Wie tödlich ist ihre kWh?

Diese makaber anmutende Frage stellte das Forbes-Magazin seinen Lesern schon vor geraumer Zeit (http://www.forbes.com/sites/jamesconca/2012/06/10/energys-deathprint-a-price-always-paid/) und fügte folgende Tabelle hin zu:

Energiequelle Tote pro Billion kWh Anteil an der Stromerzeugung
Kohle (weltweit) 170.000 50% weltweit
Kohle (China) 280.000 75% in China
Kohle (USA) 15.000 44% in USA
Öl 36.000 36% Energie, 8% Elektro
Erdgas 4.000 20% weltweit
Biomasse 24.000 21% Energie weltweit
Solar (PV) 440 1% weltweit
Wind 150 1% weltweit
Wasserkraft 1.400 15% weltweit
Kernenergie 90 17% weltweit

Die Redaktion hat diese Tabelle aus verschiedenen Quellen, wie z. B. der WHO zusammengetragen. Es lohnt nicht, die Zahlen im einzelnen diskutieren zu wollen. Man versinkt zu schnell in dem Sumpf der Statistik: Unterschiedliche Zugänglichkeit von Daten (z. B. China oder USA) und unterschiedliche Ansichten über Langzeitwirkungen. Besonders deutlich wird dies z. B. an den Opfern der Kernenergie. Hier wurden die Schätzungen von potentiellen Krebsopfern infolge der Reaktorunglücke in Tschernobyl und Fukushima eingearbeitet. Tatsache ist jedoch, in Fukushima ist bisher kein Opfer und in Tschernobyl sind zwischen 20 und 200 – je nach Zählweise – Strahlentote zu verzeichnen. Die Zukunft wird zeigen, welche Zahlen realistisch sind.

Trotzdem ist eine solche Tabelle als Denkanstoß (aber bitte nicht mehr!) sinnvoll. Sie macht auf den ersten Blick klar: Es gibt keine Energieerzeugung ohne Opfer. Energiegewinnung fordert wie alle anderen menschlichen Tätigkeiten immer auch Todesopfer. Wir gehen individuell völlig selbstverständlich mit einer Risiko/Nutzen – Abwägung um. Jeder, der in den Urlaubsflieger steigt, tut dies in vollem Bewußtsein, daß es sein absolut letzter Flug sein könnte. Nur bei der Energieversorgung kommt es plötzlich zu völlig irrationalen Reaktionen. Es wird nur noch das (vermeintliche) Risiko gesehen. Der Nutzen wird völlig verdrängt. Kann es sein, daß dies maßgeblich auf eine politisch gewollte und geförderte Sichtweise zurückzuführen ist? Der gesunde Menschenverstand reagiert anders. Würde man eine Umfrage unter Hausfrauen und Hausmännern machen, ob sie sich einen Haushalt ohne jeden elektrischen Strom vorstellen könnten, wäre das Ergebnis wohl eindeutig: Die Waschmaschine und der Staubsauger erscheinen nicht nur als unentbehrlich.

Selbstverständlich wünschen wir uns alle eine Energieversorgung, die möglichst wenige Opfer fordert. Wir sollten jedoch nie vergessen, daß auch immer Dachdecker bei der Installation eines Sonnenkollektors vom Dach fallen werden, genauso wie es Unfälle in Kernkraftwerken geben wird. Wer jetzt gleich wieder in seinen Reflex verfällt, „aber Atomkraftwerke haben ein Restrisiko von Millionen Toten und zehntausende Jahre unbewohnbaren Landstrichen“ sollte einfach zur Kenntnis nehmen, daß das nichts weiter als schlechte Propaganda ist. Die Betonung liegt dabei auf „schlecht“, wie die Reaktorunfälle von Tschernobyl und Fukushima gezeigt haben. Parallel zum Reaktorunglück in Fukushima brannte zwei Wochen lang in der Bucht von Tokio eine Raffinerie. Bei den Löscharbeiten sind mehr als ein Dutzend Feuerwehrleute getötet worden und eine riesige Umweltverschmutzung ergoss sich über das Meer. Das hält aber bis heute, keinen der „Berufenen“ davon ab, der Bevölkerung immer wieder etwas von den „tollen Gaskraftwerken“ als Alternative zur bösen Kernenergie ins Ohr zu säuseln. Erst recht wird nicht hinterfragt, wie viele Menschenleben man pro Jahr mit den Milliarden Mehrkosten für fossile Brennstoffe in Japan (infolge der vorübergehenden Reaktorstilllegungen) retten könnte. Plötzlich sind all die Kreise, die stets mit ein paar Milliarden mehr für Bildung, Gesundheit und „soziales“, alles Elend der Welt glauben beseitigen zu können, ganz still.

Die Tabelle gibt uns aber noch einen weiteren wertvollen Hinweis: Den Zusammenhang zwischen Wohlstandsniveau und Arbeitssicherheit und Umweltschutz. Es ist kein Zufall, daß die Anzahl der Opfer pro Einheit Energie in China höher, als in den USA ist. Es gibt in China (noch nicht) einen vergleichbaren Arbeitsschutz, wie in den Bergwerken der USA. Auch die Rauchgasreinigung ist in China (noch nicht) auf dem gleichen Niveau, wie z. B. in Deutschland. Folgerichtig sind die Atemwegserkrankungen durch Abgase entsprechend höher. Und nicht zuletzt hat in diesem Zusammenhang auch der massive und konsequente Ausbau der Kernenergie in China seine Begründung. Es ist nicht abwegig, wenn andere Entwicklungsländer diesen Weg als vorbildlich ansehen. Vor allem, wenn die Konsequenzen der Deindustriealisierung im „energiegewendeten“ Deutschland erst voll sichtbar werden.

Abgebrannte Brennelemente für die Sterilisation

Abgebrannte Brennelemente haben so viel mit Müll zu tun, wie die Tageszeitung von Vorgestern. Selbstverständlich sind beide für den Nutzer (Kraftwerk oder Leser) Abfall. Sie sind für diese nicht mehr zu gebrauchen, aber sie sind bei leibe alles andere als Müll. Sie lassen sich wieder aufarbeiten. Bei einem Brennelement sogar mit einer höheren Quote als bei Papier.

Es gibt sogar noch Zwischennutzungen bis zur Wiederaufbereitung. Beim Papier z. B. als Verpackungsmaterial. Auch für genutzte Brennstäbe zeichnet sich jetzt eine solche Zwischennutzung ab. An der Oregon State University hat man einen Weg ersonnen, die Strahlung zur Sterilisation von medizinischen Produkten nutzbar zu machen. Dies ist ein beständig wachsender Bereich. Bisher wird Cobalt (Co-60) verwendet, um insbesondere Einwegspritzen und Verbandmaterial zu behandeln. Dabei ist zu beachten, daß Cobalt-60 ein stark radioaktives Material ist, welches extra in Reaktoren hergestellt wird. Bewußt und kostspielig hergestellter „Atommüll“ (Halbwertszeit 5,3 Jahre) so zu sagen.

Inzwischen gibt es ein junges Unternehmen, welches das Verfahren weiterentwickelt hat und gerade durch Patente absichern läßt. Im Prinzip sollen die gebrauchten Brennstäbe in Spezialbehälter umgesetzt werden. Diese Behälter sorgen für einen zusätzlichen Schutz vor Beschädigung und sorgen für die Abfuhr der Nachzerfallswärme. Diese Behälter werden dann in einen Bestrahlungsraum gestellt, durch den vollautomatisch die zu bestrahlenden Güter hindurchgefahren werden. Man verwendet angeblich weitestgehend die in der Brennelementehandhabung und etablierten Bestrahlungstechnik angewendeten Verfahren. Das Unternehmen geht davon aus, daß es mit den Brennelementen nur eines einzigen Kernkraftwerks einen jährlichen Umsatz von über 10 Millionen US-Dollar erzielen könnte. Da das Verfahren wesentlich kostengünstiger als die Co-60-Methode sein soll, glaubt man an eine schnelle Ausweitung auch auf andere Anwendungen.

Mögen die Aussichten der Firma G-Demption LLC auch etwas optimistisch sein, wenn man weiß, wie kompliziert und langwierig Genehmigungsverfahren in der Kerntechnik sind. Andererseits ist es fast eine Gesetzmäßigkeit, daß aus Abfällen irgendwann begehrte Rohstoffe werden, denn der einzig wirklich unerschöpfliche Rohstoff ist der menschliche Erfindergeist.

Fusion: 100 MW in Serie?

Wer die Entwicklung der Kernfusion beobachtet, hat den Eindruck einer unendlichen Geschichte. Mit Milliardenaufwand werden riesige Maschinen gebaut, die in jeweils etwa 50 Jahren Strom liefern sollen.

Hin und wieder tauchen von irgendwelchen Erfindern ganz neue, revolutionäre Konzepte auf, die sich bei näherem hinsehen, stets eher als Perpetuum Mobile, denn als Idee für ein Kraftwerk entpuppen. Genau das, habe ich gedacht, als ich die Meldung las: Kleine Fusionsanlage, Energie für jedermann. 100 MW Fusions-Reaktor, so groß wie eine konventionelle Gasturbine. Anlage in etwa fünf Jahren produktionsreif.

Normalerweise lese ich an diesem Punkt nicht mehr weiter. Science Fiction ödet mich an. Aber halt, der Vortrag (siehe Link zum Mitschnitt unten) ist von Lockheed Martin’s „Skunk Works“, einem Verein, der alles andere, als aus Aufschneidern besteht. Ich kann mich noch sehr gut an die immer wieder auftauchenden Berichte über die Entwicklung von „Tarnkappenbombern“ in den 1980er Jahren erinnern. Und auf einmal waren sie am Himmel: Die F-117 Nighthawk oder die B2 Spirit. Flugzeuge, schon in ihrer äußeren Form so revolutionär anders, daß man kaum glauben mochte, daß diese Maschinen überhaupt fliegen können.

Deswegen ist mir dieses Video eine Meldung auf der Wiese wert. Die „Stinktiere“ treten jedenfalls nie ohne Grund an die Öffentlichkeit. Irgendetwas brüten sie offensichtlich auf dem Energiesektor aus.

Erneut über 1000 Menschenleben durch Deutsche Kernkraftwerke gerettet!

Sie glauben das nicht? Das behauptet aber Greenpeace und Greenpeace hat immer recht, das sind doch die guten Menschen, die immer die Wale beschützen. Die immer gegen die Kernenergie gekämpft haben. Die mit den „Atomexperten“ und neuerdings auch noch „Kohleexperten“.

Am Mittwoch trat Greenpeace wieder medienwirksam mit dieser Tatarennachricht an die Öffentlichkeit:

…Der Schadstoffausstoß deutscher Kohlekraftwerke verursache unter anderem Atemwegs- und Herz-Kreislauf-Erkrankungen, die rechnerisch zum Verlust von 33.000 Lebensjahren führten, erklärte Greenpeace. Das seien statistisch etwa 3100 vorzeitige Todesfälle pro Jahr. Betroffen seien auch die Nachbarländer….

Wenn Greenpeace das sagt, muß es ja stimmen. Bisher gab es nur zaghaften Widerspruch vom Verband VGB Power aus Essen meldet „strom magazin“ das Zentralorgan der Sonnenmännchen:

….Daher seien vor allem Abgase aus dem Verkehr und den Heizungen von Wohnhäusern zu beachten, erklärte der VGB in Essen…

Wenn das alles ist. Es gab mal eine Zeit, da war die Vereinigung der Großkesselbesitzer (VGB e.V.) eine international angesehene Institution in Forschung und Entwicklung. Eine Stellungnahme auf dem Niveau: Die anderen sind aber auch böse, wir sind nicht allein schlecht, wäre undenkbar gewesen.

Uran-Fracking , Unwort zum Quadrat?

Ein neuer Kampfbegriff geistert bereits durch einschlägige Postillen in den USA: Uran fracking. Seit mehr als 70 Jahren wird bei Ölquellen durch das Aufbrechen von undurchlässigen Gesteinsschichten der Durchfluss verbessert. Niemand hat sich dafür interessiert. Erst als durch Anwendung dieser Technik gewaltige Gaslagerstätten nutzbar gemacht werden konnten, ging die Empörung los. Es war für bestimmte Kreise nur schwer erträglich, daß die fossilen Energieträger nun doch nicht in wenigen Jahren aufgebraucht sind. In gemeinsamer Anstrengung mit Hollywood gelang es in wenigen Monaten diesen technischen Begriff zu einem echten Aufreger zu machen. Nach dem dieses Werk vollbracht war, muß es wohl naheliegend sein, ihn mit einem zweiten Unwort zu kombinieren: Uran-Fracking. Sicherlich können deutsche „Qualitätsmedien“ nicht lange widerstehen. Es scheint mir daher sinnvoll, schon mal etwas näher auf die Zusammenhänge einzugehen.

Eagle Ford Shale

Der Eagle Ford Ölschiefer ist eine fast 100 km breite und 80 m dicke Schicht, die sich in 1200 bis 3700 m Tiefe über 650 km von der Mexikanischen Grenze in den Osten von Texas erstreckt. Neben Erdgas enthält sie schätzungsweise 3 Milliarden Barrel Öl. Inzwischen werden in diesem Gebiet rund 375.000 barrel pro Tag gefördert. Ein ordentlicher Ertrag für die Landbesitzer. Denn nach guter, alter Texas-Sitte, gilt immer noch „a quarter to a third“. Meint, selbst wenn der Landbesitzer nur sein Land zur Verfügung stellt und keinen Cent selbst investiert, bekommt er ¼ der Öleinnahmen. Bei solchen Gesetzen, kann man die Bevölkerung nur schwer aufhetzen, zumal man in Texas schon 100 Jahre mit der Ölförderung lebt – und das, recht gut.

Uranvorkommen

Texas ist aber nicht nur mit fossilen Brennstoffen gesegnet, sondern auch mit Uran. Man besitzt darüber sehr gute Kenntnisse, weil in den Zeiten des Kalten Krieges alle Ölbohrungen auch auf ihren Urangehalt hin untersucht werden mußten. Vor 45 Millionen Jahren haben Vulkane Unmengen von Asche über den Süden der USA ausgestoßen. Aus dieser Asche wurde das Uran langsam ausgewaschen und bildete Lagerstätten. Und nun kommt die Geschichte zusammen: Aufsteigendes Erdgas hat dieses Uran in Jahrmillionen wieder ausgetrieben und oberhalb der Ölschieferschicht in dortige poröse Schichten angereichert. Diese Schichten berühren teilweise die Schichten, aus denen die Rancher ihr Trinkwasser beziehen. Wie sensibel Rancher auf ihre Brunnen reagieren, ist hinlänglich aus Western bekannt. Zumal sie mit Uranbergbau in der Zeit von 1950 bis 1980 keine guten Erfahrungen gemacht haben. Die Minen in Karnes County und Falls City sind in ganz Texas für ihre Umweltsünden bekannt. Sie hinterließen große Teiche, randvoll mit giftigen Schlämmen aus der Produktion. Damals wurde das Erz im Tagebau abgebaut, zu Staub vermahlen und mit Schwefelsäure aufgeschlossen. Die Produktionsrückstände enthalten nicht nur Uran und seine Zerfallsprodukte, sondern auch Kadmium, Kobalt, Nickel, Fluoride usw. Ab 1967 wurde versucht, das Palangana Vorkommen „in situ“ auszubeuten. Dazu bohrte man tausende Löcher bis in die uranhaltige Schicht und leitete Ammoniak ein. Die entstehende Lauge sollte das Uran lösen, um das Uran an die Oberfläche pumpen zu können. Dieses Verfahren erwies sich als nicht sonderlich erfolgreich.

Das Goliad Projekt

In diesem Jahr konnte Uranium Energy (UEC) nach langjährigen juristischen Auseinandersetzungen sein Goliad Projekt in Betrieb nehmen. Gegner gingen durch alle Instanzen, um dieses Projekt zu verhindern. Jedoch ohne Erfolg. Warum dieser erhebliche Widerstand? Wasser ist in Texas ein äußerst kostbares Gut. Ohne Brunnen ist in diesen Gebieten nicht einmal Viehzucht möglich. Die uranführende Schicht liegt an dieser Stelle nur gut 120 m unter der Erde. Diese Schicht ist porös und wasserhaltig. Das Wasser könnte mit darüber liegenden Grundwasserleitern in Kontakt kommen. Tatsächlich ist in diesen Gegenden das Trinkwasser immer uran- und radonhaltig. Geplant ist nur die ohnehin nicht als Trinkwasser geeigneten Wässer abzusaugen und über Ionentauscher zu leiten. Nachdem sich dort das Uran abgelagert hat, soll das Wasser wieder in die Schicht zurückgepumpt werden. Im laufe der Zeit würde sich das Wasser wieder auf natürliche Weise mit Uran anreichern. Um den Prozeß zu beschleunigen, wird das Wasser mit Sauerstoff angereichert. Der Sauerstoff mobilisiert das Uran im Boden und beschleunigt diesen Vorgang. Durch die Anordnung von Förder- und Schluckbrunnen wird gewährleistet, daß immer nur Wasser in Richtung der Förderbrunnen fließt. Dies wird durch Messstellen rund um das Gebiet überwacht. Außerdem darf sich die Zusammensetzung (mit Ausnahme des Urangehaltes natürlich) des zurückgeführten, nicht von dem des geförderten Wassers unterscheiden. Hierdurch soll eine Anreicherung mit Schwermetallen, Selen, Fluor usw. verhindert werden.

Bis zum Ende des Jahrzehnts strebt UEC in Texas eine Förderung von 3 Millionen pound Uranoxid (U3O8, Yello cake) pro Jahr an. Dies entspricht immerhin einem Energieäquivalent von über 100 Millionen barrel Rohöl pro Jahr, wenn man nur das darin enthaltene U235 nutzt, sonst (Brüter) fast 100 mal mehr. Glückliches Texas.

Zentral, Dezentral, …egal?

Heute reicht die Bandbreite bei der Stromerzeugung von der Photovoltaik auf dem Dach oder dem „Mini-BHKW“ im Keller des Einfamilienhauses bis zum Windpark in der Nordsee oder gar der Solarfarm in der Sahara. Die konventionelle Stromversorgung liegt irgendwo dazwischen. In Deutschland ist die Diskussion darüber hoch emotional und ideologisch aufgeladen. Wenn man jedoch ein wenig darüber nachdenkt, kann man durchaus Kriterien für eine Entscheidung finden.

Energienachfrage

Betrachtet man ein Versorgungsgebiet, wie z. B. Deutschland, so erkennt man eine höchst ungleiche Nachfrage nach elektrischer Energie: Es gibt Verbrauchsschwerpunkte und Regionen mit weit unterdurchschnittlicher Nachfrage. Man verwendet in der Energiewirtschaft nicht ohne Grund die Kennzahl Energieverbrauch pro Kopf. Sie wird für alle möglichen Energieformen ermittelt. In Städten ist die Bevölkerungsdichte und damit der Energiebedarf sehr hoch. Unsere Urgroßväter haben dies schon erkannt und Kraftwerke mitten in der Stadt gebaut (Berlin, Hamburg, München etc.). Lange vor der Erfindung der Ökologie haben sie bereits ihre Abwärme zur Heizung von Gebäuden genutzt. Umgekehrt ist der Verbrauch an elektrischer Energie in ländlichen Regionen nur gering und dünn gestreut. Eine Elektrifizierung ist hier auch in Deutschland wesentlich später erfolgt. Diese Entwicklung kann man auch heute noch in den Entwicklungsländern beobachten.

Energievorkommen

Elektrische Energie kommt leider nicht in verwertbaren Mengen in der Natur vor. Man kann deshalb die Frage „woher“ nicht vom „wie“ trennen. Will man man die Art der Erzeugung vorschreiben, muß man sich geeignete Vorkommen suchen. Mögen sie auch noch so weit entfernt sein. Das ist die Realität der Energiewende!

Energieart

Elektrische Energie muß erst durch Umwandlung aus anderen Energieformen gewonnen werden. Man steht damit vor der Wahl: Transportiert man den Primärenergieträger oder die elektrische Energie? Letztendlich, ist das auch nur eine Frage der Wirtschaftlichkeit. Man kann aber schon mit Physik und Technik eine Tendenz erkennen. Sind die Primärenergieträger gar nicht transportierbar (Wind, Sonne, Wasserkraft), bleibt nur der Transport der elektrischen Energie. Dies ist der einzige Grund, warum für die „Energiewende“ das Leitungsnetz drastisch ausgebaut werden muß. Ohne die ideologische Festlegung auf Sonnenenergie und ihre Ableger, wäre eine Verdrahtung der Landschaft in bisher unvorstellbarem Ausmaß gar nicht nötig. Haben die Energieträger nur einen geringen Heizwert, wie Biomasse oder auch Braunkohle, müssen sie vorher veredelt werden. Wer will schon Sand und Wasser transportieren? Das Zauberwort hieß früher Brikett und heute Biogas. Leider kostet jede Veredelung auch Energie, die man anschließend leider nicht mehr verkaufen kann. Deshalb ist auch hier meist der Transport der elektrischen Energie die wirtschaftlichere Lösung.

Energiedichte

Die Energiedichte ist der Dreh- und Angelpunkt in der Energiewirtschaft. Schon die antike Stadt war nicht in der Lage, die benötigte Energie innerhalb ihrer Stadtmauern zu erzeugen. Die Bevölkerungsdichte war einfach zu hoch. Wollte man heutige Metropolen mit ihrer Industrie ausschließlich durch Wind, Sonne und Biomasse versorgen, müsste man auch noch auf die letzten unbewohnten Gebiete der Erde zurückgreifen. Will man den Windpark im heimischen Landschaftsschutzgebiet nicht haben, bleibt eben nur die Palmölplantage im Regenwald oder die Sonnenfarm in der Sahara.

Die Transportfrage

Man kann es drehen und wenden wie man will: Die Energie muß immer von der Förderstelle zum Verbraucher transportiert werden. Jeder Transport erfordert Energie und kostet Geld. Förderstellen und Verbraucher müssen durch Transportsysteme miteinander verbunden sein. Das können Straßen, Eisenbahnen, Rohrleitungen oder elektrische Netze sein. Die vorhandene Infrastruktur beeinflußt maßgeblich die Auswahl des Kraftwerktyps. Ein Kohlekraftwerk erfordert einen leistungsfähigen Eisenbahnanschluß, ein Gaskraftwerk eine Hochdruckleitung entsprechender Kapazität und ein Wasserkraftwerk geeignete geologische Verhältnisse. Einzige Ausnahme bildet ein Kernkraftwerk: Wegen der ungeheuren Energiedichte, reichen einige LKW-Ladungen im Jahr aus. Ein Vorteil, der zukünftig immer größere Bedeutung gewinnen wird. So hat z. B. der Ballungsraum Shanghai heute schon mehr Einwohner als Österreich. Die Infrastruktur ist chronisch überlastet. Baugrund ist viel zu kostbar, um ihn für zusätzliche Eisenbahnstrecken für Kohlenzüge zu verwenden.

Stromnetze

Jeder Erzeuger muß mit jedem Verbraucher durch Leitungen verbunden sein. Es entsteht ein Stromnetz. Jede Minderproduktion oder jeder Mehrverbrauch wirkt sich sofort im ganzen Netz aus. Ein Stromnetz ist deshalb viel mehr als nur ein Gewirr von Drähten. Je mehr Störungen auf ein Netz wirken, um so komplizierter und teurer wird es. Ein weiterer Fluch der „Energiewende“. Früher brauchte der Kraftwerkseinsatz nur nach den Verbrauchsgewohnheiten geplant zu werden. Heute müssen die Störgrößen Wind- und Sonnenenergie zwangsweise aufgenommen werden. Man muß sich die Konsequenz so veranschaulichen: Verschiedene Fluggesellschaften entwickeln gemäß der Verbrauchernachfrage feste Flugpläne, die notwendigerweise sehr eng mit den Flugplätzen und der Luftverkehrsüberwachung abgestimmt sind. Ein sehr komplexes und langwieriges Verfahren. Jetzt macht der Staat ein Gesetz zur Förderung nahestehender Flugzeugbesitzer. Grün angestrichene Flugzeuge dürfen ab sofort starten und landen wann und wo sie wollen. Flughäfen müssen ausdrücklich nicht grün angestrichene Flugzeuge so lange am Boden warten lassen oder in der Luft kreisen lassen, bis kein grün angestrichenes Flugzeug mehr starten oder landen will. Dieses Recht gilt stets und ausnahmslos. Wenn die Kapazität eines Flughafens nicht mehr ausreicht, muß er sofort erweitert werden. Zur Beschleunigung des Ausbaues wird das geltende Verwaltungsrecht stark eingeschränkt. Die Kosten werden unmittelbar auf alle Fluggäste umgelegt. Die Luftverkehrsüberwachung muß sehen, wie sie mit dem neuen Chaos fertig wird. Selbstverständlich werden vom fürsorglichen Staat keine Sicherheitseinbußen tolleriert. Wenn sie meinen, daß diese Darstellung überzogen sei, haben sie sich noch nicht mit dem „EEG“ und den einschlägigen Vorschriften zum Netzausbau beschäftigen müssen.

Aber zurück zum Problem der Entfernung. Es macht einen sehr großen Unterschied, ob die Kraftwerke möglichst nahe bei den Verbrauchern errichtet werden oder weit davon entfernt. Es seien hier nur die wichtigsten Gründe erwähnt:

  • Mit jedem Meter Leitungslänge steigen die Verluste.
  • Je größer die über weite Entfernungen zu transportierende Leistung ist, um so mehr steigen die Kosten und um so höher wird deshalb die Spannung gewählt. Jedes mal, wenn die Spannungsebene geändert werden muß, ist eine Transformation mit zusätzlichen Verlusten nötig.
  • Je mehr elektrische Energie hin und her geschoben wird, um so mehr Verluste treten auf und erhöhen sich die Investitionen: Wegen der geringen Energiedichte müssen viele Leitungen erstmal die Energie von den unzähligen Windmühlen und Sonnenkollektoren einsammeln. Weil die Energie am Entstehungsort gar nicht gebraucht wird, wird sie nach der Sammlung hochtransformiert (bei Photovoltaik über alle Spannungsebenen) um diesen Vorgang weit entfernt wieder rückwärts ablaufen zu lassen.
  • Jedes Drehstromnetz überträgt nicht nur Wirkleistung (das ist das, was der Kunde eigentlich haben will), sondern auch Blindleistung. Je länger die Kabel, um so größer die erforderliche Kompensation. Diese Kompensation haben bisher die konventionellen Kraftwerke übernommen. Ziel ist aber gerade deren Stilllegung mit wachsendem Anteil der „Erneuerbaren“. Der Windpark in der Nordsee wirkt daher doppelt auf die zukünftigen Netzkosten.
  • Manche sehen ihr Heil in Höchstspannugs-Gleichstrom-Übertragung. Diese kann aber nur Strom von Punkt zu Punkt transportieren. Dies ist ungefähr so, als ob die Bahn zur Entlastung ihres Netzes neue Breitspurtrassen von Norddeutschland nach Süddeutschland bauen würde. Die Güter würden dann in Norddeutschland mit der vorhandenen Eisenbahn eingesammelt, am Kopfbahnhof umgeladen, nach Süddeutschland mit der Breitspurbahn zum dortigen Kopfbahnhof gefahren, dort wieder umgeladen und mit der vorhandenen Eisenbahn in Bayern feinverteilt. Für ein so kleines Land wie Deutschland, erscheint mir das keine sinnvolle Lösung.

Fazit

Das Stromnetz und der Kraftwerkspark, den wir bisher in Deutschland hatten, ist nicht zufällig entstanden, sondern das Ergebnis eines rund hundert Jahre alten Entwicklungsprozesses. Dieses System verkörpert das Gehirnschmalz einer Legion von Ingenieuren. Stromnetze sind nicht zufällig überall auf der Welt recht ähnlich. Es gilt halt überall die gleiche Physik. Es gibt in der Energietechnik auch keine allein selig machende Lösung. Jeder Energieträger und jedes Versorgungsprinzip hat seine ganz speziellen Vor- und Nachteile. Es kann stets nur eine optimierte Lösung für das gesamte System aus Netz, Erzeuger und Verbraucher gefunden werden. Für Ideologien ist kein Platz vorhanden.

Simulator für SVBR-100 in Betrieb gegangen

Das russische Unternehmen AKME-Engineering, eine Tochter von Rosatom, teilte vor Ostern mit, daß der von ihm entwickelte und gebaute Simulator erfolgreich in Betrieb genommen wurde. Die Inbetriebnahme eines Simulators ist ein wichtiger Meilenstein bei der Entwicklung eines neuen Reaktortyps. Ähnlich wie Flugsimulatoren dienen sie zur Ausbildung und dem laufenden Training der Bedienungsmannschaft. Darüber hinaus finden auf ihnen auch Testläufe für das Genehmigungsverfahren und eine stetige Weiterentwicklung des „System Kraftwerk“ statt. Während der Entwicklungsphase fließen Erkenntnisse in die Konstruktion ein, bzw. werden konstruktive Änderungen in den Simulator eingebaut und auf ihre Auswirkungen auf das Gesamtsystem getestet.

SVBR-100

Bei diesem Kernkraftwerk handelt es sich um eine Neuentwicklung eines mit flüssigem Metall gekühlten Reaktors. Durch die Kühlung mit flüssigem Metall an Stelle von Wasser, bleiben die bei der Kernspaltung freigesetzten Neutronen „schnell“. Schnelle Neutronen besitzen eine höhere kinetische Energie und können damit auch Aktinoide spalten. Aktinoide sind für die langen Halbwertszeiten von abgebrannten Brennelementen aus Leichtwasserreaktoren verantwortlich. Stark vereinfacht gesagt, könnte man diese Brennstäbe nach erfolgter Wiederaufbereitung in einem solchen Reaktor „nach verbrennen“ und so das angeblich unlösbare und Jahrtausende andauernde Problem mit dem „Atommüll“ auf höchstens einige hundert Jahre zusammen schrumpfen. Heute mehr denn je, ein verlockendes Konzept. Ganz neben bei, gewinnt man dabei noch unvorstellbare Energiemengen. Wie hat Bill Gates so treffend auf die Frage geantwortet, ob er „Atomkraft“ zu den „Erneuerbaren Energien“ zählen würde: Kernenergie ist nicht erneuerbar, sondern unendlich.

Für eine Kühlung mit flüssigen Metallen kommt aus neutronenphysikalischer Sicht praktisch nur eine eutektische Blei/Bismut Legierung oder Natriumverbindungen in Frage. Die Russen verfolgen beide Schienen mit Nachdruck. Natrium hat den Nachteil, daß es sowohl mit Wasser als auch mit Luft sehr heftig reagiert. Blei/Wismut dagegen, muß stets auf über 124 °C gehalten werden, da es sonst einfriert. Die russischen U-Boote der Alfa-Klasse hatten hierfür extra Hilfsdampferzeuger im Hafen.

Damit sind wir beim nächsten Vorteil dieses Reaktortyps: Das Kühlmittel verdampft erst bei etwa 1680 °C. Da technische Temperaturen weit unterhalb liegen, gibt es ein weites Anwendungsspektrum z. B. in der chemischen Industrie. Bei diesem Entwicklungsschritt nutzt man die Fähigkeit erstmal dazu, überhitzten Dampf zu erzeugen. Mit diesem überhitzten Dampf lassen sich ganz konventionelle Dampfturbinen verwenden.

Der SVBR-100 soll voll integriert sein. Damit ist gemeint, daß sich alle nuklearen Komponenten, Dampferzeuger etc. in einem drucklosen, mit flüssigem Metall gefüllten Behälter befinden. Trotz einer elektrischen Leistung von 100 MW baut dieser so klein und leicht (drucklos), daß er problemlos mit der Eisenbahn transportiert werden kann. Wie schon gesagt: Dieses komplette Kraftwerk war ja bereits in U-Booten eingebaut. Dort hat man auch höher angereichertes Uran verwendet, womit es möglich war, ohne Nachladung 7–8 Jahre zu fahren. Man spricht deshalb auch von einer „nuklearen Batterie“. Es gibt durchaus Überlegungen, einen Brennstoffwechsel gar nicht mehr vor Ort auszuführen, sondern den kompletten Reaktor zurück zum Hersteller zu schaffen. So, wie auch ein Schiff zur Generalüberholung und Modernisierung alle paar Jahre eine Werft anläuft.

Ich hoffe, durch diesen Zusammenhang ist deutlich geworden, warum mir die Inbetriebnahme eines Simulators eine Meldung wert erschien. Jedenfalls will AKME-Engineering das erste Kraftwerk 2017 in Betrieb nehmen und ab 2019 kommerziell vertreiben.

Kleinreaktoren

Bei allen Kraftwerken ist eine ausgeprägte Kostendegression mit zunehmender Leistung vorhanden – egal ob der Brennstoff Kohle, Gas, Uran oder sonst irgendetwas ist. Selbst bei Windmühlen gibt es einen Trend zu immer größeren Anlagen. Stark vereinfachend kann man sagen, es ist immer billiger, eine große Turbine als viele kleine zu bauen. Auch im Betrieb ergeben sich klare Vorteile: Meist wird weniger Personal und Wartungsaufwand benötigt und die Physik sorgt für bessere Wirkungsgrade.

Bei heutigen kommerziellen Kernkraftwerken geht die Bandbreite von etwa 1.000 MW (Westinghouse AP-1000) bis über 1.600 MW (Areva EPR) elektrischer Leistung. In Planung sind bereits noch größere Reaktoren. Warum sollte dieser offensichtlich erfolgreiche Trend also unterbrochen oder gar umgekehrt werden?

Marktpotential

Die Gründe sind ganz ähnlich denen in der Luftfahrt: Wenn man immer größere Flugzeuge verkaufen will, muß man auch dauerhaft entsprechend viele Fluggäste haben. Nicht jede Linie ist geeignet und bei mangelnder Auslastung kehrt sich der vermeintliche Kostenvorteil schnell ins Gegenteil um.

Schwellenländer

In der Stromwirtschaft gilt immer noch die Regel, daß der größte Block im Betrieb nicht mehr als zehn Prozent der momentanen Gesamtleistung haben sollte. Dies beschränkt den potentiellen Markt auf große Industrieländer, da sonst schnell des nachts und an Feiertagen die Auslastung nicht mehr gewährleistet wäre. Gerade Schwellenländer sind aber an der Einführung oder dem Ausbau der Kernenergie sehr stark interessiert. Wer in diesen Markt will, muß deshalb auch kleine Reaktoren anbieten.

Portfoliomanagement

Für jedes Energieversorgungsunternehmen bedeutet das Portfolio-Management eine immer größere Herausforderung. Genau so wenig, wie ein verantwortungsbewusster Finanzanleger all sein Vermögen in eine Anlage investiert, kann ein Energieversorger auf nur eine Art der Stromerzeugung setzen. Lediglich staatliche Versorger glauben die nötige Risikoprämie ausblenden zu können, da sie meinen, jederzeit die Steuerzahler in Geiselhaft nehmen zu können. Wenn man nun auch noch berücksichtigt, daß in marktwirtschaftlichen Systemen stets mehr als ein Anbieter vorhanden ist, kann man aus o. g. Gründen nachvollziehen, wie beschränkt die optimale Blockgröße nur sein kann. Selbst wenn große Blöcke vertretbar sind, kann die verringerte Vorfinanzierung durch allmählichen Zubau höchst lukrativ sein. In diesem Sinne ist auch das „modular“ in der Abkürzung SMR (Small Modular Reactor) zu verstehen. Zumindest ein Anbieter geht davon aus, einen „Großreaktor“ durch den sukzessiven Zubau von bis zu acht SMR zu realisieren.

Ersatz alter Kohlekraftwerke

In nächster Zeit ergibt sich ein bedeutendes internationales Marktpotential durch die notwendige Ausserbetriebnahme alter Kohlekraftwerke. Historisch bedingt, bewegen sich diese in der Größenordnung einiger hundert MW pro Standort. Will oder kann man dort keine neuen Kohlekraftwerke mehr bauen, so könnte man doch preisgünstig die vorhandene Infrastruktur mit SMRs weiter nutzen. Wie teuer allein der Netzumbau ist, zeigt sich gerade in Deutschland mit seiner Energiewende. Zumindest in China und USA wird dieses Konzept mit Nachdruck verfolgt. Ziel ist es, die dadurch frei werdenden Kohlenmengen für z. B. die Produktion synthetischer Kraftstoffe nutzbar zu machen. Interessanterweise wird dieses Konzept, von zahlreichen „Umwelt- und Klimaschutzorganisationen“ in den USA massiv unterstützt. In China dürfte eher die Luftverschmutzung und die (gewünscht und geförderte) Motorisierung Pate sein.

Mehr Öl durch SMR

Damit sind wir bei der letzten – und vielleicht am schnellsten realisierten – Anwendung kleiner Reaktoren. Die Förderung von Öl und Gas findet in immer weiter abgelegenen Regionen und mit immer höherem Energieaufwand statt. Der hierbei verbrannte Eigenbedarf setzt die verkaufbare Fördermenge herab. Aus diesem Grunde sind die ersten zwei Kleinreaktoren in Rußland bereits im Bau. Aber auch die Mineralölkonzerne sehen die Kernenergie nicht länger als lästige Konkurrenz, sondern eher zur Abdeckung des Eigenbedarfs.

Kerntechnische Besonderheiten

Aber noch einmal zurück zum Ausgangspunkt. Wenn immer größere Kraftwerke, zu immer geringeren Produktionskosten führen, wie sollen dann SMR konkurrenzfähig sein? In der Presse liest man immer die einfache Antwort: Durch Massenproduktion. Wenn die „Massenproduktion“ so einfach physikalische Gesetze überwinden könnte, hätten wir dann nicht längst Kleinraffinerien, kleine Hüttenwerke usw. an jeder Ecke? Ganz offensichtlich war „small is beautiful“ nichts weiter als ein erfolgreicher Werbeslogan.

Baukosten und Baustellenkosten

Kernkraftwerken geht der Ruf hoher Investitionskosten voraus. Es lohnt sich deshalb, einmal die Ursachen etwas näher zu beleuchten. Von der Entscheidung ein neues Kernkraftwerk zu bauen, bis zur ersten Stromproduktion, vergehen heute in den etablierten Ländern 10 bis 15 Jahre. Das bedeutet nichts anderes, als daß z. B. die Planungskosten über den gesamten Zeitraum vorfinanziert und damit laufend verzinst werden müssen. Selbst bei einem Zinssatz von nur fünf Prozent, haben sie sich nach 15 Jahren bereits verdoppelt. Wer Kosten sparen will, muß also schnell bauen. Wie fatal sich die Bauzeit auf die Stromgestehungskosten auswirkt, kann man heute durch den Vergleich mit China sehen: Baugleiche (!) Reaktoren der Generation III+ (Areva EPR oder AP-1000) werden in China wesentlich schneller fertiggestellt. Menetekel für den Industriestandort Europa sind die Areva-Baustellen eines EPR in Olkiluoto, Finnland und Taishan, China.

Bei beiden Projekten werden die Kernkomponenten (noch) nicht in den Ländern gefertigt, sondern komplett importiert. Ursache für den gewaltigen Preisunterschied sind also die Baustellenkosten. Bei Kernkraftwerken heutiger Bauweise fallen etwa 70 % der Baukosten auf der Baustelle an. Arbeiten auf einer Baustelle sind grundsätzlich teurer als in einer Fabrik. Dies gilt ganz besonders in der Kerntechnik, mit ihrem besonderen Prüf- und Dokumentationsaufwand. Wer also Kosten sparen will, muß möglichst viel, möglichst komplett, vorfertigen und schon in der Fabrik testen.

Wie klein sind SMR?

Als SMRs werden heute Reaktoren mit einer elektrischen Leistung von etwa 45 bis 300 MW bezeichnet. „Klein“ ist also auf diesem Gebiet sehr relativ. Die Definition hat einen anderen Ursprung: Sie sollen geometrisch so klein sein, daß sie sich noch mit der Eisenbahn transportieren lassen. Es wäre damit möglich, sie komplett in einer Fabrik zu fertigen und zu testen und sie nahezu einsatzbereit zu der Baustelle zu transportieren. Hiermit wäre ein Quantensprung in der Bauzeit und damit in den Finanzierungskosten verbunden. Ein Energieversorgungsunternehmen könnte wie eine Fluggesellschaft agieren: Definierter Liefertermin zu garantierten Kosten in akzeptabler Zeit.

Zusätzliche Sicherheit

Wenn man Dampferzeuger, Druckhalter und Umwälzpumpen mit in das Druckgefäß packt, spart man eine Menge Rohrleitungen und Schwachstellen. Dies ist durchaus nichts neues, sondern bei Schiffen seit Jahrzehnten erprobt. Da man wegen der Transportierbarkeit zu einer eher länglichen Bauform kommt, bietet es sich an, das Teil komplett in die Erde zu versenken. Man hat damit gegenüber einer konventionellen Bauweise einen natürlichen Schutz gegen Einwirkungen von außen (Flugzeugabsturz, Terror etc.) Manche Konzepte gehen sogar davon aus, das Containment dauerhaft mit Wasser zu füllen. Man erhält so eine sehr gute Abschirmung gegen Strahlung, eine Filterwirkung bei Störfällen und eine „ewige Kühlung“ zur Abfuhr der Nachzerfallswärme. Alles in allem, kann man von einer um ein bis zwei Größenordnung verringerten Eintrittswahrscheinlichkeit eines schweren Reaktorunfalls ausgehen.

In diesem Zusammenhang ist auch mit geringeren Kosten für die nötigen Versicherungen (Haftpflicht, Betriebsausfall) und einem geringeren Wartungsaufwand zu rechnen. Inhärente Sicherheitssysteme brauchen keine Wiederholungsprüfung. Je mehr Komponenten im Sinne der Kerntechnik nicht mehr sicherheitsrelevant sind, um so mehr kann (wieder) auf konventionelle Produkte und Hersteller zurückgegriffen werden. Es gibt in einem Kernkraftwerk unzählige Bauteile, die mit frei erhältlichen Teilen vollkommen identisch sind, aber einen drei bis viermal so hohen Preis haben. Der berühmt gewordene Dübel ist wahrlich kein Einzelfall. Ursache sind die Kosten für die Zulassung und der sprichwörtliche Dokumentationsaufwand.

Wohin geht die Reise?

Prinzipiell läßt sich jeder Reaktortyp auch klein herstellen. Wegen der erzkonservativen Einstellung der Genehmigungsbehörden – man könnte auch sagen: Was der Bauer nicht kennt, frisst er nicht – wird man sich nur wenig von Bekanntem entfernen. Zumindest in den USA sind Leichtwasserreaktoren favorisiert. Damit kennt sich die Genehmigungsbehörde aus und man kann auf langjährige Erfahrungen aus dem Schiffbau zurückgreifen. Schließlich hat allein die US-Marine über hundert Reaktoren in Betrieb. Wer sich für die gerade staatlich geförderten Konzepte von Westinghouse und B&W interessiert, sollte nicht versäumen, sich einmal den Reaktor der deutschen Otto Hahn (Stapellauf 1964) anzuschauen. Der hieß damals Fortschrittlicher Druckwasserreaktor (FDR). Vielleicht war er ja wirklich nur einfach vierzig Jahre zu früh?

Die Russen ticken auch nicht so viel anders. Die erste barge mit zwei Druckwasserreaktoren ist bereits in Bau und soll in Sibirien zur Versorgung der Gasfelder dienen. Die Reaktoren sind eine leichte Abwandlung des Typs, wie er auch bei russischen Eisbrechern verwendet wird. Allerdings arbeiten sie auch noch an einem Schnellen Reaktor mit Blei-Wismuth-Kühlung. Eine Weiterentwicklung eines mit mäßigem Erfolg eingesetzten U-Boot-Reaktors. Allerdings bietet dieses Konstruktionsprinzip schon allein wegen der höheren Temperaturen interessante Vorteile.

Und damit wären wir wieder in China angelangt. Die Chinesen haben gerade den Grundstein für einen mit Helium gekühlten Thorium Hochtemperatur Reaktor gelegt. Jawohl, es ist die Weiterentwicklung des guten, alten THTR aus Deutschland. Er soll Raffinerien und Chemiebetriebe mit Strom und Wärme versorgen. Das Konzept „Kohle und Kernenergie“ war vielleicht doch nicht so abwegig – meinen jedenfalls die Chinesen. Aus dem gleichen Grund – Erzeugung von Hochtemperatur-Wärme – greifen sie auch das amerikanische Konzept der Salzbadreaktoren wieder auf. Ganz neben bei, kann es auch der „Atommüllentsorgung“ dienen, die in China nicht nur ein Problem der Kernkraftwerke, sondern auch der Kohlekraftwerke und der Produktion Seltener Erden ist, die ja so gut für Windmühlen sein sollen.

In diesem Sinne, könnte man fast meinen, daß das Kernenergiezeitalter erst beginnt. Egal ob sich Deutschland nun „energiewendet“ oder nicht.