Wohin die Reise geht

Wie sich die Kerntechnik in den nächsten 30 Jahren – das ist gerade mal der Zeitraum seit der Wiedervereinigung – weltweit entwickelt, zeigt stellvertretend China. Eine Studie geht davon aus, daß der Stromverbrauch in China im Jahr 2050 auf 14000 TWh/a (Deutschland in 2014: 524 TWh) ansteigt. Wieder einmal ein Zeichen, wie unbedeutend Deutschland geworden ist. Bemerkenswert ist dabei besonders, daß China auch keiner Verzichtsideologie anhängt: Der Pro-Kopf-Verbrauch soll nämlich auf 10320 kWh/a ansteigen (Deutschland in 2014: 7035 KWh). Um diese Planzahlen zu bewältigen, geht man von einer Steigerung der Reaktoren von 26 GW im Jahr 2015 auf etwa 554 GW in 2050 bei einer Steigerung des Kernenergieanteils an der Stromerzeugung von derzeit 3% auf dann 28% aus. Also noch durchaus weit entfernt von dem Anteil von 75% in Frankreich. Es handelt sich wohl um eine realistische Annahme.

Will man dieses ehrgeizige Ziel erreichen, muß man von jetzt ab jedes Jahr 10 Reaktoren ans Netz bringen. Die Bauzeit für ein Kernkraftwerk beträgt in China 4–5 Jahre. Das bedeutet, man muß gleichzeitig bis zu 50 Baustellen im Griff behalten. Aktuell beträgt die industrielle Kapazität etwa 22 Reaktoren gleichzeitig oder anders ausgedrückt, muß die Kapazität verdreifacht werden, da Exporte auch noch vorgesehen sind. Ob dies gelingt, sei dahingestellt. Entscheidender Engpass sind auch dort die Fachkräfte.

Es bleibt nur die III. Generation

Wenn man in solchen Größenordnungen und (kurzen) Zeiträumen denken muß, bleibt nur erprobte Technik. Dies sind Leichtwasserreaktoren der dritten Generation. Inzwischen gibt es Betriebserfahrungen mit folgenden Typen:

  • ABWR (fortschrittlicher Siedewasserreaktor) 4 mal in Japan (Kashiwazaki-Kariwa 6 und 7, Hamaoka 5 und Shika 2).
  • AP1000 (Druckwasserreaktor von Westinghouse) 4 mal in China (Haiyang und Sanmen).
  • VVER-1200 (Druckwasserreaktor) 2 mal in Rußland.
  • EPR (Druckwasserreaktor) 2 mal in China.
  • APR1400 (Druckwasserreaktor aus Korea) 2 mal in Korea.
  • ACPR1000 (Druckwasserreaktor als chinesische Eigenentwicklung) 2 mal in China.

Von diesen Typen sind darüberhinaus derzeit noch zahlreiche weitere weltweit in Bau: Finnland, Frankreich, Großbritannien, Vereinigte Arabische Emirate, Korea, Rußland, Türkei, Bangladesh, USA und China. Man wird sehen, ob in China nur noch Eigenentwicklungen oder auch noch Importe zum Zuge kommen werden. Letztendlich eine Frage der Kosten, des Zeitdrucks und der Kapazitäten (insbesondere Fachkräfte).

Wenn man sich – wie einst in Frankreich und Deutschland – auf wenige Typen beschränkt und diese in entsprechender Stückzahl nahezu baugleich herstellt, kann man auch die Investitionskosten für modernste Druckwasserreaktoren (z. B. AP1000) auf rund 3000 $/kW begrenzen. Man bewegt sich damit in der Größenordnung moderner Kohlekraftwerke nach europäischen Umweltstandards (Entschwefelung, Entstickung etc.). Man kann die Kosten aber noch weiter senken, wenn man die bestehenden Konstruktionen sicherheitstechnisch „entrümpelt“. Dieser Weg wird sowohl in Frankreich (geplanter Neubau von sechs „weiterentwickelten“ EPR), wie auch in China (Hualong) beschritten.

Die Frage der Sicherheit

In der Hochzeit der „Anti-Atomkraft-Bewegung“ war deren durchschlagendes Argument die „Reaktorkatastrophe“. Gegen die Propaganda von ≫Millionen Tote, für zehntausende Jahre unbewohnbar≪ konnte keine rationale Argumentation ankommen. Das änderte sich – jedenfalls außerhalb Deutschlands – erst durch das Unglück in Tschernobyl. In Tschernobyl geschah der schwerste mögliche Schaden: Nahezu der gesamte radioaktive Inhalt wurde wie durch einen Vulkan ausgespien. Ein solches Szenario hatte sich nicht einmal Greenpeace und Konsorten ausgedacht. Das von Hollywood ersponnene China-Syndrom war schon vorher durch den Reaktorunfall in Three Mile Island widerlegt. Es gab zwar eine Kernschmelze, aber das Corium hat sich mitnichten bis China durchgefressen. Eher ein typischer Industrieunfall, bei dem keine Auswirkungen außerhalb des Werksgeländes zu verzeichnen waren. Der Gipfel war das Reaktorunglück von Fukushima. Dort gab es gleich in drei Reaktoren nebeneinander eine Kernschmelze und das Kraftwerk wurde überdies durch eine Wasserstoffexplosion zerstört. Auch dort alles andere als eine Katastrophe. Heute kann das Werksgelände (nicht die Reaktoren) bereits wieder ohne Schutzkleidung betreten werden. Folgerichtig steigt Japan – anders als Deutschland – nicht aus der Kernenergie aus. Die Propaganda von den „Reaktorkatastrophen“ hat sich als schlechte Propaganda erwiesen. Wer immer noch solchen Gruselgeschichten anhängt, zerstört lediglich seine Glaubwürdigkeit und outet sich als Ideologe, der offensichtlich ganz andere Ziele verfolgt.

In unmittelbarem Zusammenhang mit der Beurteilung von Risiken steht die „Strahlenangst“. Über die Wirkung radioaktiver Strahlung ist (auch) in diesem Blog schon genug geschrieben worden. Wichtig im Zusammenhang mit „Reaktorkatastrophen“ ist die realistische Bewertung von Strahlenwirkungen und die daraus abzuleitenden Pläne zu Schutzzonen und Evakuierungen. Es darf jedenfalls nie mehr passieren, daß auf Grund eines mittelalterlich anmutenden Gespensterglaubens über die Wirkung ionisierender Strahlung Menschen aus ihrem sozialen Umfeld gerissen werden oder sogar sterben müssen. Die indirekten Toten durch „Hilfsmaßnahmen“ im Umfeld von Tschernobyl und Fukushima sollten ein für alle Male genug sein.

Notwendige Entrümpelung

Der Bau von Kernkraftwerken hat heute längst das Optimum von Kosten und Sicherheitsgewinn überschritten. Man ist sehenden Auges in die Falle der „Atomkraftgegner“ getappt: Indem man glaubte, sich deren Wohlwollen erkaufen zu können, indem man jede Forderung erfüllen würde, hat man die Kosten in schwindelerregende Höhen getrieben und wird heute als Depp vorgeführt, der viel zu teure Energie produziert. Insofern weht nun aus China ein frischer Wind: Der Hualong ist soweit entschlackt worden, daß er sich in Großserie für etwa 2000 $/KW bauen lassen wird. Ähnlich vielversprechend sind auch die aus dem AP1000 abgeleiteten Typen.

Wohlgemerkt, es geht nicht um mangelnde Sicherheit durch Kosteneinsparung. Es gehört lediglich jede Maßnahme auf den Prüfstand. Auf Gimmicks, wie „Kernfänger“, die eine Hollywood Fiktion verhindern sollen oder doppelte Betonhüllen als Schutz gegen Terrorristen, kann getrost verzichtet werden. An erster Stelle steht ein sauber durchdachtes Grundkonzept (z.B. AP1000 oder passive Siedewasserreaktoren). Durch „Kernfänger“ aufgemotzte Reaktoren der II. Generation wie der EPR oder die Spagettitöpfe (mit liegenden Dampferzeugern) der Sowjetära, sind eine nicht länger konkurrenzfähige Sackgasse. Wenn das nicht bald realisiert wird, werden zwei weitere „Reaktornationen“ vom Weltmarkt verschwinden. Alle Entwicklungsländer dürsten nach billiger elektrischer Energie. Wenn sie sich keine Kernkraftwerke leisten können, müssen sie Kohlekraftwerke bauen. Die Absatzmärkte – unter der Bedingung akzeptabler Investitionskosten – sind nicht nur vorhanden, sondern werden täglich größer. Nur China und die USA scheinen dies erkannt zu haben und sind bereit das nötige „Kleingeld“ zu investieren. Frankreich ist viel zu klein und die EU ist zerstritten über grüne Phantasien von Wind und Sonne. Kanada und GB kommen in diesem globalen Spiel die Rolle von Unterstützern zu, was durchaus auch profitabel sein kann.

Weiterentwicklung der Sicherheitskonzepte

Im Moment steht die Weiterentwicklung der Brennstäbe im Vordergrund. Das System aus Pellets aus Uranoxid und Hüllrohren aus Zirconium war die erste Barriere gegen die Freisetzung radioaktiver Stoffe. Leider nicht besonders belastbar. Hinzu kommt die Wasserstoffbildung bei einem Störfall. Hier ist die Anwendung der Forschung jahrelang hinterher getrödelt. Seit Fukushima sind von verschiedenen Herstellern unterschiedliche Konzepte in der Erprobung. Ein Gewinn an Sicherheit in diesem Bauteil kann unmittelbar (bedeutet in der Kerntechnik in Jahren) auf vorhandene Reaktoren übertragen werden. Gerade an diesem Beispiel zeigt sich, wie wichtig eine unabhängige und funktionstüchtige nukleare Aufsicht ist. Hätte man dies in Japan früher beherzigt, wäre das Kraftwerk in Fukushima nie so gebaut worden und es wären somit nicht die immensen volkswirtschaftlichen Verluste zu tragen.

Heute stehen Programme und Rechner zur Verfügung, die gekoppelte Simulationen der thermodynamischen, strömungstechnischen, neutronenphysikalischen und mechanischen Beanspruchungen bei Unfällen erlauben, von denen die Konstrukteure der II. Generation nur träumen konnten. Man kann deshalb nicht nur viel genauere Ergebnisse erzielen, sondern auch unmöglich (erscheinende) Szenarien zeitnah untersuchen und vergleichen. Auch hier schreitet die Entwicklung beständig voran. Moderne Simulatoren (in jedem Kernkraftwerk vorhanden) erlauben es den Betriebsmannschaften stets auf dem neusten Stand zu bleiben, ihr Reaktionsvermögen auf unvorhergesehene Ereignisse zu schärfen und eigene Sicherheitsbedenken zu untersuchen. Der internationale Kontakt von Betriebsmannschaften und die unmittelbare Weiterverbreitung neuer Methoden sind ein scharfes Schwert insbesondere für junge Kerntechnik-Nationen.

Kernkraftwerke sollten möglichst einfach und passiv (z.B. Naturumlauf, Druckspeicher etc.) gebaut sein. Was nicht vorhanden ist, kann auch nicht kaputt gehen. Je komplexer die Anlage, um so komplexer muß auch die Steuerungs- und Regeltechnik werden. Die Anzahl der sich einschleichenden Fehler steigt bei Software überproportional mit den Programmzeilen an. Je höher die Anzahl von Stellgliedern ist, um so mehr steigt im Notfall die Abhängigkeit von elektrischer Energie. Je mehr Kabel und Schaltanlagen, um so höher die Gefahr von Feuer und Wasser (Fukushima). Die konsequente Verwendung von FPGA (Field-Programmable Gate Array) im Sicherheitsbereich schließt z. B. die Möglichkeit von Angriffen durch Hacker aus.

Als letzte Barriere zur Verhinderung der Freisetzung von Radioaktivität in die Umgebung dient das Containment. Wenn es groß und stabil genug ist, die gesamte freiwerdende Dampfmenge aufzunehmen und passiv in der Lage ist, die Nachzerfallswärme an die Umgebung abzugeben, stellt es das entscheidende Sicherheitsglied gegen die Umgebung dar. Es ist der Notnagel, der auch noch die letzten unvorhergesehenen Ereignisse abdeckt: Das Kraftwerk ist zwar anschließend Totalschaden, aber Auswirkungen außerhalb des Werksgeländes werden verhindert. Die Bedeutung dieses Bauteils hat sich in den Unglücken von Tschernobyl und Fukushima erwiesen. In Tschernobyl gab es überhaupt kein Containment, in Fukushima nur ein unzureichendes.

Aus dem Unglück in Fukushima als Kombination von großflächiger Naturkatastrophe und Reaktorunglück hat man weltweit die Konsequenz von regionalen Sicherheitszentren gezogen. Sie funktionieren nach dem Prinzip einer Feuerwache. Dort sind alle möglichen Gerätschaften gelagert, die selbst bei einem Reaktorunglück verwendet werden können, bei dem am Kraftwerk schwerste Zerstörungen vorliegen. Hinzu kommen Rettungsteams aus trainierten Spezialisten, die die Bedienmannschaften in den Kraftwerken unterstützen und ersetzen (z. B. notwendige Ablösungen) können.

Weitere Entwicklungen

Für die Kerntechnik gelten die gleichen Gesetzmäßigkeiten wie z. B. für die Luftfahrt, Raumfahrt, Automobiltechnik etc. Mit jeder Betriebsstunde steigen die Erfahrungen und man gewinnt neue Erkenntnisse. Nur ein kontinuierlicher Betrieb gewährleistet Sicherheit. Stellt man eine bedeutende Lücke fest, beginnt die Nachrüstung der Altanlagen. Typisches Beispiel nach Three Mile Island war die Erkenntnis der Wasserstoffbildung aus den Brennstabhüllen. Die Ursache (Bildung von Wasserstoff aus Zirconium bei hohen Dampftemperaturen) konnte bei diesem Reaktortyp nicht unmittelbar an der Wurzel beseitigt werden und man setzte zusätzliche Einrichtungen zur Beseitigung des Wasserstoffs ein (waren in Fukushima nicht vorhanden, deshalb die verheerenden Explosionen). An dieser Stelle stellt sich die Frage der „Lebensdauer“ oder eigentlich besser Nutzungsdauer eines Kernkraftwerks. Es ist keine technische Frage, sondern eine wirtschaftliche. Auch diesen Prozess kann man derzeit in Japan beobachten. Jedes einzelne Kraftwerk wird akribisch überprüft, daraus resultierende Nachrüstungen festgelegt und anschließend die Kosten ermittelt. Für viele Reaktoren bedeutet das den frühzeitigen Tod (keine Wiederinbetriebnahme) aus Kostengründen. Der Neubau eines Kernkraftwerks wäre schlicht weg billiger.

Die Energiewende tötet

Nein, hier geht es nicht um Insekten, Fledermäuse, Greifvögel etc. und auch nicht um Infraschall oder Monteure, die nicht rechtzeitig aus großer Höhe abgeborgen werden können, sondern um Strompreise. Es geht auch nicht um Geschichte (in den Wintern nach dem Zusammenbruch des Sowjet-Reiches) über Rentner, die im Winter erfroren sind, weil sie ihre Energierechnungen nicht mehr bezahlen konnten. Damals in Deutschland kaum wahrgenommen. Heute, im Zeitalter der Diskussion um „kleine Renten“ und dem zwangsweisen Abklemmen hunderttausender vom Stromnetz, wäre dies sicherlich schon etwas anders.

Hier geht es um ein Papier mit dem unverfänglichen Titel Be Cautious with the Precautionary Principle: Evidence from Fukushima Daiichi Nuclear Accident. Übersetzt etwa: Vorsicht mit dem Vorsorgeprinzip, Nachweis durch das Unglück in Fukushima. Was man auf den ersten Blick gar nicht vermuten mag, dieses Diskussionspapier stammt vom Institut zur Zukunft der Arbeit (IZA) in Bonn. Eine Wirtschaftsforschungseinrichtung der Deutschen-Post-Stiftung. Sie soll lt. wikipedia etwa 50 Mitarbeiter haben und in einer schmucken Villa in Bonn residieren. Was mag ein Forschungsinstitut zur „Zukunft der Arbeit“ in Deutschland bewegen, eine Studie über den Zusammenhang zwischen Strompreisen und Todesfällen zu veröffentlichen? Ein Schelm, wer dabei spontan an etwas ganz anderes als das Reaktorunglück in Fukushima denkt.

Die Labormaus Fukushima

Durch das Erdbeben mit anschließendem Tsunami kam es innerhalb von 14 Monaten zum totalen Abschalten aller Kernkraftwerke in Japan. Eine verständliche und richtige Reaktion. Man wollte in aller Ruhe die Ursachen und Schäden des Reaktorunglücks in Fukushima analysieren und gegebenenfalls Abwehrmaßnahmen einleiten. Bis heute sind noch nicht alle Reaktoren wieder am Netz. Hierdurch kam es zu einem scharfen Preisanstieg. In den ersten vier Jahren nach dem Unglück stieg der Anteil fossiler Energien von 62% auf 88%, parallel ging der Anteil der Kernenergie von 30% auf Null zurück. Bis 2016 war der Strommarkt – ähnlich wie früher in Deutschland auch – stark reguliert. Es gab zehn Versorgungsgebiete, in denen jeweils ein Versorger das Monopol hatte. Dafür mußte der Versorger sich seine Strompreise genehmigen lassen und zu diesem Zweck seine Kalkulationen offen legen. Man kann daher die Ursachen der Strompreisanstiege sehr genau nachvollziehen. Gemäß dem unterschiedlichen Anteil von Kernenergie in den Regionen, bewegte sich der Anstieg in Folge der Abschaltungen zwischen etwa 15% (Okinawa) und 44%. (Hokkaido, Kansai).

Für das Verständnis der Studie sind die gänzlich anderen Abrechnungsmodi für Haushaltsstrom in Japan von Bedeutung. Es gibt einen Grundpreis und einen Zuschlag, der sich aus dem Verbrauch des Vormonates ergibt (ähnlich Arbeits- und Leistungspreis für Industriekunden in Deutschland). Der „Preisdruck“ ist damit viel unmittelbarer als bei uns mit jährlicher Abrechnung und konstanten Monatsabschlägen. Japaner reagieren dadurch sofort mit Sparmaßnahmen. Ein weiterer Unterschied zu Deutschland ist der höhere Anteil elektrischer Energie zu Heizzwecken (ähnlich Frankreich).

Die monatlichen Sterbefälle wurden aus den öffentlichen Registern entnommen und auf Hunderttausend Einwohner normiert. Unterschiedliche Altersstrukturen in den Gemeinden wurden korrigierend berücksichtigt. Die stündlichen Temperaturen wurden von den meteorologischen Stationen verwendet und in acht Temperaturintervallen sortiert und mit den entsprechenden Bevölkerungszahlen gewichtet.

Die ökonometrischen Modelle

Im ersten Schritt wurde ein mathematisches Modell für die Quantifizierung von Strompreis und Verbrauch erstellt. Hierbei wurden noch zusätzliche Einflüsse berücksichtigt (z. B. die zeitliche Verzögerung durch die Rechnungsstellung, zusätzliche Wetterdaten wie Feuchtigkeit und Wind, Anzahl der Kinder bzw. Rentner im Haushalt usw.). Im zweiten Schritt wurde der Zusammenhang zwischen Sterblichkeit und Außentemperaturen geklärt. Im nächsten Schritt wurde aus diesen Teilmodellen ein Modell gebildet, welches die Sterblichkeit als Funktion von Außentemperatur und Strompreis darstellt. Vereinfacht kann man sagen, daß höhere Strompreise zu einer geringeren Beheizung führten und damit bei extremen Temperaturen das Risiko zu sterben anstieg.

Lange Rede, kurzer Sinn – allen Statistik-Freaks sei der Originalartikel empfohlen – die Studie kommt zu dem Ergebnis, daß infolge des Strompreisanstiegs durch die Abschaltung der Kernkraftwerke im Zeitraum 2011–2014 in Japan zusätzlich mindestens 4500 Menschen gestorben sind.

Konsequenzen für Deutschland

Bei aller Skepsis, die ein Kerntechniker gegenüber Korrelationen und daraus abgeleiteten Todesursachen hat, bleibt jedoch eine klare – wenn eigentlich triviale – Aussage: Hohe Energiepreise töten. Dies sei allen Anhängern der Öko-Sozialistischen-Verzichtskultur in ihre Gebetbücher geschrieben. Sie tötet nicht virtuell, wie irgendeine (eingebildete) Strahlengefahr, sondern ganz unmittelbar und meßbar. Die „Kältetoten“ sind real und erfaßbar. Kein Obdachloser oder Kleinrentner dem Strom und Gas abgestellt wurde, stirbt freiwillig. Alle Anhänger der „großen Transformation“ müssen sich einst wie ihre ideologischen Vorgänger Hitler, Stalin, Mao und Pol Pot für ihre Ideologie vor Gott und der Menschheit verantworten. Wer Energiepreise in schwindelnde Höhen treibt, rettet nicht die Erde vor einem (eingebildeten) „Hitzetod“, sondern tötet ganz unmittelbar und bewußt Menschen. Dies ist die Gemeinsamkeit aller sozialistischen Hirngespinste: Eine vermeintlich bessere Welt in der fernen Zukunft soll durch einen mit Toten gepflasterten Weg erkauft werden. Und noch etwas sei allen Akteueren ins Stammbuch geschrieben: Preise sind in freier Übereinkunft aus Angebot und Nachfrage gebildete Maßstäbe für die Knappheit eines Gutes. Irgendwelche CO2– Abgaben sind demgegenüber rein planwirtschaftliche Maßnahmen und damit das genaue Gegenteil von Marktwirtschaft und freiheitlicher Gesellschaft. Sie können niemals den Weg in eine bessere Zukunft weisen.

So geht Kohleausstieg

Rechtzeitig zum Winterbeginn wurde am 15. November in Haiyang in der Shandong Provinz in China die erste Stufe einer nuklearen Fernwärmeversorgung in Betrieb genommen. Vorerst werden 700 000 Quadratmeter Wohnfläche aus dem Kernkraftwerk Haiyang mit Wärme versorgt. Es handelt sich um die eigene Wohnsiedlung und einige öffentliche Gebäude. Schon dieser allererste Schritt spart rund 23 200 to Kohle pro Jahr ein. Die lokale Umwelt wird von 222 to Feinstaub und Ruß, 382 to Schwefeldioxid und 60 000 to CO2 jährlich entlastet. Ab 2021 soll ganz Haiyang mit 30 Millionen Quadratmeter versorgt werden. Im Endausbau sollen bis zu 200 Millionen Quadratmeter Wohnfläche in einem Radius von 100 km aus diesem Kernkraftwerk versorgt werden. Dies soll dann 6,6 Millionen to Kohle pro Jahr einsparen. Wohl gemerkt, nur für die Heizung in einem Ballungsraum.

Klimatische Verhältnisse

Neben seiner Größe und seines Bevölkerungsreichtums herrschen in China recht extreme Temperaturen. So liegt Haiyang etwa auf der gleichen Breite wie Tunis, hat aber eher Berliner Temperaturen. Im Januar bewegen sich die mittleren Temperaturen zwischen -5° und 1°C. Obwohl an der Küste gelegen, sind aber auch Temperaturen von unter -10°C durchaus nicht selten. Im Sommer herrscht feuchte Hitze zwischen 24° bis 28°C. Je nach Windrichtung (Monsun), herrscht Meeres- oder Kontinentalklima vor. Im Nordosten von China sind die Winter extrem lang und bitterkalt. Die vielen Kohleheizungen sind dort Ursache für die extrem schlechte Luft im Winter, die von der Bevölkerung nicht mehr länger toleriert wird. Luftverschmutzung ist eins der wesentlichen Probleme für die Regierenden auf allen Ebenen. Als (wirtschaftlich praktikable) Lösung bieten sich nur zwei Ansätze: Ersatz der „schmutzigen“ Kohle durch „sauberes“ Erdgas als Brennstoff oder Ausbau der Fernwärme und Einspeisung von nuklearer Abwärme. Erdgas muß überwiegend importiert werden und erfordert damit einen kontinuierlichen Devisenbedarf. Der Bau von Kernkraftwerken erfordert lediglich in der Bauphase einen großen Kapitalaufwand, während der Uranverbrauch später kaum noch ins Gewicht fällt. Langfristig sicherlich die günstigere Lösung. Mit jedem Kernkraftwerk das in Betrieb geht, sinkt der Kohlenverbrauch gleich um mehrere Millionen Tonnen pro Jahr.

Der Drang in die Ballungsräume

Weltweit wachsen die Ballungsräume immer schneller. Sie sind insbesondere für junge Menschen wegen der angebotenen Arbeitsplätze und der vielfältigen Freizeitangebote höchst attraktiv. Dies haben Berlin und Lagos – wenn auch auf völlig unterschiedlichem Niveau – gemeinsam. Die hohe Bevölkerungsdichte führt allerdings zu enormen Umweltbelastungen (Luftverschmutzung, Verkehr, Müll, Abwasser, usw.), die die Lebensqualität stark einschränken (können). Im Grunde genommen, sind Großstädte wie Mars-Kolonien: Sie sind nur durch „Technik“ überhaupt lebensfähig. Hat man erstmal eine Einwohnerzahl wie Peking (21 Millionen) oder Shanghai (23 Millionen) erreicht, ist eine Heizung bzw. Klimatisierung nur noch über Fernwärme- oder Kaltwassernetze sinnvoll möglich. Will man die Luftqualität merklich verbessern, muß man die Abgasquellen beseitigen oder zumindest aus der Stadt schaffen. Absolut keine neue Erkenntnis. Genau diesen Weg hat man in allen Industrieländern beschritten. Es ist der einzig gangbare Weg: Unabhängig von Region, Kultur und Wirtschaftssystem. Zentraler Gesichtspunkt ist dabei die Energiedichte. Will man den sehr hohen Energiebedarf pro Fläche in einer Großstadt ausgerechnet mit „Regenerativen“ (Wind, Sonne, Biomasse) bereitstellen, zerstört ein Ballungsraum eine ganze Region oder sogar ein ganzes Land. Immerhin hat das „kleine“ Shanghai inzwischen mehr Einwohner als ganz Österreich.

Der chinesische Weg

China hat ernsthafte Probleme mit der Luftverschmutzung. Hauptursache ist der gewaltige – und immer noch steigende –Verbrauch an Kohle. 2016 verbrauchte China 3349 Millionen to Steinkohle (Deutschland 57 Mio to), sowie 140 Millionen to Braunkohle (D 168 Mio to). China setzt deshalb konsequent auf den Ausbau der Kernenergie. In der ersten Phase hat man sich weltweit alle möglichen Reaktortypen zusammengekauft. Diese Phase scheint abgeschlossen. Von jetzt an, setzt man auf den Bau von Eigenentwicklungen (Hualong und CAP1000) auch für den Export. Bisher wurden fast alle Reaktoren an der Küste gebaut (billige Kühlung durch Meerwasser). Endgültige Klarheit über Typen und Standorte wird das Inkrafttreten des 14. Fünfjahrplan (2021–2026) verschaffen.

Von Anfang an, ist man aber mit großen Kraftwerken (bis 6 Reaktoren) möglichst nah an die Ballungszentren herangerückt. Dies spart schon mal lange und kostspielige Hochspannungstrassen. Auch mit diesen – anders als in Deutschland – hat man bereits seine Erfahrungen gesammelt. Das Hochspannungsnetz von China hat eine Länge von etwa einer Million km (Deutschland 35 000 km). Paradestücke ist z. B. die 800 kV Tian-Zhong Stromtrasse mit einer Länge von fast 2200 km. Zehn weitere solcher Trassen sind in Bau oder Planung. Thermische Kraftwerke in der Nähe von großen Städten bieten sich aber auch für die Kraft-Wärme-Kopplung an. Darunter versteht man die doppelte Ausnutzung des Brennstoffs für die Stromerzeugung und Heizung – eine besonders effiziente und umweltfreundliche Energienutzung.

Wenn man jedoch so nah an Ballungsräume heranrückt, ist ganz besonderer Wert auf die Sicherheit zu legen. Bei den zwei Reaktoren vom Typ AP-1000 handelt es sich wohl um die zur Zeit sichersten und modernsten Druckwasserreaktoren, die auf dem Weltmarkt zu kaufen sind. Zwei dieser Reaktoren befinden sich auch in Vogtle USA im Bau, zwei weitere in Sanmen China sind schon in Betrieb. Dieser Reaktor verfügt über passive Sicherheitseinrichtungen, die ein Unglück wie in Fukushima („station blackout“, dies ist ein totaler Ausfall des Kraftstroms) ausschließen. Die Nachzerfallswärme könnte ohne jeden Eingriff des Betriebspersonals abgeführt werden.

Die Verknüpfung mit dem Fernwärmenetz der Fengyan Thermal Power geschieht in einem separaten Gebäude auf dem Gelände des Kernkraftwerks. Wichtig unter Sicherheitsaspekten ist, daß das Fernheiznetz physikalisch durch Wärmeübertrager vom sekundären Dampfkreislauf des Kernkraftwerks völlig getrennt ist. Eine „Ausbreitung von Radioaktivität“ im Heizungsnetz kann also ausgeschlossen und ständig automatisch überwacht werden. Jeder muß nun selbst entscheiden, was für ihn ein größeres Risiko darstellt: Eine virtuelle Strahlenangst oder eine chronische Belastung durch Abgase.

Übertragung auf deutsche Verhältnisse

In Deutschland sind rund 14% aller Wohnungen an Fernwärme angeschlossen und damit werden rund 9% des gesamten Wärmebedarfs abgedeckt. Dies ist z. B. gegenüber Dänemark bescheiden: Dort werden 62% aller Haushalte durch Fernwärme versorgt. In großen Städten ist dort die Versorgung nahezu vollständig. So oder so, lassen sich durch den Ausbau der Fernwärme in Deutschland noch beträchtliche Mengen an fossilen Brennstoffen einsparen. Schneller und kostengünstiger als durch jedwede „Elektromobilität“. Aus ideologischen Gründen verdrängt man in Deutschland umweltfreundliche Kohlekraftwerke (mit Entstaubung, Entstickung und Rauchgaswäsche) durch kaum bessere Gaskraftwerke. Gemessen an den Entwicklungen z. B. in China, kann das nur eine Übergangslösung sein.

Es kann also nicht schaden, sich schon jetzt ein paar Gedanken für die Zeit nach dem Öko-Sozialismus zu machen. In dem dann wieder aufzubauenden Deutschland wird eine kostengünstige und sichere Energieversorgung (wieder) eine zentrale Aufgabe sein. Die Kerntechnik entwickelt sich beständig weiter. Sie hat bereits heute ein sicherheitstechnisches Niveau erreicht, das es erlaubt Kernkraftwerke in unmittelbarer Nähe von Städten zu errichten – jedenfalls eher als Chemieanlagen, Raffinerien, Windparks etc. Allerdings gibt es einen Unterschied zu China: Unsere Städte sind bedeutend kleiner. Der Einsatz konventioneller Reaktoren ist daher begrenzt. In Deutschland gehört die Zukunft den SMR (kleine Reaktoren bis zu etwa 300 MWel). Mit diesen könnten ganz unmittelbar bisherige Heiz-Kraftwerke (Kohle oder Erdgas) ersetzt werden. Alle notwendigen Einrichtungen (Stromanschlüsse, Pumpstationen etc.) könnten weiter benutzt werden. Durch diese dezentrale Lösung entfielen auch neue Hochspannungstrassen, wie sie z. B. für Windenergie aus der Nordsee nötig sind. Hinzu kommt eine enorme Versorgungssicherheit (Abdeckung des Bedarfs 24h an 7 Tagen die Woche) und Unabhängigkeit von Energieimporten. Da in solchen Kraftwerken nur alle paar Jahre ein Brennstoffwechsel notwendig ist, sind z. B. Erpressungsversuche durch Abstellen der Erdgaspipelines ausgeschlossen.

Erdgas weiter auf dem Vormarsch

Durch die „Schiefer-Revolution“ in den USA wird Erdgas immer billiger – wobei diese Revolution im Rest der Welt noch gar nicht stattgefunden hat. Es ist wie so oft in freien Märkten, die durch neue Technologien entstandene Schwemme in einem Winkel der Welt drückt weltweit auf die Preise. Durch die verringerten Preise entstehen neue Anwendungsgebiete, wie z. B. in der Stromerzeugung (Gasturbinen mit Abhitzekesseln) oder beim Transport (Diesel-Gasmotoren). Diese zusätzliche Nachfrage wiederum, facht die ganze Entwicklung weiter an, auch wenn man durch künstliche Zäune – wie in Deutschland – versucht die Preise hoch zu halten. Technischer Fortschritt läßt sich nicht durch Ideologie aufhalten. Wer sich dem entgegenstemmt, wird untergehen.

Erdgas hat allerdings einen entscheidenden Nachteil gegenüber Öl: Als Gas ist seine Dichte sehr gering (etwa 0,72 kg pro m3) und damit auch sein auf das Volumen bezogener Energiegehalt (etwa 10 kWh pro m3, was nur etwa einem Liter Diesel entspricht.). Es blieb damit nur die Rohrleitung als Transportmöglichkeit, was aber ein äußerst starres System ergibt: Der Brenner der Heizung im Keller muß lückenlos mit dem Gasfeld (im fernen Sibirien) verbunden sein. Gibt es keinen Gasanschluss, kann man auch kein Erdgas nutzen. Soviel nur zum Thema „Abschaffung der Ölheizungen wegen Klima“. Die geringe Energiedichte bringt aber noch einen weiteren entscheidenden Nachteil für die Energiewirtschaft mit sich: Die Speicherung ist sehr aufwendig und ebenfalls sehr kapitalintensiv. Diese negative Eigenschaft hat Erdgas übrigens mit sog. „regenerativen Energien“ gemeinsam, was deren geplante Ergänzung durch Erdgas (Dunkelflaute) besonders delikat macht.

Eine handelsübliche Druckgasflasche aus Stahl, mit einem Volumen von 50 Litern und einem Fülldruck von 300 bar, wiegt 75 kg (nackt, ohne Ventil etc.). Sie kann 15 m3 Erdgas speichern und wiegt damit befüllt knapp 86 kg. Die gespeicherte Energie beträgt rund 150 kWh oder anders ausgedrückt: Auf die gesamte Masse bezogen, nur rund 15% der von Dieselkraftstoff. So viel zu der Schnapsidee „wegen Klima fahren wir bald mit Power to Gas“. Bei Wasserstoff sieht die Sache übrigens noch viel schlechter aus, da Wasserstoff nur 30% des Heizwertes pro Volumen von Erdgas besitzt. Noch Fragen, warum die deutschen Automobilhersteller aus der Wasserstoffnutzung ausgestiegen sind? Wenn man ein Auto ohne Benzin oder Diesel bauen soll, erscheint einem die Lithium-Ionen-Batterie geradezu als Rettung – solange man es nicht selbst fahren muß.

Erdgas zur Stromerzeugung

Erdgas verdrängt in den USA (momentan) Kohle als Brennstoff der Wahl. Die Stromerzeugungskosten setzen sich wesentlich aus den Fixkosten (Baukosten, Lebensdauer, Verzinsung, Arbeitsausnutzung, Personal etc.) und den Brennstoffkosten zusammen. Ein Kohlekraftwerk ist im Bau und Betrieb wesentlich teuerer als ein Kombikraftwerk mit Gasturbine und Abhitzekessel (bei gleichem Umweltschutzstandard). Dieser Nachteil müßte durch billige Kohle kompensiert werden. Trotz aller (vermeintlichen) Vorteile, kann man ein Gaskraftwerk nur bauen, wenn am gegebenen Standort auch allzeit genug Gas zur Verfügung steht – ein passendes Rohr allein, ist noch nicht hinreichend. Erdgaspreise unterliegen starken saisonalen Schwankungen. Ursache ist der Sektor Gebäudeheizungen. Die Heizungen müssen auf jeden Fall im Winter bedient werden. Deshalb bezahlen die Heizungskunden auch nahezu vollständig das erforderliche Rohrleitungsnetz und die Erdgasspeicher. Kraftwerke können zwar im Sommer – wenn kaum Erdgas verbraucht würde – sehr günstig einkaufen. Besonders an kalten Tagen müssen sie aber extrem hohe Preise bezahlen oder werden sogar abgeschaltet. Diese Tatsache macht aus der schönen neuen Welt der „umweltschonenden Gaskraftwerke“ als Backup für Windmühlen und Photovoltaik lediglich eine Fata Morgana. Man könnte auch sagen: Annalena verschiebt die „Speicherung von Strom im Netz“ lediglich durch „Power to Gas in das (angeblich) vorhandene Gasnetz“.

Kryotechnik

Will man mehr Erdgas einsetzen, braucht man ein weiteres Transport- und Speichersystem welches örtlich unabhängig ist und eine hohe Energiedichte besitzt. Die großtechnische Lösung ist die Verflüssigung durch Unterkühlung auf unter -162°C. Durch diesen Phasenwechsel von Gas auf flüssig verringert sich das Ursprungsvolumen auf den sechshundertsten Teil und erreicht damit immerhin 60% des Energiegehalts von Diesel. Schlagartig ist es auch in Fahrzeugen (Schiffe und LKW, bald auch Lokomotiven) einsatzbereit. Es muß nur noch zu den Häfen, Autobahntankstellen und Bahnbetriebswerken gelangen. Bisher geschieht der Transport von LNG (flüssiges Erdgas) fast ausschließlich durch spezielle Tankschiffe (über sehr große Entfernungen) und Tankwagen auf der Straße im Nahbereich. Es fehlt bisher noch das mittlere Glied für größere Mengen (z. B. abgelegene Kleinstädte, Industrieanlagen, Kraftwerke usw.) auf größeren Strecken. Hierfür bietet sich die Eisenbahn an. In den USA werden bereits über 30% aller Güter zwischen den Städten und dem Ex- und Import mit der Eisenbahn transportiert. Sie gilt dabei als besonders umweltfreundlich, da sie 2017 im Schnitt mit einer Gallone Diesel eine Tonne Fracht 479 Meilen weit transportiert hat. Rechnet man das auf einen LKW (40-Tonner mit 25 to Nutzlast) um, dürfte der gerade einmal etwas mehr als 12 Liter (und nicht zwischen 30 und 40 Litern) auf 100 km verbrauchen. So ist es nicht verwunderlich, daß Donald Trump im April eine Verordnung erließ, den Transport von LNG in Eisenbahntankwagen zu ermöglichen. Hintergrund ist die Steigerung der Kapazität zur Verflüssigung von Erdgas um 939% im Zeitraum zwischen 2010 und 2018 durch die Inbetriebnahme neuer Terminals für den Export – Tendenz weiter stark steigend. Mit anderen Worten, es steht genug verflüssigtes Erdgas in den USA zur Verfügung, es muß nur noch zu den potentiellen Verbrauchern im Inland gelangen.

DOT-113 C140W Eisenbahntankwagen

Bisher durfte verflüssigtes Erdgas (LNG) nur mit der Bahn in den USA transportiert werden, wenn eine Sondergenehmigung vorlag und es in eigenen Spezialbehältern abgefüllt war. So ist natürlich kein Massentransport möglich. LNG konnte nur mit Spezialtankwagen auf der Straße transportiert werden. Mit zunehmender Menge kommen damit die Nachteile bezüglich Umweltbelastung, Sicherheit und Kosten zum Tragen. Demgegenüber ist der Massentransport nicht nur von Mineralölen, sondern auch von technischen Gasen mittels Kryotankwagen vom Typ DOT-113 seit Jahrzehnten bei den amerikanischen Eisenbahnen erprobt. Gleichwohl gab es erstmal einen Aufschrei bei den einschlägig bekannten „Umweltschutzorganisationen“. Da alle Trends mit zeitlicher Verzögerung über den Atlantik nach Europa schwappen, erscheint es sinnvoll, hier schon heute etwas näher darauf einzugehen.

Ein solcher Kryotankwagen ist nach dem Prinzip der Thermosflasche gebaut. Der eigentlich Tank besteht aus mind. 5 mm starkem Edelstahl (Type 304 oder 304L stainless steel nach ASTM A240/A240M gefertigt). Edelstahl ist notwendig, da normaler Stahl nicht die tiefe Temperatur von -162,2 °C aushält (Versprödung). Die äußere Hülle besteht aus mind. 11 mm dickem Kohlenstoffstahl. Sie ist die eigentliche Schutzhülle bei Unfällen. Zwischen beiden Hüllen besteht Vakuum und eine zusätzliche Isolierung gegen Strahlung (Mylar). Die Isolierung muß so gut sein, daß der tägliche Druckanstieg nur 3 psig (0,2 bar) beträgt. Der Tankwagen muß mindestens 45 Tage unterwegs sein können, bevor er beginnt Gas abzublasen. Er ist also während des Transports hermetisch abgeschlossen und es gelangt kein Erdgas in die Umgebung. Um dies zu erreichen, dürfen die Tankwagen nur mit 32, 5 Gewichtsprozenten beladen werden und bei Transportbeginn höchstens einen Druck von maximal 15 psig (1,034 bar) aufweisen. Der Trick, mit der unvermeidlich von außen eindringenden Wärme fertig zu werden, besteht also darin, stets im Nassdampfgebiet zu verbleiben. Es verdampft beständig eine entsprechende Menge des flüssigen Erdgases – wodurch dieses sich selbst kühlt – und steigt als Dampf in den Gasraum oberhalb der Flüssigkeit auf. Dadurch steigt natürlich der Druck im Behälter an. Um ein platzen zu verhindern, verfügt der Tankwagen über mehrere Sicherheitsventile, die gegebenenfalls den Druck kontrolliert abbauen. Dies geschieht schon bei etwa der Hälfte des Berstdruckes für den inneren Behälter. Bei der äußeren Hülle ist das Auslegungskriterium ein Mindestdruck von 2,6 bar gegen das Einbeulen (Vakuum im Zwischenraum).

Beim Umgang mit LNG ist Schutzkleidung zu tragen. Schon Spritzer (Augen) können wegen ihrer „Kälte“ schwere Verletzungen verursachen. Läuft LNG aus, verbreitet es sich schnell auf Boden oder Gewässern und fängt sofort an zu sieden. Der Dampf kann mit der Luft im Bereich zwischen 5% bis 15% ein zündfähiges Gemisch bilden. Geschieht die Zündung unmittelbar, entsteht ein Flächenbrand. Steigt die Gaswolke auf, kann sie einen Feuerball mit einer maximalen Temperatur von 1330 °C bilden. Ihre Zündgeschwindigkeit ist aber so gering, daß im Freien daraus keine Explosion resultiert. Anders sieht es aus, wenn die Gase z. B. in ein Gebäude oder einen Tunnel eindringen. Ein Tankwagen kann nicht explodieren, selbst wenn ein anderer neben ihm brennt. Bei Überhitzung würden die Sicherheitsventile abblasen. Selbst beim Versagen aller Sicherheitsventile ist eine physikalische Explosion infolge eines hohen Wärmeeintrages (BLEVE Boiling Liquid Expanding Vapor Explosion) auszuschließen. Für Züge mit solchen Wagons gelten darüberhinaus zahlreiche besonderen Betriebsvorschriften: Begrenzung der Geschwindigkeit außerhalb von Siedlungen auf 80 km/h und in der Nähe auf 64 km/h, regelmäßige Überwachung etc.

Wo kommt das viele Gas her?

Die USA sind Dank der Politik von Donald Trump zum größten Ölproduzenten aufgestiegen. Viele (Rußland, Saudi-Arabien usw.) hatten gehofft, daß bei einem Ölpreis von 50 bis 60 $/bbl die „Shale-Revolution“ in sich zusammenbrechen würde. Angefangen hat diese Revolution mit der Förderung von Schiefergas aus der Marcellus-Formation an der Ostküste, ist aber sehr schnell auf die Ölgebiete in Texas und New Mexico übergesprungen. Damit gibt es eine weitere sprudelnde Erdgasquelle in der Form von Begleitgas. In Texas waren die Erdgaspreise im letzten Jahr sogar negativ und man mußte wieder zum Abfackeln übergehen. Dies ist aber wegen der Umweltverschmutzung nur eingeschränkt erlaubt.

In den USA ist die Ölindustrie – völlig anders als in Rußland oder dem arabischen Raum – eher mittelständisch geprägt. Es gibt über 9000 Produzenten. Es geht eher zu, wie in der Software-Branche: Unzählige Erfinder und Glücksritter probieren ständig neue Ideen aus. Manche werden reich, viele gehen Pleite und unzählige werden von den ganz großen aufgekauft um ihre Erfindungen schnellstmöglich besser zu verwerten. So hat die international tätige Occidental die regionale Anadarko aus Texas geschluckt und so auf einen Schlag zusätzlich 25 000 Quellen und eine Beteiligung an weiteren 100 000 Quellen im Schiefergeschäft hinzugewonnen. Dies ist die eine Richtung der Kostensenkung durch Skaleneffekte. Die andere Richtung geht über den Hinzugewinn an Technologie und Daten. Die Ölindustrie ist neben dem Militär einer der entscheidenden Entwickler und Anwender des maschinellen Lernens – in Deutschland gern als künstliche Intelligenz (KI) bezeichnet. Die Ölindustrie hat traditionell schon immer gewaltige Datenmengen gesammelt und versucht auszuwerten. Diese harren nun der Nutzung für z. B. automatisierte Bohrungen. Die Fortschritte sind atemberaubend, so konnte allein in den drei Schiefer-Becken Eagle Ford, Bakken und Permian die Förderung von 1,5 auf 7 Millionen Barrel Öläquivalent pro Tag gesteigert werden – wohl gemerkt, in den letzten sechs Jahren. Durch die Anwendung von Technik und Wissenschaft konnte die Entölung von anfänglich 5–10% auf 20% gesteigert werden. Das führt zu dem Paradox von gleichzeitig steigender Förderung bei wachsenden Vorräten – mit der Konsequenz stark fallender Produktionskosten.

Anmerkung

Es werden weltweit noch immer große Mengen Erdgas einfach abgefackelt. Durch die Entwicklung der Erdgasverflüssigung (LNG) sind neue Transportwege und Absatzmärkte erschlossen worden. Solche Kuriositäten wie Nord Stream oder die Schwarzmeer-Pipeline werden wohl zukünftig nie mehr gebaut werden. Jetzt geht es um den konsequenten Aufbau von LNG-Lieferketten vom Supertanker über die Eisenbahn bis hin zum Tankwagen auf der Straße für die abgelegensten Ecken. Dann kann erstmalig nach der Erfindung von Benzin und Diesel ein neuer Kraftstoff in den Verkehrssektor als Alternative eindringen. Entscheidend ist nur der Preis und der sieht sehr verlockend aus (Aktuell kostet LNG knapp die Hälfte von Rohöl ab Corpus Christi). In den USA baut man bereits ein Tankstellennetz für LKW auf dem Autobahnnetz auf. In allen großen Häfen kann bereits LNG gebunkert werden.

Wasserstoff, der neue Heilsbringer

Es gibt einen guten Grundsatz im Bankgeschäft: Werfe nie gutes Geld schlechtem hinterher. Energiewende geht anders. Zuerst hat man die Landschaft mit Windmühlen und Sonnenkollektoren zugepflastert. Die zwei zentralen Werbeslogans waren ≫Die Sonne schickt keine Rechnung≪ und ≫Irgendwo weht immer der Wind≪. Beide gleichermaßen trivial und im Zusammenhang mit dem europäischen Stromnetz schlicht weg falsch. Kritik wurde einfach – z. B. durch die unvergleichliche Energie-Fach-Frau Claudia Kemfert –weg gelächelt. Sie schwafelte sich monatelang mit ihrem ≫smarten Netz≪ und ihren ≫intelligenten Zählern≪ durch die Gesprächsrunden im Staatsfernsehen. Leider kam die gemeine Hausfrau sehr schnell dahinter, daß es sich dabei nur um Neusprech für Rationierung handelte. Lebensmittelkarten, egal ob elektronisch oder nicht, sind nun mal in Deutschland aus Erfahrung gemieden. Auch wollte besagte Hausfrau ungern die Wäsche des nachts im Plattenbau schleudern lassen oder solange im Saft stehen lassen, bis mal wieder der Wind weht. Was natürlich unsere Schlangenölverkäufer und Kombinatsleiter nicht davon abhält – nun eher in aller Stille – die guten alten Stromzähler durch neue und wesentlich teurere auszutauschen. Geschäft ist Geschäft und man erfüllt damit natürlich nur die Vorgaben der Politik. Innerlich war man schon immer irgendwie kritisch.

Nun weiß man aber aus der Werbung, daß es wenig effektiv ist, abgedroschene Werbeslogans weiter zu senden. Es mußte also ein neuer Gimmick her, mit dem man in einschlägigen Talkshows brillieren konnte: Das batteriebetriebene Elektroauto ward geboren. Wohlgemerkt, die Betonung lag auf ≫batteriebetrieben≪. Damit sollte der Hipster aus der Vorstadt sein Auto aufladen, wenn die Sonne scheint oder der Wind weht und sollte sogar noch ein Zubrot erzielen können, wenn er dem Prekariat im Sozialbau bei kalter Dunkelflaute mit ein bischen Strom aus seinem Drittauto aushelfen würde. Leider ist dieser Markt zu klein, um für die deutsche Autoindustrie profitabel zu sein. Otto-Normalverbraucher hingegen muß lange und schwer arbeiten, bis er ein paar Zehntausend Euro für ein Elektroauto über hat. Er wird sich hüten, sein Fahrzeug irgendwelchen Windmüllern als Speicher zur Verfügung zu stellen. Wohlwissend, daß die Batterie das teuerste Bauteil an seinem Auto ist und deren Lebensdauer stark von der Anzahl der Ladezyklen abhängt. Ganz nebenbei, wird von ihm als Steuerzahler auch noch erwartet, daß er jeden Tag pünktlich auf seiner Arbeitsstätte erscheint. Chef, meine Batterie war leer, geht nicht. Wenn sich das Elektroauto tatsächlich ausbreitet, wird es zu einer Zunahme der Nachfrage nach elektrischer Energie und vor allem auch elektrischer Leistung führen. Mit einfachen, aber deutlichen Worten: Wir brauchen noch mehr konventionelle Kraftwerke als heute. Kohle und Kernenergie soll es aus ideologischen Gründen nicht mehr sein, also muß was anderes her. Die nächste Schnapsidee lautet Neudeutsch ≫Power to Gas≪ oder doch wenigstens ≫Wasserstoff≪, denn die GröKaZ irrt sich nie oder wie man früher auch sagte ≫Die Partei hat immer recht≪.

Wasserstoff

Wasserstoff hat den Charme aus fast überall verfügbarem Wasser herstellbar zu sein und nach getaner Arbeit auch wieder zu Wasser zu werden. Das die Umwandlung nicht so ganz einfach ist und durchaus auch nicht ganz ohne Schadstoffe vonstatten geht, soll hier erst einmal nicht interessieren. In diesem Zusammenhang geht es um die Frage der Speicherung. Was die Stromversorgung angeht, haben sich unsere grünen Schlehmile schon einen Weg ausgesucht. Sie wollen Wasserstoff durch ihre Windmühlen und Sonnenkollektoren erzeugen oder präziser gesagt, aus der von ihnen produzierten elektrischen Energie. Dies ist beileibe keine feinsinnige sprachliche Unterscheidung. Würden sie die Anlagen selber bauen und betreiben, würden sie an den Kapital- und Betriebskosten schlichtweg ersticken und das alles nur, um die ≫Nachfrage nach elektrischer Leistung≪ befriedigen zu können. Man kann es nicht oft genug betonen, solche Anlagen können nur dann Wasserstoff produzieren, wenn auch Wind weht bzw. die Sonne scheint. Wobei noch nicht einmal geklärt ist, ob solch eine Wasserstoffherstellung bei ständig schwankender und zufälliger Stromproduktion überhaupt funktioniert. Man denke nur mal einen Augenblick an tagelangen Frost im Winter. Wasser einfrieren lassen oder die bereits kostspielig gewonnene Energie zur notwendigen Heizung der Wasserstoffproduktion verbraten? Mit Sicherheit wird man auch hier den bewährten Weg des Schmarotzen gehen: Das Stromnetz und zukünftig auch noch das Erdgasnetz, werden sich selbstverständlich kostenlos den Bedürfnissen der grünen Energiebarone anpassen und unterordnen müssen. Alle notwendigen Mehrkosten werden wie gehabt direkt auf die Allgemeinheit umgelegt (Netzentgeld etc.).

Noch einmal zurück zur aktuellen Frage: Ist Wasserstoff als Antrieb bei Kraftfahrzeugen besser geeignet, als die (berüchtigte) Batterie? Beide haben das gleiche Problem: Geringe Energiedichte und/oder lange Ladezeiten. Jedes Fahrzeug (ausgenommen Schienenfahrzeuge) muß nicht nur sein komplettes Antriebssystem, sondern auch seinen kompletten Energievorrat mit sich führen. Bei Benzin und Diesel ist das bekanntlich kein Problem, denn es sind Flüssigkeiten mit hoher Energiedichte. Flüssigkeit bedeutet nahezu drucklos, hohe Energiedichte bedeutet kleiner Tank und was immer gern vergessen wird, beides zusammen ergibt eine sehr kurze Zeit zur vollständigen Betankung. Eine Autobahntankstelle mit Elektrozapfsäulen oder Verdichter für Wasserstoff benötigt einen eigenen Hochspannungsanschluss um die benötigte elektrische Leistung bereitzustellen. Wie gesagt, Wasserstoff ist ein Gas und es gibt damit nur drei Möglichkeiten es im Auto mitzuführen: In Druckgasflaschen (mindestens 300 bar), in einem Kryotank (Temperatur -252 °C) oder chemisch gebunden. Die Lösung Druckgas ist technisch einfach und kostengünstig und bei PKW wohl auch die einzig realistische. Aber auch hier wieder der Nachteil langer Ladezeiten bzw. geringer Reichweite (bei der notwendigen Verdichtung im Tank erwärmt sich das Gas und verringert somit die mögliche Beladung). Dämmert es jetzt, warum schon jetzt hinter vorgehaltener Hand von ≫synthetischen Kraftstoffen≪ gewispert wird? Das ist lediglich ein Neusprechwort für das, was Deutschland schon im zweiten Weltkrieg machen mußte. Diesmal will man nur nicht Braunkohle als Ausgangsstoff verwenden. Dabei nicht vergessen, wir reden nicht mehr nur von dem Sektor Stromerzeugung, sondern inzwischen auch schon von Verkehr und immer öfter auch von Industrie und Gebäuden. Alles versorgt durch Wind und Sonne. Bald auch wieder ≫Volk ohne Raum≪ für Windkraftanlagen? Regiert von Vegetariern als ≫Schutzstaffel≪ des Klimas?

Jetzt auch noch Kernkraftwerke

Das ist kein Witz. In den USA planen bereits Kernkraftwerke auf ihrem Gelände eine Wasserstoffproduktion aufzubauen. Es gibt dafür auch reichlich Subventionen, „wegen Klima“. Erstes Projekt ist der Bau einer Elektrolyseanlage für das Kernkraftwerk Davis Besse (Druckwasserreaktor mit 894 MWel) in Oak Harbor, Ohio. Die Anlage soll $11,5 Millionen kosten (davon $9,2 Millionen Zuschuss vom US Department of Energy). Sie soll 1–3 MWel aus dem Kernkraftwerk nutzen, um damit Wasserstoff für die Versorgung öffentlicher Fahrzeuge und der lokalen Wirtschaft bereitzustellen. Das Demonstrationsprojekt wird federführend vom Idaho National Laboratory (INL) betreut, Industriepartner ist FirstEnergy Solutions, die Partner als Stromversorger sind Xcel Energy und Arizona Public Service. Das Projekt soll mindestens zwei Jahre laufen. Betriebsbeginn soll schon nächstes Jahr sein.

Das Interesse der Versorger in Arizona an diesem Projekt ist nicht ganz abwegig. Das Kernkraftwerk Palo Verde in Tonopa, Arizona produziert mit seinen drei Reaktoren (3397 MWel) rund 35% des gesamten Verbrauchs an elektrischer Energie in diesem Bundesstaat. Arizona ist aber auch der Sonnenstaat der USA. Vor einigen Jahren gab es erbitterte Auseinandersetzungen um einen „Atomausstieg“ und alternativ eine Vollversorgung durch „Sonnenstrom“. Die Bürger in Arizona entschieden sich durch Volksentscheid für die Erhaltung ihres Kernkraftwerks. Gleichwohl nimmt die Produktion durch „Sonnenkraftwerke“ dank hoher Steuervergünstigungen im gesamten Süden der USA beständig zu. Dies führt zu erheblichen Störungen im Stromnetz. Die Preise für Spitzenstrom an heißen Sommertagen (Klimaanlagen) betragen inzwischen mehr als $8 pro kWh. Diese Stunden sind die Domäne der offenen Gasturbinen (geringe Investition, aber hoher Gasverbrauch). Noch ist Erdgas als Beiprodukt der Ölförderung in Texas und New Mexico extrem billig. Die Brennstoffkosten liegen bei rund $Cent 3,4 pro kWhel. Dies muß aber nicht so bleiben.

Letztendlich wird sich die Frage, Wasserstoff hergestellt aus Erdgas (heute überwiegende Produktion) oder aus Kernenergie über den Preis entscheiden. Am Preis aber, will die Politik über eine CO2 – Abgabe zukünftig kräftig drehen. Mit Sicherheit wird aber Wasserstoff aus „Wind und Sonne“ kein konkurrenzfähiges Produkt ergeben. Die geringe Arbeitsausnutzung solcher Anlagen und ihre wetterabhängige Zufallsproduktion können niemals mit Kernkraftwerken konkurrieren. Ist dies der Grund, warum unser Wirtschaftsminister neuerdings immer öfter darauf hinweist, daß wir heute schließlich auch den größten Teil unserer Primärenergie (Steinkohle, Erdgas, Öl) importieren?

Nukleare Sicherheit in China 2019

Die Informationsstelle des Staatsrates der Volksrepublik China hat gerade ein Grundsatzpapier über die Sicherheitsphilosophie in englischer Sprache veröffentlicht. Nicht nur das ist ein Hinweis, daß es an den Weltmarkt gerichtet ist. Gleich der allererste Satz im Vorwort lautet: Die Entdeckung des Atoms und die konsequente Entwicklung und Anwendung der Kernenergie hat den Fortschritt der Menschheit neuen Auftrieb gegeben und unsere Fähigkeit die Welt zu verstehen und zu gestalten entscheidend gestärkt. Dem ist nichts hinzuzufügen. Erfrischend ist, wie durchweg positiv die Einstellung gegenüber der Kerntechnik ist. Sie ist in China seit nunmehr 70 Jahren ein Erfolgsmodell. Wetten das, daß in Deutschland erst einmal auf die „Atomkatastrophen“ von Fukushima und Tschernobyl hingewiesen worden wäre und irgendwelche dunklen Untergangsgefahren beschworen worden wären? Dies ist der offensichtliche Unterschied zwischen einer aufstrebenden Nation und einer saturierten lebensmüden Gesellschaft.

Wenn man im Vorwort weiter liest, erhält man die Begründung für diese Schrift in der vollen sozialistischen Prosa: Präsident (auf Lebenszeit) Xi Jinping schlug eine rationale, abgestimmte und ausgewogene Sicherheitsstrategie für die Kerntechnik vor, unter Betonung der Gleichwertigkeit von Entwicklung und Sicherheit und setzte sich entschieden für den Aufbau einer weltweiten Gemeinschaft zur Teilung der nuklearen Sicherheit ein – er machte unmissverständlich die Richtung für die nukleare Sicherheit in einer neuen Weltordnung unter dem chinesischen Ansatz für internationale Zusammenarbeit für die Anwendung der Kernenergie und der nachhaltigen globalen nuklearen Sicherheit deutlich. Noch Fragen? Jedenfalls zahlt unsere Regierung in ihrer unendlichen Weisheit wohl immer noch mehrere hundert Millionen Entwicklungshilfe an den Roten Drachen – getreu der Devise, wer den Drachen füttert, wird als letzter gefressen. Vielleicht träumen Angela und Annalena auch nur davon, daß die Chinesen ganz, ganz viele Windmühlen für unser Geld kaufen.

Dieses Papier ist in sechs Kapitel gegliedert, die folgend näher beschrieben werden sollen.

I. Eine rationale, abgestimmte und ausgewogene Strategie zur nuklearen Sicherheit.

Chinas nukleare Sicherheitsstrategie auf dem Gebiet der Kerntechnik ist die Verkörperung von Xi Jinpings Gedanken über einen Sozialismus chinesischer Ausprägung in einem neuen Zeitalter; ein bedeutendes Element innerhalb der allgemeinen Rahmenordnung der nationalen Sicherheit und stellt eine bedeutende Innovation in der Theorie über die staatliche Lenkung nuklearer Sicherheit dar. Diese Strategie ist ein bedeutender Meilenstein zur Förderung der internationalen nuklearen Sicherheit. Bleibt einem nur zu hoffen, daß die chinesische Ausprägung des Sozialismus nicht die gleichen Folgen für die Kerntechnik hat, wie die Sowjetische. Der Kern der chinesischen Sicherheitsstrategie sind die „Vier Schwerpunkte“:

  1. Wir sollten die Entwicklung und Sicherheit gleichwertig behandeln und die kerntechnische Industrie im Rahmen einer „garantierten Sicherheit“ entwickeln. Entwicklung ist das Fundament für Sicherheit, solange Sicherheit die Vorbedingung für Entwicklung bleibt. Entwicklung und Sicherheit sind die Grundvorraussetzungen für eine friedliche Nutzung der Kernenergie durch die Menschheit. Die Kernaussage lautet hier: Nur durch fortschreitende Entwicklung können die Risiken sicher beherrscht werden und nur durch Gewährleistung der Sicherheit kann die Kernenergie nachhaltig weiter entwickelt werden.
  2. Wir sollten mit Nachdruck auf die Gleichwertigkeit von Anrecht (auf die Nutzung der Kernenergie) und Verpflichtung (bezüglich der Sicherheit) verweisen und die internationale Sicherheit auf der Basis von Achtung für die Rechte und Interessen aller Länder fördern. Es folgt dann der ausführliche und für sozialistische Länder obligatorische Verweis auf UNO, Internationalismus usw.
  3. Wir sollten mit Nachdruck eigene unabhängige Bemühungen und (internationale) Zusammenarbeit für eine umfassende nukleare Sicherheit in gegenseitig nützlicher Herangehensweise anstreben. Nukleare Sicherheit ist zuerst und herausragend eine nationale Angelegenheit und es sollte von allen Regierungen die grundlegende Verantwortung dafür berücksichtigt werden. Im Folgenden wird noch einmal ausführlich die nationale Verantwortung und gegebenenfalls ihre Auswirkungen auf die gesamte Welt erläutert.
  4. Wir sollten mit Nachdruck die Symptome und grundlegenden Ursachen betrachten und die nukleare Sicherheit umfassend durch die Beseitigung der grundlegenden Ursachen befördern. Im Folgenden werden Beispiele aufgeführt und es wird mit der Betonung der Internationalen geschlossen.

Die chinesischen Prinzipien zur nuklearen Sicherheit werden benannt und noch einmal erklärt: Sicherheit wird an die erste Stelle gestellt und kontrolliert ob alles in Übereinstimmung mit den Gesetzen geschieht. Im Zentrum steht die Gefahrenvermeidung und der Aufbau gestaffelter Sicherheitsmaßnahmen. Eine klare Abgrenzung der Zuständigkeiten und eine unabhängige Überwachung. Eine starke Verwaltung mit umfangreichen Garantien.

II. Aufbau eines politischen und rechtlichen Rahmens zur nuklearen Sicherheit

China ist ein führendes Land in der Nutzung der Kernenergie und der Kerntechnik. Nukleare Sicherheit ist entscheidend für die Staatssicherheit und die politischen Maßnahmen und Gesetze sind der Grundpfeiler der nuklearen Sicherheit. Um eine optimale Lenkung der nuklearen Sicherheit zu erreichen, wendet China die höchsten Standards und strengsten Auflagen bei der Gestaltung des politischen und rechtlichen Rahmens an, setzt eine nationale Strategie in Kraft, erstellt mittelfristige und langfristige Pläne und verbessert die Gesetze und Vorschriften bezüglich der nuklearen Sicherheit.

Es folgen viele blumige Worte zur Strategie eines wunderschönen Chinas und über die mittelfristigen und langfristigen Pläne. China erstellt im Rahmen der Fünfjahrespläne zur wirtschaftlichen und sozialen Entwicklung jeweils auch die Planvorgaben für die Kerntechnik. Es läuft der 12. Fünfjahrplan (2011–2015) bzw. 13. Fünfjahrplan (2016–2020) zur nuklearen Sicherheit und zur Vermeidung radioaktiver Belastungen. Gleichzeitig wird die Planerfüllung analysiert, Richtlinien und Vorschriften freigegeben, Zielindikatoren, Kernaufgaben, Vorhaben und unterstützende Maßnahmen zur nuklearen Sicherheit definiert. Diese Pläne hätten dabei geholfen, alle Anforderungen abzustimmen, die nukleare Sicherheit zu gewährleisten und auszuweiten und die Regularien zur nuklearen Sicherheit zu verbessern. Es folgt eine Tabelle über die Ziele der einzelnen Fünfjahrpläne. Bemerkenswert ist, daß in der 12. und 13. Periode ein Hochtemperaturreaktor und zwölf verschiedene Druckwasserreaktoren mit einer Gesamtleistung von 30 GWel gestartet worden sind.

Es ist ein solides System aus Gesetzen und Normen entstanden: 30 gesetzliche Regelungen, 100 Sicherheitsrichtlinien und über 1000 Normen zur nuklearen Sicherheit. Hinzu kommen noch über 200 Vorschriften der 31 chinesischen Provinzen. Um die Normen auf dem neuesten Stand zu halten, werden die Normen der International Atomic Energy Agency und aller Länder mit fortschrittlicher Kerntechnik beständig beobachtet, ausgewertet und eingearbeitet.

III. Gewährleistung wirksamer Vorschriften zur nuklearen Sicherheit

China behandelt die nukleare Sicherheit als eine wichtige Verpflichtung des Staates und läßt einheitliche Vorschriften durch Sonderorganisationen ausüben und unterhält ein Aufsichtssystem abgestützt auf Unabhängigkeit, Offenheit, Rechtsstaatlichkeit, Vernunft und Wirksamkeit. Um unabhängige nukleare Sicherheitsvorschriften sicherzustellen und zur Stärkung der Befugnisse und Leistungsfähigkeit hat China die fachliche Unterstützung verstärkt und durch ein Profi-Team, das System kontinuierlich modernisiert und die Genehmigungskapazität gestärkt.

Das dreigleisige Aufsichtssystem

Die nukleare Sicherheit, Strahlenschutz und Umweltüberwachung wird durch eine dreigleisige (Hauptquartier, Regionalbüros und technische Unterstützungseinheiten) unabhängige Organisation wahrgenommen. Die National Nuclear Safety Administration ist seit 1984 für die Sicherheit aller zivilen kerntechnischen Anlagen, die Ausarbeitung von Sicherheitsvorschriften, Gesetzen, Regelungen, Normen, Pläne, Genehmigungsverfahren und die Abstimmung aller Vorschriften für das gesamte Land zuständig. Um die nukleare Sicherheit zu gewährleisten ist es in sechs Regionalbüros (Nord, Nordost, Ost, Süd, Südwest, und Nordwest ) gegliedert. Hinzu kommen noch zur technischen Unterstützung das Nuclear and Radiation Safety Center und das Radiation Monitoring Technical Center. Sie übernehmen eine unabhängige Kontrolle und Überwachung und haben besondere „Polizeibefugnisse“. Lokale Regierungen aller Ebenen übernehmen durch die den Verhältnissen angepaßten Ausführungsvorschriften mit Teilzeit- oder Vollzeitkräften den Strahlenschutz.

Umfassende Überprüfungen und Verwaltung der Genehmigungen

Die Regierung hat die Sicherheit durch die Vergabe von Lizenzen und deren konsequente Überwachung verbessert. Dies betrifft alle kerntechnischen Anlagen, Werkstoffe, Aktivitäten und radioaktive Stoffe. Es werden Lizenzen für den gesamten Lebenszyklus oder dessen Teile vergeben. Sie betreffen den Standort, die Errichtung, den Betrieb und den Abriß. Dies betrifft alle Kernkraftwerke, Forschungsreaktoren, Anlagen des Brennstoffkreislaufs und alle Einrichtungen die Abfälle behandeln, lagern, und endlagern. Lizenznehmer besitzen nukleare Materialien oder produzieren, handeln und benutzen Radioisotope oder Strahlung aussendende Gegenstände – unterschieden nach Strahlungsart und Leistung. Die Genehmigungen für den Transport radioaktiver Materialien werden durch Online Monitoring überwacht. Ebenso werden die Lizenzen für die Lizenznehmer zur zerstörungsfreien Werkstoffuntersuchung und für Container für radioaktive Stoffe verwaltet. Ein System zur problemorientierten Risikoüberwachung wurde eingerichtet und es werden Anstrengungen unternommen, die Kapazitäten für eine unabhängige Überwachung, Berechnung und probabilistische Sicherheits- und Risikoanalysen zu erweitern.

Überwachung der gesamten Prozesse und Vollstreckung der Gesetze

Die Regierung überwacht mit aller Strenge alle kerntechnischen Einrichtungen ob sie die Gesetze zur Sicherheit, die Vorschriften, Normen und Lizenzen einhalten. Bedeutende Einrichtungen und Aktivitäten werden durch die Regierung permanent vor Ort überwacht und die Unternehmen aufgefordert Fehlverhalten zu korrigieren und Gesetzesbrecher bestraft. Sie hat spezielle Programme in die Wege geleitet, um bedeutende Fälle von Qualitätsproblemen zu behandeln und entschlossene Maßnahmen gegen Verfälschungen und Verletzungen von Vorschriften zu ergreifen. Es wurde eine nationale Platform für Kernkraftwerke und Forschungsreaktoren eingerichtet, um Erfahrungen und Informationen auszutauschen, die den sicheren Betrieb kerntechnischer Einrichtungen gewährleisten.

Überwachung der Umwelt auf Strahlung – rund um die Uhr

China hat ein dreigliedriges System zur Überwachung der Strahlenbelastung auf staatlicher, regionaler und städtischer Ebene eingerichtet. Es wurden drei Netzwerke geschaffen: Nationale Beobachtung der Strahlung in der Umwelt, Überwachung der Strahlung in unmittelbarer Nähe kerntechnischer Anlagen und Beobachtung der Strahlung bei Störfällen. Damit kann die Radioaktivität in der Umwelt ständig, ohne Unterbrechung, im gesamten Land überwacht werden. Im Juni 2019 bestand das staatliche Überwachungssystem aus 1501 Meßstationen: 167 Meßstellen für die Überwachung der Radioaktivität in der Atmosphäre, 328 in der Fläche, 362 Bodenstationen, 477 in Gewässern im Inland, 48 Stationen im Meer, 85 Meßstellen für elektromagnetische Strahlung und 34 Stationen für Meereslebewesen. Zusätzlich gibt es 46 Stationen zur Überwachung der radioaktiven Umweltbelastung und der Belastung von Nahrungsmitteln in der Nähe von kerntechnischen Einrichtungen besonderer Bedeutung.

Verbesserte nukleare Gefahrenabwehr

China hat das National Nuclear Accident Emergency Coordination Committee, und ein dreigliedriges System für Katastrophenfälle auf Landes-, Regionalebene und bei den Betreibern der kerntechnischen Anlagen eingerichtet, das bei nuklearen und Strahlenunglücke tätig wird. Landesweit wurde eine Einsatzleitung und Einsatzverfahren für Strahlungsunfälle und Überwachung eingerichtet. In allen Provinzen und den entsprechenden Verwaltungseinheiten sind Katastrophenübungen abgehalten worden, um die schnelle Reaktion und die richtigen Maßnahmen auf unterschiedliche Strahlenereignisse zu üben. China verfügt über ein dreihundertköpfiges Rettungsteam, 25 Einsatzzüge, acht technische Unterstützungszentren, drei „schnelle Eingreiftruppen“ für Unfälle in Kernkraftwerken und 17 auf Strahlenkrankheiten spezialisierte medizinische Zentren. Regelmäßige Übungen werden durchgeführt, mit dem Ziel die Alarm- und Einsatzbereitschaft zu fördern.

Tatkräftige Fachleute

Um die Anforderungen für die Entwicklung eines kerntechnischen Sektors und die Sicherheitsvorschriften zu erfüllen, hat China größten Wert auf die Stärkung professioneller Teams gelegt. Es wurde eine „Eiserne Armee“ mit stark gefestigter politischer Überzeugung, fachlicher Kompetenz, einwandfreiem Verhalten und ausgeprägtem Verantwortungsbewusstsein aufgebaut. Sie arbeiten unter Druck, halten durch und widmen sich der nuklearen Sicherheit. Es wurde eine Arbeitsgruppe zur nuklearen Sicherheit und Strahlenschutz gebildet, bestehend aus 100 Personen im Hauptquartier, 1000 Personen in der Zentralebene und ungefähr 10.000 Personen landesweit. Um eine Gruppe führender Persönlichkeiten für die nukleare Sicherheit zu bilden, hat der Staat eine nationale Expertenkommission aus 25 Akademikern aus der chinesischen Akademie der Wissenschaften sowie der Ingenieurwissenschaften und über 100 ausgewiesenen Fachleuten für die nukleare Sicherheit einberufen. Um die Teams aus Fachleuten zu entwickeln, hat China ein professionelles Ausbildungsmanagement für die Fachleute der nuklearen Sicherheit und die Bediener in den kerntechnischen Anlagen durchgesetzt: Die Schweißer nuklearer Bauteile, zerstörungsfreier Werkstoffuntersuchungen und anderer Spezialisten und verlangt für die Kerntechnik zugelassene Sicherheitsingenieure bei entsprechenden Einsätzen. China hat ein Ausbildungs- und Weiterbildungssystem unter Einbeziehung höherer Bildungseinrichtungen, Forschungsinstituten und Unternehmen eingerichtet. Es sollen die Kanäle für professionelles Training ausgeweitet werden, die Heranbildung von Spezialisten für nukleare Sicherheitstechnik ausgebaut und ihre technische Kompetenz und Aufmerksamkeit für Sicherheitsfragen gestärkt werden. Im Juni 2019 haben 72 Universitäten Kerntechnik als Fachrichtung angeboten, 47 davon betreiben separate „Schulen für nukleare Wissenschaften“, die damit jährlich über 3000 Studienplätze für Studienanfänger bereitstellen. Ein Tortendiagramm zeigt, daß es 3005 „Reaktorfahrer“, 9464 Schweißer für nukleare Bauteile, 6243 Prüfer für zerstörungsfreie Werkstoffprüfung und 4544 geprüfte Sicherheitsingenieure gibt.

Steigende R&D für nukleare Sicherheitstechnik

China hat die R&D (Forschung und Entwicklung) für nukleare Sicherheit in die nationalen Pläne für Wissenschaft und technologische Programme mit dem Schwerpunkt auf die strategische Bedeutung von Basisanwendungen und das Allgemeinwohl aufgenommen. China hat das National Research and Development Center for Nuclear and Radiation Safety Regulation eingerichtet. Es leitet die Forschungen zu Schlüsseltechnologien für die Überwachung der Strahlung in der Umwelt und deren technische Überprüfung und begutachtet und berichtet über neue Technologien. Der Staat ermutigt die kerntechnische Industrie fortschrittliche und zuverlässige Sicherheitstechnik zu entwickeln und anzuwenden. Es wurden bedeutende Ergebnisse in der Forschung, bei Demonstrationsanlagen, fortschrittlichen Reaktoren und Hilfseinrichtungen erreicht. Eine Eigenentwicklung eines Prozessleitsystems (DCS) wurde beim Hualong-1 Demonstrationsreaktor eingesetzt. Es wurden einige wichtige Durchbrüche beim Druckwasserreaktor CAP-1400 erzielt. Demonstrationsanlagen, wie der gasgekühlte Hochtemperaturreaktor und der natriumgekühlte schnelle Reaktor machen Fortschritte. Die Forschung und Entwicklung von „Kleinreaktoren“ für verschiedene Anwendungen verläuft reibungslos. China verwendet vermehrt im eigenen Land hergestellte Ausrüstungen und arbeitet hart daran, die Produktionskapazitäten zu steigern. Es hat beständig Fortschritte bei der unabhängigen Herstellung von Schlüsselkomponenten für Kernkraftwerke der GW-Klasse gemacht. Es wurden entscheidende Erfolge bei der unabhängigen Forschung und Entwicklung, sowie Herstellung von Druckbehältern, Turbosätzen, Hauptkühlmittelleitungen, fortschrittlichen Kernbrennstoffen, schweißbaren Werkstoffen in Nuklearqualität und anderer sicherheitsrelevanter Ausrüstungen und Materialien erzielt.

Vollständige Umsetzung der Fortschritte in der nuklearen Sicherheit

Im Zuge der Ereignisse in Fukushima hat die chinesische Regierung eine neun Monate umfassende Sicherheitsüberprüfung aller in Betrieb und Bau befindlichen Kernkraftwerke, Forschungsreaktoren und sonstigen kerntechnischer Anlagen durchgeführt. Das Ergebnis war eine minimale Wahrscheinlichkeit eines nuklearen Unglückes, da die Standorte unter umfassender Berücksichtigung schwerer Naturkatastrophen wie Erdbeben, Hochwasser und Tsunami ausgesucht worden waren. Die chinesische Regierung hat die Lehren aus den Ereignissen in Japan gezogen und die Sicherheit der Nuklearanlagen weiter durch kurzfristige, mittelfristige und langfristige Verbesserungspläne zur Verstärkung der Anlagen gegen die Einwirkung äußerer Ereignisse und zur Vermeidung und Milderung ernsthafter Unglücke verbessert.

IV. Bewahren der hochgradigen Sicherheit

China hat für lange Zeit einen hohen Sicherheitsstandard aufrechterhalten. Bezüglich der Sicherheitsindikatoren für Kernenergie steht es international auf den vordersten Rängen. Der Sicherheitsstandard verbessert sich beständig, die Kontrolle über nukleare Materialien ist streng und die öffentliche Gesundheit und die Sicherheit der Umwelt ist in vollem Umfang gesichert. Die International Atomic Energy Agency hat in den Jahren 2000, 2004, 2010 und 2016 Begutachtungen der nuklearen Sicherheit und des Strahlenschutzes durchgeführt, wobei die uneingeschränkte Anerkennung der bewährten Verfahren und der Erfahrungen festgestellt wurden.

Sichere und effiziente Entwicklung der Kernenergie

Es wird im Folgenden ausführlich beschrieben, daß alle international üblichen Standards und Vorgehensweisen zur nuklearen Sicherheit in China angewendet werden. Seit 1985, als das erste Kernkraftwerk in Qinshan gebaut wurde, hat China sichere und zuverlässige Reaktortechnik übernommen, aus der Erfahrung gelernt und die Lektionen schwerer Unfälle im Ausland zur Verbesserung der Sicherheit genutzt. Nach über 30 Jahren hat China unabhängige Konstruktionen, Fertigung und Betrieb erreicht und ist in eine neue Phase sicherer und effizienter Entwicklung eingetreten. China hat die Führung in Bau und Betrieb von Druckwasserreaktoren der GW-Klasse übernommen: AP1000 mit passiven Sicherheitssystemen und EPR als evolutionäre Weiterentwicklung. Die Eigenentwicklung Hualong-1 gilt als einer der sichersten Reaktoren der Welt. Er ist das Highlight von China’s “going global” Strategie. Im Juni 2019 hat China 47 Kernkraftwerke in Betrieb (dritter Platz in der Welt) und 11 in Bau (Weltspitze). Die Leistungskennzahlen der Reaktoren sind insgesamt gut. Im Juni 2019 verfügt die Industrie bereits über 300-Betriebsjahre ohne sicherheitsrelevante Ereignisse: Es gab keine Vorkommnisse über Level 2 der International Nuclear and Radiological Event Scale (INES). Die Vorkommnisse nach Level 0 und Level 1 haben ebenfalls abgenommen. In der Rangfolge der World Association of Nuclear Operators (WANO) lagen die chinesischen Kraftwerke zu 80% über dem Median und haben zu 70% weltweite Spitzenwerte erreicht. 2018 erreichten 12 Anlagen in China die volle Punktzahl der WANO-Skala.

Sicherer Betrieb anderer bedeutenden Nuklearanlagen

Auf Grund der eigenen Fähigkeiten und der Möglichkeit auf ausländische Erfahrungen zurückgreifen zu können, hat China Forschungsreaktoren konstruiert und entwickelt: Gasgekühlte Hochtemperaturreaktoren, schnelle Reaktoren, kleine Kernreaktoren, Salzschmelzen-Reaktoren und Anlagen zur Transmutation. Neunzehn zivile Forschungsreaktoren und kritische Anordnungen versehen zuverlässig ihren Dienst. Wir haben die Strategie des geschlossenen Brennstoffkreislaufs umgesetzt und schrittweise den Brennstoffkreislauf inklusive Bergbau, Metallurgie, Konversion, Anreicherung, Herstellung der Brennelemente, Wiederaufbereitung, Abfallbehandlung und Endlagerung aufgebaut. Die 18 zivilen Anlagen des Brennstoffkreislaufs und die zwei Endlager für schwach und mittelaktive Abfälle wurden sicher betrieben.

Klassifizierung und sichere Entsorgung nuklearer Abfälle

China richtet in dafür geeigneten Gebieten an der Oberfläche und in mittleren Tiefen Endlager für schwach und mittelaktive Abfälle ein. Hochaktive Abfälle sollen in einem zentralen geologischen Tiefenlager eingelagert werden. Um dauerhafte Sicherheit zu gewährleisten sollen die Abfälle gemäß den gesetzlichen Vorschriften minimiert und dekontaminiert werden. Alle Provinzen und Verwaltungseinheiten haben städtische Lager zur sicheren und zentralen Lagerung radioaktiver Stoffe eingerichtet. Wir werden weiterhin die sichere Behandlung und Lagerung aller Arten von nuklearen Abfällen fördern.

Deutlich verbesserte Sicherheit beim Umgang mit nuklearer Technik

China verfolgt eine dynamische Bewirtschaftung radioaktiver Quellen „von der Geburt bis zum Grab“ und stellt alle Bezugsquellen unter staatliche Aufsicht. Es gibt eine nationale Datenbank, die alle Quellen erfaßt und verfolgt. Im Juni 2019 waren in China 142.607 radioaktive Quellen und 181.293 Strahlung aussendende Geräte in Gebrauch und es waren 73.070 Einheiten in der Fertigung im Einsatz. Alle Quellen und Geräte stehen vollständig unter Überwachung und befinden sich in gesicherten Lagern. Die Rate der jährlichen Unfälle hat sich beständig von 6,2 pro 10.000 in 1990 auf weniger als einen Fall pro 10.000 Quellen heute verringert.

Erhöhung der Sicherheit

Die Sicherung aller nuklearen Anlagen bewegt sich auf höchstem internationalen Niveau. Die Bemühungen zur Weiterverbreitung und Terrorismus werden verstärkt verbessert. Es wurden Milliarden Yuan in die Verbesserung bestehender Anlagen investiert. Bis zum heutigen Tag gibt es keinen Diebstahl, Verlust oder illegalen Gebrauch nuklearer Materialien.

Geringe Strahlungsbelastung der Umwelt

Die Überwachung der Radioaktivität in China zeigt, daß sich die Aktivität im Bereich der Hintergrundstrahlung bewegt. Die Konzentration an künstlichen Radionukliden ist normal. Die Radioaktivität in der Umgebung kerntechnischer Anlagen bewegt sich in den Werten vor deren Bau und die individuelle Dosis liegt weit unter den gesetzlichen Grenzwerten. Die Gesundheit der Bevölkerung und die Sicherheit der Umwelt sind vollumfänglich garantiert.

V. Erwerb und gemeinsame Nutzung der nuklearen Sicherheit

Der menschliche Einfluß ist der bedeutendste Faktor um nukleare Sicherheit zu gewährleisten. China hat sich zur Stärkung der nuklearen Sicherheitskultur verpflichtet. Es hat einen Kommunikationsmechanismus für die nukleare Sicherheit eingerichtet, der die Oberaufsicht durch die Zentralregierung mit der Lenkung der lokalen Verwaltungen und der Umsetzung durch die Unternehmen, unter Mitwirkung der Öffentlichkeit, kombiniert. Dies hat eine positive Stimmung erzeugt, in der jeder Verantwortung trägt, sich jeder beteiligt und die gesamte Industrie und Gesellschaft zusammenarbeitet um die nukleare Sicherheit zu gewährleisten.

Führung durch die Regierung

Die Regierungsstellen übernehmen die umfassende politische Führung und Überwachung und befördern das Bewußtsein für die überragende Bedeutung der nuklearen Sicherheit, ein Verantwortungsbewusstsein, eine strenge und akribisches Regulierung und ein Geist der Zusammenarbeit für weiteren Fortschritt. Es folgt eine detaillierte Beschreibung der notwendigen Einzelmaßnahmen.

Positiver Beitrag durch die Industrie

Einige ausgezeichnete Sicherheitskonzepte wurden geschaffen: „Vorschriften müssen eindeutig sein, Verantwortlichkeiten müssen klar sein, Nachweise müssen aufgeführt werden und Dokumentationen müssen verfügbar sein um sich darauf beziehen zu können.“ und „Behandle die nuklearen Fragestellungen vorrangig, halte die Zusammenarbeit in Ehren und betrachte Frieden und Harmonie als die Fundamente.“ Wir veröffentlichen wichtige Informationen in Übereinstimmung mit den Gesetzen. Als Antwort auf Bedenken der Öffentlichkeit zur Kerntechnik und Sicherheit werden jährliche Sicherheitsberichte erstellt.

Weitreichende öffentliche Teilhabe

Wir organisieren und führen zahlreiche Veranstaltungen durch um die Kerntechnik populär zu machen. Durch Diskussionen und über diverse Kanäle wurde das Verständnis für nukleare Sicherheit in der Gesellschaft ausgebaut. Es werden die umfangreichen Maßnahmen beschrieben.

VI. Aufbau einer gemeinsamen Zukunft der nuklearen Sicherheit

Alle Länder streben gemeinsam nach der friedlichen Entwicklung und Anwendung der Kernenergie und gewährleisten in gemeinsamer Verantwortung die nukleare Sicherheit. China befürwortet die Entwicklung eines internationalen nuklearen Sicherheitssystems, welches sich durch Fairness, Zusammenarbeit und gegenseitigem Nutzen auszeichnet. Es unterstützt die weltweiten Bemühungen zur Kontrolle der nuklearen Sicherheit durch faire und pragmatische Zusammenarbeit. Es arbeitet mit dem Rest der Welt zusammen um eine Gesellschaft mit gemeinsamer Zukunft der nuklearen Sicherheit aufzubauen und befördert den Aufbau einer humanen Gesellschaft mit gemeinsamer Zukunft.

Gewissenhafte Einhaltung internationaler Verpflichtungen und politischer Verbindlichkeiten

Es folgt eine ausführliche Auflistung aller von China abgeschlossenen internationalen Abkommen.

Fortentwicklung der multilateralen Zusammenarbeit um die nukleare Sicherheit zu verstärken

Es wird auf die enge Zusammenarbeit und finanzielle Unterstützung der International Atomic Energy Agency (IAEA) verwiesen.

Stärkung der internationalen Zusammenarbeit und des Austausches zur nuklearen Sicherheit

China bemisst dem Meinungsaustausch und der Zusammenarbeit zwischen Nationen große Bedeutung bei. Es pflegt enge Kontakte zu Frankreich, den Vereinigten Staaten, Rußland, Japan, Südkorea und anderen Ländern, sowie mit den aufstrebenden Ländern entlang der Seidenstraße. Es hat über 50 Abkommen zur Zusammenarbeit auf dem Gebiet der nuklearen Sicherheit abgeschlossen. Es geht um umfangreiche Zusammenarbeit durch den Austausch auf höchster Ebene, Kommunikation zwischen Experten, Begutachtung, Konsultationen und gemeinsame Forschung. China und die USA haben einen jährlichen Dialog zur nuklearen Sicherheit eingerichtet, ein Kompetenzzentrum für nukleare Sicherheit und das Ausbildungszentrum des chinesischen Zolls für die Fahndung nach radioaktiven Stoffen begründet. Chinesische und russische Zöllner haben gemeinsame Übungen gegen Schmuggel von radioaktiven Substanzen abgehalten. China, Japan und Südkorea vereinbaren Treffen der Genehmigungsbehörden um ihre Erfahrungen mit Genehmigungsvorschriften zu teilen. China hat den Austausch und die Zusammenarbeit mit der Nuclear Energy Agency of the Organization for Economic Cooperation and Development, der Europäischen Union, WANO und anderer internationaler Organisationen vertieft. Es ist ein aktiver Teilnehmer bei der Ausarbeitung und Verabschiedung internationaler Normen. Es folgen weitere Aufzählungen internationaler Kooperationen.

Schlusswort

So, wie China in ein neues Zeitalter des Sozialismus eingetreten ist, hat Chinas kerntechnische Industrie einen Zustand sicherer und effizienter Entwicklung erreicht, hineinführend in eine neue Phase des Qualitätsfortschritts um nukleare Sicherheit zu garantieren. Geleitet von den Gedanken Xi Jinpings zum Sozialismus chinesischer Ausprägung für ein neues Zeitalter, wird China eine rationale, koordinierte und ausgewogene nukleare Sicherheitsstrategie aufrechterhalten und seine Mission zur Beibehaltung und Verbesserung der nuklearen Sicherheit erfüllen. usw. usw.

Kommentierung

Die kerntechnischen Industrien in China und Rußland sind nach wie vor wenig transparent. Das beginnt schon mit der geringen Kenntnis von Schrift und Sprache. Beide Systeme sind sozialistische Diktaturen in denen alles irgendwie geheim ist. Zu groß ist die Angst vor dem eigenen Volk. Es gibt keine freie Presse, Umweltgruppen der Zivilgesellschaft werden verfolgt und eingeschüchtert. Insofern muß man vorsichtig sein mit regierungsamtlichen Verlautbarungen. Auch die DDR hatte passable Umweltschutzvorschriften und Gesetze – die Realität war freilich eine andere. Wie die Geschichte gezeigt hat, kann aber gerade darin der Zündstoff für gesellschaftliche Veränderungen liegen.

Nichts gegen die Leistungen chinesischer Facharbeiter und Ingenieure. China hat nun zweimal in Rekordzeit neuartige Reaktortypen gebaut und in Dienst gestellt. Die Bauleitungen in Olkiluoto und Flamanville (EPR) oder bei Vogtle und Summers (AP1000) bestehen mit Sicherheit nicht nur aus Vollidioten. Insofern macht die verzögerungsfreie Fertigstellung von vier Reaktoren dieser Typen in China schon etwas nachdenklich. Vielleicht hat man dort manchmal fünf gerade sein lassen? Was gar nicht unbedingt schlecht sein muß. China wird sich jedenfalls bei Baustellen in westlichen Ländern umstellen müssen. Dies zeigt sich schon beim Genehmigungsverfahren für den Hualong Reaktor in Großbritannien. In GB sind die gesamten eingereichten Unterlagen für jedermann frei zugänglich. Prompt verzögert sich das Genehmigungsverfahren, weil man in GB nicht nur mit blumigen Formulierungen durchkommt. Es sind Fakten und Zahlen gefragt. Eine ähnliche Erfahrung macht Rußland derzeit in Finnland und der Türkei.

Was die Zusammenarbeit mit China anbetrifft, ist Vorsicht geboten. China ist eine Planwirtschaft mit merkantilistischer Ausprägung. Mit Freihandel ist da rein gar nichts. Für China ist Zusammenarbeit stets Einbahnstraße. Man versucht so viel Fachwissen zusammen zu klauen, wie irgend möglich. Wenn man den „Partner“ ausgesaugt hat, wendet man sich ab und kommt flugs mit einer „Eigenentwicklung“ auf den Markt. Der riesige Inlandmarkt – von dem auch hier so viele geträumt haben – bleibt fest verschlossen. Man kauft nur Rohstoffe zu und was man (noch nicht) selbst produzieren kann. Schauen wir mal, wie es mit der Kerntechnik in China weitergehen wird. Man hat nun einen riesigen Gemischtwarenladen an verschiedenen Reaktoren im Betrieb. Das hat zwar eine Menge Know-how gebracht, wird aber bei der Schulung und Ersatzteilbeschaffung noch zu Problemen führen. Man wird sich zukünftig auf ein oder zwei Eigenentwicklungen stützen, die man in Serie baut. Der Markt China für komplette Kernkraftwerke westlicher Hersteller dürfte bereits zu Ende sein, bevor er überhaupt richtig angefangen hat. In Punkto Innovation ist ohnehin wenig aus China zu erwarten. Innovation und Sozialismus gehen einfach nicht zusammen.

Wirtschaftliche Bedeutung der Kerntechnik in Europa

Ganz offensichtlich haben nur die Wenigsten eine Vorstellung von den wirtschaftlichen Konsequenzen des „Atom-Ausstiegs“ in Deutschland. Wie sonst ist es zu erklären, daß die einsame Entscheidung der Grökaz Merkel – in der Folge der (willkommenen?) Ereignisse in Fukushima – so widerstandslos hingenommen worden ist. Es trifft sich gut, daß parallel zu dem „Krisentreffen Windenergie“ beim Wirtschaftsmister, FORATOM (European Atomic Forum) eine Studie zur wirtschaftlichen und gesellschaftlichen Bedeutung der Kernenergie in Europa veröffentlicht hat. Bei dem „Krisentreffen-Windenergie“ haben alle Schlangenölverkäufer ihr gemeinsames Wehklagen nach noch mehr Subventionen und Ausnahmen vom Menschen- und Umweltschutz (Mindestabstände zu Wohngebäuden, Abholzungen in Wäldern etc.) für ihre Windmühlen angeschlagen. Nun droht die Windbranche auch noch mit dem Verlust von Arbeitsplätzen. Dies ist um so schamloser, da sich keiner für die Arbeitsplatzverluste in den Kohle- und Kernkraftwerken zu interessieren scheint. Noch heute schwätzen unsere Ökosozialisten bei ihren regelmäßigen Auftritten im Staatsfernsehen von dem „notwendigen Strukturwandel weg von der Kohle, hin zu Regenerativen Energien“. Wie erfrischend anders sieht der Polnische Energieminister die Dinge: „Kernenergie ist eine Möglichkeit technologisch anspruchsvolle Projekte in die Tat umzusetzen, die dazu beitragen, einen Arbeitsmarkt mit gut bezahlten Arbeitsplätzen in der gesamten Wirtschaft einzurichten“. Der Mann hat ja so recht und es stimmt – wie einst auch in Deutschland – auch noch die Reihenfolge: Erst Kernkraftwerke bauen und dann die Zechen und Kohlekraftwerke abschalten. Viele der heute in der Kohlenindustrie arbeitenden, können dann wieder auf anspruchsvolle und gut bezahlte Arbeitsplätze umgeschult werden. Wie gesagt, schon heute beträgt das Verhältnis der Beschäftigten in der kerntechnischen Industrie in Europa (EU28) zu denen in der Windindustrie etwa Faktor 4,4 und zur Sonnenindustrie gar 13,75. Tendenz steigend, da die Arbeitsplätze bei den „Regenerativen“ durch die Fertigung in Niedriglohnländern bereits rapide sinken – doch dazu später.

Istzustand

Seit rund 60 Jahren gibt es eine umfangreiche kerntechnische Industrie in der EU. Sie deckt von der Uranmine über den gesamten Brennstoffkreislauf bis zu den Kernkraftwerken die volle Bandbreite ab. Wieviel dort umgesetzt wird, wieviele Arbeitsplätze vorhanden sind, wieviele Steuern bezahlt werden etc. zu ermitteln, ist eher eine Fleißarbeit. Neben dieser „Direct Dimension“ gilt es noch die „Indirect Dimension“ zu erfassen: Wenn man beispielsweise ein Kernkraftwerk baut, braucht man Kühlmittelpumpen (direkte Ausgaben). Der Hersteller braucht aber beispielsweise Werkzeugmaschinen (indirekte Ausgaben) für die Pumpenherstellung, die aus der einschlägigen (nicht kerntechnischen) Industrie bezogen werden müssen. Eine Volkswirtschaft entsteht… Um solche komplexen Beziehungen nachbilden zu können, gibt es verschiedene Ansätze. Deloitte hat ein Computable General Equilibrium (CGE) Model für diese Studie verwendet. Über die Genauigkeit kann hier nichts ausgesagt werden. Nur so viel: Die direkten Ausgaben im Istzustand sind nachvollziehbar, die „angeregten Ausgaben“ sind nur von Spezialisten zu beurteilen und Betrachtungen in der Zukunft sind ohnehin unsicher.

Für viele wahrscheinlich verblüffend, nimmt der Sektor Kerntechnik mit einem Anteil von 3,30% am Gross Domestic Product (GDP) der EU in 2019 den zweiten Platz hinter dem Sektor Bau mit 4,76% ein. Der Sektor Automobile folgt erst mit 1,45% auf dem dritten Platz. Selbst in diesem Jahr sind noch 136.000 Menschen in Deutschland in der Kerntechnik beschäftigt, sie macht einen Umsatz von 71,6 Milliarden € und entrichtet Steuern in der Höhe von 13,9 Milliarden €. Recht ordentlich – für einen schon fast erdrosselten Industriezweig. Wie es sein könnte, zeigt Frankreich mit 457.200 Beschäftigten, einem Umsatz von 175,2 Milliarden und 53,3 Milliarden Steuereinnahmen. Und wer immer noch nicht nachdenklich wird: In Europa beschäftigt die Kerntechnik 1,1 Millionen festangestellte Arbeitnehmer, die Windindustrie (noch) 250.000 und die Solarwirtschaft (noch) 80.000. Noch vernichtender wird das Urteil, wenn man die 507 Milliarden der Kerntechnik zu den 36,1 Milliarden € der Windindustrie am europäischen GDP in Beziehung setzt. Wer immer noch eine Antwort sucht, warum uns unsere Nachbarn nicht folgen wollen, findet sie vielleicht hierin.

Zukunft

Mit der Vorhersage der Zukunft ist es grundsätzlich schwierig. Entscheidend ist schon mal, ob der Zeitraum und der Betrachtungsgegenstand in angemessenem Verhältnis zueinander stehen: Beim Wetter z. B. sind ein paar Tage noch zu bewältigen, mehrere Monate schlicht unmöglich. Bei dieser Studie wurde der Zeitraum von 2020 bis 2050 in 5-Jahresschritten gewählt. Das erscheint angemessen, denn (reife) Volkswirtschaften sind recht träge und neue Kernkraftwerke wachsen auch nicht über Nacht. Man hat die drei Szenarien „niedrig“, „mittel“ und „hoch“ durchgerechnet. Bei der Variante „niedrig“ geht man davon aus, daß es keine Verlängerung der Laufzeiten für bestehende Kraftwerke gibt und keine neuen gebaut werden. Damit würde die in Europa installierte Leistung von derzeit 118 GWel auf nur noch 36 GWel zurückfallen. Die obere Schranke wird durch das Szenario „hoch“ gebildet. Bei ihm werden alle Neubauten und Laufzeitverlängerungen umgesetzt. Dadurch stiege die installierte Leistung in Europa auf 150 GWel an. Dies ist beileibe keine utopische Variante. Der Anteil der Kernenergie würde damit sogar von derzeit 25% auf etwa 24% sinken. An dieser Stelle muß man darauf hinweisen, daß bei solchen Prognosen bereits eine erhebliche Unsicherheit in der Voraussage des Stromverbrauchs im Betrachtungszeitraum liegt. Er soll von derzeit 3100 TWh auf 4100 TWh in 30 Jahren ansteigen. Ein europaweiter Anstieg um 30% erscheint nicht abwegig, da in den meisten der 28 Staaten noch ein erheblicher Nachholbedarf besteht. Da helfen auch keine Phantasien über „Effizienzsteigerung“ – von „Elektromobilität“ und „Dekarbonisierung“ gar nicht zu schwafeln.

Bevor man über die wirtschaftlichen und sozialen Auswirkungen nachdenken kann, ist zu klären, ob die Variante „hoch“ überhaupt realisierbar scheint. Heute sind in Europa 126 Reaktoren (mit 118 GWel) in Betrieb, 5 im Bau (Olkiluoto (FIN), Flammanville (F) Mochovce (SK), Hinkleypoint (GB)) und 11 sollen bis 2050 definitiv stillgelegt werden. Um auf die angedachten 122 Reaktoren (mit dann 150 GWel) zu kommen, müssen also weitere hinzugebaut werden. Dies erscheint als kein großes (technisch/wirtschaftliches) Problem, da 99 Reaktoren bereits in Planung sind und verschiedene Typen erfolgreich ein Genehmigungsverfahren durchlaufen haben. Hat man den nötigen politischen Willen und einigt sich auf bereits erfolgreiche Reaktoren der dritten Generation (EPR, AP1000, ABWR, AP-1400, VVWR-1200 etc.) kann man „zahlreiche“ Neubauten in den kommenden 30 Jahren realisieren. Es sei nur an das Ausbauprogramm einst in Frankreich und heute in China erinnert. Einziger Engpass dürften die notwendigen Fachkräfte sein. Schon heute drohen beim Bau der Reaktoren in Hinkleypoint Verzögerungen, weil es an zugelassenen Schweißern in GB mangelt.

Bei der„hohen“ Variante sind 1.321.600 Vollzeitbeschäftigte in der EU tätig. Davon sind etwa 595.600 „hoch qualifizierte Beschäftigte“ mit entsprechend hohem Gehalt. Es ist eine Besonderheit der Kerntechnik, daß man für fast alle Tätigkeiten besondere Zusatzausbildungen, teilweise mit regelmäßigen Wiederholungsprüfungen, benötigt (z. B. Schweißer, Reaktorfahrer, Strahlenschutz etc.). Hierin liegt die schwerste Sünde der deutschen Politik: Durch den Ausstiegsbeschluß sind bereits viele Ausbildungsplätze – bei gleichzeitiger Überalterung der Beschäftigten – vernichtet worden. Es fehlen langsam sogar die Ausbilder. Schon in wenigen Jahren befinden wir uns auf dem kerntechnischen Niveau der Vereinigten Emirate oder Ägyptens. Wieviel Geld und Engagement ein Umsteuern noch deutlich vor der Klippe erfordert, kann man gerade in GB betrachten.

Vorbeugend

Bevor nun gleich wieder alle Schlangenölverkäufer ihre Kübel mit Desinformation ausschütten, hier gleich noch ein paar klärende Worte:

  1. Nein, man kann Kernkraftwerke und Windräder bzw. Sonnenkollektoren gar nicht miteinander vergleichen. Kernkraftwerke können zu jedem Zeitpunkt die von den Verbrauchern geforderte elektrische Leistung und Energie bereitstellen.
  2. Windräder und Sonnenkollektoren sind zu 100% vom Wetter abhängig. Kein Sonnenlicht und kein Wind, bedeutet auch keinen elektrischen Strom. Ja, irgendwo weht immer Wind – leider oft genug nicht gleichzeitig in ganz Europa. Ja, irgendwo scheint immer die Sonne – nur nicht nachts hier und in der Sahara. Wer das nicht glauben will, soll einfach mal einen Globus heranziehen.
  3. Nein, man kann die elektrische Energie für eine tagelange Dunkelflaute nicht speichern. Dies ist schon so oft vorgerechnet worden, daß ich mir das hier getrost erspare.
  4. Die Arbeitsausnutzung (wieviel elektrische Energie man produziert hat) beträgt bei Kernkraftwerken rund 90% der „Leistung auf dem Typenschild“ multipliziert mit der Kalender-Zeit. Bei Windrädern rund 20% und bei Photovoltaik in Deutschland gar nur rund 10%. Zukünftig also schön den „spezifischen Typenschildpreis“ (€/kW) bei Windrädern mit fünf multiplizieren und bei Photovoltaik mit dem Faktor zehn. Erst dann sind die Investitionskosten (halbwegs) vergleichbar. Alles andere ist vorsätzliche Täuschung.
  5. Das Vorgesagte gilt auch für alle „power to gas“ und sonst was Anlagen. Immer schön die Investitionskosten mit fünf bzw. zehn multiplizieren, denn diese Anlagen können immer nur Gas machen, wenn der Wind weht oder die Sonne scheint. Egal wie groß sie sind, egal wie viele es sind. Und alle guten Wünsche eines Verfahrenstechnikers zum Betrieb solcher „chemischer Anlagen“ unter ständig wechselnder Last.
  6. Wenn man (hochwertige) elektrische Energie in (minderwertiges) Gas verwandelt um dieses zu speichern und bei Bedarf wieder zurück zu wandeln in elektrische Energie, hat man immer enorme Verluste. Schon die Thermodynamik zeigt einem, daß die (theoretischen) Verluste der gesamten Umwandlungskette (Achtung: Die Einzelwirkungsgrade sind miteinander zu multiplizieren) bereits bei rund 50% liegen. Bei technischen Anlagen unter ständig wechselnden Lasten sind die Verluste noch beträchtlich höher. Also für die „Speicherketten“ besser die Investitionskosten mit dem Faktor 10 bis 20 multiplizieren, wenn man sie mit Kernkraftwerken vergleichen will. Ein bischen Überschlagsrechnung kann nie schaden.
  7. Ja, es hat auch etwas gutes, wenn die bösen „Atomkraftwerke nicht mehr die Netze verstopfen“: Man spart das sonst gespaltene Uran ein. Nur sind die Brennstoffkosten (einschließlich Wiederaufbereitung und Endlagerung) eine ganz kleine Position beim „Atomstrom“.

Tschernobyl, Nyonoksa…

Am 8.August gab es in Nyonoksa wieder einmal ein Nuklearunglück mit (wahrscheinlich) acht Toten. Knapp einen Monat nach einem Brand auf einem Atom-U-Boot, bei dem 14 Besatzungsmitglieder starben. Zum Glück ist diesmal die Freisetzung von radioaktiven Stoffen nicht so groß wie in Tschernobyl – alles andere jedoch – wie gehabt: Geheimniskrämerei, nur Dinge zugeben die bereits in „West-Medien“ veröffentlicht sind und Täuschung durch Falschinformationen. Trotzdem soll hier versucht werden etwas Licht ins Dunkel zu bringen.

Übereinstimmend wird von einem Anstieg der γ-Strahlung in Severodvinsk am 8.8.2019 in der Zeit von 11:50 bis 12:30 (lokal) auf 2 μSv/h berichtet. Sie soll gegen 16:00 wieder auf ihren Normalwert zurückgegangen sein. Greenpeace spricht von einer Erhöhung auf das 20-fache des Normalwerts. Es gibt keine näheren Angaben über die Isotopenzusammensetzung oder die genauen Ausbreitungsverhältnisse. Severodvinsk ist eine Großstadt mit ca. 185 000 Einwohnern, 45 km westlich von dem militärischen Versuchsgelände in Nyonoksa. Anders als noch in Tschernobyl ist dort die Bevölkerung sensibilisiert (zwei Marinewerften auf denen auch Atom-U-Boote gewartet werden) und vorbereitet (private „Geigerzähler“ etc.). Gleichwohl verbreiteten die Nachrichten Angst und Schrecken unter der Bevölkerung. Insbesondere der Transport der Verletzten und Toten durch Hilfskräfte unter Vollschutzkleidung. So wird z. B. von Panikkäufen von „Jodtabletten“ aus den Apotheken der Stadt berichtet. Ganz offiziell wurde für die Dvina Bay das Schwimmen und Fischen „wegen giftigem Raketentreibstoff Heptyl“ für einen Monat untersagt. Es ist mal wieder das typische Verhalten russischer Regierungen: Geheimniskrämerei und Halbwahrheiten, die das Vertrauen der eigenen Bevölkerung untergraben. Leider muß man auch diesmal wieder dem „Westen“ eine gewisse Komplizenschaft unterstellen. Westliche Geheimdienste wissen über das Geschehen viel mehr, als sie bereit sind zu veröffentlichen. Hat sich doch dieser Murks nur 300 km entfernt von der finnischen Grenze ereignet. Es ist offensichtlich nach wie vor die Forderung von Edward Teller aus den 1980er Jahren richtig, alle Geheimdiensterkenntnisse öffentlich zu machen. Manch einem gutgläubigen „Putin-Versteher“ würde sicherlich hören und sehen vergehen. So ging schon 2015 ein Test auf dem gleichen Versuchsgelände in Nyonoksa schief: Die Kontrolle über einen Marschflugkörper ging verloren und dieser raste in ein Wohngebäude. Aber die Unglücksserie reist nicht ab: In Sibirien ging im gleichen Zeitraum ein Munitionslager hoch – mit umfangreicher Zerstörung in der Umgebung. Man stelle sich nur mal vor, die Bundeswehr oder das US-Militär hätte eine solche Pannenserie mit so vielen Toten und so viel Umweltverschmutzung in nur einem einzigen Monat. Zumindest das Staatsfernsehen könnte sich vor lauter Sondersendungen mit „Atomexperten“ gar nicht wieder einkriegen. Aber schon meine Mutter sagte: Wenn zwei das Gleiche tun, ist es noch lange nicht das Selbe.

Übereinstimmend wird berichtet, bei dem Unglück (es fällt mir schwer, so etwas noch als Unglück zu bezeichnen) handelt es sich um einen Fehlstart eines Burevestnik (Nato Bezeichnung: Skyfall) Marschflugkörpers mit einem Kernreaktor als Antrieb. Bisher gab es 13 Tests, die – bis auf einen – alle beim Start explodiert sind. Gleichwohl protze Putin in einer Fernsehsendung mit einem Video seiner Wunderwaffe und verkündete, daß diese noch dieses Jahr an die U-Bootflotte übergeben werden sollte. Hoffentlich nicht, denn dann wäre ein zweiter Fall Kursk vorprogrammiert. Damals war auch ein neuartiger „Wundertorpedo“ Ursache für den grausamen Tod der Besatzung. Nichtsdestotrotz schwelgte Putin in seiner Fernsehshow von der Überlegenheit dieses Marschflugkörpers, der locker um die Welt fliegen kann und jede „Raketenabwehr“ austrickst. Glaubt dieser „Führer“ tatsächlich, daß seine Untertanen solchen Blödsinn glauben?

Was man bisher sagen kann

Wir leben heute im „internet-Zeitalter“. Wenn man den Arbeitsaufwand nicht scheut, kann man eine Menge Fakten zusammentragen. Es gibt auch in Rußland Menschen, die ungewöhnliche Dinge in ihrer Umgebung mit der Kamera festhalten, ihre Kenntnisse weiterleiten und nicht zuletzt private Umweltschützer, die akribisch frei zugängliche Satellitenaufnahmen auswerten, usw. usw. Nur Öffentlichkeit kann die Putins dieser Welt zwingen, die Karten auf zu decken.:

  • Ort Am 8. August 2019, gegen 9:00 Ortszeit gab es eine heftige Explosion nahe der Stadt Nyonoksa, einer Hafenstadt an der Dvina Bucht, etwa 20 km (45 Straßenkilometer) von der Schiffbaustadt Severodvinsk entfernt. Nyonoksa ist seit Jahrzehnten ein Testgelände für Marineraketen einschließlich auch Interkontinentalraketen (ICBMs). Der Luftraum war großräumig in der Zeit vom 8.-11. August gesperrt (NOTAM).
  • Installation Satellitenbilder zeigen, daß der Versuch auf einem Ponton, etwa 4 km vor der Küste statt fand. Die Bevölkerung wurde vor Trümmerteilen am Strand gewarnt. Warum der Test nicht in den vorhandenen Anlagen an Land ausgeführt wurde ist unbekannt.
  • SEREBRYANKA ist ein Spezialschiff für die Bergung und den Transport von radioaktiven Abfällen. Es befand sich auf Reede in der Nähe des Pontons und kam unmittelbar nach dem Vorfall zur Hilfe. Dieses Schiff wurde auch schon bei den Tests auf Novaya Zemlya beobachtet.
  • Messungen Zufällig(?) stellten die Überwachungsanlagen der CTBTO (Comprehensive Nuclear Test Ban Treaty Organization) in Dubna, Kirov, Bilibino und Zalesovo wegen angeblicher technischer Schwierigkeiten die Datenübermittlung während des Tests ein. Ein norwegisches Forschungsinstitut geht sogar von zwei Explosionen (eine unter Wasser und eine oberhalb) aus. Das Norsar Research Institute unterhält eigene Seismographen und Infraschallstationen in Skandinavien.
  • Opfer Offiziell hat es acht Tote gegeben. Drei Soldaten und fünf Techniker von Rosatom (Alexei Vyushin, Evgeny Koratayev, Vyacheslav Lipshev, Sergei Pichugin und Vladislav Yanovsky).
  • Strahlung Es sind zahlreiche Meßwerte aus verschiedenen Orten vorhanden. Sowohl offizielle (Regionalbehörden, Meteorologische Stationen etc.), aber auch von Bürgern und Umweltschutzorganisationen. Alle sind bemerkenswert übereinstimmend. Man kann wohl mit ziemlicher Sicherheit sagen, daß keine Gefahr für die Bevölkerung besteht (Kurzzeitig bis 20-fach der Hintergrundstrahlung). Das medizinische Personal wurde nicht über die radioaktive Belastung der Verletzten informiert. Nachdem Ärzte aus den Krankenhäusern massiv Kritik äußerten, bot der Gesundheitsminister kostenlose Untersuchungen in einer Spezialklinik in Moskau an. Bei einem Arzt wurde dort eine Inkorporation von Caesium-137 festgestellt. Die Opfer wurden unter Schutzkleidung nach Moskau transportiert. Dies ist durch zahlreiche Bilder und „Handy-Filme“ dokumentiert. Eine Woche nach dem Vorfall registrierten Luftmeßstationen in Norwegen Spuren von Jod.
  • Testreihe Der aktuelle Versuch hat nach Valentin Kostyukov, Leiter des Forschungszentrums von Rosatom, eine „intensive Vorbereitung“ von mehr als einem Jahr erfordert. Nach Angaben aus den USA ist dies die 14. Versuchsreihe. Nur zwei waren teilweise erfolgreich. Bisher wurden die Versuche überwiegend auf dem alten Kernwaffentestgelände in Novaya Zemlya durchgeführt. In diesem ohnehin hoch belasteten Gebiet konnte man ungestört weiter rumsauen. Eine Erklärung für die Verlegung in bewohnte Gebiete weiter südlich, dürfte die routinemäßige Überwachung durch Seeaufklärer sein, die nach Spuren von Kernwaffentests suchen.

Marschflugkörper oder Rakete

Marschflugkörper sind technisch betrachtet Flugzeuge. Wegen der kleinen Tragflächen brauchen sie eine hohe Mindestgeschwindigkeit um den notwendigen Auftrieb zu erzeugen. Werden sie aus einem Starter (Schiff oder LKW) abgeschossen, benötigen sie eine zusätzliche Raketenstufe um erstmal ihre Mindestgeschwindigkeit erreichen zu können. Genau diese scheint bereits explodiert zu sein (Warnung vor Heptyl in der Bucht). Fliegt so eine cruise missile erstmal, kann sie trotz ihres kleinen Triebwerks und Treibstoffvorrats mehrere tausend Kilometer entfernte Ziele treffen. Der Witz dabei ist, daß sie dabei möglichst tief fliegt um unter gegnerischem Radar hindurch zu tauchen und dabei stets ihre Richtung ändert. Ihr Vorteil liegt also in ihrer schweren Entdeckbarkeit. Ist sie erstmal entdeckt, kann sie wegen ihrer relativ geringen Geschwindigkeit leicht abgeschossen werden.

Anders verhält es sich mit ballistischen Raketen. Je weiter sie fliegen sollen, um so höher müssen sie aufsteigen. Sie sind dadurch leicht aus großer Entfernung auszumachen. Ihre Flugbahn ist gut vorhersehbar und sie können trotz ihrer hohen Geschwindigkeit relativ treffsicher abgeschossen werden.

Marschflugkörper mit Kernreaktor

Die Idee einen Marschflugkörper mit Kernreaktor zu bauen, ist nicht nur verbrecherisch, sondern auch ziemlich idiotisch. Man diskutiert immer wieder den Einsatz von Kernreaktoren im Weltraum. Allerdings ist man sich darüber einig, solche Reaktoren erst in Betrieb zu nehmen, wenn sie sicher in der Umlaufbahn angekommen sind. Ab dem Moment, wo sie kritisch werden, produzieren sie nämlich Spaltprodukte und Neutronen in großer Zahl. Ein Marschflugkörper, angetrieben durch einen Kernreaktor, ist also fliegender Atommüll. Schon jeder Testflug ist damit vorsätzliche Umweltverschmutzung. Der einzig gelungene Testflug der Burevestik endete im Polarmeer. Bisher wurden die Reste noch nicht erfolgreich geborgen. Wer solch einen Nachbarn wie Rußland hat, braucht keine Feinde mehr.

Der militärische Nutzen scheint äußerst fragwürdig. Man kann zwar in einem Staustrahltriebwerk die Brennkammer durch einen Reaktor ersetzen, gewinnt dadurch aber nicht viel. Was will man mit einem Marschflugkörper, der um die Welt fliegt oder ewig im Zielgebiet kreist. Je länger er unterwegs ist, je größer die Wahrscheinlichkeit entdeckt zu werden. Aufgrund des schlechten Wirkungsgrades eines Staustrahltriebwerks bei der geringen Geschwindigkeit eines Marschflugkörpers würde er wie ein Stern leuchten. Seine Abstrahlung ist leicht mit Standardmitteln völlig passiv zu orten. Hinzu kommt noch die hinterlassene Spur seiner ionisierenden Strahlung. Er wäre für jede F-35 auf Patrouille ein leichtes Opfer. Um was geht es also wirklich bei diesen Tests in Nyonoksa? Die Frage stellt sich um so mehr, da die USA schon in den 1950er Jahren ein ähnliches Projekt – SLAM (Supersonic Low Altitude Missile), auch „The Big Stick“ genannt – verfolgt und aufgegeben haben.

Putins Politikverständnis

Kaum ein Politiker versucht die Menschen so dreist für dumm zu verkaufen. Das Verhaltensschema ist spätestens seit der Annektion der Krim bekannt: Erst heißt es, Uniformen und Waffen könnte man in jedem Militaria-Shop kaufen, dann sind es Soldaten, die ihren Urlaub nutzen und darauf hätte er natürlich keinen Einfluß um nach erfolgreicher Aktion, ganz offiziell die Truppen zu ehren. Immer, wenn schon Bilder durch die Welt gehen, Dementis auf dem Niveau eines Knaben, der beim Kirschen klauen auf frischer Tat ertappt wurde. Ist die Aktion in seinem Sinne erfolgreich verlaufen, war es natürlich seinem langfristigen Plan zu verdanken. Schuld sind von Anfang an die anderen, er war ja nur gezwungen zu reagieren, um die Ehre seines Rußland zu retten.

Mit bekannter Unverfrorenheit reicht er genau jetzt eine Resolution im Sicherheitsrat gegen die USA ein, wegen der nicht Verlängerung des INF-Vertrages und eines nuklearen Wettrüstens. Das alles, nachdem er seit Jahren an einem Marschflugkörper mit Kernreaktor rummurksen läßt. Was wäre denn gewesen, wenn der Test erfolgreich gewesen wäre? Noch letztes Jahr hat er doch – in einer eher peinlichen Fernsehshow – genau dieses Teufelsding als Wunderwaffe gepriesen, mit dem sein Rußland (Nigeria with Nukes) einen Vorsprung von Jahrzehnten hätte. In was eigentlich, in Umweltzerstörung? Welchem sozialistischen Modell eifert er nach? Der Volksrepublik China wohl eher nicht, die inzwischen die Welt mit Autos, Computern und Mobiltelefonen überhäuft, sondern wohl eher dem Hungerkommunismus Nordkoreas. Man sollte erwarten, daß er durch die Politik von Ronald Reagen und dem Zusammenbruch des Sowjetreiches etwas gelernt hat: Steigen die USA auf seine nuklearen Fieberträume ein, reicht all sein Öl und Gas nicht aus. Was aber soll dann China machen? Seelenruhig zuschauen wohl kaum. Wenn es jetzt nicht gelingt Putin zu stoppen, wird eine weltweite nukleare Rüstungsspirale ausgelöst, gegen die der kalte Krieg nur ein Kindergeburtstag war. An irren Ideen mangelt es nicht, man muß sich nur Russlands derzeitige (nukleare) Aufrüstung anschauen.

Die Rolle von Rosatom

Besonders beängstigend in diesem Sinne ist die zivile und militärische Verknüpfung der Kerntechnik in Rußland. Fünf der acht Todesopfer waren Techniker von Rosatom. Sie wurden bereits am 12. August in Sarov, 400 km östlich von Moskau, mit militärischen Ehren beigesetzt. Sarov mit über 90000 Einwohnern ist bis heute noch eine „geschlossene Stadt“ (d. h. Zutritt nur mit Sondererlaubnis). Größter Arbeitgeber ist nach wie vor das Forschungslabor von Rosatom. Es besteht seit 1947 und in ihm wurde z. B. die größte Kernwaffe (Zar-Bombe) aller Zeiten gebaut. Heute ist man stolz, auch Kernbrennstoffe für zivile Reaktoren herzustellen. Liegt in dieser engen örtlichen und personellen Verknüpfung an verschiedenen Standorten der Grund für die Exporterfolge von russischen Kernkraftwerken in Iran, China, Indien, Türkei, Ägypten usw.? Geht es dabei wirklich nur um elektrische Energie? Schauen wir mal, wie problemlos die Kooperation in Finnland läuft. Die Finnen haben mit Sicherheit kein Interesse an Kernwaffen, sind aber nicht bereit, irgendwelche Kompromisse in Sicherheit und Qualität einzugehen. Dieser Exporterfolg könnte noch richtig teuer für Rußland werden.

Die Rolle unserer „Atomkraftgegner“

Alle, die immer noch glauben, bei den Grünen und Greenpeace ginge es nur um die Gefahr und Angst vor Strahlung, müssen sich doch langsam wundern, warum nun eine solche Stille in diesem Lager herrscht. Frau Sylvia Kotting-Uhl z. B., die sich von jedem Castor-Behälter bedroht fühlt und um die Asse nicht in den Schlaf kommt, fühlt sich etwa nicht durch fliegenden Atommüll gefährdet? Der Genosse Trittin, der jedes „AKW“ bekämpft hat und heute die Rücklagen für den „Atommüll“ mit verwaltet, findet die Versenkung von ausgebrannten Kernreaktoren im Polarmeer tatsächlich in Ordnung? Das kann doch wohl nicht sein. Eine intensive Nachfrage bei jedem Auftauchen dieser Herrschaften und ihrer Parteigenossen scheint deshalb dringend angeraten. Oder sollte es wirklich böse kapitalistische und gute sozialistische Strahlung geben? Kardinal Marx und der EKD-Ratsvorsitzende Bedford-Strom als berufliche Moralisten sollten ihre geliebte Kanzlerin schnellstens auffordern, eine weitere Kommission einzusetzen. Nicht zuletzt alle Naiven, die glauben Kernenergie ist gut fürs Klima (weil doch so „CO2 -arm“), werden spätestens dann merken wo die Reise hingeht, wenn Kanzler Habeck den Mantel der Geschichte ergriffen hat.

Abrüstungsverträge – Schnee von gestern?

In wenigen Wochen (am 2.8.19) läuft der INF-Vertrag (Intermediate-Range Nuclear Forces Treaty von 1987) sang und klanglos aus. Er hat die Stationierung von Kernwaffen mit mittlerer Reichweite zwischen 500 bis 5500 km erfolgreich verhindert. Kann sich überhaupt noch einer an die harten Auseinandersetzungen um den „NATO-Doppelbeschluss“ erinnern? Eine Million Demonstranten für Abrüstung in Bonn und heute? Es wird Freitags ein bischen gehüpft gegen CO2. Die EU-Außenbeauftragte Federica Mogherini schwafelt ein bischen gelangweilt daher: „Die nächsten Tage bieten die letzte Chance zum Dialog und dafür, die notwendigen Maßnahmen zum Erhalt dieses wichtigen Pfeilers der europäischen Sicherheitsarchitektur zu ergreifen“. Genau, es ist die gleiche Dame, die das unselige Abkommen mit dem Iran maßgeblich verbockt und die Reaktion der USA offensichtlich völlig falsch eingeschätzt hat. Die Dame scheint – wie die meisten deutschen Politiker auch – keinen Globus zu besitzen, sonst würde sie erkennen, daß Europa unmittelbar davon bedroht wird. Wir Deutschen fürchten uns ja sowieso nur vor diesem Donald Trump; Putin und die Mullahs sind dagegen reine Friedensengel, die doch nur mit uns Geschäfte machen wollen um unseren Wohlstand zu mehren – jedenfalls teilt uns dies all abendlich der Staatsrundfunk mit. Von der Aktuellen-Kamera lernen, heißt siegen lernen….

Gleichzeitig stehen die START und ABM-Verträge (Strategic Arms Reduction Treaty von 1982, 1993, 2011 und Anti-Ballistic Missile Treaty von 1972) zur Disposition. Wird dieses Bündel aufgeschnürt, steht damit die Doktrin von der „Abschreckung durch gesicherte gegenseitige Vernichtung“ ganz grundsätzlich in Frage. Der „Atomkrieg“ wird wieder als führbar erklärt. Eine weitere Illusion der westlichen Welt wird damit brutal hinweg gefegt. Aber damit nicht genug, wenn der New START im Februar 2021 ausläuft, geht es nicht nur um ein paar Interkontinentalraketen. Ganz unmittelbar sind mit ihm die NTM-Verträge (National Technical Means of verification) seit 50 Jahren verknüpft. Ganz einfach gesprochen, geht es darum, keine Satelliten zu stören (jaming), zu täuschen (spoofing) und nicht zu zerstören. Auch hier zündelt Putin ganz gewaltig: Störung der GPS-Signale in Norwegen 2019, Fälschung der Signale im Schwarzen Meer (vorgetäuschte Abweichungen von über 40 km) und vor Wochen Verfälschung der GPS-Signale bei Start und Landung an Flughäfen in Israel. Hier wird eine Büchse der Pandora geöffnet, die in unserem heutigen Kommunikationszeitalter noch viel zerstörerischer sein könnte.

Wohin die Reise geht, erkennt man daran, daß nun auch noch das Teststoppabkommen CTBT (Comprehensive Nuclear Test Ban Treaty) unterlaufen wird. Es wurde 1996 von Bill Clinton unterzeichnet, aber nie vom US-Senat ratifiziert. Es war wegen seiner Schwächen ebenso umstritten, wie das Iran-Abkommen (JCPOA Joint Comprehensive Plan of Action). Wie konnte es zu dieser Entwicklung kommen und welche Interessen stehen dahinter?

Die veränderte Welt

Während des „Kalten Krieges“ war die Welt übersichtlich und einfach strukturiert: Es gab die zwei Blöcke USA und Sowjetunion. Beide Parteien konnten sich an einen Tisch setzen und ein unterschriftsreifes Abkommen aushandeln. Noch besser: Es war entsprechend detailliert, sodaß es anschließend auch ratifiziert werden konnte. Dieser Vertrag war dann das Maß aller Dinge. Jeder Block achtete darüberhinaus darauf, daß „Atommächte“ in seinem Einflussbereich nicht aus der Reihe tanzten.

Dies ist heute völlig anders. Es gibt nicht nur die Staaten, die bereits über Kernwaffen verfügen, sondern unzählige, die danach streben. Aktuell herausragende Problemfälle sind Iran und Nordkorea. Schon diese beiden könnten nicht unterschiedlicher sein. Bei Nordkorea kann man davon ausgehen, daß die Kernwaffen nur der „Verteidigung“ dienen sollen. Die Herrschenden in Nordkorea wollen nicht ernsthaft einen „Atomkrieg“ führen – wohl wissend um die Konsequenzen für das eigene Überleben. Es handelt sich hier eher um „politische Waffen“. Verhandlungen und Abkommen zwischen den betroffenen Staaten erscheinen damit durchaus möglich. Völlig anders verhält es sich mit dem Mullah-Regime des Iran: Dieses Regime ist nicht nur offen imperialistisch und überzieht all seine Nachbarn mit Krieg um die Vorherrschaft über „seinen persischen Golf“ zu erlangen, sondern schlimmer noch, ist von einem mittelalterlichen religiösen Sendungsbewusstsein getrieben. Es gibt bereits heute den Verwendungszweck seiner angestrebten Kernwaffen an: Die Auslöschung des Staates Israel und damit die „Endlösung der Judenfrage“. Selbst eine Abschreckung erscheint völlig sinnlos, wird doch jedes Selbstmordattentat nach deren Glauben mit 72 Jungfrauen im Paradies belohnt. Vor diesem Hintergrund ist es schon bemerkenswert, wie Europa – mit Deutschland wieder einmal vorne-weg-gehend – den US-Sanktionen in den Rückken fällt. Gelingt es nicht, die Mullahs durch Sanktionen in die Knie zu zwingen, ist ein Präventivschlag Israels unvermeidlich. Dann wird sich nur noch die Frage stellen, auf welcher Seite man mit in den Krieg ziehen muß.

Eskalation zur Deeskalation

Es gibt aber noch einen weiteren Problemfall. Putin kehrt wieder zu der Doktrin eines „führbaren Atomkrieges“ zurück. Diesmal verbrämt unter der schwachsinnigen Parole „Eskalation zur Deeskalation“. Er glaubt, wenn Rußland eine kleine Kernwaffe gegen Nato-Truppen einsetzt, wird die Nato einknicken und nicht mit einem großen atomaren Gegenschlag antworten. Putin ist – im Aktuelle-Kamera-Deutsch würde man sagen – ein unverbesserlicher Revanchist. Er kann den Zerfall seiner geliebten Sowjetunion nicht überwinden und meint immer noch, dies sei ein Werk des bösen Westens und einiger Schwächlinge, wie Gorbatschow und Jelzin geschuldet und nicht ein logischer Zusammenbruch des Sozialismus. Am Ende seiner gefühlt ewigen Herrschaft erkennt er, daß Rußland immer noch ein Schwellenland mit Kernwaffen ist (Nigeria With Nukes), in dem seine neureiche Clique sich lieber Luxusjachten und Fußballvereine im Westen kauft, als ihr (geraubtes) Geld in Rußland zu investieren. Spätestens nach dem Abenteuer in Syrien ist jedem russischen Militär klar, was eine offene militärische Auseinandersetzung mit der Nato für Folgen hätte. Eine Luftabwehr, die lediglich eine Gefährdung der eigenen Luftwaffe (Abschuß eines eigenen Spionageflugzeugs mit 15 Mann Besatzung) und Nachbarländer (Raketeneinschlag auf Zypern) darstellt, ein wie weiland die Kaiserliche Flotte qualmender Flugzeugträger, der nur in Begleitung von Schleppern auslaufen kann und Bomber, die nur mit eingelegtem Autopilot Krankenhäuser zerbomben können. Was in seinem zwanghaften Imponiergehabe übrig bleibt, sind Kernwaffen. Rußland unterläuft sämtliche Abrüstungsverträge und versenkt wieder Unsummen in eine „atomare Aufrüstung“. Zum Glück sind die Militärs in den USA (bisher) nicht auf das Spiel mit begrenzten Kernwaffenschlägen eingestiegen. Man ist dort nach wie vor der Meinung, daß man auf einen Angriff mit „kleinen“ Kernwaffen mit einem vernichtenden konventionellen Gegenschlag antworten könne. Für sie sind die Putinschen Bömbchen so etwas wie die Kamikaze-Flieger des untergehenden Japan. Gleichwohl wären die Hauptleidtragenden die europäische Bevölkerung.

INF-Abkommen

Um so weniger kann man verstehen, warum der Bruch des INF-Abkommens in Europa so klaglos hingenommen wird. Putin protzt unverhohlen mit neuen landgestützten Marschflugkörpern mittlerer Reichweite. Mit ihnen bedroht er von Königsberg aus (die Stationierung von SSC-8s in 2014 war ein eindeutiger Bruch der INF-Verträge) Berlin etc. mit einer nuklearen Auslöschung – nicht etwa New York oder Washington. Die Strategie ist heute wie damals die Gleiche: Erpressung von Europa ohne (gehofft) die Gefahr eines nuklearen Gegenschlages durch die USA. Im Gegensatz zu Helmut Schmidt läßt man heute die Atommacht GB beleidigt aus er EU austreten und die fünfte Kolonne fordert schon wieder lautstark den Abzug von Atombomben von deutschem Boden. Vor einer Teilhabe an Kernwaffen durch die Bundeswehr braucht Putin sich bald ohnehin nicht mehr zu fürchten, da Deutschland demnächst über keine Flugzeuge mehr verfügt, die ihm diese als Antwort entgegen tragen könnten. Deutschland ergibt sich schon, bevor überhaupt der erste Schuß gefallen ist. Aus Putin-Verstehern werden schon bald (zwangsweise) Putin-Willkommenheisser. Was Honnecker nicht vermochte, wird Angela in aller Stille verwirklichen – ein vereinigtes sozialistisches Deutschland von Moskaus Gnaden.

Das Teststoppabkommen

Nun ist das alles aber nicht so ganz einfach. Im Zeitalter der „gegenseitig gesicherten Vernichtung“ ging alles um Megatonnen. Man mußte auf jeden Fall die gegnerischen Städte mit einem Schlag pulverisieren, egal wie genau man traf. Will man einen „führbaren Atomkrieg“, müssen die Sprengkörper flexibel einstellbar sein um den Kollateralschaden möglichst klein zu halten. Das ist aber gar nicht so einfach und erfordert wesentlich mehr Wissen und Aufwand als bei einer Hiroshima- oder Nagasaki-Bombe. Wohl gemerkt, es geht nicht um eine Miniaturisierung, sondern um eine Programmierung der gewünschten Sprengwirkung. Damit sind wir bei der Bedeutung von Kernwaffentests.

Kernwaffen sind recht komplizierte Gebilde. Bis zum heutigen Tage versteht man die physikalischen Abläufe nicht bis ins letzte Detail. Man braucht also Tests ob die Konstruktion überhaupt funktioniert. Diese Tests sind aber jedes mal „echte Atombomben“ mit all ihren zerstörerischen Konsequenzen. Um dieser Zwickmühle zu entkommen, machte man sich schon frühzeitig Gedanken über die Begrenzung von Tests. Es begann eine jahrzehntelange Verhandlungskette: Verbot von Tests in der Atmosphäre, Begrenzung der maximalen Sprengkraft, bis hin zum Teststopp. Leider muß man feststellen, daß sich „Vernunft“ nicht grundsätzlich weiter entwickelt. 1988 war man so weit, daß man auf den Versuchsgeländen von Nevada und Semipalatinsk unter gegenseitiger Beobachtung und wechselseitiger Installation von Meßtechnik, Kernwaffentests durchführte. Diese gegenseitigen Tests dienten der Kalibrierung der Meßtechnik zur Überwachung der Einhaltung der Teststopps und damit zur Vertrauensbildung. 30 Jahre später ist es undenkbar, daß Putin auf seinem Testgelände amerikanische Spezialisten und Meßtechnik zulassen würde. So ist es halt, wenn man einem Geheimdienstoffizier in dritter Generation die politische Verantwortung überläßt….

Der Geist des CTBT

Schon bei der Verhandlung des CTBT (Comprehensive Nuclear Test Ban Treaty) wurden grundsätzliche Fragen in den USA gestellt:

  • Kann der Bestand an Kernwaffen ohne Testexplosionen gewartet werden? Wie gesagt, man versteht eine Kernwaffenexplosion immer noch nicht bis ins letzte Detail. Es ist aber sicher, daß das Plutonium, der konventionelle Sprengstoff und die Elektronik des Zünders altern.
  • Wie gut können die USA Kernwaffentests erkennen, lokalisieren und identifizieren? Hierfür sind weltweite Messnetze (seismisch, per Satelliten, per Flugzeug etc.), genaue Kenntnisse der Erdschichten, der meteorologischen Verhältnisse etc. und über mögliche Verschleierungstechniken nötig.
  • Was können die USA tun, um den Bestand möglichst nachhaltig zu erhalten (z. B. Wiederverwendung der Spaltstoffe etc.) und welcher technische und politische Aufwand muß betrieben werden um ein internationales Kontrollsystem zu betreiben?
  • Welche Neuentwicklungen von Bauteilen sind unter dem CTBT möglich oder was geschieht, wenn man auf den Zustand vor dem Abkommen zurückkehren muß?

Besonders der letzte Punkt ist höchst aktuell, da man davon ausgehen muß, daß Rußland dieses Abkommen ebenfalls bereits gebrochen oder zumindest überdehnt hat. Wer einen Atomkrieg führen will, braucht andere Kernwaffen, als jemand, der eine gesicherte Vernichtung in einem Zweitschlag garantieren will.

Die Entwicklung von Kernwaffen vollzieht sich heute durch Simulationen auf Super-Computern. Noch immer werden hier die leistungsfähigsten Rechner verwendet. Üblicherweise gibt es erst eine kommerzielle Freigabe, wenn bereits die nächste Generation in Betrieb geht. Nur China kann derzeit bei diesem Rennen überhaupt noch einigermaßen mithalten. Aber mit einer schnellen Maschine ist es noch nicht getan. Man braucht auch noch die (äußerst komplexen) Programme und da geht es nicht wie bei der „Klimafolgen-Abschätzung“ zu: Jede neue Programmversion muß die alten Kernwaffentests nachbilden können. Trotzdem bleibt für jede neue Konstruktion eine Unsicherheit. Dies gilt schon mal für die Plutoniumlegierungen selbst.

Hydronuclear

Man darf zwar keine kompletten Kernwaffen testen, es ist aber durchaus erlaubt, Teile zu testen. Für Tests zur Zündung verwendet man beispielsweise so geringe Mengen Spaltstoff, daß garantiert keine Kettenreaktion (unterkritische Anordnung) ausgelöst werden kann. Die Aggregatzustände (fest, flüssig, gasförmig) hängen von Druck und Temperatur ab. Wenn die Schockwelle des Zünders auf die Probe trifft und sich durch die Probe ausbreitet, ändert sich beständig die Dichte. Wichtige Größen für die Zustandsgleichungen (equation-of-state) zur Simulation. Das alles erfordert eine aufwendige Meßtechnik und ist überdies sehr schmutzig, da Plutonium von der Probe abplatzt und zerstäubt wird. So hat man von dem ehemaligen Testgelände der Sowjetunion (heute Kasachstan) mehrere hundert Kilo waffengrädiges Plutonium aus solchen Tests bei einer Reinigungsaktion 1996–2012 wieder eingesammelt. Man führt deshalb solche Tests unterirdisch in Stollen aus.

Solche Tests sind zur Wartung eines Kernwaffenarsenals ständig nötig. Plutonium altert z. B. durch den radioaktiven Zerfall. Die entstehenden Helium Kerne (α-Strahler) erzeugen beispielsweise Spannungen im kristallinen Gitter der Legierung, die die mechanischen Eigenschaften verändern, wodurch sich der Verlauf der Zündung verändert…

One-Point Safe

Entstanden sind solche Hydronukleare Tests in der Zeit 1958–1961 durch die Frage einer möglichen Selbstentzündung. Kernwaffen sind so gebaut, daß sie nur gewollt gezündet werden können – selbst wenn der Sprengstoff des Zünders ungewollt explodiert. Man definiert eine Kernwaffe als „one-point safe“, wenn sie bei einer ungewollten Explosion mit einer Wahrscheinlichkeit von einem Fall in einer Million eine (kerntechnische) Sprengkraft von bis zu vier Pfund TNT-Sprengstoff erzeugt. Dies geschah bei einem Zusammenstoß eines B52-Bombers mit seinem Tankflugzeug in der Nähe von Palomares in Spanien 1962. Bei mindestens einer Bombe explodierte der Sprengstoff des Zünders und zerfetzte die Bombe ohne eine Kernwaffenexplosion auszulösen.

Zero-Yield

Man kann sogar Tests mit kritischen Anordnungen durchführen, bei denen durch den Zünder tatsächlich eine Kettenreaktion ausgelöst wird. Diese Versuche sind so ausgelegt, daß dabei nur der Gegenwert von 4gr bis 20gr TNT aus der Kernspaltung stammen. Allerdings liegt genau in dieser Grauzone zwischen „keinem Kernwaffentest“ und „noch Zero-Yield“ die Problematik des Teststopp-Abkommens. Die USA verdächtigen Rußland bereits auch dieses Abkommen gebrochen zu haben.

Es gibt nämlich zahlreiche Tricks die Überwachung zu hintergehen. So ist man sich einig, daß erst Kernwaffentest mit einer Leistung ab 100 to TNT mit den heute üblichen Methoden und Kenntnissen der Testgelände nachgewiesen werden können. Die historische Maßeinheit TNT ist nur eine Krücke zur (groben) Veranschaulichung. Man rechnet einfach die aus der Kernspaltung frei gewordene Energie – je 1000 Kilokalorien pro kg – in Sprengstoff um. Damit ist nicht einmal (Strahlung etc.) die Explosionswirkung richtig erfaßt. Bei konventionellem Sprengstoff breiten sich die Explosionswellen nur kugelförmig aus. Bei einer Kernexplosion überlagern sich die vom Boden reflektierten Wellen: Die zerstörerische Wirkung ist erheblich größer.

Damit kommen wir wieder zum Schwachsinn der „Eskalation zur Deeskalation“ zurück. 100 bis 1000 Tonnen TNT sind schon eine ganze Menge für eine Terrorwaffe bei heutiger Zielgenauigkeit. Insofern liegt Putin nicht ganz falsch. Zumindest für Deutschland mit seiner sprichwörtlichen „Atomangst“ dürften ein paar solcher Bömbchen wohl zur sofortigen Kapitulation führen. Selbstverständlich würden deswegen weder die USA noch Frankreich oder GB Moskau in Schutt und Asche legen. Wir dürften noch sehr unsicheren Zeiten entgegengehen.

„Atommüll“ im Bohrloch

Für ein Tiefenlager als Endlager für hochaktiven Abfall gibt es zwei Möglichkeiten: Anlage eines kompletten Bergwerks oder Tief-Bohrungen. Bisher wurden Bergwerke (Finnland, Frankreich, Schweden, USA etc.) favorisiert. Im letzten Jahrzehnt hat aber die Bohrtechnik durch die Förderung von shale-oil und gas („fracking“) rasante Fortschritte gemacht. Man kann heute nicht nur einige tausend Meter senkrecht in die Tiefe bohren, sondern auch noch bis zu 5 km waagerecht. Dabei ist entscheidend, daß man die waagerechten Bohrungen bis auf etwa einen Meter zielgenau innerhalb einer Schicht ausführen kann. Damit ergeben sich völlig neue Aspekte für den Bau eines Endlagers.

Bergwerk oder Bohrfeld

Der klassische Weg ist die Anlage eines Bergwerkes. Bis man mit der Einlagerung beginnen kann, muß man tatsächlich ein komplettes Bergwerk mit allen zugehörigen Einbauten errichten. Entscheidender Faktor ist hierbei der Mensch: Bergleute müssen von der ersten Stunde bis zum endgültigen Verschluß – ein Zeitraum von rund 100 Jahren – in diesem Bergwerk arbeiten. Das erfordert einen enormen Aufwand für die Sicherheit und begrenzt die Tiefe: Es muß nicht nur eine mehrere Kilometer lange Rampe für den Transport der Abfallbehälter aufgefahren werden, sondern zusätzlich noch Schachtanlagen für die Belüftung und den Personentransport. Für all die aufwendige Technik müssen im Berg komplette Werkstätten, Sozialräume etc. eingerichtet und betrieben werden. Ein enormer Kostenfaktor. Abschließend müssen alle Einbauten und Installationen (Kabel, Rohrleitungen usw.) wieder zurückgebaut werden und alle Hohlräume sorgfältig verfüllt und abgedichtet werden. Bei einem konventionellen Bergwerk holt man nur die wertvollen Dinge raus und läßt das Bergwerk absaufen und langsam in sich zusammenfallen. Genau das geht bei einem Endlager nicht. Hier muß der ursprüngliche Zustand des Gebirges möglichst gleichwertig wieder hergestellt werden – ist doch das Gestein die entscheidende Barriere eines Endlagers. Durch all diese bergmännischen Tätigkeiten wird die ursprüngliche Einlagerungsstätte erheblich verletzt. Dabei sind nicht nur die Hohlräume wieder zu verschließen, sondern auch die durch den Abbau gestörten Randzonen entsprechend abzudichten.

Legt man ein Bohrfeld an, muß zu keinem Zeitpunkt irgendein Mensch unter Tage arbeiten. Alle Bau-, Einlagerungs- und Verfüllarbeiten werden ausschließlich von der Oberfläche aus ausgeführt. Die Arbeiten gehen abschnittsweise vor sich. Sobald eine Bohrung fertiggestellt ist, kann sie befüllt werden und (wunschgemäß sofort) wieder fachgerecht verschlossen werden. Für jede Bohrung sind nur einige Monate erforderlich und anschließend ist sofort der Endlagerzustand erreicht. Dies bedeutet eine enorme Flexibilität. Man muß nicht mehr ein zentrales Endlager betreiben, in dem alle radioaktiven Abfälle eingelagert werden, sondern kann mehrere spezielle Lagerstätten einrichten. Dies könnte auch eine bessere Akzeptanz bei der Bevölkerung bedeuten. Es gibt nicht mehr eine Region, die sich als „Atomklo“ der Nation verstehen muß, sondern viele Endlager sind möglich. Der Nutzen von einem Kernkraftwerk kann besser mit den (vermeintlichen) Nachteilen eines Endlagers ausgeglichen werden. Insbesondere durch horizontale Bohrungen werden ganz neue Gebiete für die Endlagerung gewonnen. Für ein Bergwerk braucht man eine möglichst dicke Schicht (z. B. Salzstock). Für horizontale Bohrungen reichen sehr dünne Schichten (Abweichungen von weniger als einem Meter bei der Bohrung) aus. Ein stark geschichteter Untergrund kann sogar von Vorteil sein, wie man von den Gaslagerstätten weiß. Einzelne Schichten im Untergrund sind oft so dicht, daß sie nicht einmal unter Druck stehendes Erdgas durchlassen. Ein gewaltiger Vorteil für ein Endlager.

Senkrecht oder horizontal?

Die Idee „Atommüll“ in tiefe Bohrungen zu versenken ist nicht neu. So hat man in den USA versuchsweise Bohrungen bis 5000 m Tiefe ausgeführt. In den unteren 1 bis 2 km sollten dann Kanister mit „Atommüll“ endgelagert werden. Hier galt das Prinzip: Je tiefer, je sicherer, denn Tiefe schützt vor durchgehenden Rissen und es verbleibt nur noch die (langsame) Diffusion zum Transport. Der „Atommüll“ sollte also mindestens drei Kilometer unter der Erdoberfläche gelagert sein. Bei dieser Bauart stehen die Kanister übereinander, was zu einer entsprechenden Belastung für den untersten Kanister führt. Gemildert kann dies werden, indem man mehrere Pfropfen in die Bohrung einbaut, auf denen jeweils ein separater Turm steht. Dies verkürzt aber die nutzbare Länge entsprechend und erhöht die Baukosten. Nachteilig ist auch bei einem Wassereintritt, daß die radioaktiven Stoffe – angetrieben durch den Auftrieb durch die Wärmeentwicklung – bevorzugt in der Bohrung und ihrer Störzone nach oben steigen wollen. Es ist also eine besonders sorgfältige Wiederverfüllung nötig, damit auch langfristig keine radioaktiven Stoffe in Grundwasser führende Schichten gelangen.

Bei einer horizontalen Lagerung ist der Auftrieb naturbedingt wesentlich kleiner, da die Wärmeentwicklung eher flächig auftritt. Technisch arbeitet man dem Auftrieb entgegen, indem man den horizontalen Teil leicht ansteigend ausführt. Flüssigkeiten und Gase haben dadurch die Tendenz sich entgegen der Hauptbohrung zu bewegen. Bei einer solchen Anlage spielt Wasser in der Einlagerungszone eine geringe Rolle. Anders als bei einem Bergwerk muß es gar nicht abgepumpt werden und es werden somit nicht die Strukturen gestört. Es muß lediglich gewährleistet sein, daß es oberhalb ausreichende Sperrschichten gibt, die einen Austausch mit oberflächennahen Grundwasserschichten verhindern. Wie lange dieses Wasser schon keinen Kontakt mehr mit der Oberfläche hatte, kann man leicht über eine Isotopenanalyse ermitteln. So stammen beispielsweise die Wässer in den Ölfeldern von Texas (permian) überwiegend aus dem gleichen Meer, in dem auch die öl- und gasbildenden Organismen gelebt haben – sie sind Millionen Jahre alt. Genau die Schichten, die auch das Öl und Gas gefangen gehalten haben, haben auch sie von der Oberfläche fern gehalten. Ein weiterer Vorteil dieser alten Wässer ist, daß sie längst mit Mineralien gesättigt sind und keinen Sauerstoff mehr enthalten – sie können deshalb nur sehr schlecht den „Atommüll“ auflösen bzw. die Behälter korrodieren.

Die Konstruktion eines horizontalen Lagers

Der Bau eines solchen Endlagers vollzieht sich in drei Schritten: Im ersten Schritt wird eine ganz konventionelle Bohrung bis in die gewünschte Tiefe (mindestens so tief wie die geplanten Bergwerke) niedergebracht. Ist sie fertig gebohrt, wird sie komplett mit einem Stahlrohr ausgekleidet, welches einzementiert wird. Der Spezialzement verbindet das Rohr fest mit dem umgebenden Gestein und festigt die durch das Bohrgerät beschädigte Randzone (jeweils ungefähr einen halben Bohrungsdurchmesser um das Loch). Ab diesem Moment hat man also eine stabile senkrechte Rohrleitung nach unten. Im zweiten Schritt wird der Bogen als Übergang von der Senkrechten in die Horizontale gebohrt. Dies geschieht mit einem Winkel von etwa 0,25° pro Meter (300 bis 600 Höhenmeter zwischen Senkrecht und Waagerecht). Wie stark die Krümmung sein darf, hängt wesentlich von der Länge der „Müllbehälter“ ab. Schließlich sollen diese Behälter später ohne Belastung – wie ein Sattelzug auf einer Straße – um die Ecke gefahren werden. Will man z. B. komplette Brennelemente (in Deutschland z. B. ist eine Wiederaufbereitung politisch ausgeschlossen) einlagern, hat ein solcher Kanister eine Länge von knapp 5 m und wiegt rund 500 kg. Ist auch dieser Teil fertig gebohrt, wird er ebenfalls durchgehend bis zur Erdoberfläche verrohrt. Im senkrechten Teil besteht die Konstruktion nun aus zwei zentrischen Rohren, deren Zwischenraum ebenfalls zementiert wird. Im dritten Schritt wird die horizontale Bohrung ausgeführt. Man realisiert heute im Ölgeschäft bis zu 5 km lange Strecken. Wie lang eine Bohrung sein kann hängt maßgeblich von der Beschaffenheit der Schicht ab, in die die Endlagerung erfolgen soll. Dieser Teil wird nun ebenfalls verrohrt, was zur Folge hat, daß im senkrechten Teil nun drei Rohre ineinander gesteckt sind.

Die „Abfallbehälter“ bestehen aus Rohren mit einer Wandstärke von etwa 1 cm aus „Alloy 625“ (einem rostfreien Edelstahl, aus dem z. B. auch Rohre in Kernkraftwerken gefertigt werden). Hohlräume in den Behältern werden ausgefüllt und diese anschließend gasdicht verschweißt. Solche „Stangen“ – typische Durchmesser 23 bis 33 cm – sind außerordentlich stabil. Bis diese Behälter „durchgerostet“ sind, vergehen mindestens 50 000 Jahre. Ein Zeitraum, in dem fast alle Spaltprodukte bereits zerfallen sind. Erst dann müßte das Gestein seine Aufgabe als weitere Barriere erfüllen. Die Rohre zur Auskleidung der Bohrlöcher haben eine Lebensdauer von mehreren hundert Jahren.

Aus der Ölindustrie kennt man zahlreiche Verfahren, wie man solche Bohrungen befahren kann. Das Ein- und Ausbringen von Messgeräten, Kameras, Werkzeugen usw. ist Routine. Es gibt sogar Spezialfirmen, die abgebrochene oder verklemmte Bohrgestänge wieder aus einem Bohrloch fischen können. Die „Abfallbehälter“ werden wahrscheinlich mit einem elektrisch angetriebenen Traktor, an einem Stahlseil hängend, in die Rohre gedrückt bzw. wieder herausgezogen. Die Lagerung ist also für (mindestens) Jahrzehnte rückholbar. Auch dies eine politische Forderung, die eigentlich im Widerspruch zu einem Endlager steht.

Alle Arbeiten werden also von der Erdoberfläche aus ausgeführt. Einzige Besonderheit ist eine Abschirmung gegen die Strahlung während der Versenkung des „Atommülls“. In der Ölförderung ist es üblich, von einer kleinen Baustelle aus, mehrere Löcher zu bohren. Teilweise sogar mehrere Schichten übereinander zu erschließen. So könnte man auch ein recht großes Lagerfeld für viele Tonnen Abfall anlegen. Auch der oberirdische Platzbedarf wäre somit sehr viel kleiner als für ein vergleichbares Bergwerk.

Was könnte man einlagern?

Wie oben schon erwähnt, könnte man ganze Brennelemente ohne weitere Bearbeitung einlagern. Dies dürfte – wegen der enormen Rohstoffverschwendung – die Ausnahme sein. Viel eher wird man die verglasten Spaltprodukte mit den minoren Aktinoiden nach einer Wiederaufbereitung (französischer Weg) in solche Behälter gießen. Es sind aber auch andere Wege darstellbar. So fällt man in den USA in den militärischen Aufbereitungsanlagen Strontium und Cäsium (Halbwertszeit etwa 30 Jahre) aus der Spaltproduktlösung aus. So erhält man eine relativ große Menge kurzlebigen Abfall und eine relativ geringe Menge langlebigere Spaltprodukte. Diese Cäsium- und Strontium-Kapseln werden getrennt gelagert. Man kann hierfür einen besonders geeigneten Lagerort finden. Dampferzeuger aus Kernkraftwerken werden heute schon in Spezialfabriken zerlegt und dekontaminiert. Übrig bleibt eine große Menge handelsüblicher Schrott zu Wiederverwendung und ein kleiner Block eingeschmolzenen radioaktiven Materials. Diesen Abfall könnte man auch in die „Abfallbehälter“ gießen und endlagern. Heute wird es immer mehr üblich, kontaminierte Stoffe (Schutzkleidung etc.) vorher einzuäschern und nur noch das kleine Volumen der Asche zu lagern. Genauso könnte man belastete Filterharze in „Abfallbehälter“ umfüllen. Alles nur eine Frage der Kosten und des politischen Willens.