Micro-Reactor, die Renaissance made in USA?

Langsam zeichnet sich ab, welchen Weg die Trump-Administration für die Kernenergie vor hat. Nachdem die Fesseln des Obama-Zeitalters für die fossilen Energien erfolgreich durchschnitten wurden, wird der Umbau der Energieerzeugung nun auch konsequent auf die Kernenergie ausgedehnt. Die Reihenfolge war folgerichtig: Die meisten Arbeitsplätze und das schnellste Wirtschaftswachstum konnte kurzfristig nur über die Öl- und Gasindustrie geschaffen werden. Hier traf alles zusammen: Hohe Nachfrage zu akzeptablen Preisen auf dem Weltmarkt mit vorhandenem Wissen und Kapital im eigenen Land. Nebenbei wurde noch die Kohleindustrie stabilisiert und die überbordende Förderung für „alternative Energien“ zurechtgestutzt. Ein einziger Albtraum für jeden gläubigen „Klimaschützer“. Nachdem der Präsident nun das sichere Fundament für seine Wiederwahl gelegt hat, kehrt etwas Ruhe ein und man kann sich langfristigen Projekten wie der Kernenergie widmen.

Die Lage der Kerntechnik in den USA

Der Schock kam mit dem Desaster der Neubauprojekte Vogtle und Summers. Die USA sind nicht mehr in der Lage, einen in den USA entwickelten Reaktortyp fristgerecht und zu den vereinbarten Preisen fertigzustellen. Zu aller Schande wurden die gleichen Reaktoren in Lizenz in China errichtet und sind inzwischen am Netz. Es gibt in den USA — wie in Deutschland und Frankreich — keine leistungsfähige Industrie mehr, die solch komplexe Projekte unter den speziellen Randbedingungen der Kerntechnik durchziehen kann. Der Faden ist durch die jahrzehntelange Zwangspause beim Neubau einfach abgerissen. Man lernt in Vogtle und Olkiluoto genauso wieder von vorn, wie in den fünfziger und sechziger Jahren. Da sich auch in den USA keine weiteren Kernkraftwerke als Anschlussaufträge abzeichnen, droht eine Abwärtsspirale.

Wie immer, wenn man in einer Sackgasse steckt, muß man die Situation analysieren und neu denken. Es ist etwas von dem „Apple-Geist“ nötig, der mitten in der Krise der Computerindustrie das Smartphone erfunden hat. Heutige Kernkraftwerke erfordern riesigen Kapitaleinsatz, lange Bauzeiten (vom ersten Genehmigungsantrag bis zur Fertigstellung), große Stäbe von erfahrenen Fachkräften. Solche Randbedingungen sind heute nur noch in Staatswirtschaften zu realisieren. Will man verhindern, daß China und Rußland das weltweite Monopol für Kernkraftwerke erhalten, muß man deshalb genau hier ansetzen. Der eingeschlagene Weg läuft über eine Serienproduktion anstelle einer Kosteneinsparung über einen „Größenvorteil“. Ein revolutionärer Ansatz, wie einst der Umstieg vom „Handy“ auf das Smartphone. Ganz wichtig ist hierbei die Schaffung eines Zusatznutzens, der für sich allein einen Kaufanreiz darstellt — zumindest für eine vorhandene kaufkräftige Konsumentengruppe als Starter.

Tot geschriebene, leben länger

Die kerntechnische Industrie in den USA ist noch lange nicht tot. Jedenfalls so lange, wie sie über einschlägige Forschungszentren mit zehntausenden (der besten) Fachleute weltweit verfügt und eine — etwas im Verborgenen blühende — Reaktorindustrie vorhanden ist. Wenig beachtet, existiert das „Büro für Schiffsreaktoren“, welches 82 Kriegsschiffe mit Kernreaktoren unterhält, über sechs Werften, vier Übungsreaktoren an denen jährlich 3500 Studenten ausgebildet werden, zwei eigenen Forschungszentren (Bettis/Knolls), hunderten von klassifizierten Zulieferern und einem eigenen, kompletten Brennstoffkreislauf, verfügt. Dort weht immer noch der Geist von Admiral Rickover. Völlig geräuschlos — und vor allem ohne spektakuläre Unfälle — wird dort Reaktortechnik auf höchstem und sonst weltweit unerreichtem Niveau betrieben. Allein diese Organisation kann (wieder) als Keimzelle einer neuen Industrie dienen. Außerdem hat sich offensichtlich der öffentliche Wind gedreht: Es gibt mehr als 70 neugegründete Unternehmen, die sich mit den unterschiedlichsten Reaktortypen beschäftigen. Universitäten brauchen sich keine Sorgen mehr über den Nachwuchs zu machen.

In diesem Umfeld fehlt es nur noch an politischem Willen. Dieser scheint nun endlich in der Gestalt von Präsident Trump gekommen zu sein. Er hat das Zeug zu einem Kennedy der Kerntechnik zu werden. So, wie einst die Mondlandung zu einer Explosion der Raumfahrt geführt hat, könnte heute der „Micro-Reactor“ eine Initialzündung für einen neuen Industriezweig auslösen.

Was macht dieses Konzept so anders?

Grundgedanke ist die Serienfertigung. Die heutigen (unvorhersehbaren) Bauzeiten für Kernkraftwerke in westlichen Ländern sind für jeden Investor völlig indiskutabel. Zwar bekommt man nicht einmal ein Gaskraftwerk beim Kaufmann um die Ecke, aber zumindest Termingerecht in einem überschaubaren Zeitraum. Die unvorhersehbaren Zeiträume sind die Hauptursache für die hohen Kosten. Dies zeigen die Preise für baugleiche Kraftwerke in China überdeutlich — z. B. gegenüber den ewigen Baustellen in USA (Vogtel), Frankreich (Flamanville) und Finnland (Olkiluoto).

Die notwendige Erstinvestition für eine kleine Leistung ist entsprechend gering gegenüber einem großen konventionellen Kernkraftwerk. Das wirtschaftliche Risiko ist dadurch leichter handhabbar. In wie weit die Serienfertigung hierbei mit einer Kostendegression durch Größe mithalten kann, wird die Zukunft zeigen. Viel wichtiger ist jedoch, daß sich durch die geringen Leistungen völlig neue Märkte für die Kerntechnik erschließen. Auch die Großraumflugzeuge haben in der Luftfahrt nicht die Neuentwicklung kleiner Jets verhindert. Im Gegenteil, haben die kleinen Flugzeuge völlig neue Märkte erschlossen und damit die Luftfahrt insgesamt belebt.

Die Brennstoffkosten sind bei Kernkraftwerken vernachlässigbar — ausdrücklich auch unter Einschluß der notwendigen Entsorgungskosten! Man sollte deshalb nicht den Wirkungsgrad, sondern die Investitionskosten und die Robustheit in den Vordergrund stellen. Lange Betriebszeiten (geplant mindestens 10 Jahre) zwischen den Brennstoffwechseln ergeben schnell geringere Stromkosten zu festen Preisen (Leistung in kW x Betriebsstunden = produzierte Kilowattstunden) gegenüber Windmühlen und Sonnenkollektoren. Aber das absolute Killerargument gegenüber allen wetterabhängigen Verfahren ist: Immer wenn der Schalter umgelegt wird, ist die benötigte elektrische Leistung vorhanden. Ganz ohne Speicher und sonstigen teuren Ballast und auch noch ohne Luftbelastung.

Der ungesehene Markt

Alle Kleinreaktoren leiden unter dem „Henne-Ei-Problem“: Größere Stückzahlen sollen über eine Serienfertigung die Preise drastisch senken. Es fehlt aber der Kunde, der für einen ersten Reaktor bereit ist, das volle Risiko und den notwendigerweise erhöhten Preis zu tragen. Ein Problem, das der Flugzeugindustrie wohl bekannt ist. Es gibt jedoch einen Kunden, der mit diesem Phänomen gewohnt ist umzugehen und überdies noch durch den Steuerzahler gedeckt ist: Das Militär.

Für das US-Militär ist die Versorgung mit Energie stets ein strategisches Problem gewesen. Jeder Versorger muß im Ernstfall durch Kampftruppen (z. B. Begleitung von Konvois) geschützt werden — bindet also Kampfkraft. Außerdem schreitet mit stark zunehmender Geschwindigkeit die Elektrifizierung des Militärs voran (Kommunikation, Radargeräte usw., bis hin zu Waffensystemen selbst). Gleichzeitig werden die vorhandenen Stromnetze auch in USA durch den vermehrten Einsatz von „Erneuerbaren“ immer störungsanfälliger und die Stromkosten steigen immer weiter. Der Scheidepunkt zwischen immer mehr zusätzlicher Notstromversorgung zur Absicherung und Eigenversorgung rückt immer näher. Das US-Verteidigungsministerium ist für über 500 Liegenschaften mit mehr als einem Megawatt Anschlussleistung allein auf dem eigenen Staatsgebiet Auftraggeber und somit einer der größten Stromkunden überhaupt (ca. 21% des gesamten öffentlichen Verbrauchs). 90% dieser Objekte kann mit 4 x 10 MWel voll versorgt werden. Hinzu kommen noch langfristig Heizwärme und Trinkwasser (Meerwasserentsalzung). Im ersten Schritt wird aber eine reine Stromversorgung angestrebt. Da die Spitzenlast nur im Ernstfall benötigt wird, kann sich Zukünftig eine Umkehrung anbieten: Das militärische Kraftwerk speist Überschußstrom ins Netz und senkt damit die eigenen Kosten. Somit ergeben sich folgende Anforderungen:

  • Kleine Abmessungen und geringes Gewicht, damit die „Kleinkraftwerke“ später auch im Feld folgen können.
  • Um möglichst viele Anwendungsfälle zu erschließen, nur eine kleine Leistung — bis 10 MWel derzeit angestrebt.
  • Inhärente („walk away“) Sicherheit.
  • Möglicher Betrieb über den vollen Lastbereich mit hoher Änderungsgeschwindigkeit um Inselbetrieb zu gewährleisten.
  • Langzeit-Dauerbetrieb mit Brennstoff Wechselintervallen von mindestens 10 Jahren („Batterie“). Dies macht eine höhere Anreicherung von nahezu 20% (HALEU) nötig.
  • Weitestgehend vollautomatischer Betrieb durch Soldaten — nach kurzer Schulung und Einarbeitung.
  • Möglichst eine zivile Zulassung durch die NRC um die potentiellen Stückzahlen zu erhöhen und eine Einspeisung ins öffentliche Netz zu ermöglichen.

Das Genehmigungsverfahren

Heutzutage eine Genehmigung für einen neuen Reaktortyp zu erlangen, gleicht einem einzigen Hindernislauf mit ungewissem Ausgang. Von einer Behörde, die ein Monopol hat und überwiegend im Stundenlohn (rund 280$/h) arbeitet, kann man keine Sprünge erwarten. Sie wird sich noch grundlegend umorganisieren müssen um sich den neuen — teilweise noch in Arbeit befindlichen — Randbedingungen anzupassen: Bei Reaktoren so kleiner Leistung ist die Menge radioaktiver Stoffe (Spaltprodukte) so klein, daß auch im ungünstigsten Fall eine Gefährdung von Personen außerhalb des Betriebsgeländes ausgeschlossen werden muß. Eine schlimme Kröte für alle „Atomkraftgegner“! Eine inhärente Sicherheit, d. h. keine nukleare Explosion und auch keine Notkühlung ist erforderlich. Ein vollautomatischer Betrieb, der keine Fehlbedienung erlaubt. In diesem Zusammenhang ist interessant, daß die gesetzlichen Bestimmungen über die Nuklearversicherung bald routinemäßig auslaufen und zwangsläufig überarbeitet werden müssen. Es bietet sich an, für solche Reaktoren die Haftpflicht nur noch rein kommerziell auszugestalten. Eine (spezielle) Industrieversicherung mit kalkulierbar geringeren Kosten. Auch das wird für „Atomkraftgegner“ nur schwer verdaulich sein, da es doch zu deren Grundüberzeugungen zählt, daß Kernkraftwerke gar nicht zu versichern seien!

Wer an dieser Stelle glaubt, das seien alles nur Wunschträume, der täuscht sich gewaltig. Die NRC steht unter Druck. Sie hat schon lange den Bogen überspannt. Ganz entscheidend ist aber, daß sich mit der Wahl von Präsident Trump der Wind von gegen, in pro Kernenergie gedreht hat. Der Präsident ist nämlich in dieser Frage sehr mächtig: Nach dem Atomic Energy Act of 1954 kann er das Verteidigungsministerium (DoD) anweisen, einen solchen Reaktor für militärische Zwecke zu bauen und zu betreiben (siehe 42 U.S.C. §2121(b)). Es bedarf dazu ausdrücklich keiner Genehmigung durch die NRC (siehe 42 U.S.C. §2140(b)).

Allerdings ist der Eigenbau gar nicht gewollt. Es geht um die Wiederbelebung der kerntechnischen Industrie. Dafür ist aber eine Genehmigung und Überwachung durch die NRC nötig. Im Gespräch sind private Investoren und Betreiber. Das Militär würde nur für 40 Jahre den Strom zu einem festgelegten Preis kaufen. Das Kraftwerk könnte in unmittelbarer Nähe des Stützpunktes errichtet werden und von dieser wirtschaftlichen Basis aus, sein Geschäft erweitern. Ein Vorbild ist auch die NASA, die eng mit privaten Raketenherstellern zusammenarbeitet und von diesen Nutzlast kauft.

Der Zeitplan

Aktuell geht man von einer Realisierung innerhalb von 5 bis 10 Jahren für den „Neuen Reaktor“ einschließlich Brennstoffkreislauf, Genehmigungen und Bau aus. Für einen Kerntechniker hört sich das wie Science Fiction oder einer Geschichte aus vergangenen Zeiten (erstes Atom-U-Boot Nautilus etc.) an. Vielleicht knüpft Präsident Trump aber bewußt an diese Traditionen an. Ein solches Projekt ist weniger eine Frage der Ingenieurleistungen sondern viel mehr des politischen Willens. Gelingt es ihm, hat er wahrlich „America Great Again“ gemacht. Wenn Amerika wirklich wollte, hat es immer das Unmögliche geschafft: Manhattan Project, Nautilus, Apollo usw.

Nun ist es auch nicht so, als wenn man bei Stunde Null mit diesem Projekt anfängt. Technisch gibt es kaum Unwägbarkeiten. Politisch sind auch bereits die entscheidenden Gesetze durchgebracht. Es ist halt der unvergleichliche Donald Trump Regierungsstil: Immer viel Kasperletheater als Futter für die Medien und sonstige schlichte Gemüter, bei gleichzeitig harter Sacharbeit im Hintergrund.

U-Battery aus Europa

Auch in Europa geht (noch) die Reaktorentwicklung weiter. Es begann 2008 an den Universitäten: University of Manchester (UK) und Technology University of Delft (NL). Es ging um die Entwicklung eines Reaktors zur Stromerzeugung und zur gleichzeitigen Auskopplung von Wärme (mit Temperaturen bis 750 °C) für Heiz- und industrielle Zwecke. Vorgabe war eine optimale Lösung für das Dreieck aus: Sicherheit, Wirtschaftlichkeit und Umweltfreundlichkeit zu finden.

Interessant ist schon mal die Erschließung völlig neuer Marktsegmente durch die Reaktorleistung (hier 10 MWth und 4 MWel) und die nutzbare Temperatur (hier 750 °C). Diese neue Klasse wird als MMR (.micro modular reactor) bezeichnet. Wie schon die Bezeichnung „Uran-Batterie“ andeutet, wird ferner eine ununterbrochene Betriebszeit von mindestens 5 – 10 Jahren vorgesehen. Hiermit wird das Marktsegment der Kraft-Wärme-Kopplung auf der Basis von „Schiffsdieseln“ und kleinen Gasturbinen angestrebt. Ein sich in der Industrie immer weiter (steigende Strompreise und sinkende Versorgungssicherheit durch Wind und Sonne) verbreitendes Konzept. Hinzu kommen die Inselnetze in abgelegenen Regionen (Kleinstädte), Bergwerke und Produktionsplattformen auf dem Meer, Verdichterstationen in Pipelines usw. Hierfür kann ebenfalls auch die hohe Betriebstemperatur — selbst bei reiner Stromproduktion — von Vorteil sein, da sie problemlos Trockenkühlung (Wüstengebiete) erlaubt.

Die treibende Kraft hinter diesem Projekt ist — in diesem Sinne sicherlich nicht ganz zufällig — das Konsortium URENCO. Ein weltweiter Betreiber von Urananreicherungsanlagen. Solche Kaskaden aus Zentrifugen brauchen kontinuierlich gewaltige Mengen elektrische Energie. Man sucht also selbst nach einer Lösung für die immer teurere Versorgung.

Der Reaktor

Wieder ein neuer „Papierreaktor“ mehr, könnte man denken. Ganz so ist es aber nicht. Man hat von Anfang an auf erprobte Technik gesetzt. Es ist reine Entwicklungsarbeit — insbesondere für die Nachweise in einem erfolgreichen Genehmigungsverfahren — aber keine Forschung mehr zu leisten. Insofern ist der angestrebte Baubeginn 2024 durchaus realisierbar.

Fangen wir mit dem Brennstoff an. Es sind [TRISO] (TRISO) Brennelemente vorgesehen. Dieser Brennstofftyp ist bereits in mehreren Ländern erfolgreich angewendet worden. Diese Brennelemente überstehen problemlos Temperaturen von 1800 °C. Dadurch sind solche Reaktoren inhärent sicher. Gemeint ist damit, daß die Kettenreaktion auf jeden Fall infolge des Temperaturanstiegs zusammenbricht und eine Kernschmelze durch die Nachzerfallswärme (Fukushima) ausgeschlossen ist. Man braucht somit keine Notkühlsysteme, dies spart Kosten und vor allem: Was man nicht hat, kann auch nicht kaputt gehen oder falsch bedient werden. Der Sicherheitsgewinn ist dadurch so groß, daß sich alle denkbaren Unfälle nur auf den Reaktor und sein schützendes Gebäude beschränken. Nennenswerte Radioaktivität kann nicht austreten und damit beschränken sich alle Sicherheitsanforderungen nur noch auf das Kraftwerksgelände selbst. Eine „revolutionäre Feststellung“, der sich die Genehmigungsbehörden langsam anschließen. Dies hat erhebliche Auswirkungen auf die möglichen Standorte, Versicherungsprämien etc. Ein nicht mehr umkehrbarer Schritt auf dem Weg zu einem „normalen Kraftwerk“ oder einer „üblichen Chemieanlage“. Die Errichtung solcher Reaktoren in unmittelbarer Nähe zu Städten (Fernwärme) oder Industrieanlagen (Chemiepark, Automobilwerk etc.) ist nur noch eine Frage der Zeit.

Als Kühlmittel ist Helium vorgesehen. Der Reaktorkern wird aus sechseckigen Brennelementen als massiver Block aufgebaut. Mit dieser Technik besitzt GB eine jahrzehntelange Erfahrung. Kein Land besitzt mehr Betriebsjahre mit Reaktorgraphit. Der Vorteil gegenüber einem Kugelhaufen sind definierte Kanäle für das Kühlmittel und die Regelstäbe. Vor allen Dingen ergibt sich aber kein Staubproblem aus dem Abrieb der Kugeln während des Betriebs. Die notwendigen Rohrleitungen und das Gebläse zur Umwälzung des Heliums bleiben sauber. Dies erleichtert etwaige Wartungs- und Reparaturarbeiten. Der komplette Reaktor kann in einer Fabrik gebaut und getestet werden und mit einem LKW einsatzbereit auf die Baustelle gebracht werden.

Als Brennstoff dient angereichertes Uran. Die Anreicherung (< 20% U235) erlaubt einen mehrjährigen Betrieb ohne einen Brennstoffwechsel („Batterie“). Ob der Brennstoff vor Ort im Kraftwerk gewechselt werden muß oder der gesamte Reaktor zurück zum Hersteller gebracht werden kann, ist noch nicht abschließend geklärt (Strahlenschutz). Der Ansatz einer „Batterie“ verringert jedenfalls die Größe eines etwaigen Brennelementenlagers am Kraftwerk und schließt eine mißbräuchliche Nutzung praktisch aus (Proliferation). Damit ist ein solches Kraftwerk auch problemlos in „zwielichtigen Staaten“ einsetzbar. Ferner verringert sich der Personalaufwand im Kraftwerk. Ein solches Kraftwerk wäre halbautomatisch und fernüberwacht betreibbar. Was den Umfang des erforderlichen Werkschutzes anbelangt, sind die Genehmigungsbehörden noch gefragt. Eine Chemieanlage — egal wie gefährlich — kommt heutzutage mit einem üblichen Werkschutz aus, während von Kernkraftwerken erwartet wird, eine komplette Privatarmee zu unterhalten. Alles Ausgeburten von „Atomkraftgegnern“ um die Kosten in die Höhe zu treiben. Verkauft wird so etwas als Schutz gegen den Terrorismus.

Der konventionelle Teil

Man plant keinen Dampfkreislauf, sondern eine Gasturbine als Antrieb des Generators. Kein ganz neuer Gedanke, aber bisher ist z. B. Südafrika an der Entwicklung einer Heliumturbine gescheitert. Helium ist thermodynamisch zu eigenwillig und außerdem ist bei einem Kugelhaufenreaktor mit einer radioaktiven Staubbelastung zu rechnen. Bei der U-Battery hat man sich deshalb für einen sekundären Kreislauf mit Stickstoff entschieden. Vordergründig kompliziert und verteuert ein zusätzlicher Wärmeübertrager zwischen Reaktorkreislauf (Helium) und Turbinenkreislauf (Stickstoff) das Kraftwerk, aber man hat es sekundärseitig nur noch mit einem sauberen und nicht strahlenden Gas zur beliebigen Verwendung zu tun. Stickstoff ist nahezu Luft (rund 78% N2) und man kann deshalb handelsübliche Gasturbinen verwenden. Auch an dieser Stelle erscheint das wirtschaftliche Risiko sehr gering. Der Wärmeübertrager Helium/Stickstoff übernimmt lediglich die Funktion der Brennkammer eines Flugzeugtriebwerkes (Leistungsklasse). Bei der vorgesehenen hohen Temperatur von 750°C des Stickstoffs bleibt nach der Turbine noch jegliche Freiheit für die Verwendung der Abwärme (Fernwärme, Prozessdampf etc.). Die immer noch hohe Temperatur am Austritt einer Gasturbine erlaubt problemlos eine Kühlung mit Umgebungsluft ohne große Verschlechterung des Wirkungsgrades. Ein immenser Vorteil für alle ariden Gebiete.

Die Projektierer

Eine zügige Verwirklichung scheint durch die Zusammensetzung der beteiligten Unternehmen nicht unwahrscheinlich: Amec Foster Wheeler (über 40000 Mitarbeiter in 50 Ländern) mit umfangreicher Erfahrung in Öl- und Gasprojekten. Cammel Laird als Werft. Laing O’Rourke als Ingenieurunternehmen. Atkins für Spezialtransporte. Rolls Royce als international führender Produzent von Gasturbinen (Flugzeuge und Schiffe), darüberhinaus mit umfangreicher Erfahrung in der Kerntechnik.

Bemerkenswert ist die Ausweitung des Projektes auf den Commonwealth. Kanada und Indien sind bereits dabei. Läßt der „Brexit“ hier grüßen? Nach bisherigem Stand der Dinge, könnte der erste Reaktor in Chalk River in Kanada gebaut werden. Dies ist auch kein Zufall, da in Kanada bereits über 200 potentielle Standorte für einen solchen MMR ermittelt wurden. Für diese potentiellen Kunden ist bereits ein neuartiges Geschäftsmodell in Arbeit: Sie bezahlen nur die gelieferte Wärme und und die elektrische Energie. Das Kraftwerk wird dann von einer Zweckgesellschaft finanziert, gebaut und betrieben. So kann dem Kunden das wirtschaftliche Risiko abgenommen werden. Es ist nicht anzunehmen, daß irgendein Bergwerk oder eine Ölraffinerie bereit ist in das „Abenteuer Kerntechnik“ einzusteigen. Andererseits sind solche sog. „Betreibermodelle“ in der einschlägigen Industrie lange bekannt und erprobt.

Noch ein paar Daten

Der Reaktor hat einen Durchmesser von etwa 1,8 m und eine Länge von etwa 6 m. Er ist damit problemlos auf einem LKW transportierbar. Das Helium soll einen Betriebsdruck von ca. 40 bar haben und eine Austrittstemperatur von 750 °C. Damit ergibt sich eine notwendige Wandstärke von unter 100 mm. Dies ist wichtig, weil hierfür keine speziellen Schmieden bzw. Rohlinge erforderlich sind. Nur wenige Unternehmen weltweit können demgegenüber Druckbehälter für Leichtwasserreaktoren schmieden.

Als Brennstoff soll auf knapp 20% angereichertes Uran (high assay, low enriched uranium (HALEU)) verwendet werden. Damit werden die TRISO-Kügelchen hergestellt, die zu Tabletten mit einer Höhe von ca. 40 mm und einem Außendurchmesser von ca. 26 mm gepreßt werden. Aus diesen werden die sechseckigen Brennelemente mit einer Kantenlänge von 36 cm und einer Höhe von 80 cm aufgebaut. Sie enthalten alle Kanäle für Regelstäbe, Instrumentierung usw. Der Kern des Reaktors besteht aus je 6 Brennelementen in 4 Lagen übereinander. Er beinhaltet etwa 200 kg Uran. Dies reicht für einen ununterbrochenen Vollastbetrieb von 5 Jahren.

Eine Doppelblockanlage (2 x 4 MWel) erfordert einen Bauplatz von ca. 10 x 12 m (Reaktoren, Wärmeübertrager und Turbinen im „Keller“, Halle für Wartungsarbeiten darüber). Hinzu käme noch Platz für Schaltanlagen, Kühler, Büros etc.

Es wird von Baukosten zwischen 45 bis 78 Millionen € für eine Doppelblockanlage ausgegangen (5600 bis 9750 €/KW). Das mag auf den ersten Blick hoch anmuten, aber man bewegt sich mit dieser Leistung von 8 MWel im Marktsegment der sog. Dieselmotoren-Kraftwerke. Hinzu kommen in entlegenen Standorten noch die meist höheren Kosten für den Dieselkraftstoff. Der für die „U-Battery“ ermittelte Strompreis von 9 Cent/KWh dürfte somit für den angepeilten Kundenkreis sehr attraktiv sein.

Inzwischen gibt es eine sehr enge Kooperation zwischen Kanada und GB. Ein paralleles, aber kooperatives Genehmigungsverfahren zeichnet sich ab. Weiterhin sind Indien, Japan, Polen, USA und Neuseeland bereits mit im Boot. Vielleicht schon die erste Morgendämmerung, wohin die Reise von GB nach dem Brexit geht? Jedenfalls nicht in das Rest-Europa, in dem unsere Kanzlerin so gut und gerne lebt.