Die Verschlimmbesserung der Stromversorgung

Ein weiterer Akt in „Unserer-Demokratie“ wurde am 22.12.2020 16:06 Uhr mit dem Entwurf eines Steuerbare-Verbrauchseinrichtungen-Gesetz aufgeführt. In der Corona-Krise wird halt bis zur letzten Minute durchregiert. In einem 60-Seitigen Machwerk wird der Abstimmmaschine – ja was eigentlich? – vorgesetzt: Entwurf eines Gesetzes zur zügigen und sicheren Integration steuerbarer Verbrauchseinrichtungen in die Verteilernetze und zur Änderung weiterer energierechtlicher Vorschriften. Der Parlamentarier, der immer noch nicht genug hat, kann noch den ersten Absatz lesen, damit er glaubt er wüßte um was geht und anschließend beruhigt der Empfehlung seines Fraktionsvorsitzenden zur Abstimmung folgen.

Langsam dämmert es auch dem härtesten Energiewender, daß der Zug mit immer höherer Geschwindigkeit dem Abgrund entgegen rast. Plötzlich erkennt man, daß in der schönen, neuen Welt der Elektroautos die elektrische Energie auch noch von den Windmühlen zu den Autobatterien gelangen muß – zum Teufel, daß hätte man nun wirklich auch im Politunterricht erzählt bekommen müssen. Dafür sollen Kabel, Transformatoren und all so’n technisches Zeug nötig sein, damit der Strom aus der Steckdose kommt und die kann man nicht einmal weghüpfen. Man könnte auch sagen, jetzt kommt Klaudia, nachdem Annalena den Strom im Netz gespeichert hat und die Kobolde aus der Batterie vertrieben hat, „digitalisiert“ sie das Netz und macht es so „smart“, daß die „große Transformation“ noch gelingen mag. Betrachtet man diesen Gesetzesentwurf, sieht es allerdings eher danach aus, daß sich die Planwirtschaft wie immer, immer weiter in Details verliert. Es entsteht ein undurchdringliches, widersprüchliches Gestrüpp, in dem sich die Giftschlangen immer öfter in den eigenen Schwanz beißen.

Der notwendige Netzausbau

Langsam, ganz langsam spricht es sich rum: Wenn man alle fossilen Energieträger durch elektrische Energie ersetzen will, muß man alle Tanker, Pipelines, Züge und LKW die Kohle, Öl und Gas verteilt haben, durch Kabel ersetzen. Das ist viel mehr, als die fixe Idee, Windmühlen in die Nordsee zu stellen und damit München usw. (nur) mit Strom zu versorgen. Schon diese relativ kleine Aufgabe des Ausbaues des Hochspannungs-Übertragungsnetzes scheint für das „Land in dem wir (noch) gut und gerne leben“ eine unlösbare Aufgabe zu sein. Wenn wir aber die Elektromobilität – die Betonung liegt hier auf Mobilität – wollen, brauchen wir praktisch vor jedem Haus eine Ladestation. Wer will schon einen Kilometer von und nach einer Ladestation laufen, bevor er fahren kann? Oder ist der Einstieg in die Elektromobilität wirklich nur der Anfang von kein Auto mehr? Wenn wir gleichzeitig auch noch elektrisch heizen müssen (Wärmepumpen etc.), wird das erforderliche Kabel noch dicker. Wohl gemerkt, wir reden hier nicht über drei, vier Hochspannungstrassen in ganz Deutschland, sondern wirklich über jede Straße, die aufgegraben werden muß. Aber unsere Gesetze-Schaffenden glauben für jedes Problem eine Lösung zu besitzen. In diesem Fall heißt der Zauberstab „Digitalisierung“: Man will die Mangelwirtschaft durch Lebensmittelkarten stützen. Was zu wenig ist, wird vielen genommen um es wenigen zu teilen zu können. Im Neusprech: „Energieeffizienz“.

Das Niederspannungsnetz

All unsere Gebäude sind an das Niederspannungsnetz (400V) angeschlossen. Lediglich Großverbraucher (Krankenhäuser, Fabriken usw.) sind direkt mit dem Mittel- oder gar Hochspannungsnetz verbunden. Sie formen mit eigenen Transformatoren die Spannung auf die von ihnen benutzten Spannungsebenen um. Damit nun nicht jedes Haus einen eigenen Trafo braucht, sind die Gebäude wie Perlen auf einer Kette an jeweils ein Kabel des Niederspannungsnetzes angeschlossen. So benötigt man für jeden Ring nur eine Trafo-Station. Es war nun schon immer mit viel Erfahrung verbunden, wie dick das Kabel sein muß. Aus Erfahrung weiß man, daß nie alle in einem Haushalt vorhandenen Elektrogeräte gleichzeitig in Betrieb sind. Es ergibt sich dadurch für jedes Kabel eine „stille Reserve“, die man nun über dieses Gesetz glaubt heben zu können. Der Gedanke ist simpel: Wenn man stets den Verbrauch überwacht, kann man das Kabel bis an seine Grenzen belasten. Nähert man sich der Grenzen, werden einzelne Verbraucher zwangsweise abgeschaltet. Damit nicht einige ganz hinten runter fallen, wird von Zeit zu Zeit gewechselt. Ein Verfahren, das in jedem Entwicklungsland angewendet wird. Man nennt das wechselnde und zeitlich begrenzte Abschalten auch „Brownout“, im Gegensatz zum „Blackout“, dem totalen Ausfall. Nach dem Bekunden der Gesetze-Schaffenden will man damit Zeit gewinnen, bis ein Ausbau erfolgen kann. Will man wirklich nur das oder führt man ganz anderes im Schilde?

Produktion und Verteilung

Auch „Smarte Netze“ ändern nichts an dem Grundproblem des Sozialismus: Was (gütig und gerecht) verteilt werden soll, muß vorher produziert sein. In diesem Gesetzentwurf steht, daß die „Leistungsreduzierung“ nicht mehr als zwei Stunden pro Tag dauern darf. Sie wird euphemistisch als „Spitzenglättung“ verklärt. Ändert dieses Wort irgendetwas an einer tagelangen Dunkelflaute? Natürlich nicht, es ist nur ein Taschenspielertrick. Bei jeder Flaute müssen ausgewählte Verbraucher für die gesamte Dauer abgeschaltet werden, um wenigstens eine eingeschränkte Notversorgung aufrechterhalten zu können. Das ist nun in der Tat „alternativlos“. Die Natur läßt sich durch kein Politbüro täuschen. In dem typischen Volksverdummungsdeutsch unserer Politschranzen wird dies zu: Erst die in dieser Novellierung des §14a Energiewirtschaftsgesetz (EnWG) enthaltene Regelungsarchitektur mit der Verbesserung der Netzzustandsüberwachung in den Niederspannungsnetzen und der Schaffung der notwendigen Marktkommunikationsprozesse sowie der wirtschaftlichen, rechtlichen, technischen und der organisatorischen Voraussetzungen machen netz- und marktorientierte Flexibilitätsansätze möglich. Alles klar, ihr Ingenieure und Elektroinstallateure? Ihr müßt halt nur eure Werkzeugkästen um die „Mao-Bibel“ verstärken, dann klappt das auch mit der Stromversorgung bei euren Kunden.

Die Überwachung

Man kann ja Mangel verwalten. Das ging schon mit Bezugsscheinen in der Kriegswirtschaft. Man hat auch schon früher den Einsatz von Kraftwerken durch Rundsteueranlagen (z. B. Nachtspeicherheizungen, Wärmepumpen) optimiert. Dies wird ausdrücklich im Text mehrfach erwähnt. Wahrscheinlich notwendig, weil schon mal elektrische Nachtspeicher und Wärmepumpen ganz oben auf der rot/grünen Verbotsliste standen. Vielleicht erinnert sich der ein oder andere Genosse noch an diese Kampagnen? Jetzt also die Wende: Plötzlich ist das „Einsparen von Primärenergie“ nicht mehr aktuell, sondern nur noch die gewinnbringende Vernichtung der Überproduktion der (befreundeten) Windmüller und Sonnenbarone.

Wie gesagt, wenn es nur um die Begrenzung von Spitzenlasten gehen würde, reichen Rundsteueranlagen völlig aus. Der Netzbetreiber sendet Signale über die Stromkabel aus, die von den Empfängern in den einschlägigen Anlagen empfangen werden. Jeder Empfänger entscheidet nun, ob ihn die Nachrichten betreffen und was er abschalten bzw. drosseln soll. In diesem Gesetzesentwurf geht es jedoch um die totale Überwachung: Der aktuelle Verbrauch jedes „Smart-Meter“ – umgangssprachlich Stromzähler – soll permanent an den Netzbetreiber übertragen werden. Selbstverständlich nur für Zwecke des Netzbetriebs und streng „datengeschützt“. Wir kennen solche Versprechungen schon von der Einführung der Mobiltelefone. Vielleicht sollte man „Smart-Meter“ zukünftig verständlicher mit „Stasi-Zähler“ übersetzen. Denn es gibt einen qualitativen Unterschied zum „Smart-Phone“: Auf die Nutzung von Mobiltelefonen kann man verzichten oder sie zumindest stark einschränken. Auf einen Strom-Hausanschluss nicht. Der Rückkanal (praktisch Internet) ist zudem ein sicherheitstechnischer Albtraum. Der als Heizungsmonteur oder Elektroinstallateur getarnte Hacker oder Verfassungsschützer kann jederzeit Schad- und Überwachungssoftware einspielen. Wer das für übertrieben hält, sollte sich mal näher mit Stuxnet beschäftigen. Die militärischen Anlagen im Iran waren sicherlich besser gesichert, als die Heizungskeller und Garagen unserer Häuser. Wie gesagt, auf ein Smartphone läßt sich durchaus verzichten, ein Computer vom Netz trennen, aber die gesamte Wohnung vom Stromnetz abhängen?

Leistung und Energie

Die Leistung (kW) steht für die Investitionen – nicht nur ins Netz – und die verbrauchte elektrische Energie (kWh) für die variablen Kosten (Brennstoffe, Verschleiß etc.). Daher war die Aufteilung in bezogene Leistung und verbrauchte Energie in einem Abrechnungszeitraum bei Großabnehmern schon immer üblich. Betriebsintern ergab sich aus den Kosten für die Leistung üblicherweise eine Spitzenlastoptimierung. Aus dem Verbrauch (kWh) und der Spitzenlast (kW) in einem Abrechnungszeitraum konnte durch einfache Division ein Maßstab für die Gleichmäßigkeit gebildet werden. Mit anderen Worten: Verbrauchte der Kunde vornehmlich billige Kernkraft oder Braunkohle oder teuren Spitzenstrom, spürte er das unmittelbar auf seiner Stromrechnung. Insofern nichts neues.

Bei Kleinverbrauchern (Haushalt und Gewerbe) war es günstiger, auf solche Berechnungen zu verzichten. Aus gutem Grund. Durch die große Stückzahl half die Statistik bei der Vorhersage des Verbrauchs. Einzelne Sonderereignisse (z. B. Fußballübertragung) und außergewöhnliche Wetterereignisse (Gewitter etc.) waren ausreichend im Voraus bekannt. Andererseits hat der Kunde kaum eine sinnvolle Einflussmöglichkeit. Der Braten muß zu gegebener Zeit auf den Tisch (Weihnachtsspitze). Kopfgeburten, wie das Wäsche waschen in der Nacht, sind nicht praktikabel und werden sich deshalb nie durchsetzen. Ist das bei Elektromobilen so viel anders? Auch dort wird man Nachladen, wenn das absehbar nötig wird. Die Vorstellung, tags fahren und nachts aufladen ist schlichtweg weltfremd. Sind doch die Reichweiten (besonders im Winter) im Gegensatz zu Verbrennern viel kleiner und die „Tankzeiten“ unvergleichlich größer, um überhaupt eine Wahlmöglichkeit zu bieten. Wird jetzt durch unvorhergesehene Drosselungen die Ladezeit völlig unkalkulierbar, dürfte das ein weiteres Argument gegen den Kauf eines Elektromobils werden.

Kosten

Jede staatlich erzwungene Investition – egal ob auf der Seite des Netzes oder im eigenen Haus – muß letztendlich von uns bezahlt werden. Hinzu kommen noch die laufenden Wartungs- und Betriebskosten. Erinnert sei nur an die gesetzlich vorgeschriebene Heizkostenabrechnung bei Mietern. Kaum einem Mieter ist bekannt, daß die Kosten für die Abrechnung meist mehr als zehn Prozent der eigentlichen Heizkosten betragen. Auch diese Lizenz zum Geldschein drucken für einschlägige „Serviceunternehmen“ wurde vor Jahrzehnten zum Zwecke der Energieeinsparung und „gerechten“ Aufteilung eingeführt. Durch die flächendeckende Einführung moderner Heizsysteme und Regelungen ist die Einsparung kaum noch möglich – es sei denn, um den Preis eines deutlichen Komfortverzichts. Insofern ist das hier abgegebene Versprechen: Die Kosten für die Herstellung der Steuerbarkeit von steuerbaren Verbrauchseinrichtungen werden durch Einsparungen in den Netzentgelten und der verbesserten marktlichen Strombeschaffung mehr als kompensiert. (Seite 23) Noch viel unverschämter als die Aussage von dem Genossen Trittin über die oft zitierte Eiskugel. Es soll hier gar nicht über die erforderlichen Investitionen spekuliert werden, fragen sie einfach den Installateur ihres Vertrauens. Ansonsten wird in dem Entwurf nur so mit Milliarden Einsparungen um sich geschmissen. Wieder ein neues Perpetuum Mobile der Energiewende wird geboren.

Besonders feinsinnig wird die Verteilung der entstehenden Kosten behandelt. Es wird im Gesetzentwurf akribisch zwischen Netzanschluss und Marktlokationen unterschieden: Netzanschluss ist das Kabel von der Straße ins Haus und die wunderbare Neusprechschöpfung Marktlokationen sind die Zähler für die Wohnungen etc. Damit ist auch klar, aus welcher Ecke dieser Entwurf kommt. Es ist charakteristisch für die Grünen, möglichst oft das Wort „Markt“ in den unmöglichsten Kombinationen zu verwenden, um von ihrer Planwirtschaft abzulenken. Besonders praktisch ist es darüberhinaus, wenn ihre „Ideen“ mal wieder völlig schief gehen, vom „Marktversagen“ faseln zu können. Hier geht es eindeutig überhaupt nicht um Marktwirtschaft: Marktwirtschaft war z. B. die Einführung des Smartphone. Ein bunter Bildschirm beim Telefon war den Menschen soviel Geld wert, daß sich Schlangen vor den Geschäften bildeten. Ein Stromzähler, der nur die eigene Überwachung als Zusatznutzen bietet, wäre unverkäuflich. Jetzt sehen wir uns mal ein typischen Wohngebäude an: Den geringsten Aufwand hat der meist kommunale Betreiber des Niederspannungsnetzes mit dem Umbau des Hausanschlusses. Der Hausbesitzer kommt für die notwendigen Baumaßnahmen im Gebäude auf. Anschließend läßt sich wieder trefflich über Mieterhöhungen jammern und den Löwenanteil zahlt wieder einmal der dumme Stromverbraucher. Das Elektroauto wird damit noch unverkäuflicher – trotz gigantischer Zuschüsse der Steuerzahler – als bisher. Deshalb muß nach dem Erfolgsrezept der staatlich gewollten Unterhaltung und des betreuten Denkens (GEZ-Rundfunk) ganz schnell ein Gesetz her, welches über eine weitere Wohnungssteuer den Bürger schröpft. Wehe, wenn Michel eines Tages die Demokratie versteht und alle Mittäter einfach abwählt.

Wasserstoff und Kernenergie

Nun ist der Hype um Wasserstoff auch bis zu den Kernkraftwerken durchgedrungen. Warum auch nicht? Wenn der Staat Subventionen austeilt, greift man halt gerne zu. Bisher ist Wasserstoff (H2) überwiegend ein Grundstoff für die Düngemittel-Industrie (Ammoniak NH3) und zur Veredelung in der Petrochemischen-Industrie (z. B. Entschwefelung von Kraftstoffen, Methanolherstellung etc.). Heute werden über 95% aus fossilen Energieträgern – hauptsächlich aus Erdgas durch Dampfreformierung – und knapp 5% über Elektrolyse als Nebenprodukt z. B. bei der Chlor-Elektrolyse gewonnen. Nachdem sich nun auch bei „Energiewendern“ die Erkenntnis rumspricht, daß man für die Stromproduktion durch Windmühlen Wind benötigt und bei der Photovoltaik zumindest Tageslicht, kommt man auf die Schnapsidee Wasserstoff als Energieträger im großen Maßstab einzusetzen. Die neuen Zauberwörter der Schlangenölverkäufer sind „Wasserstoffwirtschaft“ und „Sektorenkopplung“: Man will nicht nur elektrische Energie während der Dunkelflauten aus Wasserstoff herstellen, sondern ihn auch als Kraftstoff, zur Gebäudeheizung und für alle möglichen industriellen Anwendungen einsetzen. Auf solch eine Kopfgeburt kann nur einer kommen, für den Thermodynamik lediglich ein Wort mir 13 Buchstaben ist.

Hans im Glück

Wasserstoff kommt in der Natur praktisch nur in chemischen Verbindungen (Wasser H2 O, Erdgas CH4 usw.) vor. Diese müssen erstmal geknackt werden um Wasserstoff zu gewinnen. Dazu ist viel Energie nötig. Will man Wasser mittels Elektrolyse zerlegen, benötigt man etwa 4,4 kWh pro Normkubikmeter Wasserstoffgas. Verbrennt man diesen einen Normkubikmeter wieder, kann man nur 3,0 kWh (unterer Heizwert) zurückgewinnen. Geschieht dies in einem modernen Kombikraftwerk (Wirkungsgrad 60%) werden daraus nur 1,8 kWh elektrische Energie zurückgewonnen. Wohlgemerkt, hier wurde noch kein einziger Kubikmeter transportiert oder gespeichert. Beides ist – ob verdichtet oder verflüssigt – nur mit beträchtlichem Energieaufwand möglich. Wie man es auch dreht und wendet, in der Praxis bekommt man nur rund 1/3 zurück – oder anders ausgedrückt haben sich die Stromkosten (ohne jede Investition für die Elektrolyse) schon allein wegen der Umwandlungsverluste verdreifacht.

Man hat uns ja inzwischen beigebracht, daß der Wind – wie schon vorher die Sonne – keine Rechnung schickt. Gleichwohl sind gewaltige Investitionen in die Errichtung von Windparks notwendig. Hinzu kommen noch Betriebs- und Wartungskosten, die ebenfalls nicht gering sind, wie man heute gelernt hat. Alle Kosten müssen jedenfalls durch die Stromerlöse und Subventionen wieder eingebracht werden. Unter Grundlast in einem Netz versteht man die kleinste Leistung die immer anliegt – 24 Stunden am Tag, 7 Tage die Woche. Will man die Grundlast durch Windmühlen abdecken, braucht man dafür etwa die 8–9 fache installierte Leistung. Der Grund ist trivial: Wenn kein Wind weht, wird auch kein Strom produziert, egal wie viele Windmühlen man gebaut hat! Will man in schwachen Zeiten zu füttern, muß man die erforderliche Menge elektrischer Energie vorher produziert haben. In 2019 betrug die Arbeitsausnutzung der Windmühlen in Deutschland 28% (installierte Leistung 53,912 GW, Stromproduktion 131,8 TWh). Leider muß man die hierfür produzierte Energie speichern und bekommt über den Weg Wasserstoff nur etwa 1/3 zurück (siehe oben). Hinzu kommen selbstverständlich noch die Investitionen für die Elektrolyse, die Speicher und das Backup-Kraftwerk. Man könnte es auch anders formulieren: Wer den Menschen vorgaukelt, es wäre eine (wirtschaftliche) Stromversorgung nur mit Wind und Sonne möglich, der lügt. Es ist deshalb kein Zufall, daß alle einschlägigen „Energiewender*Innen“ immer von Zwangsabschaltungen – sprachlich getarnt als „Smart-Meter“ – und Konsum- und Wohlstandsverzicht – sprachlich getarnt als „Energieeffizienz“ – schwadronieren.

Transport und Speicherung

Wasserstoff ist ein Gas mit extrem geringer Dichte: Ein ganzer Kubikmeter wiegt noch nicht einmal 90 Gramm. Es muß deshalb verdichtet oder verflüssigt werden um es überhaupt transportieren und lagern zu können. Wenn man es auf 700 bar verdichtet (Industriestandard für PKW) hat es gerade mal einen Energiegehalt von 1,32 kWh/Liter. Selbst wenn man es durch Abkühlung auf -253°C verflüssigt, beträgt sein Energiegehalt gerade mal 2,34 kWh/Liter. Zum Vergleich: Benzin hat einen Energiegehalt von rund 8,7 kWh/Liter.

Selbst für den Transport in Rohrleitungen oder der Speicherung in Kavernen muß es verdichtet werden. Jede Verdichtung erfordert eine Menge elektrische Energie und ist immer mit erheblichen Verlusten verbunden. Wenn es in Pipelines strömt, entstehen ebenfalls Verluste durch Reibung. Man bevorzugt deshalb für sehr lange Strecken eine Verflüssigung und Tankschiffe. Allerdings werden für die Verflüssigung von Wasserstoff allein rund 35% seiner Energie benötigt. Spätestens hier sollte der geneigte Leser verstehen, warum wir uns in einer Welt von Mineralölen und Erdgas bewegen. Oder anders ausgedrückt, welche brutalen Konsequenzen drohen, wenn wir alle Fahrzeuge auf Wasserstoff umstellen wollen. Das Gerede von „Sektorkopplung“ (Strom aus Wind und Sonne wird benutzt um Kraftstoffe und andere Energieträger herzustellen) ist nur ein weiteres Neusprechwort für „Mobilitätsverzicht“. Ganz davon zu schweigen, daß Deutschland viel zu klein ist, um es mit der erforderlichen Anzahl von Windmühlen zupflastern zu können. Bahnt sich hier schon wieder das „Volk ohne Raum“ an?

Wasserstoff durch Kernenergie

Hat man erst einmal die Konsequenzen des „Grünen Wasserstoffs“ verstanden, ist die Produktion durch vorhandene Druckwasserreaktoren nicht mehr so abwegig. Immer unter der Voraussetzung, man lehnt die Produktion aus fossilen Energieträgern ab. Das erste Argument liefert die Arbeitsausnutzung (Kernkraftwerk 90%, Windmühlen in Deutschland 28%) oder mit anderen Worten, wie viel Wasserstoff man mit einer gegebenen Anlage produzieren kann. Das zweite Argument sind die Energiekosten. Wärmeenergie ist immer billiger als elektrische Energie. Dies ist der Grund, warum heute rund 95% des Wasserstoffs aus Erdgas hergestellt werden. Aber auch bei der Elektrolyse kann man durch erhöhte Temperaturen elektrische Energie einsparen. Bei einem Kraftwerk ist die Auskopplung von Wärme kein Problem. Der Anbau an konventionelle Kernkraftwerke ist hier nur der erste Schritt. Kommen (später) Reaktoren mit höheren Betriebstemperaturen zum Einsatz, wird der Vorteil noch gravierender. In fernerer Zukunft könnten Hochtemperaturreaktoren sogar den Weg über chemische Verfahren (z. B. Jod-Schwefelsäure) gehen.

Das U.S. Department of Energy (DOE) fördert eine Dampf-Elektrolyse-Anlage an einem Kernkraftwerk (wahrscheinlich Prairie Island Nuclear Generating Station von Xcel Energy) in USA mit $13,8 Millionen. Xcel Energy verfügt über einen hohen Anteil von Windenergie mit dem entsprechend stark schwankenden Angebot. Eine Fragestellung soll deshalb sein, ob man Energie aus dem Reaktor auskoppeln kann, ohne diesen bei Windspitzen abregeln zu müssen. Dies wäre damit die erste unmittelbare Kopplung von Wind- und Kernenergie bei einem Versorger. Böse Zungen könnten auch sagen: Eine den Markt verzerrende Subvention der Windenergie soll durch Subventionen bei einem vorhandenen Kernkraftwerk geheilt werden.

Ein zweites Förderprogramm des DOE über $12,5 Millionen unterstützt die Kooperation von FuelCell Energy of Danbury mit dem Idaho National Laboratory. Ziel ist die Entwicklung von Festkörper-Elektrolyse-Zellen mit hohem Wirkungsgrad und geringen Kosten als 200 bis 500 MW Module zur Nachrüstung bei Kernkraftwerken. Es soll der Wechsel zwischen Wasserstoffherstellung und Stromproduktion demonstriert werden, um Kernkraftwerken ein zweites wirtschaftliches Standbein zu erschließen.

Ausblick

Im Jahr 2019 wurden weltweit 69 Millionen to Wasserstoff in Raffinerien und Düngemittelfabriken verbraucht. Der Markt ist also vorhanden. Allerdings wird nur sehr wenig Wasserstoff über größere Entfernungen transportiert. Wegen der bekannten Transportschwierigkeiten wird er unmittelbar in der Nähe der Verbraucher erzeugt. Es gibt allerdings bedeutende regionale Pipeline-Systeme z. B. in den USA an der Golfküste, die verschiedene Chemiezentren untereinander verbinden. In dieser Region ist ein bedeutender Ausbau für „Blauen Wasserstoff“ geplant. Dabei wird der aus den reichlich vorhandenen Erdgasvorkommen über Dampfreformierung gewonnen. Das dabei anfallende CO2 ist beileibe kein Abfall, sondern kann an die Ölproduzenten in dieser Region verkauft werden. Ein doppeltes Geschäft wird möglich: Einsparung von CO2 – Abgaben und zusätzliche Ölförderung aus bereits erschöpften Quellen. Damit ist auch klar, warum die Erdgasindustrie immer ein Förderer der „Alternativ-Energien“ war und ist. Man weiß sehr genau über die Dunkel-Flauten bescheid. Erdgas ist der Energieträger, der mit den geringsten Investitionen Backup-Kraftwerke erlaubt – jede Windmühle und jeder Sonnenkollektor bedeutet also zusätzlichen Absatz. Es gibt momentan auch kein Henne-Ei-Problem: Man kann den Absatz an Wasserstoff schnell durch Beimischung zum Erdgas steigern. Es laufen bereits Verhandlungen über neue Spezifikationen. Es scheint möglich, bis zu 20% Wasserstoff ohne große Modifikationen an den Pipelines und Verbrauchern unter mischen zu können. Auch hier wird klar, wer größtes Interesse an der Einführung von CO2 – Abgaben hat.

Die Elektrifizierung des Krieges

Der Bedarf an elektrischer Energie schreitet bei den Streitkräften stetig voran: Immer mehr Computer und Datenverkehr, immer mehr Radargeräte etc. und neuerdings sogar Laser-Waffen. Hinzu kommen – zumindest beim US-Militär – bedeutende strategische Verschiebungen hin zu einer Konfrontation mit China und Rußland. Bei diesen Gegnern hat man es weniger mit Kalaschnikows und „Panzerfäusten“, sondern mit präzisen Mittelstreckenraketen, einer funktionstüchtigen Luftabwehr und elektronischer Kriegsführung zu tun. Das alles vor allem in den Weiten des Pazifiks – für Amerikaner tauchen dabei sofort die Trauma von Perl Harbor, den Philippinen und dem blutigen „Inselhopping“ auf dem Weg nach Japan auf. In einer breiten Allianz zwischen den Parteien im Kongress und Senat ist bereits der Umbau der Teilstreitkräfte eingeleitet worden. An dieser Stelle kommt die Kernenergie mit riesigen Schritten ins Laufen.

Die Rolle der Stützpunkte

Stützpunkte (Flugbasen, Häfen etc.) haben den Bedarf von Kleinstädten an elektrischer Energie und Wärme. Sie müssen auch und gerade im Krieg sicher versorgt werden. Um welche finanzielle Größenordnung es sich dabei dreht, sieht man an den Energiekosten von 3,4 Milliarden US$ des US-Militärs (Fiskaljahr 2018) für seine 585 000 Einrichtungen und seine 160 000 Unterstützungsfahrzeuge. Damit im Kriegsfall diese Einrichtungen und die kämpfende Truppe sicher versorgt werden können, ist ein erheblicher logistischer Aufwand nötig. Nicht nur das, in den neun Jahren des Irak- und Afghanistan-Krieges sind 52% aller Opfer (18 700 Kriegsopfer) bei den Versorgungsfahrten eingetreten. Eine typische vorgeschobene Basis mit einer Grundlast von 13 MWel benötigt 16 000 Gallonen Diesel täglich. Das entspricht allein etwa sieben Tankwagen täglich. In den Weiten des Pazifiks unter feindlichen U-Booten und dem Beschuß durch Präzisionsmunition kaum zu leisten. Hier kommt die Idee des Einsatzes von Kernreaktoren. Durchaus keine neue Idee, aber mit neuer Technologie und neuen Randbedingungen.

Wie gewaltig die Stückzahlen sind, ergibt eine Studie der US-Army. Man hat zahlreiche Stützpunkte untersucht und kommt zum Schluß, daß man etwa 35 bis 105 Reaktoren mit einer elektrischen Leistung von 10 MWel und 61 bis 108 Reaktoren mit 5 MWel benötigt. Parallel hat das DOD („Verteidigungsministerium“) eine Untersuchung der Einrichtungen „in der Heimat“ (continental United States (CONUS)) durchgeführt. Es kommt zum Schluß, es sind 500 (!) Mini-Reaktoren sinnvoll. Abgesehen von den Einrichtungen in abgelegenen Regionen, werden die meisten Anlagen aus den öffentlichen Netzen versorgt. Man ist aber besorgt, daß die öffentlichen Netze immer anfälliger werden (Naturkatastrophen, Wind und Sonne etc.). Versorgungssicherheit ist aber für eine moderne Armee mit Radaranlagen, Raketenabwehr und totalem Kommunikationsanspruch überlebenswichtig. Im zweiten Weltkrieg konnte man notfalls einen Flugplatz noch mit Petroleumlampen betreiben – eine Abwehr von Interkontinentalraketen ohne Strom für das Rechenzentrum und das Phasenradar ist so wertvoll wie eine Steinaxt. Insofern stellen sich hier notwendige Investitionen anders dar: Da die Versorgungssicherheit im Vordergrund steht, muß auch beim Bezug „billiger Energie“ aus dem öffentlichen Stromnetz trotzdem die volle Leistung über Dieselanlagen vorgehalten werden.

Laserwaffen etc.

Seit dem (in Deutschland verlachten) „Krieg der Sterne“ Programm von Ronald Reagen, wird die Entwicklung von Hochenergie-Lasern mit Hochruck vorangetrieben. Die Klasse unter einem kW geht bereits an die Truppe, die Klasse bis 150 kW ist in der Erprobung. Die erste Anlage zur Abwehr von Drohnen ist bereits auf einem Schiff im Golf im Einsatz. Drohnen sind sehr billig und effektiv, wie man spätestens nach dem Einsatz durch den Iran gegen Ölanlagen in Saudi Arabien feststellen mußte. Weil sie so billig sind, kann man durch einen Sättigungsangriff schnell auch modernste Luftabwehr überfordern. Als Gegenmaßnahme bleiben nur Laser zum Schutz der Anlagen im Nahbereich – ohne teuere Raketen, sondern nur mit „Energie“.

Ein weiterer Schritt sind Geschütze (rail gun), die massive Geschosse mit mehrfacher Schallgeschwindigkeit über große Entfernungen sehr präzise verschießen. Die erste Installation sollte auf den Zerstörern der Zumwalt-Klasse erfolgen. Dies sind vollelektrische Schiffe, die ein Gasturbinenkraftwerk zur wahlweisen Energieversorgung besitzen. Dieses Konzept hat sich aber nicht bewährt, da die elektrische Belastung (Trägheit des Bordnetzes durch An/Abschaltung so großer Leistungsspitzen, Wellenbildung im Bordnetz usw.) die gesamte Stromversorgung des Schiffes gefährdet. Man favorisiert z. Zt. deshalb sogar auf Schiffen separate „Mini-Reaktoren“.

Die Elektromobilität

Fahrzeuge mit Elektroantrieb besitzen zwei militärische Vorteile: Sie sind leise und haben nur sehr geringe Abwärme – sind also nur schwer zu orten. Erste Kleinlaster für den Einsatz bei Spezialeinheiten sind mit Elektroantrieb in der Erprobung. Grundsätzlich gilt auch hier, der Bedarf an elektrischer Leistung für Elektronik und (später) Bewaffnung nimmt stetig zu. Im Moment deutet sich deshalb ein Übergang zu hybriden Antriebssystemen an. Der immer größer werdende Bedarf an elektrischer Energie soll dann bei Stillstand (teilweise) aus Batterien gedeckt werden. Als Nebenprodukt ergibt sich noch der etwas geringere Spritverbrauch durch Vermeidung ungünstiger Teillast. Wenn es gelänge, hoch mobile Kleinstreaktoren in Frontnähe zur Verfügung zu haben, könnte bei einer Umstellung auf vollelektrische Fahrzeuge der erforderliche Nachschub auf ein Minimum begrenzt werden. Alle hierfür notwendigen Unterstützungseinheiten würden für den Fronteinsatz frei. Ganz besonders groß ist das Interesse bei den US-Marines: Bei einer Konfrontation mit China müßten deren Einheiten sich möglichst schnell auf unterschiedlichen kleinen Inseln bewegen, um einer Vernichtung durch Mittelstreckenraketen etc. zu entgehen. Die Logistik – tausende Meilen von der Heimat entfernt – ist dabei das zentrale Problem. Diese Problematik ergibt sich bereits bei der Abschreckung um den Frieden zu bewahren.

Die Finanzierung

Wichtig ist in diesem Zusammenhang, daß es in den USA eine breite Unterstützung für die Kernenergie quer durch die Parteien gibt. Dies schließt sogar „Umweltschutzgruppen“ mit ein. Eine völlig andere Situation als in Merkelhausen. Widerstände kommen in den USA – wenn überhaupt – nur aus der fossilen Industrie. Selbst dort muß man noch deutlich unterscheiden: Die Kohleindustrie kämpft inzwischen selbst ums Überleben. Der „Feind“ ist nicht mehr nur die Kernenergie, sondern auch der Erdgassektor, der durch den Hype um Wind- und Sonnenenergie einen totalen Imagewandel erfahren hat. Jede neue Windmühle und jeder zusätzliche Sonnenkollektor fördert den Absatz von Erdgas (Dunkel-Flaute) bei der Stromerzeugung. Deutlich erkennt man diese Tendenz bereits in Texas: Kohlekraftwerke werden geschlossen und Gaskraftwerke neu in Betrieb genommen. Der Druck kommt über die „Alternativenergien“, für die Texas geradezu ideale Vorraussetzungen hat (dünne Besiedelung, recht stetige Winde vom Golf und jede Menge Sonnenschein). Hinzu kommen noch günstige Gaspreise (Begleitgas aus der Ölförderung) bei allerdings zunehmenden und preisstabilisierenden Exporten (nach Mexiko per Rohrleitungen und nach Übersee als verflüssigtes Erdgas).

Bisher haben die vom Kongress zugewiesenen Mittel sogar die Anforderungen der Verwaltung übertroffen. So wurden im Haushaltsjahr 2020 für das DOE’s Office of Nuclear Energy („Fachbereich Kernenergie des Energieministeriums“) nicht nur $1,49 Milliarden für die Kernenergie-Forschung bereitgestellt, sonder $230 Millionen Dollar zweckgebunden für ein „Programm zur Demonstration fortschrittlicher Reaktoren“. Im Rahmen dieses Programms wurden drei Wege für die Kooperation mit der Privatwirtschaft beschlossen: Förderung von zwei „Demonstrationsvorhaben“ innerhalb der nächsten 5–7 Jahre, Risikominimierung bei Vorhaben, die einen erwarteten Entwicklungsbedarf von 10 Jahren haben und „fortschrittliche Reaktorkonzepte“ die einen Zeithorizont von mehr als 15 Jahren besitzen.

Der Kongress (Mehrheit Demokraten) hat das DOD („Verteidigungsministerium“) bereits 2019 (also Während der Präsidentschaft von Trump) aufgefordert seine Stützpunkte durch „Minireaktoren“ unabhängiger von der öffentlichen Stromversorgung zu machen (siehe 2019 National Defense Authorization Act (NDAA) Section 327 ). Darin wird gefordert, mindestens einen Stützpunkt bis zum 31.12.2027 durch einen zugelassenen „Minireaktor“ zu versorgen. Das DOD’s Office of Acquisition and Sustainment („Beschaffungsstelle des US-Verteidigungsministeriums“) arbeitet dafür eng mit dem DOE („Energieministerium“) zusammen. Ebenfalls 2019 wurden $70 Millionen im Haushaltsjahr 2020 für ein Konstruktions- und Testprogramm für mobile Kleinstreaktoren zur Versorgung vorgeschobener Militärbasen eingestellt. Dies war der Start des „Projekt Pele“. Im März 2020 wurden knapp $40 Millionen für die Unternehmen BWXT, Westinghouse, und X-energy für einen zweijährigen Konstruktionszeitraum bewilligt. Danach soll ein Prototyp beim National Laboratory (INL) gebaut und 2024 mit einer C-17 zu einem Stützpunkt in Alaska geflogen werden, um die Mobilität und den Betrieb unter Praxisbedingungen zu demonstrieren. Damit es mit der Kerntechnik vorangehen kann, hat das DOD im Haushaltsjahr 2021 über $100 Milliarden für Forschung, Entwicklung, Tests, und Auswertung (RDTE) beantragt. Das ist der größte Betrag in der Geschichte des DOD. Allgemein wird geschätzt, daß für die Umsetzung des „Minireaktor-Programms“ insgesamt $500 Millionen benötigt werden.

Genehmigungsproblematik

Eigentlich kann das US-Militär Reaktoren bauen wie es will. Beispiel hierfür sind die zahlreichen Reaktoren für U-Boote und Flugzeugträger. Übrigens mit einer exzellenten Verfügbarkeit und Sicherheitsbilanz. Allerdings mit einem entscheidenden juristischen Unterschied: Die Schiffe sind amerikanisches Territorium. Man braucht mit ausländischen Häfen nur über eine Genehmigung zum Einlaufen bzw. den einzuhaltenden Regularien zu verhandeln. Für Stützpunkte in anderen Ländern geht das sicher nicht. Dort wird man sich den jeweiligen nationalen Genehmigungsverfahren unterwerfen müssen. Das gilt schon für den Transport mobiler Reaktoren dort hin. Insofern ist es folgerichtig, daß man von Anfang an eine Zulassung durch das NRC (Genehmigungsbehörde für kommerzielle Kernkraftwerke) anstrebt. Da immer noch die Zulassung durch das NRC als internationaler „Goldstandard“ betrachtet wird, wird dies die Genehmigung im Ausland stark vereinfachen und beschleunigen.

Ganz so einfach ist die Sache allerdings nicht. Das NRC ist bisher auf die Genehmigung von Leichtwasserreaktoren spezialisiert. Für „fortschrittliche Reaktoren“ mit anderen Kühlmitteln, Brennstoffen und Sicherheitssystemen sind noch erhebliche Vorarbeiten zu leisten, bis das Risiko qualitativ und quantitativ nachvollziehbar bemessen werden kann. Je mehr Unternehmen mit unterschiedlichen Konzepten kommen, um so mehr kommt das NRC an seine Kapazitätsgrenzen. In diesem Fiskaljahr beträgt ihr Etat rund $860 Millionen, wovon etwa $430 Millionen auf die Reaktorsicherheit entfallen.

Kommerzieller Ausblick

Das US-Militär arbeitet schon immer eng mit der Privatwirtschaft zusammen und man ging schon immer unkonventionelle Wege: In den 1950er Jahren entwickelte man die Sidewinder Flugabwehrrakete: Einmal abgeschossen, suchte sie sich selbst über ihren Infrarot-Suchkopf ihren Weg ins feindliche Ziel. Ein echter Gamechanger im Luftkampf. Die Sache hatte nur einen Haken: Man brauchte große Stückzahlen, was aber beim damaligen Stand der Halbleitertechnik schlicht zu teuer war. Man ging einen typisch kapitalistischen Weg: Um die Stückpreise zu senken, brauchte man zusätzliche Stückzahlen aus dem zivilen Sektor. Die Spielkonsole war geboren.

In Punkto „Mini-Reaktoren“ zeichnet sich der gleiche Weg ab. Man kann bereits Minengesellschaften für solche Reaktoren begeistern. Überall wo Diesel-Kraftwerke in abgelegenen Regionen im Einsatz sind, besteht wegen der hohen Stromkosten ernsthaftes Interesse. Ein weiteres Einsatzgebiet ergibt sich aus dem Hype für Elektrofahrzeuge. Will man Schwerlaster elektrifizieren, braucht man überall dort, wo man heute Tankstellen hat, Ladestationen. Diese brauchen aber enorme Leistungen, wenn man einen LKW auch in etwa 20 Minuten voll aufladen will. Hier kommen flugs Minireaktoren ins Spiel. Mit ihnen könnte man kontinuierlich Wärmespeicher beladen, die anschließend bei Bedarf große Spitzenleistungen über Dampfturbinen bereitstellen könnten. Es gibt bereits Pläne in Zusammenarbeit mit den Marketing-Genies von Tesla. Da freut sich doch das Grüne-Öko-Herz oder vielleicht doch nicht?

Zwischenbericht zur Endlagersuche

Ende September wurde der erste Zwischenbericht zur Endlagersuche veröffentlicht. In ihm wird Deutschland in mehrere „Teilgebiete“ eingeteilt, die jedes für sich auf ihre Eignung als Endlager für den hochaktiven „Atommüll“ beurteilt werden. Eine mehrere tausend Seiten umfassende Dokumentation, die sicherlich jedem Bachelor-Studenten der Geologie zu einem Fleißkärtchen gereicht hätte. Auftrag erfüllt, Gorleben ist als Standort rausgeschmissen, dafür selbst die Hauptstadt in der engeren Wahl belassen. Jedenfalls meldete das Inforadio vom rbb am gleichen Morgen Berlin-Spandau und Berlin-Reinickendorf als geeignete Standorte. Wenn die Sache nicht so ernst wäre, könnte man das als Comedy abhaken – freilich nicht einmal auf dem Niveau einschlägiger Sendungen des ZDF. Wenn man es jedoch nach fachlichen Gesichtspunkten betrachtet, ist es ein Paradebeispiel für Lyssenkoismus.

Umgang mit hochaktiven Abfällen

Kaum je, war einer der Grundsätze sozialistischer Systeme besser getroffen: Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen. Besser kann man den „Atomausstieg“ und die „Endlagerfrage“ nicht beschreiben. Nie hatte man in Deutschland vor, benutzte Brennelemente einfach zu verbuddeln. Selbst am Standort Gorleben war ein integriertes Entsorgungszentrum mit Wiederaufbereitung und anschließender Endlagerung der Abfälle im Salzstock geplant – keinesfalls aber das Verbuddeln kompletter Brennelemente. Warum? Weil abgebrannte Brennelemente zu mindestens 95% noch zur Energieerzeugung verwendbar sind und höchstens 5% in diesem Sinne Abfall darstellen. Damit ist schon mal die Frage des notwendigen Volumens beantwortet. Merke: Je größer die Menge „Atommüll“, je besser läßt sie sich propagandistisch ausschlachten. In der typischen moralischen Überhöhung schwätzt man nun von der Verantwortung diesen „Atommüll“ im eigenen Land opfervoll endlagern zu müssen. Nur folgen „unserem Vorangehen“ nicht einmal unsere unmittelbaren Nachbarländer. Insofern ist das unwiederbringliche verbuddeln riesiger Energiemengen eher eine Gehässigkeit und Umweltsünde. Das Uran und Plutonium das unsere Gutmenschen zu ihren politischen Zwecken verbuddeln wollen, muß in anderen Ländern mühselig gefördert bzw. erbrütet werden. Selbst bei einem „Atomausstieg“ bedeutet eine Wiederaufbereitung (in anderen Ländern) eine erhebliche Verringerung der Belastungen für das eigene Land.

Die Gefährlichkeit des „Atommülls“

Will man die Diskussion um die Hinterlassenschaften der „Atomindustrie“ zurück auf eine rationale Ebene führen, ist es unerläßlich die potentiellen Gefahren klar zu benennen. Von den „Atomkraftgegnern“ wurde der Popanz der sicheren Endlagerung für mindestens eine Million Jahre erfunden. Dieser Unsinn gilt noch heute manchen als das Totschlagargument gegen die friedliche Nutzung der Kernenergie. Für die biologische Wirkung auf die Menschen ist einzig die Art und Dosis der ionisierenden Strahlung verantwortlich. Dies gilt heute genauso, wie in einer Million Jahren. Deshalb hier noch mal in aller Kürze die wesentlichen Einflussfaktoren:

  • Strahlung. Man unterscheidet α-, β- und γ-Strahlung. In diesem Zusammenhang ist besonders wichtig, daß α-Strahlung nur biologisch wirken kann, wenn der Stoff in den Körper aufgenommen wurde oder etwas flapsig gesagt: Niemand ist gezwungen, abgebrannte Brennelemente zu essen.
  • (Halbwerts)Zeit. Der radioaktive Zerfall geht immer nur in eine Richtung, das heißt die ursprüngliche Menge der radioaktiven Stoffe wird beständig weniger. Das Maß ist die jeweilige Halbwertszeit. Je länger die Halbwertszeit des Abfalls ist, je länger sollte er von der Biosphäre fern gehalten werden, aber um so weniger „feuert“ er auch. Das ist der Grund, warum man z. B. Uran (immer noch der größte Anteil in abgebrannten Brennelementen) gefahrlos in die bloße Hand nehmen kann. Mit einem Stück Co60 wäre das nicht empfehlenswert. Ein übliches Maß für das „Verschwinden“ radioaktiver Stoffe ist die zehnfache Halbwertszeit. Mit anderen Worten: Zum Zeitpunkt der Einlagerung sind alle Stoffe mit einer Halbwertszeit die kleiner als ein Zehntel der Zeitspanne seit dem Verlassen des Reaktors ist, bereits verschwunden. Das ist der Grund, warum man dann bereits recht gefahrlos mit dem „Atommüll“ umgehen kann oder warum auch Länder, die eine Wiederaufbereitung durchführen bzw. anstreben eine „Langzeit-Zwischenlagerung“ betreiben. Die Behauptung, man hätte weltweit noch keine Lösung für den „Atommüll“ ist ebenfalls nichts als Propaganda.
  • Chemie der Abfälle. Damit die radioaktiven Stoffe überhaupt in die Umwelt gelangen können, müssen sie zuerst freigesetzt werden. Standard ist heute die Verglasung (es gibt auch noch andere Verfahren). Man erzeugt bei der Wiederaufbereitung eine „Suppe aus Spaltprodukten“ mit möglichst wenig Aktinoiden (lange Halbwertszeiten) und löst diese in einer Glasschmelze auf, die man in einen Behälter aus Edelstahl einbringt. Glas ist sehr beständig. Damit die radioaktiven Stoffe da raus können, muß erstmal das Glas aufgelöst werden. Hierbei stehen sich radioaktiver Zerfall und Auflösung eines solchen Glasblocks durchaus in gleicher zeitlicher Größenordnung gegenüber.
  • Wärmeentwicklung. Bei jedem radioaktiven Zerfall wird Energie in Form von Wärme freigesetzt. Technisch von Bedeutung ist lediglich die entstehende Temperatur im Gebinde (Glas und Edelstahl) und in unmittelbarer Umgebung des Lagers (Salz, Ton oder kristallines Gestein). Dies ist eine rein technische Aufgabe, die beliebig über die Zeit bis zur Einlagerung und die Konzentration und Form der Gebinde eingestellt werden kann.
  • Chemie der Umgebung. Ob, wenn ja wieviel, in welcher Zeit, von den eingelagerten Stoffen bis in die Biosphäre gelangt, hängt wesentlich von der Bodenbeschaffenheit und weniger von irgendwelchen Wässern ab. Boden ist immer – mehr oder weniger – ein Ionentauscher. So haben z. B. die Unglücke in Hanford (Durchrostung von mit Spaltproduktlösungen gefüllter Erdtanks) gezeigt, daß selbst oberflächennah der Transport Jahrzehnte für wenige Meter benötigt hat.
  • Biologische Halbwertszeit. Letztendlich ist für die „Schädlichkeit“ nur verantwortlich, wieviel radioaktive Stoffe und welche (biologische Halbwertszeit als Maß für die laufende Ausscheidung) vom Menschen aufgenommen werden. Über die Pfade gibt es sehr gute und verlässliche Kenntnisse. Teilweise sogar die Gesundheit fördernd – man denke nur an gewisse Mineralwässer.

Als Anregung zum Nachdenken: Radioaktive Stoffe zerfallen und verschwinden damit unweigerlich. Bei chemischen Stoffen ist das durchaus nicht immer der Fall (z. B. Quecksilber, Arsen, Asbest etc.). Warum diskutieren selbsternannte „Umweltschützer“ nur über Deponien für radioaktive Stoffe und warum sind Deponien für „Chemiemüll“ kein Aufreger? Was ist z. B. mit dem weltgrößten unterirdischen Lager für richtig gefährliche Stoffe in Herfa-Neurode? Dort sind bereits mehrere Millionen Tonnen „Gift“ eingelagert. Ging es den „Atomkraftgegnern“ vielleicht immer schon um ganz andere Dinge?

Das Standortauswahlgesetz (StandAG)

Die Vorstellung, man muß nur den einen Ort finden, der den „Atommüll“ für eine Million Jahre sorglos verschwinden läßt, mutet schon kindlich naiv an oder ist eine böswillige politische Farce – jeder Leser mag das für sich selbst entscheiden. Weder braucht man einen Einschluß für „mindestens eine Million Jahre“, noch kann ein ernsthafter Mensch glauben, daß man die Zukunft über Millionen Jahre verlässlich vorhersagen kann. Parallelen zu den Prognosen von der menschengemachten Klimakatastrophe drängen sich unmittelbar auf. In diesem Zwischenbericht gehen die Geologen von 10 Eiszeiten in dem betrachteten Zeitraum aus, bei denen zumindest die norddeutsche Tiefebene jeweils mit Eis überdeckt ist. Soviel dazu. Die Herren und Damen wären aber nicht lange im (politischen) Geschäft der Gutachten, wenn sie nicht pflichtgemäß politisch korrekt im unmittelbar folgenden Satz auf die vom Menschen verursachte Erderwärmung hinweisen würden, die selbstverständlich in diesem Gutachten noch nicht abschließend beurteilt werden kann.

Aber es wäre ungerecht, nur die Gutachter für dieses Machwerk verantwortlich zu machen. Vielmehr sind es unsere Parlamentarier, die das Gesetz – ohne es zu lesen oder auch nur ansatzweise zu verstehen – durchgewunken haben. So ist das nun mal, man bekommt nur das, was man ausdrücklich bestellt und bezahlt. Wenn man als gewählter Volksvertreter nicht den Mut hat, hin und wieder Stopp zu sagen, degradiert man sich selbst zur Marionette cleverer Lobbyisten. Nun kann man bei der beruflichen Zusammensetzung unseres Parlaments wahrlich keine geologische Kompetenz erwarten. Man hätte aber mal Menschen fragen können, die von der Materie etwas verstehen. Früher – vor den Besetzungsorgien unter Rot/Grün – gab es jede Menge qualifizierter Fachleute in den Ministerien. Zumindest aber, hätten in der Gesetzgebung erfahrenen Abgeordneten die Ohren bei einem zeitlich über mehrere Legislaturperioden ausgedehnten, dreistufigen K.o-Verfahren klingeln müssen. Man muß nur in Phase I die unliebsamen Standorte raus kegeln und der Drops scheint gelutscht. Das ganze geschah nun auf einer Datenbasis, die kaum verschieden (Geologie!) der gegenüber 1973–1979 ist. Wie absurd die Entscheidung ist, zeigt sich daran, daß die Hauptstadt (!) und zerklüftete Gebiete in Bayern als geeignet erklärt wurden. Weil man offensichtlich selbst kalte Füße hat, erklärt man flugs eine mögliche Kompensation durch technische Maßnahmen für möglich – für eine Sicherheit von mindestens einer Million Jahren. Deutschland scheint sich endgültig international zur Lachnummer machen zu wollen.

Der Salzstock Gorleben

Man hat den Salzstock Gorleben in den Jahren 1979–1983 von oberhalb und 1986–2000 untertägig erforscht. Hunderte von wissenschaftlichen Mannjahren, Regale voll Meßwerten und Auswertungen und 1,6 Milliarden Euro Kosten, die allein wir Stromverbraucher bezahlt haben. Allein von den Kosten her, glaubt irgendjemand, daß noch einmal ein solches Programm für zwei weitere Standorte durchgezogen wird? Vorsichtshalber wurde gleich ins Gesetz rein geschrieben, daß Gorleben nicht als Referenzobjekt herangezogen werden darf (§36 des StandAG). Gott bewahre, wenn sich nach zwei weiteren Forschungsbergwerken herausstellt, daß der Salzstock in Gorleben doch nicht der Schlechteste war. Dagegen ist der „Maut-Skandal“ wahrlich eine Petitesse.

In dem Standortauswahlgesetz in §22 werden explizit sechs Ausschlusskriterien benannt (Vertikalbewegungen, Störungszonen, frühere bergbaulicher Tätigkeit, seismische Aktivität, vulkanische Aktivität und Grundwasseralter). Ergebnis des Zwischenberichts: Es liegt kein Ausschlusskriterium vor. Lediglich ist ein Radius von 25 m um einige alte Ölbohrungen auszuschließen. In dem Standortauswahlgesetz in §23 werden explizit fünf Mindestanforderungen genannt (Gebirgsdurchlässigkeit, Mächtigkeit, minimale Teufe, Fläche und Barrierewirkung). Ergebnis des Zwischenberichts: Es sind alle Mindestanforderungen erfüllt. In der Anlage zu §24 sind die geowissenschaftlichen Abwägungskriterien aufgeführt. Die Tabelle 1 des Zwischenberichts führt akribisch 25 Bewertungen auf. Und jetzt aufgepasst: 22 Punkte werden mit „günstig“ bewertet, einer mit „weniger günstig“ und zwei mit „nicht günstig“. In Tabelle 2 und 3 sind auch alle Kriterien „günstig“. Plötzlich taucht in Tabelle 5 das vermeintliche Killerkriterium auf: „Gesamtbewertung des Kriteriums zur Bewertung des Schutzes des einschlusswirksamen Gebirgsbereichs durch das Deckgebirge“: „ungünstig“. Wir erinnern uns an die 10 erwarteten Eiszeiten, die immer mehr Deckgebirge abschleifen sollen. Nur, wer will denn den Atommüll in das Deckgebirge einlagern? Der Salzstock geht doch mehrere tausend Meter in die Tiefe…

Die Gefährdung der Demokratie

Was hier abläuft, ist ein Aufruf an alle möglichen Interessenverbände zum Widerstand. Wissenschaft zählt nicht, Steuergeld ohnehin nicht, ihr müßt nur möglichst militanten Widerstand leisten, dann zwingt ihr die Politik in die Knie. Hier ist allerdings der Widerstand von Gorleben ausdrücklich als Referenz erwünscht. Ein paar Alt-68er-Datschenbesitzer haben erfolgreich ihren Altersruhesitz verteidigt. Der Gipfel wäre noch, man baut das Endlager auf dem Gebiet der ehemaligen DDR. Dort hat Bündnis 90/Die Grünen ohnehin nur wenig Wähler und sollte sich dort auch nur leichter Protest regen, kann man schnell mit der Keule alles „Rechtsradikale“ zuschlagen. Uns im „Westen“ bleibt ja noch die Asse und Schacht Konrad als Aufreger. Um die Deponie Morsleben im „Osten“ war und ist es ja immer bemerkenswert still. Also auf in den Wahlkampf.

Beginn einer atemberaubenden Serie

Anfang September 2020 wurde der Reaktor Fuqing 5 mit 177 Brennelementen zum ersten mal beladen. Ein in mehrfacher Hinsicht bemerkenswertes Ereignis. Es ist der erste Reaktor der chinesischen Eigenentwicklung ≫Hualong One≪ – ein sogenannter „First Of A Kind“ (FOAK). Der Bau des allerersten Reaktors eines neuen Modells dauert zumeist sehr lange, da bei ihm noch viele Fehler gemacht werden, die zeitaufwendig behoben werden müssen. Abschreckendes Beispiel ist die Baustelle Olkiluoto in Finnland mit dem Baubeginn im Jahr 2004. Gänzlich anders die Situation bei Fuqing 5: Dort war der Baubeginn (erster nuklearer Beton) im Mai 2015. Rund 5 Jahre Bauzeit gegenüber 16 Jahren mit gigantischer Kostenexplosion. Deutlicher kann man die Leistungsfähigkeit der chinesischen kerntechnischen Industrie nicht darstellen. Doch damit noch nicht genug: Im Dezember 2015 war der Baubeginn für die Blöcke Fuqing 6 und Fangschenggang 3, im Dezember 2016 für Fangschenggang 4, im Oktober 2019 für Zhangzhou 1 und im September 2020 für Zhangzhou 2 und Taipingling 1. Um dem ganzen noch die Krone aufzusetzen, wurde parallel im August 2015 mit dem ersten Auslandsauftrag Karachi 2+3 in Pakistan begonnen. Man hat also gleichzeitig 9 Reaktoren eines neuen Typs in Arbeit. Da China auch noch andere Kernkraftwerke baut, kommt es seinem Ziel, in den nächsten Jahrzehnten durchschnittlich alle sechs Monate einen Kernreaktor in Betrieb zu nehmen, sehr nahe.

Die Geschichte des Hualong

Im Jahr 2012 wurde durch das zentrale Planungsbüro in Peking beschlossen, die Eigenentwicklungen ≫ACP1000≪ von China National Nuclear Corporation (CNNC) und ≫ACPR1000≪ von China General Nuclear (CGN) zu einem standardisierten Modell ≫Hualong One≪ zusammenzulegen. Es sollte ein Reaktor der dritten Generation entstehen, in dem auch ausdrücklich alle Erfahrungen des Unglücks in Fukushima berücksichtigt werden sollten. Da jeder Hersteller seine eigenen Zulieferketten hat, unterscheiden sich noch heute die Modelle geringfügig.

Ursprünglich sollten 2013 in Pakistan zwei ≫ACP1000≪ in der Nähe von Karachi gebaut werden. Dieses Vorhaben wurde 2015 in zwei ≫Hualong One≪ umgewandelt. Darüberhinaus befindet sich der ≫Hualong One≪ in der Variante Fuqing 5+6 in Großbritannien im Genehmigungsverfahren als Modell für das geplante Kernkraftwerk Bradwell. Allerdings ist es höchst fragwürdig, ob dieses Projekt noch politisch durchsetzbar ist. Nach den Ereignissen in Hongkong und um den Ausbau des Mobilfunknetzes durch Huawei ist die Stimmung in Großbritannien gekippt. China ist in einer Schlüsselfunktion wie der Stromversorgung nicht mehr erwünscht.

Die Lernkurve

Obwohl diese Serie von Hualog One weitestgehend parallel gebaut wird, kann man laufend Verbesserungen entdecken. Selbst an so simplen Bauteilen wie dem Containment. Es besteht aus Stahlringen (ca. 46m Durchmesser, etwa 7m hoch, Wandstärke 6 mm, mit einem Gewicht von 180 to), die auf einem separaten Platz auf der Baustelle aus vorgefertigten Segmenten zusammengeschweißt werden. Sie werden dann mit einem Schwerlastkran übereinander gestapelt und zu einem zylindrischen Containment montiert. Den oberen Abschluss bildet eine Kuppel, die ebenfalls vor Ort aus Segmenten zusammengeschweißt wird und mit einem Kran aufgesetzt wird. Auf diese Stahlkonstruktion wird nun die eigentliche Hülle aus Spannbeton aufbetoniert. Man erhält so ein gasdichtes und hochfestes Sandwich als Wand. Als Schutz gegen Flugzeugabstürze etc. wird diese Konstruktion noch einmal als äußere Hülle wiederholt. Zwischen den Wänden verbleibt ein Spalt, der später zur Überwachung im Unterdruck gehalten wird.

Vergleicht man nun die innere Kuppel von Fuqing 5 (Montage im Januar 2017) mit der von Fangschenggang 3 (Montage im Mai 2018), so stellt man fest, daß sich das Gewicht von 305 to auf 260 to verringert hat. Umfangreiche 3-D-Simulationen, eine Optimierung der Statik und die Verwendung besonders geformter Segmente haben zu diesem Fortschritt geführt. Materialeinsparungen sind praktisch auch immer Kosteneinsparungen.

Wie flexibel die Chinesen vorgehen, zeigt sich aber auch am Ablauf der Montage. Bisher hat man klassisch erst den Rohbau fertiggestellt und anschließend die Großkomponenten eingebracht. Dazu muß man die drei Dampferzeuger (Länge 21 m, 365 to) und das Druckgefäß waagerecht durch die Schleuse einbringen und innerhalb des Containment aufwendig aufrichten und mit dem Polarkran in Position bringen. Beim Kraftwerk Karachi hat man die Einbauten vor dem Aufsetzen der Kuppel eingebracht. Bei Fuqing 5 dauerte das Einbringen der Dampferzeuger und des Druckgefäßes rund 2,5 Monate. In Karachi reduzierte sich der Einbau auf rund 5 Stunden pro Dampferzeuger bzw. 3 Wochen für alle nuklearen Großkomponenten. Eine beträchtliche Zeit- und Kostenersparnis.

Die Rolle ausländischer Zulieferer

Klein, Schanzlin und Becker (KSB) aus Frankenthal war einst die Perle für Pumpen in der Kraftwerkstechnik. Der Ausstieg aus Kerntechnik und Kohle in Deutschland hat sie (noch) nicht aus dem Markt gedrängt, sondern lediglich ins Ausland vertrieben. So erhielt SEC-KSB den Auftrag für die sechs Hauptkühlmittelpumpen (10,000-Volt-Motor mit einer Antriebsleistung von 6600 kW, 110 to schwer, Leistung 24 500 Kubikmeter pro Stunde) für das Kraftwerk Zhangzhou. Ein Auftrag in dreistelliger Millionenhöhe. Dafür muß man in Deutschland eine ganze Menge Heizungspumpen verkaufen. SEC-KSB ist ein im Juni 2008 gegründetes Joint Venture zwischen Shanghai Electric (55%, wer da wohl das sagen hat?) und KSB (45%), welches für das komplette Geschäft mit kerntechnischen Komponenten in China verantwortlich ist. Ein typisches Schicksal eines deutschen Unternehmens der Spitzentechnologie: Entweder man macht den Laden in Öko-Deutschland sofort dicht oder man versucht sich ins Ausland zu verlagern.

Vielleicht verläuft ja das Schicksal von Rolls-Royce (R&R) etwas anders. R&R hat für das gleiche Kraftwerk ebenfalls einen dreistelligen Millionenauftrag eingeworben über die Lieferung der Neutronenfluss-Messeinrichtungen. Allerdings werden diese komplett in Grenoble Frankreich konstruiert, gefertigt und getestet…

Die Preise

Man kann den Chinesen nicht so richtig in die Karten schauen. Es handelt sich immer noch um eine Planwirtschaft mit ihren Eigenheiten bezüglich Kosten und Finanzierung. Man kann aber einen guten Eindruck über Geschäfte mit dem Ausland gewinnen. So hat sich schon 2016 der thailändische Energieversorger RATCH in das Kernkraftwerk Fangchenggang II eingekauft. Aus den Veröffentlichungen des Unternehmens kann man entnehmen, daß das Kraftwerk einen Wert von US$ 6 Milliarden, bei einer Leistung von 2 x 1180 MWel hat. Dies entspricht spezifischen Investitionskosten von 2542 US$/kW. Ganz ähnlich sind die Daten für das pakistanische Kraftwerk Karachi: CNNC gibt Pakistan einen Kredit über US$ 6,5 Milliarden. Es scheint, daß die Chinesen das gesamte Kernkraftwerk im engeren Sinne (2 x 1100 MMWel) komplett vorfinanzieren. Die Projektkosten für das Kernkraftwerk werden von dem pakistanischen Prime Minister Nawaz Sharif mit US$ 9.59 Milliarden angegeben. Dies ergibt spezifische Kosten von 4359 US$/kW für das Projekt mit allen notwendigen Ausgaben (z. B. Hochspannungsleitungen und Infrastruktur).

Bauweise

Bei dem Hualong One oder auch als HPR-1000 bezeichnet, handelt es sich um einen Druckwasserreaktor mit drei Kreisläufen (jeweils Dampferzeuger, Hauptkühlmittelpumpe und Hauptkühlmittelleitung) und einer Nennleistung von 1180 MWel. Er ist für eine Betriebsdauer von (mindestens) 60 Jahren ausgelegt. Er besitzt ein doppelwandiges Containment, welches gegen Flugzeugabstürze etc. ausgelegt ist. Das Brennelementelager und die Gebäude für sicherheitstechnische Anlagen sind ebenfalls gegen Flugzeugabstürze etc. verbunkert. Die Schnellabschaltung bei Störfällen erfolgt vollautomatisch. Erst nach 30 Minuten sind menschliche Eingriffe nötig. Erst nach 72 Stunden sind Hilfsmaßnahmen von außen nötig (z. B. Nachfüllen von Wasser in die internen Becken). Jeder Reaktor ist nicht nur für die Grundlast, sondern auch für einen extremen Lastfolgebetrieb konstruiert.

Innerhalb des Containment – genauso geschützt gegen Einwirkungen von außen wie der Reaktor selbst – befindet sich ein großer Wassertank (IRWST), der Wasserverluste im Kreislauf (z. B. Rohrbruch im Primärkreis) ersetzen kann. Es ist also kein „Umschalten“ in andere Gebäudeteile notwendig. Diesem Tank kann auch Wasser für die „Beregnung“ des Sicherheitsbehälters entnommen werden. Durch den Regen kann der Druck und die Temperatur im Notfall reguliert werden. Es können auch Chemikalien hinzugesetzt werden, die etwaige freigesetzte radioaktive Stoffe auswaschen und binden können (Lehre aus Fukushima). Dies entlastet die Filteranlagen, wenn die Luft nach einem schweren Störfall über den Kamin abgegeben werden muß. Aus dem IRWST kann auch ausreichend Wasser bereit gestellt werden, um die Kaverne, in der das Reaktordruckgefäß steht, vollständig zu fluten. Damit ist das Austreten von Kernschmelze aus dem Reaktordruckgefäß ausgeschlossen. Die gesamte Nachzerfallswärme wird über passive Systeme mit Naturumlauf und Wärmeübertrager an die Umgebung abgegeben. Insofern handelt es sich beim Hualong One um einen echten Reaktor der sogenannten Generation III+.

Solange der Primärkreislauf intakt ist, aber die Wärmesenke (Kühlturm, Meerwassereinlauf, Pumpen etc.) total ausfallen sollte (Fukushima), kann die Wärme über die Dampferzeuger sicher im Naturumlauf abgeführt werden. Zum Nachfüllen von Wasserverlusten dienen jeweils 2 x 50% Motorpumpen und 2 x 50% Pumpen mit Dampfturbinen, die Wasser aus Tanks entnehmen. Es liegt also auch hier nicht nur Redundanz, sondern auch Diversität vor.

Für die Notstromversorgung sind pro Reaktor zwei Notstromdiesel in getrennten Gebäuden vorgesehen. Zusätzlich gibt es im Kraftwerk noch eine weitere Notstromversorgung über eine Gasturbinenanlage (Lehre aus Fukushima) und transportable Notstromaggregate. Zusätzlich gibt es Batterien für eine Versorgungszeit von 72 h (Lehre aus Fukushima). An diese Gleichstromversorgung sind alle Instrumente, Notbeleuchtung, EDV sowie die Ventile der passiven Sicherheitseinrichtungen angeschlossen.

Wie die probabilistischen Sicherheitsberechnungen ergeben, ist beim Hualong One mit einem Kernschaden (CDF) in höchstens einer Million Betriebsjahren zu rechnen. Mit einer Freisetzung großer Mengen radioaktiver Stoffe in die Umwelt (LRF) in höchstens 10 Millionen Betriebsjahren. Um gleich den üblichen Missverständnissen entgegenzutreten: Es handelt sich um Betriebsjahre und nicht Kalenderjahre. Gemeint ist damit, wenn 10 gleiche Reaktoren ein Kalenderjahr lang laufen, ergibt das 10 Betriebsjahre. Und ja, es handelt sich um Wahrscheinlichkeiten, ein Schaden könnte auch schon morgen eintreten. Absolute Sicherheit gibt es halt in der Natur nicht. Solche Zahlen dienen Fachleuten nur um unterschiedliche Risiken vergleichbar zu machen. Was aber ausschlaggebend ist, hier handelt es sich um Eintrittswahrscheinlichkeiten für Ereignisse – nicht um Opferzahlen. Spätestens nach Tschernobyl und Fukushima wissen wir doch, daß auch schwerste Unglücke in Kernkraftwerken zu wenig bis gar keinen Todesopfern führen. Ganz im Gegensatz z. B. zu einem Flugzeugabsturz. Der Kampfschrei der „Anti-Atomkraft-Bewegung“: Millionen Tote, für zehntausende von Jahren unbewohnbar, war und ist einfach nur grottenschlechte Propaganda – wenngleich er gerade in Deutschland höchst erfolgreich war und ist.

Erkenntnisse zur Kosteneinsparung beim Neubau von KKW

Das zentrale – man könnte fast sagen einzige – Problem der kerntechnischen Industrie sind ihre außergewöhnlich hohen Kosten. Zwar war die Kostentreiberei durch immer neue und absurdere Forderungen das wirksamste Kampfmittel der „Anti-Atomkraft-Bewegung“, aber das ist auch nur die halbe Wahrheit. So gab es immer Kriegsgewinnler in den eigenen Reihen, die jedes hingehaltene Stöckchen begeistert übersprungen haben um Forschungsgelder etc. abgreifen zu können. Allgemein herrschte die Meinung vor, man sei so überlegen konkurrenzfähig, daß man ein paar Kröten problemlos schlucken könnte. Stellvertretend hierfür mag der „Kernfänger“ stehen, ein Millionen teures Bauteil als Produkt eines Hirngespinstes der Filmindustrie in Hollywood. Nur kommt leider bei permanenten Zugeständnissen ein Milliönchen zum nächsten. Oder das gern gepflegte Unwesen des „nuclear grade“, wo sich durch ein paar Stempel und Formulare auf wundersame Weise der Preis eines Bauteils vervielfacht. Oder Genehmigungsverfahren, in denen „Spezialisten“ endlose Diskussionen über abseitige Detailprobleme führen – selbstverständlich in Stundenlohnarbeit zu Stundensätzen, die selbst Gewerkschaftsfunktionären die Schamröte ins Gesicht treiben würde. Ging alles so lange gut, bis man feststellen mußte, daß man den Ast auf dem man saß, selbst abgesägt hatte. Es ergeben sich nun zwei Möglichkeiten: Der deutsche Weg, in dem sich die Kombinatsleiter um den Preis hoch subventionierter Windmühlen und Sonnenkollektoren vollständig aus dem angestammten Geschäft zurückzogen oder eine Umkehr, wie sie in anderen Ländern eingeschlagen wird. Wie so oft kann man zwar im Irrsinn vorangehen, es gibt aber keine Garantie, daß einem andere folgen. Plötzlich machen neue Player – Korea, China, Rußland – die Milliardengeschäfte. Für manche Länder ein heilsamer Schock. Jedenfalls für die, in denen regierende Politiker nicht mit religiös anmutendem „Weltrettungswahn“ ihren erbärmlichen Bildungsstand glauben kaschieren zu können.

Der Weg in GB

In Großbritannien war man schon immer positiv gegenüber der Kernenergie eingestellt. Es gab nie eine so gewalttätige „Anti-Atomkraft-Bewegung“ wie in Deutschland und es gelang auch nie den Ökosozialismus in den Regierungen zu etablieren. Im Gegenteil, in GB ist das Rechnen noch erlaubt. Der Ausflug in die Windenergie ist gescheitert. Mögen die Schlangenölverkäufer der Windindustrie auch noch so phantastische Erzeugungskosten aus dem Hut zaubern. Es zählt nur der Strompreis an der Steckdose des Endverbrauchers, also einschließlich der Backup-Kraftwerke, der gesamten Netzkosten usw. Ferner hat man in GB schon länger die Bedeutung qualifizierter und gut bezahlter Industriearbeitsplätze erkannt. Die Finanzindustrie in London kann weder das ganze Land ernähren, noch bietet es für alle Menschen geeignete Arbeitsplätze. Insofern ist es logisch, daß man die vorhandenen Kernkraftwerke nicht nur ersetzen will, sondern sogar von einem Ausbau ausgeht. Die Befreiung von ökosozialistischen Träumereien in Brüssel durch den Brexit beschleunigt diesen Prozeß erheblich. Es sollte im Zusammenhang mit dem Brexit nie vergessen werden, daß das Theater um den Neubau des Kernkraftwerks Hinkley Point C (HPC) erheblich die Abneigung gegen den europäischen Zentralstaat verstärkt hat: Wenn ein kleiner ferner Alpenstamm meint, die Energiepolitik einer frei gewählten britischen Regierung über Prozesse bestimmen zu können, ist Schluß für jeden aufrechten Britannier. Schließlich hat sich diese stolze Nation nicht einmal durch einen gewissen Adolf Hitler – ein Vertreter einer wenig anderen Variante des Sozialismus – auf die Knie zwingen lassen.

Die Bedeutung des Finanzierungsmodells

In GB ist allen klar, daß der vereinbarte Preis für die elektrische Energie aus dem im Bau befindlichen Kernkraftwerk HPC den Gipfel einer verfehlten Entwicklung darstellt und dringend gesenkt werden muß. Bemerkenswert ist, daß eine Annalyse zu dem Ergebnis kommt, daß das Finanzierungsmodell der dickste Brocken beim Energiepreis ist. Für HPC ergibt sich ein Anteil von 2/3 an dem Strompreis. Von dem vereinbarten Strike Price von 92,50 GBP/MWh entfallen volle 62 GBP/MWh auf die Finanzierungskosten. Mit anderen Worten: Lediglich ein Zahlungsstrom von rund 30 GBP pro produzierter Megawattstunde elektrischer Energie (über die Betriebsdauer von 60 Jahren gerechnet) dient dazu, die gesamten Investitions- und Betriebskosten zu bezahlen. Der Löwenanteil von 62 GBP/MWh dient ausschließlich zur Finanzierung der in der Bauzeit anfallenden Kosten. Noch interessanter ist, wenn man die Investition mit den Konditionen von sonstigen Infrastrukturmaßnahmen in GB ansetzt: Dann wäre lediglich ein Zahlungsstrom von 26 GBP/MWh nötig. Volle 36 GBP/MWh entfallen also allein auf die Abdeckung des Risikos während der Bauzeit dieses Kernkraftwerks. So wurde im Bezugsjahr 2016 die „Verzinsung“ (weighted average cost of capital) nach Steuern mit 9,2% angesetzt. Eine seltsame Wette zwischen (dem nie gefragten) Stromkunden und dem Hersteller. Auf jeden Fall bieten sich hier reichhaltige Möglichkeiten für „Finanzinnovationen“ im Zeitalter der „Nullzinspolitik“ und stetig steigender Staatsverschuldungen.

Welch zerstörerische Wirkung Planwirtschaft in den Händen von Politikern mit Hang zur „Systemveränderung“ hat, zeigt sich am Vergleich der „Preise“ für Wind- und Sonnenenergie mit Kernenergie. Einerseits Anschlusszwang, Einspeisevorrang, Backup-Kraftwerke usw. die bewußt nicht in den Strompreis eingerechnet, sondern zusätzlich dem Endverbraucher über „Netzentgelte“ abgeknüpft werden und andererseits alle möglichen fiktiven Kosten, wie Entsorgungskosten etc. die durch den Strompreis unmittelbar abgedeckt werden müssen. Wenn dann besonders schlichte Gemüter einfach beide Zahlen vergleichen, ergeben sich volkswirtschaftlich tödliche Konsequenzen. Es zählt nämlich nur der Gesamtpreis auf der Rechnung des Endverbrauchers, deren Kostendifferenzen zu Konsumverzicht und Arbeitsplatzverlusten an anderer Stelle führen. Hier verschaffen sich gerade Staaten, die Stromversorgung als „öffentliches Gut“ (Zinssätze von Staatsanleihen) betrachten, zur Zeit große Vorteile.

Die Notwendigkeit der Serienfertigung

Die Erfahrung zeigt, daß eine Serienfertigung (möglichst) identischer Kraftwerke ein großes Einsparpotential birgt. Allerdings ist das insbesondere bei den unterschiedlichen Zulassungsbestimmungen der einzelnen Länder nicht ganz einfach. So ist der Reaktor Flamanville 3 vordergründig genau so ein EPR wie die Reaktoren in Hinkley Point. Praktisch haben sie aber etwa 30% mehr Kabel und Rohrleitungen. Gravierend ist auch das Backup eines analogen unabhängigen Abschaltsystems zusätzlich zu den beiden digitalen Kontrollsystemen. Solche Änderungen können schnell und kostenträchtig auf andere Systeme rückkoppeln. In diesem Sinne ist HPC eher schon wieder ein „First Of A Kind (FOAK)“. Die ersten gravierenden Einsparungen werden erst bei dem Nachfolgeprojekt in Sizewell eintreten. Es ist bereits in Vorbereitung. Dort soll (fast) eine Kopie von HPC entstehen. Wie schon bei einer Doppelblockanlage die Einsparungen durch Erfahrung zunehmen, zeigt sich bei HPC in der Anzahl der Arbeitsstunden für die Betonarbeiten: Bei Block 1 wurden noch 25 Stunden für die Einbringung einer to Betonstahl benötigt, bei Block 2 nur noch 16 Stunden. Je mehr (wieder) in der Kerntechnik erfahrene Fachkräfte vorhanden sind, je besser laufen die Baustellen. Man hat deshalb bereits großen Wert auf Ausbildungszentren gelegt, in denen z. B. Schweißer geschult werden bevor sie auf die Baustelle kommen.

Erst konstruieren, dann bauen

Bevor man mit dem Bau beginnt, muß ein Kraftwerk bis ins letzte Detail durchkonstruiert sein. Jede Änderung in der Bauphase führt nicht nur zu Verzögerungen, sondern wirkt sich auch meist auf schon installierte Bauteile aus. Es sind gravierende Änderungen nötig, die oft zu weiteren Änderungen führen. Eine Kostenexplosion ist unweigerlich die Folge. Man denke nur an die „ewige Baustelle“ des EPR in Olkiluoto. Dies hat nichts mit Kernkraftwerken an sich zu tun, sondern ist das Ergebnis von Missmanagement. Ebenso wichtig ist der Einsatz von qualifizierten und in der Kerntechnik erfahrenen Fachkräften und eine ständige Qualitätskontrolle. Geht man die Sache zu lax an, laufen die Kosten davon (Vogtle, Summers, Flamanville). Jede nicht fachgerechte Dokumentation oder gar Pfusch führt zu Neuanfertigungen und Terminüberschreitungen. Dies kann sogar renommierte Unternehmen wie Westinghouse oder Areva in den Ruin führen.

Management des Risikos

Je komplexer oder einzigartiger ein Projekt ist, desto risikoreicher. Es gibt auch bei sonstigen Großprojekten beträchtliche Kostensteigerungen (Berliner Flughafen, Elbphilharmonie etc.). Die Auswertung zahlreicher erfolgreicher und nicht so erfolgreicher Bauvorhaben hat zu 14 Punkten geführt, die ausschlaggebend erscheinen:

  1. Finanzierung. Steht die Finanzierung vor Baubeginn und ist robust gegen unerwartete Einflüsse von außen (Finanzmarkt) und durch das Projekt (z. B. Pleite eines Zulieferers)? Bei langen Bauzeiten muß sie ständig überprüft und gegebenenfalls angepaßt werden. Insbesondere bei innovativen Modellen muß Übereinkunft bei allen Kapitalgebern bestehen.
  2. Vorschriften. Sind alle Vorschriften bekannt und verstanden? In der Kerntechnik kann ein nicht vollständig oder falsch ausgefülltes Formular ein Bauteil in Schrott verwandeln. Zumindest sind zeitaufwendige und teure Nachprüfungen erforderlich.
  3. Unternehmensführung. Ist die Führungsstruktur definiert und dem Projekt angemessen? Bei einem Kernkraftwerk gibt es hunderte Lieferanten aus allen Kontinenten, Kulturen, Sprachen und mit unterschiedlichsten Unternehmensstrukturen. Die Verantwortungen müssen klar definiert und eindeutig abgegrenzt sein. Alle Beteiligten müssen stets die gleiche Sprache sprechen.
  4. Standortdaten. Sind alle Standortbedingungen bekannt, verstanden und vollständig und ausreichend berücksichtigt? (Negativbeispiel: Tsunamis in Fukushima)
  5. Verfahrenstechnik. Sind alle chemischen und physikalischen Prozesse verstanden und alle notwendigen Daten dokumentiert? Insbesondere bei Innovationen sind die Auswirkungen auf andere Teilverfahren genau zu beobachten und etwaige Rückkoppelungen zu prüfen.
  6. Konstruktion. Handelt es sich um ausgereifte Konstruktionen bei allen Baugruppen? (Negativbeispiel: Vibrationen in den ersten Hauptkühlmittelpumpen beim AP1000).
  7. Kostenvoranschläge. Sind die Kostenvoranschläge vor Vertragsabschluss auf ihren Realitätsgehalt überprüft? Nachträge, Substandards aus Not oder gar Firmenpleiten sind gleichermaßen schmerzhaft für ein Projekt. Jeder Zulieferer muß – wie vor allem auch der Generalübernehmer – in erhebliche finanzielle Vorleistungen gehen (Genehmigungen und Zulassungen) um überhaupt lieferfähig zu sein. In einem so engen und stark regulierten Markt kann daher schon eine Nichtberücksichtigung bei der Auftragserteilung zur existenziellen Bedrohung werden (siehe Horizon in GB).
  8. Vertragliche Schnittstellen. Sind Schnittstellen eindeutig definiert und von allen Beteiligten verstanden und akzeptiert? Sie müssen in allen Phasen des Projekts gemanagt werden.
  9. Projektleitung. Ist die Projektleitung ausreichend qualifiziert, fachlich und menschlich geeignet und durchsetzungsfähig? Ist die Organisationsstruktur robust genug für die Projektlaufzeit?
  10. Datenverwaltung. Für ein Kernkraftwerk sind tausende Dokumente und technische Zeichnungen notwendig. Sie müssen jederzeit auf der Baustelle griffbereit sein. Das ist heute nur noch papierlos möglich. Alle Daten und Datenformate müssen konsistent sein. Jegliche Änderung muß genau und nachvollziehbar dokumentiert werden. Grundvoraussetzung ist eine ausfallsichere Datenverarbeitungsanlage mit Internet-Verbindungen großer Bandbreite. Üblich ist heute das gesamte Kernkraftwerk als 4D-Modell. Damit lassen sich nicht nur alle Anlagenteile aus beliebiger Sicht betrachten (z. B. Kollisionskontrolle) sondern auch stets im aktuellen oder gewünschten Bauzustand.
  11. Baustelleneinrichtungen. Sind alle Hilfsmittel (z. B. Schwerlastkran) zeitgerecht vorhanden und für den Einsatz geeignet. Sind erforderliche Hallen und Werkstätten einsatzbereit. Ist Arbeitsschutz und Strahlenschutz stets gewährleistet?
  12. Zulieferketten. Sind die Verfahren zur Auftragserteilung, Lieferung (individuelle Verkehrswege zur Baustelle) und Qualitätskontrolle vorhanden? Sind die speziellen Vorschriften der Genehmigungsbehörden berücksichtigt und den potentiellen Lieferanten bekannt? Gibt es Anreize für besondere Qualität und Termintreue?
  13. Fachkräfte. Ist gewährleistet, daß jeweils zum erforderlichen Zeitpunkt ausreichend Fachkräfte mit gültiger Zulassung auf der Baustelle vorhanden sind? Diese Fachkräfte müssen nahtlos in den örtlichen Arbeitsschutz (Strahlenschutz etc.) und das Qualitätsmanagement integriert werden. Eventuell müssen rechtzeitig Schulungen oder Nachprüfungen organisiert werden.
  14. Betriebsvorbereitung. Ist der Übergang von Errichtung zu Betrieb organisiert? Ist z. B. die spätere Betriebsmannschaft frühzeitig genug auf der Baustelle integriert? Ist der Wissenstransfer vom Generalunternehmer zum Kunden (z. B. unterschiedliche Datenverarbeitungssysteme und Firmenkultur) zu jedem Zeitpunkt garantiert?

Die vorhergehende Aufzählung soll vor allem Laien ein Gefühl vermitteln, wie vielfältig der Bau von Kernkraftwerken ist. Ein paar Promille der Baukosten sind z. B. für einen Software-Entwickler ein ausgesprochener Großauftrag. So ist es nicht verwunderlich, daß die kerntechnische Industrie immer eine Triebfeder hoch industrialisierter Gesellschaften war und ist. Die „Abfallprodukte“ (z. B. Simulationsprogramme, probabilistische Methoden, Werkstoffwissenschaften, Arbeitsschutz etc.) sind stets schnell in andere Industrien nutzbringend eingeflossen. Man darf aber nie die alte Volksweisheit „wer die Musik bestellt, bestimmt die Kapelle“ außer acht lassen. Wenn man selbst keine Kernkraftwerke mehr baut und betreibt, ist man sehr schnell raus aus dem Spiel. Ganz analog, wie man es aus Luft- und Raumfahrt und der Rüstungsindustrie kennt. Andererseits ist „Atomausstieg“, „Kohleausstieg“ und „Benzin- und Dieselausstieg“ ein probates Mittel, um eine Industriegesellschaft wieder auf den Stand des Mittelalters zurückzuführen – mit allen gesellschaftlichen Konsequenzen. Gesellschaftssysteme sind träge, deshalb sind die Konsequenzen nicht unmittelbar fühlbar. Wer glaubt, gegebenenfalls könnte man ja einfach das Rad zurückdrehen, ist naiv. Wenn Technik so einfach geht, wäre Afrika längst ein weiteres China.

Erster Reaktor in Weißrussland

In Ostrovets in der Region Grodno (54° 36′ 49″ N, 25° 57′ 19″ E) geht das erste Kernkraftwerk Weißrussland ans Netz. Es besteht aus zwei Druckwasserreaktoren des Typs VVER-1200 mit insgesamt 2340 MWel,netto. Die Auftragserteilung und erste Baustellenvorbereitungen erfolgten noch 2011. Die Grundplatte von Reaktor 1 wurde im November 2013 und von Reaktor 2 im May 2014 betoniert (offizieller Baubeginn eines Kernkraftwerks). Damit hat auch die russische Nuklearindustrie gezeigt, daß sie Kernkraftwerke fristgerecht und ohne Kostenüberschreitungen im Ausland fertigstellen kann. Der erste Reaktor dieses Typs ging 2016 (Novovoronezh II-1) in Betrieb. Es folgten 2017 Leningrad II-1 und 2019 Novovoronezh II-2. Auch hier zeigt sich wieder, der Bau von Kernkraftwerken in der vorgesehenen Zeit zu festen Kosten ist keine Hexerei. Das Geheimnis liegt im Bau möglichst baugleicher Kraftwerke in dichter Folge: So hat man stets geübtes Personal im Einsatz und dies ist die beste Garantie vor Termin- und Kostenüberschreitungen.

Preis und Finanzierung

Die Exporterfolge der russischen Nuklearindustrie beruhen auf der gleichzeitigen Finanzierung durch russische Banken. Der Auftragswert für das Kraftwerk betrug 10 Milliarden US$ (entsprechend 4274 US$/kW). Das ist durchaus günstig für ein Kraftwerk der Generation III+ mit allem Schnickschnack, wie doppeltem Beton-Containment und Kernfänger. Bei diesem Typ hat sich der Hersteller eng an europäischen Vorstellungen orientiert, wie sie auch im französischen EPR realisiert werden.

Die Finanzierung erfolgt quasi nach einem Bauherrenmodell: Es gibt einen Zahlungsplan mit festgelegten Raten zu festgelegten Zahlungsbedingungen. Dies ergibt eine interessante Aufteilung des Risikos zwischen Auftragnehmer und Auftraggeber. Bis zur jeweiligen vertragsgemäßen Teillieferung trägt der Anbieter das Risiko von Kostensteigerungen durch Bauverzögerungen. Erst ab diesem Zeitpunkt wirken sich für den Auftraggeber zusätzliche Zinszahlungen durch eine verzögerte Inbetriebnahme aus. Wird eine Rate an den Hersteller fällig, wird diese durch eine russische Bank als Kredit für Weißrussland bereitgestellt. Erst ab diesem Moment muß der Kapitaldienst durch den Auftraggeber geleistet werden. Rußland finanziert so etwa 90% der Baukosten vor. Ganz nebenbei, haben die USA inzwischen erkannt, welchen Exportvorteil Rußland gegenüber finanzschwachen Ländern durch dieses Modell hat und streben wieder staatliche Ausfallbürgschaften an. So hat Rosatom im März 2020 veröffentlicht, daß es für die nächsten zehn Jahre über ein Auftragsvolumen im Ausland von US$ 140 Milliarden verfügt. Rosatom besteht aus 400 Unternehmen mit mehr als 250 000 Mitarbeitern. Für Rußland bedeutet dies nicht nur die Einwerbung von Exportaufträgen, sondern auch die Wandlung der stets schwankenden Deviseneinnahmen aus dem Rohstoffgeschäft in stetige langfristige Zahlungsströme – z. B. für Pensionszahlungen.

Die russische kerntechnische Industrie ist seit dem Zusammenbruch der Sowjetunion wie ein Phönix aus der Asche wiederauferstanden. Im Oktober 2015 wurde der erste Reaktordruckbehälter von Atomash in Wolgodonsk – nach 30 Jahren Pause – hergestellt. Das Werk wurde 1973 gegründet und stellte bis 1986 allein 14 Reaktorgefäße her. 1997 ging es endgültig pleite und hangelte sich dann mit Aufträgen aus dem Gas- und Ölsektor durch. Heute ist es wieder das Zentrum für Druckwasserreaktoren und verfügt über die Kapazität von vier kompletten Kernkraftwerken (Druckgefässe, Dampferzeuger etc.) jährlich. Das Werk verfügt über einen eigenen Anschluß an den Wolga-Don-Kanal. In diesem Jahr wurden bereits drei Reaktordruckgefäße und 17 Dampferzeuger für Projekte in Indien, Bangladesch und der Türkei ausgeliefert.

Der Bauablauf

Man bevorzugte in Weißrussland ein zur Errichtung paralleles, abschnittsweises Genehmigungsverfahren. Dies funktioniert sehr gut bei Serienbauweise ohne große lokale Anpassungen. Wie hier gezeigt, kann das die gesamte Bauzeit einschließlich notwendiger Planung und Vertragsverhandlungen vom „Wunsch“ ein Kernkraftwerk zu bauen, bis zur Inbetriebnahme auf rund zehn Jahre begrenzen. Wendet man dieses Verfahren jedoch beim erstmaligen Bau eines Kernkraftwerks (FOAK) an, kann es sehr schnell zu einem wirtschaftlichen Desaster führen. Eindringliches Beispiel hierfür ist die „ewige“ Baustelle des EPR in Finnland.

Auch bei diesem Projekt zeigt sich wieder der grundsätzliche Vorteil von Baustellen mit doppelten Blöcken. Auch die französische Industrie ist nun diesem Weg in Hinkley Point gefolgt. Die gesamte Baustelleneinrichtung, wie z. B. Schwerlastkran, Werkstätten, Unterkünfte usw. halbiert sich automatisch (bezogen auf die spezifischen Kosten). Man kann bei allen Projekten bereits beim zweiten Block eine merkliche Senkung der notwendigen Arbeitsstunden feststellen, da man bereits vor Ort eine geübte und aufeinander eingestellte Truppe im Einsatz hat. Dies gilt um so mehr, je mehr man lokale Unternehmen beauftragt. So kam man in Ostrovets mit angeblich 3000 Fachkräften aus.

Am 10. July 2016 ereignete sich beim Einbau des Reaktordruckbehälters ein Missgeschick: „Der Behälter rutschte langsam etwa 4 m ab und setzte sanft auf den Grund auf, keine Beschädigung, die Aufhängung am Gehäuse wurde verschoben“, so die offizielle Stellungnahme. Auf Wunsch der weißrussischen Genehmigungsbehörde wurde er durch einen neuen ersetzt. Am folgenden 3. April wurde der für Block 2 vorgesehene Behälter in Block 1 eingebaut. Für den Block 2 wurde der ursprünglich für das Kraftwerk Kaliningrad 2 vorgesehene Reaktordruckbehälter ersatzweise geliefert. An diesem Beispiel erkennt man, wie robust die Strategie einer Serienfertigung ist. Der notwendige Ersatz eines Bauteils mit 36 Monaten Lieferzeit wäre bei einem Einzelprojekt zu einer wirtschaftlichen Katastrophe geworden. So konnte der Fahrplan nahezu eingehalten werden und im August 2020 die Beladung mit den 163 Brennelementen abgeschlossen werden.

Der nukleare Friedhof

Es ist eine russische Tradition, die nuklearen Abfälle in unmittelbarer Nähe des Kraftwerks zu lagern. Man hat deshalb parallel die Genehmigung für ein Endlager durchgeführt. Die erste Stufe für US$ 10 Millionen soll bis 2028 fertiggestellt sein. Man geht bei einer Betriebsdauer des Kernkraftwerks von (erstmal) 60 Jahren aus. In diesem Zeitraum sollen 9360 m3 feste Abfälle (leicht und mittelaktiv) und 60 m3 hochaktive Abfälle anfallen. Beim Abbruch der Anlage sollen noch einmal 4100 m3 leicht und mittelaktive Abfälle und 85 m3 hochaktive Abfälle anfallen. Die leicht und mittelaktiven Abfälle sollen dauerhaft lokal gelagert werden. Für die hochaktiven Abfälle wird ein unterirdisches Zwischenlager geschaffen.

Die Geschichte der VVER-Baureihe

In Rußland werden Druckwasserreaktoren als Wasser/Wasser-Energie Reaktoren (VVER) bezeichnet. Diesem Kürzel wird die gerundete elektrische Leistung in Megawatt und gegebenenfalls eine Fertigungsnummer angehängt. So ist der VVER-1200 ein Druckwasserreaktor mit rund 1200 MW elektrischer Leistung. Erst am 8.9.1964 wurde der erste Druckwasserreaktor als VVER-210 im Kraftwerk Novovoronezh kritisch und blieb bis 1984 in Betrieb. 1971 folgte der erste VVER-440 und 1980 der erste VVER-1000. Die beiden letzten Typen wurden auch exportiert (Ukraine, Armenien, Finnland, Bulgarien, Ungarn, Tschechien., Slowakei, Iran, China).

Alleinstellungsmerkmal aller VVER sind liegende Dampferzeuger und sechseckige Brennelemente. Das grundsätzliche Konstruktionsprinzip wurde bis heute beibehalten und ist ausgereizt. Durch die stetige Leistungssteigerung ergibt sich eine evolutionäre Entwicklung, bei der man die Betriebserfahrungen, technische Weiterentwicklungen (z. B. Werkstoffe) und zusätzliche Sicherheitsanforderungen (Containment, Kernfänger etc.) stets in die nächste Baureihe ohne all zu große Entwicklungsrisiken einfließen lassen kann. Führt man jedoch eine Baureihe über einen solch langen Zeitraum fort, verkompliziert dies irgendwann die Anlage. Dies gilt beispielsweise für die liegenden Dampferzeuger (Durchmesser 4 m, Höhe 5 m, Länge 15 m, Gewicht 340 to). Stehende Pumpen, Druckbehälter usw. mit liegenden Dampferzeugern zu verbinden, führt zu einer sehr unaufgeräumten Konstruktion mit langen und verschlungenen Rohrleitungen. Dies erschwert Wartung und Wiederholungsprüfungen. Das Reaktordruckgefäß wächst auch mit steigender Leistung. Durch die Beibehaltung der Grundkonstruktion mit zwei Anschlussebenen (4 Rücklauf und 4 Vorlaufleitungen plus Noteinspeisung) besteht das Druckgefäß aus 6 geschmiedeten Ringen und einer Kalotte. Die Schweißarbeiten am oberen und unteren Teil dauern jeweils 15 Tage bei einer Temperatur von 200 °C. Anschließend muß jede Hälfte noch bei 300 °C geglüht werden um die Spannungen in den Nähten zu verringern. Nachdem beide Hälften in einem weiteren Schritt zusammengeschweißt wurden, muß das gesamte Gefäß noch komplett mit einer korrosionsbeständigen Legierung plattiert werden. Alles sehr umständlich und damit teuer. Die Fertigungszeit beträgt deshalb etwa 36 Monate.

Hintergründe

Weißrussland ist als selbstständiger Staat aus der Auflösung der Sowjetunion hervorgegangen. Es ist ein relativ kleines und dünn besiedeltes Land mit knapp 60% der Fläche von Deutschland, aber nur 10 Millionen Einwohnern. Durch die enge Verknüpfung der Wirtschaft in der ehemaligen Sowjetunion – die bis heute noch nicht überwunden ist – kommt praktisch die gesamte Kohle, das Rohöl und Erdgas immer noch aus Rußland. Diese extreme Abhängigkeit hat immer wieder zu Spannungen zwischen beiden Ländern geführt. Vereinfacht kann man sagen, daß Putin-Rußland hat immer wieder versucht durch angedrohte Preiserhöhungen und Lieferunterbrechungen Weißrussland seinen Willen aufzudrücken – umgekehrt hat Weißrussland versucht, seine „Kosten“ durch Erhöhung von Transitgebühren erträglich zu halten. Insofern sind die Ostsee-Pipeline und das Kernkraftwerk Ostrovets unmittelbare Produkte dieses Konflikts. Rußland mußte Weißrussland ein Kernkraftwerk bauen und vorfinanzieren, sonst hätte es Weißrussland durch den Bau der Ostsee-Pipeline unweigerlich in die Arme des „Westens“ getrieben. Ein weiterer Satellitenstaat wäre dem „roten Zaren“ – wie schon vorher die Ukraine – davongelaufen.

Ein Kernkraftwerk entzieht sich weitestgehend politischer Erpressbarkeit: Wegen der außerordentlichen Energiedichte von Uran kann es für Monate und Jahre ohne neue Brennstofflieferungen betrieben werden. Auch ein russisches Kernkraftwerk stellt heute kein Problem mehr da. Es gibt für die Reaktoren heute Brennelemente von verschiedenen Herstellern außerhalb der russischen Einflußsphäre. Auch die Versorgung mit Ersatzteilen und „Kow-how“ ist nicht unbedingt ein Problem. Eine enge Kooperation mit der Ukraine, Finnland usw. kann im Ernstfall helfen – es haben schließlich all diese Länder ein Problem mit russischer Technik und Politik.

Der erste Reaktor der VAE ist kritisch

Mit der Inbetriebnahme des Kernkraftwerks Barakah sind die Vereinigten Arabischen Emirate (VAE) als 33. Nation in den weltweiten Kreis der Nationen mit friedlicher Nutzung der Kernenergie aufgestiegen. Ein unter verschieden Gesichtspunkten erwähnenswerter Schritt.

Proliferation

Die VAE haben sich bewußt zur ausschließlichen friedlichen Nutzung bekannt. Sie haben deshalb bewußt auf einen eigenen Brennstoffkreislauf vertraglich verzichtet: Keine Anreicherung von Uran und keinerlei Gewinnung von Plutonium um „Verdachtsmomente“ einer militärischen Nutzung vollständig auszuschließen. Bezug von Brennstoff nur in der Form einsatzbereiter Brennelemente. So radikal hat sich bisher keine Nation positioniert. Extremes Gegenbeispiel ist der Nachbar auf der anderen Seite des Golfs. Im Mullah-Iran wird die Anreicherung von Uran und die Gewinnung von (waffengrädigem) Plutonium leichtgläubigen Europäern als notwendig für den Betrieb des Kernkraftwerks Busher verkauft.

Der Verzicht auf einen eigenen Brennstoffkreislauf hat einerseits enorme diplomatische Verwerfungen ausgelöst und andererseits interessante neuartige Ansätze erschaffen. So haben die USA größte Bauschmerzen bei der Lieferung von Kernkraftwerken an Saudi Arabien oder Indien. Indien ist bereits faktisch „Atommacht“. Saudi Arabien ist nicht grundsätzlich bereit einen faktischen Verzicht auf Kernwaffen auszusprechen solange der „Erzfeind Iran“ weiter offen an der „Atombombe“ bastelt. Schon aus diesem Grunde ist das – insbesondere von Deutschland immer noch verzweifelt hoch gelobte „Iranabkommen“ äußerst kontraproduktiv gewesen. Andererseits ist durch die inzwischen verwirklichte Brennstoffbank mehr als ein Ansatz für die Nichtverbreitung von Kernwaffen geschaffen worden.

Um die Brennstoffversorgung zu sichern, wurde die Versorgung durch die VAE in fünf Bereiche vom Uranbergbau bis zum Brennelement gegliedert. Für jede Stufe wird mit mehreren Lieferanten aus unterschiedlichen Ländern Lieferverträge abgeschlossen. Für die Erstbeladung allein mit sechs Unternehmen. Für abgebrannte Brennelemente werden drei Perioden (bis 20 Jahre, bis 200 Jahre und darüber hinaus) definiert. Für die Lagerung bis zu 20 Jahren sind Abklingbecken vorgesehen. Alle sechs Jahre sollen die Elemente in oberirdische Betontresore für mindestens (mögliche) 200 Jahre umgelagert werden. Für den Zeitraum danach kann eine Wiederaufbereitung im Ausland durchgeführt oder eine direkte Endlagerung vorgenommen werden. Eine endgültige Entscheidung wird dann wahrscheinlich nach Kosten gefällt werden.

Die Energiesituation in den VAE

Im Jahr 2007 wurde eine umfangreiche Energiestudie durchgeführt. Man kam zu der Erkenntnis, daß der Verbrauch an elektrischer Energie mit einer Rate von 9% jährlich wachsen würde. Es blieb daher nur der Weg über den Neubau von Kernkraftwerken oder Kohlekraftwerken. Ab dem Jahr 2007 wurde die VAE bereits zum Netto-Gasimporteur mit stetig steigender Tendenz. Noch heute wird fast 98% der elektrischen Energie aus Erdgas gewonnen. Der Primärenergieverbrauch wurde 2018 aus etwa 40% Öl und 59% Erdgas gedeckt. Im Jahr 2017 wurden 127 TWh elektrische Energie verbraucht. Das Kernkraftwerk Barakah mit 4 Blöcken vom Typ APR1400 kann rund 44 TWh jährlich produzieren. Damit können erhebliche Mengen Erdgas in den nächsten Jahren für die Industrie oder den Export freigesetzt werden.

Finanzierung

Nach internationaler Ausschreibung und mehr als einjähriger Prüfung ging der Auftrag 2009 an die Korea Electric Power Company über die schlüsselfertige Lieferung zum Festpreis von 20 Milliarden USD für das Kernkraftwerk Barakah (3600 USD/kW). Es war der erste Exporterfolg Koreas für Reaktoren der sog. III. Generation. Insofern ein mutiger Schritt auf beiden Seiten. Vor der Entscheidung wurden zahlreiche internationale Fachleute mit Erfahrungen im Bau von Kernkraftwerken im Auftrag der VAE nach Korea entsandt. Ihr Auftrag war die Beurteilung der Zulieferer und der Baustellen des gleichen Typs. Die VAE selbst verfügen über zahlreiche Erfahrungen in der Abwicklung von Großprojekten ihrer Öl- und Gasindustrie und den Bau und Betrieb zahlreicher Gas-Kombi-Kraftwerke.

Im Jahr 2016 gingen die VAE und Korea eine gegenseitige Beteiligung ein. Man gründete ≫Barakah One (BO)≪ als Finanzierungs- und ≫Nawah≪ als gemeinsame Betriebsgesellschaft. An diesen beiden Gesellschaft hat jeweils die ≫Emirates Nuclear Energy Corporation (ENEC)≪ einen Anteil von 82% und die ≫Korea Electric Power Corporation (KEPCO)≪ einen Anteil von 18%. BO verfügt über ein Kapital von 24,4 Milliarden USD. Davon sind 4,7 Milliarden Eigenkapital und rund 19,6 Milliarden Fremdfinanzierung. Das Department of Finance of Abu Dhabi hat 16,2 Milliarden beigesteuert und die Export-Importbank von Korea (KEXIM) 2,5 Milliarden. Weitere Mittel kommen von einem Bankenkonsortium (National Bank of Abu Dhabi, First Gulf Bank, HSBC, Standard Chartered Bank). Das Volumen beinhaltet den Auftragswert (overnight cost), die Zinsen und etwaige Kostensteigerung durch Inflation während der Bauzeit, sowie die erste Brennstoffladung.

Die Baustelle als ein Konjunkturprogramm

Im July 2012 begann der Bau mit dem Betonieren der Grundplatte des Reaktors 1. Diese Arbeiten gelten international als der Baubeginn eines Kernkraftwerks. Im May 2013 folgte die Grundplatte des Reaktors 2 und im September 2014 Grundplatte 3 bzw. im September 2015 Grundplatte 4. Hier wird schon das Prinzip eines kostengünstigen Bauens erkennbar: Man baut viermal die gleiche Anlage, aber geringfügig zeitversetzt. So hat man jeweils nach dem Bau der Anlage 1 ein bereits geübtes Team für die Anlagen 2 bis 4 vor Ort. Dies bietet die größte Rationalisierung und Sicherheit vor Fehlern, die zu Bauverzögerungen führen. Eine stets wiederkehrende Erfahrung auf allen Baustellen der Welt. Dieser Takt wurde auch bei den Komponenten gehalten: Z. B. Einbau des ersten Reaktordruckgefäßes im May 2014, im Reaktor 2 im Juni 2015, im Reaktor 3 July 2016 und 2017 im Reaktor 4. Eine solche Auftragsvergabe wirkt sich natürlich auch kostensenkend bei den Zulieferern aus. Eine Kleinserie ist immer günstiger als eine spezielle Einzelanfertigung. Jedes „erste Mal“ birgt immer das Risiko nicht vorhergesehener Probleme, die automatisch zu Verzögerungen führen.

Auf der Baustelle arbeiteten mehr als 18 000 Menschen. So viele Menschen über so lange Zeit mit Unterkunft, Essen, sauberer Arbeitsbekleidung etc. zu versorgen, ist ein enormer Input für die lokale Wirtschaft. Hinzu kommen die Aufträge im Inland. Rund 1400 Unternehmen aus den VAE erhielten vom Generalunternehmer Aufträge über mehr als 3 Milliarden USD. Viel bedeutender als der Geldwert ist jedoch der Wissenstransfer: Alle Produkte und Dienstleistungen müssen den strengen Qualitätsanforderungen der Kerntechnik genügen. So haben die koreanischen Zulieferer durch tatkräftige Hilfe dazu beigetragen, daß zahlreiche Unternehmen sich erstmalig für eine Zulassung bei der American Society of Mechanical Engineers (ASME) zertifizieren konnten. So besitzen z. B. Emirates Steel durch ihre Lieferung für Betonstahl nun eine ASME-Zulassung für Kernkraftwerke. Solche Zertifikate müssen beileibe keine Eintagsfliegen sein. So konnte der Kabellieferant Ducab inzwischen sogar Kabel für das Kernkraftwerk Shin Hanul in Korea liefern. Es ist kein Zufall, daß hier keine Rede mehr von DIN und sonstigen deutschen Regelwerken ist. Keine Exporte von Kernkraftwerken, keine Verbreitung von deutscher Spitzentechnik. Wer seinen Betrieb einmal aufwendig auf die US-Maßsysteme und ihre Technik-Philosophie eingestellt hat, wird nur sehr unwillig alles ändern. Dies gilt auch für andere Produkte.

Die Folgeaufträge

Ein solches Projekt ergibt eine gegenseitige Verknüpfung der Wirtschaftsbeziehungen für Jahrzehnte. Für den Lieferanten ergeben sich unzählige lukrative Folgeaufträge. So hat die Korea Hydro und Nuclear Power (KHNP) mit der Betriebsgesellschaft Nawah ein ≫Operating Support Service Agreement (QSSA)≪ abgeschlossen. Für 10 Jahre nach Fertigstellung sollen 400 Fachkräfte von KHNP den Betrieb vor Ort unterstützen. Der Auftragswert: 880 Millionen USD. Hinzu kam 2017 ein weiteres Abkommen zwischen KHNP und Nawah über den gemeinsamen Einkauf von Ersatzteilen für die koreanischen und VAE Kraftwerke vom Typ APR1400. Im März 2019 hat Nawah einen fünfjährigen Wartungsvertrag mit Kepco und Doosan Heavy Industries abgeschlossen. Man muß nicht nur unzählige „Elektro-Golfs“ verkaufen, bis man einen Umsatz von 20 Milliarden erzielt hat, sondern bei einem Kernkraftwerk fallen einem auch noch weitere Milliardenaufträge quasi ins Haus. Nicht zu unterschätzen, welche ganz anderen Aufträge man durch solch enge Kontakte einwerben kann. So haben sich die Koreaner schon vorher durch den Bau von Gaskraftwerken und Meerwasserentsalzungsanlagen einen Namen in den VAE gemacht. So wie einst Siemens – jedenfalls sind nicht immer höhere Lohnkosten in Deutschland eine Ausrede für alles. Politischer Wille spielt auch eine nicht ganz unwichtige Rolle. Wenn man jedenfalls sein Heil in der Neuerfindung mittelalterlicher Techniken sucht, sollte man sich über keinen Stellenabbau wundern.

Der steinige Weg

Es ist eine nicht zu unterschätzende Leistung, ein bitterarmes Volk aus einer nahezu unbewohnbaren Salzwüste in das 21. Jahrhundert zu katapultieren. Inzwischen setzt sich in allen Ölförderländern die Erkenntnis durch, daß nur durch eine konsequente Industrialisierung dauerhaft gut bezahlte und anspruchsvolle Arbeitsplätze geschaffen werden können. Davor steht wiederum Bildung und Ausbildung. So ist die Emirates Nuclear Energy Corporation (ENEC) buchstäblich aus dem Nichts 2008 entstanden. Heute hat die ENEC über 2900 Mitarbeiter. Der Anteil der Emiratis ist inzwischen auf 60% angestiegen und der Anteil der Frauen beträgt 20%, was vielleicht viele „Gender-GaGa-Anhänger“ erstaunen mag. Hier wächst eine Generation hoch qualifizierter Frauen heran, von denen bereits einige Führungspositionen – ganz ohne Quote, sondern durch Fleiß (Kerntechnik-Studium) und Befähigung – erklommen haben.

Der Weg ist durchaus eine Orientierung für andere Schwellen- oder gar Entwicklungsländer die Kernenergie nutzen wollen. Auch Wissen kann importiert werden. Man hat Fachleute aus aller Welt mit mindestens 25-jähriger einschlägiger Berufserfahrung angeworben. Der eigene Nachwuchs lernt durch die unmittelbare Zusammenarbeit an dem konkreten Projekt. Für die Grundausbildung sind vier Züge vorgesehen:

  1. Weiterbildung von erfahrenem Personal aus anderen Industriezweigen des Landes.
  2. Studium von besonders qualifizierten Studenten der eigenen Hochschulen zur Erlangung eines „Nuclear Masters“ an renommierten Universitäten im Ausland.
  3. Aufbau eines „Bachelors der Kerntechnik“ an den Hochschulen des Landes.
  4. Techniker für Wartung und Betrieb im eigenen Kraftwerk.

KHNP und ENEC haben 2016 einen Vertrag über die Entsendung von 50 Fachkräften für die Ausbildung in Korea abgeschlossen. Daraus sind unter anderem 10 voll ausgebildete und zertifizierte Reaktorfahrer hervorgegangen. Seit 2010 läuft das ≫Energy Pioneers Program≪ mit den USA. Bisher wurden 500 Emiratis ausgebildet. Weiter werden 200 Emiratis durch die USA zu Reaktorfahrern ausgebildet. Im July 2019 wurden die ersten 15 Reaktorfahrer nach 3-jähriger praktischer Ausbildung in Korea, Südafrika und USA von der ENEC zugelassen. Für den Betrieb des Kraftwerks geht ENEC von etwa 2000 Dauerarbeitsplätzen aus.

Zwangsläufige Verzögerungen

Die Kernenergie in den VAE wurde praktisch auf einem weißen Blatt begonnen. Von Anfang an hat man die Kooperation mit dem Ausland angestrebt um aus Erfahrungen und Fehlern zu lernen. Auf Transparenz gegenüber allen internationalen Institutionen wurde stets großer Wert gelegt. Die Federal Authority for Nuclear Regulation (FANR) der VAE ging nie allein vor.

Bereits im Mai 2017 wurden vertragsgemäß die Brennelemente für den ersten Reaktor geliefert und im Kraftwerk bis zur Erlangung einer Betriebsgenehmigung eingelagert. Im Oktober 2017 hat ein ≫Pre-Operational Safety Review Team (Pre-OSART)≪ der ≫World Association of Nuclear Operators (WANO)≪ die Anlage auf ihre Betriebssicherheit überprüft. 15 internationale Fachleute aus 7 Ländern haben 18 Tage vor Ort das Kraftwerk begutachtet. Hierbei geht es vor allen Dingen um die Einhaltung der Sicherheitsstandards der ≫International Atomic Energy Agency (IAEA)≪. Der Bericht schloß mit einem Lob für die Bildung der „Multi-Kulti“ Betriebsmannschaft, aber auch mit einiger Kritik ab. Es wurde für die Behebung der Mängel ein Zeitraum von 18 Monaten vorgegeben.

Im März 2018 wurde der erste Reaktor offiziell fertig gestellt und dem Kunden übergeben. Damit sind alle Tests und Prüfungen unter Fremdenergie abgeschlossen und die Betriebsfähigkeit nachgewiesen. Der Reaktor durfte aber erst mit Kernbrennstoff beladen werden, nachdem die Betriebsgesellschaft Nawah eine Betriebserlaubnis erhalten hatte.

Im November 2019 führte die WANO eine ≫Pre-Start Up Review≪ durch und erklärte den Reaktor 1 für betriebsbereit. Am 17.02.2020 erteilte die FANR als zuständige Institution der Nawah eine Betriebsgenehmigung für 60 Jahre. Dies geschah nachdem über 14 000 eingereichte Seiten technische Dokumentation geprüft, 255 Inspektionen durchgeführt, 2000 ergänzende Anfragen bearbeitet und 40 internationale Inspektionen durch WANO und IAEA durchgeführt worden waren. Damit konnte Reaktor 1 mit Kernbrennstoff beladen werden. Die Erstbeladung konnte bereits durch ein Team aus 90% Emitatis eigenverantwortlich durchgeführt werden. Trotz Corona konnte nun endlich zum 1. August der erste Block seine Kettenreaktion einleiten. Es beginnen jetzt die üblichen Garantietests in verschiedenen Leistungsstufen. Man strebt eine vollständige Übergabe bis Ende des Jahres an. Gleichwohl wird schon in dieser Inbetriebnahmephase elektrische Energie in das Verteilnetz der VAE eingespeist.

Laufzeitverlängerung

Schon 2019 haben folgende Reaktoren eine Betriebsdauer von 50 Jahren erreicht: Tarapur 1+2 in Indien, Beznau in der Schweiz, Nine Mile Point 1 und Ginna in den USA. Seit 2018 besitzt das Kernkraftwerk Turkey Point in Florida, USA sogar eine Lizenz für 80 Jahre. Ein Trend, der sich weltweit fortsetzt. Was steckt dahinter?

Lebensdauer vs. Betriebsdauer

Diese zwei Begriffe werden – bewußt oder unbewußt – oft gleichgesetzt. Die technische Lebensdauer eines Kraftwerks ist theoretisch unbegrenzt, da ständig gewartet wird und einzelne Komponenten bei Bedarf ausgetauscht werden können. Die Betriebsdauer ist (vornehmlich) eine betriebswirtschaftlich Größe: Irgendwann wird der laufende Aufwand für Reparaturen so groß, daß sich ein Weiterbetrieb nicht mehr lohnt. Bei der ersten und zweiten Generation von Reaktoren wurde die Betriebsdauer mit 30 bis 40 Jahren angegeben. Dies war quasi ein „Mindesthaltbarkeitsdatum“ des Herstellers, damit der Kunde überhaupt eine Wirtschaftlichkeitsrechnung ausführen konnte. Im Kraftwerksbau ermittelt man die Stromgestehungskosten (z. B. in €/MWh) als ≫Levelised Cost Of Elektricity (LCOE)≪. Darunter versteht man nicht nur die Investition, sondern alle im Betrachtungszeitraum anfallenden Kosten (Kapitaldienst, Personal, Brennstoff, Versicherungen, Wartung und Reparatur, Rücklagen für die Entsorgung etc.) geteilt durch die zu erwartende elektrische Energie. An dieser Stelle wird schon deutlich, warum Wind und Sonne nie mit Kernkraft (wirtschaftlich) wird konkurrieren können: Bei Kernkraftwerken der dritten Generation wird die „Mindesthaltbarkeit“ heute mit 60 Jahren angegeben. Bei Windmühlen und Photovoltaik mit 20 Jahren. Dies ist schon ein Faktor drei. Die Arbeitsausnutzung eines Kernkraftwerks liegt bei 90%. Demgegenüber beträgt die realisierte Arbeitsausnutzung von Wind und Sonne wetterbedingt etwa 15% (als tatsächlich gemessene und über einen längeren Zeitraum gemittelte Werte für die installierte Leistung in Wind- und Sonnenenergie in Deutschland). Überschlägig muß man also die spezifischen Investitionskosten von Wind und Sonne mit einem Faktor 18 multiplizieren um sie mit einer Investition in ein Kernkraftwerk vergleichbar zu machen. Ganz abgesehen davon, sind solche Vergleiche zwischen stets nach Bedarf lieferbarer elektrischer Energie und wetterbedingt zufälliger Erzeugung ohnehin ein Vergleich zwischen Äpfeln und Birnen. Spätestens jetzt muß – zumindest jedem ideologisch nicht vorbelasteten Menschen – klar sein, warum sich (sogar ein so extrem teures) Kernkraftwerk wie Hinkley Point gegenüber „Windkraft aus der Nordsee“ rechnet und bereits folgerichtig die nächsten baugleichen Blöcke in Sizewell in Vorbereitung sind. Erklärt das vielleicht den neuen Hype auf „grünen“ Wasserstoff in einschlägigen Kreisen, so zu sagen als neuen Sattel für ein längst totes Pferd?

Das Potential für Laufzeitverlängerungen

Weltweit sind zur Zeit 363 Leichtwasser-, 48 Schwerwasser-, 14 AGR- (CO2 / Graphit), 13 RBMK- (Wasser / Graphit) und 2 schnelle Reaktoren in kommerziellem Betrieb. Zieht man die 27 graphitmoderierten Reaktoren ab, verbleiben somit trotzdem über 400 potentielle Reaktoren zur Laufzeitverlängerung. Hier wird auch die prinzipielle Grenze notwendiger Nachrüstungen deutlich: Die Konstruktion der AGR in GB erlaubt es nicht, die gealterten Moderatoren aus Graphit zu vertretbaren Kosten auszuwechseln. Bei den RBMK (Tschernobyl-Typ) kommen noch grundsätzliche Bedenken hinzu.

Ausschlaggebend für eine Laufzeitverlängerung ist aber immer der politische Wille. In vielen Ländern besteht eine negative Einstellung zu Kernenergie. Wo die „Atomkraftgegner“ noch nicht an der Macht sind, versucht man die Kosten durch Sonderbelastungen politisch hochzutreiben (z. B. Brennelementesteuer in Spanien oder Schweden) oder durch Dumping (Verkauf an der Börse weit unter den Produktionskosten) von Wind- und Sonnenstrom. Beliebt sind auch „neue Standards“ (z. B. Kühltürme) um Projekte unwirtschaftlich zu machen. In Ländern mit öko-sozialistischer Orientierung ist selbst das nicht mehr notwendig. Dort reicht der Wille einer Regierung (CDU/CSU mit FDP) par ordre du mufti den „Atomausstieg“ zu vollziehen. Kosten spielen dabei selbstredend keine Rolle, denn die müssen ja durch Dritte – uns, dem Verbraucher – getragen werden. Vorläufige Krönung dieser Untaten war die Sprengung von Philippsburg (Inbetriebnahme 1985) mit einem angeblichen Restwert von 3 Milliarden €. Aus pubertärer Zerstörungswut mußten unmittelbar Fakten geschaffen werden, da eine Laufzeitverlängerung mit geringen Kosten möglich gewesen wäre. Doch nicht genug, der Hässliche Deutsche greift schon wieder nach Frankreich: Um der eigenen verbohrten Klientel genüge zu tun, verleumdet man dummdreist französische Reaktoren als „Schrottreaktoren“. Was man wohl dem Genossen Macron für seine innenpolitische Unbill zahlen muß?

Der wirtschaftlich Aspekt

Die Schließung eines Kernkraftwerks führt zu erheblichen sozialen Schwierigkeiten vor Ort: Wegfallende Einnahmen für die Gemeinde, Wegfall gut bezahlter Arbeitsplätze, Verlust von Aufträgen für das lokale Gewerbe, verringerte Kaufkraft etc. Es ist kein Zufall, daß überall wo Kraftwerke stillgelegt werden sollen, Kundgebungen für deren Erhalt stattfinden.

Es gibt faktisch keine kostengünstigere Stromerzeugung als durch die Laufzeitverlängerung eines bestehenden Kernkraftwerks. Geht man von maximal 50% der ursprünglichen Baukosten für die erforderliche Modernisierung aus, kann damit keine andere Erzeugungsart konkurrieren. Natürlich bleiben die Vorteile der Kernenergie dabei in vollem Umfang erhalten:

  • geringster Materialverbrauch über den Lebenszyklus, nahezu ohne Freisetzung von Abgasen.
  • Einsparung von Boden (insbesondere gegenüber „Regenerativen“ mit geringer Energiedichte)
  • Verhinderung von Luftverschmutzung durch Stickoxide, Feinstaub etc.
  • Bereitstellung von Grundlast bzw. Lastfolge zum Ausgleich von Spitzen und Tälern.
  • Versorgungssicherheit bei extremen Wetter- oder schwierigen aussenpolitischen Lagen.
  • Bereitstellung großer Schwungmassen zur Stabilisierung der Netzfrequenz.
  • Große „Brennstofflagerung“ auf dem Kraftwerksgelände als Sicherheit vor Energiepreisschwankungen.
  • Gefragter Arbeitgeber mit gut bezahlten Jobs für hochqualifizierte Arbeitnehmer und Nachfrage für das lokale Gewerbe, überwiegend in ländlichen Gemeinden.
  • Gegebenenfalls Bereitstellung von Isotopen für Medizin, Forschung, Industrie und Landwirtschaft.

Darüberhinaus fallen keinerlei Kosten für Netzausbau, Bereitstellung von Bilanz- und Regelleistung, Backup-Kraftwerke zur Kompensation des Wetters oder gar Speicher an. Deutschland zeigt eindrucksvoll, daß durch den Ausstieg aus der Kernenergie – und neuerdings auch noch der Kohle – eine dauerhafte Abhängigkeit von (importiertem) Erdgas geschaffen wird. Ist das vielleicht das wirkliche Ziel? Schröder fing auch als rot/grüner Bundeskanzler an und endete als russischer Gasmann.

Die Voraussetzungen

Eine Laufzeitverlängerung erfordert eine langjährige Planung in enger Abstimmung mit den Genehmigungsstellen und Zulieferern. Am Anfang steht die Erfassung des Istzustand durch den Betreiber. Je genauer die Dokumentation im laufenden Betrieb ist, um so besser: Protokolle der Wiederholungsprüfungen, Kontakte zu Ersatzteillieferanten, Dokumentationen über schon erfolgte Modernisierungen etc. Eine möglichst detaillierte Planung ist erforderlich, da es sich schnell um drei- bis vierstellige Millionenbeträge drehen kann. Heute erstellt man deshalb von Anbeginn an ein ≫Plant Life Management Program (PLiM)≪. So kann man z. B. Modernisierungsmaßnahmen, das Auswechseln von Großkomponenten usw. über einen längeren Betriebszeitraum bzw. unter Nutzung der notwendigen Wiederholungsprüfungen verteilen, damit die Ausfallzeiten des Kraftwerks minimiert werden.

Geradezu überlebenswichtig ist die enge Zusammenarbeit und Abstimmung mit den zuständigen Überwachungsstellen. Man kann nicht einfach einzelne Komponenten in einem Kernkraftwerk auswechseln. Jedes „Ersatzteil“ muß durch die Zulassungsbehörde geprüft und genehmigt sein. Eine funktionierende Zulieferkette ist deshalb zwingend erforderlich und in der Praxis oft ein großes Problem. Warnendes Beispiel ist z. B. das Kernkraftwerk San Onofre in Kalifornien, das durch die Auswechslung der Dampferzeuger zu einem Totalschaden kaputt modernisiert wurde. Problem war, daß der ursprüngliche Hersteller längst nicht mehr existierte und der neue Anbieter offensichtlich überfordert war. Hinzu kommt, jede Komponente ist ein Teil des „Systems Kernkraftwerk“ und seiner (ursprünglichen) Sicherheitsphilosophie. So gibt es Kernkraftwerke, die voll digital umgerüstet wurden, aber immer noch Telefone mit Wählscheiben haben. Die Genehmigungsbehörde hat die Telefone als Teil des Sicherheitssystems betrachtet und wegen einer Diversifizierung auf die gute, alte Analogtechnik auch weiterhin bestanden. Es kommt deshalb irgendwann zu (wirtschaftlichen) Problemen, wenn man eine Technik über rund hundert Jahre pflegen muß. Andererseits bieten heute auch neue Technologien wie der 3-D-Druck, neue Werkstoffe und Computersimulationen wertvolle Hilfe. Eine notwendige Generalüberholung von Baugruppen ist oft auch mit einer Leistungssteigerung verbunden. So wurde bei vielen Dampfturbinen durch den (notwendigen) Einsatz neuer Schaufeln die Leistung gesteigert. Selbst ein einstelliger Leistungszuwachs ergibt bei den vielen tausend Betriebsstunden eine hübsche Zusatzeinnahme. Bezeichnenderweise stieg die Gesamtleistung aller Kernkraftwerke in den USA an, obwohl gleichzeitig einige Kraftwerke stillgelegt worden sind.

Eine weitere Aufgabenstellung bei Laufzeitverlängerungen ist die Personalplanung. Kein Berufsleben kann länger als 60 Jahre dauern. Es muß also rechtzeitig Nachwuchs ausgebildet und eingestellt werden. Dies gilt auch für die gesamte Zulieferindustrie. Die Zulieferindustrie kann aber nicht beliebig lange Kapazitäten vorhalten. Das Fachpersonal braucht besondere Qualifikationen, Wiederholungstests und vor allen Dingen Übung durch beständige Praxis. Zu welchen Kosten und Schwierigkeiten mangelnde Übung führt, zeigen die Baustellen Vogtle in USA und Flamanville in Frankreich auf dramatische Weise. Die Aussage der „Atomkraftgegner“ von hohen Baukosten und langen Bauzeiten ist zu einer sich selbst erfüllenden Prophezeiung geworden. Laufzeitverlängerungen und Neubauten sind keine Gegensätze, sondern ergänzen sich vortrefflich.

Armes Deutschland

Die Eselei eines „Atomausstiegs“ bevor man eine vergleichbar effiziente und kostengünstige Technologie hat, dürfte in der Industriegeschichte ziemlich einmalig sein und bleiben. Hat man erst die Dampflokomotiven zerstört, bevor man brauchbare Diesel- und Elektroloks hatte? Zerstört man heute alle Computer, wegen der wagen Idee von Quantenrechnern? Genau das ist aber hier passiert: Man zerstört erst mal eine funktionierende Stromversorgung, weil ein paar bildungsresistente – gleichwohl äußerst geschickte und auf ihre eigenen Pfründe bedachte – Politiker etwas von einem Stromnetz aus 100% Windmühlen und Sonnenkollektoren zusammenfantasieren, bereitwillig unterstützt von unzähligen Schlangenölverkäufern aus der Wirtschaft. Namen, Aussagen und Taten sind bekannt – das Internet vergißt bekanntlich nicht. Es wird eine schöne Aufgabe für kommende Historikergenerationen sein, zu beurteilen, ob es sich einfach nur um abgrundtiefe Dämlichkeit oder eher wieder um die Banalität des Bösen gehandelt hat. Inzwischen ist die Verantwortung ja so breit gestreut und so eng auf Spezialgebiete verteilt, daß wieder alle sagen können, sie hätten von nichts gewußt und außerdem nur Anweisungen ausgeführt. Gute Nacht, deutsche Wissenschaftler und Ingenieure, wundert euch nicht, wenn unser Berufsstand auf ewig kompromittiert ist: Innerlich wart ihr ja alle dagegen, aber man konnte ja nichts machen, gelle. Ob diese Nummer zum 3. Mal durchgeht?

Wieder einmal Besorgnis erregende Meldungen aus Rußland?

Im Zeitraum um den 16. und 17. Juni 2020 wurden in verschiedenen nordischen Überwachungsstationen (Finnland, Schweden und Norwegen) verschiedene Spaltprodukte in der Atmosphäre gemessen. Es handelte sich um einen Cocktail aus Cs-134, Cs-137 und Ru-103. Zusätzlich wurde an anderen Tagen weiter nördlich I-131 und diverse Cobalt-Isotope gemessen. Alles weit unterhalb einer Gefährdung der Bevölkerung. Soweit eine beruhigende Nachricht. Die gemessene Wolke ergibt – unter Berücksichtigung der meteorologischen Daten – ein Verbreitungsgebiet von der östlichen Nordsee über Südschweden bis weit in das nördliche Rußland. Finnlands Radiation and Nuclear Safety Authority (STUK) verortet die Quelle in Rußland. Pia Vesterbacka, die Leiterin der Überwachung der Umweltbelastungen schließt eine Gefährdung Finnlands aus. Allerdings wecken solche Meldungen unwillkürlich Erinnerungen an Tschernobyl. Wie damals, streitet Rußland ab, die Ursache zu sein. In der 23. Woche meldeten die Luftmeßstationen in Vanhovd und Viksjøfjell in der Nähe von Kirkenes erhöhte Werte – aber weit unterhalb einer Gefährdung – von I-131.

Was sagt uns das?

Man kann kleinste Mengen radioaktiver Isotope messen. Es gibt neben zahlreichen Umweltmeßstationen für Radioaktivität vor allem das globale CTBTO-Netz zur radiologischen und seismischen Überwachung des internationalen Teststoppabkommens. Man kann deshalb ausschließen, ob es sich um einen illegalen Kernwaffentest handeln würde. Viel mehr deutet die Zusammensetzung des Cocktails auf einen Unfall in einem Reaktor hin. Rußland weist jeden Unfall in einem Kernkraftwerk zurück. Entweder läßt Putin wieder einmal lügen oder es gab einen Unfall in einem militärischen Kernreaktor, was leider auch kein Einzelfall wäre. Es ist nur eine Frage der Zeit, wann auch diesmal wieder, die Wahrheit ans Licht kommen wird. Beruhigend ist nur, daß man solche Unfälle praktisch nicht verheimlichen kann. Der internationale Druck muß nur groß genug sein, damit selbst ein Putin dies einsieht.

In diesem Zusammenhang paßt auch noch eine andere Meldung aus dem Reich des roten Zaren: Für den 22.-27. Juni wurde per NOTAM eine totale Sperrung des Luftraumes um Kapustin Yar (nördlich des Kaspischen Meeres) angesetzt. Dort soll ein neuer Test der Burevestnik durchgeführt werden – munkelt man. Die Katze kann halt das Mausen nicht lassen.….