Weitere Nutzung für „Atommüll“

Während in Deutschland weiterhin abgebrannte Brennelemente als „Atommüll“ verteufelt werden, hat China bereits einen weiteren Weg für deren Nutzung eingeschlagen. Zwischen dem Betreiber von zwei Candu 6 Reaktoren in Quinshan TQNPC (China National Nuclear Corporation subsidy Third Quinshan Nuclear Power Company) und der kanadischen SNC-Lavalin wurde ein Vertrag zur Lieferung von Brennelementen aus 37M NUE (Natural Uranium Equivalent) abgeschlossen. Dies ist das Ergebnis einer mehr als zehnjährigen gemeinsamen Forschung und Entwicklungsarbeit. Seit 2008 werden im Reaktor QP III immer wieder NUE-Brennelemente als Dauertest eingesetzt. Diese praktischen Versuche dienten der Anpassung einiger Sicherheitsparameter und der Durchführung des Genehmigungsverfahrens. Jetzt sind die Arbeiten abgeschlossen und der Betrieb mit recyceltem Uran kann beginnen.

Die Reaktoren

Bei den Candu Reaktoren in Quinshan handelt es sich um mit schwerem Wasser (D2O) gekühlte und moderierte Reaktoren. Dieser Reaktor hat im Gegensatz zu Leichtwasserreaktoren keinen Druckbehälter in dem sich die Brennelemente befinden, sondern viele Druckröhren in denen jeweils nur eine Reihe einzelner Brennelemente stecken. Die Druckröhren sind waagerecht und sitzen wiederum in einem mit Schwerwasser gefüllten drucklosen Tank. Vorteil dieser Konstruktion ist, daß man kein dickwandiges Druckgefäß benötigt, sondern lediglich druckfeste Röhren von etwa 10 cm Durchmesser. Druckbehälter können nur eine Handvoll Schmieden weltweit fertigen. Deshalb kann diesen Reaktortyp z. B. Indien selbst herstellen. Als Nachteil erkauft man sich dieses Prinzip mit einem Gewirr von Rohrleitungen: Jede Druckröhre muß mit Vorlauf- und Rücklaufleitung mit den Dampferzeugern verbunden werden. Insgesamt ist die Herstellung aufwendiger und damit teurer.

Durch den Einsatz von Schwerwasser als Kühlmedium und Moderator gehen wesentlich weniger Neutronen verloren als bei Leichtwasserreaktoren. Man kommt deshalb mit Natururan als Brennstoff aus. Eine Anreicherung ist nicht nötig. Darüberhinaus ist das Konzept so flexibel, daß auch andere Brennstoffe wie Thorium oder eben abgebrannte Brennelemente aus Leichtwasserreaktoren eingesetzt werden können. (Siehe hierzu auch den Artikel Reaktortypen in Europa – Teil6, CANDU in diesem Blog.)

Die Wiederaufbereitung

Wenn Brennelemente „abgebrannt“ sind, müssen sie entnommen werden und durch frische Brennelemente ersetzt werden. Sie sind aber keinesfalls Abfall, sondern können und sollten recycelt werden. Auch in Deutschland war deshalb eine eigene Wiederaufbereitungsanlage nach dem PUREX-Verfahren vorgesehen. Übergangsweise hat man Brennelemente in Frankreich und GB aufbereiten lassen. Aus bekannten ideologischen Gründen ist man davon abgegangen. Der Kampf gegen das Atom ist der zentrale Gründungsmythos von Bündnis 90 / Die Grünen.

Die Kerntechnik war der erste Industriezweig der nicht einfach Abfall produzieren wollte, sondern vielmehr der Begründer des industriellen Recyclings. In einem „abgebrannten“ — oder besser abgenutzten und für seinen ursprünglichen Verwendungszweck nicht mehr geeigneten — Brennelement sind lediglich rund 5 % Spaltprodukte. Das ist die „Asche“ der nuklearen Energieherstellung. Aber über 93% des Urans und zusätzlich rund 1% Plutonium sind für die Energiegewinnung wiederverwendbar!

Bei dem PUREX-Verfahren werden die Brennstäbe aufgelöst und anschließend durch eine mehrstufige flüssig-flüssig Extraktion in möglichst reines Uran und Plutonium zerlegt. Alles andere ist bei diesem Verfahren Abfall, wird in Glas eingeschmolzen und ist zur Endlagerung vorgesehen. Das Plutonium wird seit Jahrzehnten — auch in Deutschland — zusammen mit abgereichertem Uran zu sogenannten Mischoxid-Brennelementen verarbeitet und erneut in Leichtwasserreaktoren zur Energiegewinnung eingesetzt. Das zurückgewonnene Uran wird bisher fast ausschließlich eingelagert. Man kann es als „Ersatz“ für Natururan in Anreicherungsanlagen einsetzen. Es muß dazu aber in Uranhexafluorid umgewandelt werden. Ein, bei den heutigen Preisen für Natururan nicht wirtschaftlicher Weg.

Der NUE-Weg

Das Uran für Leichtwasserreaktoren hat eine ursprüngliche Anreicherung von 3% bis 5% U235. Im Reaktor wird sowohl U235 als auch Pu239 gespalten. Das Plutonium bildet sich kontinuierlich aus dem U238 durch das (parasitäre) Einfangen von Neutronen. Ein Teil davon, wird sofort wieder im Reaktor gespalten. Deshalb kann nicht alles U235 aufgebraucht werden bevor die zulässige Betriebsdauer des Brennelements erreicht ist. Oft hat das recycelte Uran noch einen höheren Anteil davon als das Natururan (0,7% U235). Es kann daher noch in Schwerwasserreaktoren eingesetzt werden. Allerdings ist die Natur immer etwas komplizierter als die Theorie. Nicht jeder U235 Kern wird auch gespalten, wenn er von einem Neutron getroffen wird. Es bildet sich auch U236 und sogar Spuren von U234. Alle diese Isotope haben ihre charakteristischen neutronenphysikalischen Eigenschaften. Es wird deshalb durch Verschneiden mit abgereichertem Uran ein dem „Natururan entsprechendes Äquivalent“ (NUE) hergestellt. Dies ist aber eine reine Frage der Analyse (welche Isotopenzusammensetzung?), der Rechnung (neutronenphysikalische Bestimmung) und der Mischung. Ein vergleichbar geringer Aufwand, verglichen z. B. mit einer Anreicherung.

Man kann etwa mit dem recycelten Uran aus vier Leichtwasserreaktoren einen zusätzlichen Schwerwasserreaktor betreiben. Die zusätzliche Energie wird ohne zusätzlichen Verbrauch von Natururan erzeugt — Energie aus „Atommüll“. China betrachtet ihr kerntechnisches Programm offensichtlich von Anfang an als System. Im Zentrum stehen die Leichtwasserreaktoren und eine Wiederaufbereitung des „Atommülls“. Nach dem Vorbild von Frankreich wird dadurch der endgültig zu lagernde Abfall beträchtlich entschärft und verringert. Das anfallende Plutonium wird über Mischoxid wieder den Leichtwasserreaktoren zugeführt. Das zurückgewonnene Uran den Schwerwasserreaktoren. Mittelfristig soll eine weitere Nutzung über natriumgekühlte Reaktoren mit schnellem Neutronenspektrum erfolgen. Beachtenswert ist die Vorgehensweise: Zwar in voller Breite aller am Weltmarkt erhältlichen Reaktortypen, aber stets in kleinen Schritten in enger Kooperation mit internationalen Partnern. Ganz nebenbei ist dadurch eine der bedeutendsten kerntechnischen Industrien der Welt aufgebaut worden. Ein nicht zu unterschätzender und bewußt angestrebter Nebeneffekt. Kerntechnik ist eine Schlüsseltechnologie, die weit in die industrielle Welt ausstrahlt. So war es einst auch in Deutschland, aber hier wird dieser Vorteil zusehends aufgebraucht. Manch ein Grüner wird sich noch die Augen reiben, wie schnell der „Exportweltmeister“ zu einem mittelmäßigen Industriestandort verkommen sein wird.

Evolution der Brennstäbe

Auch die kontinuierliche Weiterentwicklung einzelner Bauteile kann die Sicherheit von Reaktoren erhöhen. Dies gilt besonders nach den Erfahrungen aus dem Unglück in Fukushima.

Brennstäbe heute

Brennstäbe für Leichtwasserreaktoren haben eine Durchmesser von nur 11 mm bei einer Länge von fast 5 m. Sie sind deshalb so instabil, daß sie zu sog. Brennelementen fest zusammengebaut werden. Dort werden sie durch Abstandshalter und Befestigungsplatten in ihrer Position gehalten. Zusätzlich enthalten die noch Einbauten für Regelstäbe, Messeinrichtungen usw. Wichtig in diesem Zusammenhang ist, daß solche Brennelemente mit sehr engen Toleranzen gefertigt werden müssen, da z. B. die sich ergebenden Abstände sehr entscheidend für die Strömungsverhältnisse (Kühlung) und die Abbremsung der Neutronen sind.

Die Brennstäbe bestehen aus Hüllrohren aus Zirkalloy mit Wandstärken von weniger als einem Millimeter und sind mit Tabletten aus Urandioxid gefüllt. Auf die Konsequenzen aus dieser Materialwahl wird später noch eingegangen werden. Die Tabletten sind gesintert („gebrannt“ wie eine Keramik) und anschließend sehr präzise im Durchmesser geschliffen; an den Stirnflächen konkav gearbeitet, um Ausdehnungen im Betrieb zu kompensieren usw. All dieser Aufwand ist nötig, um die Temperaturverteilung im Griff zu behalten.

Das Temperaturproblem

Brennstäbe dürfen nicht schmelzen, denn dann ändert sich ihre mechanische Festigkeit und ihre Abmessungen (Kühlung und Neutronenspektrum). Keramiken sind zwar chemisch sehr beständig, besitzen aber gegenüber Metallen nur eine sehr schlechte Wärmeleitung. Jeder kennt den Unterschied, der schon mal heißen Kaffee aus einem Metallbecher getrunken hat. Außerdem sind Keramiken sehr spröde.

Die gesamte Wärme kann nur über den Umfang an das Kühlwasser abgegeben werden. Sie entsteht aber ziemlich gleich verteilt innerhalb des Brennstabes, da er für Neutronen ziemlich durchsichtig ist. Dies hat zur Folge, daß es einen sehr starken Temperaturunterschied zwischen Zentrum und Oberfläche gibt. Zusätzlich verschlechtert sich auch noch die Wärmeleitfähigkeit mit zunehmender Temperatur. All das führt dazu, daß der Brennstab in seinem Innern bereits aufschmelzen kann, obwohl er an seiner Oberfläche noch relativ kalt ist. Die Temperaturdifferenz zwischen Oberfläche und Kühlwasser ist aber in dieser Phase die bestimmende Größe für die Wärmeabfuhr.

Steigt die Oberflächentemperatur über die Verdampfungstemperatur des Kühlwassers, fängt das Wasser (an der Oberfläche) an zu verdampfen. Die Dampfblasen kondensieren nach deren Ablösung im umgebenden „kalten“ Wasser. Durch dieses sogenannte „unterkühlte Blasensieden“ kann man sehr große Wärmemengen abführen. Tückisch ist nur, wenn die Wärmeproduktion durch Kernspaltung einen Grenzwert übersteigt, bildet sich eine geschlossenen Dampfschicht auf der Oberfläche die auch noch stark isolierend wirkt. Als Folge steigt die Temperatur in der dünnen Brennstabhülle explosionsartig an. Dampf in Verbindung mit hoher Temperatur führt aber zur Oxidation des Zirkalloy. Die Hülle verliert schnell ihre Festigkeit.

Harrisburg und auch Fukushima

Bricht die Kühlung zusammen, überhitzen die Brennstäbe. Wie Fukushima gezeigt hat, kann das auch noch (kurz) nach dem Abschalten des Reaktors geschehen, da dann die Nachzerfallswärme noch sehr groß ist. Durch die hohen Temperaturen in den Brennstabhüllen in Verbindung mit Wasserdampf oxidieren die Hüllen und setzen dabei große Mengen Wasserstoff frei. Dieser Wasserstoff hat zu den fürchterlichen Explosionen in den Reaktorgebäuden geführt. In Harrisburg waren die Wasserstoffmengen zwar beherrschbar, aber auch damals schon zerfielen Teile des Reaktorkerns. Die Wiederbenetzung konnte zwar schlimmeres verhindern – aber man schrecke mal eine glühende Tasse mit Wasser ab.

Für alle Leichtwasserreaktoren bedeutet das, die zulässigen Temperaturen müssen bei allen Betriebsbedingungen in allen Teilen des Reaktorkerns sicher eingehalten werden. Mit anderen Worten, die Kühlung darf nie versagen. In diesem Sinne ist der Sicherheitsgewinn einer passiven (auf die natürlichen Kräfte, wie z. B. Schwerkraft beruhende) Kühlung zu verstehen.

Oberflächenschutz der Brennstäbe

Insbesondere nach den Ereignissen in Fukushima hat man unterschiedlichste Maßnahmen ergriffen, um die Sicherheit bestehender Kraftwerke weiter zu erhöhen. Außerhalb Deutschlands nach den üblichen Vorgehensweisen wie sie bei Flugzeugabstürzen, Schiffsunglücken etc. üblich sind: Akribische Untersuchung der Schadensabläufe mit dem Zweck Schwachstellen zu ermitteln und Lösungen dafür zu finden. Ein Weg war die Verbesserung der Brennstabhüllen. Zu diesem Zweck hat man z. B. in den USA das Entwicklungsprogramm „Enhanced Accident-tolerant Fuel programme.“ gestartet.

Aus einer internationalen Zusammenarbeit haben sich zwei neue Konzepte – IronClad und ARMOR. – entwickelt, deren Prototypen im Kernkraftwerk Hatch in Georgia, USA seit März 2018 im Normalbetrieb getestet werden. Der Test unter realen Bedingungen in einem laufenden Kernkraftwerk ist ein üblicher Entwicklungsschritt. Nur so kann man Fehlentwicklungen vermeiden.

IronClad sind Hüllrohre, die aus einer Eisen-Chrom-Aluminium-Legierung bestehen. Man glaubt damit einen wesentlich robusteren Werkstoff gefunden zu haben, der nicht so temperaturempfindlich ist, nicht so leicht oxidiert und kein Wasserstoffgas produziert.

ARMOR ist ein eher evolutionärer Ansatz. Man panzert konventionelle Hüllrohre mit einer Schutzschicht auf der Basis von Chrom. Es sind Produkte dreier Hersteller in der Erprobung: Global Nuclear Fuel-Japan Co (GE-Hitachi), Framatom mit zusätzlich mit Chrom geimpften Brennstofftabletten und EnCore Fuel.(Westinghouse) mit Tabletten auf der Basis von Uran-Siliciden.

Ein ganz neues Konzept

Das Unternehmen Lightbridge hat das Bauelement Brennstab noch einmal ganz neu gedacht und bereits prototypenreif entwickelt. Inzwischen ist man eine Kooperation für die Weiterentwicklung und Serienproduktion mit Framatom eingegangen. Entscheidend war die Anforderung des Ersatzes von Brennstäben in konventionellen Leichtwasserreaktoren im Betrieb. Deshalb ist nicht nur ein Ersatz, sondern auch ein gemischter Betrieb mit konventionellen Brennelementen angestrebt worden.

Der Übergang von keramischem Uranoxid auf eine metallische Legierung aus Uran und Zirkon ist für Leichtwasserreaktoren revolutionär. Bisher wurde so etwas nur in schnellen Reaktoren mit Natrium – und nicht Wasser – als Kühlmittel gemacht. Ebenso neu ist die Form: Sie sind nicht mehr zylindrisch, sondern kreuzförmig. Diese Kreuze sind spiralförmig verdreht, sodaß sich vier gewindeähnliche Kanäle für das Kühlwasser bilden.. Außen sind sie mit einer dünnen und fest verbundenen Schicht aus Zirkon versehen um eine übliche Wasserchemie zu gewährleisten. Diese „Gewindestäbe“ liegen in dem Brennelement dicht beieinander, sodaß keine Abstandshalter mehr erforderlich sind.

Metall verfügt über eine bessere Wärmeleitung als Keramik und die Kreuzform ergibt eine größere Oberfläche und dünnere Querschnitte. Beides führt zu geringeren Betriebs- und Spitzentemperaturen (starke und schnelle Lastschwankungen). Der Strömungswiderstand solcher Brennelemente ist kleiner, wodurch sich der Durchfluß durch den Kern bei gleicher Pumpenleistung erhöht. Man geht deshalb von einer möglichen Leistungssteigerung von 10% aus. Ein nicht zu unterschätzender wirtschaftlicher Anreiz, wenn man in einer bestehenden Flotte für „kleines Geld“ ganze Kraftwerke zusätzlich erhält.

Die neuen Lightbridge-Brennelemente vertragen alle Leistungstransienten besser, sind aber vom Prinzip her gegen längerfristige Kühlmittelverluste anfälliger, da Metalle einen geringeren Schmelzpunkt als Keramiken besitzen. Dies war der Hauptgrund für die ursprüngliche Wahl von Uranoxid als Werkstoff.

Bei einer Simulation eines Abrisses einer Hauptkühlmittelleitung bei einem VVER-1000 Druckwasserreaktor ergab sich eine maximale Kerntemperatur von 500 °C. Dieser Wert liegt weit unterhalb von der Temperatur, bei der überhaupt Wasserstoff (900 °C) gebildet wird. Durch die hohe Wärmeleitung stellt sich bereits wieder nach 60 Sekunden nach erfolgter Wiederbenetzung erneut die normale Betriebstemperatur ein. Bei konventionellen Brennelementen steigt die Temperatur auf über 1000 °C und erreicht erst nach acht Minuten wieder den stabilen Zustand. Dies hat einen erheblichen Druckanstieg im Reaktor zur Folge, der ein ansprechen der Sicherheitsventile erforderlich macht. Bei diesem Abblasen gelangen auch geringe Mengen von radioaktivem Jod und Cäsium (zumindest) in das Containment. Der Abriß einer Hauptkühlmittelleitung ist der Auslegungsstörfall, der sicher beherrscht werden muß.. In diesem Sinne führen die Lightbridge-Brennelemente zu einem Sicherheitsgewinn.

Es sind aber noch etliche praktische Erfahrungen zu sammeln. Ein Reaktor ist ein komplexes physikalisches und chemisches System. Dies betrifft z. B. das Rückhaltevermögen für Spaltprodukte unter allen möglichen Betriebs- und Störfallbedingungen. In der Kerntechnik dauert wegen der besonderen Sicherheitsansprüche halt alles länger. Die Maßeinheit für die Einführung von Neuerungen ist eher Jahrzehnte als Jahre.

Ein weiterer vielversprechender Entwicklungsaspekt ist der Zusatz von Thorium als „abbrennbarer Brutstoff“ zur Ausdehnung der erforderlichen Ladezyklen auf vier Jahre. Um solch lange Ladezyklen zu erreichen, muß man den Brennstoff höher anreichern. Um diese Überschußreaktivität zu kompensieren muß man abbrennbare Neutronengifte zumischen. Würde man Thorium verwenden, kann man diese Überschußneutronen zum Erbrüten von Uran-233 verwenden.. Längere Ladezyklen würden die Wirtschaftlichkeit bestehender Reaktoren weiter erhöhen.

Durch die Verwendung von metallischem Brennstoff ergeben sich auch völlig neue Perspektiven der Wiederaufbereitung. Durch den Übergang auf elektrochemische Verfahren – wie man sie bereits beim EBRII – erfolgreich ausprobiert hat, kann man zu kleinen Wiederaufbereitungsanlagen in der Nähe der Kernkraftwerke übergehen. Ein weiterer Lösungsweg für die angebliche Atommüllproblematik. Gerade im Zusammenhang mit der Wiederaufbereitung und Proliferation ist auch der Zusatz von Thorium besonders interessant.

Schlussbemerkung

Man sieht, daß die Leichtwasserreaktoren noch lange nicht am Ende ihrer Entwicklung angekommen sind. Insbesondere der Einsatz von metallischen Brennstäben ergibt nicht nur einen evolutionären Weg für bestehende Reaktoren, sondern auch für Neukonstruktionen. Im Zusammenhang mit passiver Kühlung kann ein erheblicher Sicherheitsgewinn erzielt werden. Irgendwann wird die Frage der Anpassung der Genehmigungsbedingungen gestellt werden müssen. Dann aber, beginnt das Kernenergiezeitalter erst richtig. Billige Energie im Überfluß. Egal, was in Deutschland darüber gemeint wird.

TRISO

Tri-Isotropic (TRISO) Brennstoff wird immer im Zusammenhang mit Hochtemperaturreaktoren (HTR) erwähnt. Oft mit schönen Bildern. Es lohnt sich, sich etwas näher damit zu beschäftigen.

Geschichte

Seit etwa 1957 wurde der Gedanke propagiert, sehr kleine Brennstoffpartikel mit geeigneten Mitteln zu ummanteln und als „Mini-Brennelemente“ einzusetzen. Im Vordergrund stand dabei der Gedanke, unterschiedlichste Brennstoffkombinationen zu verwenden: Hoch angereichertes Uran (HEU), schwach angereichertes Uran (LEU), Uran mit Thorium (U, Th), Uran mit Plutonium (U, Pu) und Plutonium (Pu). Es wurden umfangreiche Testreihen in aller Welt durchgeführt. Im Prinzip geht tatsächlich alles. Es gibt aber unterschiedlich Vor- und Nachteile.

So hat man z. B. in Deutschland auf Thorium als Brennstoff gesetzt. Man wollte damit eine zweite Schiene von Brutreaktoren schaffen, die die – wie man damals glaubte – geringen Uranvorräte strecken sollte. Diese Entwicklungsrichtung mündete in den Thorium-Hochtemperaturreaktor (THTR) in Hamm-Uentrop als Demonstrationskraftwerk. Diese Schiene kann man heute nur als Sackgasse bezeichnen. Jedenfalls so lange, wie die heutigen Regeln zur Nichtverbreitung von Kernwaffen bestehen bleiben. Man benötigte dafür nämlich auf 93% hoch angereichertes Uran. Heute lagern aus dieser Demonstration noch etwa 900 kg dieses Materials in der Form von schwach abgebrannten Brennelementen in Deutschland. Ein Thema, über das nicht gern öffentlich geredet wird: Die Grünen klammern sich an jedes Gramm, um ihren Gründungsmythos von der ungeklärten Entsorgungsfrage aufrecht erhalten zu können. Eigentlich müßte das Zeug längst in die USA verbracht sein. Es ist geradezu peinlich, wenn man vergleicht, welchen Aufwand die USA und sogar Rußland betreiben, um wenige Kilogramm aus Forschungsreaktoren weltweit wieder einzusammeln und zurück zu führen. In Deutschland steht das Zeug in mäßig bewachten Zwischenlagern rum. Eine tolle Ausgangsposition für Verhandlungen mit Iran, Nord Korea etc. Manchmal stellt man sich schon die Frage, ob das alles nur mit der Bildungsresistenz deutscher Politiker und ihrer ausgesuchten „Atomexperten“ erklärbar ist.

Aus diesen kleinsten Mini-Brennelementen kann man anschließend technische Brennelemente formen. Dafür haben sich zwei Wege heraus kristallisiert: Etwa tennisballgroße Kugeln oder sechseckige „Bausteine“ aus denen man einen Kern aufbauen kann. Die erste Variante ist besonders einfach zu produzieren und ermöglicht einen Reaktor, den man kontinuierlich beladen kann. Frische Kugeln werden oben eingebracht und gleichzeitig unten gebrauchte Kugeln ausgeschleust. Der eher konventionelle Aufbau aus Brennelementen ist dafür flexibler und auch für große Reaktoren geeignet. Letztendlich beruhen aber beide Prinzipien auf den sandartigen Mini-Brennelementen.

In Deutschland wurde zur Herstellung dieser Mini-Brennelemente das sogenannte Sol-Gel-Verfahren entwickelt. Später entwickelte die deutsche Firma NUKEM ein Verfahren für die freie Erstarrung solcher Kügelchen. Dieses Verfahren wurde von den Chinesen übernommen. Wiederum ein krasses Beispiel für den Ausverkauf deutscher Hochtechnologie. Einzig allein aus ideologischer Verblendung.

Herstellung der Kerne

Uranpulver (U3 O8) wird in Salpetersäure (HNO3) aufgelöst. Es bildet sich eine Uranylnitrat Lösung die noch mit Salmiak neutralisiert werden muß. Ihr werden diverse Alkohole zugesetzt um die Zähigkeit und Oberflächenspannung optimal einzustellen.

Diese eingestellte Lösung wird nun aus Glasröhren vertropft. Um die Tröpfchenbildung zu unterstützen, werden diese Röhrchen in Schwingungen versetzt. Aus jedem Röhrchen tropfen etwa 100 Tröpfchen pro Sekunde. Im freien Fall bilden sich daraus kreisrunde Kügelchen von definiertem Durchmesser. Noch sind es unbeständige Flüssigkeitstropfen. Diese fallen deshalb anschließend durch eine Ammoniak Atmosphäre (NH3), welche mit dem Uranylnitrat chemisch reagiert. Es bildet sich um die Kügelchen eine stabile Haut, die ausreicht, damit sie in dem anschließenden Bad ihre kreisrunde Form behalten. Es haben sich – noch weiche und empfindliche – Kugeln von knapp zwei Millimetern Durchmesser gebildet.

Diese Kugeln werden mit Dampf in rotierenden Trommeln behandelt. Dadurch wachsen in dem Gel Kristalle und sie werden fest. Anschließend werden diese Kugeln in mehreren Schritten mit Wasser und verschiedenen Chemikalien gründlich gewaschen. Dies ist wichtig, damit in den weiteren Verfahrensschritten kein Uran in die Kohlenstoffschichten verschleppt wird. Unter ständiger Rotation werden die Urankügelchen im Vakuum getrocknet. Die Kugeln schrumpfen dadurch auf etwa einen Millimeter Durchmesser. Im nächsten Schritt werden die Kügelchen bei 430 °C kalziniert. Durch diese hohe Temperatur zerlegen sich die organischen Bestandteile und werden ausgetrieben. Es bleiben Kügelchen aus UO3 mit einem Durchmesser von nur noch einem Dreiviertel-Millimeter zurück. Damit sich das UO3 zu UO2reduziert, werden sie in einem weiteren Schritt in einer Wasserstoff-Atmosphäre bei rund 600 °C geröstet. Im letzten Verfahrensschritt werden diese Kügelchen bei 1600 °C gebacken, um eine optimale Dichte und Festigkeit zu erlangen. Das Endprodukt sind Kügelchen mit knapp einem Halben-Millimeter Durchmesser. Sie werden noch fein gesiebt (zu klein = zu wenig Brennstoff und zu groß = zu viel Brennstoff) und die unrunden Partikel aussortiert.

Die Ummantelung

Ganz entscheidend beim TRISO-Konzept ist die Ummantelung der Brennstoffkerne. Sie muß gleichermaßen mehrere Funktionen erfüllen:

  • Mechanischer und chemischer Schutz der Brennstoffkerne vor Einwirkungen von außen. Die Ummantelung ist so stabil, daß sie einerseits für die direkte Endlagerung geeignet ist, andererseits aber eine Wiederaufbereitung erschwert.
  • Zurückhaltung von Spaltprodukten und Brennstoff, damit das Kühlmittel Helium möglichst sauber bleibt.
  • Volumenausgleich. Bei der Kernspaltung entsteht praktisch das gesamte Periodensystem – diese Stoffe können untereinander und mit dem freigewordenen überschüssigen Sauerstoff reagieren. Es ergeben sich auf jeden Fall neue chemische Verbindungen mit unterschiedlichen Dichten. Etwaige Ausdehnungen müssen durch die Ummantelung abgepuffert werden, um ein Aufsprengen der Brennelementen zu vermeiden.

Es werden insgesamt vier Schichten aufgetragen:

  1. Als innerste Schicht (≈ 95 µm), eine Schicht aus porösem Kohlenstoff. Sie soll wie ein Schwamm aus dem Kern austretende Spaltprodukte (z.B. die Edelgase) aufnehmen und auf Volumenänderungen ausgleichend wirken.
  2. Als zweite Schicht (≈ 40 µm), ebenfalls eine Kohlenstoffschicht, aber diesmal von hoher Dichte.
  3. Als dritte Schicht (≈ 35 µm), eine Schicht aus chemisch sehr widerstandsfähigem Siliciumcarbid. Sie hält fast alle Spaltprodukte auch unter extremen Bedingungen (Störfall) nahezu vollständig zurück.
  4. Als äußere Schicht (≈ 40 µm), wird noch eine weitere Schicht aus besonders dichtem Kohlenstoff aufgebracht.

Die Schichten werden aus der Gasphase abgeschieden. Für die porösen Schichten wird Azetylen (C2 H2) und für die dichten Schichten zusätzlich Propylen (C3 H6) verwendet. Zur Erzeugung der Schicht aus Siliciumcarbid wird Methylchlorsilane (CH3 SiCl5) verwendet.

Die Bildung der Schichten erfolgt in einem zylindrischen Reaktor, in dem die Brennstoffkügelchen geschüttet werden und anschließend von unten die Reaktionsgase eingeblasen werden. Dabei werden die Gase in eine so hohe Strömungsgeschwindigkeit versetzt, daß die Kügelchen gerade schweben (Wirbelschicht). Über die Steuerung der Temperatur (1200 bis 1500 °C) wird die Zersetzung der Gase und die Abscheidung auf den Kügelchen gesteuert.

Die Brennelemente

Es wird ein Pulver aus 64% Naturgraphit, 16% Elektrographit und 20% Phenolharz hergestellt. Mit diesem Pulver werden die ummantelten Kerne in einer rotierenden Trommel etwa 200 µm überzogen und bei 80 °C getrocknet. Diese Grünlinge dürfen einen Durchmesser von 1,1 bis 1,5 mm haben. Sie werden bei Raumtemperatur mit einem Druck von 50 bar in Silikonformen zu den brennstoffhaltigen Kernen der Brennelemente gepreßt. Eine zweite Form wird mit Reaktorgraphit ausgekleidet, die grünen Kerne eingelegt und mit einem Druck von 3000 bar zusammengepreßt. Dies ergibt die charakteristischen Kugeln für einen Kugelhaufenreaktor.

Damit sich das Phenolharz in Graphit zersetzt, werden die Kugeln in einer Argonatmosphäre auf 800 °C erhitzt. Zur Härtung werden sie anschließend noch in einem Vakuum bei fast 2000 °C geglüht. Wenn sie alle Qualitätstest bestanden haben, sind sie nun für den Einsatz im Reaktor fertig.

Qualitätskontrolle

Die Verfahrensschritte sind nicht geheimnisvoll. Das eigentliche Wissen liegt in der erforderlichen Qualitätskontrolle. Alle Verfahren müssen bei jedem Zwischenschritt zerstörungsfrei erfolgen. Wird bei einem Fertigungsschritt ein Fehler gemacht, ist das gesamte Fertigprodukt Ausschuss. Es muß also sehr sorgfältig geprüft werden. Hinzu kommt die astronomische Anzahl von Brennstoffkernchen. Es mußten deshalb ganz neue statistische Verfahren entwickelt werden.

Mögliche Fehler im Betrieb

Die Brennelemente sollen im Idealfall alle Spaltprodukte vollständig zurückhalten. Gelangt keine Radioaktivität in das Kühlmittel Helium, kann auch keine Radioaktivität aus dem Kraftwerk austreten. Es lohnt sich also, mögliche Schäden etwas näher zu betrachten. Ganz, lassen sich Schäden in der Technik nie verhindern. Es ist vielmehr entscheidend, wieviel Radioaktivität – auch bei einem schwersten Störfall – das Kraftwerksgelände verlassen kann.

  • Überdruck in den Kernen. Es entstehen gasförmige Spaltprodukte, insbesondere Edelgase. Hinzu kommt ein Sauerstoffüberschuss durch die Kernspaltung, da nicht jedes Sauerstoffatom der chemischen Verbindung UOeinen neuen Partner findet. Es bildet sich Kohlenmonoxid aus der Ummantelung. Diese Gase sollen in der ersten, porösen Schicht zurückgehalten werden. Werden die Qualitätsrichtlinien eingehalten, ergibt sich daraus kein ernsthaftes Problem.
  • Durch die Neutronenstrahlung schrumpft und dehnt sich der Kohlenstoff der Ummantelungen aus. Durch diese Spannungen können Risse auftreten. In Deutschland konnte diese Fehlerquelle fast vollständig ausgeschaltet werden.
  • Durch die Temperaturunterschiede zwischen dem Kern und der Oberfläche können Teile des Kerns in die Umhüllung wandern. Auch dieses Problem kann durch eine konsequente Qualitätskontrolle klein gehalten werden.
  • Edelmetalle greifen die Siliciumcarbid-Schicht chemisch an. Insbesondere Silber kann diese Schichten passieren und bildet unerwünschte Ablagerungen im Reaktor. Generell gilt, daß in die Ummantelung gewanderte Spaltprodukte bei der erhöhten Temperatur eines Störfalls zu unerwarteten Freisetzungen führen können.

Zusammenfasend kann man feststellen, daß hochwertig produzierte Brennelemente der beste Schutz gegen Freisetzungen bei einem Störfall sind. Hinzu kommt eine (aufwendige) Überprüfung jeder ausgeschleusten Kugel auf Schäden und den erfolgten Abbrand. Je weniger Kugeln „am Limit“ sich im Reaktor befinden, je größer sind die Sicherheitsreserven für einen Störfall. Dies war eine Erkenntnis des Versuchsreaktors AVR in Jülich, der als Forschungsreaktor natürlich seine Grenzen erkunden mußte.

Brennstoffkreisläufe

Durch die sehr guten neutronenphysikalischen Eigenschaften und die extreme Temperaturbeständigkeit von Kohlenstoff ist das TRISO-Konzept sehr flexibel. Es ist gering angereichertes Uran verwendbar, aber auch Mischoxide oder sogar reines Plutonium, sowie Kreisläufe auf der Basis von Thorium.

Favorit ist derzeit die Verwendung von leicht angereichertem Uran. Allerdings muß die Anreicherung deutlich höher als bei Leichtwasserreaktoren sein. Ursache ist beim TRISO-Brennstoff die räumliche Verteilung, durch die eine Selbstabschirmung eintritt.

Gemische aus Plutonium und Uran können auch verwendet werden. Diese können als Karbide oder Nitrite eingesetzt werden. Favorit dürfte wegen der Erfahrungen in Leichtwasserreaktoren Mischoxide (MOX) sein.

Es wurden sogar reine Plutonium-Brennstoffe untersucht. Dies geschah aus dem Gedanken, insbesondere Plutonium aus einer Abrüstung zu verbrennen. Vielen Kritikern machen die weltweit ständig steigenden Plutoniumvorräte sorgen. Allerdings ist bis zu einem Prototyp noch sehr viel Forschung und Entwicklung nötig.

Das aus Thorium gebildete U-233 ist mit Abstand das beste Spaltmaterial für thermische Reaktoren. Aus diesem Grunde wurde in USA und Deutschland schon sehr früh das Thorium-Brutreaktor-Konzept favorisiert. Allerdings dürfte die Verwendung von hoch angereichertem Uran heute nicht mehr praktikabel sein. Für eine mittlere Anreicherung bzw. Verwendung von Plutonium als Ersatz, ist noch sehr viel Forschung nötig.

Entsorgung

Ein TRISO-Brennelement besteht aus 94% Graphit. Einerseits ist das für eine (auch sehr lange) Zwischenlagerung eine sehr gute Verpackung, andererseits muß man gewaltige Volumen lagern. Es empfiehlt sich daher eine Wiederaufbereitung um das Volumen zur Endlagerung klein zu halten. Leider gilt aber: Je (mechanisch und chemisch) stabiler ein Brennelement ist, je geringer ist (auch) im Störfall die Freisetzung von Spaltprodukten. Allerdings ist es dann auch um so aufwendiger an diese Spaltprodukte und Wertstoffe heranzukommen. Bei noch nicht bestrahlten Brennelementen ist das Stand der Technik. Der Ausschuss jeder Produktionsstufe wird wieder in die Ursprungsprodukte zerlegt und wiederverwendet.

Im Betrieb wird radioaktives C14 gebildet. Dieser Kohlenstoff bleibt in der Matrix gelöst. Insbesondere bei Feuchtigkeit kann dieses C14 in der Form von CO2 Gas austreten. Ähnliches gilt für radioaktives Tritium H3. Die auftretenden Mengen sind so gering, daß sie bei einer Wiederaufbereitung nach entsprechender Verdünnung in die Umwelt abgegeben werden könnten. Beide Stoffe kommen ohnehin in der Natur vor.

Die Mengen sind nicht sonderlich hoch. Bei einem Hochtemperaturreaktor dürften in seinem Leben von 60 Jahren rund 5000 bis 10000 to abgebrannter Brennelemente anfallen. Diese entwickeln nach etwa drei Jahren etwa 100 W Wärme pro Lagerkanne. Dieser Wert halbiert sich noch einmal nach 50 Jahren. Eine Lagerung ist also kein Problem.

Hat man erstmal die Kerne „zerstört“ – gemeint ist damit, die Kohlenstoffschichten mechanisch und/oder chemisch entfernt – ist die Wiederaufbereitung in leicht modifizierten PUREX-Anlagen möglich.

Neuer Temperaturrekord für Brennstoffe gemeldet

Forscher am Idaho National Laboratory (INL) und beim Oak Ridge National Laboratory (ORNL) meldeten einen neuen Meilenstein bei der Entwicklung von Brennstoffen für einen Reaktor der sog. vierten Generation. Sie erreichten einen neuen Rekord von 1800 °C . „Ein sicherer und effizienterer Kernbrennstoff zeichnet sich am Horizont ab“ war die Meldung betitelt. Der weiterentwickelte TRISO-Brennstoff (tristructural-isotropic, Bilderstrecke hierzu) hätte sich als noch robuster als gedacht erwiesen. Die Entwicklung dieses Brennstoffes ist Bestandteil einer Reaktorentwicklung für besonders hohe Betriebstemperaturen (Very High Temperature Reactor Technology Development Office). Es ist die Wiederaufnahme einer Entwicklungsschiene zur Nutzung von Kernenergie in der Chemie. Insbesondere zur Umwandlung von Kohle in umweltfreundlichere Produkte oder zur großtechnischen (chemischen) Wasserstoffgewinnung. Am konsequentesten und weitesten wurde diese Schiene einst in Deutschland (THTR) entwickelt. Mußte aber – wie so vieles andere – aus politischen Gründen aufgegeben werden. Inzwischen wurde auch die Entwicklung in Südafrika mangels finanzieller Möglichkeiten fast vollständig eingestellt. Nur das andere „Kohleland“ China, verfolgt noch mit merklichem Einsatz die Weiterentwicklung. Die USA – auch das Saudi Arabien der Kohle genannt – betreiben mit allen eine enge Kooperation, insbesondere auf dem Sektor der Brennstoffentwicklung.

Der heutige Stand, ist das Ergebnis von 11 Jahren Entwicklung am INL und ORNL. Wobei diese Forschung, schon auf den deutschen Ergebnissen aus den 1980er Jahren aufbauen konnte. Dies nur mal so am Rande, wie lang Entwicklungszeiträumen in der Kerntechnik dauern. Dabei handelt es sich hier nur um ein Teil – dem Brennelement – eines neuen, gasgekühlten Hochtemperaturreaktors. Alle Teile koppeln aber später im Betrieb gegenseitig aufeinander zurück. Erinnert sei nur, an das Einfahren der Steuerstäbe in den Kugelhaufenreaktor in Hamm-Üntrop, welches zu unerwartetem Verschleiß geführt hatte. Die hier beschriebenen TRISO-Elemente waren drei Jahre zur Bestrahlung in einem Testreaktor (im Advanced Test Reactor des INL). Ziel war ein Abbrand von etwa 20%. Dies entspricht etwa dem doppelten Wert, der damals in Deutschland verwendeten Brennelemente. Je höher der Abbrand ist, um so mehr Spaltprodukte sind in den Brennelementen vorhanden und um so höher war die Strahlenbelastung.

Nach der Bestrahlung wurden sie in einem Ofen auf die Testtemperatur erhitzt. Hauptzweck eines solchen Versuches ist, zu messen, wieviel Spaltprodukte, von welcher Sorte, „ausgeschwitzt“ werden und wie stark die anderen Eigenschaften (Festigkeit, Korrosion etc.) nachlassen. Aus solchen Versuchen kann man wertvolle Erkenntnisse für die Optimierung des Herstellungsprozesses ableiten. Die Meßergebnisse sind so positiv, daß man sogar Tests bei noch höheren Temperaturen erwägt. Wichtig für die Sicherheitstechnik ist, daß bereits die jetzigen Temperaturen etwa 200 Grad über den möglichen Höchsttemperaturen bei einem Störfall liegen.

Unterschiede zu konventionellen Brennelementen

Ein Brennelement enthält den Spaltstoff (Uran, Plutonium) und soll später die bei der Kernspaltung entstehenden Produkte möglichst gut festhalten. Das Brennelement muß gekühlt werden. Bei einem Leichtwasserreaktor ist das Kühlmittel auch das Arbeitsmedium (Dampfturbine). Bei einem klassischen Hochtemperaturreaktor, dient Helium als Wärmeübertrager zwischen den Brennelementen und dem eigentlichen Dampfkreislauf. Verwendet man Helium als Kühlmittel und wünscht trotzdem ein thermisches Neutronenspektrum, benötigt man noch einen zusätzlichen Moderator. Diese Funktion übernimmt der Kohlenstoff in den TRISO-Elementen.

Ein Brennelement eines Druck- oder Siedewasserreaktors besteht aus vielen einzelnen Brennstäben (üblich 14 x 14 und 17 x 17). Jeder Brennstab ist mit Tabletten (kleine Zylinder mit etwa 1 cm Durchmesser und Höhe) aus Uranoxid gefüllt. Die Hülle besteht aus einem beidseitig verschlossenen Rohr aus einer Zirkonlegierung. Uranoxid ist in Wasser praktisch unlöslich und hat einen hohen Schmelzpunkt von über 2800 °C. Dies erscheint sehr hoch, kann aber relativ schnell im Innern eines Brennstabs erreicht werden, da Uranoxid ein schlechter Wärmeleiter ist. Es kommt deshalb bei einem Verlust des Kühlwassers – wie in Harrisburg und Fukushima – partiell zur „Kernschmelze“. Infolgedessen reagiert die Brennstabhülle mit Wasserdampf bei hoher Temperatur und es bilden sich beträchtliche Mengen Wasserstoff, die in Verbindung mit Luft explodieren können. Die ursprünglich im Brennstab zurückgehaltenen Spaltprodukte können freigesetzt werden. Dabei ist zu beachten, daß viele Spaltprodukte bei den hohen Temperaturen gasförmig sind. Sie breiten sich deshalb zumindest im Reaktor aus. Dies führt zu einer erheblichen Strahlenbelastung, die menschliche Eingriffe für lange Zeit unmöglich macht. Man muß also längere Zeit warten, bis man mit den Aufräumarbeiten beginnen kann. Dies war das Problem in Harrisburg und ist heute das Problem in Fukushima.

Die Kombination Uranoxid, eingeschweißt in einer Hülle aus einer Zirkonlegierung (Zirkalloy) ist für den „normalen“ Betrieb eine sehr gute Lösung. Solche Brennelemente sind sogar für Jahrzehnte problemlos in Wasserbecken oder Spezialbehältern (trocken) lagerbar. Anders verhält es sich, wenn sie – insbesondere aus dem vollen Betrieb heraus – „trocken fallen“: Die Temperatur des Brennstabs steigt sofort über den gesamten Querschnitt an. Dies liegt an der relativ gleichmäßigen Verteilung der Spaltprodukte (Nachzerfallswärme) und der schlechten Wärmeleitung von Uranoxid. Der Brennstab fängt regelrecht an zu glühen und kann in seinem Inneren bereits aufschmelzen. Ohne den Phasenübergang von Wasser zu Dampf (Verdampfungsenthalpie) ist der gewaltige Wärmestrom (dafür reicht schon die Nachzerfallswärme kurz nach Abschaltung) nicht aus dem Brennstab zu transportieren. Mit anderen Worten: Ist der Brennstab erst einmal von Dampf umgeben, heizt er sich immer weiter auf. Nun setzen zwei fatale Prozesse ein: Infolge der steigenden Temperatur verliert das Brennelement seine mechanische Festigkeit und das Material der Brennstoffhülle „verbrennt“ im heißen Wasserdampf und produziert dadurch beträchtliche Mengen Wasserstoff. In diesem Moment wird ein Teil der vorher eingeschlossenen radioaktiven Stoffe zumindest im Reaktordruckgefäß (Unfall in Harrisburg) oder sogar im Sicherheitsbehälter (Fukushima) freigesetzt. Die produzierte Menge Wasserstoff kann so groß sein, daß sie ein ganzes Kraftwerk zerstört. Die Bilder von der Explosion in Fukushima sind hinlänglich bekannt. Ist das passiert, wird auch eine beträchtliche Menge radioaktiver Stoffe in die Umwelt freigesetzt.

Man kann also zusammenfassend sagen: Die Konstruktion der Brennelemente eines Leichtwasserreaktors funktioniert nur so lange, wie sie ständig von flüssigem Wasser umgeben sind. Sind sie nicht mehr vollständig von Wasser benetzt, nimmt die Katastrophe innerhalb von Sekunden ihren Lauf und endet – zumindest – im Totalschaden des Reaktors. Die Sicherheit steht und fällt mit der Aufrechterhaltung einer „Notkühlung“. Ein „trocken fallen“ muß sicher verhindert werden. Dabei spielt es keine Rolle, ob dies von außen ausgelöst wird (Tsunami), durch technisches Versagen im Kraftwerk (Rohrbruch) oder auch durch menschliches Versagen (Bedienungsfehler). In diesen Zusammenhängen liegt die Begründung für die passiven Sicherheitseinrichtungen bei Reaktoren der sog. Generation III+.

Das TRISO-Konzept

Beim Tristructural-isotropic (TRISO) Brennstoff geht man nicht von einer Tablette mit einem Durchmesser von etwa 1 cm als Baustein aus, sondern von winzigen Körnern, im Bereich von zehntel Millimetern. Diese Körnchen werden mit vier Schichten umhüllt und besitzen anschließend einen Durchmesser von etwa einem Millimeter. Die erste Schicht besteht aus porösem Kohlenstoff. Sie kann wie ein Schwamm die Ausdehnungen des Brennstoffkerns ausgleichen und kann aus ihm entwichene Spaltprodukte (Gase) aufnehmen. Diese Schicht ist von einer weiteren Schicht aus dichtem pyrolitischem Kohlenstoff (PyC) umgeben. Nun folgt eine Schutzschicht aus Siliziumkarbid (SiC). Dieses Material ist sehr hart und chemisch widerstandsfähig. Außen folgt eine weitere Schicht Kohlenstoff. Ein solches Korn „Verbundwerkstoff“ ist gleichzeitig nahezu unzerbrechlich und äußerst temperaturbeständig. In diesem „Tresor“ sind Spaltstoff und Spaltprodukte für Jahrzehnte fest eingeschlossen. In Deutschland plante man die „abgebrannten“ Kugeln in Edelstahlbehälter einzuschweißen und diese dann in ein Endlager zu bringen.

Aus diesen kleinen TRISO-Körnern kann man in einem weiteren Verfahrensschritt handhabbare Brennelemente „backen“. Bei einem Kugelhaufenreaktor sind das etwa Tennisball große Kugeln aus solchen TRISO-Körnern, die durch weiteren Kohlenstoff miteinander verbunden sind. Das erforderliche Verhältnis, ist durch die Neutronenphysik vorgegeben, da bei diesem Reaktortyp der Kohlenstoff auch die Funktion des Moderators übernehmen muß. Das durch den Kugelhaufen strömende Helium dient nur dem Wärmetransport. Da weder Zirkalloy, noch Wasser vorhanden ist, kann bei einem Störfall auch keine größere Menge Wasserstoff gebildet werden. Eine Explosion, wie im Kraftwerk Fukushima, wäre ausgeschlossen.

Wie diverse Versuche mit Kugelhaufenreaktoren eindrucksvoll gezeigt haben, sind sie „inhärent sicher“. In China hat man beispielsweise in einem öffentlichen Versuch dem Reaktor bei voller Leistung die Wärmesenke entzogen. Der Reaktor „ging von alleine aus“ und verharrte in einem stabilen Zustand. Die Kettenreaktion wurde durch den extrem negativen Temperaturkoeffizienten des Reaktorgraphit und dem Dopplereffekt des Brennstoffs augenblicklich unterbrochen. Durch die Nachzerfallswärme verharrt der Reaktor in diesem „überhitzten Zustand“ für viele Stunden, ohne jedoch eine für den Brennstoff kritische Temperatur zu überschreiten (Eine maximale Brennstofftemperatur von 1600 °C wurde nach drei Tagen erreicht). Der Reaktor blieb unbeschädigt und konnte nach dem Versuch wieder in Betrieb gesetzt werden. Diese Demonstration war wichtig, da dieser Reaktortyp unmittelbar in Raffinerien als Wärmequelle eingesetzt werden soll.

Ein Reaktor mit TRISO-Brennstoff und Helium als Kühlmittel macht hauptsächlich zur Erzeugung von Hochtemperatur-Prozeßwärme Sinn. Der gegenüber Leichtwasserreaktoren höhere Kapitalaufwand, wiegt die Brennstoffeinsparung durch höhere Wirkungsgrade bei der Stromerzeugung nicht auf. Bei kleinen Reaktoren dieses Typs, ist wegen des günstigen Verhältnisses von Volumen zu Oberfläche, eine „Notkühlung“ nicht notwendig. Die geringe Leistung (einige Hundert Megawatt) ist für die Anwendung „Prozeßwärme“ kein Nachteil, da der Bedarf von Hochtemperaturwärme an einem Standort ohnehin begrenzt ist. Wegen der relativ geringen Stückzahlen ist eine Wiederaufbereitung eher unwirtschaftlich. Die Stabilität der TRISO-Elemente kommt einer direkten „Endlagerung“ entgegen. Geschieht diese rückholbar, kann das irgendwann bei Bedarf geschehen.

Wie in Deutschland eindrucksvoll gezeigt wurde, eignet sich dieses Reaktorkonzept hervorragend, um Thorium nutzbar zu machen. Bei Kugelhaufen ist eine Anreicherung von 8 bis 10% Spaltmaterial und für das US-Konzept der Prismenanordnung von 14 bis 19% erforderlich. Es wäre sogar eine Verwendung von „teilaufgearbeitetem“ Leichtwasserbrennstoff möglich. Wegen des hohen Abbrandes wären hiermit etwa 70% des vorhandenen „Atommülls“ nutzbar. Ein Konzept, ähnlich dem koreanischen DUPIC-Verfahren (Nachnutzung in Schwerwasserreaktoren).

Reaktortypen heute und in naher Zukunft

Warum haben sich einige Reaktoren durchgesetzt und andere nicht?

Bevor die technische Betrachtung los gehen kann, sind einige Vorbemerkungen erforderlich. Es sind die immer gleichen Sätze, die aber all zu gern gerade von Technikern und Wissenschaftlern verdrängt werden: Da draußen, in der realen Welt, außerhalb von Hörsälen und Politologenseminaren, kostet alles Geld und muß auch alles wieder Geld einbringen. Einen Euro, den man für Forschung ausgegeben hat, kann man nicht noch einmal für „soziale Projekte“ oder sonst irgend etwas ausgeben. In der Politik herrscht der nackte Verteilungskampf. Jeder in der Wirtschaft investierte Euro, muß nicht nur wieder eingespielt werden, sondern auch noch einige Cents zusätzlich einbringen – gemeinhin Gewinn genannt. Dies ist geradezu naturgesetzlich. Wie der „Real Existierende Sozialismus“ eindrücklich bewiesen hat, bricht sonst ein ganzes Gesellschaftssystem einfach in sich zusammen.

Die Evolution

Von den unzähligen Reaktortypen, haben nur drei – in der Reihenfolge ihrer Stückzahl – überlebt: Druckwasser-, Siedewasser- und Schwerwasserreaktoren. Gestorben sind alle mit Gas gekühlten, Graphit moderierten, und „schnellen“ Reaktoren. Manche sind über den Status eines Prototypen – wie z. B. die Salzbadreaktoren – nicht hinaus gekommen. Das sagt weniger über ihre „technischen Qualitäten“, als sehr viel mehr über die Gültigkeit der Vorbemerkung aus.

Die „schnellen“ Brüter

Das einzige, in der Natur vorkommende Material, mit dem man eine Kettenreaktion einleiten kann, ist Uran-235. Der Anteil dieses Isotops am Natururan beträgt nur 0,7%. Hört sich beängstigend gering an. Mit Prozenten ist das aber immer so eine Sache: Wenn man nicht fragt, von wieviel, kann man schnell zu falschen Schlüssen gelangen. Drei Dinge sind zu berücksichtigen, die sich gegenseitig positiv verstärken:

  1. Nach menschlichen Maßstäben, gibt es auf der Erde unerschöpflich viel Uran. Uran ist als Spurenelement überall vorhanden. Allein in den oberen 30 cm Erdschicht, sind auf jedem Quadratkilometer rund 1,5 to vorhanden (der durchschnittliche Urangehalt in der Erdkruste liegt bei 2,7 Gramm pro Tonne). Das Uran-Vorkommen im Meerwasser wird auf vier Milliarden Tonnen geschätzt. Der Menschheit wird das Uran also nie ausgehen. Eine von „Atomkraftgegnern“ immer wieder gern verbreitete angebliche Reichweite von ohnehin nur 30 bis 80 Jahren, ist einfach nur grottenschlechte Propaganda.
  2. Für uns Menschen setzt die Kernspaltung von Uran unvorstellbare – weil außerhalb unseres normalen Erfahrungshorizont liegend – Energiemengen frei. Die Spaltung eines einzelnen Gramms Uran setzt rund 22.800 kWh Wärme frei oder viel anschaulicher ausgedrückt, 13 boe (Fässer Rohöläquivalent). Zur Zeit kostet ein barrel (159 Liter) Rohöl rund 80 Euro am Weltmarkt. Ein Pound (453 gr) U3 O8 kostet aber nur etwa 50 US-Dollar – und damit nicht 1 Million (!!) Dollar, wie es seinem „Öläquivalent“ entsprechen würde. Diese Abschätzung macht deutlich, daß noch einige Zeit vergehen dürfte, bis das Uran auch nur im wirtschaftlichen Sinne knapp werden wird. Allein das bisher geförderte Uran (in der Form von Sprengköpfen, abgebrannten Brennelementen etc.) reicht für einige Jahrtausende aus, um den heutigen Weltbedarf an elektrischer Energie zu produzieren.
  3. In thermischen Reaktoren (gemeint ist damit, Reaktoren in denen überwiegend nur sehr langsame Neutronen die Kernspaltung betreiben.) wird vorwiegend Uran-235 genutzt, das aber im Natururan nur zu 0,7 % enthalten ist. Man glaubte, durch diesen „Faktor 100“ könnte sich vielleicht früher ein Engpass ergeben. Um so mehr, da bei Leichtwasserreaktoren eine Anreicherung auf 3 bis 5 % sinnvoll ist. Wegen der erforderlichen Anreicherung benötigt man fast die zehnfache Menge Natururan für die Erstbeladung eines solchen Reaktors. In Wirklichkeit ist es weit weniger dramatisch, da bei jeder Spaltung durch die Überschußneutronen neuer Spaltstoff (Plutonium) erzeugt wird. Die Konversionsrate bei heutiger Betriebsweise beträgt etwa 0,6. Mit anderen Worten, wenn 10 Kerne gespalten werden, bilden sich dadurch 6 neue „Spaltkerne“. Dafür benötigt man eine Wiederaufbereitungsanlage, deren Betrieb aber reichlich Geld kostet. Bei den heutigen, geringen Uranpreisen am Weltmarkt (siehe oben) lohnt sich das wirtschaftlich kaum. Man läßt die abgebrannten Brennelemente erst einmal stehen. Für die Kraftwerksbetreiber sind sie Abfall (weil nicht länger mehr im Reaktor einsetzbar), aber trotzdem Wertstofflager und keinesfalls Müll. Darüber hinaus sind sie um so leichter zu verarbeiten, je länger sie abgelagert sind.

Bedenkt man diese drei Punkte und den Vorspann, hat man unmittelbar die Antwort, warum sich Reaktoren mit schnellem Neutronenspektrum bis heute nicht kommerziell durchsetzen konnten. Sie sind in Bau und Betrieb wesentlich teurer als Leichtwasserreaktoren. So muß man Natrium- oder Bleilegierungen als Kühlmittel einsetzen. Eine völlig andere Technologie. Für Pumpen, Ventile und was man noch so alles in einem Kraftwerk braucht, gibt es nur weniger als eine Handvoll Hersteller, die alles in Einzelanfertigung herstellen mußten. Selbst das Kühlmittel ist ein Problem: Für vollentsalztes Wasser findet man heute praktisch in jeder Stadt einen Lieferanten. Für „Reaktornatrium“ gibt es nach Kenntnis des Autors praktisch nur einen Hersteller weltweit – übrigens ein deutsches Unternehmen – der bis nach Rußland und China liefert. In einem „natriumgekühlten“ Reaktor hat man drei Kühlkreisläufe (einen radioaktiven durch den Kern, einen Zwischenkreis zum Strahlenschutz und einen Wasser-Dampf-Kreislauf zur eigentlichen Stromerzeugung). Demgegenüber hat ein Siedewasserreaktor nur einen, der auch ohne Umwälzpumpen auskommen kann. Der Unterschied in Investitions- und Betriebskosten dürfte auch jedem Laien nachvollziehbar sein.

Weitaus schwerwiegender ist aber das wirtschaftliche Risiko. Kein verantwortungsvoller Energieversorger auf der Welt, wird sich für einen schnellen Reaktor zur kommerziellen Stromerzeugung entscheiden. Unkalkulierbares Genehmigungsverfahren mit unbestimmten Ausgang: Dafür findet sich keine Bank, die darauf einen Kredit gibt. Es bleibt daher auf absehbare Zeit wie es ist. Solche Reaktoren können nur in Rußland, China und Indien in staatlicher Regie gebaut werden. Sollten sich in einem „westlichen“ Land tatsächlich Politiker finden, die dafür die Verantwortung tragen wollen, könnte es sofort losgehen. Das Jahrzehnte dauernde Drama in Japan (Monju, Baubeginn 1984 (!), bis heute im ständigen Umbau) ist allerdings abschreckendes Beispiel genug. Technisch, gibt es keine grundlegenden Probleme mehr. Technisch, hätte das Projekt ungefähr das Risiko und den finanziellen Aufwand eines neuen Verkehrsflugzeugs oder einer neuen Weltraumrakete – nur für Politiker ist es eben nicht attraktiv. Dies ist übrigens keine Politikerschelte, denn die werden von uns selbst gewählt.

Selbst in USA läßt man sich für zig Milliarden lieber eine Mischoxid-Brennelemente-Fabrik von Areva bauen, nur um seinen vertraglichen Pflichten gegenüber Rußland aus dem Abrüstungsprogramm nachkommen zu können. Was in Frankreich funktioniert, kann so schlecht nicht sein. Die eigene IFR-Entwicklung hat man an Japan verscherbelt. Sie lebt heute unter dem Kürzel PRISM (Power Reactor Innovative Small Module) in einem Gemeinschaftsunternehmen von GE und Hitachi Nuclear Energy (GEH) mehr schlecht als recht, weiter. 2012 hat sich GEH in Großbritannien um ein Projekt zur Beseitigung des nationalen Überschusses an Plutonium beworben. Als Alternative zu Mischoxid-Brennelementen, mit deren Fertigung man in GB keine berauschenden Erfahrungen gemacht hatte. Mal sehen, was daraus wird. Es sollte übrigens ausdrücklich kein „Brüter“, sondern ein „Brenner“ werden, der möglichst schnell, möglichst kostengünstig, große Mengen Plutonium untauglich für eine Waffenherstellung macht.

Die Hochtemperaturreaktoren

Immer wieder taucht die (zweifelhafte) Forderung nach höheren Temperaturen auf. Entweder ist die Begründung ein besserer Wirkungsgrad oder die Nutzung für die Chemie. Deutschland war nach der Ölkrise der 1970er federführend in der Entwicklung. Will man höhere Temperaturen (über 300 °C) erreichen, bleibt praktisch nur eine Gaskühlung, da bei Wasserdampf der Druck in eine nicht mehr sinnvolle Dimension ansteigt. Außerdem verläßt man im Reaktor das Naßdampfgebiet, was für die „Reaktordynamik“ nur Nachteile bringt.

In den 1950er Jahren hatte man das Problem mit „zu nassem“ Dampf im Turbinenbau. Ausserdem ging zwangsläufig der Bau von Reaktoren mit Graphit als Moderator (für die Rüstung) voran. In Großbritannien ergaben sich die MAGNOX-Reaktoren mit Natururan und CO2. als Kühlmittel. Sie wurden mit einem Druck von knapp 21 bar und 400 °C betrieben. Schon damals unwirtschaftlich. Die Entwicklung ging folgerichtig weiter, zum AGR mit rund dem doppelten Druck und einer Temperatur von 630 °C. Von diesem Advanced Gas-cooled Reactor (AGR) wurden immerhin zehn Reaktoren mit einer Gesamtleistung von fast 6.000 MWe gebaut. Die hohe Temperatur in Verbindung mit CO2. führte zwar immer wieder zu Korrosionsproblemen, aber eigentlich sind es recht robuste Kraftwerke. Bei Neuplanungen geht man aber auch in Großbritannien ausschließlich von Leichtwasserreaktoren aus.

In der Sowjetunion erschuf man einen mit Graphit moderierten Druckröhren Reaktor (RBMK). Er erlangte in Tschernobyl traurige Berühmtheit. Es sind wohl immer noch acht Reaktoren in Betrieb. Die Mehrzahl wurde aber bereits aus dem Verkehr gezogen.

Auf die „echten“, mit Helium gekühlten Hochtemperatur-Reaktoren (z. B THTR in Deutschland mit 750 °C Austrittstemperatur) wird weiter unten noch eingegangen.

Kernenergie zur Stromproduktion

Bisher hat sich die Kernenergie weltweit ausschließlich zur Produktion elektrischer Energie durchgesetzt. Warum das auch auf absehbare Zeit so bleiben wird, später.

Nun hört man immer wieder das „Modewort“ von der „Energieeffizienz“. Gegen Leichtwasserreaktoren wird von „Atomkraftgegnern“ immer gern das Argument der angeblich schlechten Wirkungsgrade angeführt. Als Wirkungsgrad ist das Verhältnis von erhaltener Energie (die elektrische Energie, die aus dem Kraftwerk ins Netz geht) zu eingesetzter Energie (Spaltung von Uran oder Plutonium) definiert. Eine solche Definition macht in diesem Fall ohnehin wenig Sinn: Zumindest Plutonium ist ein (außer als Energieträger) wertloser Stoff, der potentiell sogar gefährlich (wie z. B. Quecksilber) ist. Eine andere Situation als bei Öl, Erdgas usw., die man auch als Rohstoff für vielfältige, andere Zwecke (Treibstoff, Kunststoffe etc.) nutzen kann. Ein besserer Wirkungsgrad macht bei der Kernenergie nur als „verminderte“ Betriebskosten Sinn. Wie aber schon oben gezeigt wurde, kostet Uran (energetisch betrachtet) fast nichts, aus dem Schornstein (im Vergleich zu einem Kohlekraftwerk) kommt auch nichts und die Asche (Spaltprodukte) ist weniger, als bei einem Gasturbinen-Kraftwerk aus dem Schornstein kommt. Alles keine Anreize, damit man um Wirkungsgrad-Punkte kämpft.

Trotzdem kann es nicht schaden, wenn man mal über den Zaun schaut. Die Spitzenwerte liegen heute für Koppelprozesse in Gasturbinen-Kraftwerken, mit nachgeschaltetem Dampfkreislauf zur Abwärmenutzung, bei 60%. Die modernsten Steinkohle-Kraftwerke haben Wirkungsgrade von 46% und der EPR von Areva 37%. Wenn man den Koppelprozeß mit 1 ansetzt, verhalten sich Kombi-, zu Steinkohle-Kraftwerk und Druckwasserreaktor wie 1,0 : 0,77 : 0,62. Alles keine Zahlen, um ein völlig neues Kraftwerkskonzept zu verkaufen (Sie erinnern sich noch an den Vorspann?).

Sehr interessant in diesem Zusammenhang wäre die Kraft-Wärme-Kopplung: Ein Kernkraftwerk als Heizkraftwerk. Plötzlich hätte man die gleichen Nutzungsgrade, wie aus den Prospekten der Block-Heiz-Kraft-Werk (BHKW) Hersteller und Rot/Grünen-Parteitagen – und das auch noch ohne Abgase und Geräusche. Ja, wenn nur die Strahlenphobie nicht wäre. Wir könnten leben, wie in der Schweiz (KKW Beznau) oder einst an der Unterelbe (KKW Stade).

Kernenergie als Wärmequelle

Mit Leichtwasserreaktoren läßt sich sinnvoll nur Wärme unter 300 °C herstellen. Wärme läßt sich wirtschaftlich immer nur über kurze Strecken transportieren. Andererseits nimmt gerade die Niedertemperaturwärme (Raumheizung, Warmwasser etc.) einen beträchtlichen Anteil in der nördlichen Hemisphäre ein. Man müßte lediglich Kernkraftwerke (vielleicht SMR?) in der Nähe von Metropolen bauen um „Fernwärme“ auszukoppeln.

Sehr hohe Temperaturen braucht man nur in der Industrie (Metalle, Glas etc.) und der Chemie. Diese Anwendungen sind heute eine Domäne von Erdgas und werden es auch bleiben. Hochtemperatur-Reaktoren wurden immer nur als Angebot für das Zeitalter nach dem „Ölzeitalter“ (wann das wohl sein wird?) vorgeschlagen. In Deutschland nannte man das „Kohle und Kernenergie“ und schuf den Thorium-Hochtemperatur-Reaktor (THTR), auch Kugelhaufen-Reaktor genannt. Er hat Austrittstemperaturen von 750 °C erreicht (für die Stromerzeugung mit Trockenkühlturm), sollte aber über 1000 °C für „Kalte Fernwärme“ und Wasserstoffproduktion erreichen.

Weltweit werden mehr als 500 Milliarden Normkubikmeter Wasserstoff produziert. Hauptsächlich aus Erdgas. Größte Verbraucher sind Raffinerien und Chemieanlagen. Folgt man einmal nicht Greenpeace und Putin („Wir brauchen mehr umweltfreundliche Gaskraftwerke“), sondern ersetzt im Gegenteil Erdgaskraftwerke durch Kernkraftwerke, kann man ganz konventionell riesige Wasserstoffmengen zusätzlich produzieren. Dagegen kann nicht mal die „Klima-Schutz-Staffel aus Potsdam“ etwas einwenden, denn bei der Umwandlung von Methan fällt nur Wasserstoff und CO2 an. Das Kohlendioxid kann nach texanisch, norwegischem Muster in den alten Öl- und Gasfeldern entsorgt werden oder nach niederländischem Muster in Tomaten. Der Einstieg in die „Wasserstoffwirtschaft“ kann erfolgen. Bis uns das Erdgas ausgeht, können Hochtemperaturreaktoren warten.

Fazit

Es geht mir hier nicht darum, für die Einstellung von Forschung und Entwicklung auf dem Gebiet der Kerntechnik einzutreten. Ganz im Gegenteil. Es nervt mich nur, wenn ganz schlaue Kernenergiegegner einem im Schafspelz gegenübertreten und einem erzählen wollen, daß sie ja eigentlich gar nicht gegen Kernenergie sind: Wenn, ja wenn, nur die „ungelöste Entsorgungsfrage“ erstmal gelöst ist und es „sichere Reaktoren“ gibt. Man würde ja in letzter Zeit auch immer von ganz „interessanten Konzepten“ lesen. Was spreche denn dagegen, erstmal abzuwarten? Bis dahin könnte man ja Wind und Sonne ausbauen. Die würden ja dadurch auch ständig billiger werden (Ha, ha, ha) und wahrscheinlich bräuchte man dann auch gar keine Kernenergie mehr. Und überhaupt, die „Energieeffizienz“ sei überhaupt die größte Ressource, man vertraue da ganz auf den Erfindergeist der „Deutschen Ingenieure“. Na denn ….

Die „Dual Fluid“ Erfindung

oder Verschwörungstheoretiker versus Erfindermesse

Seit ein paar Wochen tobt im Internet ein Streit zwischen den „Reaktorerfindern“ des Instituts für Festkörper-Kernphysik gGmbH (http://dual-fluid-reaktor.de) und den „Preisstiftern“ des Greentec-Awards 2013 (http://www.greentec-awards.com). Soweit ein Außenstehender nachvollziehen kann, geht es um die Bewerbung von A bei B um irgendeine Auszeichnung. Leider wurde der „Dual Fluid Reaktor“ von A nachträglich durch B disqualifiziert, weil er angeblich die Ausschreibungsbedingungen gar nicht erfüllt. Damit hätte sich das Interesse des Autors bereits vollständig erschöpft, wenn nun nicht in allen möglichen Blogs Partei für die eine oder andere Seite ergriffen würde. Inzwischen wird die Angelegenheit zum Glaubenskrieg Pro oder Kontra Kernenergie hochstilisiert. Von beiden Lagern wird soviel Blödsinn verbreitet, daß es dem Autor notwendig erscheint, ein paar erklärende Worte zu versuchen.

Grundsätzliches

Jedes Kernkraftwerk braucht einen Brennstoff und ein Arbeitsmedium. Für die (großtechnische) Stromerzeugung hat sich bis zum heutigen Tag nur der von einer Turbine angetriebene Generator durchgesetzt. Bei den Turbinen überwiegt die Dampfturbine und in wenigen Fällen die „Luftturbine mit innerer Verbrennung“, meist kurz „Gasturbine“ genannt. Für Kernkraftwerke scheidet die zweite aus. Deshalb funktionieren alle Kernkraftwerke mit Dampfturbinen. Wie bestimmend der Wasser-Dampf-Kreislauf für Kernkraftwerke ist, hat sich vor nicht all zu langer Zeit wieder an der Weiterentwicklung des mit Helium gekühlten Kugelhaufenreaktors gezeigt: China und Deutschland haben erfolgreich auf Dampfturbinen gesetzt, das Konsortium in Südafrika ist kläglich an der Entwicklung einer mit Helium betriebenen Gasturbine gescheitert.

Beim Brennstoff wird die Sache schon bedeutend vielfältiger: Man hat unterschiedliche Stoffe (z. B. Uran, Thorium, Plutonium) in unterschiedlichen chemischen Verbindungen (Uranoxid, -nitrid, -karbid, metallisch) und Aggregatzuständen (feste Tablette, wässrige Lösung, geschmolzene Salze) verwendet. Jede Brennstoffart hat ihre ganz charakteristischen Vor- und Nachteile, die in jedem konkreten Anwendungsfall abgewogen werden müssen. Den idealen Brennstoff gibt es nicht!

Ein wenig Neutronenphysik

Prinzipiell kann man jedes „schwere Element“ mit Neutronen spalten. Allerdings ist die Wahrscheinlichkeit für eine Spaltung nicht nur eine Stoffeigenschaft, sondern hängt auch von der Geschwindigkeit der auftreffenden Neutronen ab. Man unterscheidet deshalb in der Neutronenphysik bei jedem Isotop noch Absorptions-, Streu- und Spaltquerschnitte als Maß für die Wahrscheinlichkeit, was nach einem Zusammenstoß mit einem Atomkern passiert. Diese Querschnitte sind darüber hinaus keine einzelnen Werte, sondern Funktionen der Neutronengeschwindigkeit. Umgangssprachlich ausgedrückt: Wild gezackte Kurven.

Im Zusammenhang mit der „Atommüllproblematik“ kann also festgestellt werden, man kann alle Aktinoide – also insbesondere, die gefürchteten, weil sehr langlebigen Bestandteile der benutzten Brennelemente, wie Plutonium etc. – in (speziellen) Reaktoren spalten und damit unwiederbringlich aus der Welt schaffen. Alle Spaltprodukte wären nach rund 300 Jahren verschwunden. Es geht also nicht um ein etwas anderes Endlager, sondern um eine Beseitigung unter gleichzeitiger Energiegewinnung. Erforderlich ist bei einem solchen „Reaktor zur Beseitigung von langlebigen Aktinoiden“ ein hartes Neutronenspektrum. Die Neutronen dürfen nach ihrer Entstehung möglichst wenig abgebremst werden. Wie alle Erfahrungen international gezeigt haben, läßt sich das am wirksamsten mit einem natriumgekühlten schnellen Reaktor realisieren. Dafür ist kein „Salzbad“ zwingend notwendig.

Das einzige, in der Natur vorkommende Isotop, welches in der Lage ist eine Kettenreaktion einzuleiten, ist Uran-235. Hinzu kommen noch die beiden künstlich hergestellten Isotope Plutonium-239 (gewonnen aus Uran-238) und gegebenenfalls Uran-233 (gewonnen aus Thorium). Ohne wenigstens eines der drei, funktioniert kein Reaktor! Will man darüber hinaus einen Reaktor zur Beseitigung von (allen) Aktinoiden bauen, müssen diese Isotopen in hoher Konzentration (mindestens zweistellig) vorliegen, da ihre Einfangquerschnitte für diese Neutronengeschwindigkeiten sehr klein sind. Das andere Ende der Möglichkeiten, wie z. B. Schwerwasserreaktoren, können sogar mit Natururan (U-235 – Gehalt 0,7%) und Thoriummischungen betrieben werden. Unsere heutigen Leichtwasserreaktoren werden optimal mit einer Anreicherung von etwa 3 bis 5% betrieben.

Die Uranfrage

In der 1950er-Jahren gab es weltweit eine Uranknappheit. Man glaubte daher, ohne „Brüter“ keine friedliche Nutzung der Kernenergie schaffen zu können. Man kannte das Dilemma, daß man ausgerechnet für „Brüter“, also Reaktoren, die mehr Plutonium herstellen, als sie bei der Kernspaltung selbst verbrauchen, große Mengen Spaltmaterial benötigte. „Verdoppelungszeit“ war das Wort der Stunde. Gemeint ist damit der Zeitraum, der vergeht, bis so viel Plutonium erbrütet, wiederaufbereitet und verarbeitet ist, bis man damit einen zweiten Reaktor zusätzlich in Betrieb nehmen kann.

Eine Analyse des Problems führte zu flüssigen Brennstoffen. Bei einer Flüssigkeit kann man kontinuierlich einen Strom abzweigen und wieder aufbereiten. Wässrige Uranlösungen waren nicht zielführend, da man die unkontrollierbaren Ablagerungen im Reaktor nicht in den Griff bekam. Man ging zu geschmolzenem Salz über. In diesen Salzbädern konnte man auch Thorium – als weitere Rohstoffquelle – erschließen.

Thorium als Alternative

Um es gleich vorweg zu nehmen, um Thorium zu nutzen, braucht man keinen Salzbadreaktor. Dies hat Kanada/Indien (CANDU) und Deutschland (THTR) erfolgreich unter Beweis gestellt. Andererseits braucht man für Salzbadreaktoren nicht zwingend Thorium. Es geht auch mit Uran. Ein Mißverständnis, das oft in der Öffentlichkeit zu hören ist.

Zurück zum „Brüten“. Viele Spaltstoffe sind „parasitär“. Sie absorbieren einen Teil der bei der Spaltung frei gewordenen Neutronen. Diese sind dann sowohl für eine weitere Spaltung – um die Kettenreaktion überhaupt in Gang zu halten – oder eine Umwandlung von Uran oder Thorium unwiederbringlich verloren. Neutronen sind aber äußerst kostbar. Bei der Spaltung werden nur zwei bis drei freigesetzt. Eines braucht man für die nächste Spaltung (Kettenreaktion), die anderen könnten „brüten“. An dieser Stelle wird klar, warum es so schwer ist einen „Brüter“ zu bauen, bzw. die „Verdoppelungszeit“ grundsätzlich sehr lang ist: Zwei Neutronen sind weg (für die nächste Spaltung und um das gespaltene Atom zu ersetzen), es bleibt für einen Mehrwert nur die Stelle hinter dem Komma.

Zurück in die 1950er-Jahre: Man glaubte an eine Knappheit von Natururan, welches auch noch strategisch wichtig war (atomare Aufrüstung im kalten Krieg). Man wußte ferner, daß die „Verdoppelungszeiten“ für „schnelle Brüter“ sehr lang waren und deshalb der Ausbau der Nutzung der Kernenergie gefährdet schien. Ferner wußte man, daß die Vorräte an Thorium etwa vier mal so groß, wie die Welt-Uranvorräte sein mußten. Wenn dies auch nichts über die wirtschaftliche Gewinnung aussagt.

Bei Thorium kommt noch der Vorteil hinzu, daß die „Neutronenausbeute“ bei Spaltung durch schnelle oder langsame Neutronen nicht so verschieden ist. Hohe „Konversionsraten“ sind relativ einfach möglich. Dies war der zweite Vorteil – neben der hohen Betriebstemperatur – des deutschen THTR-Reaktor-Konzepts. Man benötigte eine relativ kleine Impfung mit hoch angereichertem Uran oder Plutonium, um den Reaktor zu starten. Der größte Teil der Energie wurde dann aus dem selbst umgewandelten Thorium erzeugt. Hoher Abbrand, bei geringem Einsatz von kostbarem Uran-235 bzw. Plutonium.

Salzbadreaktor

Wenn man einen Reaktor mit flüssigem Brennstoff bauen will, kommt man sehr schnell –und immer wieder – auf die sogenannten FLiBe-Salze. Eine Mischung auf der Basis von Fluor, Lithium und Beryllium. Sie haben geringe Einfangquerschnitte (wirken also kaum parasitär für die Neutronen), besitzen einen geringen Schmelzpunkt (sehr wichtig bei jeder Inbetriebsetzung) und sind (einigermaßen) nicht korrosiv.

Allerdings ist es zumindest diskussionswürdig, ob die in der Öffentlichkeit angeführten Vorteile überhaupt solche sind. Die Herstellung des „Betriebsmediums“ innerhalb eines Kraftwerks ist nicht unproblematisch. Ein Kraftwerk ist keine Chemiefabrik. Es sei nur darauf hingewiesen, daß Beryllium und seine Verbindungen hoch giftig und krebserregend sind. Die Aufrechterhaltung eines stets homogenen Brennstoffs von gleichbleibender chemischer und neutronenphysikalischer Qualität, ist eine echte Herausforderung.

Gut ein Drittel der Spaltprodukte sind Gase. Bei festen Brennelementen ist deren sicherer Einschluß im gasdicht verschweißten Rohr ein zentraler Bestandteil der Sicherheitsphilosophie. Bei einer Flüssigkeit perlen sie naturbedingt und unkontrollierbar aus. Es muß deshalb ständig ein Teilstrom ausgeschleust werden, aus dem durch Strippung mit Helium die gasförmigen (bei dieser Temperatur) Bestandteile abgeschieden werden. Diese sind hochradioaktiv und müssen sicher zurückgehalten werden. Die Abgasstrecke ist schon in einer konventionellen Wiederaufbereitungsanlage eine recht komplexe Angelegenheit. Hier kann aber nicht mit „abgelagertem“ Brennstoff, sondern muß stets mit frischem gearbeitet werden.

Die Salze sind auch nicht ganz billig. Auch hier nur ein Hinweis: Natürliches Lithium besteht aus 92,5% Lithium-7 und 7,5% Lithium-6. Lithium-6 sollte aber nicht verwendet werden, weil aus ihm durch Neutroneneinfang Tritium entsteht. Tritium ist in der Kerntechnik äußerst unbeliebt, da es mit Sauerstoff „radioaktives“ Wasser bildet, das aus dem biologischen Kreislauf praktisch nicht mehr zu entfernen ist. Deshalb muß das natürliche Lithium erst aufwendig angereichert werden. Bisher ging das großtechnisch nur unter Verwendung von Quecksilber. In Oak Ridge ist man seit Jahrzehnten damit beschäftigt, die Quecksilberverseuchung aus der Lithiumanreicherung wieder zu beseitigen.

Aufbereitung durch Pyroprocessing

In letzter Zeit findet bei der Wiederaufbereitung ein Paradigmenwechsel statt. Es steht nicht mehr die Gewinnung von möglichst reinem Uran bzw. Plutonium im Vordergrund, sondern die Gewinnung möglichst reiner Spaltprodukte. Je reiner die Spaltprodukte, je kürzer die Lebensdauer des „Atommülls“. Ein „Endlager“ wäre überflüssig. Je „schmutziger“ das Plutonium, je ungeeigneter zur Waffenproduktion.

Ein Favorit in diesem Sinne, ist das Pyroprocessing. Im Prinzip ist es das gleiche Verfahren, wie bei der Kupfergewinnung. Die Metalle (Uran, Plutonium und im Idealfall alle minoren Aktinoide) wandern von der Atommüll-Elektrode zur Rein-Metalle-Elektrode. Die Spaltprodukte bleiben im Elektrolyt zurück. Das Aktinoidengemisch wird zu neuen Brennelementen verarbeitet. Es ist für die Waffenherstellung ungeeignet.

Auch hierfür ist kein Salzbadreaktor erforderlich. Es wurde erfolgreich für den mit Natrium gekühlten IFR eingesetzt. Man könnte sogar konventionelle Brennelemente aus Leichtwasserreaktoren damit aufbereiten. Es ist lediglich eine Zusatzstufe zur Reduktion der Uranoxide notwendig. Die Koreaner arbeiten mit Hochdruck an dieser Schiene. Sie benötigen dieses Aufbereitungsverfahren, wegen der besonderen politischen Situation auf der koreanischen Halbinsel.

Fazit

In der Kürze eines solchen Artikels läßt sich die Breite der Kerntechnik nur anreißen. Es gibt in der Technik kein gut, sondern lediglich ein besser oder schlechter geeignet – und das ist in jedem einzelnen Anwendungsfall neu zu beurteilen. Es nutzt überhaupt nichts, wenn irgendwelche Trolle Diskussionen führen, wer den besseren Reaktor kennt. Solche Diskussionen sind genauso kindisch, wie die üblichen Argumentationsschlachten der Sonnenmännchen für ihre „regenerativen Energien“. Was die „Erfindung des Dual Fluid Reaktors“ betrifft, handelt es sich eher um den Entwurf für ein neues Perry Rhodan Heft, als um ein Patent für einen genehmigungsfähigen Reaktor. Dies ändert aber auch nichts an der Schwachsinnigkeit der Begründung der Ablehnung. Warum sagt „GreenTec Awards“ nicht einfach: Wir mögen keine Kernenergie, basta! Dies wäre völlig legitim. Unanständig wird die Sache erst dadurch, daß man die Entscheidung krampfhaft versucht zu begründen und dabei sogar Tatsachen verdreht.

Brennstoffbank

Die International Atomic Agency (IAEA) hat bereits mehrere Treffen mit Regierungsstellen in Kasachstan zur Einrichtung einer Brennstoffbank abgehalten. Ziel der Verhandlung ist die Einrichtung eines international zugänglichen Lagers für leicht angereichertes Uran (Low Enriched Uran project, LEU-project). Es wurden zwölf technische Aufgabenbereiche zur erforderlichen Klärung festgelegt, von denen einige, wie z. B. Fragen zu Erdbeben, bereits in Bearbeitung sind. Ende Mai hat die IAEA ihre Mitgliedsstaaten über den Fortschritte offiziell informiert.

Ausgestaltung

Eigentümer und Verwalter der Brennstoffbank auf kasachischem Boden wird die IAEA sein. Das Lager soll anfangs Material für die Erstbeladung von zwei bis drei Leichtwasser-Reaktoren enthalten. Alle Mitgliedsstaaten der IAEA, die sich ausdrücklich verpflichten auf eigene Anreicherung und Wiederaufbereitung zu verzichten, können im „Ernstfall“ auf die Lagerbestände zurückgreifen. Sie würden dann aus dem Bestand mit Brennstoff zu aktuellen Weltmarktpreisen versorgt. Anschließend würde die Brennstoffbank wieder unverzüglich ihre Reserven durch Zukäufe am Weltmarkt aufstocken.

Die Brennstoffbank übernimmt also die Funktion einer (politischen) Rückversicherung. Ein Staat ohne eigene Anreicherung, wäre wirtschaftlich und politisch erpressbar, wenn man ihm bei „Nachladebedarf“ eine Belieferung ganz verweigern würde oder nur zu überhöhten Preisen leisten würde. Dies ist die klassische – und leider nicht ganz von der Hand zu weisende – Argumentation z. B. Irans für sein eigenes Zentrifugenprogramm gewesen. Die Versorgungssicherheit hat sogar Deutschland bewogen, eigene Anreicherungsanlagen auf deutschem Boden zu betreiben. Die „politische Glaubwürdigkeit“ ist nur ein schwaches Argument beim Verzicht auf Kernwaffen. Demgegenüber ist der völlige Verzicht auf Anreicherung und Wiederaufbereitung ein eindeutiges und leicht zu kontrollierendes Bekenntnis. Staaten die bereit sind, so konsequent zu handeln (bisher nur die Vereinigten Arabischen Emirate), müssen dafür von der internationalen Gemeinschaft abgesichert werden.

Im Sinne einer Versicherung reichen hierfür recht kleine Mengen aus. Die hohe Energiedichte von Uran erfordert einen Brennelementewechsel nur in großen zeitlichen Abständen (alle 12 bis 24 Monate) und es können leicht (kleinere) Mengen selbst vorgehalten werden. Der Versuch einer Erpressung ist somit durch die garantierte Verfügbarkeit aus der Brennstoffbank von vornherein zum Scheitern verurteilt. Dieses Konzept lebt mehr von der „Abschreckung“ als von der realen Lieferung. Es steht und fällt allerdings mit der Glaubwürdigkeit der Garantie. Deshalb ist eine strikte internationale Kontrolle und Absicherung nötig. Im Umkehrschluß gilt, daß kein Staat zur zivilen Nutzung der Kernenergie „doppeldeutige“ Anlagen oder Verfahren mehr benötigt.

Entstehung

Das Verfahren geht auf die Nuclear Threat Initiative (NTI) zurück. Eine regierungsunabhängige und gemeinnützige Privatorganisation. Sie wurde 2001 von Ted Turner (Begründer von CNN und WTBS) und Sam Nunn (demokratischer Senator von Georgia 1972–1997) begründet. Sie versteht sich als aktiv handelnde Organisation. Ihre erste spektakuläre Aktion war 2002 die Finanzierung und Organisation eines Transports von fast 50 kg hoch angereichertem Uran aus einem „Forschungsinstitut“ in der Nähe von Belgrad zurück nach Rußland. Dort wurde es mit Natururan verschnitten und anschließend in zivilen Reaktoren zur Stromerzeugung verbraucht. NTI trug maßgeblich zur Gründung und deren Finanzierung des World Institute for Nuclear Security (WINS) bei. WINS hat sich zum Ziel gesetzt, die Sicherheit vor Diebstahl und jedweden Mißbrauch von nuklearem Material durch Terroristen oder Staaten zu verbessern. In dieser Organisation sind neben Behördenvertretern auch private Unternehmen organisiert, die sich gegenseitig unterstützen, austauschen und beraten. Inzwischen haben auch Norwegen und Kanada beträchtliche finanzielle Unterstützung zugesagt.

Diese Organisationen sind ein schönes Beispiel für die Wirksamkeit von privater Initiative. Durch die Mobilisierung von privaten Mitteln (Stiftungen) konnte unmittelbar und mit durchschlagendem Erfolg mit der Arbeit begonnen werden. Der „private Charakter“ ermöglichte die Zusammenkunft und Mitarbeit losgelöst von politischer Blockbildung. Regierungen sind auf solch sensiblen Gebieten handlungsunfähig. Sie können bestenfalls auf erfolgreiche Züge aufspringen. Für grundlegende Veränderungen in festgefahrenen Sektoren sind immer Einzelpersonen notwendig. Politische Parteien etc. müssen auf die vermeintlich geltenden Meinungen Rücksicht nehmen und sind stets ihren Lagern verpflichtet.

Modellcharakter

Seit der ersten Stunde der Nutzung der Kernenergie besteht immer der Konflikt zwischen „friedlich“ und „militärisch“. Die Kernenergie ist leider erst als Massenvernichtungswaffe der breiten Öffentlichkeit bekannt geworden. Die Nutzung als nahezu unerschöpfliche Energiequelle erschien erst nachträglich aufgesetzt. Mehr als 40 Jahre „Kalter Krieg“ mit Lügen und Propaganda wirken bis heute fort. „Angst vor dem Atom“ war und ist ein wesentlicher Stellvertreter in der „Systemfrage“. Hierin liegt aber auch die Chance: Die beiden Blöcke gibt es in ihrer ursprünglichen Form nicht mehr und zahlreiche neue Akteure sind auf der Weltbühne erschienen. Es ist Zeit für ein neues Zeitalter der Aufklärung.

Ohne Übertreibung kann man sagen, daß die Bevölkerungsentwicklung inzwischen für die Menschheit einen mindestens so brisanten Stellenwert, wie die „Atombombe“ besitzt. Entweder die Menschheit ist in der Lage, der Mehrheit einen akzeptablen Lebensstandard zu bieten oder sie wird im Elend versinken. Dabei ist es egal, ob sie in einem atomaren Inferno oder endlosen „Religionskriegen“ oder schlichtweg Umweltkatastrophen versinkt. Eine – nicht die einzige, aber die wesentliche – Herausforderung ist dabei, die ausreichende Versorgung mit preiswerter Energie. An dieser Stelle muß – insbesondere in Deutschland – mal wieder betont werden, daß „ausreichend“, „preiswert“ und „umweltschonend“ absolut gleichrangige Kriterien sind! Die Bevorzugung nur eines Kriteriums, ist für die Menschheit kontraproduktiv und wird entgegen des (hier durchaus unterstellten) guten Willens, geradewegs in die Katastrophe führen. Man kann es in jedem Entwicklungsland studieren: Armut und Umweltzerstörung (z. B. Abholzung von Urwäldern) gehen Hand in Hand, Luftverschmutzung ist und war die Folge „billiger Technik“ (Kohlekraftwerke ohne Filter, Autos ohne Abgasbehandlung).

Energieverbrauch pro Kopf und Wohlstand sind untrennbar miteinander verbunden. Alles Geschwafel von „Energieeffizienz“ ist nur eine Umschreibung für Verzicht. Wer kann und soll in einer Weltordnung verzichten, in der rund zehn Prozent der Menschen den Löwenanteil der Energie verbrauchen? Selbst wenn wir, in den Wohlstandsregionen Europas und USA, auf die Hälfte der Energie verzichten würden, würde diese Umverteilung die Milliarden von „ein Dollar pro Tag Verdienern“ nicht aus ihrem Elend herausführen können. Andererseits würde eine solche „Effizienzsteigerung“ bei uns wahrscheinlich zu Aufständen führen, denn auch hier leben nicht alle Menschen auf der „Sonnenseite“. Davon abgesehen, werden uns Chinesen und Afrikaner immer weniger um unsere Meinung fragen. Sie werden tun, was sie für richtig halten und das ist auch gut so.

Wenn man die Welt realistisch und mal nicht nur durch eine rosarote ökologische Brille betrachtet, bleibt nur die Erkenntnis, daß der Verbrauch von fossilen Energien (insbesondere Kohle) und Kernenergie auf absehbare Zeit noch zunehmen muß und wird. Ja, gerade wenn man den Zuwachs im Verbrauch fossiler Energien eindämmen will, wird man die Kernenergie weiter ausbauen müssen. „Regenerative“ sind bestenfalls ergänzende Energieträger und sind wegen ihrer Unstetigkeit und ihrer geringen Energiedichte und den daraus resultieren Kosten als Ersatz völlig ungeeignet. Es ist zu bezweifeln, ob die Menschheit jemals so reich sein wird, daß sie sich „regenerative Energien“ leisten können wird. In Wahrheit, wird sie sich dann, nahezu auf ihre Anzahl im vorindustriellen Zeitalter zurück schrumpfen müssen. Wer bestimmt, wer ausscheiden muß?

Das Dilemma zwischen friedlicher und militärischer Nutzung bleibt somit weiter bestehen. Man kann weder eine Waffentechnologie der 1940er Jahre dauerhaft geheim halten, noch läßt sich der größere Teil der Menschheit dauerhaft gängeln. China ist ein deutliches Beispiel. Wer glaubt noch ernsthaft daran, China Vorschriften machen zu können, wieviel von welcher Energieform es nutzen darf? Bestenfalls führt es eine Selbstbeschränkung auf 4 Milliarden to Kohle pro Jahr selbst durch. Um dieses Ziel einhalten zu können, muß es Kernkraftwerke in Serie bauen. Es ist zum Erfolg in der Kerntechnik verdammt. Unzählige „Schwellenländer“ blicken mit großen Erwartungen auf diese Entwicklung. Vorbild wird China und nicht das „Wendeland“ Deutschland sein.

Wenn es aber so ist, wie es ist, wird man Wege finden müssen, ein atomares Wettrüsten zu verhindern. Auch Nord Korea und Iran wird seine Nachahmer finden. Wenigstens den gutwilligen Nationen muß man Möglichkeiten bieten, nicht zwangsweise mitmachen zu müssen. Insofern ist der freiwillige Verzicht der Vereinigten Emirate auf ein atomares Wettrüsten mit seinem Nachbarn Iran, ein Hoffnungsschimmer. Es ist auch kein Zufall, daß die Unterstützung dafür von Privat und nicht aus „Regierungskreisen“ kommt. Wahrscheinlich auch nicht, daß eine „junge Nation“ aus dem ehemaligen Sowjetreich begeistert den Vorschlag für eine Brennstoffbank aufgegriffen hat.

Korea und die Wiederaufbereitung

Im Fahrwasser der aktuellen Krise mit Nord-Korea, bahnt sich für die USA ein hausgemachtes Problem mit Süd-Korea an. Es ist ein schönes Beispiel dafür, wenn Regierungen meinen, sie könnten dauerhaft über andere Nationen bestimmen und ihre ideologische Sicht zur einzig selig machenden zu erklären. Im nächsten Jahr läuft das Abkommen zur Nicht-Weiterverbreitung von Kernwaffen nach 40 Jahren aus. Im Rahmen dieses Abkommens hat Süd-Korea auf Anreicherung und Wiederaufbereitung abgebrannter Brennelemente verzichtet. Es muß neu verhandelt werden.

Ironie der Geschichte ist, daß dies zu einem Zeitpunkt geschehen muß, an dem die USA offen von Nord-Korea mit einem „Atomschlag“ bedroht werden. Nord-Korea hat gezeigt, wie es in der realen Welt zu geht: Wenn ein Diktator bereit ist, sein eigenes Volk wirtschaftlich zu ruinieren, dann baut er sich ganz einfach seine eigenen Kernwaffen. Wenn er über genug Öleinnahmen verfügt – wie Iran – braucht er dafür nicht einmal sein Land an den Rand von Hungersnöten zu führen. Ist das Land vermögend – wie Saudi Arabien – kann es sogar den mühseligen Weg der Eigenentwicklung überspringen und unverhohlen damit drohen, sich gegebenenfalls fertige Kernwaffen (z. B. aus Pakistan) zu kaufen.

Selbst die Supermacht USA kann das offensichtlich nicht verhindern. Mit Verträgen, UNO und leeren Drohungen ist es schon gar nicht möglich, im Internetzeitalter (!) das Wissen der 1940er Jahre geheim halten zu wollen. Der pakistanische Basar der „Atomtechnologie“ ist noch in frischer Erinnerung. Der Versuch, gegen Unterstützung bei der friedlichen Nutzung der Kernenergie – sprich dem Bau von Kernkraftwerken – einen Verzicht auf Anreicherung und Wiederaufbereitung erkaufen zu können, war und ist aberwitzig. Er hat offensichtlich nur zu einer Brüskierung eines der engsten Verbündeten der USA geführt. Was anderes sollte es heißen, als Süd-Korea, wir trauen euch nicht. Wir erinnern uns: Deutschland wurde auch der Verzicht auf Kernwaffen geglaubt, obwohl es eine Wiederaufbereitungsanlage in Karlsruhe betrieben hat und noch heute Zentrifugen zur Anreicherung betreibt. Japan baut eifrig an einer kommerziellen Wiederaufbereitung und diskutiert gleichzeitig, offen wie nie, eine atomare Bewaffnung – wegen der potentiellen Bedrohung durch Nord-Korea und China.

Wie konnte es dazu kommen, daß sich die USA in eine solche diplomatische Sackgasse manövriert haben? 1974 wurde Indien (nahezu aus eigener Kraft) zur Atommacht. Übrigens aus Reaktion auf die atomare Bewaffnung von China, mit dem man noch wenige Jahre zuvor, Krieg führen mußte. Die Welt war verblüfft über den Weg: Man hatte in aller Stille, einen von Kanada gelieferten CANDU-Reaktor zur Produktion von waffengrädigem Plutonium missbraucht. Bis heute, wirkt diese Tat in den internationalen, kerntechnischen Beziehungen nach. Es stehen sich Pragmatiker (Indien ist nun mal Atommacht, das läßt sich nicht zurückdrehen, deshalb freier Handel und Wissensaustausch) und Moralisten (Belohnung des „Fehlverhalten“, Präzedenzfall der die Proliferation zu nichte macht) teilweise unversöhnlich gegenüber. Jeder muß sich da ein eigenes Urteil bilden. Tatsache ist jedoch, daß die Zeit der „drei Welten“ mit dem Zusammenbruch des Kommunismus vorbei ist. Heute bestehen die Probleme eher in der Golfregion oder der koreanischen Halbinsel mit ihrer regionalen und globalen Gemengelage.

Es gab aber auch hausgemachte Gründe. Man muß die erste Hälfte der 1970er Jahre als unmittelbare Nachfolge der sog. „68er Bewegung“ verstehen. Greenpeace z.B. entstammt der Friedensbewegung mit dem Spezialgebiet: Kernwaffen und Umweltbelastung durch Kernwaffentests in der Atmosphäre. Besonders der zweite Punkt machte die Bewegung in kürzester Zeit weltberühmt. Durch die diversen Teststoppabkommen kam dieses Geschäftsmodell immer mehr aus der Mode. Der Übergang zur zivilen Nutzung der Kernenergie und die Konstruktion eines Zusammenhangs mit dem Bau von Atombomben schien folgerichtig. Es entwickelte sich die Gleichung: Links plus friedensbewegt gleich „Atomkraftgegner“. In Deutschland gipfelte dies sogar in der Gründung einer Partei.

In USA beschwor eine Kampagne die Gefahr von möglichen hunderten „Atomanschlägen“ auf Großstädte hervor. Alle versorgt durch Diebstähle aus Wiederaufbereitungsanlagen. Ein neues Buhwort war erschaffen: Plutonium. Künstlich hergestellt, irrsinnig giftig und ganz, ganz gefährlich. Jimmy Carter, ein Erdnussfarmer, der in seiner aktiven Zeit bei der Marine zumindest für Kurse in Kerntechnik angemeldet worden war, stoppte das Clinch River Projekt (Vorstufe eines Schnellen Brüters, der Strom aus recyceltem Brennstoff produzierte) und zwang ein privates Konsortium mehr als 250 Millionen Dollar für eine Wiederaufbereitungsanlage in Barnwell über Nacht abzuschreiben. Er wollte ein Zeichen des „guten Amerikaners“ setzen, der keine Kosten scheuend voranschreitet, um die Welt zu retten. Ähnlichkeiten mit deutschen „Energiewendern“ sind rein zufällig. Jedenfalls gelang es ihm die „Proliferation“ und das Problem, was wir heute als „ungelöste Atommüllfrage“ bezeichnen, zu erschaffen. Ironischerweise ist Jimmy Carter der gleiche Präsident, der durch sein „Geiseldrama“ im Iran nicht unwesentlich zu der heutigen Situation im und mit dem Iran beigetragen hat.

Aber wie hat sich die Welt seit dem verändert? Inzwischen baut eine französische Firma in USA eine Fabrik für MOX-Brennelemente. Solche Mischoxid-Brennelemente dienen zur Verbrennung von Plutonium in konventionellen Leichtwasserreaktoren. In diesem Fall handelt es sich sogar um waffengrädiges Plutonium aus der ehemaligen Sowjetunion. Dies war – wieder zur Verhinderung von Terrorismus – von den USA aufgekauft und ins eigene Land verbracht worden.

Wie kann sich die USA aus den eigenen Fallstricken befreien? Süd-Korea hat sich mit amerikanischer Anschubhilfe zu einer der führenden Nationen im Bau und Betrieb von Kernkraftwerken entwickelt. Spätestens seit dem Auftrag über 20 Milliarden Dollar für vier Reaktoren aus den Vereinigten Arabischen Emiraten ist dies vielen schmerzlich bewußt geworden. Würde es kein neues Abkommen geben, wäre die Versorgung mit angereichertem Uran aus den USA nicht mehr gesichert. Wäre das aber wirklich ein Problem für Süd-Korea? Auf Kanada, Australien und Kasachstan entfallen etwa ⅔ der Weltproduktion an Uran, auf die USA lediglich 4%. Anreicherungsanlagen besitzen mehr als ein Dutzend Staaten. In diesem Sinne würde ein Ausweichen auf andere Lieferanten das „Problem der Weiterverbreitung“ eher anheizen.

Bleibt die Frage der Wiederaufbereitung. Ob Süd-Korea eine Plutonium-Bombe baut oder nicht, ist eine rein politische Frage, die nicht zwingend etwas mit Wiederaufbereitung zu tun hat. Es sind andere Verfahren denkbar, die völlig ungeeignet zum Bau von Kernwaffen sind. Auch hier, hat Süd-Korea bereits viel Forschung und Entwicklung investiert. Süd-Korea hat die Chance, erstes Land auf der Welt mit einer garantiert reinen zivilen Nutzung der Kernenergie zu werden. Bisher sind alle Länder (auch Deutschland und Japan) den bequemeren Weg des bereits etablierten PUREX-Verfahrens gegangen. Nur ist dieses Verfahren genau zur Produktion von waffengrädigem Plutonium entwickelt worden. Natürlich kann man mit einem Panzer auch ein Feld pflügen, nur sollte man sich nicht wundern, wenn andere den Verdacht äußern, man wolle mit solch einem Trecker vielleicht eines Tages auch mal schießen. Ganz gewiß werden sich die Süd-Koreaner nicht der angeblich „ungelösten Atommüllfrage“ hingeben. Sie haben ganz einfach nicht die selbe Vorgeschichte und brauchen auch keine Rücksichtnahme auf die Befindlichkeiten politische Parteien mit dem Gründungsmythos der „Anti-Atombewegung“ nehmen. Übrigens, hat in ganz Asien keine Regierung dieses Problem. Es erfordert deshalb keine prophetische Gabe, wenn man die Renaissance der Kernenergie aus Asien kommen sieht. Wer sehen will, kann schon heute die Anzeichen erkennen.

Uran-Fracking , Unwort zum Quadrat?

Ein neuer Kampfbegriff geistert bereits durch einschlägige Postillen in den USA: Uran fracking. Seit mehr als 70 Jahren wird bei Ölquellen durch das Aufbrechen von undurchlässigen Gesteinsschichten der Durchfluss verbessert. Niemand hat sich dafür interessiert. Erst als durch Anwendung dieser Technik gewaltige Gaslagerstätten nutzbar gemacht werden konnten, ging die Empörung los. Es war für bestimmte Kreise nur schwer erträglich, daß die fossilen Energieträger nun doch nicht in wenigen Jahren aufgebraucht sind. In gemeinsamer Anstrengung mit Hollywood gelang es in wenigen Monaten diesen technischen Begriff zu einem echten Aufreger zu machen. Nach dem dieses Werk vollbracht war, muß es wohl naheliegend sein, ihn mit einem zweiten Unwort zu kombinieren: Uran-Fracking. Sicherlich können deutsche „Qualitätsmedien“ nicht lange widerstehen. Es scheint mir daher sinnvoll, schon mal etwas näher auf die Zusammenhänge einzugehen.

Eagle Ford Shale

Der Eagle Ford Ölschiefer ist eine fast 100 km breite und 80 m dicke Schicht, die sich in 1200 bis 3700 m Tiefe über 650 km von der Mexikanischen Grenze in den Osten von Texas erstreckt. Neben Erdgas enthält sie schätzungsweise 3 Milliarden Barrel Öl. Inzwischen werden in diesem Gebiet rund 375.000 barrel pro Tag gefördert. Ein ordentlicher Ertrag für die Landbesitzer. Denn nach guter, alter Texas-Sitte, gilt immer noch „a quarter to a third“. Meint, selbst wenn der Landbesitzer nur sein Land zur Verfügung stellt und keinen Cent selbst investiert, bekommt er ¼ der Öleinnahmen. Bei solchen Gesetzen, kann man die Bevölkerung nur schwer aufhetzen, zumal man in Texas schon 100 Jahre mit der Ölförderung lebt – und das, recht gut.

Uranvorkommen

Texas ist aber nicht nur mit fossilen Brennstoffen gesegnet, sondern auch mit Uran. Man besitzt darüber sehr gute Kenntnisse, weil in den Zeiten des Kalten Krieges alle Ölbohrungen auch auf ihren Urangehalt hin untersucht werden mußten. Vor 45 Millionen Jahren haben Vulkane Unmengen von Asche über den Süden der USA ausgestoßen. Aus dieser Asche wurde das Uran langsam ausgewaschen und bildete Lagerstätten. Und nun kommt die Geschichte zusammen: Aufsteigendes Erdgas hat dieses Uran in Jahrmillionen wieder ausgetrieben und oberhalb der Ölschieferschicht in dortige poröse Schichten angereichert. Diese Schichten berühren teilweise die Schichten, aus denen die Rancher ihr Trinkwasser beziehen. Wie sensibel Rancher auf ihre Brunnen reagieren, ist hinlänglich aus Western bekannt. Zumal sie mit Uranbergbau in der Zeit von 1950 bis 1980 keine guten Erfahrungen gemacht haben. Die Minen in Karnes County und Falls City sind in ganz Texas für ihre Umweltsünden bekannt. Sie hinterließen große Teiche, randvoll mit giftigen Schlämmen aus der Produktion. Damals wurde das Erz im Tagebau abgebaut, zu Staub vermahlen und mit Schwefelsäure aufgeschlossen. Die Produktionsrückstände enthalten nicht nur Uran und seine Zerfallsprodukte, sondern auch Kadmium, Kobalt, Nickel, Fluoride usw. Ab 1967 wurde versucht, das Palangana Vorkommen „in situ“ auszubeuten. Dazu bohrte man tausende Löcher bis in die uranhaltige Schicht und leitete Ammoniak ein. Die entstehende Lauge sollte das Uran lösen, um das Uran an die Oberfläche pumpen zu können. Dieses Verfahren erwies sich als nicht sonderlich erfolgreich.

Das Goliad Projekt

In diesem Jahr konnte Uranium Energy (UEC) nach langjährigen juristischen Auseinandersetzungen sein Goliad Projekt in Betrieb nehmen. Gegner gingen durch alle Instanzen, um dieses Projekt zu verhindern. Jedoch ohne Erfolg. Warum dieser erhebliche Widerstand? Wasser ist in Texas ein äußerst kostbares Gut. Ohne Brunnen ist in diesen Gebieten nicht einmal Viehzucht möglich. Die uranführende Schicht liegt an dieser Stelle nur gut 120 m unter der Erde. Diese Schicht ist porös und wasserhaltig. Das Wasser könnte mit darüber liegenden Grundwasserleitern in Kontakt kommen. Tatsächlich ist in diesen Gegenden das Trinkwasser immer uran- und radonhaltig. Geplant ist nur die ohnehin nicht als Trinkwasser geeigneten Wässer abzusaugen und über Ionentauscher zu leiten. Nachdem sich dort das Uran abgelagert hat, soll das Wasser wieder in die Schicht zurückgepumpt werden. Im laufe der Zeit würde sich das Wasser wieder auf natürliche Weise mit Uran anreichern. Um den Prozeß zu beschleunigen, wird das Wasser mit Sauerstoff angereichert. Der Sauerstoff mobilisiert das Uran im Boden und beschleunigt diesen Vorgang. Durch die Anordnung von Förder- und Schluckbrunnen wird gewährleistet, daß immer nur Wasser in Richtung der Förderbrunnen fließt. Dies wird durch Messstellen rund um das Gebiet überwacht. Außerdem darf sich die Zusammensetzung (mit Ausnahme des Urangehaltes natürlich) des zurückgeführten, nicht von dem des geförderten Wassers unterscheiden. Hierdurch soll eine Anreicherung mit Schwermetallen, Selen, Fluor usw. verhindert werden.

Bis zum Ende des Jahrzehnts strebt UEC in Texas eine Förderung von 3 Millionen pound Uranoxid (U3O8, Yello cake) pro Jahr an. Dies entspricht immerhin einem Energieäquivalent von über 100 Millionen barrel Rohöl pro Jahr, wenn man nur das darin enthaltene U235 nutzt, sonst (Brüter) fast 100 mal mehr. Glückliches Texas.