Die Krebsgeschwulst der Energiewirtschaft

Es begann alles mit den Subventionen für Wind- und Sonnenenergie. Manche tiefgläubige Politiker halten die zwangsweise Einspeisung von elektrischer Energie zu staatlich festgelegten und garantierten Preisen immer noch für einen ideologischen Exportschlager. Eher ist es so, daß sich die „EEG-Philosophie“ wie Krebs über Europa ausgebreitet hat. Inzwischen ist man schon bei der Förderung neuer Kernkraftwerke (z. B. Großbritannien) und fossilen Kraftwerken als „Kaltreserve“ (z. B. Deutschland) angekommen. Es ist, wie es immer war und sein wird: Einige Politiker wollen mit ihrem Halbwissen in einen Markt eingreifen, um ihn zu verbessern. Zwangsläufig führen ihre Eingriffe zu Störungen an anderen Stellen, die flugs durch weitere Eingriffe beseitigt werden sollen. Eine Kettenreaktion kommt in Gang, an deren Ende meist der Zusammenbruch des gesamten Systems steht. Es scheint also durchaus sinnvoll, sich mit der unterschiedlichen „Rangehensweise“ in Europa auseinanderzusetzen.

Einer oder besser viele?

Historisch gewachsen ist das Modell „integrierter Konzern mit Gebietsmonopol“. In einem geographisch (was meist mit Ländergrenzen gleichzusetzen ist) begrenztem Gebiet hat eine Gesellschaft die Versorgung aller Kunden übernommen. Diese Gesellschaft hat dafür ein Leitungsnetz aufgebaut und betrieben und sich einen passenden Kraftwerkspark zugelegt. Dies geschah in eigener Regie und Verantwortung. In der guten, alten Zeit beschränkten sich die Politiker auf die Forderungen „sichere Versorgung zu günstigen Preisen“, „anständige Dividende“ und „Einhaltung der Gesetze und Vorschriften“. Entscheidend war, daß diese „Stromkonzerne“ wie Kaufhäuser geführt wurden: Alles unter einem Dach. Am Jahresende zählte nur das Gesamtergebnis. Wieviel, welche Abteilung dazu beigetragen hat, war höchstens Insidern bekannt. In der Tat, eine etwas undurchsichtige Angelegenheit. Allerdings weit aus weniger, als Laien (und Politiker sind fast immer Laien!) vielleicht meinen. Sind die internen Zahlen bekannt, sind sie immer auch vergleichbar mit ähnlichen Bereichen in anderen Branchen. Vorteil einer solchen Konstruktion sind die Optimierungsmöglichkeiten und die gegenseitigen Synergien, sowie die günstige Finanzstruktur. Letztendlich läuft alles immer auf die eine Frage hinaus: Was kostet am Ende der Strom? In diesem Sinne, ist z. B. ein Vergleich zwischen Deutschland und Frankreich eindeutig: Die französischen Strompreise bewegen sich im unteren Drittel, Deutschland ist auf dem Weg zur absoluten Spitze.

Das vermeintliche Gegenmodell zum „Staatskonzern a la EDF“ ist die deutsche „Strommarktliberalisierung“. Schon dieser Begriff war einer der dreistesten Neusprech-Schöpfungen in der Geschichte.

  • Man zerschlug gnadenlos bestehende Unternehmensstrukturen: Die regionalen Energieversorger BEWAG (Berlin) und HEW (Hamburg) wurden beispielsweise an den sozialdemokratischen, schwedischen Staatskonzern Vattenfall verschachert. Heute rennen die gleichen Rot/Grünen-Strategen durch die Straßen von Berlin und Hamburg und sammeln Unterschriften zur „Rekommunalisierung“. Aus den einst florierenden Aktiengesellschaften im Landesbesitz sollen über den Zwischenschritt „ausländischer Konzern“ Energiekombinate unter der Leitung von Politkommissaren gemacht werden. Elektrische Energie als neue Kopfsteuer und Zwangsabgabe zur Verwirklichung politischer Ziele – vorbei an Parlamenten und ohne lästige Haushaltsdebatten.
  • Man wandelte die Preisfindung einer Marktwirtschaft in eine reine Planwirtschaft um: Durch das „EEG“ werden nicht nur die Erzeugerpreise staatlich vorgeschrieben, sondern auch die Abnahme der Produktion zwangsweise garantiert. Bei dem Einheitsverkaufspreis (EVP) der zusammengebrochenen DDR handelte es sich noch um ein aufwendiges und strikt reglementiertes Kalkulationsverfahren. Schwarz/Gelb hat daraus die Festlegung der „Einspeisevergütung“ als eine Hinterzimmerveranstaltung unter Politikern gemacht. Der Rahmen eines „Fünf-Jahr-Plan“ wurde durch das Korsett des Abnahmezwanges ersetzt. Damit wurde den Kombinatsleitern der Stromwirtschaft sogar noch die Wahl des Produktionsstandortes entzogen. So viel Staatswirtschaft gab es noch nie auf deutschem Boden.
  • Rot/Grün erschufen die „Strombörse“ als Karikatur einer Börse, in der die eine Abteilung eines Konzerns den Strom an die andere Abteilung des gleichen Konzerns „verkauft“. Gerne benutzen Grüne Politstars diese Art der „Preisfindung“ auch noch als Beweis, daß böse Kapitalisten die „ständig sinkenden Preise an der Strombörse für Wind- und Sonnenenergie“ nicht an die Stromverbraucher weitergeben.
  • Man ist stolz darauf, daß man Ein-Mann-Finanzspekulanten (Photovoltaik auf dem Dach) und Bauernkollektive („Bürgerwindparks“) als neue deutsche Energieversorgungsunternehmen in die Schlacht gegen internationale Milliardenkonzerne geschickt hat. Mal abwarten, wie viele Privatinsolvenzen die Energiewende hinterlassen wird. Bisher haben ja nur super schlaue Stadtwerkedirektoren Millionen in spanische „Sonnenfarmen“ versenkt. Macht ja nichts, werden zum Ausgleich eben die Müllgebühren etwas erhöht.
  • Die Krönung der Volksverdummung war die Idee, haftendes (!) Eigenkapital mit einer Verzinsung von bis zu 5% (!) zur Finanzierung von Hochspannungsleitungen ein zu werben. So dämlich ist nicht einmal unser Michel: Er finanziert Hochspannungsmasten vor seinem Fenster, die niemand braucht und die voraussichtlich auch nie benutzt werden. Weil weder die bestehenden Kraftwerke im Süden abgeschaltet werden, noch die Windparks im Meer im geträumten Umfang gebaut werden. Unter Finanzhaien nennt man das skalpieren. Hauptsache, der Vertrieb hat seine Provision kassiert. Die „Hausfrauen-Hausse“ ist längst gestartet: Deutsche Bank und Co haben längst ihre Aktien in Wind und Sonne an Privatanleger mit Gewinn weiterverkauft. Jetzt können die „Zukunftstechnologien“ getrost pleite gehen und die Arbeitnehmer „frei gestellt“ werden. Es soll ja ohnehin Fachkräftemangel herrschen.

Auswirkungen auf Europa

Bisher konnten Deutschland und Dänemark ihren Stromabfall aus Wind und Sonne problemlos in ihren Nachbarländern entsorgen. Wenn auch nur über direkte oder indirekte Subventionen. Der Strompreis wird so weit runter subventioniert, bis er konventionelle Kraftwerke aus dem Markt drückt. Im Grunde genommen, ist dieses Modell ein Abklatsch alter europäischer Agrarsubventionen. Damals (Milchseen, Butterberge etc.) wie heute, führt es solange zu einer Überproduktion, bis die Subventionen über alle Maßen steigen und politisch nicht mehr zu verkaufen sind. Die Betonung liegt dabei auf „politisch ertragbar“, denn die Schmerzgrenze und die entstehenden Schäden sind in unterschiedlichen Ländern verschieden. Als erste, scherten unsere Nachbarn Polen und Tschechien aus: Die volkswirtschaftlichen Schäden durch deutschen Stromabfall nahmen solche Ausmaße an, daß sie nicht mehr durch den vermeintlich günstigen Preis aufgewogen werden. Sie machen die Grenzen dicht. Übrigens mit vollem Recht: Der Verkauf von Produkten unter Gestehungspreis wird gemeinhin als Dumping bezeichnet und verstößt gegen alle internationalen Handelsabkommen. Eine Trumpfkarte, die unsere Nachbarn gegenüber Deutschland weiter in der Hinterhand halten, solange, bis der „EEG-Wahnsinn“ gestoppt wird.

Es gibt aber noch eine Reihe indirekter Wirkungen auf andere Energiemärkte. Eindeutige Untergrenze für die Strompreise an der Europäischen Strombörse ist seit längerem der Brennstoffpreis für Kohle. Kohle und Kernenergie bilden das Rückrat der Stromerzeugung. Die von allen Sonnenmännchen und Flackerströmern heiß geliebten Gaskraftwerke müssen bereits aus dem Markt ausscheiden. Ihre Brennstoffkosten liegen deutlich über den erzielbaren Strompreisen. Dadurch entsteht eine Todesspirale: Durch die immer geringer werdende Ausnutzung (Vollaststunden) explodieren die Fixkosten. Der Zeitpunkt der vollständigen Stilllegung naht. Neuerdings werden sogar Neubauten unmittelbar nach der ersten Inbetriebsetzung gleich wieder eingemottet. Das grüne Märchen von den unflexiblen Kohle- und Kernkraftwerken, hat sich inzwischen längst als schlechte Propaganda enttarnt. Nur die Politkommissare in den nahestehenden Stadtwerken sind dem aufgesessen und haben kräftig in Gaskraftwerke (fehl)investiert. Manch ein Stadtkämmerer wird noch schlaflose Nächte bekommen: Aus den vermeintlich profitablen „Kraft-Wärme-Kopplungs-Projekten“ – gedacht zur Quersubventionierung von städtischen Hallenbädern, Busbetrieben etc. – werden Investitionsruinen werden.

Genau aus dieser Ecke weht der verzweifelte Schrei nach „Kapazitätsmärkten“. Man benötigt dringend Subventionen um seine Fehlinvestitionen zu vertuschen. Da kaum einer etwas mit diesem Begriff anfangen kann, er aber um so bereitwilliger nachgeplappert wird, hier eine Übertragung in die Alltagswelt. Betriebswirtschaftlich ist es das klassische Problem einer Eisdiele. Der Betreiber einer Eisdiele ist extrem vom Wetter abhängig. Er muß praktisch an den wenigen Tagen mit schönem Wetter den wesentlichen Teil seines Jahresumsatzes machen. All sein Bestreben ist darauf ausgerichtet. Er muß den Preis für sein Eis so kalkulieren, daß er die unzähligen flauen Tage überbrücken kann. Gemeinhin nennt man das unternehmerisches Risiko. Hätte er die Idee vom „Kapazitätsmarkt“ schon gekannt, wäre er zur Gemeinde gegangen und hätte sich jeden Monat einen festen Betrag von der Allgemeinheit bezahlen lassen, um seine Kosten für Miete, Personal etc. abdecken zu können. Als Gegenleistung hätte er sich selbstverständlich verpflichtet, seine Eisdiele an warmen und schönen Sommertagen zu öffnen. Absurd? Wieso, er stellt doch die gesellschaftlich wichtige Aufgabe der Eisversorgung an heißen Tagen bereit. Wenn es immer noch keiner merkt, wir sind mit Volldampf in eine Gesellschaft unterwegs, gegen die der Real-Existierende-Sozialismus ein Freiraum für unternehmerische Tätigkeiten war.

Die Zukunft

Solange es kein wesentliches Wachstum im Stromabsatz gibt, kann man sich eine ganze Zeit durchwursteln. Gleichwohl altert der Kraftwerkspark jeden Tag weiter. Hat man einmal mit der Planwirtschaft angefangen, kann man nicht mehr erwarten, daß das unkalkulierbare – weil politische – Risiko von irgendwelchen verantwortungsbewussten Investoren getragen wird. An diesem Punkt ist man heute bereits in Großbritannien angekommen.

Das englische Modell

Im Vereinigten Königreich hat man eine Reihe alter gasgekühlter Kernkraftwerke. Diese werden nach einem festen Fahrplan außer Betrieb gesetzt. Hinzu kommen eine Reihe alter Kohlekraftwerke, die zumindest nachgerüstet werden müßten, um die europäischen Umweltschutzstandards zu erfüllen. Ferner hat man sich auf das kostspielige Abenteuer der Windenergie aus dem Meer eingelassen. Nach jahrelangen Diskussionen ist man zum Ergebnis gekommen, daß man mindestens 18.000 MWe neue Kernkraftwerke bauen muß und das möglichst schnell. Nur, wer soll das finanzieren? Man hat alle britischen Stromversorger längst privatisiert. Die alten Kernkraftwerke werden beispielsweise von der französischen EDF betrieben. Die würde auch gerne neue bauen und betreiben, aber bitte nur mit eingeschränktem Risiko.

Die britische Lösung den Fehler der Subventionierung der Windenergie zu heilen, heißt „CO2 – freier-Strom“. Man dreht den „Ökospieß“ um. Auch Kernenergie ist „CO2.frei“, hat also folglich auch Subventionsansprüche zum Wohle des Klimas zu stellen. Man handelt für jedes Projekt (Wind auf Land, Wind auf Meer, Biomasse, Kernenergie etc.) mit dem Investor einen Mindestpreis für einen bestimmten Zeitraum aus. Der Antrieb der Verhandlungen ist, einen Preis zu finden, mit dem der Betreiber leben kann ohne pleite zu gehen. Kann dieser Preis nicht am Markt erzielt werden, gibt es die Differenz aus einem Fond oben drauf. Wird umgekehrt am Markt ein höherer Preis erzielt, wird aus der positiven Differenz die angehäufte Schuld getilgt. Erst wenn der Fond auf Null gesetzt ist, kann der Kraftwerksbetreiber den vollen Preis einstreichen. Lange Diskussionen werden immer noch über die Frage der Haftung für diese Fonds geführt: Gibt es eine direkte Bürgschaft durch den englischen Staat oder durch das Kollektiv der Stromverbraucher. Diese Frage ist von zentraler Bedeutung, da sie auf den Garantiepreis zurück koppelt. Bürgt der Staat, hat die gesamte Finanzierung des Projektes die Wertigkeit – und damit geringe Zinssätze – einer britischen Staatsanleihe. Tritt lediglich das Kollektiv der Stromverbraucher als Rückversicherer auf, hat die Finanzierung den Stellenwert einer Unternehmensanleihe. An dieser Stelle ergibt sich deshalb ein möglicher Konflikt mit dem EU-Recht wegen (vermeintlich) unerlaubter Subventionen.

Die Lösung des NIMBY-Problems?

Alle Großprojekte der Energietechnik, vom Windpark bis zum Kernkraftwerk, leiden heute am NIMBY („Aber nicht hinter meinem Haus“) Syndrom: Man erkennt die volkswirtschaftliche Notwendigkeit an, ist aber nicht bereit, persönliche Nachteile zu tragen. Die Briten wollen dieses Dilemma nun marktwirtschaftlich lösen. Die Gemeinden, die solche Projekte bei sich gestatten – vielleicht zukünftig sich sogar darum bewerben – bekommen einen hälftigen Anteil an den Unternehmenssteuern. Man geht für ein Kernkraftwerk von mindestens 193 Millionen Pfund in einem Zeitraum von 40 Jahren aus. Wer das (gefühlte) Risiko eines Kernkraftwerkes in seiner Gemeinde auf sich nimmt, wird mit zusätzlichen Freibädern, Kindergärten und was sonst noch alles, „entschädigt“. Es wird interessant sein, wie die Angstindustrie darauf reagieren wird. Greenpeace und Co. zukünftig nicht mehr in der Rolle der guten „Naturschützer“, sondern eher als Verhinderer von besser ausgestatteten Schulen und Kindergärten. Ganz neu ist dieses Erfolgsmodell nicht. Wyoming hat die am besten ausgestatteten öffentlichen Schulen in den USA (jedem Kind ein kostenloser Laptop). Finanziert durch Abgaben der Kohleindustrie. In solchen Gemeinden fällt das Hetzen gegen die als „guter Nachbar“ empfundene Kohlegrube, schwer. Im fernen Washington ist das Schwadronieren über Klimakatastrophen mit Staatsbediensten wesentlich angenehmer.

Es gibt noch einen weiteren Ansatz, der auch für Windparks und Shale Gas (1000 Pfund pro Bohrstelle + 1% vom Umsatz) gelten soll: Die Gemeinde bekommt 1000 Pfund im Jahr pro MW installierter Leistung (Ziel: Je größer das Kraftwerk, je mehr Einnahmen für die Gemeinde) begrenzt bis zum Jahr 2060 (Ziel: Je schneller gebaut wird, um so mehr Einnahmen.)

Die Rolle der EU-Kommission

Man könnte fast Schadenfreude empfinden: Über Jahrzehnte ist der Popanz „Klimakiller CO2.“ von allen möglichen Schlangenölverkäufern und Systemveränderern aufgebaut worden. Nun braucht die Wettbewerbskommission nur noch betonen, daß Kernenergie auch „kohlenstoffarm“ ist und all die schönen „Ausnahmetatbestände“ gelten auch für die Kernenergie. Oder man macht generell Schluß mit den Subventionen in der europäischen Energiewirtschaft – dann aber, ist die Kernenergie als preiswerteste Methode der Stromerzeugung (in der Grundlast) strahlender Sieger. Ein Ausbauprogramm von chinesischem Ausmaß wäre die Folge.

Es wird interessant zu beobachten sein, wie ein Heulen durch die politischen Parteien und Energiekombinate in Deutschland gehen wird. Hat nicht vor all zu langer Zeit beispielsweise die Kombinatsleitung von E.ON Energie AG in vorauseilendem Gehorsam ihre fertig entwickelten Standorte in England an die Japaner verkauft? Wollte man das erhaltene Geld nicht in die „Zukunftstechnologie Windkraft auf Hoher See“ investieren (versenken)? Mal sehen, wie die Analysten an der Börse reagieren. Das gleiche gilt für Siemens und ein halbes Dutzend Firmen in der zweiten Reihe. Wenn man jemals Manager für Arbeitsplatzvernichtung verantwortlich machen kann, dann sicherlich diese „Energiewender“. Hoffentlich gibt’s noch ne schöne Abfindung.

Niemand wird in der EU Mitleid für „Madame No“ haben, die sich selbst in diese Zwickmühle laviert hat. Ihr überhasteter „Ausstiegsbeschluss“ wird ihr vielleicht in wenigen Wochen eine Koalition mit den Grünen ermöglichen, aber der Machterhalt über Tagespolitik ist erfahrungsgemäß nicht von langer Dauer. Man schaue sich nur Spanien an: Dort sind Milliarden in der spanischen Wüste für Sonnenenergie verbrannt worden. Richtige Konsequenz aus der „Euro-Krise“: Sofortiger Schluß mit dem Unsinn der „Solarförderung“. Entgegen dem Werbeslogan eines bekannten Sozialdemokraten hat die Sonne nun doch brutal eine Rechnung geschrieben. Die politische Frage der nächsten Jahre wird sein, wie lange die (jugendlichen) Arbeitslosen in Europa bereit sind, solche alten Deckel aus der „Grünen Periode“ abzustottern. Wie lange der „Kleinrentner“ über seine Stromrechnung bereit ist, dem Schlangenölverkäufer sein durch „Solarenergie“erworbenes Schloss weiter zu erhalten. Vielleicht wird ja noch ein deutsches Energiemodell zum Exportschlager: Entschädigungslose Enteignung! Es muß ja nicht gleich ein Tsunami in Japan zur Begründung herhalten, vielleicht reicht auch eine umgeblasene Windmühle in der Nordsee.

Peaceful Nuclear Explosives (PNE)

Am Wochenende sind mir wieder einige mehr als zwanzig Jahre alte Veröffentlichungen über die Energieerzeugung durch kontrollierte Kernexplosionen in die Hände gefallen. Sie erscheinen mal wieder erwähnenswert, weil offensichtlich vergessen. Darüber hinaus bieten sie einige Erkenntnisse zu Salzbädern, Brüt- und Hybridkonzepten. Zur Einstimmung einige Fragen: Ist es möglich durch kontrollierte Kernexplosionen – quasi Wasserstoffbomben – elektrische Energie zu erzeugen? Könnte man solch einen „Reaktor“ als Brutreaktor benützen, um Spaltmaterial für konventionelle Reaktoren zu erzeugen? Wäre das „politisch korrekt“? Die ersten beiden Fragen lassen sich ziemlich eindeutig mit ja beantworten, die letzte ebenso eindeutig mit nein – heute jedenfalls noch!

Fusion

Bei der Kernfusion werden zwei leichte Elemente zu einem neuen Element „verschweißt“. Hierfür sind extrem hohe Drücke und/oder Temperaturen nötig. Um diese erstmal zu erzeugen, sind gewaltige Energien nötig. Bisher ist es deshalb noch nicht gelungen, eine Fusionsmaschine zu bauen, die kontinuierlich mehr Energie erzeugt, als sie verbraucht. Durch die hohen Temperaturen und den hohen Druck ist das Medium sehr stark bestrebt, sich wieder auszudehnen. Bisher gibt es nur das Konzept eines extremen Magnetfelds zum dauerhaften Einschluß. Die zweite Entwicklungsschiene ist der Trägheitseinschluss: Man schießt mit mehreren Laserstrahlen gleichzeitig auf ein Wasserstoffkügelchen. Dieses Verfahren ist aber diskontinuierlich, da man immer nur einen Schuss ausführen kann. Insofern dürfte es sich weniger zur Stromerzeugung als zur Grundlagenforschung eignen.

Gleichwohl, wird bei der Kernfusion Energie erzeugt. Viel versprechend ist die Fusion von Deuterium und Tritium zu Helium. Deuterium kommt als „schweres Wasser“ in der Natur vor. Tritium hingegen, muß wegen seiner geringen Halbwertszeit von rund 12 Jahren vorher erbrütet werden.

Kernspaltung

Schwere Atomkerne können durch Neutronen gespalten werden. Bei der Spaltung werden einige Neutronen frei, wodurch eine Kettenreaktion aufrecht erhalten werden kann. Wenn man zusätzlich noch „Spaltmaterial“ z. B. U233 aus Th232 erbrüten will, muß man neben dem für die nächste Spaltung notwendigen, noch ein weiteres Neutron zur Verfügung haben. Da man aber auch unvermeidliche Verluste hat, ist es gar nicht so einfach, Brutreaktoren zu bauen.

Hybride

Wenn man beispielsweise einen Urankern spaltet, setzt man rund 200 MeV Energie und im Mittel etwa 2,2 Neutronen frei. Wenn man einen Helium-4 Kern durch Fusion erzeugt, gewinnt man nur etwa 14 MeV Energie und ein Neutron. Will man also die gleiche Energie erzeugen, muß man dafür etwa 14 mal so viele Kerne fusionieren und erhält dadurch aber auch etwa 7 mal so viele Neutronen. Mit anderen Worten: Man hat genug zum „Brüten“ übrig.

Kernexplosion

Will man nun eine Kernexplosion einer Fusion einleiten, muß man die zur Zündung erforderliche Leistung durch eine vorausgehende Kernspaltung bereitstellen. Dies ist das klassische Konzept einer „Wasserstoffbombe“. Die Kernspaltung dient dabei nur als Zünder. Sie sollte daher so klein, wie technisch möglich sein. Der gewaltige Neutronenüberschuß kann zum „Erbrüten“ von Tritium aus Lithium und Uran-233 aus Thorium genutzt werden. Beide können in einem geschlossenen Kreislauf für die nächsten Schüsse verwendet werden. Je weniger Material man zur Zündung spalten muß, je weniger Spaltprodukte erzeugt man.

Der Kernexplosions-Reaktor

Wie gesagt, „Wasserstoffbomben“ zu bauen, ist Stand der Technik. Eine Weiterentwicklung müßte nur der Kostensenkung und der Sicherheit gegen Mißbrauch dienen. Beides geht in die gleiche Richtung: In einem Kern-Explosions-Kraftwerk kommt es nur auf das „Brennelement“ an. Aus Sicherheitsgründen sollen ja gerade keine funktionstüchtigen Kernwaffen verwendet werden. Die Einleitung der Kettenreaktion bei der Zündung sollte durch eine stationäre „Maschine“ erfolgen. Insofern würde sich das „Diebstahlsrisiko“ auf das bekannte Risiko des Diebstahls von Spaltmaterial reduzieren.

Um die üblichen 1000 MWe eines konventionellen Kernkraftwerks zu erzeugen, müßte man etwa alle sieben Stunden einen 20 kT „Sprengsatz“ (etwa Atombombe über Nagasaki) zünden oder besser alle 40 Minuten einen 2 kT „Sprengsatz“. Dies mag für manchen Laien verblüffend sein, daß ein 1000 MWe Kraftwerk täglich mehr Energie erzeugt, als drei Nagasaki-Atombomben mit ihrer bekannten zerstörerischen Wirkung: Es ist der Unterschied zwischen Leistung und Energie. Eine Atombombe setzt ihre Energie in Bruchteilen von Sekunden frei. Allein dieser Zeitunterschied führt zu der verheerenden Explosion. Ganz neben bei, auch ein eindringliches Beispiel für den Unsinn, bei Windrädern und Sonnenkollektoren stets Leistung und Energie durcheinander zu rühren. Ein Windrad kann eben nicht x Personen-Haushalte versorgen, weil es den Leistugsbedarf nicht ständig erzeugen kann.

Aber nichts desto trotz, hat eine Kernwaffe eine ganz schöne Sprengkraft. Wie soll es funktionieren, damit ein Kraftwerk zu betreiben? Man fährt unterirdisch eine Kaverne auf. Für ein 1000 MWe Kraftwerk mit 2 kT-Explosionen müßte sie etwa einen Radius von 20 m und eine Höhe von 100 m haben. Um auch über einen Betrieb von geplant 30 Jahren die Stabilität zu erhalten, sollte sie komplett mit einem 1 cm Stahlblech-Containment ausgekleidet sein. Ist das Containment fest anliegend mit dem umliegenden Fels verschraubt, ergibt sich eine sehr standfeste Konstruktion. Der eigentliche Trick ist aber die Verdämmung der Explosionen. Wenn man von dem Kavernendach einen dichten Vorhang Flüssigkeitstropfen (es geht sogar Wasser) herabregnen läßt und die Explosion in diesem Schauer stattfinden läßt, wird der Feuerball regelrecht aufgefressen. Nahezu die gesamte Energie der Explosion führt auf den zahlreichen Oberflächen der Tropfen zu einer schlagartigen Verdampfung. Wählt man eine Salzschmelze mit ihrer extrem hohen Verdampfungstemperatur, wird dadurch die Explosionswelle in wenigen Metern abgebaut. Das Ergebnis ist eine Druckspitze von weniger als 30 bar, die auf die Wände wirkt. Innerhalb kürzester Zeit kondensiert der Dampf wieder und gibt seine Energie an die Salzschmelze ab. Sie ist jetzt erheblich heißer geworden. Die Salzschmelze wird kontinuierlich durch einen Wärmeübertrager gepumpt, in dem sie Dampf erzeugt. Ab dieser Stelle, beginnt ein ganz konventioneller Kraftwerksteil zur Stromerzeugung.

Die Salzschmelze

Als Salz wird das bekannte Eutektikum FLiBe Li2 – BeF4 aus 67% Berylliumfluorid BeF2 und 32,9% Lithiumfluorid LiF mit einem Schmelzpunkt von 363 °C verwendet, sodaß sich eine Arbeitstemperatur um 500 °C einstellt. Es können einige Prozent Thoriumfluorid ThF4 darin gelöst werden. Zusätzlich kann der Sprengkörper mit einer Schicht aus Beryllium als Neutronenmultiplikator und Thorium als Brutstoff umgeben werden. Wird die Salzschmelze reduzierend, das heißt mit einem Fluoridmangel angesetzt, kommt das Tritium als Tritiumgas vor und kann kontinuierlich abgezogen werden. Das erbrütete Uran-233 bildet ebenfalls Uransalz UF4. Es kann recht einfach abgeschieden werden, indem es z. B. in das gasförmige Uranhexafluorid UF6 umgeformt wird.

Bei diesem Reaktor kann der Anteil der Energieproduktion aus Spaltung und Fusion in weiten Grenzen verschoben werden. Bis zu 90 % Energie können theoretisch aus der Fusion gewonnen werden. Dies bedeutet neben einem geringen Anteil von Spaltprodukten eine sehr hohe Brutrate wegen des sehr hohen Neutronenüberschusses. Es ist zu erwarten, daß bereits auf der Basis heutiger Uran- und Strompreise, der wesentliche Erlös aus dem Verkauf von Spaltmaterial kommen würde. Dieses Reaktorkonzept bietet sich daher besonders für den Fall eines „verschlafenen“ Einstiegs in eine Brüterflotte, bei plötzlich steigenden Uranpreisen an.

Sicherheit

Wenn wirklich alles schief geht, hat man einen unterirdischen „Kernwaffentest“. Die Anlage ist dann unwiederbringlich Totalschaden. Aber das war’s auch schon. Allein die USA haben über 800 unterirdische Testexplosionen in Sichtweite von Las Vegas ausgeführt. Im Spitzenjahr 1962 praktisch an jedem dritten Tag eine.

Das Inventar an Spaltprodukten liegt bei diesem Reaktortyp unter einem Prozent gegenüber einem konventionellen Leichtwasserreaktor. Dies liegt einerseits daran, daß ein erheblicher Teil der Energie aus der Fusion mit dem Endprodukt Helium stammt und andererseits durch die Wiederaufbereitung zur Spaltstoffgewinnung auch ständig Spaltprodukte dem Kreislauf entzogen werden. Wie Simulationsrechnungen gezeigt haben, ist auch nach 30 Betriebsjahren und der Berücksichtigung von Aktivierungen durch Neutronenbeschuß von Stahlhülle und umliegenden Gestein, die Radioaktivität so gering, daß man den Rest einfach unter Beton beerdigen könnte. An dieser Stelle sei daran erinnert, daß bei der Verwendung von Thorium praktisch keine langlebigen Aktinoide entstehen.

Das Inventar an Tritium wäre unter 100 Ci, da es ja ständig abgezogen werden muß, um es verbrauchen zu können. Ein vollständiges Entweichen durch einen Unfall wäre kein besonderes Problem.

Proliferation

Es wäre ein Irrtum zu glauben, daß eine solche Anlage für Terroristen oder „Schurkenstaaten“ ein Objekt der Begierde sein könnte. Die bei diesem Reaktortyp verwendeten Sprengkörper sind als Waffe ziemlich ungeeignet. Sie wären kaum zu transportieren oder zu lagern. Sie müßten wegen ihrer Vergänglichkeit eher vollautomatisch gefertigt und unmittelbar verbraucht werden. Ebenso wird man kaum den Weg der Zündung über chemische Sprengstoffe gehen. Dies wäre viel zu teuer. Man wird eher den Weg über eine stationäre Zündmaschine gehen. Die wird aber so groß werden, daß man sie kaum stehlen könnte.

Nachwort

Manchem mag das alles wie Science Fiction vorkommen. Ist es aber gar nicht. Es gibt kaum etwas, was besser erforscht ist als Kernwaffen. Es gibt auch nach wie vor kaum ein Fachgebiet was besser ausgestattet ist. Wo stehen denn stets die schnellsten Rechner, die besten Labors, die größten Laser etc.? Wenn man wollte, könnte man diesen Reaktortyp innerhalb von zehn Jahren bauen. Es wäre ein sicherer Einstieg in die Kernfusion und es wäre für die einschlägigen „Fachabteilungen“ zumindest in USA und Rußland ein Routineauftrag. Weniger Forschung als Entwicklung.

Es geht hier nicht darum, Werbung für ein exotisches Kraftwerk zu machen. Es sollte nur an einem Beispiel gezeigt werden, wie unendlich breit das Gebiet der Kernenergie ist und welche Möglichkeiten es bieten würde. Eher geht es darum, daß der Blickwinkel – gegenüber unseren Vätern – sehr verengt worden ist. In den 1950er und 1960er Jahren hatte man noch eine Kreativität, wie sie heute vielleicht noch in der IT-Branche vorhanden ist. Technik war noch nicht negativ besetzt.

Es gab auch noch eine Hoffnung auf, und einen Willen zu einer besseren Zukunft. Die Angst- und Neidindustrie war noch gar nicht erschaffen. Der ganze Blödsinn von bald versiegenden Ölquellen, Uranvorkommen, „Treibhauseffekten“, „Ozonlöchern“ etc. konnte die Menschen noch nicht ängstigen. Es ist allerdings kein Zufall, daß sich alle Systemveränderer immer wieder auf die Energietechnik stürzen. Sie haben mehr als andere erkannt, daß Energie die „Master Resource“ ist, ohne die nichts geht, aber mit deren Hilfe, fast alles möglich ist.

Niemand zwingt uns Menschen, mit Wind und Sonne wieder zurück ins Mittelalter zu gehen. Die resultierende Armut und die entgangenen Chancen wären freiwillig gewählt.

Obama ruft zum Kreuzzug

Im Juni 2013 stellte das „Executive Office of the President“ seinen 20-seitigen „THE PRESIDENT’S CLIMATE ACTION PLAN“ vor. Medienwirksam hielt der Präsident am 25. Juni einen Vortrag an der Georgetown-Universität in Washington. Alle „Betroffenheitsorganisationen“ von Greenpeace bis WWF waren pflichtschuldigst mit Lob zur Stelle. Das Strommagazin, als Zentralorgan der Sonnenmännchen Deutschlands titelte:

„Die USA machen endlich Ernst beim Klimaschutz. Nach Jahren des Stillstands und der Blockade gibt es endlich ermutigende Signale von der größten Volkswirtschaft der Welt.“

Wieder einmal, war es dem „Ankündigungspräsidenten“ gelungen, der Linken weltweit etwas Zucker zu geben und für sich selbst ein Thema zu finden, mit dem er hofft in positiver Erinnerung zu bleiben.

Situation in den USA

Im letzten Jahr sanken der Kohlendioxid-Ausstoß und die Netto-Ölimporte auf den geringsten Wert in den letzten 20 Jahren und gleichzeitig stiegen die USA zum größten Erdgasförderer der Welt auf. Zahlen, mit denen sich ein Präsident zu schmücken können glaubt. Die Frage wäre allerdings noch, welcher. Wenn schon ein Präsident, dann eher sein Vorgänger Bush, der hier bevorzugt als alkoholkranker, schießwütiger Texaner dargestellt wird. Der war es nämlich, der mit Unterstützung zahlreicher „Rechter Militärs“ die Senkung der Abhängigkeit von Ölimporten zielstrebig einleitete. Ein Abfallprodukt dieser Politik, ist der verringerte CO2.-Ausstoß. Als Texaner war ihm klar, daß zur Senkung der Ölabhängigkeit nur ein Mittel wirksam ist: Bohren, bohren und noch einmal bohren im eigenen Land. Die Früchte werden heute in Form des „Shale-Gas“ und „Shale-Oil“-boom eingefahren – ganz entgegen dem über 60 Jahre andauernden Gefasel von „Peak-Oil“. Deswegen mußte „Greenpeace-Klimaexperte Martin Kaiser“ auch sofort anmerken:

…dass Obama aber auch auf „Risikotechnologien“ wie Fracking oder Atomkraft setze, sei ein falsches Signal…“.

Auch der erste Neubau von fünf Kernkraftwerken seit 30 Jahren passt in diese Strategie: Man hatte nicht vergessen, daß bis zur „Ölkrise“ in den 1970er Jahren fast 70% der elektrischen Energie mit Öl erzeugt wurde. Erst durch den massiven Ausbau der Kernenergie gelang die „Freisetzung“ fossiler Energien für andere Anwendungen. Deshalb der immer wehrende Kampf der „Systemveränderer“, gegen neue Fördermethoden bei fossilen Energien und die Kernenergie. Nur, wenn man ein „Marktversagen“ durch politische Eingriffe erzeugen kann, läßt sich dem Zombie „Planwirtschaft“ wieder neues Leben einhauchen.

Die „Shale-Gas Revolution“

Das sogenannte „Fracking“ ist eine seit 80 Jahren bei der Öl- und Gasförderung angewendete Technik. Hinzu kam die Methode „horizontaler Bohrungen“, die in den letzten Jahrzehnten eine bemerkenswerte technische – und vor allem wirtschaftliche – Entwicklung genommen hat. Heute ist es möglich, schmale öl- oder gashöffige Schichten zu erschließen. Auch diese Vorkommen waren den Geologen seit langem bekannt. Es ist auch kein Zufall, daß diese von eher kleinen Ölfirmen in Angriff genommen wurden. Wie so oft, wurde die anfängliche Nische sehr schnell zu einer breiten Bewegung. So funktioniert nun mal die Marktwirtschaft.

Gasförderung ist noch kapitalintensiver als Ölförderung. Im Prinzip muß jedes einzelne Bohrloch mit dem Verbraucher durch eine feste Rohrleitung verbunden werden. Auch eine Gasverflüssigung (LNG) schafft nur bedingt Abhilfe. Sie lohnt erst ab Entfernungen von etwa 3.000 km. Dies führt zu stark schwankenden Preisen. Die gigantischen Anfangsinvestitionen müssen über Jahrzehnte getilgt werden. Ist erstmal das „Erdgasnetz“ gebaut, fallen nur relativ geringe Betriebskosten an. Der Investor ist gezwungen, praktisch zu jedem noch so geringen Preis (heutige Situation in USA) zu verkaufen, damit er wenigstens seine Kredite bedienen kann. Kann er das nicht mehr, geht er pleite. Sind genug Produzenten verschwunden und keine Ersatzinvestitionen (neue Bohrungen) mehr erfolgt, schießen die Preise wieder in die Höhe: Ein neuer „Schweinezyklus“ beginnt.

Der wichtigste „swinging user“ in diesem Geschäft sind Kraftwerke. Sie sind fest mit dem Erdgasnetz verbunden und können sehr große Leistungen ziehen. Oft sind sie auch noch mit Öl zu betreiben. Ist das Gas entsprechend billig, werden sie hoch gefahren und andere Kraftwerke mit teureren Brennstoffen gedrosselt. Durch diese zusätzliche Abnahme kann bei einem Überangebot an Gas verhindert werden, daß die Preise ins bodenlose fallen. Andersherum werden solche Erdgaskraftwerke (z. B. an kalten Wintertagen) bei übermäßig hohen Gaspreisen vom Netz genommen. Dies geschieht z. B. zur Zeit in Deutschland, weil hier Kohle weitaus günstiger ist. Genau dieser Mechanismus führte in den USA zu dem verringerten CO2.-Ausstoß im vergangenen Jahr: Durch die Konjunkturschwäche war der Verbrauch an Elektroenergie gefallen. Gleichzeitig wurde mehr Erdgas in den Kraftwerken eingesetzt.

Sogar die Energieversorger haben ein Interesse an stabilen Erdgaspreisen. Sie wissen aus leidvoller Erfahrung, daß einem zu niedrigen Preis (nicht mehr akzeptabel für die Erdgasproduzenten) ein steiler Anstieg mit wenigen Jahren Verzögerung folgt. In den USA ist es aber erklärtes Ziel, mit dem billigen Erdgas eine neue Industriealisierung einzuleiten. Die Umstellung in der chemischen Industrie und auf dem Verkehrssektor hat gerade begonnen, dauert aber mehrere Jahre. Es wäre zu dumm, wenn diese Anlagen bei Fertigstellung auf einen zu hohen Gaspreis treffen würden, nur weil die Gasförderer aus Kapitalmangel keine neuen Bohrungen ausgeführt hätten. Es bleibt also nur die Möglichkeit Erdgas als LNG nach Europa und Asien zu exportieren oder massiv in der Stromwirtschaft einzusetzen. Anlagen zur Verflüssigung sind aber extrem teuer und lohnen sich nur, wenn sie über Jahrzehnte betrieben werden können. Gerade in kommenden Jahrzehnten will man aber den Heimvorteil billigen Erdgases nutzen.

Kohle

Die USA werden auch gerne als das Saudi Arabien der Kohle bezeichnet. Kaum ein Land verfügt über so große und leicht zu fördernde Kohlevorkommen. Kohle ist immer noch ein bedeutender Wirtschaftszweig. Für viele Bundesstaaten (Wyoming, Utah, Kentucky etc.) ist es der zentrale Wirtschaftssektor. Genau in dieser wirtschaftlichen Bedeutung liegen die Stolpersteine für Obama: Umweltschutz und Bergbau ist Ländersache. Der Präsident hat auf diesem Gebiet praktisch keinen Einfluß. Er kann nur durch Worte versuchen zu überzeugen. Die Gesetze werden im Parlament und im Senat gemacht oder sogar in den Bundesstaaten. Die Umweltschutzbehörde EPA hat auf die Luftverschmutzung auch nur geringen Einfluß. Sie ist lediglich für die, die Staatsgrenzen überschreitenden Anteile zuständig. Die Aufforderung an die EPA, doch bitte strengere Grenzwerte zu erlassen, hat bereits harsche Kritik von Verfassungsrechtlern provoziert. Energiepolitik fällt in den Aufgabenbereich der Parlamente. Gesundheits- und Umweltschutz muß durch wissenschaftliche Erkenntnisse abgesichert sein. Da die USA nicht nur aus linken, klimagläubigen Wissenschaftlern bestehen, ist schon allein auf diesem Gebiet, noch mit einigen harten Auseinandersetzungen zu rechnen.

Eigentlich niemand hat in den USA ein Interesse, die Kohleförderung wesentlich zu senken. Dies macht auch keinen Sinn, da es sehr teuer und langwierig ist, Bergwerke in Betrieb zu nehmen. Es wird also eine massive, vorübergehende Flucht in den Export geben. Man wird den asiatischen und europäischen Markt mit billiger Kohle überschwemmen. In den letzten fünf Jahren allein, hat sich der Kohleexport der USA von 36 Millionen in 2002 auf 114 Millionen Tonnen in 2012 mehr als verdreifacht. Dies ist sehr hilfreich für die deutsche „Energiewende“. Die Kernenergie kann fast vollständig durch Kohle ersetzt werden. Das Kohlendioxid wird halt nur nicht mehr auf amerikanischem Boden freigesetzt, sondern z. B. von deutschen „Gutmenschen“, die ja (gefühlt) ihrem Präsidenten immer so begeistert zujubeln.

Für die USA ist das alles eine kluge Doppelstrategie: Man baut sich eine komfortable und preiswerte Energieversorgung auf und nutzt die dafür notwendige Zeit, lästige europäische Industriekonkurrenz mit vermeintlich preiswerter Energie einzuschläfern und abzuhängen.

Das ist beileibe nichts neues: Vor einigen Jahren gab es in den USA eine lebhafte Diskussion über folgenden Weg: Man ersetzt die Kohle in der Stromerzeugung durch Kernenergie. Die dadurch freiwerdende Kohle setzt man zur Herstellung synthetischer Kraftstoffe ein. Ein Großteil des bei der Wasserstoffproduktion anfallenden CO2. wird gleich wieder in alte Gas- und Öllagerstätten versenkt. Man senkt die Ölimporte auf Null (strategische Forderung konservativer Politiker) und spart dabei auch noch enorme Mengen des „Klimakillers“ (als Geschenk an die linke Ökobewegung) bei deutlich steigender industrieller Produktion.

Anmerkung

In den USA entstammen 40% aller CO2 – Emissionen überhaupt, aus Kraftwerken. Will man also werbewirksam den Ausstoß von Kohlendioxid verringern, verspricht dieser Sektor den schnellsten Erfolg. In den USA wurden 4344 Milliarden kWh elektrischer Energie im Jahr 2011 verbraucht. Rund 2/3 entstammen fossilen Energien (43% Kohle, 24% Gas) und 1/3 wurden „CO2 – frei“ (19% Kernenergie, 8% Wasserkraft, 2,8% Wind) produziert.

Eine typisch vollmundige Obama-Formulierung in seinem Bericht lautet:

During the President’s first term, the United States more than doubled generation of electricity from wind, solar, and geothermal sources. To ensure America’s continued leadership position in clean energy, President Obama has set a goal to double renewable electricity generation once again by 2020.

Was soll und das sagen? Weniger als 5% der Stromproduktion wurden auf diese Weise gewonnen. Eine Verdoppelung hört sich gewaltig an, ist Balsam für die Ohren seiner linken Unterstützer, die schon durch seine erfolglose „Guantanamo-Schließung“ auf eine harte Probe gestellt wurden. Wenn nur die fünf in Bau befindlichen Kernkraftwerke (2 x Vogtle, 2 x Summer, 1x Watts Bar) ans Netz gegangen sind, erzeugen sie schon mehr als 1% der gesamten Stromerzeugung „CO2 – frei“.

Reaktortypen heute und in naher Zukunft

Warum haben sich einige Reaktoren durchgesetzt und andere nicht?

Bevor die technische Betrachtung los gehen kann, sind einige Vorbemerkungen erforderlich. Es sind die immer gleichen Sätze, die aber all zu gern gerade von Technikern und Wissenschaftlern verdrängt werden: Da draußen, in der realen Welt, außerhalb von Hörsälen und Politologenseminaren, kostet alles Geld und muß auch alles wieder Geld einbringen. Einen Euro, den man für Forschung ausgegeben hat, kann man nicht noch einmal für „soziale Projekte“ oder sonst irgend etwas ausgeben. In der Politik herrscht der nackte Verteilungskampf. Jeder in der Wirtschaft investierte Euro, muß nicht nur wieder eingespielt werden, sondern auch noch einige Cents zusätzlich einbringen – gemeinhin Gewinn genannt. Dies ist geradezu naturgesetzlich. Wie der „Real Existierende Sozialismus“ eindrücklich bewiesen hat, bricht sonst ein ganzes Gesellschaftssystem einfach in sich zusammen.

Die Evolution

Von den unzähligen Reaktortypen, haben nur drei – in der Reihenfolge ihrer Stückzahl – überlebt: Druckwasser-, Siedewasser- und Schwerwasserreaktoren. Gestorben sind alle mit Gas gekühlten, Graphit moderierten, und „schnellen“ Reaktoren. Manche sind über den Status eines Prototypen – wie z. B. die Salzbadreaktoren – nicht hinaus gekommen. Das sagt weniger über ihre „technischen Qualitäten“, als sehr viel mehr über die Gültigkeit der Vorbemerkung aus.

Die „schnellen“ Brüter

Das einzige, in der Natur vorkommende Material, mit dem man eine Kettenreaktion einleiten kann, ist Uran-235. Der Anteil dieses Isotops am Natururan beträgt nur 0,7%. Hört sich beängstigend gering an. Mit Prozenten ist das aber immer so eine Sache: Wenn man nicht fragt, von wieviel, kann man schnell zu falschen Schlüssen gelangen. Drei Dinge sind zu berücksichtigen, die sich gegenseitig positiv verstärken:

  1. Nach menschlichen Maßstäben, gibt es auf der Erde unerschöpflich viel Uran. Uran ist als Spurenelement überall vorhanden. Allein in den oberen 30 cm Erdschicht, sind auf jedem Quadratkilometer rund 1,5 to vorhanden (der durchschnittliche Urangehalt in der Erdkruste liegt bei 2,7 Gramm pro Tonne). Das Uran-Vorkommen im Meerwasser wird auf vier Milliarden Tonnen geschätzt. Der Menschheit wird das Uran also nie ausgehen. Eine von „Atomkraftgegnern“ immer wieder gern verbreitete angebliche Reichweite von ohnehin nur 30 bis 80 Jahren, ist einfach nur grottenschlechte Propaganda.
  2. Für uns Menschen setzt die Kernspaltung von Uran unvorstellbare – weil außerhalb unseres normalen Erfahrungshorizont liegend – Energiemengen frei. Die Spaltung eines einzelnen Gramms Uran setzt rund 22.800 kWh Wärme frei oder viel anschaulicher ausgedrückt, 13 boe (Fässer Rohöläquivalent). Zur Zeit kostet ein barrel (159 Liter) Rohöl rund 80 Euro am Weltmarkt. Ein Pound (453 gr) U3 O8 kostet aber nur etwa 50 US-Dollar – und damit nicht 1 Million (!!) Dollar, wie es seinem „Öläquivalent“ entsprechen würde. Diese Abschätzung macht deutlich, daß noch einige Zeit vergehen dürfte, bis das Uran auch nur im wirtschaftlichen Sinne knapp werden wird. Allein das bisher geförderte Uran (in der Form von Sprengköpfen, abgebrannten Brennelementen etc.) reicht für einige Jahrtausende aus, um den heutigen Weltbedarf an elektrischer Energie zu produzieren.
  3. In thermischen Reaktoren (gemeint ist damit, Reaktoren in denen überwiegend nur sehr langsame Neutronen die Kernspaltung betreiben.) wird vorwiegend Uran-235 genutzt, das aber im Natururan nur zu 0,7 % enthalten ist. Man glaubte, durch diesen „Faktor 100“ könnte sich vielleicht früher ein Engpass ergeben. Um so mehr, da bei Leichtwasserreaktoren eine Anreicherung auf 3 bis 5 % sinnvoll ist. Wegen der erforderlichen Anreicherung benötigt man fast die zehnfache Menge Natururan für die Erstbeladung eines solchen Reaktors. In Wirklichkeit ist es weit weniger dramatisch, da bei jeder Spaltung durch die Überschußneutronen neuer Spaltstoff (Plutonium) erzeugt wird. Die Konversionsrate bei heutiger Betriebsweise beträgt etwa 0,6. Mit anderen Worten, wenn 10 Kerne gespalten werden, bilden sich dadurch 6 neue „Spaltkerne“. Dafür benötigt man eine Wiederaufbereitungsanlage, deren Betrieb aber reichlich Geld kostet. Bei den heutigen, geringen Uranpreisen am Weltmarkt (siehe oben) lohnt sich das wirtschaftlich kaum. Man läßt die abgebrannten Brennelemente erst einmal stehen. Für die Kraftwerksbetreiber sind sie Abfall (weil nicht länger mehr im Reaktor einsetzbar), aber trotzdem Wertstofflager und keinesfalls Müll. Darüber hinaus sind sie um so leichter zu verarbeiten, je länger sie abgelagert sind.

Bedenkt man diese drei Punkte und den Vorspann, hat man unmittelbar die Antwort, warum sich Reaktoren mit schnellem Neutronenspektrum bis heute nicht kommerziell durchsetzen konnten. Sie sind in Bau und Betrieb wesentlich teurer als Leichtwasserreaktoren. So muß man Natrium- oder Bleilegierungen als Kühlmittel einsetzen. Eine völlig andere Technologie. Für Pumpen, Ventile und was man noch so alles in einem Kraftwerk braucht, gibt es nur weniger als eine Handvoll Hersteller, die alles in Einzelanfertigung herstellen mußten. Selbst das Kühlmittel ist ein Problem: Für vollentsalztes Wasser findet man heute praktisch in jeder Stadt einen Lieferanten. Für „Reaktornatrium“ gibt es nach Kenntnis des Autors praktisch nur einen Hersteller weltweit – übrigens ein deutsches Unternehmen – der bis nach Rußland und China liefert. In einem „natriumgekühlten“ Reaktor hat man drei Kühlkreisläufe (einen radioaktiven durch den Kern, einen Zwischenkreis zum Strahlenschutz und einen Wasser-Dampf-Kreislauf zur eigentlichen Stromerzeugung). Demgegenüber hat ein Siedewasserreaktor nur einen, der auch ohne Umwälzpumpen auskommen kann. Der Unterschied in Investitions- und Betriebskosten dürfte auch jedem Laien nachvollziehbar sein.

Weitaus schwerwiegender ist aber das wirtschaftliche Risiko. Kein verantwortungsvoller Energieversorger auf der Welt, wird sich für einen schnellen Reaktor zur kommerziellen Stromerzeugung entscheiden. Unkalkulierbares Genehmigungsverfahren mit unbestimmten Ausgang: Dafür findet sich keine Bank, die darauf einen Kredit gibt. Es bleibt daher auf absehbare Zeit wie es ist. Solche Reaktoren können nur in Rußland, China und Indien in staatlicher Regie gebaut werden. Sollten sich in einem „westlichen“ Land tatsächlich Politiker finden, die dafür die Verantwortung tragen wollen, könnte es sofort losgehen. Das Jahrzehnte dauernde Drama in Japan (Monju, Baubeginn 1984 (!), bis heute im ständigen Umbau) ist allerdings abschreckendes Beispiel genug. Technisch, gibt es keine grundlegenden Probleme mehr. Technisch, hätte das Projekt ungefähr das Risiko und den finanziellen Aufwand eines neuen Verkehrsflugzeugs oder einer neuen Weltraumrakete – nur für Politiker ist es eben nicht attraktiv. Dies ist übrigens keine Politikerschelte, denn die werden von uns selbst gewählt.

Selbst in USA läßt man sich für zig Milliarden lieber eine Mischoxid-Brennelemente-Fabrik von Areva bauen, nur um seinen vertraglichen Pflichten gegenüber Rußland aus dem Abrüstungsprogramm nachkommen zu können. Was in Frankreich funktioniert, kann so schlecht nicht sein. Die eigene IFR-Entwicklung hat man an Japan verscherbelt. Sie lebt heute unter dem Kürzel PRISM (Power Reactor Innovative Small Module) in einem Gemeinschaftsunternehmen von GE und Hitachi Nuclear Energy (GEH) mehr schlecht als recht, weiter. 2012 hat sich GEH in Großbritannien um ein Projekt zur Beseitigung des nationalen Überschusses an Plutonium beworben. Als Alternative zu Mischoxid-Brennelementen, mit deren Fertigung man in GB keine berauschenden Erfahrungen gemacht hatte. Mal sehen, was daraus wird. Es sollte übrigens ausdrücklich kein „Brüter“, sondern ein „Brenner“ werden, der möglichst schnell, möglichst kostengünstig, große Mengen Plutonium untauglich für eine Waffenherstellung macht.

Die Hochtemperaturreaktoren

Immer wieder taucht die (zweifelhafte) Forderung nach höheren Temperaturen auf. Entweder ist die Begründung ein besserer Wirkungsgrad oder die Nutzung für die Chemie. Deutschland war nach der Ölkrise der 1970er federführend in der Entwicklung. Will man höhere Temperaturen (über 300 °C) erreichen, bleibt praktisch nur eine Gaskühlung, da bei Wasserdampf der Druck in eine nicht mehr sinnvolle Dimension ansteigt. Außerdem verläßt man im Reaktor das Naßdampfgebiet, was für die „Reaktordynamik“ nur Nachteile bringt.

In den 1950er Jahren hatte man das Problem mit „zu nassem“ Dampf im Turbinenbau. Ausserdem ging zwangsläufig der Bau von Reaktoren mit Graphit als Moderator (für die Rüstung) voran. In Großbritannien ergaben sich die MAGNOX-Reaktoren mit Natururan und CO2. als Kühlmittel. Sie wurden mit einem Druck von knapp 21 bar und 400 °C betrieben. Schon damals unwirtschaftlich. Die Entwicklung ging folgerichtig weiter, zum AGR mit rund dem doppelten Druck und einer Temperatur von 630 °C. Von diesem Advanced Gas-cooled Reactor (AGR) wurden immerhin zehn Reaktoren mit einer Gesamtleistung von fast 6.000 MWe gebaut. Die hohe Temperatur in Verbindung mit CO2. führte zwar immer wieder zu Korrosionsproblemen, aber eigentlich sind es recht robuste Kraftwerke. Bei Neuplanungen geht man aber auch in Großbritannien ausschließlich von Leichtwasserreaktoren aus.

In der Sowjetunion erschuf man einen mit Graphit moderierten Druckröhren Reaktor (RBMK). Er erlangte in Tschernobyl traurige Berühmtheit. Es sind wohl immer noch acht Reaktoren in Betrieb. Die Mehrzahl wurde aber bereits aus dem Verkehr gezogen.

Auf die „echten“, mit Helium gekühlten Hochtemperatur-Reaktoren (z. B THTR in Deutschland mit 750 °C Austrittstemperatur) wird weiter unten noch eingegangen.

Kernenergie zur Stromproduktion

Bisher hat sich die Kernenergie weltweit ausschließlich zur Produktion elektrischer Energie durchgesetzt. Warum das auch auf absehbare Zeit so bleiben wird, später.

Nun hört man immer wieder das „Modewort“ von der „Energieeffizienz“. Gegen Leichtwasserreaktoren wird von „Atomkraftgegnern“ immer gern das Argument der angeblich schlechten Wirkungsgrade angeführt. Als Wirkungsgrad ist das Verhältnis von erhaltener Energie (die elektrische Energie, die aus dem Kraftwerk ins Netz geht) zu eingesetzter Energie (Spaltung von Uran oder Plutonium) definiert. Eine solche Definition macht in diesem Fall ohnehin wenig Sinn: Zumindest Plutonium ist ein (außer als Energieträger) wertloser Stoff, der potentiell sogar gefährlich (wie z. B. Quecksilber) ist. Eine andere Situation als bei Öl, Erdgas usw., die man auch als Rohstoff für vielfältige, andere Zwecke (Treibstoff, Kunststoffe etc.) nutzen kann. Ein besserer Wirkungsgrad macht bei der Kernenergie nur als „verminderte“ Betriebskosten Sinn. Wie aber schon oben gezeigt wurde, kostet Uran (energetisch betrachtet) fast nichts, aus dem Schornstein (im Vergleich zu einem Kohlekraftwerk) kommt auch nichts und die Asche (Spaltprodukte) ist weniger, als bei einem Gasturbinen-Kraftwerk aus dem Schornstein kommt. Alles keine Anreize, damit man um Wirkungsgrad-Punkte kämpft.

Trotzdem kann es nicht schaden, wenn man mal über den Zaun schaut. Die Spitzenwerte liegen heute für Koppelprozesse in Gasturbinen-Kraftwerken, mit nachgeschaltetem Dampfkreislauf zur Abwärmenutzung, bei 60%. Die modernsten Steinkohle-Kraftwerke haben Wirkungsgrade von 46% und der EPR von Areva 37%. Wenn man den Koppelprozeß mit 1 ansetzt, verhalten sich Kombi-, zu Steinkohle-Kraftwerk und Druckwasserreaktor wie 1,0 : 0,77 : 0,62. Alles keine Zahlen, um ein völlig neues Kraftwerkskonzept zu verkaufen (Sie erinnern sich noch an den Vorspann?).

Sehr interessant in diesem Zusammenhang wäre die Kraft-Wärme-Kopplung: Ein Kernkraftwerk als Heizkraftwerk. Plötzlich hätte man die gleichen Nutzungsgrade, wie aus den Prospekten der Block-Heiz-Kraft-Werk (BHKW) Hersteller und Rot/Grünen-Parteitagen – und das auch noch ohne Abgase und Geräusche. Ja, wenn nur die Strahlenphobie nicht wäre. Wir könnten leben, wie in der Schweiz (KKW Beznau) oder einst an der Unterelbe (KKW Stade).

Kernenergie als Wärmequelle

Mit Leichtwasserreaktoren läßt sich sinnvoll nur Wärme unter 300 °C herstellen. Wärme läßt sich wirtschaftlich immer nur über kurze Strecken transportieren. Andererseits nimmt gerade die Niedertemperaturwärme (Raumheizung, Warmwasser etc.) einen beträchtlichen Anteil in der nördlichen Hemisphäre ein. Man müßte lediglich Kernkraftwerke (vielleicht SMR?) in der Nähe von Metropolen bauen um „Fernwärme“ auszukoppeln.

Sehr hohe Temperaturen braucht man nur in der Industrie (Metalle, Glas etc.) und der Chemie. Diese Anwendungen sind heute eine Domäne von Erdgas und werden es auch bleiben. Hochtemperatur-Reaktoren wurden immer nur als Angebot für das Zeitalter nach dem „Ölzeitalter“ (wann das wohl sein wird?) vorgeschlagen. In Deutschland nannte man das „Kohle und Kernenergie“ und schuf den Thorium-Hochtemperatur-Reaktor (THTR), auch Kugelhaufen-Reaktor genannt. Er hat Austrittstemperaturen von 750 °C erreicht (für die Stromerzeugung mit Trockenkühlturm), sollte aber über 1000 °C für „Kalte Fernwärme“ und Wasserstoffproduktion erreichen.

Weltweit werden mehr als 500 Milliarden Normkubikmeter Wasserstoff produziert. Hauptsächlich aus Erdgas. Größte Verbraucher sind Raffinerien und Chemieanlagen. Folgt man einmal nicht Greenpeace und Putin („Wir brauchen mehr umweltfreundliche Gaskraftwerke“), sondern ersetzt im Gegenteil Erdgaskraftwerke durch Kernkraftwerke, kann man ganz konventionell riesige Wasserstoffmengen zusätzlich produzieren. Dagegen kann nicht mal die „Klima-Schutz-Staffel aus Potsdam“ etwas einwenden, denn bei der Umwandlung von Methan fällt nur Wasserstoff und CO2 an. Das Kohlendioxid kann nach texanisch, norwegischem Muster in den alten Öl- und Gasfeldern entsorgt werden oder nach niederländischem Muster in Tomaten. Der Einstieg in die „Wasserstoffwirtschaft“ kann erfolgen. Bis uns das Erdgas ausgeht, können Hochtemperaturreaktoren warten.

Fazit

Es geht mir hier nicht darum, für die Einstellung von Forschung und Entwicklung auf dem Gebiet der Kerntechnik einzutreten. Ganz im Gegenteil. Es nervt mich nur, wenn ganz schlaue Kernenergiegegner einem im Schafspelz gegenübertreten und einem erzählen wollen, daß sie ja eigentlich gar nicht gegen Kernenergie sind: Wenn, ja wenn, nur die „ungelöste Entsorgungsfrage“ erstmal gelöst ist und es „sichere Reaktoren“ gibt. Man würde ja in letzter Zeit auch immer von ganz „interessanten Konzepten“ lesen. Was spreche denn dagegen, erstmal abzuwarten? Bis dahin könnte man ja Wind und Sonne ausbauen. Die würden ja dadurch auch ständig billiger werden (Ha, ha, ha) und wahrscheinlich bräuchte man dann auch gar keine Kernenergie mehr. Und überhaupt, die „Energieeffizienz“ sei überhaupt die größte Ressource, man vertraue da ganz auf den Erfindergeist der „Deutschen Ingenieure“. Na denn ….

Die „Dual Fluid“ Erfindung

oder Verschwörungstheoretiker versus Erfindermesse

Seit ein paar Wochen tobt im Internet ein Streit zwischen den „Reaktorerfindern“ des Instituts für Festkörper-Kernphysik gGmbH (http://dual-fluid-reaktor.de) und den „Preisstiftern“ des Greentec-Awards 2013 (http://www.greentec-awards.com). Soweit ein Außenstehender nachvollziehen kann, geht es um die Bewerbung von A bei B um irgendeine Auszeichnung. Leider wurde der „Dual Fluid Reaktor“ von A nachträglich durch B disqualifiziert, weil er angeblich die Ausschreibungsbedingungen gar nicht erfüllt. Damit hätte sich das Interesse des Autors bereits vollständig erschöpft, wenn nun nicht in allen möglichen Blogs Partei für die eine oder andere Seite ergriffen würde. Inzwischen wird die Angelegenheit zum Glaubenskrieg Pro oder Kontra Kernenergie hochstilisiert. Von beiden Lagern wird soviel Blödsinn verbreitet, daß es dem Autor notwendig erscheint, ein paar erklärende Worte zu versuchen.

Grundsätzliches

Jedes Kernkraftwerk braucht einen Brennstoff und ein Arbeitsmedium. Für die (großtechnische) Stromerzeugung hat sich bis zum heutigen Tag nur der von einer Turbine angetriebene Generator durchgesetzt. Bei den Turbinen überwiegt die Dampfturbine und in wenigen Fällen die „Luftturbine mit innerer Verbrennung“, meist kurz „Gasturbine“ genannt. Für Kernkraftwerke scheidet die zweite aus. Deshalb funktionieren alle Kernkraftwerke mit Dampfturbinen. Wie bestimmend der Wasser-Dampf-Kreislauf für Kernkraftwerke ist, hat sich vor nicht all zu langer Zeit wieder an der Weiterentwicklung des mit Helium gekühlten Kugelhaufenreaktors gezeigt: China und Deutschland haben erfolgreich auf Dampfturbinen gesetzt, das Konsortium in Südafrika ist kläglich an der Entwicklung einer mit Helium betriebenen Gasturbine gescheitert.

Beim Brennstoff wird die Sache schon bedeutend vielfältiger: Man hat unterschiedliche Stoffe (z. B. Uran, Thorium, Plutonium) in unterschiedlichen chemischen Verbindungen (Uranoxid, -nitrid, -karbid, metallisch) und Aggregatzuständen (feste Tablette, wässrige Lösung, geschmolzene Salze) verwendet. Jede Brennstoffart hat ihre ganz charakteristischen Vor- und Nachteile, die in jedem konkreten Anwendungsfall abgewogen werden müssen. Den idealen Brennstoff gibt es nicht!

Ein wenig Neutronenphysik

Prinzipiell kann man jedes „schwere Element“ mit Neutronen spalten. Allerdings ist die Wahrscheinlichkeit für eine Spaltung nicht nur eine Stoffeigenschaft, sondern hängt auch von der Geschwindigkeit der auftreffenden Neutronen ab. Man unterscheidet deshalb in der Neutronenphysik bei jedem Isotop noch Absorptions-, Streu- und Spaltquerschnitte als Maß für die Wahrscheinlichkeit, was nach einem Zusammenstoß mit einem Atomkern passiert. Diese Querschnitte sind darüber hinaus keine einzelnen Werte, sondern Funktionen der Neutronengeschwindigkeit. Umgangssprachlich ausgedrückt: Wild gezackte Kurven.

Im Zusammenhang mit der „Atommüllproblematik“ kann also festgestellt werden, man kann alle Aktinoide – also insbesondere, die gefürchteten, weil sehr langlebigen Bestandteile der benutzten Brennelemente, wie Plutonium etc. – in (speziellen) Reaktoren spalten und damit unwiederbringlich aus der Welt schaffen. Alle Spaltprodukte wären nach rund 300 Jahren verschwunden. Es geht also nicht um ein etwas anderes Endlager, sondern um eine Beseitigung unter gleichzeitiger Energiegewinnung. Erforderlich ist bei einem solchen „Reaktor zur Beseitigung von langlebigen Aktinoiden“ ein hartes Neutronenspektrum. Die Neutronen dürfen nach ihrer Entstehung möglichst wenig abgebremst werden. Wie alle Erfahrungen international gezeigt haben, läßt sich das am wirksamsten mit einem natriumgekühlten schnellen Reaktor realisieren. Dafür ist kein „Salzbad“ zwingend notwendig.

Das einzige, in der Natur vorkommende Isotop, welches in der Lage ist eine Kettenreaktion einzuleiten, ist Uran-235. Hinzu kommen noch die beiden künstlich hergestellten Isotope Plutonium-239 (gewonnen aus Uran-238) und gegebenenfalls Uran-233 (gewonnen aus Thorium). Ohne wenigstens eines der drei, funktioniert kein Reaktor! Will man darüber hinaus einen Reaktor zur Beseitigung von (allen) Aktinoiden bauen, müssen diese Isotopen in hoher Konzentration (mindestens zweistellig) vorliegen, da ihre Einfangquerschnitte für diese Neutronengeschwindigkeiten sehr klein sind. Das andere Ende der Möglichkeiten, wie z. B. Schwerwasserreaktoren, können sogar mit Natururan (U-235 – Gehalt 0,7%) und Thoriummischungen betrieben werden. Unsere heutigen Leichtwasserreaktoren werden optimal mit einer Anreicherung von etwa 3 bis 5% betrieben.

Die Uranfrage

In der 1950er-Jahren gab es weltweit eine Uranknappheit. Man glaubte daher, ohne „Brüter“ keine friedliche Nutzung der Kernenergie schaffen zu können. Man kannte das Dilemma, daß man ausgerechnet für „Brüter“, also Reaktoren, die mehr Plutonium herstellen, als sie bei der Kernspaltung selbst verbrauchen, große Mengen Spaltmaterial benötigte. „Verdoppelungszeit“ war das Wort der Stunde. Gemeint ist damit der Zeitraum, der vergeht, bis so viel Plutonium erbrütet, wiederaufbereitet und verarbeitet ist, bis man damit einen zweiten Reaktor zusätzlich in Betrieb nehmen kann.

Eine Analyse des Problems führte zu flüssigen Brennstoffen. Bei einer Flüssigkeit kann man kontinuierlich einen Strom abzweigen und wieder aufbereiten. Wässrige Uranlösungen waren nicht zielführend, da man die unkontrollierbaren Ablagerungen im Reaktor nicht in den Griff bekam. Man ging zu geschmolzenem Salz über. In diesen Salzbädern konnte man auch Thorium – als weitere Rohstoffquelle – erschließen.

Thorium als Alternative

Um es gleich vorweg zu nehmen, um Thorium zu nutzen, braucht man keinen Salzbadreaktor. Dies hat Kanada/Indien (CANDU) und Deutschland (THTR) erfolgreich unter Beweis gestellt. Andererseits braucht man für Salzbadreaktoren nicht zwingend Thorium. Es geht auch mit Uran. Ein Mißverständnis, das oft in der Öffentlichkeit zu hören ist.

Zurück zum „Brüten“. Viele Spaltstoffe sind „parasitär“. Sie absorbieren einen Teil der bei der Spaltung frei gewordenen Neutronen. Diese sind dann sowohl für eine weitere Spaltung – um die Kettenreaktion überhaupt in Gang zu halten – oder eine Umwandlung von Uran oder Thorium unwiederbringlich verloren. Neutronen sind aber äußerst kostbar. Bei der Spaltung werden nur zwei bis drei freigesetzt. Eines braucht man für die nächste Spaltung (Kettenreaktion), die anderen könnten „brüten“. An dieser Stelle wird klar, warum es so schwer ist einen „Brüter“ zu bauen, bzw. die „Verdoppelungszeit“ grundsätzlich sehr lang ist: Zwei Neutronen sind weg (für die nächste Spaltung und um das gespaltene Atom zu ersetzen), es bleibt für einen Mehrwert nur die Stelle hinter dem Komma.

Zurück in die 1950er-Jahre: Man glaubte an eine Knappheit von Natururan, welches auch noch strategisch wichtig war (atomare Aufrüstung im kalten Krieg). Man wußte ferner, daß die „Verdoppelungszeiten“ für „schnelle Brüter“ sehr lang waren und deshalb der Ausbau der Nutzung der Kernenergie gefährdet schien. Ferner wußte man, daß die Vorräte an Thorium etwa vier mal so groß, wie die Welt-Uranvorräte sein mußten. Wenn dies auch nichts über die wirtschaftliche Gewinnung aussagt.

Bei Thorium kommt noch der Vorteil hinzu, daß die „Neutronenausbeute“ bei Spaltung durch schnelle oder langsame Neutronen nicht so verschieden ist. Hohe „Konversionsraten“ sind relativ einfach möglich. Dies war der zweite Vorteil – neben der hohen Betriebstemperatur – des deutschen THTR-Reaktor-Konzepts. Man benötigte eine relativ kleine Impfung mit hoch angereichertem Uran oder Plutonium, um den Reaktor zu starten. Der größte Teil der Energie wurde dann aus dem selbst umgewandelten Thorium erzeugt. Hoher Abbrand, bei geringem Einsatz von kostbarem Uran-235 bzw. Plutonium.

Salzbadreaktor

Wenn man einen Reaktor mit flüssigem Brennstoff bauen will, kommt man sehr schnell –und immer wieder – auf die sogenannten FLiBe-Salze. Eine Mischung auf der Basis von Fluor, Lithium und Beryllium. Sie haben geringe Einfangquerschnitte (wirken also kaum parasitär für die Neutronen), besitzen einen geringen Schmelzpunkt (sehr wichtig bei jeder Inbetriebsetzung) und sind (einigermaßen) nicht korrosiv.

Allerdings ist es zumindest diskussionswürdig, ob die in der Öffentlichkeit angeführten Vorteile überhaupt solche sind. Die Herstellung des „Betriebsmediums“ innerhalb eines Kraftwerks ist nicht unproblematisch. Ein Kraftwerk ist keine Chemiefabrik. Es sei nur darauf hingewiesen, daß Beryllium und seine Verbindungen hoch giftig und krebserregend sind. Die Aufrechterhaltung eines stets homogenen Brennstoffs von gleichbleibender chemischer und neutronenphysikalischer Qualität, ist eine echte Herausforderung.

Gut ein Drittel der Spaltprodukte sind Gase. Bei festen Brennelementen ist deren sicherer Einschluß im gasdicht verschweißten Rohr ein zentraler Bestandteil der Sicherheitsphilosophie. Bei einer Flüssigkeit perlen sie naturbedingt und unkontrollierbar aus. Es muß deshalb ständig ein Teilstrom ausgeschleust werden, aus dem durch Strippung mit Helium die gasförmigen (bei dieser Temperatur) Bestandteile abgeschieden werden. Diese sind hochradioaktiv und müssen sicher zurückgehalten werden. Die Abgasstrecke ist schon in einer konventionellen Wiederaufbereitungsanlage eine recht komplexe Angelegenheit. Hier kann aber nicht mit „abgelagertem“ Brennstoff, sondern muß stets mit frischem gearbeitet werden.

Die Salze sind auch nicht ganz billig. Auch hier nur ein Hinweis: Natürliches Lithium besteht aus 92,5% Lithium-7 und 7,5% Lithium-6. Lithium-6 sollte aber nicht verwendet werden, weil aus ihm durch Neutroneneinfang Tritium entsteht. Tritium ist in der Kerntechnik äußerst unbeliebt, da es mit Sauerstoff „radioaktives“ Wasser bildet, das aus dem biologischen Kreislauf praktisch nicht mehr zu entfernen ist. Deshalb muß das natürliche Lithium erst aufwendig angereichert werden. Bisher ging das großtechnisch nur unter Verwendung von Quecksilber. In Oak Ridge ist man seit Jahrzehnten damit beschäftigt, die Quecksilberverseuchung aus der Lithiumanreicherung wieder zu beseitigen.

Aufbereitung durch Pyroprocessing

In letzter Zeit findet bei der Wiederaufbereitung ein Paradigmenwechsel statt. Es steht nicht mehr die Gewinnung von möglichst reinem Uran bzw. Plutonium im Vordergrund, sondern die Gewinnung möglichst reiner Spaltprodukte. Je reiner die Spaltprodukte, je kürzer die Lebensdauer des „Atommülls“. Ein „Endlager“ wäre überflüssig. Je „schmutziger“ das Plutonium, je ungeeigneter zur Waffenproduktion.

Ein Favorit in diesem Sinne, ist das Pyroprocessing. Im Prinzip ist es das gleiche Verfahren, wie bei der Kupfergewinnung. Die Metalle (Uran, Plutonium und im Idealfall alle minoren Aktinoide) wandern von der Atommüll-Elektrode zur Rein-Metalle-Elektrode. Die Spaltprodukte bleiben im Elektrolyt zurück. Das Aktinoidengemisch wird zu neuen Brennelementen verarbeitet. Es ist für die Waffenherstellung ungeeignet.

Auch hierfür ist kein Salzbadreaktor erforderlich. Es wurde erfolgreich für den mit Natrium gekühlten IFR eingesetzt. Man könnte sogar konventionelle Brennelemente aus Leichtwasserreaktoren damit aufbereiten. Es ist lediglich eine Zusatzstufe zur Reduktion der Uranoxide notwendig. Die Koreaner arbeiten mit Hochdruck an dieser Schiene. Sie benötigen dieses Aufbereitungsverfahren, wegen der besonderen politischen Situation auf der koreanischen Halbinsel.

Fazit

In der Kürze eines solchen Artikels läßt sich die Breite der Kerntechnik nur anreißen. Es gibt in der Technik kein gut, sondern lediglich ein besser oder schlechter geeignet – und das ist in jedem einzelnen Anwendungsfall neu zu beurteilen. Es nutzt überhaupt nichts, wenn irgendwelche Trolle Diskussionen führen, wer den besseren Reaktor kennt. Solche Diskussionen sind genauso kindisch, wie die üblichen Argumentationsschlachten der Sonnenmännchen für ihre „regenerativen Energien“. Was die „Erfindung des Dual Fluid Reaktors“ betrifft, handelt es sich eher um den Entwurf für ein neues Perry Rhodan Heft, als um ein Patent für einen genehmigungsfähigen Reaktor. Dies ändert aber auch nichts an der Schwachsinnigkeit der Begründung der Ablehnung. Warum sagt „GreenTec Awards“ nicht einfach: Wir mögen keine Kernenergie, basta! Dies wäre völlig legitim. Unanständig wird die Sache erst dadurch, daß man die Entscheidung krampfhaft versucht zu begründen und dabei sogar Tatsachen verdreht.

Brennstoffbank

Die International Atomic Agency (IAEA) hat bereits mehrere Treffen mit Regierungsstellen in Kasachstan zur Einrichtung einer Brennstoffbank abgehalten. Ziel der Verhandlung ist die Einrichtung eines international zugänglichen Lagers für leicht angereichertes Uran (Low Enriched Uran project, LEU-project). Es wurden zwölf technische Aufgabenbereiche zur erforderlichen Klärung festgelegt, von denen einige, wie z. B. Fragen zu Erdbeben, bereits in Bearbeitung sind. Ende Mai hat die IAEA ihre Mitgliedsstaaten über den Fortschritte offiziell informiert.

Ausgestaltung

Eigentümer und Verwalter der Brennstoffbank auf kasachischem Boden wird die IAEA sein. Das Lager soll anfangs Material für die Erstbeladung von zwei bis drei Leichtwasser-Reaktoren enthalten. Alle Mitgliedsstaaten der IAEA, die sich ausdrücklich verpflichten auf eigene Anreicherung und Wiederaufbereitung zu verzichten, können im „Ernstfall“ auf die Lagerbestände zurückgreifen. Sie würden dann aus dem Bestand mit Brennstoff zu aktuellen Weltmarktpreisen versorgt. Anschließend würde die Brennstoffbank wieder unverzüglich ihre Reserven durch Zukäufe am Weltmarkt aufstocken.

Die Brennstoffbank übernimmt also die Funktion einer (politischen) Rückversicherung. Ein Staat ohne eigene Anreicherung, wäre wirtschaftlich und politisch erpressbar, wenn man ihm bei „Nachladebedarf“ eine Belieferung ganz verweigern würde oder nur zu überhöhten Preisen leisten würde. Dies ist die klassische – und leider nicht ganz von der Hand zu weisende – Argumentation z. B. Irans für sein eigenes Zentrifugenprogramm gewesen. Die Versorgungssicherheit hat sogar Deutschland bewogen, eigene Anreicherungsanlagen auf deutschem Boden zu betreiben. Die „politische Glaubwürdigkeit“ ist nur ein schwaches Argument beim Verzicht auf Kernwaffen. Demgegenüber ist der völlige Verzicht auf Anreicherung und Wiederaufbereitung ein eindeutiges und leicht zu kontrollierendes Bekenntnis. Staaten die bereit sind, so konsequent zu handeln (bisher nur die Vereinigten Arabischen Emirate), müssen dafür von der internationalen Gemeinschaft abgesichert werden.

Im Sinne einer Versicherung reichen hierfür recht kleine Mengen aus. Die hohe Energiedichte von Uran erfordert einen Brennelementewechsel nur in großen zeitlichen Abständen (alle 12 bis 24 Monate) und es können leicht (kleinere) Mengen selbst vorgehalten werden. Der Versuch einer Erpressung ist somit durch die garantierte Verfügbarkeit aus der Brennstoffbank von vornherein zum Scheitern verurteilt. Dieses Konzept lebt mehr von der „Abschreckung“ als von der realen Lieferung. Es steht und fällt allerdings mit der Glaubwürdigkeit der Garantie. Deshalb ist eine strikte internationale Kontrolle und Absicherung nötig. Im Umkehrschluß gilt, daß kein Staat zur zivilen Nutzung der Kernenergie „doppeldeutige“ Anlagen oder Verfahren mehr benötigt.

Entstehung

Das Verfahren geht auf die Nuclear Threat Initiative (NTI) zurück. Eine regierungsunabhängige und gemeinnützige Privatorganisation. Sie wurde 2001 von Ted Turner (Begründer von CNN und WTBS) und Sam Nunn (demokratischer Senator von Georgia 1972–1997) begründet. Sie versteht sich als aktiv handelnde Organisation. Ihre erste spektakuläre Aktion war 2002 die Finanzierung und Organisation eines Transports von fast 50 kg hoch angereichertem Uran aus einem „Forschungsinstitut“ in der Nähe von Belgrad zurück nach Rußland. Dort wurde es mit Natururan verschnitten und anschließend in zivilen Reaktoren zur Stromerzeugung verbraucht. NTI trug maßgeblich zur Gründung und deren Finanzierung des World Institute for Nuclear Security (WINS) bei. WINS hat sich zum Ziel gesetzt, die Sicherheit vor Diebstahl und jedweden Mißbrauch von nuklearem Material durch Terroristen oder Staaten zu verbessern. In dieser Organisation sind neben Behördenvertretern auch private Unternehmen organisiert, die sich gegenseitig unterstützen, austauschen und beraten. Inzwischen haben auch Norwegen und Kanada beträchtliche finanzielle Unterstützung zugesagt.

Diese Organisationen sind ein schönes Beispiel für die Wirksamkeit von privater Initiative. Durch die Mobilisierung von privaten Mitteln (Stiftungen) konnte unmittelbar und mit durchschlagendem Erfolg mit der Arbeit begonnen werden. Der „private Charakter“ ermöglichte die Zusammenkunft und Mitarbeit losgelöst von politischer Blockbildung. Regierungen sind auf solch sensiblen Gebieten handlungsunfähig. Sie können bestenfalls auf erfolgreiche Züge aufspringen. Für grundlegende Veränderungen in festgefahrenen Sektoren sind immer Einzelpersonen notwendig. Politische Parteien etc. müssen auf die vermeintlich geltenden Meinungen Rücksicht nehmen und sind stets ihren Lagern verpflichtet.

Modellcharakter

Seit der ersten Stunde der Nutzung der Kernenergie besteht immer der Konflikt zwischen „friedlich“ und „militärisch“. Die Kernenergie ist leider erst als Massenvernichtungswaffe der breiten Öffentlichkeit bekannt geworden. Die Nutzung als nahezu unerschöpfliche Energiequelle erschien erst nachträglich aufgesetzt. Mehr als 40 Jahre „Kalter Krieg“ mit Lügen und Propaganda wirken bis heute fort. „Angst vor dem Atom“ war und ist ein wesentlicher Stellvertreter in der „Systemfrage“. Hierin liegt aber auch die Chance: Die beiden Blöcke gibt es in ihrer ursprünglichen Form nicht mehr und zahlreiche neue Akteure sind auf der Weltbühne erschienen. Es ist Zeit für ein neues Zeitalter der Aufklärung.

Ohne Übertreibung kann man sagen, daß die Bevölkerungsentwicklung inzwischen für die Menschheit einen mindestens so brisanten Stellenwert, wie die „Atombombe“ besitzt. Entweder die Menschheit ist in der Lage, der Mehrheit einen akzeptablen Lebensstandard zu bieten oder sie wird im Elend versinken. Dabei ist es egal, ob sie in einem atomaren Inferno oder endlosen „Religionskriegen“ oder schlichtweg Umweltkatastrophen versinkt. Eine – nicht die einzige, aber die wesentliche – Herausforderung ist dabei, die ausreichende Versorgung mit preiswerter Energie. An dieser Stelle muß – insbesondere in Deutschland – mal wieder betont werden, daß „ausreichend“, „preiswert“ und „umweltschonend“ absolut gleichrangige Kriterien sind! Die Bevorzugung nur eines Kriteriums, ist für die Menschheit kontraproduktiv und wird entgegen des (hier durchaus unterstellten) guten Willens, geradewegs in die Katastrophe führen. Man kann es in jedem Entwicklungsland studieren: Armut und Umweltzerstörung (z. B. Abholzung von Urwäldern) gehen Hand in Hand, Luftverschmutzung ist und war die Folge „billiger Technik“ (Kohlekraftwerke ohne Filter, Autos ohne Abgasbehandlung).

Energieverbrauch pro Kopf und Wohlstand sind untrennbar miteinander verbunden. Alles Geschwafel von „Energieeffizienz“ ist nur eine Umschreibung für Verzicht. Wer kann und soll in einer Weltordnung verzichten, in der rund zehn Prozent der Menschen den Löwenanteil der Energie verbrauchen? Selbst wenn wir, in den Wohlstandsregionen Europas und USA, auf die Hälfte der Energie verzichten würden, würde diese Umverteilung die Milliarden von „ein Dollar pro Tag Verdienern“ nicht aus ihrem Elend herausführen können. Andererseits würde eine solche „Effizienzsteigerung“ bei uns wahrscheinlich zu Aufständen führen, denn auch hier leben nicht alle Menschen auf der „Sonnenseite“. Davon abgesehen, werden uns Chinesen und Afrikaner immer weniger um unsere Meinung fragen. Sie werden tun, was sie für richtig halten und das ist auch gut so.

Wenn man die Welt realistisch und mal nicht nur durch eine rosarote ökologische Brille betrachtet, bleibt nur die Erkenntnis, daß der Verbrauch von fossilen Energien (insbesondere Kohle) und Kernenergie auf absehbare Zeit noch zunehmen muß und wird. Ja, gerade wenn man den Zuwachs im Verbrauch fossiler Energien eindämmen will, wird man die Kernenergie weiter ausbauen müssen. „Regenerative“ sind bestenfalls ergänzende Energieträger und sind wegen ihrer Unstetigkeit und ihrer geringen Energiedichte und den daraus resultieren Kosten als Ersatz völlig ungeeignet. Es ist zu bezweifeln, ob die Menschheit jemals so reich sein wird, daß sie sich „regenerative Energien“ leisten können wird. In Wahrheit, wird sie sich dann, nahezu auf ihre Anzahl im vorindustriellen Zeitalter zurück schrumpfen müssen. Wer bestimmt, wer ausscheiden muß?

Das Dilemma zwischen friedlicher und militärischer Nutzung bleibt somit weiter bestehen. Man kann weder eine Waffentechnologie der 1940er Jahre dauerhaft geheim halten, noch läßt sich der größere Teil der Menschheit dauerhaft gängeln. China ist ein deutliches Beispiel. Wer glaubt noch ernsthaft daran, China Vorschriften machen zu können, wieviel von welcher Energieform es nutzen darf? Bestenfalls führt es eine Selbstbeschränkung auf 4 Milliarden to Kohle pro Jahr selbst durch. Um dieses Ziel einhalten zu können, muß es Kernkraftwerke in Serie bauen. Es ist zum Erfolg in der Kerntechnik verdammt. Unzählige „Schwellenländer“ blicken mit großen Erwartungen auf diese Entwicklung. Vorbild wird China und nicht das „Wendeland“ Deutschland sein.

Wenn es aber so ist, wie es ist, wird man Wege finden müssen, ein atomares Wettrüsten zu verhindern. Auch Nord Korea und Iran wird seine Nachahmer finden. Wenigstens den gutwilligen Nationen muß man Möglichkeiten bieten, nicht zwangsweise mitmachen zu müssen. Insofern ist der freiwillige Verzicht der Vereinigten Emirate auf ein atomares Wettrüsten mit seinem Nachbarn Iran, ein Hoffnungsschimmer. Es ist auch kein Zufall, daß die Unterstützung dafür von Privat und nicht aus „Regierungskreisen“ kommt. Wahrscheinlich auch nicht, daß eine „junge Nation“ aus dem ehemaligen Sowjetreich begeistert den Vorschlag für eine Brennstoffbank aufgegriffen hat.

Wie man einen Reaktor kaputt repariert

Der amerikanische Energieversorger Southern California Edison’s gab am 7.6.2013 bekannt, sein Kernkraftwerk San Onofre nuclear plants (SONGS) endgültig still zu legen. Ausschlaggebend war die Feststellung der Atomaufsicht (NRC), daß sie mindestens ein Jahr für die endgültige Entscheidung benötigen würde, ob das Kraftwerk mit reduzierter Leistung wieder ans Netz gehen dürfte. Zu den technischen Details später. Wer der NRC einfach nur Unfähigkeit unterstellt, macht sich die Sache zu einfach. Es ist – das auch aus Deutschland hinlänglich bekannte – geschickte Taktieren und Ausnutzen von „Gesetzeslücken“ durch „Atomkraftgegner“. Letztendlich ging es um die juristische Spitzfindigkeit, ob für den Betrieb mit 70% Leistung gegenüber 100% Leistung eine neue Betriebsgenehmigung erforderlich ist. Wenn dies der Fall wäre, müßte ein entsprechendes öffentliches Anhörungsverfahren durchgeführt werden, welches wiederum die Einhaltung von Mindestfristen erforderlich macht. Kein Unternehmen kann eine Entscheidung über mehrere Milliarden Dollar über Jahre in der Schwebe halten. Es tritt daher die alte Kaufmannsregel in Kraft: Ein Ende mit Schrecken, ist besser als ein Schrecken ohne Ende.

Geschichte

Das Kernkraftwerk besteht aus drei Reaktoren. Block 1 hatte eine Leistung von 456 MWe und war 25 Jahre in Betrieb (1968 bis 1992). Er befindet sich im Zustand des „sicheren Einschlusses“ und dient dem restlichen Kraftwerk als atomares Zwischenlager. Die Blöcke 2 und 3 mit einer Nettoleistung von zusammen 2150 MWe gingen im August 1983 und April 1984 in Betrieb. Sie haben eine Betriebserlaubnis bis ins Jahr 2022. Ein entscheidender Punkt in diesem Drama.

SONGS liegt ziemlich genau zwischen San Diego und Los Angeles im südlichen Kalifornien. Eine immer noch wachsende Region mit latentem Mangel an elektrischer Energie und hoher Luftverschmutzung. Ein Ersatz durch ein Kohlekraftwerk scheidet aus. Selbst der Neubau von Gaskraftwerken (z. Zt. extrem billiges Erdgas in USA) wird schwierig werden. Der Bau einer neuen Starkstromleitung wird ebenfalls sehr teuer und befindet sich noch in der Prüfung. Seit der Ausserbetriebnahme der beiden Reaktoren liegt der Strompreis in Südkalifornien bereits permanent rund 5 Dollar pro MWh über dem Preis in Nordkalifornien. Das alles war lange bekannt bzw. absehbar.

Da man sich zu einem rechtzeitigen Neubau eines Kernkraftwerks nicht durchringen wollte, entschloss man sich – wie einst in Deutschland – zu einer „Laufzeitverlängerung“ um weitere 20 Jahre. Dabei war klar, daß für einen wirtschaftlichen Betrieb und eine Betriebsgenehmigung umfangreiche Modernisierungen nötig waren. Dickster Brocken war hierbei die Erneuerung der Dampferzeuger für über 500 Millionen Dollar. Wegen der Abmessungen grundsätzlich ein heikles Unterfangen. Auch der Crystal River Nuclear Plant ist durch einen solchen Umbau zum Totalschaden geworden. Die ursprünglich gedachte Lebensdauer von 30+ Jahren, hat genau in der Schwierigkeit des Austausches der Großkomponenten (Dampferzeuger, Druckgefäß etc.) ihre Begründung. Die „Laufzeitverlängerung“ bei Reaktoren der ersten und zweiten Generation ist wirtschaftlich immer fragwürdig gewesen und bleibt es auch heute. Irgendwann wird die ständige Modernisierung bei jedem Auto und Flugzeug zu einem „Groschengrab“. Ein „Oldtimer“ wird zwangsläufig zu einem Luxusgut. Dies gilt besonders, wenn es den ursprünglichen Hersteller (Combustion Engineering CE) gar nicht mehr gibt und die Konstruktion eher exotisch war. CE baute grundsätzlich nur zwei (sonst 2, 3 oder 4 üblich, je nach Leistung) Dampferzeuger in seine Reaktoren ein. Deshalb waren die Dampferzeuger von SONGS die voluminösesten überhaupt. Eine Tatsache, die der Anbieter Mitsubishi Heavy Industries (MHI) ganz offensichtlich unterschätzt hat.

Technik der Dampferzeuger

Die Dampferzeuger sind neben dem Reaktordruckbehälter die größten und schwergewichtigsten Komponenten eines Druckwasserreaktors. Sie liegen innerhalb des Sicherheitsbehälters, der bestimmungsgemäß möglichst dicht sein soll. Will man sie austauschen, muß eine entsprechend große Montageöffnung in den Sicherheitsbehälter und die äußere Betonhülle (danach außergewöhnliche Abplatzungen im Spannbeton bei Crystal River) gebrochen werden.

Um die Vorgänge bei SONGS zu verstehen, muß man sich den Aufbau eines solchen Dampferzeugers vor Augen führen. Er ist das Bindeglied zwischen dem Wasserkreislauf des eigentlichen Reaktors und dem Dampfkreislauf der Turbine. Das heiße Wasser aus dem Reaktor strömt innerhalb der U-förmigen Rohre und überträgt dabei seine Wärme an das äußere Wasser des Dampfkreislaufes. Innerhalb der Rohre (primärseitig) sind die Verhältnisse noch einfach zu berechnen. Außerhalb (sekundärseitig) sind die Verhältnisse wegen der Verdampfung sehr kompliziert. Wie in einem Kochtopf bilden sich unzählige Dampfblasen, die sich ausdehnen, aufsteigen und dabei noch Wasser mitreißen. Es kommt dadurch zu erheblichen mechanischen Belastungen für die Rohre und alle Einbauten. Die Rohre sind nur sehr dünn (etwa 2 cm) und mehrere Meter lang. Ohne geeignete Abstützungen würden sie wie Grashalme im Wind hin und her geschlagen und durch permanentes Zusammenschlagen beschädigt. Die Auslegung und Fertigung solcher Abstandsplatten ist recht kompliziert, denn jeder Spalt zwischen Rohr und Abstandshalter bzw. Bodenplatte ist ein Ort der Korrosion. Durch die Korrosion werden die Rohre ebenfalls geschwächt bzw. eingebeult. Man verwendet deshalb recht exotische Legierungen (früher Inconel 600, heute Inconel 690) und eine komplexe Wasserchemie. Schäden lassen sich trotzdem nicht vermeiden. Bei jeder Inspektion werden die Rohre einzeln überprüft. Wenn ihre Wandstärke um ⅓ dünner geworden ist, werden sie durch Pfropfen dauerhaft verschlossen. Damit das überhaupt geschehen kann, sind ursprünglich 10 bis 20 Prozent mehr Rohre vorhanden, als für die Auslegungsleistung benötigt werden. Während des Betriebs gibt es eine Leckageüberwachung.

Bei der Inbetriebnahme der neuen Dampferzeuger traten unerwartete Vibrationen auf. Solche Vibrationen deuten immer auf einen erhöhten Verschleiß hin. Man stellte daher die Reaktoren ab und begann eine mehrmonatige Untersuchung. Das Ergebnis war ein Verschluß bereits geschädigter Rohre und die Entdeckung eines wahrscheinlichen Fehlers in der Konstruktion von MHI (Falsche Berechnung der Strömungszustände sekundärseitig). Wichtigste Erkenntnis war aber, daß die Vibrationen erst oberhalb einer Leistung von 70% auftraten. Es wurde der NRC daher vorgeschlagen, die Reaktoren für sechs Monate mit einer maximalen Leistung von 70% wieder in Betrieb zu nehmen und dann erneut auf Verschleiß zu prüfen. Gleichzeitig wurden Entwicklungsarbeiten für eine Ertüchtigung der Wärmetauscher durch MHI eingeleitet.

Das Ende

Am 13. Mai knickte das Atomic Safety and Licensing Board (ASaLB) Panel vor Friends of the Earth (FoE) ein. Für alle, die nicht so vertraut sind mit der Materie, ein Einschub: FoE ist einer der ältesten und einflussreichsten „Kampfeinheiten der Anti-Atomkraftbewegung“ oder noch treffender formuliert: Der Solarindustrie. Ihr erster Angestellter war Amory Lovins, der Guru aller Sonnenanbeter. Sich in Kalifornien mit dem Sierra Club und FoE anzulegen, ist ungefähr so, wie gegen Putin in Moskau zu demonstrieren. Der Sierra Club kämpft neuerdings nicht nur gegen Kernenergie, sondern auch massiv gegen die Kohlenindustrie. Dafür kommen die größten Spender aus dem Gassektor. Bei dem ASaLB handelt es sich um eine rein juristische Institution. Technik spielt dort keine Rolle. Insofern dürfte der Urteilsspruch nicht überraschen:

  1. Der Antrag auf eine Begrenzung der Leistung auf 70% entspricht nicht der Genehmigung und stellt eine schwerwiegende Änderung dar,
  2. Block 2 kann nicht sicher mit der genehmigten Leistung betrieben werden, deshalb muß die Genehmigung erneuert werden,
  3. Eine Wiederinbetriebnahme dieser Dampferzeuger in ihrem aktuellen Zustand mit nur 70% Leistung ist außerhalb geschichtlicher Erfahrung und der zeitweise Betrieb mit verringerter Leistung entspricht einem Versuch oder Test, für den es einer gesonderten Genehmigung bedarf.

Moral von der Geschichte: Juristen haben sich schlau aus der Schusslinie gebracht, Problem an die NRC delegiert, Kosten zahlen die Stromkunden, Luftverschmutzung nimmt weiter zu, aber Hauptsache die Solar- und Gasindustrie ist zufrieden gestellt.

Ganz neben bei, verlieren auch noch 900 Angestellte von den bisher 1500 Angestellten des Kraftwerks über Nacht ihre Arbeit.

Konsequenzen

Irgendwann ist jedes Kernkraftwerk am Ende seiner wirtschaftlichen Lebensdauer angekommen. Wer nicht den Mut besitzt ein neues zu bauen, begibt sich unter Umständen auf dünnes Eis: Ein massiver Umbau ist mit erheblichen Risiken verbunden. Ein Abriss und Neubau ist oft günstiger. Eine an und für sich Alltagserfahrung.

Fairerweise muß man aber sagen, daß ein Neubau heutzutage ein sehr langwieriges und kostspieliges Unterfangen ist. Das hat überhaupt nichts mit Technik und Betriebswirtschaft zu tun, sondern ist ausschließlich politisch verursacht. Wer das nicht glauben mag, sollte sich einmal die unterschiedlichen Planungs- und Bauzeiten für gleiche Reaktortypen in unterschiedlichen Ländern anschauen. Die teilweise abenteuerlichen Umbauten in USA sind ein Ergebnis für „vorhandene Standort-Genehmigungen“ und die wohlwollende lokale Unterstützung bei bestehenden Reaktoren im Gegensatz zum Risiko einer von „Anti-Atomgruppen“ verängstigten Bevölkerung an neuen Standorten.

Ein neues Phänomen – auch in Deutschland – ist die Mobilisierung von Rücklagen. Entgegen jahrzehntelanger Propaganda, sind die finanziellen Rücklagen für die Beseitigung der „Atomruinen“ so gewaltig bemessen gewesen, daß es verlockend geworden ist, sie zu heben. Im Falle SONGS betragen sie mehr als 2 Milliarden Dollar. Inzwischen steht eine auf „Abbruch“ spezialisierte Industrie weltweit zur Verfügung.

Das größte Hemmnis (nur in einigen Ländern !!) für die Investitionen in Kernkraftwerke ist die zeitliche Unkalkulierbarkeit. Sie muß über Risikozuschläge und zusätzliche Finanzierungskosten bedient werden. SONGS ist ein typisches Beispiel: Es geht beim Umbau etwas technisch schief. Die Konsequenz ist ein Stillstand der Arbeiten von mindestens einem Jahr aus rein juristischen Gründen. Es gibt aber ausdrückliche keine Garantie für diese Frist und das Ergebnis ist offen. Wahrscheinlich sind eher neue Verzögerungen, da sich die erfahrensten „Anti-Atomkraft-Kämpfer“ eingeschaltet haben. Jeder Tag Stillstand kostet aber dem Energieversorger mehr als eine Million Dollar pro Tag!

Der Restwert des Kernkraftwerks betrug rund 1,5 Milliarden Dollar. Die Umbauaktion schlägt mit weiteren 500 Millionen zu Buche. Allerdings beginnen nun juristische Auseinandersetzungen, wieviel davon MHI zu tragen hat und wieviel zusätzlich von Versicherungen übernommen wird. Man kann es aber drehen und wenden wie man will, letztendlich tragen die Stromkunden den Schaden. Das ist auch gut so. Kalifornien ist bereits einmal durch seine völlig verquaste Energiepolitik an den Rand des Staatsbankrott getrieben worden. Der folgende politische Erdrutsch führte zu einem Gouverneur Schwarzenegger.

Baubeginn für zweiten Reaktor

Ende März erfolgte der offizielle Baubeginn des zweiten Reaktorblocks für das Kernkraftwerk Barakah in Abu Dhabi in der Vereinigten Arabischen Emiraten (UAE). Baubeginn für den ersten Block war im July 2012. Die Blöcke 3 und 4 sollen folgen. Alle vier Reaktoren sollen in den Jahren 2017 bis 2020 ans Netz gehen. Im Jahre 2009 wurde der Auftrag für knapp 16 Milliarden Euro an ein koreanisches Konsortium vergeben. Samsung, Hyundai und Doosan Heavy Industries werden dieses Kraftwerk mit 5600 MWe errichten. Bemerkenswert ist der spezifische Preis von deutlich unter 3000 EUR/kW. Der erwartete Strompreis wird mit rund 2 Cent/kWh angegeben. Für diesen Preis kann man heute in Deutschland nicht mal mehr Strom aus Braunkohle produzieren. So viel nur zum „energiegewendeten“ Industriestandort Deutschland im Jahre 2020.

Warum Kernenergie im Ölland?

In allen Golfstaaten hat in den letzten Jahren eine bemerkenswerte Industrialisierung statt gefunden: Riesige petrochemische Anlagen, Stahlwerke, Kupfer und Aluminiumhütten etc. Basis ist und bleibt der Reichtum an Öl und Erdgas. Man setzt allerdings konsequent auf den verstärkten Export von veredelten Produkten an der Stelle von Rohstoffen. Verknüpft ist das alles mit einer rasant wachsenden Bevölkerung und zunehmendem Wohlstand. So verdoppelt sich der Strombedarf in den Emiraten etwa alle zehn Jahre. Hinzu kommt noch ein riesiger Bedarf an Trinkwasser, der ausschließlich über energieintensive Meerwasser-Entsalzungsanlagen gewonnen werden muß.

In allen Golfstaaten begann die Elektrifizierung mit Ölkraftwerken. Schon in den 1970er Jahren ergab sich ein neuer Zielkonflikt: Das Rohöl (in Weltmartktpreisen) wurde immer teurer und gleichzeitig nahmen die Umweltprobleme durch das Abfackeln der Begleitgase immer mehr zu. Folgerichtig wurde eine Umstellung auf Gaskraftwerke betrieben. Man konnte in den Emiraten mit dieser Politik zwei Ziele erreichen: Gewinnung zusätzlicher Ölmengen für den Export und Umweltschutz. Es wurden Kombikraftwerke in Serie gebaut: Mit dem Erdgas werden Gasturbinen betrieben und deren Abgas anschließend in Dampfkesseln zur weiteren Stromerzeugung genutzt. Zusätzlich sind die Dampfturbinen mit Anzapfungen zur Auskoppelung von Niedertemperaturdampf versehen, der in Enstspannungsverdampfern Trinkwasser aus Meerwasser erzeugt. Dieser Verbund auf der Basis (einst) billig vorhandenen Brennstoffs war so günstig, daß in den Emiraten beispielsweise Aluminiumwerke betrieben werden können. Sonst eher eine Domäne billiger Wasserkraft. Inzwischen ist jedoch der Gasverbrauch so stark angestiegen, daß z. B. Erdgas aus dem benachbarten Katar importiert werden muß. Und schon drückt auch hier der Weltmarktpreis für Erdgas auf die Eigenerzeugung. Umfangreiche Studien kamen zu dem Ergebnis, daß der weiter steigende Strom- und Trinkwasserbedarf sinnvoll nur durch (importierte) Kohle oder Kernkraft gedeckt werden kann.

Man wählte als ersten Schritt den Einstieg in eine erprobte Technik: Die Kernenergie. Im zweiten Schritt ist für Dubai ein Kohlekraftwerk mit CO2-Abscheidung geplant. Auch hier wird ein mehrfacher Nutzen angestrebt: Das abgeschiedene Kohlendioxid soll in „alte“ Ölfelder zur zusätzlichen Ölgewinnung verpreßt werden. Überkritisches Kohlendioxid ist einer der besten Lösungsmittel überhaupt. In Texas wird diese Methode bereits in großem Maßstab angewendet, um vermeintlich „trockene“ Ölfelder weiter zu entölen. Dort ist diese Methode wirtschaftlich, weil man große natürliche Kohlendioxidvorkommen in unmittelbarer Nähe der Ölfelder hat. In Norwegen fördert man stark kohlendioxidhaltiges Erdgas. Das Kohlendioxid wird nach Abscheidung ebenfalls wieder in die Lagerstätte verpreßt um den Lagerstättendruck aufrecht zu erhalten. Was die „unterirdische Lagerung von CO2“ betrifft, handelt es sich also um eine seit langem erprobte Technologie. Bleibt noch die Abscheidung im Kraftwerk: Einst auch eine verfahrenstechnische Domäne Deutschlands – bis „Grüne“ meinten, daß CO2 ganz, ganz böse und gefährlich sei. Mal sehen, welches Land den Auftrag für das Kraftwerk erhält. Aber der Deutsche Michel wird sich trotzdem glücklich schätzen, wenn er für sein Erdgas und Benzin noch ein weiteres „CO2-Zertifikat“ oben drauf kaufen darf, zur Wohlstandsförderung in den Ölstaaten. Er hat es halt nicht besser verdient.

Warum nicht Sonne?

Nun, alle Golfstaaten bauen durchaus „Sonnenkraftwerke“. Nur leider scheint auch in der Wüste nachts keine Sonne. Zwar gibt es ein paar mehr Sonnenstunden dort, aber leider ist es auch bedeutend wärmer und alle Verfahren zur Stromgewinnung knicken mit steigender Temperatur ein. Man kann dort also gar nicht so viel mehr elektrische Energie mit einem Sonnenkollektor gewinnen. Um die gleiche Energie, wie ein Kernkraftwerk mit seiner Arbeitsverfügbarkeit von 90 % zu gewinnen, benötigte man gigantische Flächen, Speicher und riesige Mengen Wasser zur Kühlung und/oder Reinigung. Tatsachen, die gerne von „Sonnenmännchen“ in ihren Werbebroschüren verschwiegen werden. Insofern kann auch in der Golfregion Sonnenenergie nur ergänzend eingesetzt werden. Eine Vollversorgung ist – nicht nur aus wirtschaftlichen Gründen – illusorisch.

Es gibt auch reichlich Wind in der Golfregion. Nur bläst der Wind noch zufälliger und wenn er bläst, ähnelt er mehr einem Sandstrahlgebläse. Außerdem macht es wenig Sinn, seine Küsten zu „verspargeln“, wenn man auch den Tourismus fördern will. Alles in allem, eher schlechte Bedingungen für „Alternativtechnik“.

Die Emirate sind der Musterfall für alle wüstenähnlichen Regionen. Wer glaubte, man könne diese Regionen zur Stromversorgung von Europa nutzen, ist einem Märchen aufgesessen. Die Mittel reichen nicht einmal für eine Selbstversorgung dieser Länder. Es ist daher kein Zufall, daß gerade die aufstrebenden Nationen in Kernkraftwerken ihre einzige Möglichkeit sehen. Hinzu kommt in diesen Ländern die notorische Trinkwasserknappheit. Meerwasserentsalzung ist die einzige Alternative. Wenn all diese Länder hierfür Kohle einsetzen wollten, würde der Weltmarkt aus den Fugen geraten. Die heimischen Gas- und Ölvorkommen (so weit vorhanden) werden als Devisenbringer ohnehin dringend benötigt.

Proliferation

Die UAE sind auch in politischer Hinsicht ein Musterfall: Um gar nicht erst den Verdacht zu erwecken, nach Kernwaffen zu streben, haben sie sich verpflichtet auf Urananreicherung und Wiederaufbereitung zu verzichten. Im Gegenzug garantiert man ihnen die Versorgung mit Brennstoff. Dies ist ein Modell, auf das sich auch andere Länder einlassen können und wahrscheinlich auch müssen, wenn sie die volle Unterstützung der Weltgemeinschaft genießen wollen. Iran ist das krasse Gegenbeispiel.

Zumindest der letzte Punkt ist auch für Deutschland von Vorteil. Die Gespensterdebatte um ein „Atommüll-Endlager“ ist überflüssig geworden, da sich kurz über lang ein internationaler Markt für Wiederaufbereitung herausbilden wird. Wie schnell das geschieht, hängt allein von der Wachstumsgeschwindigkeit der Kernenergie und von den Preisen für Natururan ab. Der Tag wird nicht mehr so fern sein, wo Deutschland seine „Uran- und Plutoniumvorräte“ auf dem Weltmarkt verkaufen kann. Deshalb bauen ähnlich kleine Länder, wie Schweden und Finnland auch „rückholbare Endlager“. Man vergräbt zwar durchaus Schätze, aber stets um sie sicher zu lagern und nicht um sie zu vergessen. Abgenutzte Brennelemente sind Wertstoffe und kein Müll.

Dampferzeuger aus China

Anfang Mai wurde der erste in China gefertigte Dampferzeuger für einen EPR (European Pressurized Water Reactor) auf der Baustelle in Taishan (140 km westlich von Hong Kong) angeliefert. Was ist daran so bemerkenswert? Nun, der EPR ist der modernste Reaktor (sog. Generation III+) von Areva. Ursprünglich eine gemeinsame Entwicklung von Deutschland und Frankreich. Er sollte die Weiterentwicklung der bis dahin modernsten Reaktoren (Konvoi und N4) in beiden Ländern sein. Dieser Typ verkörpert über mehrere Jahrzehnte gewachsene Erfahrung in Bau und Betrieb. Außerhalb von China sind nur zwei weitere Reaktoren (Olkiluoto in Finnland und Flamanville in Frankreich) z. Zt. im Bau. Man kann mit Fug und Recht sagen, dieses Modell ist das mit Abstand anspruchsvollste Projekt, was der europäische Anlagenbau (noch) zu bieten hatte. In seiner Komplexität und seinen technischen Anforderungen höchstens noch mit dem Airbus vergleichbar. Eine Nation, die solche Kernkraftwerke bauen kann, ist auch jederzeit auf allen anderen Gebieten der Anlagentechnik (Chemieanlagen, Raffinerien, Spezialschiffbau etc.) ein ernsthafter Konkurrent. Wer andererseits freiwillig aus der „Hochtechnologie“ aussteigt, leitet unweigerlich die Deindustrialisierung ein. Der Fortschritt kennt nur eine Richtung: Wer die Entwicklung (freiwillig oder unfreiwillig) einstellt, muß gnadenlos auf dem Weltmarkt aussteigen. Der Niedergang der DDR ist ein schönes Beispiel dafür. Letztendlich führt das „Rumwursteln im Mangel“ immer auch zu einem gesellschaftlichen Zusammenbruch.

Der Dampferzeuger als technisches Objekt

Was macht den Dampferzeuger eines Kernkraftwerks so besonders, daß weniger als eine Hand voll Länder dazu in der Lage sind? Die schiere Größe und die Komplexität. Trauriges Beispiel hierfür, sind die von Mitsubishi aus Japan neu gelieferten Dampferzeuger für das Kraftwerk San Onofre in USA. Sie waren in kürzester Zeit schwer beschädigt, was zu einem mehrmonatigen Ausfall des Kraftwerks geführt hat. Wahrscheinlicher Grund: Falsche Berechnung der Strömungsverhältnisse. Wieder einmal, ist die Kerntechnik der Antrieb für die Entwicklung verbesserter Simulationsprogramme. Die heute in vielen Industriezweigen verwendeten Thermo-Hydraulischen-Simulationen (Verknüpfte Berechnung von Strömungen und Wärmeübertragung) würde es ohne die Kerntechnik schlicht nicht geben. Die hierfür nötigen „Super-Computer“ ebenfalls nicht. Wer meint, aus dieser Entwicklung aussteigen zu können, endet zwangsläufig bei den bemitleidenswerten „Klimamodellen“ aus der Berliner Vorstadt, mit denen man uns weiß machen möchte, man könne die „Welttemperatur“ auf einige zehntel Grad genau berechnen.

Viel unmittelbarer ist der Zusammenhang auf der „mechanischen“ Seite. Ein solcher Dampferzeuger hat ein Gewicht von etwa 550 to bei einer Länge von 25 Metern. Wer solche Massen wie ein rohes Ei heben, transportieren und auf den Millimeter genau absetzen kann, braucht sich auch vor anderen Baumaßnahmen nicht zu fürchten. Dies erfordert eine entsprechende Infrastruktur und vor allem „Fachkräfte“ mit jahrelanger praktischer Erfahrung. Viel entscheidender ist jedoch, die Fertigung solch großer Teile, in der erforderlichen Präzision, aus speziellen Materialien. Bisher ist der Bau von Bearbeitungszentren eine Domäne der deutschen Werkzeugmaschinenindustrie. Was geschieht aber, wenn Europa den Schwermaschinenbau immer mehr aufgibt? Die Werkzeugmaschinenhersteller werden ihren Kunden nach Asien folgen müssen.

Die Kerntechnik war stets ein Hort für die Verarbeitung exotischer Werkstoffe. Die Dampferzeuger sind ein typisches Beispiel. Sie müssen die gesamte im Reaktor erzeugte Wärme übertragen und daraus Dampf erzeugen. Dazu ist eine entsprechende Druckdifferenz und Wärmeübertragungsfläche nötig. Ein Druckwasserreaktor muß wegen der Neutronenphysik mit flüssigem Wasser betrieben werden. Eine Turbine mit Dampf. Damit das Wasser bei einer Temperatur von rund 330 °C noch flüssig bleibt, muß es unter einem Druck von etwa 155 bar stehen. Der damit hergestellte Dampf von knapp 300 °C hat aber nur einen Druck von etwa 78 bar. Diese enorme Druckdifferenz von etwa 80 bar muß sicher beherrscht werden. Für solch hohe Drücke kommen praktisch nur dünne Rohre in Frage, denn die Wärme soll ja durch die Rohrwand hindurch übertragen werden. Solche Dampferzeugerrohre haben eine Wandstärke von lediglich einem Millimeter, bei einem Außendurchmesser von weniger als 2 Zentimetern. Wie kann man aber fast 24.000 Liter pro Sekunde durch solch enge Rohre pumpen? Nur indem man tausende Rohre parallel schaltet und genau das ist die nächste Herausforderung: Zehntausende Röhren müssen pro Reaktor hergestellt, gebogen, befestigt und abgedichtet werden. Das Material muß eine gute Wärmeleitung besitzen, bei möglichst hoher Festigkeit und Korrosionsbeständigkeit. Hinzu kommen noch jede Menge Einbauten und Instrumentierung. So etwas kann man nur in einer Fabrik bauen, die eher einem Labor oder Krankenhaus gleicht, aber nicht in einer Schlosserei. Mit hoch qualifizierten (und deshalb auch gut bezahlten) Fachkräften.

Die gesellschaftlichen Konsequenzen

Die ersten vier Dampferzeuger für den Block Taishan 1 wurden noch komplett bei bei Areva in Chalon-StMarcel gefertigt. Die weiteren vier für Taishan 2 kommen bereits aus chinesischer Fertigung. Das Lerntempo ist bemerkenswert. Entscheidend ist aber folgendes: Niemand baut eine eigene Fabrik für nur vier Dampferzeuger. Ein solcher Schritt macht nur Sinn, wenn man vor hat, noch ganz viele zu bauen. Zuerst lockt der eigene Inlandsmarkt. Für Areva dürfte sich schon dieses Geschäft mit dem Wissenstransfer erledigt haben. Der chinesische Markt für Kernkraftwerke ist gegenüber dem europäischen gigantisch. China kann also in kürzester Zeit Kostenvorteile durch Serienproduktion erzielen. Mit diesen Kostenvorteilen wird es in spätestens einem Jahrzehnt massiv auf den Weltmarkt drücken. China wird aber auch die eingekaufte Technik weiterentwickeln. Die „kleine“ Areva hat langfristig keine Chance mitzuhalten. Wenn nicht jetzt massiv umgedacht wird, hat Europa in weniger als einer Generation eine weitere Schlüsseltechnik verspielt: Nach dem Bau von Computern wird auch der Kraftwerksbau aus Europa verschwinden und mit ihm im Fahrwasser, ganze Industriezweige. Aber wahrscheinlich ist das der wahre Grund für die „Energiewende“: Es geht nicht um ein bischen „Ökologismus“ sondern schlicht weg (mal wieder) um „Gesellschaftsveränderung“.

Fukushima, zwei Jahre danach

Jahrestage dienen immer der Erinnerung und der Bilanzen. So auch im Falle des Reaktorunglücks in Fukushima. Zahlreiche Veröffentlichungen sind bisher erschienen. Nach zwei Jahren erscheint es an der Zeit, die ersten grundsätzlichen Konsequenzen zu ziehen.

Was geschah

Vor zwei Jahren erschütterte ein selten starkes Erdbeben den Norden der japanischen Inseln. Erdbeben sind in Japan Routine. Was allerdings überraschte, war die Schwere und der Ort des Geschehens: Ein solch schweres Beben hatte man in absehbarer Zeit eher im Süden erwartet. Die Folge dieses küstennahen Bebens war ein außergewöhnlich heftiger Tsunami. Auch das nicht selbstverständlich für ein Meeresbeben. Alles in allem, eher ein Jahrtausendereignis. Gleichwohl bekannt, wenn auch selten. Geologen kannten mehrere Ereignisse mit hohen Flutwellen in dieser Gegend in den letzten Jahrtausenden. Die Flutwelle überspülte das gesamte Kraftwerk und zerstörte dabei alle Außenanlagen. Die Bedienungsmannschaft gehörte zu den wenigen, die mangels geeigneter Kommunikationsmittel die Warnungen vor dem Tsunami gar nicht mitbekommen haben. Wertvolle Zeit zwischen den Erdstößen und der Flutwelle ist verstrichen und es wurden sogar unangemessene Entscheidungen gefällt. Die Wasserwand traf das Kraftwerk und seine Mannschaft unerwartet und mit unvorstellbarer Gewalt. Wie war es möglich, daß ein Kernkraftwerk buchstäblich überrollt werden konnte? Es war ganz einfach auf zu niedrigem Grund gebaut worden. Man hatte sogar während der Bauzeit noch Gelände abgetragen, um die Baustelle einfacher zu gestalten. Es wurden zwar anschließend Flutmolen gebaut, aber leider viel zu niedrig. Man wußte das seit langem, hatte aber auf „kleine Wellen“ gewettet, da das Kraftwerk ohnehin in einigen Monaten still gelegt werden sollte. Hinzu kam eine von sich aus schon nicht besonders robuste und veraltete Konstruktion und eine im Laufe der Jahrzehnte nicht mehr besonders geschulte Mannschaft. Solche Ketten sind leider nicht außergewöhnlich: Viele – für sich genommen unbedeutende Fehlentscheidungen – können sich in einem Unglücksfall zur Katastrophe auswachsen. Es entstand ein immenser materieller Schaden. Die Kosten übersteigen (damals) notwendige Investitionen um Größenordnungen.

Entweder man macht es richtig oder man läßt es bleiben

Die Standortbedingungen waren sehr genau bekannt. Ein „wird schon gut gehen“, darf es in der Kerntechnik nicht geben. Ein Kernkraftwerk hätte an diesem Standort besser nicht gebaut werden sollen. Da man es trotzdem gemacht hat, hätte man es gegen solche Flutwellen sichern müssen. Spätestens nach Tschernobyl war bekannt, daß es nicht besonders schlau ist, einen Reaktor in eine einfache Industriehalle zu stellen. Hätte das Kraftwerk eine übliche Betonhülle gegen Einwirkungen von außen gehabt, wäre es durch eine „kleine“ Wasserstoffexplosion nicht in sich zusammengefallen. Die Lagerbecken für Brennelemente wären heute nicht mit Bauschutt verschüttet und hätten längst geleert werden können. Ebenso fragwürdig ist der Bau „Wand an Wand“ von Reaktoren, die über zahlreiche Keller, Gänge und Rohrleitungen so miteinander verbunden sind. Wie sich gezeigt hat, können sich im Schadensfall schädliche Gase und radioaktive Flüssigkeiten ungehindert ausbreiten.

Schon Anfang der 1970er Jahre wurde das sehr geringe Volumen des Sicherheitsbehälters bei diesem Reaktormodell kritisiert. Man forderte deshalb Druckentlastungsventile, über die ein etwaiger Überdruck kontrolliert abgebaut werden könnte. Politisch tat man sich damit sehr schwer: Der Sicherheitsbehälter sollte doch eine Freisetzung von Radioaktivität verhindern. Jetzt sollte er geöffnet werden? Dies glaubte man der Öffentlichkeit nur schwer verständlich machen zu können. Ähnliches galt für das Betriebspersonal: Seine wichtigste Aufgabe ist es, die Freisetzung von Radioaktivität zu vermeiden. Was würde mit ihm geschehen, wenn es das Ventil zu „leichtfertig“ öffnen würde?

Spätestens nach dem Unfall in Harrisburg war es eine Tatsache, daß Brennstäbe trocken fallen können und es dann zur Bildung von Wasserstoff kommen kann. Um eine Explosion im Sicherheitsbehälter zu verhindern, wurde dieser während des Betriebs mit Stickstoff gefüllt. Tritt aber nach der Bildung von Wasserstoff, Gas aus dem Sicherheitsbehälter aus, kann es an der frischen Luft zu einer Explosion kommen. Alles seit Jahrzehnten bekannt und durch Experimente bestätigt.

Die Hauptursache war jedoch der Ausfall der Stromversorgung über eine zu lange Zeitdauer. Durch die Flutwelle war großflächig das Stromnetz zerstört. Das Kraftwerk hätte sich also mehrere Tage selbst versorgen müssen. Da das Einlaufbauwerk mit den Kühlwasserpumpen zerstört war, war mangels Kühlung eine Eigenversorgung des Kraftwerks unmöglich. Die Flutwelle hatte nicht nur die Notstromdiesel außer Gefecht gesetzt, sondern auch einen „großen Kurzschluß“ in den Schaltanlagen verursacht. Unmittelbare Hilfe von außen (z. B. Feuerwehr, Fachleute usw.) war erst später möglich, da die gesamte Infrastruktur im Bezirk großflächig und gründlich zerstört war. Die Betriebsmannschaft mußte sich im entscheidenden Zeitraum mit Batterien und Taschenlampen „durchwursteln“. Eine Situation, die (bislang) in keinem Handbuch beschrieben war. Das alles unter einer enormen psychischen Belastung: Es war sehr schnell klar, wie zerstörerisch dieser Tsunami gewesen sein mußte und fast alle hatten ihre Familien in den nahe gelegenen Orten. Diese Kombination von totalem Stromausfall und schweren Schäden im eigenen Kraftwerk, bei gleichzeitiger Isolation von der Außenwelt, hatte es bis dahin noch nicht gegeben.

Das Positive am Unfall

Der Tsunami in Japan war eine der verheerendsten Naturkatastrophen, die ein Industrieland je getroffen hat. Schon die hohe Zahl an Toten und Vermissten spricht für die enorme Gewalt und Ausdehnung. Trotzdem sind nur vier von über fünfzig Reaktoren Totalschaden. Der überwiegende Teil ist nur leicht oder gar nicht beschädigt worden. Selbst bei dem schweren Unfall in Fukushima, ist kein Mensch durch Strahlung schwer geschädigt oder gar getötet worden. Insgesamt ein sehr positives Ergebnis. Bei Kernkraftwerken handelt es sich offensichtlich um recht robuste Anlagen.

Besonders positiv ist, daß eine deutliche Lernkurve zu verzeichnen ist: Je jünger die Anlagen, um so geringer die Schäden. Selbst die Kraftwerke der 1960er Jahre, die aus heutiger Sicht eine Menge Nachteile aufweisen, hatten so viele eingebaute „Sicherheiten“, daß sie zwar einen solchen Tsunami nicht überstanden haben, aber trotzdem nur eine geringe Gefährdung ihrer Umwelt darstellen.

Die Japaner sind tatkräftig dabei, ihr „Missgeschick“ in eine Chance umzuwandeln: Haben sie bereits mehrfach den Beweis geliefert, daß sie erfolgreich Kernkraftwerke in Erdbebenregionen bauen und betreiben können, sind sie jetzt dabei, der Welt zu zeigen, wie man mit einer „Nuklearkatastrophe“ verantwortungsvoll umgeht. Die Ruine wird zielstrebig und umweltschonend beseitigt. Und dies geschieht alles öffentlich und unter „kritischer Begleitung“ unserer „Atomkraftgegner“, die ihr Geschäftsmodell der Verbreitung von Angst langsam schwinden sehen. Die Story von „Millionen Toten, für zehntausende Jahre unbewohnbar“ hat sich als schlechte Propaganda erwiesen. Schlecht deshalb, weil inzwischen von jedem als maßlose Übertreibung erkennbar.

Lehren, die gezogen werden müssen

Fukushima hätte nicht passieren müssen. Dies ist die einhellige Schlussfolgerung in allen bisherigen Untersuchungsberichten. Wie aber, konnte es geschehen, daß man das Risiko einer bekannt hohen Flutwelle förmlich ausblendete? Seit der Planung, wurde immer wieder von namhaften Geologen (keine selbsternannten „Atomexperten“) auf die mögliche Höhe einer Flutwelle an diesem Standort hingewiesen. Bei dem Kraftwerk in Fukushima handelte es sich um eine veraltete Konstruktion. Allein in den USA sind von diesen „alten Typen“ noch über 30 Stück in Betrieb. Allerdings mit einem entscheidenden Unterschied: Die konstruktiven Schwachstellen wurden herausgearbeitet und durch Nachrüstmassnahmen zumindest entschärft. Gleiches geschah z. B. in Schweden.

In Japan hat die „Atomaufsicht“ völlig versagt. Schlimmer: Wie man sich heute eingesteht, mußte sie versagen, weil sie von ihrer Konzeption her so angelegt war. Der japanische Staat ist vom Selbstverständnis her, ein fürsorglicher Staat. Er ist für das Wohl der Nation maßgeblich verantwortlich und sorgt deshalb für die ausreichende und sichere Versorgung mit Energie. Insofern war es in sich logisch, auch die Kernenergie von der Planung bis zum Betrieb möglichst eng zu verknüpfen. Anfangs ein Erfolgsrezept, denn Kerntechniker sind nicht per Knopfdruck zu erschaffen. Schon die Ausbildung dauert überdurchschnittlich lang und erfordert spezielle Qualifikationen. Heute spricht man treffend vom „Nuclear Village“ in Japan, in dem jeder mit jedem irgendeine Beziehung unterhält. Dieses System gipfelt im „Amakudari“ (etwa: vom Himmel herabsteigen) japanischer Behörden. Damit ist gemeint, daß Staatsbedienstete vor dem endgültigen Ruhestand noch einmal in die Privatwirtschaft wechseln um „richtig Geld zu machen“. Sie nutzen dann für ihre neuen Dienstherren ihre „Behördenerfahrung“ und ihre Kontakte. Man kann sicherlich nicht erwarten, daß solche „Kontrolleure“ ihre zukünftigen Brötchengeber durch „Übereifer“ verprellen wollen. Außerdem versucht man eine Lösung für die häufige Rotation zu finden. Für japanische Beamte ist alle zwei bis drei Jahre eine Versetzung üblich. Damit ist eine „Waffengleichheit“ bei der fachlichen Qualifikation zwischen Prüfer und Antragsteller kaum möglich. Dem Beamten bleibt aus Unsicherheit meist nichts anderes übrig, als dem Antragsteller in seiner Argumentation zu folgen. Nur so ist es erklärlich, warum z. B. die Anwendung der Wahrscheinlichkeitsanalyse so lange in Japan immer wieder verhindert werden konnte. Ein Beamter liebt keine Unsicherheiten, sondern wird immer einen konkreten Zahlenwert aus irgendeiner Vorschrift bevorzugen.

Bevor an dieser Stelle das Gefühl aufkommt, in Deutschland sei alles besser, nur mal einige Denkanstöße: Glaubt wirklich jemand, daß in Deutschland ein „Karrierebeamter“ noch wagt, ausschließlich nach wissenschaftlichen Erkenntnissen den Salzstock in Gorleben zu beurteilen, wo doch politisch alles auf „Anti-Gorleben“ gebürstet ist? Wo war der Aufschrei, als unter Rot-Grün systematisch Aufsichtsbehörden mit „kritischen Wissenschaftlern“ (ein Synonym für nachweislich fachlich unqualifiziert, aber mit richtiger politischer Gesinnung) in Führungspositionen besetzt wurden? Wer sollte heute noch Forschungsgelder für kerntechnische Fragestellungen beantragen, wo der „Atomausstieg“ doch beschlossene Sache ist und Forschungsgelder eher für „Gender-Problematik“ abzugreifen sind? Hier geht es nicht um einzelne Personen, sondern um Strukturen, die absehbar (wieder) in die Katastrophe führen. Ideologische Vorgaben und Wissenschaft schließen sich grundsätzlich aus.

Selbst im angeblichen Mutterland des Kapitalismus scheint einiges aus dem Ruder gelaufen zu sein. Zwar haben die USA eine ziemlich unabhängige und selbstbewusste „Atomaufsicht“, aber diese werkelt in Stundenlohnarbeit, zum Stundensatz von knapp 300 $, bei Genehmigungen jahrelang vor sich hin. Dort sitzen auch die Spezialisten, die sich beispielsweise ihr halbes Leben mit Rohren bei Dampferzeugern von Druckwasserreaktoren beschäftigt haben und deshalb auch die verwickelsten Fälle (San Onofre) in kurzer Zeit lösen. Aber mal ehrlich, wer möchte diesen Damen und Herren in Stundenlohnarbeit die Genehmigung eines gasgekühlten Wärmeübertragers vorlegen? Zwar gilt auch hier, die Kosten des einen, sind das Einkommen des anderen, aber mit einem entscheidenden Unterschied: Unübliche Kosten (alle bauen ja schließlich Leichtwasserreaktoren) lassen sich nicht auf dritte, die Stromkunden, abwälzen. Ein solches System ist extrem innovationsfeindlich. Das hat auch die amerikanische Regierung erkannt und versucht nun durch Milliardenprogramme (z. B. SMR-Reaktoren) diesen Fehler mehr schlecht als recht zu heilen – und was kommt raus? Überraschung: Kleine Druckwasserreaktoren, wie man sie eigentlich schon seit Jahrzehnten für die Marine baut.

Nun haben die USA wenigstens noch die „Nationale Sicherheit“, für die man eigentlich immer Gelder auftreiben kann und weitestgehend ungehindert forschen und entwickeln kann. Oder müssen wir uns doch eher auf „Gelenkte Demokratien“ verlassen, wo ein Diktator, in seiner unendlichen Weisheit, vielleicht doch neue Reaktortypen entwickeln läßt? Auszuschließen ist das nicht. Vielleicht ist es ja ein „Guter Diktator“, der uns an seinem Fortschritt auch noch selbstlos teilhaben läßt. Schließlich wollen unsere „Energiewender“ ja auch die Menschheit retten.

Soll Bürokratie und Planwirtschaft tatsächlich die Antwort auf eines der dringendsten Probleme der gesamten Menschheit sein: Ausreichend preiswerte Energie! Oder ist der „Geist von Cupertino“ nicht viel eher die Antwort? Wieso konnte ein Computerhersteller etliche Milliarden Dollar eigenes (!!!) Geld in die Hand nehmen und gegen den Rat aller „Telefonexperten“ ein völlig neues Telefonkonzept entwickeln? Die Antwort ist einfach: Weil man ihm die Freiheit dazu ließ! Selbstverständlich war er verpflichtet, alle geltenden Vorschriften und Sicherheitsnormen einzuhalten – aber bitte nicht mehr.