrensschritt ist die Destillation. Das Rohöl wird auf etwa 400 °C erhitzt und in eine Kolonne eingespeist. Dort verdampft es teilweise und kondensiert bei unterschiedlichen Temperaturen in verschiedenen Stufen. Die leicht flüchtigen Anteile (Benzin, Kerosin, leichtes Heizöl etc.) werden so abgetrennt. Es verbleibt ein zähflüssiges Rückstandsöl (residual fuel oil oder resid) mit fast dem gesamten Schwefel. Täglich fallen davon etwa 8 Millionen barrel weltweit an. Bisher wurden davon rund die Hälfte als Schiffstreibstoff verwendet. Die andere Hälfte wird weiter verarbeitet (z. B. Asphalt), mit großem Aufwand weiter zerlegt oder in Kraftwerken verfeuert.

Schon an dieser Stelle erkennt man, daß der derzeitige Verbrauch von etwa 3,2 Millionen barrel HSB (high-sulfur bunker mit 3,5% Schwefel) pro Tag, kein Nischenprodukt ist. Jegliche Veränderung der Spezifikationen wirkt sich unmittelbar auf die Verarbeitung (Investitions- und Betriebskosten) und die Rohölpreise aus. Ob dies die UNO-Beamten überhaupt durchschaut haben oder gar für ihre politischen Interessen ausgenutzt haben, muß der geneigte Leser selbst entscheiden.

Klar ist, daß schon immer die edleren Produkte, wie z. B. Benzin und Kerosin das Geld bei einer Raffinerie bringen mußten. Das Rückstandsöl mußte meist unter dem Einstandspreis für Rohöl verkauft werden. Für alle ein gutes Geschäft: Benzin und Heizöl wurden nicht noch teurer und die Reeder konnten wegen geringer Treibstoffpreise niedrige Frachtraten anbieten.

Die Möglichkeiten

Auf die veränderten Grenzwerte zeichnen sich folgende Reaktionen ab:

  • Erwirken von Ausnahmegenehmigungen. Kann ein Schiff nicht genug schwefelarmen Treibstoff bekommen, kann es eine Sondergenehmigung für die Fahrt oder den Fahrtabschnitt erhalten.
  • Einbau von Rauchgaswäschen (Scrubber)
  • Umrüstung auf alternative Kraftstoffe (LNG, Methanol)
  • Blending (Mischung von Produkten mit unterschiedlichem Schwefelgehalt)
  • Nachrüstung von Raffinerien mit Cokern und Crackern, wodurch ein neues „Abfallprodukt“, der Petrolkoks, entsteht. Entsorgung nur zum Preis von Kesselkohle in Kohlekraftwerken möglich. Einbau zusätzlicher Entschwefelungsanlagen (Hydrodesulfurierung).
  • Veränderung des Rohöleinsatzes wodurch sich die weltweiten Handelsströme verschieben.
  • Erhöhung des Rohöleinsatzes, Steigerung des Eigenverbrauches der Raffinerien.

Ausnahmegenehmigung

Noch ist die Abwicklung von Ausnahmen noch nicht genau geregelt. Man geht aber davon aus, daß sie ähnlich der Gepflogenheiten in der 200-Meilenzone um die USA gehandhabt werden. Dort muß die Anzeige elektronisch vor Einlaufen über einen FONAR (electronic Fuel Oil Non-Availability Report or FONAR) angezeigt werden.

In Deutschland wird das sicherlich streng überwacht und mit drastischen Bußgeldern geahndet werden. Was allerdings in Rußland und Afrika passieren wird, kann man sich leicht vorstellen.

Rauchgaswäschen

Man kann die Abgase eines Schiffsdiesels – wie in einem modernen (schornsteinlosen) Kohlekraftwerk – waschen, bevor sie in den Auspuff geleitet werden. Allerdings mit gewissen Einschränkungen. Auf einem Schiff ist der Platz begrenzt. Man kann daher nicht eine so aufwendige Verfahrenstechnik, wie in einem Kraftwerk an Land einbauen. Die nächste Frage betrifft das Waschmittel. Man kann einfach Meerwasser verwenden, was aber bedeutet, man gibt nun die Schadstoffe konzentriert ab. Ob das eine Verbesserung gegenüber der Verdünnung im Fahrtwind ist, sei dahingestellt. Mit Sicherheit kann man die Abgase deshalb nicht in Häfen und Flüssen waschen. Will man auch dort waschen, braucht man einen geschlossenen Kreislauf wie in einem Kraftwerk. Bleibt dann aber die Frage der Entsorgung des Sondermülls.

Solch eine Rauchgasreinigung kostet je nach Schiff ca. 2 bis 5 Millionen US$ und erfordert einen zusätzlichen Betriebsaufwand. Bisher werden sie hauptsächlich in Kreuzfahrtschiffen eingebaut. Dort können sie den Passagieren ein besonders gutes Gefühl geben.

Alternative Kraftstoffe

Es gibt praktisch zwei Alternativen: Flüssiges Erdgas (LNG) und Methanol. Beide enthalten keinen Schwefel. In sog. Gas-Diesel-Motoren können sie problemlos verbrannt werden. Bei ihnen ist ein kleiner Anteil Diesel nur noch zur Zündung (1,5 bis 6%) erforderlich (d. h. der Diesel-Kreisprozess mit seinem guten Wirkungsgrad bleibt erhalten). Gleichwohl können sie auch stufenlos nur mit Diesel betrieben werden. Derzeit ist LNG der absolute Favorit (bei Neubauten) gegenüber Bunkeröl. Hinzu kommt eine „Zukunftssicherheit“. Auch die IMO bastelt bereits an CO2 Vorschriften und Abgaben. Erdgas setzt gegenüber Öl nur rund 75% CO2 frei. Allerdings ist das Volumen von LNG größer und es ist eine aufwendigere Technik mit Isoliertanks nötig (Lagertemperatur < -160°C). Der Platzbedarf ist rund doppelt so groß.

Inzwischen gibt es einen Weltmarkt und ganze Tankerflotten für LNG. Gleichwohl muß erst eine Infrastruktur aus dezentralen Lagern, Tankstellen in den Häfen, Bunkerbooten, Tanklastern usw. aufgebaut werden. An der Nordseeküste und im Ostseeraum (ECA-Zonen) ist man damit bereits weit vorangekommen. Hinzu kommt, daß LNG billig ist, jedenfalls weitaus billiger als entschwefelter Kraftstoff.

Blending

Zumindest in den ersten Jahren wird das Mischen von unterschiedlichen Ölen zu LSB ( low-sulfur bunker bis 0,5% S) gängige Praxis sein. Es gibt etliche Raffinerien, die für dünnflüssige und süße Rohöle gebaut sind. Diese liefern ein Rückstandsöl mit rund 1% Schwefelgehalt. Will man daraus LSB herstellen, benötigt man rund die gleiche Menge an Dieselkraftstoff bzw. Kerosin etc. Diese Nachfrage wird die Preise für Kraftstoffe und Flugzeugtreibstoff in die Höhe treiben.

Nachrüstung von Raffinerien

Rückstandsöle sind ein Abfallprodukt. Ihr Wert liegt deshalb meist deutlich unter dem Einstandspreis für Rohöl. Es gab deshalb schon immer Bestrebungen, Rückstandsöle in höherwertige Produkte umzuwandeln. Grundsätzlich gilt, je mehr Wasserstoff ein Öl enthält, um so geringer ist sein Siedepunkt. Man muß also dem Rückstandsöl Wasserstoff hinzufügen. Dies geschieht z. B. in einem Coker. Dort wird Rückstandsöl bei Temperaturen von über 500°C in wasserstoffreiche Leichtöle und Petrolkoks zerlegt. Der Wasserstoff wird also hierbei nur intern umgelagert. Schwefel und Schwermetalle verbleiben im Koks.

Man kann aber auch Wasserstoff von außen hinzuführen. Mit Wasserstoff gelingt auch eine Entschwefelung. Bei der Hydrodesulfurierung wird der im Öl enthaltene Schwefel erst in Schwefelwasserstoff und anschließend in elementaren Schwefel umgewandelt. Ein sehr energieintensives Verfahren. Zudem ist Wasserstoff recht teuer.

Es handelt sich um komplexe verfahrenstechnische Anlagen. Eine Nachrüstung einer Raffinerie dauert mehrere Jahre und kostet zig Milliarden. Es ist klar, daß sich diese Kosten in den Produkten widerspiegeln müssen.

Rohöleinsatz

Raffinerien sind meist für die Verarbeitung bestimmter Rohöle gebaut. Es ist aber schon immer üblich, Mischungen verschiedener Rohöle herzustellen, um ein synthetisches Rohöl zu erhalten. Dies ist ein Weg für einfachere Raffinerien sich den Gegebenheiten ab 2020 anzupassen. Man kann z. B. das Rückstandsöl einer Raffinerie, die Arab Light verarbeitet etwa hälftig mit Bakken Rohöl vermischen und erhält daraus ein Öl ähnlich Maya Crude. Dies ist ein typischer Weg für Raffinerien am Golf von Mexiko. Man kauft das Rückstandsöl billig am Weltmarkt ein, mischt es mit besonders leichtem Rohöl aus Dakota usw. (Fracking) und kann es in den entsprechenden Raffinerien verarbeiten.

Das Henne-Ei Problem

Die Verschärfung der Grenzwerte in einem Schritt, an einem Stichtag, hat eine enorme wirtschaftliche Herausforderung heraufbeschworen. Die Reeder können nur Wetten abschließen. Keiner kennt die zukünftige Preisdifferenz zwischen HFO (higher-sulfur heavy fuel oil) und (MGO) (low-sulfur marine distillates—marine gas oil) bzw. MDO (marine diesel oil). Genau dieser Wert entscheidet aber über die Amortisation für die Millionen-Investition pro Schiff und Wäscher. Ganz ähnliches gilt für die Preisdifferenz zu LNG. Der Einsatz von LNG dürfte sich nur für Schiffe rechnen, die überwiegend in den ECA-Zonen (nur 0,1% S) fahren. Es verwundert daher nicht, daß bis heute weniger als 1% der Handelsflotte mit über 50 000 Schiffen umgestellt ist.

Bei den Raffinerien sieht es nicht besser aus. Man geht davon aus, daß die Preise für HFO weiter fallen werden (auf ca. 60% der Rohöleinstandspreise). Gewinner sind im Moment Raffinerien, die bereits über Coker und Hydrodesulfurierung verfügen. Sie können doppelt von den fallenden Preisen für HFO und den steigenden Preisen für schwefelarme Öle profitieren. Gerade für kleine Raffinerien ist das Investitionsrisiko in Milliardenprojekte viel zu groß. Außerdem werden die Preisdifferenzen um so kleiner, je mehr Raffinerien umstellen.

Wie gewaltig die Verschiebungen sein werden, zeigen die Bilanzen aus 2012: Es wurden weltweit insgesamt 260 Millionen to Schiffstreibstoffe verbraucht. Davon waren 223 Millionen to HFO und lediglich 37 Millionen to MGO/MDO. Für 2020 schätzt man den Verbrauch auf 352 Millionen to. Die Verteilung ist noch unabsehbar. Man muß deshalb mindestens von Mitte 2019 bis 2020 von stark schwankenden Preisen für Mineralölprodukte ausgehen. Wie die Weltwirtschaft darauf reagiert, weiß keiner.

Konsequenzen

Dies ist wieder mal ein Beispiel für die Festlegung von Grenzwerten – die der Mehrheit der Bevölkerung gar nichts sagen – durch ferne und abgehobene Gremien. Ähnlich der Stickoxide durch die EU. Die Bombe ist erst geplatzt, als der Normalbürger von Fahrverboten betroffen war. Aktuell hat man gerade die Diskussion über „unverbindliche Empfehlungen“ der UNO auf einem ganz anderen Gebiet. Auch die IMO-Grenzwerte waren einst nicht bindend. Hier setzt die Kritik an den einschlägigen Industrieverbänden ein. In der Phantasiewelt der Linken, schreiben die Lobby-Verbände die Gesetze. In der Realität ist das mitnichten so. Sie stehen einer Mauer von – überwiegend ungebildeten, aber ideologisch gefestigten – Politikern, Bürokraten und Nicht-Regierungsorganisationen gegenüber. Allesamt Personen, die für die wirtschaftlichen Konsequenzen ihres Handelns in keiner Weise verantwortlich sind. Die meisten sind nicht einmal demokratisch legitimiert. Das Vehikel Umweltschutz hat sich inzwischen als eine Gefahr für alle Gesellschaften herausgebildet. Auf keinem Sektor sind so viele Scharlatane und Ideologen unterwegs. Mit der zunehmenden Abnahme naturwissenschaftlicher Kenntnisse in Deutschland wird eine notwendige Aufklärung über technisch-wirtschaftliche Abhängigkeiten immer schwieriger.

 

Kernkraft und Arbeit

Kernkraftwerke erzeugen nicht nur elektrische Energie, sondern bieten auch — meist überdurchschnittlich bezahlte — Arbeitsplätze. Dies ist der breiten Öffentlichkeit nicht so bewußt, weshalb viele „Ökos“ kopfschüttelnd vor Bürgern stehen, die sich für den Erhalt „ihres Reaktors“ (z. B. Fessenheim) einsetzen oder sich gar um ein „atomares Endlager“ (Schweden, Finnland) bewerben. Es erscheint daher sinnvoll, dieser Frage mal etwas näher nachzugehen.

Wo sind die Arbeitsplätze?

Weltweit gibt es verschiedenste Studien zu dieser Fragestellung. Die Beantwortung ist nicht ganz einfach. Irgendwie muß man in komplexen und zudem noch international verknüpften Volkswirtschaft, die unzähligen Arbeitsverhältnisse aufdröseln. Um eine Systematik in die Angelegenheit zu bringen, unterscheidet man grundsätzlich drei Bereiche:

  • Direkte Arbeitsplätze sind noch am leichtesten zu erfassen. Das sind die unmittelbar in einem Kernkraftwerk tätigen Menschen oder die auf der Baustelle beim Neubau oder Abriss arbeiten. Analoges gilt für die Herstellung von Brennelementen oder die Lagerung und Behandlung von Abfällen.
  • Indirekte Arbeitsplätze. Hier wird die Sache schon komplizierter und undurchsichtiger: Beim Bau eines Kernkraftwerkes werden z. B. große Mengen Zement und Betonstahl benötigt. Dies sind handelsübliche Produkte. Die Hersteller arbeiten deshalb nicht nur für Kernkraftwerke. In der Praxis ist es damit gar nicht so einfach, die für ein bestimmtes Objekt notwendigen indirekten oder zugelieferten Arbeitsstunden zu ermitteln.
  • Induzierte Arbeitsplätze. Das sind die Arbeitsplätze, die ganz besonders die Gemeinden am Standort einer kerntechnischen Anlage interessieren. Die Menschen, die in einem Kernkraftwerk arbeiten, geben einen großen Teil ihres Einkommens auch vor Ort aus: Sie kaufen in den lokalen Geschäften ein, bauen sich ein Häuschen oder wohnen im Hotel, wenn sie als Monteure im Kraftwerk (zeitweise) beschäftigt sind. Diese „Kaufkraft“ schafft zusätzliche Arbeitsplätze, die nur über Statistiken umzurechnen sind — ein breites Betätigungsfeld für Volkswirtschaftler.

All diese Arbeitsplätze fallen lokal, regional, national und international an. Wo sie anfallen, hängt vor allem vom Entwicklungsstand einer Volkswirtschaft ab. In Deutschland konnte man einst alles von der letzten Schraube bis zur kompletten Dampfturbine „zu Hause“ kaufen. In Rußland oder China ist das durchaus heute noch nicht der Fall. Viele Komponenten müssen noch im Ausland zugekauft oder zumindest gegen Lizenzgebühren „nachgebaut“ werden. Dies gilt natürlich auch in umgekehrter Richtung: Baut man keine Kernkraftwerke mehr, muß man sich nicht wundern, warum beispielsweise der eigene Turbinenbau verschwindet. Diese Tatsache haben viele Gewerkschaftsfunktionäre und Kombinatsleiter in Deutschland offensichtlich völlig unterschätzt.

Man kann all diese Zusammenhänge in herrliche Computermodelle stecken und tolle Bilder — für welchen Zweck auch immer — damit erzeugen. Wie so oft im Leben, hilft einem aber eine einfache qualitative Überlegung weiter: Die Kosten des einen — und Kernkraftwerke sind bekanntlich richtig teuer — sind immer auch der Umsatz der anderen. Dies ist ein maßgeblicher Grund, warum z. B. Großbritannien massiv neue Kernkraftwerke bauen will. Wohlstand fällt nicht vom Himmel. Auch die schicke Bibliothek, das Schwimmbad und letztendlich sogar der „Biobäcker“ müssen erstmal finanziert werden. Wie man sieht, sind schon viele „Dörfler“ weiter und sehen ein Kernkraftwerk deshalb nicht (mehr) als Bedrohung, sondern als Chance zur Entwicklung.

Das Zeitdauer-Problem

Bei Kernkraftwerken unterscheidet man vier Lebensphasen: Bau, Betrieb, Rückbau und Endlagerung. Die Bauzeit wird international in die zwei Phasen „Baustellenvorbereitung“ und „Errichtung“ (ab dem ersten Beton für die Grundplatte bis zur Übergabe) mit jeweils fünf Jahren angesetzt. Die Betriebszeit mit 50 Jahren. Der Rückbau ebenfalls in zwei Phasen von je fünf Jahren (nuklearer Teil und konventioneller Abriß). Für die Endlagerung 40 Jahre (Zwischenlagerung, Verpackung und sicherer Einschluß der Abfälle). Dies sind Mittelwerte, die sich aus der bisherigen weltweiten Erfahrung gebildet haben. Im Einzelfall können sich erhebliche Abweichungen ergeben. Zukünftig sind Veränderungen angesagt: So wird bei der Betriebsdauer für neue Kraftwerke bereits von 60 bis 80 Jahren ausgegangen. Entsprechend würden sich die Zahlen für die Beschäftigten verschieben.

Der Praktiker liebt Kennzahlen, mit deren Hilfe er grobe Überschlagsrechnungen ausführen kann. Dies wird — im Zeitalter der Computermodelle — (zumindest) für Plausibilitätskontrollen immer wichtiger. So wird z. B. im „Kleingedruckten“ für die direkte Beschäftigung eine Fehlerbandbreite von ± 10%, bei der indirekten Beschäftigung von ± 20% und bei der induzierten Beschäftigung von ± 30% angegeben. Ganz schlimm wird es, wenn Politiker Vergleichsstudien für unterschiedliche Energiesysteme in Auftrag geben. Solche „Vergleichsabschätzungen“ weisen aus Erfahrung Abweichungen von ± 50% auf.

Diese Bandbreiten sind nicht verwunderlich. Beruhen doch alle Daten auf Statistiken aus der Vergangenheit. Neben Fehlern bei der Datenerfassung ergeben sich immer Veränderungen aus technologischen Gründen über so lange Zeiträume (10+50+10+40=110 Jahre). Ganz besonders mit Vorsicht zu genießen, sind die Daten zu den induzierten Arbeitsplätzen. Hier erfolgt die Verknüpfung mit den direkten und indirekten Arbeitsplätzen über das Einkommen bzw. die Preise. Wer aber wieviel, für was, in einer Gesellschaft ausgibt, ist äußerst variabel. Bei so langen Betrachtungszeiträumen sind sogar Systembrüche (z. B. DDR in BRD) nicht auszuschließen.

Ein paar Anhaltswerte

Die USA betreiben über 100 Reaktoren, haben bereits mehrere abgerissen und verfügen vor allen Dingen über einen kompletten Brennstoffkreislauf, vom Uranbergwerk bis zur Endlagerung. Sie verfügen damit über ausreichend Daten. Allerdings ist dabei der Zeitraum von mehreren Jahrzehnten (Technologiesprünge, Inflationsraten usw.) zu beachten. Um die Werte für Überschlagsrechnungen besser handhabbar zu machen, wurden sie als Mannjahre pro 1000 MWel (MJ) normiert. Mannjahre ist dabei ein in der Industrie geläufiger Begriff: Es werden eigentlich die angefallenen Arbeitsstunden registriert und anschließend durch die zulässigen Jahresarbeitszeiten (Feiertage, Urlaub etc.) geteilt. Auf die Bauzeit entfallen 12 000 MJ, auf den Betrieb 30 000 MJ, auf den Rückbau 5000 MJ und auf die „Endlagerung“ 3000 MJ. In der Summe also 50 000 MJ an direkt angestellten Arbeitskräften. Hinzu kommen noch einmal die gleiche Anzahl in der Zulieferindustrie. Insgesamt sind damit 100 000 Mannjahre pro GWel über den Lebenszyklus eines Kernkraftwerks in den USA nötig. Diese induzieren noch weitere Arbeitsplätze, sodaß die Statistiker auf über 400 Millionen Arbeitsstunden für jeden Reaktor (mit 1000 MWel ) in der Volkswirtschaft kommen.

Statistische Auswertungen in Korea und Frankreich kommen zu ähnlichen Ergebnissen. So sind für den Bau von Reaktoren der II. Generation in Frankreich 26 600 MJ, in Korea 28 300 MJ und in den USA 24 473 Mannjahre auf den Baustellen und in der Zulieferindustrie pro installiertem GWel angefallen. Wen wundert es da, daß in Frankreich und den USA kaum jemand auf den „Industriezweig Kerntechnik“ verzichten mag? Ganz im Gegenteil: Man will in beiden Ländern neue Kernkraftwerke bauen.

Noch ein weiterer Gesichtspunkt mag verdeutlichen, warum in immer mehr Gemeinden in den USA inzwischen Bürgerinitiativen für den Weiterbetrieb „ihres“ Kernkraftwerks kämpfen: Im Jahr 2013 arbeiteten 62 170 Angestellte in den 104 Kernkraftwerken in den USA. Das macht im Mittel 598 Beschäftigte pro Kraftwerk (Bandbreite zwischen 400 bis 700) mit einem Durchschnittseinkommen von 95 000 US$ pro Jahr (von der Küchenfee bis über den Direktor gemittelt). Neben den Steuerausfällen reißt der Kaufkraftverlust eine Gemeinde nach der Abschaltung schnell in den wirtschaftlichen Abgrund.

Wenn man schon mal mit Zahlenspielereien beschäftigt ist, kann man auch ruhig mal die Betrachtungen andersherum anstellen: Ein Leichtwasserreaktor benötigt etwa 185 to Natururan jährlich (pro 1000 MWel ) für seine Stromerzeugung. Wenn man die Weltdaten (384 GW und 65 000 Minenarbeiter) nimmt, ergibt das etwa 170 Angestellte im Uranbergbau und weitere 100 Angestellte in der Brennstoffherstellung (Konversion, Anreicherung und Brennelementfertigung). Jedenfalls unter 300 Angestellte für die gesamte Brennstoffversorgung. Man vergleiche diese Produktivität mal mit der Förderung und dem Transport von Steinkohle für den Betrieb eines gleich großen Kohlekraftwerks. Auch hier wieder eine Antwort, warum China, Indien — und selbst die USA — gar nicht auf Kohlekraftwerke verzichten können. Geschehe die Umstellung etwa innerhalb nur eines Jahrzehntes, wären die sozialen Verwerfungen unvorstellbar.

Oder noch einmal die Zahlen von weiter oben andersherum: Für die Erzeugung von 4000 KWh elektrischer Energie in einem Kernkraftwerk — die auch noch jederzeit auf Wunsch verfügbar sind — benötigt man nur etwa eine Arbeitsstunde über den gesamten Lebenszyklus gerechnet. Auch dies eine Antwort, warum die Energiewende nur ein Hirngespinst sein kann.

Schlusswort

Wer bisher immer noch glaubt, die „Anti-Atom-Bewegung“ besteht aus verhuschten Theaterwissenschaftlerinnen, die ganz, ganz viel Angst vor Strahlung haben oder sonstigen Menschen, die sich echt dolle Sorgen um die Welt und die Wale machen, ist ein Narr. Überwiegend handelt es sich bei den Verantwortlichen in den einschlägigen Parteien um marxistisch geschulte Kader, die sich ganz bewußt die Kernenergie als Angriffsobjekt auf diese Gesellschaftsordnung ausgesucht haben. Erst Ausstieg aus der Kernenergie, dann Ausstieg aus der Kohle und parallel Angriff auf die Autoindustrie. Verbündet mit Schlangenölverkäufern, die sich auf Kosten von Kleinrentnern und Kleinverdienern .(ständig steigende Stromrechnungen und gesperrte Anschlüsse!) gierig die Taschen füllen. Getreu dem Grundsatz aller Sozialisten: Erst mal die Probleme schaffen, die man anschließend vorgibt zu lösen. Von Venezuela lernen, heißt Untergang lernen. Dunkle Aussichten für Michel, es sei denn, er kriegt doch noch die Kurve an der Wahlurne.

Micro-Reactor, die Renaissance made in USA?

Langsam zeichnet sich ab, welchen Weg die Trump-Administration für die Kernenergie vor hat. Nachdem die Fesseln des Obama-Zeitalters für die fossilen Energien erfolgreich durchschnitten wurden, wird der Umbau der Energieerzeugung nun auch konsequent auf die Kernenergie ausgedehnt. Die Reihenfolge war folgerichtig: Die meisten Arbeitsplätze und das schnellste Wirtschaftswachstum konnte kurzfristig nur über die Öl- und Gasindustrie geschaffen werden. Hier traf alles zusammen: Hohe Nachfrage zu akzeptablen Preisen auf dem Weltmarkt mit vorhandenem Wissen und Kapital im eigenen Land. Nebenbei wurde noch die Kohleindustrie stabilisiert und die überbordende Förderung für „alternative Energien“ zurechtgestutzt. Ein einziger Albtraum für jeden gläubigen „Klimaschützer“. Nachdem der Präsident nun das sichere Fundament für seine Wiederwahl gelegt hat, kehrt etwas Ruhe ein und man kann sich langfristigen Projekten wie der Kernenergie widmen.

Die Lage der Kerntechnik in den USA

Der Schock kam mit dem Desaster der Neubauprojekte Vogtle und Summers. Die USA sind nicht mehr in der Lage, einen in den USA entwickelten Reaktortyp fristgerecht und zu den vereinbarten Preisen fertigzustellen. Zu aller Schande wurden die gleichen Reaktoren in Lizenz in China errichtet und sind inzwischen am Netz. Es gibt in den USA — wie in Deutschland und Frankreich — keine leistungsfähige Industrie mehr, die solch komplexe Projekte unter den speziellen Randbedingungen der Kerntechnik durchziehen kann. Der Faden ist durch die jahrzehntelange Zwangspause beim Neubau einfach abgerissen. Man lernt in Vogtle und Olkiluoto genauso wieder von vorn, wie in den fünfziger und sechziger Jahren. Da sich auch in den USA keine weiteren Kernkraftwerke als Anschlussaufträge abzeichnen, droht eine Abwärtsspirale.

Wie immer, wenn man in einer Sackgasse steckt, muß man die Situation analysieren und neu denken. Es ist etwas von dem „Apple-Geist“ nötig, der mitten in der Krise der Computerindustrie das Smartphone erfunden hat. Heutige Kernkraftwerke erfordern riesigen Kapitaleinsatz, lange Bauzeiten (vom ersten Genehmigungsantrag bis zur Fertigstellung), große Stäbe von erfahrenen Fachkräften. Solche Randbedingungen sind heute nur noch in Staatswirtschaften zu realisieren. Will man verhindern, daß China und Rußland das weltweite Monopol für Kernkraftwerke erhalten, muß man deshalb genau hier ansetzen. Der eingeschlagene Weg läuft über eine Serienproduktion anstelle einer Kosteneinsparung über einen „Größenvorteil“. Ein revolutionärer Ansatz, wie einst der Umstieg vom „Handy“ auf das Smartphone. Ganz wichtig ist hierbei die Schaffung eines Zusatznutzens, der für sich allein einen Kaufanreiz darstellt — zumindest für eine vorhandene kaufkräftige Konsumentengruppe als Starter.

Tot geschriebene, leben länger

Die kerntechnische Industrie in den USA ist noch lange nicht tot. Jedenfalls so lange, wie sie über einschlägige Forschungszentren mit zehntausenden (der besten) Fachleute weltweit verfügt und eine — etwas im Verborgenen blühende — Reaktorindustrie vorhanden ist. Wenig beachtet, existiert das „Büro für Schiffsreaktoren“, welches 82 Kriegsschiffe mit Kernreaktoren unterhält, über sechs Werften, vier Übungsreaktoren an denen jährlich 3500 Studenten ausgebildet werden, zwei eigenen Forschungszentren (Bettis/Knolls), hunderten von klassifizierten Zulieferern und einem eigenen, kompletten Brennstoffkreislauf, verfügt. Dort weht immer noch der Geist von Admiral Rickover. Völlig geräuschlos — und vor allem ohne spektakuläre Unfälle — wird dort Reaktortechnik auf höchstem und sonst weltweit unerreichtem Niveau betrieben. Allein diese Organisation kann (wieder) als Keimzelle einer neuen Industrie dienen. Außerdem hat sich offensichtlich der öffentliche Wind gedreht: Es gibt mehr als 70 neugegründete Unternehmen, die sich mit den unterschiedlichsten Reaktortypen beschäftigen. Universitäten brauchen sich keine Sorgen mehr über den Nachwuchs zu machen.

In diesem Umfeld fehlt es nur noch an politischem Willen. Dieser scheint nun endlich in der Gestalt von Präsident Trump gekommen zu sein. Er hat das Zeug zu einem Kennedy der Kerntechnik zu werden. So, wie einst die Mondlandung zu einer Explosion der Raumfahrt geführt hat, könnte heute der „Micro-Reactor“ eine Initialzündung für einen neuen Industriezweig auslösen.

Was macht dieses Konzept so anders?

Grundgedanke ist die Serienfertigung. Die heutigen (unvorhersehbaren) Bauzeiten für Kernkraftwerke in westlichen Ländern sind für jeden Investor völlig indiskutabel. Zwar bekommt man nicht einmal ein Gaskraftwerk beim Kaufmann um die Ecke, aber zumindest Termingerecht in einem überschaubaren Zeitraum. Die unvorhersehbaren Zeiträume sind die Hauptursache für die hohen Kosten. Dies zeigen die Preise für baugleiche Kraftwerke in China überdeutlich — z. B. gegenüber den ewigen Baustellen in USA (Vogtel), Frankreich (Flamanville) und Finnland (Olkiluoto).

Die notwendige Erstinvestition für eine kleine Leistung ist entsprechend gering gegenüber einem großen konventionellen Kernkraftwerk. Das wirtschaftliche Risiko ist dadurch leichter handhabbar. In wie weit die Serienfertigung hierbei mit einer Kostendegression durch Größe mithalten kann, wird die Zukunft zeigen. Viel wichtiger ist jedoch, daß sich durch die geringen Leistungen völlig neue Märkte für die Kerntechnik erschließen. Auch die Großraumflugzeuge haben in der Luftfahrt nicht die Neuentwicklung kleiner Jets verhindert. Im Gegenteil, haben die kleinen Flugzeuge völlig neue Märkte erschlossen und damit die Luftfahrt insgesamt belebt.

Die Brennstoffkosten sind bei Kernkraftwerken vernachlässigbar — ausdrücklich auch unter Einschluß der notwendigen Entsorgungskosten! Man sollte deshalb nicht den Wirkungsgrad, sondern die Investitionskosten und die Robustheit in den Vordergrund stellen. Lange Betriebszeiten (geplant mindestens 10 Jahre) zwischen den Brennstoffwechseln ergeben schnell geringere Stromkosten zu festen Preisen (Leistung in kW x Betriebsstunden = produzierte Kilowattstunden) gegenüber Windmühlen und Sonnenkollektoren. Aber das absolute Killerargument gegenüber allen wetterabhängigen Verfahren ist: Immer wenn der Schalter umgelegt wird, ist die benötigte elektrische Leistung vorhanden. Ganz ohne Speicher und sonstigen teuren Ballast und auch noch ohne Luftbelastung.

Der ungesehene Markt

Alle Kleinreaktoren leiden unter dem „Henne-Ei-Problem“: Größere Stückzahlen sollen über eine Serienfertigung die Preise drastisch senken. Es fehlt aber der Kunde, der für einen ersten Reaktor bereit ist, das volle Risiko und den notwendigerweise erhöhten Preis zu tragen. Ein Problem, das der Flugzeugindustrie wohl bekannt ist. Es gibt jedoch einen Kunden, der mit diesem Phänomen gewohnt ist umzugehen und überdies noch durch den Steuerzahler gedeckt ist: Das Militär.

Für das US-Militär ist die Versorgung mit Energie stets ein strategisches Problem gewesen. Jeder Versorger muß im Ernstfall durch Kampftruppen (z. B. Begleitung von Konvois) geschützt werden — bindet also Kampfkraft. Außerdem schreitet mit stark zunehmender Geschwindigkeit die Elektrifizierung des Militärs voran (Kommunikation, Radargeräte usw., bis hin zu Waffensystemen selbst). Gleichzeitig werden die vorhandenen Stromnetze auch in USA durch den vermehrten Einsatz von „Erneuerbaren“ immer störungsanfälliger und die Stromkosten steigen immer weiter. Der Scheidepunkt zwischen immer mehr zusätzlicher Notstromversorgung zur Absicherung und Eigenversorgung rückt immer näher. Das US-Verteidigungsministerium ist für über 500 Liegenschaften mit mehr als einem Megawatt Anschlussleistung allein auf dem eigenen Staatsgebiet Auftraggeber und somit einer der größten Stromkunden überhaupt (ca. 21% des gesamten öffentlichen Verbrauchs). 90% dieser Objekte kann mit 4 x 10 MWel voll versorgt werden. Hinzu kommen noch langfristig Heizwärme und Trinkwasser (Meerwasserentsalzung). Im ersten Schritt wird aber eine reine Stromversorgung angestrebt. Da die Spitzenlast nur im Ernstfall benötigt wird, kann sich Zukünftig eine Umkehrung anbieten: Das militärische Kraftwerk speist Überschußstrom ins Netz und senkt damit die eigenen Kosten. Somit ergeben sich folgende Anforderungen:

  • Kleine Abmessungen und geringes Gewicht, damit die „Kleinkraftwerke“ später auch im Feld folgen können.
  • Um möglichst viele Anwendungsfälle zu erschließen, nur eine kleine Leistung — bis 10 MWel derzeit angestrebt.
  • Inhärente („walk away“) Sicherheit.
  • Möglicher Betrieb über den vollen Lastbereich mit hoher Änderungsgeschwindigkeit um Inselbetrieb zu gewährleisten.
  • Langzeit-Dauerbetrieb mit Brennstoff Wechselintervallen von mindestens 10 Jahren („Batterie“). Dies macht eine höhere Anreicherung von nahezu 20% (HALEU) nötig.
  • Weitestgehend vollautomatischer Betrieb durch Soldaten — nach kurzer Schulung und Einarbeitung.
  • Möglichst eine zivile Zulassung durch die NRC um die potentiellen Stückzahlen zu erhöhen und eine Einspeisung ins öffentliche Netz zu ermöglichen.

Das Genehmigungsverfahren

Heutzutage eine Genehmigung für einen neuen Reaktortyp zu erlangen, gleicht einem einzigen Hindernislauf mit ungewissem Ausgang. Von einer Behörde, die ein Monopol hat und überwiegend im Stundenlohn (rund 280$/h) arbeitet, kann man keine Sprünge erwarten. Sie wird sich noch grundlegend umorganisieren müssen um sich den neuen — teilweise noch in Arbeit befindlichen — Randbedingungen anzupassen: Bei Reaktoren so kleiner Leistung ist die Menge radioaktiver Stoffe (Spaltprodukte) so klein, daß auch im ungünstigsten Fall eine Gefährdung von Personen außerhalb des Betriebsgeländes ausgeschlossen werden muß. Eine schlimme Kröte für alle „Atomkraftgegner“! Eine inhärente Sicherheit, d. h. keine nukleare Explosion und auch keine Notkühlung ist erforderlich. Ein vollautomatischer Betrieb, der keine Fehlbedienung erlaubt. In diesem Zusammenhang ist interessant, daß die gesetzlichen Bestimmungen über die Nuklearversicherung bald routinemäßig auslaufen und zwangsläufig überarbeitet werden müssen. Es bietet sich an, für solche Reaktoren die Haftpflicht nur noch rein kommerziell auszugestalten. Eine (spezielle) Industrieversicherung mit kalkulierbar geringeren Kosten. Auch das wird für „Atomkraftgegner“ nur schwer verdaulich sein, da es doch zu deren Grundüberzeugungen zählt, daß Kernkraftwerke gar nicht zu versichern seien!

Wer an dieser Stelle glaubt, das seien alles nur Wunschträume, der täuscht sich gewaltig. Die NRC steht unter Druck. Sie hat schon lange den Bogen überspannt. Ganz entscheidend ist aber, daß sich mit der Wahl von Präsident Trump der Wind von gegen, in pro Kernenergie gedreht hat. Der Präsident ist nämlich in dieser Frage sehr mächtig: Nach dem Atomic Energy Act of 1954 kann er das Verteidigungsministerium (DoD) anweisen, einen solchen Reaktor für militärische Zwecke zu bauen und zu betreiben (siehe 42 U.S.C. §2121(b)). Es bedarf dazu ausdrücklich keiner Genehmigung durch die NRC (siehe 42 U.S.C. §2140(b)).

Allerdings ist der Eigenbau gar nicht gewollt. Es geht um die Wiederbelebung der kerntechnischen Industrie. Dafür ist aber eine Genehmigung und Überwachung durch die NRC nötig. Im Gespräch sind private Investoren und Betreiber. Das Militär würde nur für 40 Jahre den Strom zu einem festgelegten Preis kaufen. Das Kraftwerk könnte in unmittelbarer Nähe des Stützpunktes errichtet werden und von dieser wirtschaftlichen Basis aus, sein Geschäft erweitern. Ein Vorbild ist auch die NASA, die eng mit privaten Raketenherstellern zusammenarbeitet und von diesen Nutzlast kauft.

Der Zeitplan

Aktuell geht man von einer Realisierung innerhalb von 5 bis 10 Jahren für den „Neuen Reaktor“ einschließlich Brennstoffkreislauf, Genehmigungen und Bau aus. Für einen Kerntechniker hört sich das wie Science Fiction oder einer Geschichte aus vergangenen Zeiten (erstes Atom-U-Boot Nautilus etc.) an. Vielleicht knüpft Präsident Trump aber bewußt an diese Traditionen an. Ein solches Projekt ist weniger eine Frage der Ingenieurleistungen sondern viel mehr des politischen Willens. Gelingt es ihm, hat er wahrlich „America Great Again“ gemacht. Wenn Amerika wirklich wollte, hat es immer das Unmögliche geschafft: Manhattan Project, Nautilus, Apollo usw.

Nun ist es auch nicht so, als wenn man bei Stunde Null mit diesem Projekt anfängt. Technisch gibt es kaum Unwägbarkeiten. Politisch sind auch bereits die entscheidenden Gesetze durchgebracht. Es ist halt der unvergleichliche Donald Trump Regierungsstil: Immer viel Kasperletheater als Futter für die Medien und sonstige schlichte Gemüter, bei gleichzeitig harter Sacharbeit im Hintergrund.

Atomwaffen als Preis für Klimaschutz?

Michael Shellenberger bezeichnet sich selbst als „Umweltaktivist“ der sich für „CO2 freie Energie“ zur „Klimarettung“ einsetzt. Er sagt von sich selbst, daß er ursprünglich ein Anhänger von „Atomkraft-Nein-Danke“ war und heute aktiv für die Erhaltung von Kernkraftwerken kämpft — vom Saulus zum Paulus sozusagen. Gerade deswegen genießt er hohes Ansehen unter Aktivisten für die Kernenergienutzung.

Nun hat er sich mit dem Artikel Wer sind wir, daß wir schwachen Nationen Kernwaffen vorenthalten, die sie für ihre Selbstverteidigung benötigen? und einer noch dolleren Fortsetzung Für Nationen die Kernenergie anstreben ist der Bau von Kernwaffen eine Fähigkeit und kein Fehler im Forbes-Magazin auf sehr abschüssiges Gelände begeben. In Anbetracht der großen Auflage und dem Bekanntheitsgrad des Autors kann man seine Thesen nicht unkommentiert lassen. Dafür wird einfach zu viel durcheinander gerührt. Der geübte Erzähler beginnt seinen Artikel mit der Schilderung einer Szene aus einem Hollywoodfilm, in der die SS brutal eine jüdische Familie im besetzten Frankreich abschlachtet. Er läßt seine Schilderung mit der selbst beantworteten Frage enden, warum sich die französische Familie überhaupt im Keller verstecken mußte: Sie hatten keine Abschreckung. Er spannt den erzählerischen Bogen weiter über den July 1942, in dem die kollaborierende französische Polizei fast 13000 Juden in einem Stadion zusammenpferchte und anschließend nach Deutschland deportieren ließ. Es folgt die Feststellung, daß von den fast 76000 französischen Juden die Gaskammern von Ausschwitz nur 2000 überlebt haben. Dramaturgisch geschickt, aber äußerst geschmacklos — wenn man erst einmal die spätere Gleichsetzung von Israel und Iran gelesen hat — kommt er zu seiner ersten These:

Die Atombombe als Waffe der Schwachen.

Wie hätte ein schwacher Staat wie Frankreich der 1930er Jahre die Ungleichheit gegenüber dem nationalsozialistischen Deutschland aufheben können? Durch den Besitz einer Waffe, mit der er ihre größten Städte hätte ausradieren können. Wow! Mal abgesehen, daß solche historischen Betrachtungen genauso sinnvoll sind, wie die Fragestellung, was wäre aus der Welt geworden, wenn die Saurier schon Konserven gehabt hätten, ist dies schon der erste Widerspruch in seiner gesamten Argumentation. Shellenberger hat die Nukleare-Abschreckung, wie sie z. B. im Kalten-Krieg vorlag, gar nicht verstanden: Sie funktioniert nur, wenn jeder genug Waffen hat, den Gegner auch dann sicher auszulöschen, wenn dieser bereits sein ganzes Arsenal abgefeuert hat (Zweitschlagfähigkeit). Nur in der Märchenwelt verfügt ausschließlich der Edle und Schwache über Schwert und Rüstung — was ihn automatisch nicht mehr schwach sein läßt. Solange also nicht jeder Staat über das Potential verfügt, die ganze Welt zu vernichten, gibt es keine funktionierende Abschreckung. Wer ist ernsthaft für solch einen Irrsinn?

Das ganze Vorspiel mit Frankreich bekommt plötzlich Sinn, wenn man die Überleitung mit Charles de Gaulle über die nukleare Bewaffnung von Frankreich liest. Shellenberger sieht sie als logische Konsequenz des Überfalls von Frankreich durch Deutschland. Aus dieser Position leitet er die vermeintlich unmoralische Haltung der USA 1962 ab: Das französische Ansinnen sei „töricht oder teuflisch — oder beides“ (frei nach Kennedy). Warum konnten die USA Frankreich den Wunsch absprechen, sich selbst zu verteidigen? Eine moralisch triefende rhetorische Frage, die er für seine weitere Argumentation braucht. Er blendet einfach die historischen Tatsachen aus: Die Panzer der Sowjetunion standen an der Elbe — also unmittelbar vor den Toren Frankreichs. Charles de Gaulle sprach in diesem Zusammenhang bewußt von Lyon und Hamburg. Er wollte das Europa der Vaterländer — zusammen mit dem „Erbfeind“ Deutschland — als Bollwerk gegen weitere innereuropäische Kriege und die äußere Bedrohung durch den Kommunismus. Demgegenüber stand die nordatlantische Wertegemeinschaft mit dem atomaren Schutzschirm der USA als Alternative.

Der nukleare Schutzschirm

Damit kommen wir zu seiner zweiten These, mit der er Kernwaffen für jeden Staat begründet: Kein Staat würde einen „Atomkrieg“ riskieren, wenn einer seiner Verbündeten durch einen anderen Staat mit Atomwaffen angegriffen würde. Ausgerechnet den deutschen Professor Christian Hacke führt er hierfür als Zeuge an. Ein Typ, die schon mal gerne Donald Trump in einem Interview mit dem Deutschlandfunk (Wo auch sonst, als im GEZ-Funk?) als „Kotzbrocken, der für die Unterseite der amerikanischen Zivilisation steht“ bezeichnet. Schlimmer noch, diese Lichtgestalt eines deutschen Politologen verbreitet seine kruschen Thesen auch noch international:

Germany is, for the first time since 1949, without nuclear protection provided by the United States, and thus defenseless in an extreme crisis. As such, Germany has no alternative but to rely on itself. A nuclear-armed Germany would be for deterrence only. A nuclear Germany would stabilize NATO and the security of the Western World, but if we cannot persuade our allies then Germany should go it alone.

Kurz und knapp: Wegen der neuerdings unzuverlässigen USA — die staatliche Propaganda des GEZ-Rundfunks zeigt zumindest bei diesem Herrn Früchte — braucht Deutschland eigene Kernwaffen!

Die Politik der USA hat sich bisher nicht verändert: Es sind zahlreiche US-Truppen in Deutschland stationiert. Zusätzlich wurde der Schutzschirm noch bis in die baltischen Staaten ausgedehnt. Dies ist der „Pearl-Harbor-Knopf“ der USA! Putin-Versteher bezeichnen das als Bedrohung Russlands durch die „Nato-Ost-Erweiterung“. Zum Glück ist Putin als KGB-Offizier in der dritten Generation nicht ein solcher Einfaltspinsel. Gleichwohl ist das Säen von Zwietracht ein ewiges Bemühen dieser Organisation und ihrer Helfer im Westen. Wer sich dafür interessiert, dem sei z. B. ein Studium des „NATO-Doppelbeschlusses“ empfohlen. Noch heute kämpft die SED-Nachfolgepartei gegen die Lagerung von US-Atombomben auf deutschem Grund. Sie sollten nach Freigabe durch die USA von Bundeswehrflugzeugen gegen die Sowjetarmee eingesetzt werden können. Nichts weiter, als ein deutliches Argument, daß das Spiel „New York gegen Berlin“ nicht funktioniert. Nukleare Abschreckung ist halt etwas komplexer als mancher Politologe glaubt zu wissen.

Alle Staaten sollen gleich sein

Staaten sind nicht gleich gefährlich. Es ist wie mit Messern, Schusswaffen und allem anderen auch: Es ist z. B. ein Unterschied, ob ein Pfadfinder ein Messer bei sich hat oder ein „männlicher unbegleiteter Migrant“ auf einem Volksfest. Insofern ist es bestenfalls naiv, alle Staaten in einen Topf zu werfen.

Man mag ja noch verstehen, daß in Nord Korea die Kernwaffen letztendlich nur zur Ausbeutung und Unterdrückung des eigenen Volkes durch seinen Diktator dienen sollen: Wenn ihr mir mein Volk wegnehmen wollt, beschmeiß ich euch mit Atombomben. Aber Iran und Israel in einen Topf zu schmeißen, ist schon nicht mehr unverständlich: Israel ist eine Demokratie — Iran ein antisemitisches Mullah-Regime, das immer wieder mit der Auslöschung Israels droht; Israel hat bisher ausschließlich unter großen Opfern lokale Verteidigungskriege führen müssen — Iran führt aus religiösem Antrieb Krieg in Jemen, Irak und Syrien und unterstützt aktiv Terroristen. Man hätte wirklich kein dämlicheres Beispiel für die Befriedung durch frei verfügbare Kernwaffen finden können. Iran ist erst durch sein Streben nach Kernwaffen zum Problem geworden. Mit Rationalität im Zusammenhang mit gläubigen Schiiten sollte man auch nicht zu erwartungsvoll sein: Was soll ein Gleichgewicht des Schreckens jemandem sagen, der davon überzeugt ist, 72 Jungfrauen zu bekommen, wenn er sich selbst in die Luft sprengt?

Libyen, Irak und die Ukraine sind ebenfalls schlechte Beispiele zur Untermauerung der These von „Frieden schaffen durch Kernwaffen“. Libyen und Irak hätten es aus eigener Kraft gar nicht geschafft Kernwaffenstaat zu werden. Dafür haben ihre technischen und finanziellen Möglichkeiten nicht ausgereicht. Die Ukraine hat lediglich die sowjetischen Kernwaffen, die auf ihrem Territorium stationiert waren, an den Nachfolgestaat Rußland zurück gegeben. Der Unterhalt hätte sie nur finanziell aufgefressen. Putin hätte sich von einer Destabilisierung auch durch ein paar olle Raketen nicht abhalten lassen. Auf Grund seiner praktischen Erfahrung als KGB-Offizier in der DDR, kann er einfach kein freies und wirtschaftlich erfolgreiches Land als Leuchtfeuer in seiner Nähe dulden.

Warum uns Kernwaffen friedlich machen sollen

Atomwaffen dienen nicht zur Verteidigung sondern als Strafe“. Wieder so ein markanter Irrtum. „Friedensbewegte“ würden lieber von der drohenden atomaren Apokalypse sprechen. Wieso eigentlich? Hiroshima und Nagasaki sind schon lange wieder belebte Städte. Einzig und allein die Fähigkeit einen Gegner mit Sicherheit auch im Zweitschlag zu vernichten, kann eine Abschreckung auslösen. Aber kann Korea die USA auslöschen oder China Indien? Für eine nukleare Strafaktion wäre es wohl viel zu spät. China und Pakistan haben daher ständig Grenzscharmützel, nur wird hier darüber kaum berichtet. Frieden jedenfalls, sieht anders aus.

Ferner sind Kernwaffen nicht alles. Da ist z. B. eine funktionierende Raketenabwehr, über die im Moment praktisch nur die USA und Israel verfügen. Glaubt jemand ernsthaft daran, daß es (zumindest heute und in naher Zukunft) Korea gelingen würde, eine Interkontinentalrakete zum amerikanischen Festland durchzubringen?

Selbst eine so simple Eigenschaft wie die Fläche eine Landes spielt eine Rolle: Für Breschnew war Deutschland stets ein Problem von drei Wasserstoffbomben. Israel könnte wohl kaum eine aushalten. Dem großen Führer von Nord Korea wäre es wohl egal, ob sein Land in einen Parkplatz umgewandelt würde, solange er in irgendeinem Bunker überleben könnte. Iran ist zwar ziemlich groß, aber seine Führungsclique erstrebt ohnehin einen Platz im eingebildeten Paradies.

Kernkraftwerke und die Bombe

Die abgedroschene Behauptung der Verknüpfung von Kernkraftwerken und nuklearer Aufrüstung ist schlicht weg Unsinn. Der einzige Fall einer Verknüpfung (über die Nutzung von Schwerwasserreaktoren zur Produktion von waffengrädigem Plutonium) war und ist Indien. Die Welt hat daraus gelernt (z. B. „123-Abkommen“ mit den Vereinigten Emiraten). Selbst Korea, Iran und vormals Süd-Afrika haben ein eigenes Waffenprogramm unterhalten. Eher das Gegenteil ist der Fall: Ein paralleles Programm zum Aufbau von friedlicher und militärischer Nutzung ist für die meisten Länder der Welt schlicht zu kostspielig. Auch Saddam Hussein, Muammar al-Gaddafi und Assad konnten nur an der Bombe basteln. Wie wichtig Geld ist, zeigt das Beispiel Vietnam, dort mußte man von dem geplanten Bau von Kernkraftwerken auf Kohlekraftwerke umschwenken. Wären die Theorien von Shellenberger zutreffend, hätte Vietnam alles daran setzen müssen Kernkraftwerke zu bauen, befindet es sich doch in einem latenten Kriegszustand mit China.

Der Brennstoffkreislauf

In der Tat ist der Aufbau eines Brennstoffkreislaufes wesentlich sensibler. Dies betrifft sowohl die Anreicherung von Uran auf Waffenfähigkeit (Pakistan) wie auch die Wiederaufbereitung (Indien). Sowohl die USA (Vereinigte Emirate), wie auch Rußland (Türkei, Ägypten) achten beim Verkauf von Kernkraftwerken durch die Lieferung und Rücknahme des benötigten Brennstoffs auf eine Einschränkung des Kreises.

Umgekehrt kann man nicht den Schluß ziehen, daß jedes Land mit einem Brennstoffkreislauf auch Kernwaffen anstrebt. Paradebeispiel dafür war gerade Deutschland. Wie unverantwortlich und dämlich daher beispielsweise das Politologengeschwafel eines Christian Hacke ist, zeigt bereits Shellenbergers Artikel: Er listet nur drei Staaten (Polen, Ungarn und Finnland) auf, denen er kein Streben nach Kernwaffen unterstellt.

Ebenso sollte man eigentlich denken, daß die Gleichsetzung von Plutonium und Kernwaffen langsam aus der Welt ist. Sehr ungerecht ist in diesem Zusammenhang gerade die Erwähnung von Japan. Japan hat sich für einen geschlossenen Brennstoffkreislauf entschieden. Hat aber bisher seine abgebrannten Brennelemente in Frankreich und GB aufarbeiten lassen. Diese beiden Länder sind die Garanten, daß es sich bei den zitierten 6000 to ausschließlich um Reaktorplutonium und keinesfalls um waffengrädiges Plutonium handelt.

Nachwort

Kernwaffen sind Massenvernichtungswaffen, deren militärischer Nutzen ohnehin eingeschränkt ist — Friedensstifter sind sie keineswegs. Sie gehören genauso geächtet wie Chemiewaffen. Da aber die reale Welt ist wie sie ist, können nur beharrliche Abrüstungsverhandlungen zum Ziel führen. Bis dahin ist konsequent die Weiterverbreitung zu verhindern oder wenigstens zu behindern. Es ist zumindest ein Zeitgewinn.

Was Michael Shellenberger anbetrifft: Man kann ja gerne glauben, daß CO2 zur „Klimakatastrophe“ führt. Es ist auch ein lobenswerter Entwicklungsschritt, wenn man zur Erkenntnis gekommen ist, daß man nicht mit Wind und Sonne die Welt mit ausreichend Energie versorgen kann. Insofern sei sein jahrelanger Einsatz für die Nutzung der Kernenergie keinen Millimeter geschmälert. Es ist aber schlichtweg nicht zulässig, wenn man zur „Klimarettung“ Kernwaffen als Friedensstifter glorifiziert.

U-Battery aus Europa

Auch in Europa geht (noch) die Reaktorentwicklung weiter. Es begann 2008 an den Universitäten: University of Manchester (UK) und Technology University of Delft (NL). Es ging um die Entwicklung eines Reaktors zur Stromerzeugung und zur gleichzeitigen Auskopplung von Wärme (mit Temperaturen bis 750 °C) für Heiz- und industrielle Zwecke. Vorgabe war eine optimale Lösung für das Dreieck aus: Sicherheit, Wirtschaftlichkeit und Umweltfreundlichkeit zu finden.

Interessant ist schon mal die Erschließung völlig neuer Marktsegmente durch die Reaktorleistung (hier 10 MWth und 4 MWel) und die nutzbare Temperatur (hier 750 °C). Diese neue Klasse wird als MMR (.micro modular reactor) bezeichnet. Wie schon die Bezeichnung „Uran-Batterie“ andeutet, wird ferner eine ununterbrochene Betriebszeit von mindestens 5 – 10 Jahren vorgesehen. Hiermit wird das Marktsegment der Kraft-Wärme-Kopplung auf der Basis von „Schiffsdieseln“ und kleinen Gasturbinen angestrebt. Ein sich in der Industrie immer weiter (steigende Strompreise und sinkende Versorgungssicherheit durch Wind und Sonne) verbreitendes Konzept. Hinzu kommen die Inselnetze in abgelegenen Regionen (Kleinstädte), Bergwerke und Produktionsplattformen auf dem Meer, Verdichterstationen in Pipelines usw. Hierfür kann ebenfalls auch die hohe Betriebstemperatur — selbst bei reiner Stromproduktion — von Vorteil sein, da sie problemlos Trockenkühlung (Wüstengebiete) erlaubt.

Die treibende Kraft hinter diesem Projekt ist — in diesem Sinne sicherlich nicht ganz zufällig — das Konsortium URENCO. Ein weltweiter Betreiber von Urananreicherungsanlagen. Solche Kaskaden aus Zentrifugen brauchen kontinuierlich gewaltige Mengen elektrische Energie. Man sucht also selbst nach einer Lösung für die immer teurere Versorgung.

Der Reaktor

Wieder ein neuer „Papierreaktor“ mehr, könnte man denken. Ganz so ist es aber nicht. Man hat von Anfang an auf erprobte Technik gesetzt. Es ist reine Entwicklungsarbeit — insbesondere für die Nachweise in einem erfolgreichen Genehmigungsverfahren — aber keine Forschung mehr zu leisten. Insofern ist der angestrebte Baubeginn 2024 durchaus realisierbar.

Fangen wir mit dem Brennstoff an. Es sind [TRISO] (TRISO) Brennelemente vorgesehen. Dieser Brennstofftyp ist bereits in mehreren Ländern erfolgreich angewendet worden. Diese Brennelemente überstehen problemlos Temperaturen von 1800 °C. Dadurch sind solche Reaktoren inhärent sicher. Gemeint ist damit, daß die Kettenreaktion auf jeden Fall infolge des Temperaturanstiegs zusammenbricht und eine Kernschmelze durch die Nachzerfallswärme (Fukushima) ausgeschlossen ist. Man braucht somit keine Notkühlsysteme, dies spart Kosten und vor allem: Was man nicht hat, kann auch nicht kaputt gehen oder falsch bedient werden. Der Sicherheitsgewinn ist dadurch so groß, daß sich alle denkbaren Unfälle nur auf den Reaktor und sein schützendes Gebäude beschränken. Nennenswerte Radioaktivität kann nicht austreten und damit beschränken sich alle Sicherheitsanforderungen nur noch auf das Kraftwerksgelände selbst. Eine „revolutionäre Feststellung“, der sich die Genehmigungsbehörden langsam anschließen. Dies hat erhebliche Auswirkungen auf die möglichen Standorte, Versicherungsprämien etc. Ein nicht mehr umkehrbarer Schritt auf dem Weg zu einem „normalen Kraftwerk“ oder einer „üblichen Chemieanlage“. Die Errichtung solcher Reaktoren in unmittelbarer Nähe zu Städten (Fernwärme) oder Industrieanlagen (Chemiepark, Automobilwerk etc.) ist nur noch eine Frage der Zeit.

Als Kühlmittel ist Helium vorgesehen. Der Reaktorkern wird aus sechseckigen Brennelementen als massiver Block aufgebaut. Mit dieser Technik besitzt GB eine jahrzehntelange Erfahrung. Kein Land besitzt mehr Betriebsjahre mit Reaktorgraphit. Der Vorteil gegenüber einem Kugelhaufen sind definierte Kanäle für das Kühlmittel und die Regelstäbe. Vor allen Dingen ergibt sich aber kein Staubproblem aus dem Abrieb der Kugeln während des Betriebs. Die notwendigen Rohrleitungen und das Gebläse zur Umwälzung des Heliums bleiben sauber. Dies erleichtert etwaige Wartungs- und Reparaturarbeiten. Der komplette Reaktor kann in einer Fabrik gebaut und getestet werden und mit einem LKW einsatzbereit auf die Baustelle gebracht werden.

Als Brennstoff dient angereichertes Uran. Die Anreicherung (< 20% U235) erlaubt einen mehrjährigen Betrieb ohne einen Brennstoffwechsel („Batterie“). Ob der Brennstoff vor Ort im Kraftwerk gewechselt werden muß oder der gesamte Reaktor zurück zum Hersteller gebracht werden kann, ist noch nicht abschließend geklärt (Strahlenschutz). Der Ansatz einer „Batterie“ verringert jedenfalls die Größe eines etwaigen Brennelementenlagers am Kraftwerk und schließt eine mißbräuchliche Nutzung praktisch aus (Proliferation). Damit ist ein solches Kraftwerk auch problemlos in „zwielichtigen Staaten“ einsetzbar. Ferner verringert sich der Personalaufwand im Kraftwerk. Ein solches Kraftwerk wäre halbautomatisch und fernüberwacht betreibbar. Was den Umfang des erforderlichen Werkschutzes anbelangt, sind die Genehmigungsbehörden noch gefragt. Eine Chemieanlage — egal wie gefährlich — kommt heutzutage mit einem üblichen Werkschutz aus, während von Kernkraftwerken erwartet wird, eine komplette Privatarmee zu unterhalten. Alles Ausgeburten von „Atomkraftgegnern“ um die Kosten in die Höhe zu treiben. Verkauft wird so etwas als Schutz gegen den Terrorismus.

Der konventionelle Teil

Man plant keinen Dampfkreislauf, sondern eine Gasturbine als Antrieb des Generators. Kein ganz neuer Gedanke, aber bisher ist z. B. Südafrika an der Entwicklung einer Heliumturbine gescheitert. Helium ist thermodynamisch zu eigenwillig und außerdem ist bei einem Kugelhaufenreaktor mit einer radioaktiven Staubbelastung zu rechnen. Bei der U-Battery hat man sich deshalb für einen sekundären Kreislauf mit Stickstoff entschieden. Vordergründig kompliziert und verteuert ein zusätzlicher Wärmeübertrager zwischen Reaktorkreislauf (Helium) und Turbinenkreislauf (Stickstoff) das Kraftwerk, aber man hat es sekundärseitig nur noch mit einem sauberen und nicht strahlenden Gas zur beliebigen Verwendung zu tun. Stickstoff ist nahezu Luft (rund 78% N2) und man kann deshalb handelsübliche Gasturbinen verwenden. Auch an dieser Stelle erscheint das wirtschaftliche Risiko sehr gering. Der Wärmeübertrager Helium/Stickstoff übernimmt lediglich die Funktion der Brennkammer eines Flugzeugtriebwerkes (Leistungsklasse). Bei der vorgesehenen hohen Temperatur von 750°C des Stickstoffs bleibt nach der Turbine noch jegliche Freiheit für die Verwendung der Abwärme (Fernwärme, Prozessdampf etc.). Die immer noch hohe Temperatur am Austritt einer Gasturbine erlaubt problemlos eine Kühlung mit Umgebungsluft ohne große Verschlechterung des Wirkungsgrades. Ein immenser Vorteil für alle ariden Gebiete.

Die Projektierer

Eine zügige Verwirklichung scheint durch die Zusammensetzung der beteiligten Unternehmen nicht unwahrscheinlich: Amec Foster Wheeler (über 40000 Mitarbeiter in 50 Ländern) mit umfangreicher Erfahrung in Öl- und Gasprojekten. Cammel Laird als Werft. Laing O’Rourke als Ingenieurunternehmen. Atkins für Spezialtransporte. Rolls Royce als international führender Produzent von Gasturbinen (Flugzeuge und Schiffe), darüberhinaus mit umfangreicher Erfahrung in der Kerntechnik.

Bemerkenswert ist die Ausweitung des Projektes auf den Commonwealth. Kanada und Indien sind bereits dabei. Läßt der „Brexit“ hier grüßen? Nach bisherigem Stand der Dinge, könnte der erste Reaktor in Chalk River in Kanada gebaut werden. Dies ist auch kein Zufall, da in Kanada bereits über 200 potentielle Standorte für einen solchen MMR ermittelt wurden. Für diese potentiellen Kunden ist bereits ein neuartiges Geschäftsmodell in Arbeit: Sie bezahlen nur die gelieferte Wärme und und die elektrische Energie. Das Kraftwerk wird dann von einer Zweckgesellschaft finanziert, gebaut und betrieben. So kann dem Kunden das wirtschaftliche Risiko abgenommen werden. Es ist nicht anzunehmen, daß irgendein Bergwerk oder eine Ölraffinerie bereit ist in das „Abenteuer Kerntechnik“ einzusteigen. Andererseits sind solche sog. „Betreibermodelle“ in der einschlägigen Industrie lange bekannt und erprobt.

Noch ein paar Daten

Der Reaktor hat einen Durchmesser von etwa 1,8 m und eine Länge von etwa 6 m. Er ist damit problemlos auf einem LKW transportierbar. Das Helium soll einen Betriebsdruck von ca. 40 bar haben und eine Austrittstemperatur von 750 °C. Damit ergibt sich eine notwendige Wandstärke von unter 100 mm. Dies ist wichtig, weil hierfür keine speziellen Schmieden bzw. Rohlinge erforderlich sind. Nur wenige Unternehmen weltweit können demgegenüber Druckbehälter für Leichtwasserreaktoren schmieden.

Als Brennstoff soll auf knapp 20% angereichertes Uran (high assay, low enriched uranium (HALEU)) verwendet werden. Damit werden die TRISO-Kügelchen hergestellt, die zu Tabletten mit einer Höhe von ca. 40 mm und einem Außendurchmesser von ca. 26 mm gepreßt werden. Aus diesen werden die sechseckigen Brennelemente mit einer Kantenlänge von 36 cm und einer Höhe von 80 cm aufgebaut. Sie enthalten alle Kanäle für Regelstäbe, Instrumentierung usw. Der Kern des Reaktors besteht aus je 6 Brennelementen in 4 Lagen übereinander. Er beinhaltet etwa 200 kg Uran. Dies reicht für einen ununterbrochenen Vollastbetrieb von 5 Jahren.

Eine Doppelblockanlage (2 x 4 MWel) erfordert einen Bauplatz von ca. 10 x 12 m (Reaktoren, Wärmeübertrager und Turbinen im „Keller“, Halle für Wartungsarbeiten darüber). Hinzu käme noch Platz für Schaltanlagen, Kühler, Büros etc.

Es wird von Baukosten zwischen 45 bis 78 Millionen € für eine Doppelblockanlage ausgegangen (5600 bis 9750 €/KW). Das mag auf den ersten Blick hoch anmuten, aber man bewegt sich mit dieser Leistung von 8 MWel im Marktsegment der sog. Dieselmotoren-Kraftwerke. Hinzu kommen in entlegenen Standorten noch die meist höheren Kosten für den Dieselkraftstoff. Der für die „U-Battery“ ermittelte Strompreis von 9 Cent/KWh dürfte somit für den angepeilten Kundenkreis sehr attraktiv sein.

Inzwischen gibt es eine sehr enge Kooperation zwischen Kanada und GB. Ein paralleles, aber kooperatives Genehmigungsverfahren zeichnet sich ab. Weiterhin sind Indien, Japan, Polen, USA und Neuseeland bereits mit im Boot. Vielleicht schon die erste Morgendämmerung, wohin die Reise von GB nach dem Brexit geht? Jedenfalls nicht in das Rest-Europa, in dem unsere Kanzlerin so gut und gerne lebt.

Weitere Nutzung für „Atommüll“

Während in Deutschland weiterhin abgebrannte Brennelemente als „Atommüll“ verteufelt werden, hat China bereits einen weiteren Weg für deren Nutzung eingeschlagen. Zwischen dem Betreiber von zwei Candu 6 Reaktoren in Quinshan TQNPC (China National Nuclear Corporation subsidy Third Quinshan Nuclear Power Company) und der kanadischen SNC-Lavalin wurde ein Vertrag zur Lieferung von Brennelementen aus 37M NUE (Natural Uranium Equivalent) abgeschlossen. Dies ist das Ergebnis einer mehr als zehnjährigen gemeinsamen Forschung und Entwicklungsarbeit. Seit 2008 werden im Reaktor QP III immer wieder NUE-Brennelemente als Dauertest eingesetzt. Diese praktischen Versuche dienten der Anpassung einiger Sicherheitsparameter und der Durchführung des Genehmigungsverfahrens. Jetzt sind die Arbeiten abgeschlossen und der Betrieb mit recyceltem Uran kann beginnen.

Die Reaktoren

Bei den Candu Reaktoren in Quinshan handelt es sich um mit schwerem Wasser (D2O) gekühlte und moderierte Reaktoren. Dieser Reaktor hat im Gegensatz zu Leichtwasserreaktoren keinen Druckbehälter in dem sich die Brennelemente befinden, sondern viele Druckröhren in denen jeweils nur eine Reihe einzelner Brennelemente stecken. Die Druckröhren sind waagerecht und sitzen wiederum in einem mit Schwerwasser gefüllten drucklosen Tank. Vorteil dieser Konstruktion ist, daß man kein dickwandiges Druckgefäß benötigt, sondern lediglich druckfeste Röhren von etwa 10 cm Durchmesser. Druckbehälter können nur eine Handvoll Schmieden weltweit fertigen. Deshalb kann diesen Reaktortyp z. B. Indien selbst herstellen. Als Nachteil erkauft man sich dieses Prinzip mit einem Gewirr von Rohrleitungen: Jede Druckröhre muß mit Vorlauf- und Rücklaufleitung mit den Dampferzeugern verbunden werden. Insgesamt ist die Herstellung aufwendiger und damit teurer.

Durch den Einsatz von Schwerwasser als Kühlmedium und Moderator gehen wesentlich weniger Neutronen verloren als bei Leichtwasserreaktoren. Man kommt deshalb mit Natururan als Brennstoff aus. Eine Anreicherung ist nicht nötig. Darüberhinaus ist das Konzept so flexibel, daß auch andere Brennstoffe wie Thorium oder eben abgebrannte Brennelemente aus Leichtwasserreaktoren eingesetzt werden können. (Siehe hierzu auch den Artikel Reaktortypen in Europa – Teil6, CANDU in diesem Blog.)

Die Wiederaufbereitung

Wenn Brennelemente „abgebrannt“ sind, müssen sie entnommen werden und durch frische Brennelemente ersetzt werden. Sie sind aber keinesfalls Abfall, sondern können und sollten recycelt werden. Auch in Deutschland war deshalb eine eigene Wiederaufbereitungsanlage nach dem PUREX-Verfahren vorgesehen. Übergangsweise hat man Brennelemente in Frankreich und GB aufbereiten lassen. Aus bekannten ideologischen Gründen ist man davon abgegangen. Der Kampf gegen das Atom ist der zentrale Gründungsmythos von Bündnis 90 / Die Grünen.

Die Kerntechnik war der erste Industriezweig der nicht einfach Abfall produzieren wollte, sondern vielmehr der Begründer des industriellen Recyclings. In einem „abgebrannten“ — oder besser abgenutzten und für seinen ursprünglichen Verwendungszweck nicht mehr geeigneten — Brennelement sind lediglich rund 5 % Spaltprodukte. Das ist die „Asche“ der nuklearen Energieherstellung. Aber über 93% des Urans und zusätzlich rund 1% Plutonium sind für die Energiegewinnung wiederverwendbar!

Bei dem PUREX-Verfahren werden die Brennstäbe aufgelöst und anschließend durch eine mehrstufige flüssig-flüssig Extraktion in möglichst reines Uran und Plutonium zerlegt. Alles andere ist bei diesem Verfahren Abfall, wird in Glas eingeschmolzen und ist zur Endlagerung vorgesehen. Das Plutonium wird seit Jahrzehnten — auch in Deutschland — zusammen mit abgereichertem Uran zu sogenannten Mischoxid-Brennelementen verarbeitet und erneut in Leichtwasserreaktoren zur Energiegewinnung eingesetzt. Das zurückgewonnene Uran wird bisher fast ausschließlich eingelagert. Man kann es als „Ersatz“ für Natururan in Anreicherungsanlagen einsetzen. Es muß dazu aber in Uranhexafluorid umgewandelt werden. Ein, bei den heutigen Preisen für Natururan nicht wirtschaftlicher Weg.

Der NUE-Weg

Das Uran für Leichtwasserreaktoren hat eine ursprüngliche Anreicherung von 3% bis 5% U235. Im Reaktor wird sowohl U235 als auch Pu239 gespalten. Das Plutonium bildet sich kontinuierlich aus dem U238 durch das (parasitäre) Einfangen von Neutronen. Ein Teil davon, wird sofort wieder im Reaktor gespalten. Deshalb kann nicht alles U235 aufgebraucht werden bevor die zulässige Betriebsdauer des Brennelements erreicht ist. Oft hat das recycelte Uran noch einen höheren Anteil davon als das Natururan (0,7% U235). Es kann daher noch in Schwerwasserreaktoren eingesetzt werden. Allerdings ist die Natur immer etwas komplizierter als die Theorie. Nicht jeder U235 Kern wird auch gespalten, wenn er von einem Neutron getroffen wird. Es bildet sich auch U236 und sogar Spuren von U234. Alle diese Isotope haben ihre charakteristischen neutronenphysikalischen Eigenschaften. Es wird deshalb durch Verschneiden mit abgereichertem Uran ein dem „Natururan entsprechendes Äquivalent“ (NUE) hergestellt. Dies ist aber eine reine Frage der Analyse (welche Isotopenzusammensetzung?), der Rechnung (neutronenphysikalische Bestimmung) und der Mischung. Ein vergleichbar geringer Aufwand, verglichen z. B. mit einer Anreicherung.

Man kann etwa mit dem recycelten Uran aus vier Leichtwasserreaktoren einen zusätzlichen Schwerwasserreaktor betreiben. Die zusätzliche Energie wird ohne zusätzlichen Verbrauch von Natururan erzeugt — Energie aus „Atommüll“. China betrachtet ihr kerntechnisches Programm offensichtlich von Anfang an als System. Im Zentrum stehen die Leichtwasserreaktoren und eine Wiederaufbereitung des „Atommülls“. Nach dem Vorbild von Frankreich wird dadurch der endgültig zu lagernde Abfall beträchtlich entschärft und verringert. Das anfallende Plutonium wird über Mischoxid wieder den Leichtwasserreaktoren zugeführt. Das zurückgewonnene Uran den Schwerwasserreaktoren. Mittelfristig soll eine weitere Nutzung über natriumgekühlte Reaktoren mit schnellem Neutronenspektrum erfolgen. Beachtenswert ist die Vorgehensweise: Zwar in voller Breite aller am Weltmarkt erhältlichen Reaktortypen, aber stets in kleinen Schritten in enger Kooperation mit internationalen Partnern. Ganz nebenbei ist dadurch eine der bedeutendsten kerntechnischen Industrien der Welt aufgebaut worden. Ein nicht zu unterschätzender und bewußt angestrebter Nebeneffekt. Kerntechnik ist eine Schlüsseltechnologie, die weit in die industrielle Welt ausstrahlt. So war es einst auch in Deutschland, aber hier wird dieser Vorteil zusehends aufgebraucht. Manch ein Grüner wird sich noch die Augen reiben, wie schnell der „Exportweltmeister“ zu einem mittelmäßigen Industriestandort verkommen sein wird.