NELA

Das Kunstwort NELA ist eine Abkürzung für den Nuclear Energy Leadership Act. Eine Anweisung des US-Senats („Länderkammer der USA“) an den Secretary of Energy („Energieminister“ ), die Ziele für die zukünftige friedliche Nutzung der Kernenergie in den USA aufzustellen, eine vielseitig verwendbare Quelle für schnelle Neutronen auf der Basis eines Kernreaktors zu bauen (VTR) und High-Assay-Uran (Anmerkung: Uran mit knapp unter 20% Anreicherung, HALEU) für Forschung, Entwicklung und den Bau eines fortschrittlichen Reaktors etc. bereit zu stellen.

Die Reaktion auf dieses Gesetz – z. B. durch den Milliardär Bill Gates – war geradezu euphorisch. Der ehemalige Mitbegründer von Microsoft hält Kernenergie für eine der wichtigsten Zukunftstechnologien und ist auch aktiv und mit eigenem Geld an der Förderung beteiligt. So soll in seine Gründung TerraPower LLC Nuclear Energy bereits über eine Milliarde US-Dollar Risikokapital geflossen sein. Er war auch nicht ganz unschuldig an dieser Gesetzgebung, da seine Ankündigung mit seinem Reaktortyp nach China abzuwandern, mächtig Staub aufgewirbelt hat – man muß nicht extra erwähnen, daß dieser Schachzug bei Donald Trump voll ins Schwarze getroffen hat.

Politische Auswirkungen

Mag auch im deutschen Staatsfernsehen immer wieder der Eindruck geschürt werden, die USA seinen vollkommen gespalten und stünden kurz vor einem Bürgerkrieg, so ist dieses Gesetz ausdrücklich von Demokraten und Republikanern gemeinsam eingebracht worden.

Es gibt aber noch einen weiteren Hinweis für eine in der Bevölkerung breit vorhandene Zustimmung. Im Senat ist jeder Bundesstaat – unabhängig von Größe und Bevölkerung – durch zwei Senatoren vertreten. Jeder Senator ist für sechs Jahre gewählt und die Wahlen finden zeitversetzt alle zwei Jahre statt. Anders als in Deutschland („Parteiendemokratie“), werden die Senatoren direkt durch die Einwohner ihres Bundesstaates gewählt. Sie besitzen daher einen hohen Bekanntheitsgrad und entsprechendes Ansehen – deshalb wird keiner ein Gesetz einbringen, das seine Wiederwahl gefährdet. Insofern wird die Standortsuche nur eine Formsache sein. Verzögerungen durch „Bürgerproteste“ sind nicht zu erwarten.

Inhalt der Anweisung

NELA beinhaltet eine Menge tiefgreifender Veränderungen für die zukünftige Entwicklung der friedlichen Nutzung der Kernenergie: Endlich scheint der Gegensatz von hohen Investitionen – bei später extrem geringen Betriebskosten – verstanden und als Besonderheit der Kerntechnik akzeptiert zu sein. Es soll eine Wiederbelebung der sog. „schnellen Reaktoren“ erfolgen, diesmal jedoch nicht wegen (falsch eingeschätzter) kleiner Uranreserven, sondern zur „Entschärfung“ der Atommüll-Problematik. Die Zeit ist dafür reif. Gibt es doch auch in den USA mehrere tausend Tonnen abgebrannter Brennelemente, die durch jahrzehntelange Lagerung bereits so stark abgeklungen sind, daß sie förmlich nach einer Wiederaufbereitung schreien.

(Section 2) Genehmigung von langfristigen Energielieferungsverträgen

In den USA sind Verträge zwischen Energieerzeugern und öffentlichen Versorgern über die PPA (Power Purchase Agreement) reglementiert. Zukünftig dürfen Verträge über eine Laufzeit von 40 Jahren (bisher 10 Jahre) für Kernkraftwerke abgeschlossen werden. Die Zahlungsströme über die Vertragslaufzeit sind eine wichtige Grundlage für eine Finanzierung durch Kreditgeber.

(Section 3) Langfristige Pilotverträge

Der Energieminister soll insbesondere mit dem Verteidigungsminister und dem Minister für die Heimatverteidigung langfristige Verträge zur Versorgung mit Kernenergie ausarbeiten. Ziel ist mindestens ein Vertrag mit einem kommerziellen Kernkraftwerk bis zum 31.12.2023.

Der Minister soll neuartige Reaktoren (first-of-a-kind ) und neue kerntechnische Verfahren besonders berücksichtigen, die eine zuverlässige und belastbare (Anmerkung: also ausdrücklich keine wetterabhängigen und an Rohrleitungen gebundene Systeme) Energieversorgung von besonders wichtigen Einrichtungen ermöglichen. Insbesondere für abgelegene Regionen (Anmerkung: Militärstützpunkte etc.) und bei Inselbetrieb geeignete Systeme.

Es sind unter diesen Umständen ausdrücklich höhere, als Marktpreise erlaubt.

(Section 4) Entwicklungsziele für fortschrittliche Kernreaktoren

Unter fortschrittliche Reaktoren werden auch Prototypen verstanden, die besondere Fortschritte zur jeweils neusten Generation aufweisen:

  • Zusätzliche inhärente Sicherheiten,
  • geringerwertige (Anmerkung: Im Sinne von Menge und Aktivität) Abfälle,
  • bessere Brennstoffausnutzung (Anmerkung: Weniger Natur-Uran),
  • größere Toleranz gegenüber Ausfall der Kühlung,
  • höhere Verfügbarkeit (Anmerkung: Brennelementewechsel etc.),
  • besserer Wirkungsgrad,
  • geringerer Verbrauch an Kühlwasser,
  • die Fähigkeit zur Erzeugung elektrischer Energie und Heizwärme,
  • Anpassung an wachsende Verbräuche durch einen modularen Aufbau,
  • flexible Leistungsbereitstellung zum Ausgleich zwischen dem Angebot an wetterabhängigen Energien und der Verbrauchernachfrage
  • und Fusionsreaktoren.

Es soll ein Projekt zur Demonstration durchgeführt werden. Darunter wird ein fortschrittlicher Reaktor verstanden, der

  • innerhalb eines Versorgungsgebietes als Kraftwerk eingesetzt wird,
  • oder in irgendeinem anderen Zusammenhang, der den kommerziellen Einsatz eines solchen Reaktors erlaubt, eingesetzt wird.

Zu diesem Zweck soll der Minister möglichst bald nach dem Inkrafttreten, die Forschung und Entwicklung von fortschrittlicher, bezahlbarer und sauberer Kernenergie im eigenen Land vorantreiben. Zu diesem Zweck soll die Eignung verschiedener fortschrittlicher Reaktortechnologien für eine Anwendung durch private Unternehmen nachgewiesen werden:

  • zur Gewinnung von emissionsfreier elektrischer Leistung bei einem Energiepreis von bis zu 60 $ pro Megawattstunde, gemittelt über die geplante Lebensdauer des Kraftwerks,
  • zur Versorgung durch Fernwärme, Wärme in industriellen Prozessen und zur Herstellung synthetischer Kraftstoffe,
  • als Backup (Anmerkung: Für „Flatterstrom“) oder beim Einsatz von betriebsnotwendigen Strom-Versorgungsanlagen (Anmerkung: Rechenzentren, militärische Anlagen etc.).

Entwicklungsziele für die (staatliche) Kernforschung sind in diesem Sinne Demonstrationsprojekte, die nicht durch private Unternehmen durchgeführt werden können, da diese nicht in der Lage oder willens sind, das erhebliche finanzielle Risiko der Forschung zu tragen. Es soll der Zugang von Privatunternehmen zu staatlichen Forschungseinrichtungen oder die Nutzung staatlicher Forschungsergebnisse erleichtert werden.

Der Minister soll bis zum 30.9.2028 mindestens in ein Abkommen mit mindestens vier verschiedenen fortschrittlichen Reaktoren eintreten. Der Minister soll in diesem Sinne verschiedene Verfahren zur primären Kühlung (Anmerkung: Metalle, Gas, Salzschmelzen etc.) aussuchen. Er sollte dabei anstreben, daß die Langzeitkosten für elektrische Energie und Wärme konkurrenzfähig sind. Die in die Auswahl einbezogenen Reaktortypen sind durch externe Gutachten zu überprüfen. Es sollen in Zusammenarbeit mit privaten Unternehmen geeignete Liegenschaften ermittelt werden. Es sind staatliche Stellen, die National Laboratories und „höhere Bildungseinrichtungen“ direkt anzusprechen. Neben traditionellen Abnehmern, wie z. B. Stromversorger, sind auch potentielle Anwender neuer Technologien, wie z. B die petrochemische Industrie, sowie die Entwickler fortschrittlicher Reaktoren einzubeziehen.

Der Minister soll sicherstellen, daß er die Forschung auf Schlüsselgebieten der Kernenergie erleichtert, die Erkenntnisse über den gesamten Entwicklungsprozess, die Sicherheitstests und das Genehmigungsverfahren umsetzt. Aufgelegte Forschungsprogramme sollten Wert darauf legen, daß sie Lösungen für die Strahlenbelastung (Anmerkung: Schnelle Neutronen sind fürs Material schädlicher als thermische) und korrodierende Kühlmittel (Anmerkung: z. B. Salzschmelzen) bereitstellen und für die Zulassung fortschrittlicher Brennstoffe (Anmerkung: z. B. metallische zur einfacheren Wiederaufbereitung) sorgen.

Herausforderungen bezüglich Modellierung und Simulation, die den Konstruktionsprozess und das Zulassungsverfahren beschleunigen können, sind zeitnah zu realisieren.

Zugehörige Technologien, wie z.B. elektro-chemische Verfahren oder Wiederaufbereitungsverfahren, die das Volumen der Abfälle und deren Halbwertszeiten verringern, sind entwickelt. Die Infrastruktur, wie z. B. die „versatile fast neutron source“ und Prüfstände für Salzschmelzen sind errichtet. Das Grundlagenwissen über die Physik und Chemie von anderen Kühlmitteln als Wasser, wurde vertieft. Um die Kosten für die Realisierung fortschrittlicher Kernreaktoren zu senken, wurden fortschrittliche Herstellungs- und Konstruktionsverfahren, sowie Materialien untersucht.

(Section 5) Strategische Planung für die Kernenergie

Nicht später als 180 Tage nach dem Inkrafttreten soll der Minister den Fachausschüssen von Senat und Parlament einen 10-Jahres-Plan für die Strategie der Umsetzung vorlegen.(Anmerkung: Bisher gibt es keine übergreifende Koordinierung der Forschung und Entwicklung. Kernforschung wird von verschiedensten Regierungsstellen mit jeweils eigener Zielsetzung betrieben.)

Mindestens im Zwei-Jahres-Turnus hat der Minister den einschlägigen Fachausschüssen von Senat und Parlament einen aktualisierten 10-Jahres-Plan vorzulegen. Die Abweichungen oder die nicht Erfüllung sind zu begründen. (Anmerkung: Damit soll erreicht werden, daß neueste Forschungsergebnisse – von wem auch immer – unmittelbar in die laufende Entwicklung neuartiger Reaktoren einfliessen können und so die Zeitdauer bis zur Markteinführung verkürzt wird.)

(Section 6) Vielseitig verwendbare Quelle schneller Neutronen auf der Basis eines Reaktors

Als „Schnelle Neutronen“ werden hier Neutronen mit einer Bewegungsenergie von über 100 Kiloelektronenvolt verstanden. Der Minister soll für diese Quelle verantwortlich sein und sie soll als öffentliche Einrichtung betrieben werden. (Anmerkung: Hinter dieser „Quelle“ verbirgt sich ein Reaktor auf der Basis des PRISM Konzepts von GE Hitachi. Aufträge wurden bereits erteilt und Mittel von bis zu 800 Milionen Dollar jährlich in den Haushalt eingestellt. Man rechnet mit Gesamtkosten von bis zu sechs Milliarden Dollar. Es wird also diesmal nicht gekleckert. Als „Forschungsreaktor“ unterliegt er auch nicht dem normalen Genehmigungsverfahren mit seiner bekannt langen Dauer – auch hier heißt es: Zurück in die Zukunft.)

Der VTR (Versatile Test Reactor) soll die öffentliche Forschung mit „schnellen Neutronen“ sicherstellen. (Anmerkung: Seit der Ausserbetriebsetzung des Halden-Reaktors in Norwegen ist selbst die Industrie bei Bestrahlungsexperimenten auf China und Rußland angewiesen – ein absolutes No Go für die nationale Sicherheit.) Der Minister soll gewährleisten, daß die Quelle die Bestrahlung mit dem schnellen Neutronenspektrum ermöglicht und für neuartige Forschungsanforderungen erweiterbar ist. Der Minister soll gewährleisten:

  • Die Fähigkeit Experimente und Materialtests unter hohen Temperaturen durchzuführen.
  • Hohe Flüsse von schnellen Neutronen, wie sie bisher an anderen Forschungseinrichtungen nicht möglich sind.
  • Eine optimale Basis für zukünftige Forscher zu schaffen.
  • Eine maximale Flexibilität bei der Bestrahlung und ein maximales Volumen zu schaffen, damit so viele Forschergruppen wie praktikabel, tätig sein können.
  • Möglichkeiten zur Bestrahlung von Neutronen mit einem geringeren Energiespektrum zu gewährleisten.
  • Verschiedene Kreisläufe für Tests mit verschiedenen Brennstoffen und Kühlmitteln.
  • Zusätzliche Einrichtungen zur Untersuchung der Eigenschaften vor und nach der Bestrahlung.
  • Geringe Kosten für den Betrieb und Unterhalt über die gesamte Lebenszeit.

Der Minister soll bis spätestens zum Ende des Jahres 2025 die Anlage in Betrieb nehmen. (Anmerkung: Make America Great Again. Dieses Programm ist nur mit dem Bau des ersten Atom U-Boots oder dem Apollo-Programm in seinem Ehrgeiz vergleichbar.)

(Section 7) Programm zur Sicherheit von fortgeschrittenem Brennstoff

Zur Unterstützung der Kernwaffenproduktion und der Schiffsreaktoren (der Marine) benötigen die USA einen vollständigen Brennstoffkreislauf für leicht- und hochangereichertes Uran: Uranminen, Konversion, Anreicherung und Brennstoffherstellung.

Viele Unternehmen in den USA benötigen den Zugang zu Uran mit einer Anreicherung von knapp unter 20%-U235 (HALEU) für:

  • Erste Brennstofftests
  • Betrieb von Demonstrationsreaktoren
  • Kommerzieller Betrieb von fortschrittlichen Reaktoren

Bis heute existiert keine Anlage zur Herstellung von Brennstoff mit einer Anreicherung von mehr als 5%-U235 in den USA. Ein gesunder kommerzieller Brennstoffkreislauf mit höherer Anreicherung wäre gut für die einschlägigen Bereiche der nationalen Sicherheit und für die fortschrittliche kerntechnische Industrie der USA. Durch die Bereitstellung von Uran mit einer Anreicherung von knapp bis unter 20% aus den Beständen für die Rüstung für erste Brennstofftests und einen Demonstrationsreaktor könnte

  • der Weg bis zur Markteinführung solcher Konzepte,
  • die Entwicklung eines Marktes für fortgeschrittene Reaktoren
  • und ein wachsender kommerzieller Brennstoffkreislauf

beschleunigt werden. (Anmerkung: Hier wird das „Henne-Ei“ Problem durch eine Öffnung der Schatulle der Rüstung durchbrochen. Ein Zeichen, daß es mit einer möglichst schnellen Umsetzung sehr ernst gemeint ist. Gleichzeitig wird mit der Verwendung von höher angereichertem Uran die Plutonium-Problematik geschickt umschifft. Auch diese Pragmatik, deutet auf den festen Willen zu einer schnellen Entwicklung hin.)

Der Minister soll nicht später als in einem Jahr nach Inkraftsetzung höher angereichertes Uran bereitstellen und Verträge für Verkauf, Weiterverkauf, Übertragung und Vermietung zur Verwendung in kommerziellen oder nicht kommerziellen Reaktoren ausarbeiten.

Jeder Mietvertrag sollte eine Klausel enthalten, daß der Brennstoff im Eigentum des Ministeriums verbleibt, einschließlich einer Endlagerung der radioaktiven Abfälle infolge der Bestrahlung, und einer Wiederaufbereitung.(Anmerkung: Bei einer Miete könnten also die vorhandenen (militärischen) Wiederaufbereitungsanlagen und das WIPP als (staatliches) Endlager genutzt werden. Dies dürfte Störungen durch die „Anti-Atombewegung“ nahezu unmöglich machen.)

Bis Ende 2022 hat der Minister zwei Tonnen (bezogen auf den Gehalt von U235) und bis Ende 2025 zehn Tonnen zur Verfügung zu stellen. Dieses Programm endet 2034 oder wenn genug Uran aus kommerziellen Quellen zur Verfügung steht.

(Section 8) Qualitätsoffensive für Universitäten

Das Parlament stellt fest, daß Kernkraftwerke in den USA Milliarden Dollar Auftragsvolumen erzeugen und zehntausenden Amerikanern gut bezahlte Arbeitsplätze geben; dies gilt insbesondere in den Standort-Gemeinden. Der Weltmarkt für kommerzielle Kernkraftwerke wird in der Dekade 2018–2028 (nach Angabe der Handelskammer) um 740 Milliarden Dollar wachsen. Die Teilnahme und (wieder gewonnene) Führerschaft auf diesem Markt kann zu entsprechenden Exporten führen. Den Einfluß auf die internationalen Standards für Sicherheit, Schutz und gegen Weiterverbreitung könnten über die Handelsbeziehungen aufrechterhalten und weiter ausgebaut werden. Dies erfordert umfangreiche Investitionen in fortschrittliche Kerntechnik. Um die Welt in die nächste Generation kommerzieller Kernreaktoren zu führen, muß die Industrie für fortschrittliche Kernenergie in einen Zustand beschleunigten Wachstums versetzt werden. Dazu müssen Kooperationen (public-private-partnerships) zwischen den öffentlichen Institutionen und der Privatwirtschaft geschaffen werden. Neue Reaktoren stellen besondere Anforderungen an die Genehmigungs- und Überwachungsinstitutionen. Dafür sind hoch qualifizierte Arbeitskräfte nötig. Die Universitäten sollen jährlich mindestens 600 Absolventen (undergraduate students) bzw. 500 Absolventen (graduate students) der Kerntechnik hervorbringen. Dies ist der Mindestbedarf um eine internationale Führung auf diesem Gebiet zu erlangen. (Anmerkung: Hinzu kommen noch die von der Marine selbst ausgebildeten und aus deren aktiven Dienst ausgeschiedenen.)

Um auf dem neusten Stand Forschung und Entwicklung betreiben zu können, sind zusätzlich Fachkräfte auf den Gebieten Rüstungskontrolle, Nuklearmedizin und fortschrittlicher Fertigungsverfahren etc. auszubilden. (Anmerkung: Wie gut, daß auf Grund der unendlichen Weisheit unserer Kanzlerin, Deutschland bald nur noch „Windmühlenbauer“ und „Batterien in Autos Einsetzer“ braucht. Angepaßte Technologie halt, für die, „die noch nicht so lange hier leben“.)

Abschließende Bemerkungen

Es scheint, der Riese USA ist erwacht. Inzwischen kommen rund zwei Drittel aller neuen Kernkraftwerke aus China und Rußland. Die USA sind nicht mehr lange der größte Produzent elektrischer Energie aus Kernenergie. Das bedeutet, die Führungsrolle geht verloren. Die Druckwasser-Technologie ist ausgereizt. Es ist absehbar, wann China und Rußland vollständig aus eigener Kraft Kernkraftwerke auf internationalem Niveau bauen können. China wegen seiner breiteren industriellen Basis sicherlich früher. Beide Länder drängen massiv auf die Märkte in Schwellenländern. Was sie technisch noch nicht leisten können, machen sie über den Preis wett.

Hinzu kommt der Schock über die beiden aus dem Ruder gelaufenen Baustellen Vogtle und Summers: Man kriegt einen selbst entwickelten Reaktor im eigenen Land nicht mehr termingerecht und zu den geplanten Kosten fertig. Für die kerntechnische Industrie hat das wie die Unglücke mit der Raumfähre auf die Raumfahrtindustrie gewirkt. Es war höchste Zeit sich neu zu erfinden. Aus dem „Raumgleiter“ wurde ein privat entwickelter „Bleistift“, der senkrecht auf einem Ponton im Meer zur Wiederverwendung landet. Inzwischen plant man die Reise zum Mars.

In der Kerntechnik kommt die Abkehr vom immer größer werden (Kostendegression), zum genauen Gegenteil hin. Anstatt immer mehr (erforderliche) Sicherheitssysteme, hin zu „inhärenter Sicherheit“. Zur Kostensenkung Serienfertigung in der Fabrik. Ganz nebenbei die Erschließung neuer Märkte durch diese Maßnahmen: Kleinere Stromnetze, Länder die gar nicht so viel Kapital für ein konventionelles Kernkraftwerk aufbringen können, Länder die nicht über die Infrastruktur für Betrieb und Wartung verfügen usw.

Hinzu kommt die größer werdende – oder zumindest so empfundene – Problematik des „Atommülls“. Ein Leichtwasserreaktor produziert zwar – gemessen an einem fossilen Kraftwerk – verschwindend geringe Mengen an Abfall, aber mit steigender Anzahl werden auch die abgebrannten Brennelemente spürbar. Die naßchemische Wiederaufbereitung mit anschließender erneuter Verwendung des Plutoniums in Leichtwasserreaktoren (Mischoxid) hat sich auch nicht als der Hit erwiesen. Will man das „Atommüllproblem“ besser in den Griff kriegen, ist der Übergang zu Reaktoren mit schnellem Neutronenspektrum nötig. Nur mit schnellen Neutronen kann man alle Uran- und Plutoniumkerne erfolgreich spalten. So wird aus abgebrannten Brennelementen wieder neuer Brennstoff. Das verringert den Einsatz des Brennstoffs für eine vorgegebene Menge elektrischer Energie mindestens um den Faktor 60. Weniger Brennstoff, weniger Abfall. Hinzu kommt aber noch ein zweiter Vorteil: Nicht nur weniger, sondern auch weniger langlebiger Abfall. Die übrig bleibenden Spaltprodukte stellen nur eine Strahlenquelle für Jahrzehnte oder wenige Jahrhunderte dar. Früher stand das „Brüten“, heute das „vollständig aufbrauchen“ im Vordergrund. Brütertechnologie wird auf absehbare Zeit – wenn überhaupt jemals – nicht gebraucht. Schon heute haben wir Plutonium im Überfluß und Uran und Thorium sowieso. Deshalb kann man auch bei dieser Reaktortechnologie von den „Gigawattmaschinen“ abschied nehmen und auf kleinere, inhärent sichere Einheiten übergehen. Diese sind „walk-away-safe“. Man kann einfach die Turbine abstellen und nach Hause gehen. Keine Science Fiction, sondern zig mal beim EBER II praktiziert. Das Kernkraftwerk zur Strom- und Wärmeversorgung mitten in der Stadt, alles andere als Utopie. Natürlich für das Zeitalter nach dem Zusammenbruch des Öko-Sozialismus, versteht sich.

Neutronen als Spürhund

Neutronen sind schon seltsame Geschöpfe. Sie haben eine recht große Masse und keine elektrische Ladung. Sie sind deshalb in der Lage, viele Materialien nahezu ungehindert zu durchdringen. Ganz im Gegenteil zu den Protonen — ihren Gegenstücken im Kern — die eine positive Ladung besitzen. Sie haben zwar fast die gleiche Masse, werden aber wegen ihrer elektrischen Ladung stark beim Durchtritt durch Materie beeinflußt. Elektronen sind nur leicht und sind elektrisch negativ geladen. Wegen ihrer Ladung sind sie gut zu beschleunigen und auszurichten, dringen aber wegen ihrer geringen Masse nur wenig in Materialien ein. Sie werden deshalb z. B. zum Schweißen verwendet. Ein Partikelstrahl aus Neutronen würde den Stahl einfach durchdringen, ihn aber nicht zum Schmelzen bringen.

Da Neutronen keine Ladung besitzen, lassen sie sich nicht beschleunigen und in ihrer Flugrichtung beeinflussen. Sie lassen sich nur „mechanisch“ durch Zusammenstöße abbremsen. Sinnigerweise nur leicht, wenn sie mit schweren Kernen zusammenstoßen und sehr stark, wenn sie mit möglichst leichten Kernen zusammentreffen. Ihre „Reaktionsfreude“ hängt wiederum von ihrer Energie, d. h. ihrer Geschwindigkeit ab. Aufgrund dieses Zusammenhanges entsann der Mensch die Neutronenwaffe: Schnelle Neutronen sollten nahezu ungehindert Panzer durchdringen und erst mit den darin sitzenden Menschen (tödlich) reagieren.

Neutronen zur Analyse

Wenn Neutronen mit Atomkernen reagieren, entstehen immer irgendwelche charakteristischen γ-Quanten. Diese kann man recht einfach und sehr genau messen. Sprengstoffe bestehen wesentlich aus Wasserstoff, Stickstoff, Sauerstoff und Kohlenstoff in bestimmten chemischen Verbindungen. Wird ein solcher Stoff mit Neutronen beschossen, ergibt sich ein eindeutiger „Fingerabdruck“ in der Form des gemessenen γ-Spektrums. Sehr genau und sehr zuverlässig. Man kann nicht nur sagen, daß es Sprengstoff ist, sondern genau die Sorte angeben. Fehlalarme sind nahezu ausgeschlossen — wenn man genug Neutronen hat und über die erforderliche Meßtechnik verfügt.

In der Forschung — und teilweise der Forensik — ein seit Jahrzehnten erfolgreich angewendetes Verfahren. Man kann z. B. noch Gifte in Konzentrationen finden, bei denen chemische Analyseverfahren längst versagen. Solche Untersuchungen finden meist in kerntechnischen Einrichtungen statt, denn man benötigt neben der Meßtechnik Zeit und viele geeignete Neutronen — üblicherweise aus einem Forschungsreaktor.

Während des Irak-Krieges erlitten die Truppen die meisten Verluste durch „Eigenbau-Sprengfallen“ die unmittelbar neben den Straßen gelegt wurden. Wenn eine LKW-Kolonne vorbeifuhr, wurden sie (meist über Funk) ausgelöst. Schutz gegen solche Sprengfallen bieten nur gepanzerte Fahrzeuge. Die größten Verluste hatten deshalb nicht die kämpfenden Truppen an der Front, sondern die Versorgungseinheiten, die in Kolonnen durch endloses Feindesland fahren mußten. Nach amerikanischem Muster wurde deshalb richtig Geld in die Hand genommen, um dieses Problem zu lösen. Eine Lösung ist heute die Neutronenaktivierungsanalyse: Sie wirkt auch gegen versteckte und eingegrabene Sprengkörper aus schwer detektierbaren Materialien wie z. B. Kunststoff und Holz in einer vermüllten Umwelt. Für eine praktische Anwendung ist die sichere und schnelle Erkennung aus einem (langsam) fahrenden Fahrzeug und sicherer Entfernung von etlichen Metern erforderlich. In der Messdauer und der Entfernung liegt aber die Herausforderung.

Die „Neutronenkanone“

Will man größere Mengen Neutronen in einer möglichst kleinen Anlage erzeugen, bleibt praktisch nur die Kernfusion. Man schießt in einem Beschleuniger z. B. H2 – Kerne auf H3 – Kerne, wodurch ein Neutron mit hoher Energie freigesetzt wird. Das Problem solch einer Kernreaktion ist aber, daß die entstandenen Neutronen sich in einer beliebigen Richtung davonmachen. Ganz ähnlich wie die Lichtquanten einer Glühbirne. Es ist gleichmäßig hell im gesamten Raum um die Glühbirne. Diese großräumige Verteilung hat zur Folge, daß die Helligkeit sehr schnell mit dem Quadrat der Entfernung abnimmt. Will man eine bestimmte Stelle „ausleuchten“, muß man den Lichtstrahl darauf konzentrieren. Genau dies ist aber bei Neutronen nicht so einfach. Ein Spiegel funktioniert — anders als bei Licht — praktisch nicht. Eine Ablenkung durch Magnetfelder funktioniert wegen der nicht vorhandenen Ladung — anders als bei dem Elektronenstrahl einer Röhre — auch nicht. Eine solch einfache Neutronenquelle hätte nur eine sehr geringe Reichweite und wäre damit unbrauchbar.

Wenn es aber trotzdem gelänge den größten Teil der Neutronen gezielt auf ein Objekt zu lenken anstatt sie sinnlos im Raum zu verteilen, sehe die Sache anders aus. Je mehr Neutronen den Sprengkörper treffen, um so stärker sendet dieser seine charakteristischen γ-Quanten aus und die erforderliche Messdauer verkürzt sich, was dem Suchfahrzeug eine höhere Geschwindigkeit erlaubt. Neutronen sind zwar schwer auf Kurs zu bringen, dafür halten sie aber um so sturer ihren Kurs (große Masse und keine Ladung) und fliegen mit einer Geschwindigkeit von über 40 000 km/s davon.

Neutronen kann man praktisch nicht mehr beeinflussen. Dies ist ein Vorteil und Nachteil zugleich: Positiv ist, daß sie gegenüber allen anderen Partikeln eine außergewöhnliche Reichweite besitzen, da sie durch die Luftmoleküle nahezu unbeeinflußt hindurch fliegen. Neutronen sind gegenüber Atomen winzig klein, sodaß die Atmosphäre für sie ein nahezu leerer Raum ist. Die vielen Elektronen die um die Kerne schwirren, sind für sie kein Hindernis, da sie selbst keine elektrische Ladung besitzen und ihre Masse (Zusammenstoß) gegenüber den Elektronen riesig anmutet. Man muß sie nur einheitlich ausrichten um einen wirksamen Partikelstrahl zu erhalten.

Dies geht jedoch über einen Trick aus der Quantenphysik. Neutronen besitzen einen sog. Spin: Anschaulich gesagt, rotieren sie wie ein Kreisel um ihre Achse. Ein solcher Spin ist eine Erhaltungsgröße, d. h. der Spin eines Atomkerns überträgt sich nach dem Aussenden des Neutrons aus dem fusionierten Kern auf dieses Neutron. Normalerweise sind die Spins der Atomkerne nicht einheitlich. Deshalb schwirren die Neutronen normalerweise in alle Richtungen des Raumes davon. Wenn man jedoch vor der Fusion allen Atomkernen den gleichen Spin aufzwingt und sie wie eine Perlenkette ausrichtet, fliegen auch alle Neutronen wie ein Strahl von der Neutronenquelle davon. Dies alles gelingt inzwischen in so kleinen Gerätschaften, daß man sie einschließlich der nötigen Energieversorgung etc. auf einem Klein-LKW unterbringen kann. Diese „Neutronenkanonen“ erzeugen einen mehr als tausendfachen Neutronenfluß in eine Richtung.

Die Teilchenstrahlungswaffe

Momentan ist die „Neutronenkanone“ so klein und einsatzbereit, daß sie mit allem notwendigen Zubehör auf einen Kleinlastwagen zum Auffinden von Sprengfallen am Straßenrand in den Einsatz geht. Die Entwicklung wird aber massiv in die Richtungen: Kleiner, leistungsfähiger und billiger vorangetrieben. Der nächste Schritt ist ein Gerät, welches sich in ein Flugzeug einbauen läßt.

Vordringlich ist aber ein weiteres Einsatzfeld: Die Analyse von Kernwaffensprengköpfen. Eine einfache Maßnahme gegen die immer erfolgreichere Raketenabwehr ist das Ausstoßen von zusätzlichen Attrappen. Bei den bisherigen Raketenabwehrsystemen muß man sich noch auf das Erreichen des Scheitelpunktes einer ballistischen Rakete beschränken. Erst dann kann man erst sicher die Flugbahn berechnen und das Ziel voraussagen. Eine einfache Abwehrmaßnahme ist der gleichzeitige Ausstoß von mehreren Attrappen. Heute kann man noch nicht Sprengkopf und Attrappen unterscheiden. Man müßte also alle Objekte sicher abschießen, was schnell eine Raketenabwehr — zumindest wirtschaftlich — überfordern würde. Hier kommt wieder die „Neutronenkanone“ ins Spiel. Genau wie eine Sprengfalle könnte man den Sprengkopf sicher identifizieren.

An dieser Stelle drängt sich eine weitere Lösung auf. Ein Sprengkopf ist nicht einfach ein Klumpen aus Plutonium, sondern ist vollgestopft mit Elektronik (Zünder), Sprengstoff und sonstigen Hilfsmitteln. Wenn der Neutronenstrahl stark genug wäre, könnte er den Sprengkopf nicht nur identifizieren sondern sogar unbrauchbar machen.

Neutronen können gerade auf Halbleiter eine verheerende Wirkung haben. In moderne Phasenradargeräten (Raketen- und Flugabwehr) werden Halbleiter aus Galliumnitrid (GaN) verwendet. Ein Beschuß mit Neutronen kann diese Halbleiter schnell zerstören. Dies bezieht sich nicht nur auf das Rausschlagen von Elektronen, sondern Gallium hat auch recht große Einfangquerschnitte, was bedeutet, daß durch Kernumwandlung und Strahlung der Halbleiter dauerhaft zerstört wird.

Peaceful Nuclear Explosives (PNE)

Am Wochenende sind mir wieder einige mehr als zwanzig Jahre alte Veröffentlichungen über die Energieerzeugung durch kontrollierte Kernexplosionen in die Hände gefallen. Sie erscheinen mal wieder erwähnenswert, weil offensichtlich vergessen. Darüber hinaus bieten sie einige Erkenntnisse zu Salzbädern, Brüt- und Hybridkonzepten. Zur Einstimmung einige Fragen: Ist es möglich durch kontrollierte Kernexplosionen – quasi Wasserstoffbomben – elektrische Energie zu erzeugen? Könnte man solch einen „Reaktor“ als Brutreaktor benützen, um Spaltmaterial für konventionelle Reaktoren zu erzeugen? Wäre das „politisch korrekt“? Die ersten beiden Fragen lassen sich ziemlich eindeutig mit ja beantworten, die letzte ebenso eindeutig mit nein – heute jedenfalls noch!

Fusion

Bei der Kernfusion werden zwei leichte Elemente zu einem neuen Element „verschweißt“. Hierfür sind extrem hohe Drücke und/oder Temperaturen nötig. Um diese erstmal zu erzeugen, sind gewaltige Energien nötig. Bisher ist es deshalb noch nicht gelungen, eine Fusionsmaschine zu bauen, die kontinuierlich mehr Energie erzeugt, als sie verbraucht. Durch die hohen Temperaturen und den hohen Druck ist das Medium sehr stark bestrebt, sich wieder auszudehnen. Bisher gibt es nur das Konzept eines extremen Magnetfelds zum dauerhaften Einschluß. Die zweite Entwicklungsschiene ist der Trägheitseinschluss: Man schießt mit mehreren Laserstrahlen gleichzeitig auf ein Wasserstoffkügelchen. Dieses Verfahren ist aber diskontinuierlich, da man immer nur einen Schuss ausführen kann. Insofern dürfte es sich weniger zur Stromerzeugung als zur Grundlagenforschung eignen.

Gleichwohl, wird bei der Kernfusion Energie erzeugt. Viel versprechend ist die Fusion von Deuterium und Tritium zu Helium. Deuterium kommt als „schweres Wasser“ in der Natur vor. Tritium hingegen, muß wegen seiner geringen Halbwertszeit von rund 12 Jahren vorher erbrütet werden.

Kernspaltung

Schwere Atomkerne können durch Neutronen gespalten werden. Bei der Spaltung werden einige Neutronen frei, wodurch eine Kettenreaktion aufrecht erhalten werden kann. Wenn man zusätzlich noch „Spaltmaterial“ z. B. U233 aus Th232 erbrüten will, muß man neben dem für die nächste Spaltung notwendigen, noch ein weiteres Neutron zur Verfügung haben. Da man aber auch unvermeidliche Verluste hat, ist es gar nicht so einfach, Brutreaktoren zu bauen.

Hybride

Wenn man beispielsweise einen Urankern spaltet, setzt man rund 200 MeV Energie und im Mittel etwa 2,2 Neutronen frei. Wenn man einen Helium-4 Kern durch Fusion erzeugt, gewinnt man nur etwa 14 MeV Energie und ein Neutron. Will man also die gleiche Energie erzeugen, muß man dafür etwa 14 mal so viele Kerne fusionieren und erhält dadurch aber auch etwa 7 mal so viele Neutronen. Mit anderen Worten: Man hat genug zum „Brüten“ übrig.

Kernexplosion

Will man nun eine Kernexplosion einer Fusion einleiten, muß man die zur Zündung erforderliche Leistung durch eine vorausgehende Kernspaltung bereitstellen. Dies ist das klassische Konzept einer „Wasserstoffbombe“. Die Kernspaltung dient dabei nur als Zünder. Sie sollte daher so klein, wie technisch möglich sein. Der gewaltige Neutronenüberschuß kann zum „Erbrüten“ von Tritium aus Lithium und Uran-233 aus Thorium genutzt werden. Beide können in einem geschlossenen Kreislauf für die nächsten Schüsse verwendet werden. Je weniger Material man zur Zündung spalten muß, je weniger Spaltprodukte erzeugt man.

Der Kernexplosions-Reaktor

Wie gesagt, „Wasserstoffbomben“ zu bauen, ist Stand der Technik. Eine Weiterentwicklung müßte nur der Kostensenkung und der Sicherheit gegen Mißbrauch dienen. Beides geht in die gleiche Richtung: In einem Kern-Explosions-Kraftwerk kommt es nur auf das „Brennelement“ an. Aus Sicherheitsgründen sollen ja gerade keine funktionstüchtigen Kernwaffen verwendet werden. Die Einleitung der Kettenreaktion bei der Zündung sollte durch eine stationäre „Maschine“ erfolgen. Insofern würde sich das „Diebstahlsrisiko“ auf das bekannte Risiko des Diebstahls von Spaltmaterial reduzieren.

Um die üblichen 1000 MWe eines konventionellen Kernkraftwerks zu erzeugen, müßte man etwa alle sieben Stunden einen 20 kT „Sprengsatz“ (etwa Atombombe über Nagasaki) zünden oder besser alle 40 Minuten einen 2 kT „Sprengsatz“. Dies mag für manchen Laien verblüffend sein, daß ein 1000 MWe Kraftwerk täglich mehr Energie erzeugt, als drei Nagasaki-Atombomben mit ihrer bekannten zerstörerischen Wirkung: Es ist der Unterschied zwischen Leistung und Energie. Eine Atombombe setzt ihre Energie in Bruchteilen von Sekunden frei. Allein dieser Zeitunterschied führt zu der verheerenden Explosion. Ganz neben bei, auch ein eindringliches Beispiel für den Unsinn, bei Windrädern und Sonnenkollektoren stets Leistung und Energie durcheinander zu rühren. Ein Windrad kann eben nicht x Personen-Haushalte versorgen, weil es den Leistugsbedarf nicht ständig erzeugen kann.

Aber nichts desto trotz, hat eine Kernwaffe eine ganz schöne Sprengkraft. Wie soll es funktionieren, damit ein Kraftwerk zu betreiben? Man fährt unterirdisch eine Kaverne auf. Für ein 1000 MWe Kraftwerk mit 2 kT-Explosionen müßte sie etwa einen Radius von 20 m und eine Höhe von 100 m haben. Um auch über einen Betrieb von geplant 30 Jahren die Stabilität zu erhalten, sollte sie komplett mit einem 1 cm Stahlblech-Containment ausgekleidet sein. Ist das Containment fest anliegend mit dem umliegenden Fels verschraubt, ergibt sich eine sehr standfeste Konstruktion. Der eigentliche Trick ist aber die Verdämmung der Explosionen. Wenn man von dem Kavernendach einen dichten Vorhang Flüssigkeitstropfen (es geht sogar Wasser) herabregnen läßt und die Explosion in diesem Schauer stattfinden läßt, wird der Feuerball regelrecht aufgefressen. Nahezu die gesamte Energie der Explosion führt auf den zahlreichen Oberflächen der Tropfen zu einer schlagartigen Verdampfung. Wählt man eine Salzschmelze mit ihrer extrem hohen Verdampfungstemperatur, wird dadurch die Explosionswelle in wenigen Metern abgebaut. Das Ergebnis ist eine Druckspitze von weniger als 30 bar, die auf die Wände wirkt. Innerhalb kürzester Zeit kondensiert der Dampf wieder und gibt seine Energie an die Salzschmelze ab. Sie ist jetzt erheblich heißer geworden. Die Salzschmelze wird kontinuierlich durch einen Wärmeübertrager gepumpt, in dem sie Dampf erzeugt. Ab dieser Stelle, beginnt ein ganz konventioneller Kraftwerksteil zur Stromerzeugung.

Die Salzschmelze

Als Salz wird das bekannte Eutektikum FLiBe Li2 – BeF4 aus 67% Berylliumfluorid BeF2 und 32,9% Lithiumfluorid LiF mit einem Schmelzpunkt von 363 °C verwendet, sodaß sich eine Arbeitstemperatur um 500 °C einstellt. Es können einige Prozent Thoriumfluorid ThF4 darin gelöst werden. Zusätzlich kann der Sprengkörper mit einer Schicht aus Beryllium als Neutronenmultiplikator und Thorium als Brutstoff umgeben werden. Wird die Salzschmelze reduzierend, das heißt mit einem Fluoridmangel angesetzt, kommt das Tritium als Tritiumgas vor und kann kontinuierlich abgezogen werden. Das erbrütete Uran-233 bildet ebenfalls Uransalz UF4. Es kann recht einfach abgeschieden werden, indem es z. B. in das gasförmige Uranhexafluorid UF6 umgeformt wird.

Bei diesem Reaktor kann der Anteil der Energieproduktion aus Spaltung und Fusion in weiten Grenzen verschoben werden. Bis zu 90 % Energie können theoretisch aus der Fusion gewonnen werden. Dies bedeutet neben einem geringen Anteil von Spaltprodukten eine sehr hohe Brutrate wegen des sehr hohen Neutronenüberschusses. Es ist zu erwarten, daß bereits auf der Basis heutiger Uran- und Strompreise, der wesentliche Erlös aus dem Verkauf von Spaltmaterial kommen würde. Dieses Reaktorkonzept bietet sich daher besonders für den Fall eines „verschlafenen“ Einstiegs in eine Brüterflotte, bei plötzlich steigenden Uranpreisen an.

Sicherheit

Wenn wirklich alles schief geht, hat man einen unterirdischen „Kernwaffentest“. Die Anlage ist dann unwiederbringlich Totalschaden. Aber das war’s auch schon. Allein die USA haben über 800 unterirdische Testexplosionen in Sichtweite von Las Vegas ausgeführt. Im Spitzenjahr 1962 praktisch an jedem dritten Tag eine.

Das Inventar an Spaltprodukten liegt bei diesem Reaktortyp unter einem Prozent gegenüber einem konventionellen Leichtwasserreaktor. Dies liegt einerseits daran, daß ein erheblicher Teil der Energie aus der Fusion mit dem Endprodukt Helium stammt und andererseits durch die Wiederaufbereitung zur Spaltstoffgewinnung auch ständig Spaltprodukte dem Kreislauf entzogen werden. Wie Simulationsrechnungen gezeigt haben, ist auch nach 30 Betriebsjahren und der Berücksichtigung von Aktivierungen durch Neutronenbeschuß von Stahlhülle und umliegenden Gestein, die Radioaktivität so gering, daß man den Rest einfach unter Beton beerdigen könnte. An dieser Stelle sei daran erinnert, daß bei der Verwendung von Thorium praktisch keine langlebigen Aktinoide entstehen.

Das Inventar an Tritium wäre unter 100 Ci, da es ja ständig abgezogen werden muß, um es verbrauchen zu können. Ein vollständiges Entweichen durch einen Unfall wäre kein besonderes Problem.

Proliferation

Es wäre ein Irrtum zu glauben, daß eine solche Anlage für Terroristen oder „Schurkenstaaten“ ein Objekt der Begierde sein könnte. Die bei diesem Reaktortyp verwendeten Sprengkörper sind als Waffe ziemlich ungeeignet. Sie wären kaum zu transportieren oder zu lagern. Sie müßten wegen ihrer Vergänglichkeit eher vollautomatisch gefertigt und unmittelbar verbraucht werden. Ebenso wird man kaum den Weg der Zündung über chemische Sprengstoffe gehen. Dies wäre viel zu teuer. Man wird eher den Weg über eine stationäre Zündmaschine gehen. Die wird aber so groß werden, daß man sie kaum stehlen könnte.

Nachwort

Manchem mag das alles wie Science Fiction vorkommen. Ist es aber gar nicht. Es gibt kaum etwas, was besser erforscht ist als Kernwaffen. Es gibt auch nach wie vor kaum ein Fachgebiet was besser ausgestattet ist. Wo stehen denn stets die schnellsten Rechner, die besten Labors, die größten Laser etc.? Wenn man wollte, könnte man diesen Reaktortyp innerhalb von zehn Jahren bauen. Es wäre ein sicherer Einstieg in die Kernfusion und es wäre für die einschlägigen „Fachabteilungen“ zumindest in USA und Rußland ein Routineauftrag. Weniger Forschung als Entwicklung.

Es geht hier nicht darum, Werbung für ein exotisches Kraftwerk zu machen. Es sollte nur an einem Beispiel gezeigt werden, wie unendlich breit das Gebiet der Kernenergie ist und welche Möglichkeiten es bieten würde. Eher geht es darum, daß der Blickwinkel – gegenüber unseren Vätern – sehr verengt worden ist. In den 1950er und 1960er Jahren hatte man noch eine Kreativität, wie sie heute vielleicht noch in der IT-Branche vorhanden ist. Technik war noch nicht negativ besetzt.

Es gab auch noch eine Hoffnung auf, und einen Willen zu einer besseren Zukunft. Die Angst- und Neidindustrie war noch gar nicht erschaffen. Der ganze Blödsinn von bald versiegenden Ölquellen, Uranvorkommen, „Treibhauseffekten“, „Ozonlöchern“ etc. konnte die Menschen noch nicht ängstigen. Es ist allerdings kein Zufall, daß sich alle Systemveränderer immer wieder auf die Energietechnik stürzen. Sie haben mehr als andere erkannt, daß Energie die „Master Resource“ ist, ohne die nichts geht, aber mit deren Hilfe, fast alles möglich ist.

Niemand zwingt uns Menschen, mit Wind und Sonne wieder zurück ins Mittelalter zu gehen. Die resultierende Armut und die entgangenen Chancen wären freiwillig gewählt.

Fusion: 100 MW in Serie?

Wer die Entwicklung der Kernfusion beobachtet, hat den Eindruck einer unendlichen Geschichte. Mit Milliardenaufwand werden riesige Maschinen gebaut, die in jeweils etwa 50 Jahren Strom liefern sollen.

Hin und wieder tauchen von irgendwelchen Erfindern ganz neue, revolutionäre Konzepte auf, die sich bei näherem hinsehen, stets eher als Perpetuum Mobile, denn als Idee für ein Kraftwerk entpuppen. Genau das, habe ich gedacht, als ich die Meldung las: Kleine Fusionsanlage, Energie für jedermann. 100 MW Fusions-Reaktor, so groß wie eine konventionelle Gasturbine. Anlage in etwa fünf Jahren produktionsreif.

Normalerweise lese ich an diesem Punkt nicht mehr weiter. Science Fiction ödet mich an. Aber halt, der Vortrag (siehe Link zum Mitschnitt unten) ist von Lockheed Martin’s „Skunk Works“, einem Verein, der alles andere, als aus Aufschneidern besteht. Ich kann mich noch sehr gut an die immer wieder auftauchenden Berichte über die Entwicklung von „Tarnkappenbombern“ in den 1980er Jahren erinnern. Und auf einmal waren sie am Himmel: Die F-117 Nighthawk oder die B2 Spirit. Flugzeuge, schon in ihrer äußeren Form so revolutionär anders, daß man kaum glauben mochte, daß diese Maschinen überhaupt fliegen können.

Deswegen ist mir dieses Video eine Meldung auf der Wiese wert. Die „Stinktiere“ treten jedenfalls nie ohne Grund an die Öffentlichkeit. Irgendetwas brüten sie offensichtlich auf dem Energiesektor aus.