Entwicklung der Kernenergie bis 2050

Die IAEA (International Atomic Energy Agency) hat in ihrem 42ten Bericht einen Ausblick auf die weltweite Entwicklung der Kernenergie in den nächsten 30 Jahren versucht. Für die Entwicklung des Energieverbrauches verwendet sie das umfangreiche Material der OECD. Es handelt sich bei diesen Berichten nicht um Prognosen, sondern eher um fundierte Einschätzungen der erwarteten Bandbreite. Für die untere Begrenzung (low case) wird angenommen, daß die Märkte, die Technologie, die Ressourcen und die Randbedingungen (Gesetze, Politik etc.) bleiben wie gehabt. Dies soll eine konservative, aber plausible Projektion ergeben. Bei der oberen Begrenzung (high case) berücksichtigt man auch technisch machbare Entwicklungen und etwaige Ziele für eine „CO2 arme Gesellschaft“. Gleichwohl sollen die Annahmen plausibel bleiben und man geht deshalb ausdrücklich nicht von „net zero carbon emissions“ aus. Dies ist schon mal die erste interessante Feststellung gegenüber der Vorstellung der Bundesregierung: Fossile Energieträger verschwinden ausdrücklich nicht bis 2050.

Istzustand 2021 weltweit

Im Jahre 2021 sollen fast 7,9 Milliarden Menschen auf der Erde gelebt haben. Sie erzeugten 27007 TWh elektrischer Energie (zum Vergleich: Deutschland 588TWh). Etwa 9,8% davon entstammten der Kernenergie (zum Vergleich: Deutschland 11,8%). Der Anteil der Elektrizität betrug 19,5% (zum Vergleich: Deutschland ca. 20%) an der verbrauchten Endenergie. Schon diese drei Zahlen regen zu grundsätzlichen Überlegungen an: Die Stromproduktion in Deutschland ist gegenüber der gesamten Stromproduktion der Welt nahezu eine vernachlässigbare Größe. Das mag für viele „Weltenretter“ deprimierend sein – oder anders betrachtet – es kann bei dem Kohle- und „Atomausstieg“ gar nicht ums Klima gehen, sondern Energiewende ist lediglich Neusprech für die Zerstörung dieser Gesellschaft. Gerade die Kernenergie hat noch weltweit ein riesiges Wachstumspotential, da selbst im „Ausstieg Deutschland“ die Produktion noch überproportional war. Der Anteil von rund einem Fünftel der Elektroenergie an der Endenergie macht deutlich, wie abwegig eine voll elektrifizierte Welt und wie unverantwortlich eine Versorgung nur durch wetterabhängige Energie wäre.

Ende 2021 waren weltweit 437 Reaktoren mit einer Nettoleistung von 389,5 GWel in Betrieb. Sechs neue Reaktoren mit einer Gesamtleistung von 5,2 GWel gingen ans Netz und es wurden acht Reaktoren mit einer Gesamtleistung von 8,7 GWel abgeschaltet. Gleichzeitig wurde mit dem Bau von zehn Reaktoren mit einer Gesamtleistung von 8,8 GWel neu begonnen. Es befanden sich 56 Reaktoren mit einer Gesamtleistung von 58,1 GWel 2021 in Bau. Die Stromproduktion der Kernkraftwerke wuchs gegenüber 2020 um 4.% auf 2653 TWh. Das ist immerhin die 4,5fache Menge der Gesamtproduktion von Deutschland, d. h. das „Vorangehen beim Atomausstieg“ spielt sich offensichtlich nur in den Köpfen deutscher „Ökos“ ab. Bemerkenswert in diesem Zusammenhang ist, daß die drei größten Produzenten USA (771,6 TWh), China (383,2 TWh) und Frankreich (363,4 TWh) bezüglich des Kernenergieanteils an der Stromproduktion nur den 15ten (19,6%), den 25ten (5%) bzw. den ersten Platz (69%) eingenommen haben. Man sieht daran ganz deutlich, wo das Ausbaupotential in der nahen Zukunft für diese Industrie liegen wird: Die Musik wird weiterhin in den USA und China spielen. Durch die eigenen Binnenmärkte werden sie auch den Weltmarkt dominieren. Demgegenüber hat sich Europa ideologische Fesseln verpaßt und Russland zerstört sich gerade selbst.

Entwicklung in den vergangenen Dekaden

In den letzten 30 Jahren ist der Anteil der fossilen an der Endenergie von etwa 74% auf 66% gesunken. Der Anteil von Öl (40%) und Erdgas (15%) ist bemerkenswert stabil geblieben. Einzig der Stromverbrauch ist um neun Prozentpunkte angewachsen. Ein Zeichen, daß die Industrialisierung durch Elektrifizierung weiter voranschreitet. Dieser Trend wird sich in der Zukunft eher noch beschleunigen.

Es ist daher wichtig, einen Blick auf die Stromproduktion zu werfen. Über 60% der elektrischen Energie stammen immer noch aus fossilen Energieträgern. Kohle hat daran nach wie vor mit rund 40% den größten Anteil. Der Anteil von Öl ist drastisch von etwa 20% auf nur noch 2% gesunken. Es ist vor allem durch (billiges) Erdgas verdrängt worden, dessen Anteil um neun Prozentpunkte gestiegen ist. Wasserkraft – als größte „Erneuerbare“ – hat noch einen Anteil von 16%, ist aber um vier Prozentpunkte gesunken. Ein sicheres Zeichen dafür, daß die natürlichen Quellen erschöpft sind. Es gibt schlicht keine geeigneten Flüsse mehr und die Umweltschäden werden immer größer. Der Anteil von Wind und Sonne ist durch massive Subventionen von unter 1% in 1980 auf etwa 9% in 2021 gestiegen. Zumindest für Windenergie sind langsam die wirtschaftlichen und technischen (Netzstabilität) Grenzen erreicht. Deren Anteil wird sich in den kommenden Dekaden eher wieder verringern müssen. Außerdem wird ja auch noch von „Grünem Wasserstoff“ als Ersatz für die anderen Endenergieträger (Industrie, Raumheizung, Verkehr usw.) geträumt.

Ausblick auf die kommenden Dekaden

Die Studien gehen von einem Anstieg des Endenergieverbrauches um 12% bis 2030 und um 27% bis 2050 aus. Das dürfte die „Grünen Khmer“ vom Schlage Trittin/Hermann nicht sehr freuen. Geht man von der Relation zwischen Weltenergieverbrauch und Deutschland aus, wird daran auch die komplette Deindustrialisierung Deutschlands nicht viel ändern. Der Rest der Welt wird sich nicht zurück entwickeln wollen, sondern gern die Produktion und die Arbeitsplätze und damit den Wohlstand Deutschlands übernehmen.

Der Stromverbrauch wird sich überproportional mit einer Wachstumsrate von geschätzt 2,4% pro Jahr entwickeln und sich bis 2050 gegenüber heute verdoppeln – „Klimakrise“ hin oder „Klimakrise“ her.

Die Elektrifizierung der Welt als der Wohlstandsschöpfer schlecht hin, muß (Bevölkerungswachstum) und wird (streben nach Wohlstand) sich weiter fortsetzen. Die Studien gehen deshalb von einer Steigerung des Anteils an der Endenergie um zehn Prozentpunkte aus. Darin sind so Seltsamkeiten, wie die komplette Umstellung auf E-Mobilität, noch gar nicht enthalten.

Entwicklung des Bestandes

Zwei von drei Reaktoren sind seit mehr als dreißig Jahren in Betrieb. Auch diese Studie ging daher von einer baldigen Außerbetriebnahme aus. Die Zeiten können sich jedoch schnell ändern: Seit dem Überfall Russlands auf die Ukraine ist eine sichere Energieversorgung schlagartig in den Mittelpunkt gerückt. Selbst in Deutschland – dem Kernland der „Atomangst“ – wird über eine längere Betriebsdauer plötzlich offen diskutiert. In Belgien hat man buchstäblich die Notbremse gezogen und fast schon abgeschaltete Reaktoren (die in Deutschland als Schrottreaktoren tituliert werden) um zehn Jahre verlängert. Selbst in GB will man man eigentlich ans (wirtschaftliche) Ende gekommene Reaktoren noch einmal flott machen. Es sind die gestiegenen Strompreise, die alle Wirtschaftlichkeitsrechnungen zu völlig neuen Ergebnissen führen. Dies gilt weltweit, wie das Umdenken in USA, Kanada, Korea und Japan zeigt. Dort will man Laufzeiten verlängern bzw. vorübergehend abgeschaltete Reaktoren (Fukushima) schneller wieder in Betrieb nehmen, um die Nachfrage nach Erdgas zu senken.

In diesem Zusammenhang ist es wichtig, der Propaganda der „Anti-AKW-Gruppen“ und deren Vertreter im Bundestag und in der Bundesregierung entgegen zu wirken: Es gibt bei Kernkraftwerken kein Verfallsdatum. Sie werden ständig überprüft und nicht nur „sicher“ gehalten, sondern sogar modernisiert (Nachrüstung). Dafür sind gewaltige Investitionen erforderlich, die in jedem Einzelfall auf ihre Sinnhaftigkeit überprüft werden müssen. So kosten z. B. die Generalüberholungen der CANDU-Reaktoren mehrere Milliarden US-Dollar. Man erhält dafür eine Flotte neuwertiger Kernkraftwerke, die für mehrere Jahrzehnte weiter ihren Dienst verrichten können. Es gibt keine technische, sondern nur eine wirtschaftliche Lebensdauer. Sie ist dann erreicht, wenn laufende Reparaturen oder Kosten für Nachrüstungen die Kosten eines Neubaus überschreiten. Dabei muß ein Energieversorger alle möglichen Technologien und das Gesamtsystem im Blick behalten. Vor einigen Jahren glaubte man in den USA, daß Gaskraftwerke wegen der geringen Investitionen sinnvoller seien. Ein gewaltiger Irrtum, wie die hohen Betriebskosten durch stark gestiegene Erdgaspreise heute zeigen. Erdgas war nur deshalb in den USA so billig, weil man technisch noch nicht in der Lage war (Bau von LNG Anlagen), das Gas zu Weltmarktpreisen zu verkaufen. Das süße Gift der Subventionen führte zu immer mehr Windkraftanlagen und Photovoltaik. Die Nebenkosten (z.B. Netzausbau) und die Backup-Kosten (Dunkelflaute) ließen die Strompreise stark ansteigen. Hinzu kamen auch noch politische Maßnahmen („Klimaschutz“). All das, wird Länder ohne eigene „billige“ fossile Vorkommen – wie z. B. Deutschland – noch viel brutaler treffen.

Einordnung

In der Folge der 1970er Ölkrise wurden 40% der Reaktoren gebaut, die heute noch in Betrieb sind. Der Überfall auf die Ukraine könnte ähnliche Reaktionen auslösen: Angst vor Erpressung und stark gestiegene Energiepreise. Die Erdgaspreise werden erst – wie damals die Ölpreise – wieder merklich sinken, wenn das Angebot deutlich erhöht wird. Eine sinkende Nachfrage durch eine weltweite Rezession wird nicht so durchschlagen, da Erdgas vornehmlich im Wärmemarkt eingesetzt wird. Russland hat sich für Jahrzehnte selbst aus dem Weltmarkt katapultiert. Kein Land wird sich jemals wieder so abhängig machen, wie Deutschland. Bis Russland die alten Mengen wieder liefern kann, muß es erstmal eine vergleichbare LNG-Struktur wie die USA oder Australien aufbauen. Dafür fehlt es ihm aber an der Technologie und vor allem an Kapital. Die jetzige Situation, daß die anderen Produzenten den Ausfall in Europa decken müssen, wird somit schon aus technischen Gründen länger anhalten. Das Modell der wetterabhängigen Stromversorgung mit billigen Erdgaskraftwerken als Backup ist damit mausetot. Aus diesem Grund ist mit anhaltend hohen Strompreisen in Europa zu rechnen. Ab jetzt wird gnadenlos der Deckel für „Die-Sonne-schickt-keine-Rechnung“ präsentiert. Will man auch noch das Narrativ von der „menschengemachten Erderwärmung“ aufrecht erhalten, bleibt der Fluchtweg in die Kohle versperrt. Wer mehr Windenergie und Photovoltaik fordert, löscht mit Benzin. Wer von „Grünem Wasserstoff“ als Speicher und „Wasserstoff-ready-Turbinen“ für die Dunkelflauten schwadroniert, wirft noch eine Stange Dynamit zusätzlich ins Feuer.

Völlig irrsinnig ist es aber, wenn man in „höchster Erdgasnot“ auch noch drei Kernkraftwerke (Emsland, Isar 2, Neckarwestheim 2) abschaltet. Sie haben zusammen eine elektrische Nettoleistung von 4049 MW. Dies ist ein dauerhafter Schritt, bei dem nur der Ersatz durch teures Erdgas möglich ist, da man ja auch so schnell wie möglich aus der Kohle aussteigen will. Dafür wird man zukünftig jede Stunde mindestens 738 000 Kubikmeter Gas zusätzlich aus LNG verfeuern müssen. Dies ist noch konservativ gerechnet, weil hier angenommen wurde, daß Grundlast durch Grundlast (Gas und Dampf Kombikraftwerk) ersetzt wird. Will man nur die Dunkelflauten überbrücken – was ja das erklärte Ziel unserer Regierung ist – ist man sehr schnell bei deutlich über eine Million Kubikmeter Erdgas in jeder Betriebsstunde. Will man Wasserstoff einsetzen, ergibt das etwa 2,5 Millionen m3 in der Grundlast bzw. weit über 4 Millionen m3 Wasserstoff in jeder Stunde Lastfolgebetrieb. Noch Fragen Herr Habeck?

Kann die Ukraine Deutschland retten?

Deutschland rast immer schneller dem Abgrund entgegen. So geht das halt mit dem Interventionismus. Am Anfang stand die – wie immer gut gemeinte – Idee, „Alternative Energien“ nutzbar zu machen. Da diese aber keiner so richtig haben wollte, hat man sie mit Milliarden subventioniert. Das ganze wurde als Anschubfinanzierung verbrämt, so wie das gute Drogenhändler halt machen. Heute gibt es ein gigantisches Netzwerk von Schlangenölverkäufern und mitverdienenden Politschranzen. Um dem Ganzen noch die Krone aufzusetzen, verunglimpfen sie das auch noch als Marktwirtschaft. Hätten sie sich doch besser mal mit dem Fluch der Planwirtschaft nach dem Zusammenbruch der „DDR“ beschäftigt. Versuchen Laiendarsteller den Markt mit Dumpingpreisen und Zwangseinspeisungen auszuhebeln, werden sie zu Zauberlehrlingen. Damit die Illusion aufrecht erhalten werden kann, beginnt die Phase der Feinsteuerung: Heizungen sollen (im Sommer) „richtig eingestellt“ werden, das Duschen eingeschränkt usw. Gleichzeitig plant man Kernkraftwerke abzuschalten und damit noch mehr Strom aus Erdgas zu erzeugen. Schöne neue Welt der Deindustrialisierung. Welches Schräubchen sie auch immer drehen mögen, am Ende wird die Industrie ins Ausland abwandern müssen und breite Schichten der Bevölkerung verarmen.

Was kann und soll mit der Ukraine nach diesem Vernichtungskrieg geschehen? Bereits heute sehen große Gebiete wie viele deutsche Großstädte 1945 aus. Um dieses geschundene Land wieder aufzubauen, sind hunderte Milliarden nötig. Wird die „westliche“ Welt den Willen und die Kraft haben, Russland in die Verantwortung für seine Verbrechen zu nehmen und Reparationen verlangen? Eher wohl nicht – eher nur symbolisch. Dafür gibt es viel zu viele „Putinversteher“, wenn nicht gar Sympathisanten. Andererseits kann man ein so großes Land in unmittelbarer Nachbarschaft nicht einfach zur Wüste erklären. Wohl gemerkt, durchaus im Eigeninteresse. Allein die Ströme der Auswanderer würden Europa an seine wirtschaftlichen Grenzen bringen. Ein Nichtstaat mit all seinen Konsequenzen, würde Europa dauerhaft destabilisieren. Es bleibt gar keine Alternative, die Ukraine muß zum Erblühen gebracht werden. Die meiste Last wird dabei die Bevölkerung selbst tragen müssen, so wie in Deutschland, Japan und Korea einst auch. Der Weg wird auch der Gleiche sein. Nur über Exporte kann das benötigte Kapital ins Land kommen. Nur was sind in der Welt von heute noch die Marktlücken? Die reichhaltige Landwirtschaft sicher nicht, da sie schon vorher nicht für breiten Wohlstand reichte. Es kann nur eine – wie auch immer geartete – Industrie sein. Die Orks aus der Steppe können zwar das Land verwüsten, aber nicht die Gehirne der Menschen leeren. Die Basis für eine rasche (Re)Industrialisierung ist mehr als vorhanden. So verfügte die Ukraine z. B. schon vor dem Krieg über eine kerntechnische Industrie.

Deutschland als Kunde

Wenn Deutschland weiterhin seinem religiösen Wahn folgen will, ein Industrieland nur mit Wind und Sonne betreiben zu wollen, wird es auf seine Nachbarn zur Bereitstellung eines elektrischen Netzes angewiesen sein. Wohl gemerkt, nur um weiter zu existieren – von Wohlstand wird dann keine Rede mehr sein. Wer von unseren (westlichen) Nachbarn kann aber dafür in Frage kommen? Sie alle brauchen Neubauten als Ersatz für ihre alternde Kraftwerksflotte. Zusätzliche Kraftwerke ausgerechnet für die moralinsauren Deutschen, die doch vorangehen wollten? Die ihren Nachbarn (Belgien, Frankreich) immer Verantwortungslosigkeit vorgeworfen haben wegen ihrer „Schrottmeiler“ und „Atomruinen“. Hilfe und Wohlwollen ist nur aus dem Osten zu erwarten. Diese Länder waren immer positiv gegenüber der Kernenergie eingestellt und haben ihr Recht auf Kernenergie immer nachhaltig gegenüber den Bürokraten aus Brüssel verteidigt.

Polen

Polen ist ein sich weiter entwickelndes Land mit knapp 40 Millionen Einwohnern. Der Stromverbrauch betrug 2013 150 TWh. Er wurde zu rund 48% aus Steinkohle und rund 24% aus Braunkohle gewonnen. Polen ist Kohleland. Es verfügt über keine wesentlichen anderen Quellen. Wind- und Sonne ist aus geographischen Gründen nur eingeschränkt möglich. Die Förderung von Kohle ist durch immer ungünstigere Bedingungen und Umweltbelastungen nicht länger zu halten. Die staatlichen Subventionen belasten den Haushalt.

Polen hat sich folgerichtig für Kernenergie entschieden. Es wurde beschlossen sechs Reaktoren, an drei Standorten, mit einer Leistung zwischen 6 und 9 GW zu bauen. Darüberhinaus gibt es mehrere private Initiativen zum Bau von SMR zur Versorgung von Industrieanlagen. Westinghouse Electric Company führt bereits eine Grobplanung (Front-End Engineering and Design; FEED) auf der Basis ihres AP1000 durch, die von der United States Trade and Development Agency (USTDA) gefördert wird. Darüberhinaus sind auch die Franzosen und Koreaner zur Abgabe eines Angebots aufgefordert. Bechtel hat sich mit zwölf polnischen Unternehmen und Toshiba (für Turbosatz und Dampferzeuger) über die Bildung eines Konsortiums für den Bau verständigt. Parallel werden aktuell noch enge Beziehungen zwischen Westinghouse, Hyundai und Korea Electric Power Corp (KEPCO) bezüglich des AP1000 geknüpft. Ein Schelm, wer Zusammenhänge mit der aktuellen politischen Lage sieht.

Tschechien

In Tschechien werden bereits 34% der elektrischen Energie aus Kernenergie erzeugt. Die Kohleförderung soll aufgegeben werden. Als nördliches Binnenland scheidet Wind und Sonne praktisch aus. Deshalb wurde ein Ausbau der KKW Dukovany und Temelin beschlossen. Auch hier ist Westinghouse mit einer Absichtserklärung vertreten. Man hat sie mit zehn tschechischen Unternehmen zum Bau eines Blocks in Dukovani abgeschlossen.

Ukraine

Die Ukraine verfügt über 15 Reaktoren an vier Standorten. Im Jahre 2016 erzeugten sie 153,6 Mrd. kWh. Sie verfügt damit über Betriebserfahrungen seit den 1970er Jahren. Alle Reaktoren sind Druckwasserreaktoren russischer Bauart. Seit einigen Jahren laufen sie mit Brennstäben aus schwedischer Fertigung. Die Bevölkerung ist der Kernenergie gegenüber positiv eingestellt. Das ist um so bemerkenswerter, da sie die schrecklichen Erfahrungen mit Tschernobyl machen mußte. Seit einem Monat ist das Netz von Rußland abgekoppelt und mit dem europäischen Netz synchronisiert.

Schon vor dem Krieg wollte man die Blöcke Khmelnitsky 3 und 4 mit der Hilfe von Westinghouse fertigstellen. Man wollte dabei auf eingelagerte Komponenten des gescheiterten Projekts V. C. Summer zurückgreifen. Im Juni 2022 führte man mit Westinghouse Gespräche über den Bau von 5 bis 9 Reaktoren des Typs AP-1000. Ferner soll ein nukleares Zentrum errichtet werden, mit einer Brennelementefabrik zur Versorgung aller ukrainischen Reaktoren. Durch den Zubau von 11 GWel könnte der Anteil der Kernenergie von derzeit 53% auf über 70% gesteigert werden.

Der gedachte Verbund

Fast man nun die Pläne von Polen, Tschechien und der Ukraine zusammen, kommt man auf rund 20 Reaktoren. Bezieht man den Bedarf von Deutschland an zuverlässiger und preiswerter elektrischer Energie ein, ergibt sich ein Ausbauprogramm wie weiland in Frankreich. Man könnte gestaffelt produzieren: Strom von der Ukraine nach Polen, Tschechien etc. und von dort Lieferungen an Deutschland. So käme man ohne neue Fernleitungen und große Transportverluste aus. Zusätzlich kann man noch die Zeitverschiebung nutzen.

Der volkswirtschaftliche Sinn für die Ukraine läge in der kurzfristigen Schaffung eines immer mehr gefragten Exportprodukts: Elektrische Leistung und Energie. Man könnte kurzfristig mit der Lieferung aus dem bestehenden Kraftwerkspark beginnen und alte Kraftwerke schrittweise durch den Zubau ersetzen. Wichtig dabei ist, daß möglichst schnell selbst verdiente Devisen ins Land fließen. Devisen, die dringend für den Wiederaufbau von Industrie und Infrastruktur (nach dem Ende des Krieges) gebraucht werden. Gleichzeitig schaffen die Arbeitsplätze der Exporte weitere Nachfrage im Inland. Man entsinne sich mal der Situation in Deutschland nach 1945: Zehntausende bauten den „Käfer“, einen Exportschlager, der ganze Regionen zum Wiedererleben erweckte. Jeder Reaktor erfordert schon während der Bauzeit mehrere Tausend Arbeitskräfte vor Ort, die irgendwo schlafen und essen und mit den Dingen des täglichen Bedarfs versorgt werden müssen. Solche Großbaustellen sind überall auf der Welt Oasen der Prosperität, die weit in ihr Umland ausstrahlen. Hinzu kommt, daß die Arbeitsplätze in der Kernenergie „gut bezahlt“ sind – bezogen auf das landesübliche Niveau. Die Frage ist nur, wieviel Kapital ist erforderlich und wie kann es beschafft und finanziert werden.

Overnight Capital Cost

Dies ist ein Begriff aus der Anlagentechnik, auch EPC-Kosten (Engineering, Procurement and Construction) genannt. Das ist der Preis für eine „Errichtung über Nacht“, also ohne Finanzierungskosten über die Bauzeit. Für den AP1000 gibt es Daten aus den Projekten Sanmen 1 und 2 FOAK (First Of A Kind) und Haiyang 1 und 2 in China und Vogtle 3 und 4 in USA. Die „Kosten über Nacht“ betrugen 2000 USD/kW in China und 4300 USD /kW in USA (Basis 2018). Auf den ersten Blick erkennt man die unterschiede im Lohn- und Materialpreisniveau zwischen China und USA. Vereinfachend wird hier einfach der Mittelwert und eine Netto-Inflation (Differenz zwischen Inflation und Einsparung durch Serienfertigung) von 20% angesetzt. Man kann so von 3800 USD/kW ausgehen.

Owner’s Cost

Irgendjemand muß für die Projektentwicklung, das Management der Baustelle mit all ihren Einrichtungen, der Organisation der Finanzierung, den Gebühren, den gegenseitigen Verbindungen usw. aufkommen. Letztendlich bezahlt das alles der Kunde. Diese Kosten können je nach Projekt und Land sehr unterschiedlich ausfallen. Aus Erfahrung im Kraftwerksbau wird hier ein Prozentsatz von 40% der EPC-Kosten angesetzt. Das ergibt rund 1500 USD/kW. Sodaß man von Errichtungskosten von rund 5300 USD/kW (ohne Finanzierung) ausgehen kann.

Die Finanzierung

Rechnungen werden über das gesamte Projekt ständig geschrieben. Sie müssen fristgerecht bezahlt werden. Es muß deshalb eine Kreditlinie für die gesamte Bauzeit aufrecht gehalten werden. Jeder ausgezahlte Betrag muß mit Zins und Zinseszins bis zur Fertigstellung und Übergabe an den Kunden aufsummiert werden. Hier spielt die Bauzeit eine entscheidende Rolle: Laufen Projekte wie Vogtle völlig aus dem Ruder, kommt es zu sehr viel höheren Kosten. Bauzeiten zwischen 60 und 100 Monaten erscheinen realistisch. Es liegen bisher schon die Erfahrungen von vier Reaktoren vor und weitere 2 in USA und vier (CAP1000) in China befinden sich noch im Bau. Baut man zeitlich versetzt (immer eine Doppelanlage) und hat erst mal qualifizierte Teams für alle Gewerke zusammen, sind Bauzeiten unter 5 Jahre leicht erzielbar. Wie gesagt, wirkt sich das ganz entscheidend auf die nötigen Investitionen aus.

Die teuerste Finanzierung ist eine, ausschließlich über Fremdkapital. Dies ist der (gescheiterte) Weg von Hinkley Point C. Die Banken verlangen hohe Risikoaufschläge. Bei der Übergabe an den Auftraggeber hat sich ein riesiger Schuldenberg (Zinseszinsen) angesammelt. Dieser Schuldenberg belastet bis dahin den Generalübernehmer (GÜ), der infolgedessen nur wenige Projekte gleichzeitig durchstehen kann. Am Ende ergibt sich für den Stromkunden ein unnötig hoher Preis. Er zahlt mit seiner Stromrechnung hauptsächlich für den Schuldendienst.

Aus diesem Grund kehrt man in GB bei dem Projekt Sizewell C wieder zu einem Bauherrenmodell zurück. Die angefallenen Baukosten werden zu vereinbarten Fertigstellungsterminen von dem Energieversorger bezahlt. Dem GÜ wird ein gewisser Prozentsatz für seine Leistungen eingerechnet. Dies entspricht einer Investition in Eigenkapital durch alle Stromkunden in ein Kernkraftwerk. Vorteil für die Stromkunden ist der Wegfall der enormen Finanzierungskosten. Nachteil ist die „Vorkasse“.

Im Zusammenhang mit der Situation in Deutschland könnte das Mankala-Modell, wie beim finnischen Kernkraftwerk Hanhikivi, besonders lukrativ sein. Dabei bilden mehrere Unternehmen eine Zweckgesellschaft zum Bau eines Kernkraftwerks. Sie übernehmen die Baukosten anteilig. Geht das Kraftwerk ans Netz, bekommt jeder Anteilseigner einen seiner Beteiligung entsprechenden Anteil elektrischer Energie zu einem Preis, der nur die angefallenen Kosten deckt. Er kann diese (kostengünstige) Energie selbst nutzen oder aber weiter verkaufen. Solche Anteile können auch sehr verlockend für z. B. Pensionskassen sein. Man erhält für seine Anlage einen stetigen, gut kalkulierbaren Zahlungsstrom über den Verkauf der Strommenge, an den Strombörsen oder an Stadtwerke etc.

Zusammenfassung

Es geht hier nur um einen Weg aus der verbockten Energiewende. Die Betonung liegt dabei auf „einen Weg“. Es gibt sicher noch viele andere, wenn man sich nur von der religiösen Fixierung auf Wind- und Sonne frei macht. Würde man 20 AP1000 Reaktoren bauen, käme man gerade auf den Betrag, den allein Deutschland als „Sondervermögen“ in die Bundeswehr steckt. Auf europäischer Ebene eher ein Trinkgeld. Bezüglich der Ukraine könnte „Der Westen“, vertreten durch USA, Korea, Japan und wer sonst noch will, seine Verbundenheit deutlich machen. Die Ukraine könnte – wie einst West-Berlin – zum Schaufenster der freien Welt gemacht werden – langfristig mit dem gleichen Effekt.

Man sollte auch die Binsenweisheit, daß die Ausgaben des einen, die Einnahmen der anderen sind, dabei nicht aus den Augen verlieren. Es wäre ein gigantisches Konjunkturprogramm für Osteuropa mit der Ukraine. Es liefert nicht nur preiswerte elektrische Energie, sondern schafft auch gut bezahlte Arbeitsplätze mit Zukunftsgarantie in einer Hochtechnologie-Branche.

Das Ende einer endlosen Geschichte

Am 21. Dezember um 3:22 wurde der Reaktor Olkiluoto 3 endlich kritisch. Dies ist international der Zeitpunkt, an dem (definitionsgemäß) ein Kernkraftwerk fertiggestellt ist. Gleichwohl schließt sich noch eine stufenweise Leistungssteigerung (5%, 30%, 100%) mit entsprechenden Tests unter den Augen der STUK (Finland’s Radiation and Nuclear Safety Authority) vor Ort an, bis das Kraftwerk endgültig an den Kunden übergeben wird. Nach Plan beginnt die Stromeinspeisung ins Netz bei 30% Leistung Mitte Februar und ab Juni 2022 der Regelbetrieb. Der Direktor Marjo Mustonen von TVO (Teollisuuden Voima Oyj) bemerkte treffend: „Dieser Moment wird für immer in Erinnerung bleiben, an die geleistete harte Arbeit um dieses Projekt zu verwirklichen.“

Die Geschichte

Das finnische Parlament beschloss 2002 den Bau eines weiteren Reaktors neben den zwei Siedewasser-Reaktoren (2 x 880MWel, Inbetriebnahme 1982) in Olkiluoto. Damit sollte der Anteil der Kernenergie von derzeit 14% auf 40% gesteigert werden. Im Dezember 2003 wurde der Vertrag über den schlüsselfertigen Bau eines EPR (1600 MWel) mit der Arbeitsgemeinschaft aus Areva und Siemens abgeschlossen. Baubeginn war 2005, geplante Fertigstellung 2009. Damit nahm das Elend seinen Lauf. Schon im Dezember 2008 hat diese Arbeitsgemeinschaft ein Schiedsverfahren vor der Internationalen Handelskammer (ICC) eingeleitet. Ein ungewöhnlicher Schritt, der die Atmosphäre nicht gerade verbessert haben dürfte. Bis Juni 2011 hat Areva/Siemens seine Forderungen gegenüber TVO auf 3,4 Milliarden hochgeschraubt. Darin waren 1,4 Milliarden Strafzinsen bis 2015 enthalten und 140 Millionen entgangener Gewinn (?). TVO hielt mit 2,6 Milliarden für Verluste und zusätzliche Kosten dagegen. Die Arbeitsgemeinschaft sollte gesamtschuldnerisch haften, da Areva ausgegründet wurde und Siemens das Kernkraftgeschäft aufgab. Zur Verteidigung behauptete Areva/Siemens, daß TVO für einige Verzögerungen verantwortlich sei.

Im März 2018 wurde schließlich ein Vergleich – ziemlich leichtfertig, wie sich später herausstellte – geschlossen. Die Arbeitsgemeinschaft mußte 450 Millionen an TVO als Entschädigung für die (mehrfach) nicht eingehaltenen Termine zahlen. Areva verpflichtete sich, alle technischen und finanziellen Ressourcen für die Fertigstellung bereit zuhalten. Kann die Arbeitsgemeinschaft die Anlage bis Ende 2019 nicht fertigstellen – was eingetreten ist – sollen zeitabhängig Verzugsstrafen bis maximal 400 Millionen von Areva/Siemens zusätzlich an TVO gezahlt werden.

Ist Olkiluoto nun teuer, wenn ja, für wen?

Kein Unternehmen ist gezwungen Kernkraftwerke zu bauen. Jedes Unternehmen muß seine Preise voll verantwortlich selbst kalkulieren. Dies gilt für den kleinen Handwerksmeister, wie für internationale Konzerne. Wird auf eine Ausschreibung ein Angebot abgegeben, so gelten die Preise der Konkurrenten ohne wenn und aber. Wäre das nicht so, könnte man sich (sehr aufwendige) Ausschreibungen komplett sparen. Solche Ausschreibungen kosten Hunderttausende. Alle Verlierer können sich ihre Kosten in den Schornstein schreiben. Deshalb viel der Spruch der ICC so eindeutig aus: Selbst in einer zehnjährigen Auseinandersetzung konnte die Arbeitsgemeinschaft keine gerechtfertigten Nachträge nachweisen und deshalb gilt der Preis und die vereinbarten Termine. Ein Schaden ist allerdings dem Kunden durch die mehrfach verzögerte Fertigstellung (Stromkauf, Personalkosten etc.) entstanden. Deshalb die zugesprochene Entschädigung über 450 (Termin 2009) und zusätzlich 400 Millionen (Termin 2019) für TVO.

Fairerweise muß man erwähnen, daß die Kombinatsleitung von Siemens schon frühzeitig erkannte, daß sie nicht (mehr) in der Lage war, solche Projekte durchzuführen. Sie zog sich auf die Ebene der Zulieferung von Komponenten und „angepaßte Technik“, wie Windmühlen, zurück. Ob dieser Weg erfolgreich sein kann, wird die Zukunft zeigen. Framatome (Areva) kämpft sich unter gewaltigen Kosten in den Markt zurück. Hinkley Point C scheint die Wende zu bringen – zumindest was die Einhaltung von Terminen betrifft. Ob allerdings jemals eine konkurrenzfähige Kostenstruktur erreicht wird, steht auf einem anderen Blatt. Wahrscheinlicher ist das das Ende dieses Reaktortyps.

Was bitte, soll an einem Preis (Fertigstellung 2009) von 3,2 Milliarden Euro für ein Kernkraftwerk mit 1600 MWel (2000 EUR/KW) teuer sein? Ich glaube, wenn TVO könnte, würden sie gern noch einmal ein solches Kraftwerk bauen. Selbst wenn man die zusätzlichen Personal- und Finanzierungskosten, Umbauten etc. mitrechnet, kommt man auf etwa 5,5 Milliarden Gesamtkosten (3400 EUR/KW) für das Projekt. Zufällig die gleiche Größenordnung wie das Kernkraftwerk in den Vereinigten Emiraten mit einem spezifischen Preis von umgerechnet 3167 EUR/KW. Das alles für eine Energiequelle mit mindestens 60 Jahren Lebensdauer, einer Arbeitsauslastung von wahrscheinlich 90% und stets die geforderte Leistung liefernd – auch des Nachts und bei Flaute.

Lehrreich ist nun, was die „Atomexperten“ und ihre Haltungsjournallie – ganz besonders im Staatsfernsehen – immer aus Olkiluoto machen. Sie überbieten sich in „Geschätzten Kosten“, zitieren sich dabei immer gegenseitig und kommen unisono zum (gewünschten) Ergebnis, daß „Atomenergie“ die teuerste von allen ist. Sie sind dabei so beratungsresistent geworden, daß sie sogar verdrängen, daß die Stromkosten überall dort gering sind, wo der Anteil der Kernenergie hoch ist. Sie sind bei ihren Vergleichen aber so schlau, daß sie immer nur von „geschätzt“ sprechen, munter Leistung und Arbeit durcheinander wirbeln oder dreist „Externe Kosten“ erfinden, damit man sie nicht als Lügner bezeichnen kann.

Versuch einer Ursachenanalyse

Es wurden mehrfach neue Termine für eine Fertigstellung genannt und immer wieder überschritten. Schon diese Tatsache spricht für sich. Ganz offensichtlich gab es keine funktionierende Bauplanung. Man hatte ganz offensichtlich nicht einmal eine Vorstellung vom erforderlichen Arbeitsaufwand und den nötigen Abläufen. Es ging zu, wie beim Bau des Berliner Flughafen (BER). Das es auch ganz anders gehen kann, stellen russische, koreanische und chinesische Firmen immer wieder unter Beweis.

Die mangelnde Dokumentation führte immer wieder zu Konflikten mit der Genehmigungsbehörde STUK. Ein Beispiel hierfür ist das Drama um die Großkomponenten. Nachdem Areva selbst Mängel in der französischen Schmiede festgestellt hatte, wurden genauere Dokumentationen und Nachprüfungen von der STUK verlangt. Zum Glück waren keine Neuanfertigungen nötig, da z. B. das Reaktordruckgefäß noch aus Japan geliefert worden war. Um nur mal ein Gefühl für den Aufwand zu geben, sei beispielhaft der Antrag des Betreibers TVO für die Betriebsgenehmigung von der STUK genannt: Er umfaßte 130 000 Seiten und die STUK benötigte 18 Monate für die Prüfung.

Bereits im April 2016 begann der Übergang von der Bau- zur Testphase auf der Baustelle. Man glaubte damals noch, alle Elektro- und Rohrleitungsarbeiten bis Ende 2016 abschließen zu können. Im Juni 2017 begannen die Kalttests (Druckprobe, Pumpenstart etc.). Im Oktober 2017 wurde der Fertigstellungstermin von Ende 2018 auf Mitte 2019 wegen Umstrukturierungen bei Areva verschoben – wohl eher eine Umschreibung für einen abgewendeten Konkurs.

Im Dezember 2017 begannen die Warmtests. Das Verhängnis nahm seinen Lauf. Ein Konstruktionsfehler im Druckhaltesystem führte zu Rohrleitungsschwingungen. So etwas dürfte eigentlich nicht passieren, denn Rohrleitungsbau ist kein Hexenwerk. Es mußten Schwingungsdämpfer konstruiert und getestet werden und alles neu berechnet werden. So etwas dauert Monate und anschließend müssen auch noch alle Tests wiederholt werden. Personalmangel ist vorprogrammiert, denn Spezialisten sind überall gefragt. Dadurch dauerten die Tests zwei Monate länger als gedacht. Unzählige Änderungen am Elektro-, Instrumenten- und Steuerungssystem wurden erforderlich. Es wurden Ventile mit Rissen gefunden, die Notstromdiesel hatten diverse „faule“ Teile. All das zeugt von mangelhafter Qualitätskontrolle. Die Ersatzteile brauchten Monate. Das wiederum löst weitere Verzögerungen aus. Auf Grund der langen Stillstandszeiten sind zusätzliche Wartungsarbeiten nötig. So traf die Inbetriebnahme der Dampfturbine weitere drei Monate Zusatzarbeiten.

Ausblick

Man kann nur wünschen, daß die Franzosen möglichst schnell in Tritt kommen. Einen Ausreißer wie Olkiluoto kann man sich erlauben, wenn man ihn als Prototyp wertet. Ein zweiter – offensichtlich noch schlimmerer – Fall wie Flamanville, ist schon unverzeihlich. Nur ein Staatsbetrieb kann so etwas überhaupt wirtschaftlich überleben. Auffällig ist, daß die beiden EPR in China relativ glatt liefen. Offensichtlich ist das auf die Qualität der chinesischen Ingenieure und Facharbeiter zurückzuführen. Wenn jetzt nicht die Baustelle in GB endlich durchläuft – Kostenüberschreitungen liegen schon vor – braucht Frankreich an den kommenden Ausschreibungen in Polen und Tschechien gar nicht erst teilnehmen. Da würde dann nicht einmal ein Dumping-Angebot helfen. Eher können sie mit einem überhöhten Preis starten, um wenigstens das Gesicht zu wahren und Zeit für einen Neuanfang zu gewinnen.

Bill Gates Weg zu Natrium

Bill Gates hat schon frühzeitig die Bedeutung der Energieversorgung erkannt. Anders, als viele andere, hat er auf die Zukunft der Kernenergie gesetzt und bereits 2006 sein Unternehmen TerraPower gegründet. Es sollte kein Reaktorhersteller, sondern ein Unternehmen für Innovationen sein. Heute, nach eineinhalb Jahrzehnten scheint sich seine Vision durch den Bau eines Kernkraftwerks zu verwirklichen. Bill Gates war immer eine Verkaufskanone, der die Nachfrage des Marktes sehr gut einschätzen konnte. Er brachte die Betriebssysteme MS-DOS und Windows zum Betrieb von Schreibtisch-Computern über uns – ein Milliardengeschäft und es entstand eine ganz neue Industrie. Übertragen auf die Kernenergie lautete sein Konzept:

  • Weg von dem zentralen Großkraftwerk, hin zu dem „persönlichen“ Kleinreaktor in der Gemeinde.
  • Weg von der durch Hollywood verunglimpften Megawatt-Maschine des Leichtwasser-Reaktors, hin zu einer unvorbelasteten (neuen) Technik.
  • Umschiffung der „Atommüll-Problematik“.
  • Kein Kampf gegen die populäre Wind- und Sonnenenergie, sondern deren Vereinnahmung durch die Ausnutzung ihrer grundlegenden Schwäche der Dunkel-Flaute.
  • Geringer Preis durch große Serien.

Der Traveling Wave Reactor (TWR)

Der TWR spukt schon seit den 1950er Jahren durch die Fachwelt. Das Konzept geht von einer Spaltung mit schnellen Neutronen aus. Der Trick besteht nun darin, eine Zone mit hoher Anreicherung zu betreiben, die von abgereichertem Uran umgeben ist. Der Neutronenüberschuss in dieser Spaltungszone erbrütet in der angrenzenden Zone mit abgereichertem Uran Plutonium. So wie Spaltstoff verbraucht bzw. erbrütet wird, wandert die Welle durch den Reaktorkern. Bei einer linearen Anordnung wird gern die Analogie einer abbrennenden Kerze benutzt. Bei einer klassischen Anordnung mit Brennstäben in konzentrischer Schichten wird der Wanderweg noch komplexer und schwieriger vorhersehbar. Der Charme liegt nun darin, daß man theoretisch einen Reaktor bauen könnte, der mit nur einer Beladung versehen ist und sein Uran vollständig aufbrauchen könnte. Es würde keine Wiederaufbereitung benötigt und es bliebe nur (wenig) „nukleare Asche“ zur Endlagerung übrig. Leider konnte bisher niemand einen solchen Reaktor bauen.

Eine beträchtliche Vereinfachung kann man durch den Übergang zu einer „stehenden Welle“ erzielen. Dabei werden in bestimmten Zeitabständen die Brennelemente – wie bei einem Leichtwasserreaktor – umgelagert, aber nicht ausgelagert. Die Spalt- und Brutzonen bleiben dadurch örtlich definiert. Diese Umlagerung geschieht mit einer Lademaschine im Reaktor, ohne diesen öffnen zu müssen. Der gesamte Brennstoff verbleibt für (geplant) 40 Jahre im Reaktor. Es befinden sich sogar einige „frische“ Brennelemente mit abgereichertem Uran im Reaktor als Reserve, für den Fall, daß beschädigte Brennelemente ersetzt werden müssen. Während dieses ein bis zwei Wochen dauernden “fuel shuffling” muß der Reaktor allerdings außer Betrieb bleiben. Das gezielte Durchmischen der Brennelemente dient drei Zwecken:

  1. Der Kontrolle der Leistungsverteilung im Reaktorkern und des Abbrandes, damit die Brennstäbe stets in ihrem sicheren Betriebsbereich verbleiben. Eine technische Herausforderung ist dabei die unterschiedliche Wärmeproduktion in den Spalt- und Brutzonen, die zu unterschiedlichen lokalen Kühlmitteltemperaturen führen. Um diese zu vergleichmäßigen, müssen die Strömungsgeschwindigkeiten entsprechend angepaßt werden. Die Feineinstellung soll durch verstellbare Drosselkörper in den Brennelementen geschehen.
  2. Durch die Bildung von Plutonium verändert sich (lokal) die Reaktivität. Das Umsetzen in Verbindung mit Regelstäben sorgt für die Einhaltung der Betriebszustände.
  3. Die Lebensdauer des Kerns wird vergrößert. Sie hängt maßgeblich von der Anzahl der Brennelemente mit abgereichertem Uran im Kern ab.

Der Betrieb und die Konstruktion von TWR ist erst durch die heute (kostengünstig) verfügbare Rechenleistung möglich. Üblicherweise muß der Kern in 20 000 bis 40 000 Zellen örtlich unterteilt werden. Für jede Zelle wird über Monte-Carlo Simulationen die Absorption der Neutronen berechnet. Dabei müssen die Querschnitte von mehreren hundert Spaltprodukten und deren Zerfallsketten (etwa 3400 Nuklide) zeit- und energieabhängig berücksichtigt werden. TerraPower verwendet dafür ein Computer-Cluster mit 1104 Kernen, die parallel rechnen können.

Einschub: Die Nachhaltigkeit

Was auch immer mit dieser Förster Erkenntnis bei der Kernenergie genau gemeint sein mag, beziehen sich doch „Atomkraftgegner“ meist auf die Uranvorräte und die Energiekosten. Bekannt ist der Werbeslogan: „Die Sonne schickt keine Rechnung“ – ganz neben bei, die Uranlagerstätte auch nicht. Bei einem Preis von $50 für ein pound Yellocake (U3 O8), entsprechend $130 pro kg Uran, ergibt das Kosten von $0.0025 pro kWhel bei einem Leichtwasserreaktor. Dies macht lediglich einen Anteil von 5% an den Strom-Gestehungskosten aus. Selbst bei einem TWR ohne Wiederaufbereitung können etwa 50% des abgereicherten Urans genutzt werden. Daraus folgt eine rund 50fache bessere Ausnutzung des Natururans. Der Urananteil sinkt auf vernachlässigbare $0,00005 pro kWhel .

Jetzt zu den Beständen: In 2009 gab es bereits 1 500 000 to abgereichertes Uran und 270 000 to abgebrannter Brennelemente. Bisher „Atommüll“, aber in schnellen Reaktoren nutzbar. Allein im Meer sind 4 Milliarden to Uran gelöst (3,3 Mikrogramm pro Liter). Praktisch eine unerschöpfliche Quelle, da allein die Flüsse über 10 000 to Uran jährlich in die Meere spülen, wiederum gespeist aus der Verwitterung der Erdkruste. Unter Einbeziehung einer Wiederaufbereitung reichen die Vorkommen für mehr als eine Milliarde Jahre, um den gesamten Energiebedarf der heutigen Menschheit zu liefern. Ist das nachhaltig genug? Von Thorium ist bisher noch keine Rede gewesen. Die Sonne brennt auch nur noch 10 Milliarden Jahre, hat aber bereits in ca. 5 Milliarden Jahren die Erde verbrannt.

Der Natrium-Reaktor

Der TWR mutet als ein etwas theoretisches Konzept an, war aber ausreichend genug, um die chinesische Regierung darauf anspringen zu lassen. Im Jahr 2015 unterzeichnete TerraPower mit China National Nuclear Corporation einen Vertrag über den Bau eines TWR als Versuchsanlage nördlich von Peking. Ein genialer Schachzug. Im Jahr 2019 wurde der Vertrag auf Druck der US-Regierung wegen des Diebstahls geistigen Eigentums wieder aufgelöst. Allerdings war nun die US-Regierung unter Zugzwang, zumal TerraPower bereits eine halbe Milliarde in die Entwicklung investiert hatte.

Der Natrium-Reaktor unterscheidet sich von üblichen schnellen Brütern durch einen zusätzlichen Kreislauf aus Solarsalz (Natriumnitrat etc.). Das hat einen sicherheitstechnischen und betriebstechnischen Vorteil: Die Brennstäbe werden durch Natrium gekühlt, das dabei kurzzeitig radioaktiv wird. Noch im Reaktorbehälter befinden sich Wärmeübertrager, die die Energie an einen sekundären Natriumkreislauf übertragen, der nicht mehr radioaktiv ist. Beide Kreisläufe sind nahezu drucklos. Bei einem konventionellen Brüter wird nun die Energie im Dampferzeuger an den unter hohem Druck stehenden Dampfkreislauf übertragen. Durch den hohen Druck kann bei einem Schaden das Wasser in den Natriumkreislauf eindringen und heftig mit dem Natrium reagieren. Beim Natrium-Reaktor gibt der sekundäre Natriumkreislauf seine Energie an einen ebenfalls drucklosen Kreislauf aus Salzschmelze ab. Damit hat man eine klare sicherheitstechnische Schnittstelle: Ab dem Solarsalz ist alles konventionelle Kraftwerkstechnik. Ein entscheidender Kostenfaktor. Der nukleare Teil – mit all seinen Genehmigungs- und Überwachungsanforderungen – ist bei so einem SMR nur klein. TerraPower geht z. B. für seinen Reaktor mit 80% weniger „nuklearem Beton“ aus.

Ein weiterer Grund ist das geplante Eindringen in den Markt für Solarkraftwerke. Schon heute haben die Solarkraftwerke, z. B. in Kalifornien, ernsthafte wirtschaftliche Schwierigkeiten. Da für alle der Sonnenstand gleich ist, produzieren alle zur Mittagszeit den meisten Strom und des Nachts gar nichts. Dies führt zu entsprechend geringen Preisen bei der Netzeinspeisung. Derzeitiger Trend ist daher die Installation von Batteriespeichern, um wenigstens eine Zeitverschiebung von etwa zwei Stunden – weg von der maximalen Produktion, hin zu der Spitzen-Nachfrage im Netz („duck curve“) – zu erzielen. Mehr ist mit Batterien kaum sinnvoll. Hier setzt TerraPower an: Der Natrium-Reaktor soll eine Nennleistung von 345 MWel haben. Er kann aber auch bis auf etwa 240 MWel (z. B. in Schwachlastzeiten in der Nacht) zurück genommen werden, indem er die Wärme teilweise in den Salzspeicher einlagert. In den Zeiten hoher Preise an der Strombörse, kann er für etwa 5 1/2 Stunden die Leistung auf 500 MWel durch zusätzliche Entnahme aus dem Speicher steigern (Hinweis für Connaisseure: Eine Dampfturbine läßt sich im Bereich von 50% bis 100% nahezu ohne Einbußen beim Wirkungsgrad betreiben.).

Wer steht hinter dem Natrium-Reaktor?

Nachdem das China-Abenteuer beendet war, sind GE Hitachi Nuclear Energy und Bechtel massiv in das Projekt eingestiegen. Alle drei zusammen haben sich gemeinsam für das Advanced Reactor Demonstration Program (ARDP) beworben. TerraPower ist der „Erfinder“, GE Hitachi hat Jahrzehnte Erfahrung mit natriumgekühlten schnellen Reaktoren (z. B. PRISM) und Bechtel ist ein erfahrener „Erbauer“ zahlreicher Kernkraftwerke – nicht zuletzt stehen Milliarden Kapital und zehntausende Fachkräfte dahinter. TerraPower und GE Hitachi sind auch mit dem Idaho National Laboratory wegen des Neubaus des „Versatile Test Reactor“ eng verbunden.

Beim Kühlmittel Natrium bietet sich die Verwendung einer metallischen Uran-Zirkon-Legierung für die Brennstäbe an. Anders als bei Leichtwasserreaktoren, die Uranoxid verwenden. Außerdem erfordert die Erstausstattung eine Anreicherung von bis zu 20% U235 in der Spaltzone („Zündung“). Dafür lassen sich diese Brennstäbe später besonders elegant durch Aufschmelzen (Abscheidung aller leicht flüchtigen Spaltprodukte) und elektro-chemische Verfahren reinigen. Man erhält ein Uran-Plutonium-Gemisch, das zu neuen Brennstäben verarbeitet werden kann. Darüberhinaus sind die Plutonium-Isotopen, wegen der langen Verweilzeit im Reaktor, ohnehin völlig ungeeignet zur Waffenproduktion (Proliferation). Fürs erste hat man sich mit Centrus Energy für die Brennstoffentwicklung zusammen getan. Centrus verfügt in seinem Werk in Piketon, Ohio bereits über AC-100M Zentrifugen, die für das Department of Energy (DOE) HALEU (High Assay Low Enriched Uranium) produzieren.

Bereits als potentielle Kunden und Betreiber sind die Versorger PacifiCorp, (eine Tochter des legendären Investors Warren Buffett’s mit seinem Berkshire Hathaway Fond; Großinvestor in Sonnenenergie), Energy Northwest und Duke Energy als Stromversorger mit an Bord.

Kemmerer, Wyoming: Kohle zu Kernkraft

Kemmerer ist eine Kleinstadt, etwa 100 km nordöstlich von Salt Lake City. Das dortige Kohlekraftwerk Naughton (3 Blöcke, 823 MWel) soll 2025 stillgelegt werden. Aus vier Standorten wurde dieses Kraftwerk für den ersten Natrium-Reaktor ausgewählt. Die vorhandene Infrastruktur (Hochspannungsnetz, Kühlwasser etc.) kann weiter genutzt werden. Ferner beabsichtigt man das Betriebspersonal nach erfolgter Umschulung weiter zu beschäftigen. Für den Bau werden etwa 2000 Menschen benötigt, später etwa 250 Dauerarbeitsplätze im Kernkraftwerk geschaffen. Es ist also nicht verwunderlich, daß TerraPower mit offenen Armen empfangen wurde. Wyoming produziert rund 40% der Kohle in den USA, aber die Förderung ist in 2020 um 1/3 gegenüber 2018 eingebrochen.

Man meint es immer noch sehr ernst mit der Weiterentwicklung der Kerntechnik in den USA. Es gibt kaum einen Unterschied zwischen Trump und Biden. Im Oktober 2020 wählte das DOE zwei Typen (Natrium und Xe-100) für sein Advanced Reactor Demonstration Program (ARDP) aus. Diese beiden bekommen jeweils etwa die Hälfte der Baukosten als Fördermittel für ihren ersten Reaktor im kommerziellen Betrieb. Der Pferdefuß dabei ist, sie müssen innerhalb von fünf bis sieben Jahren am Netz sein – von der Konstruktion über das Genehmigungsverfahren bis zur Montage. Ein enormer wirtschaftlicher Druck, für ein Projekt mit geschätzt über fünf Milliarden Kosten. TerraPower hat im März 2021 den Vertrag mit Fertigstellungstermin 2028 unterschrieben. TerraPower erwartet die Baugenehmigung 2023 und die Betriebsgenehmigung 2026.

Der Bundesstaat Wyoming hat ein Gesetz erlassen (House Enrolled Act 60), das es erlaubt Kohle- und Erdgaskraftwerke durch SMR mit gleicher Leistung zu ersetzen. Es ist bereits die Stilllegung der PacifiCorp Kraftwerke: Dave Johnston (922 MWel), Jim Bridger (2442 MWel), Naughton (832 MWel) und Wyodak (402 MWel) beschlossen.

Kernenergie in Tschechien

Hin und wieder empfiehlt es sich, mal einen Blick auf seine „kleinen“ Nachbarn zu werfen. Dies gilt ganz besonders für die, die glauben immer voran gehen zu können – sonst könnten die irgendwann feststellen, daß sie ganz allein dastehen, umzingelt von Andersdenkenden. Tschechien war und ist Kohlenland. Zwar ist der Primärenergie-Anteil nach dem Zusammenbruch des Ostblocks schon deutlich geringer geworden (1990–63,2%, 2020–30,3%), aber immer noch sehr hoch. Im Ostblock war Tschechien sogar Nettoexporteur. Der Energieverbrauch an Kohle betrug 2019 rund 14 Mtoe (Millionen Tonnen Öläquivalent), von dem etwa 74% für Wärme und Stromerzeugung eingesetzt wurden. Der Anteil an Steinkohle an der inländischen Förderung ist nur noch gering und soll bis 2023 vollständig auslaufen. Bei Braunkohle sieht es noch anders aus: Die Jahresproduktion betrug 2020 über 31 Millionen Tonnen. Die laufenden Tagebaue verfügen noch über Reserven von knapp 600 Mto. Allerdings kommt der Bergbau auch in Tschechien an seine wirtschaftlichen Grenzen und die Kohleimporte nehmen stetig zu. Der Löwenanteil wird – wie in Deutschland auch – in elektrische Energie umgewandelt. Eine Besonderheit ist, daß jährlich 2 bis 3 Millionen Tonnen Braunkohle für die Gebäudeheizung verwendet werden – überwiegend in Fernwärmenetzen in den Städten – und nur in geringem Umfang als Brikett in ländlichen Regionen.

Der Druck aus Brüssel

Braunkohle ist ein heimischer Energieträger, der dem Staat sogar noch direkte Einnahmen über Royalties und indirekte über die Arbeitsplätze verschafft. Brüssel nimmt nun diese Industrie auf mehreren Wegen in die Zange:

  • Durch den Emissionshandel ETS verteuert sich der heimische Energieträger Braunkohle rapide gegenüber dem importierten Erdgas (aus Russland).
  • Die strengen Abgasvorschriften der EU für Kraftwerke zwingen Tschechien zu einem teueren Nachrüstungsprogramm oder sogar zur Schließung der Kraftwerke. So sollen bis 2023 knapp 1,6 GW Braunkohle-Kraftwerke vom Netz gehen. Das sind etwa 14% der Gesamtleistung. Konsequenz ist, daß der Kohlestrom schon 2025 nur noch 25% und ab 2030 wahrscheinlich nur noch 12,5% betragen soll. Eine enorme Bürde für ein so kleines Land mit seiner leidvollen Geschichte.

Die sozialen Verwerfungen der „Großen Transformation“ werden gewaltig sein. Wie weltfremd und absurd Brüssel dabei vorgeht, zeigt sich z. B. an den zu erwartenden Heizkostensteigerungen in den sozialen Brennpunkten der Großstädte: Man unterwirft die Heizkraftwerke der vollen ETS-Abgabe, während Individual-Heizungen davon befreit bleiben – wehe wenn Zentralismus und „Sozialpolitik“ aufeinander treffen. Die Zeche zahlen nicht nur die Mieter in den Plattenbausiedlungen, sondern letztlich auch noch die Natur, denn Kraft-Wärme-Kopplung ist einer der umweltfreundlichsten Formen der Heizung. Immerhin werden ungefähr die Hälfte der Bevölkerung durch Fernwärme versorgt.

Die Alternativen

Tschechien hat 10,7 Millionen Einwohner auf einer Fläche von 79 000 km2. 75% der Einwohner leben in Städten. „Bioenergie“ kann deshalb keine Alternative, bestenfalls eine Ergänzung sein. Offshore-Wind geht in einem Binnenstaat auch nicht. Mit Sonnenenergie ein Industrieland in solch nördlichen Breiten versorgen zu wollen ist absurd. Die totale Abhängigkeit von russischem Erdgas will auch keiner, die Verschandelung der Höhenzüge mit Windmühlen geht mangels Platz und fehlender Speicher auch nicht. Es bleibt also nur mit voller Kraft voraus ins Kernenergiezeitalter. Keine neue Erkenntnis, die Bevölkerung war und ist immer positiv gegenüber Kernkraftwerken eingestellt. Daran hat dort auch keine Flutwelle im fernen Japan etwas ändern können.

Dukovani und Temelin

Tschechien besitzt die Kernkraftwerke Dukovani (vier Blöcke mit zusammen 2040 MW) und Temelin (zwei Blöcke mit zusammen 2250 MW). Die Reaktoren in Dukovani (VVER-440/213) gingen zwischen 1985 und 1987 ans Netz. Die Reaktoren in Temelin (VVER-1000/320) wurden 2002 und 2003 – also erst nach dem Zusammenbruch des Ostblocks – fertiggestellt. Bemerkenswert ist die Kontinuität im Bau von Kernkraftwerken über alle System-Brüche hinweg. Alle Reaktoren sind noch sowjetische Konstruktionen. Sie wurden aber auf westliche Sicherheitsstandards nachgerüstet bzw. durch Westinghouse zu Ende gebaut. Verständlich, daß man sich nach dem „Prager Frühling“ gegenüber Russland etwas distanziert verhält. 2020 produzierten diese Kraftwerke etwa 37,5% der elektrischen Energie bzw. 19,5% der Primärenergie.

Bemerkenswert ist die Versorgung mit Fernwärme für zwei Nachbarstädte von Temelin. Der Ausbau für die 26 km entfernte Stadt České Budějovice (100 000 Einwohner) ist in Arbeit. Der Ausbau der Fernwärme um den Standort Dukovani in Planung (Brno mit 380 000 Einwohnern, 40 km entfernt). Ein so konsequentes Bekenntnis für Kernenergie zur Gebäudeheizung findet man sonst nirgendwo (noch nicht) in Europa.

Die tschechischen Kernkraftwerke wurden nicht nur sicherheitstechnisch auf internationalen Standard nachgerüstet, sondern auch beständig modernisiert. So wurde die Leistung des Kraftwerks Dukovani bis 2021 um 12% auf 2040 MWel gesteigert. Ein ähnliches Programm für Temelin läuft noch. Das alles ist möglich, weil Tschechien über eine bemerkenswerte Forschungs- (3 Forschungsreaktoren) und Ausbildungskapazität verfügt. Skoda war schon im Ostblock ein angesehener Lieferant für Kraftwerkskomponenten.

Neubauprogramm

In den letzten Jahrzehnten wurde immer wieder der Ausbau befürwortet und Angebote eingeholt. 2015 wurde im Rahmen eines Langzeitprogramms für die kerntechnische Industrie der Zubau von drei Reaktoren an den alten Standorten genehmigt. Priorität hat Dukovani 5 als Ersatz für die vorhandenen Blöcke nach (bisher geplant) 60 Jahren Betriebszeit. Geplant ist der Baubeginn für 2029 und die Fertigstellung 2036. Aufgerufen sind nur Modelle mit nachgewiesener Betriebserfahrung. Favorisiert werden der französische EPR, der koreanische APR1400 und der AP1000 aus den USA. Die endgültige Entscheidung wird für den Herbst 2021 – nach den Parlamentswahlen – erwartet.

Die neu gegründete Zweckgesellschaft Elektrárna Dukovany II geht von Baukosten von 6 bis 7 Milliarden USD aus (5000–5833 USD/kWe ohne Finanzierungskosten). Die tschechische Regierung beschloss 2020, daß 70% der Investitionskosten durch einen staatlichen Kredit finanziert werden, der während der Bauzeit zinslos ist und nach Inbetriebnahme mit 2% verzinst wird. Darüberhinaus verabschiedete 2020 die tschechische Regierung ein Gesetz, das es dem Staat erlaubt, ein festes Kontingent (>100 MWel) für mindestens 30 Jahre vom Erzeuger abzukaufen. Diese Energiemenge wird über den Großhandel verkauft. Etwaige Verluste oder Gewinne werden über den Einzelhandelspreis umgelegt. Bei Lichte betrachtet, entspricht dieser Ansatz einer öffentlichen Investition – z. B. für eine Autobahn, einen Kanal etc. – die zu einem Festpreis (das Risiko von Kostensteigerungen während der Bauzeit geht voll zu Lasten des Lieferanten) vergeben wird und die Nutzung (Preis der kWh) meistbietend versteigert wird. Dies ist eine besonders intelligente Lösung, wenn man bedenkt, daß Temelin z. B. nur 60 km von der deutschen und 50 km von der österreichischen Grenze entfernt ist. Diese beiden Länder können sich gern bei Dunkelflaute Strom in Tschechien (zu hohen Preisen wegen der Nachfrage) ersteigern, der „Profit“ kommt dann unmittelbar dem tschechischen Stromkunden zu gute. Energiepolitik einmal ohne Ideologie, dafür aber clever. Sie ist nicht gegen die eigene Bevölkerung gerichtet. Anders als z. B. in Deutschland, wo alle Risiken über das EEG von der Allgemeinheit (den Stromkunden) voll getragen werden müssen, die Gewinne aber ausschließlich garantiert in die Taschen der Sonnen- und Windbarone fließen.

Tschechien geht aber auch mit der Zeit. Frühzeitig wurden Kooperationen für Small Modular Reactors (SMR) mit GE Hitachi (300 MWel Siedewasserreaktor), NuScale (77 MWel Druckwasser-Module) und Rolls-Royce (477 MWel Leichtwasserreaktor) geschlossen. Kleine Reaktoren können für die Kraft-Wärme-Kopplung und die Industrie eine sinnvolle Ergänzung darstellen. Außerdem kann sich die heimische Industrie (Skoda) besser in die Lieferketten einbringen. Der Eigenanteil könnte wesentlich höher sein.

Konsequenzen für Deutschland

Man kann die Ausbaupläne mit einem lachenden und einem weinenden Auge betrachten. In Deutschland werden die Strom- und Heizkosten weiter explodieren – die momentanen Preissteigerungen bei Erdgas sind nur das Wetterleuchten. Wer auf Wind und Sonne zur Energieversorgung setzt, setzt in Wirklichkeit auf Erdgas, wenn er aus Kohle und Kernenergie aussteigt. Immer, wenn der Wind nicht weht oder die Sonne nicht scheint (ausgerechnet im Winter bis zu 16 h täglich) müssen die Erdgaskraftwerke ran. Wasserstoff aus der Nordsee oder Batterien sind in diesem Sinne reines Schlangenöl. Die Bayern können sich glücklich schätzen, wenn Tschechien vor ihrer Tür neue Kernkraftwerke baut. Teurer Strom ist immer noch besser, als gar kein Strom. Teuer wird er werden, denn der Preis richtet sich immer nach Angebot und Nachfrage, nicht nach den Produktionskosten. Warum sollte Tschechien auch Mitleid mit Deutschland haben? Der ein oder andere Deutsche kann vielleicht sogar als Gastarbeiter über die Grenze gehen, wenn er entsprechend qualifiziert ist. Glückliches Bayern, mit Rindviechern und Biobauern.

SMR-2021, Linglong One (ACP100)

Im July startete offiziell der Bau des ersten Small Modular Reactors (SMR) in Changjiang auf der Insel Hainan. Es wird der weltweit erste landgestützte SMR. Das Kraftwerk besteht aus zwei Blöcken vom Typ „Linglong One“ (ACP100) mit je 125 MWel. China National Nuclear Corporation (CNNC) plant die Inbetriebnahme für 2026 (geplante Bauzeit 58 Monate). Die Entwicklung dieses Reaktors läuft seit 2010. Es war der erste SMR, der schon 2016 eine Zulassung durch die International Atomic Energy Agency (IAEA) erhielt. Der Reaktor gilt als ein „Schlüssel-Projekt“ des 12. Fünf-Jahr-Plans. Er kann über eine Milliarde kWh pro Jahr produzieren, was für über 500 000 chinesische Haushalte ausreicht. Man setzt große Hoffnungen in eine Serienproduktion für zentralchinesische Städte als Ersatz für Kohlekraftwerke. Eine schwimmende Version – nach russischem Vorbild – ist in Zusammenarbeit mit der Lloyd’s-Schiffs-Klassifikation ebenfalls in Vorbereitung. Es ist überdeutlich, daß man mit den frühzeitigen internationalen Zulassungen auch auf den Export setzt. Hat China erstmal ein Kraftwerk im Betrieb vorzuzeigen, können die Investoren kommen und Bestellungen aufgeben. Für diese Leistungsklasse gibt es in Schwellen- und Entwicklungsländern einen gewaltigen Markt. Serienproduktion wiederum senkt die Kosten – nach diesem Muster hat China schon die Weltmärkte auf ganz anderen Gebieten erobert.

Der ACP100

Dieser SMR ist kein revolutionärer Entwurf, sondern ein integrierter Druckwasserreaktor. Die Dampferzeuger sitzen ebenfalls im Reaktordruckgefäß. Dies wird möglich, da sich der Reaktorkern mit der Leistung verkleinert. Es handelt sich um 16 OTSG (once-through steam generator) als Rohr in Rohr Konstruktion. Der Bruch einer Hauptkühlmittelleitung – ein wesentliches Auslegungskriterium bei konventionellen Druckwasserreaktoren – ist damit ausgeschlossen. Der Dampf verläßt wie bei einem Siedewasserreaktor den Druckbehälter. Der Druck im Reaktor beträgt 150 bar, der Druck des Dampfes nur 40 bar. Die Eintrittstemperatur des Wassers in den Kern beträgt 286,5 °C, die Austrittstemperatur 319,5 °C. Die Austrittstemperatur des Dampfes beträgt mindestens 290 °C. Das mag nicht viel erscheinen, reicht aber für die Stromerzeugung und viele Anwendungen aus. Der Gesamtwirkungsgrad ist mit 32% gering, aber kein großer Nachteil, da Uran als Brennstoff billig ist. Andererseits sind Wandstärken und Werkstoffe besonders kostengünstig (Investition). Die vier Spaltrohrpumpen sind außen an das Druckgefäß angeflanscht.

Der Kern besteht aus 57 Brennelementen in einer 17×17 Anordnung und ist nur 2,15 m hoch. Das Druckgefäß hat eine Höhe von 10 m bei einem Durchmesser von 3,35 m. Dies führt zu einem Naturumlauf im Falle der Not- und Nachkühlung. Die Pumpen werden nur für die Umwälzung im Betrieb benötigt. Dies führt zu einer passiven Sicherheit im Falle eines Black-Out (Fukushima). Die Reaktivität wird über Regelstäbe, abbrennbare Gifte und die Borkonzentration im Kühlwasser geregelt. Die 21 Regelstäbe werden über Elektromagnete gehalten und fallen bei einem Stromausfall automatisch in den Kern. Die Urananreicherung beträgt 1,9 bis 4,95%. Damit ist ein Ladezyklus von 24 Monaten möglich (hohe Verfügbarkeit).

Sicherheitssysteme

Der ACP100 übernimmt die Sicherheitsphilosophie seiner „größeren Brüder“ der Megawatt-Klasse. Das passive Sicherheitssystem besteht wesentlich aus:

  • Abfuhr der Nachzerfallswärme. Das PDHRS (passive decay heat removal system) dient zur sicheren Abfuhr der Nachzerfallswärme auch bei einem völligen Stromausfall, dem Ausfall der Speisewasserversorgung oder dem Zusammenbruch der Wärmesenke (Tsunami in Fukushima). Die Nachwärme wird über den im Containment vorhandenen Sicherheitstank abgeführt. Der Wärmetransport geschieht über Naturumlauf. Das System ist so ausgelegt, daß sieben Tage lang keine Eingriffe nötig sind.
  • Notkühlung. Fällt die Kühlung durch z. B. eine Leckage aus, übernimmt automatisch das ECCS (emergency core cooling system). Es besteht aus den zwei Vorratstanks CST (coolant storage tanks), den zwei Druck-Einspeisungen SIT (safety injection tanks) und dem Sicherheitstank IRWST (in-refuelling water storage tank), der auch zur Abfuhr der Nachzerfallswärme dient. Ausgetretener Dampf kondensiert am Sicherheitsbehälter. Die Wärmeabfuhr geschieht passiv über dessen Oberfläche an die Außenluft.
  • Notstrom. Die Stromversorgung bei einem Störfall wird komplett für 72 Stunden aus Batterien abgedeckt. Die Batterien werden durch Notstromaggregate nachgeladen. Der Diesel-Vorrat reicht für sieben Tage.
  • Sicherheitstank. Der IRWST befindet sich auf der Grundplatte des Reaktors. Er enthält das borhaltige Wasser zur Befüllung aller Kammern bei einem Brennelementewechsel, zum Ersatz bei Kühlmittelverlusten durch Rohrbrüche etc. und zur Flutung der Reaktorkammer bei extrem schweren Störfällen. Er übernimmt auch die Niederschlagung des Dampfes beim Abblasen im Falle von Überdruck im System.
  • Brennelemente-Becken. Es befindet sich ebenfalls im Sicherheitsbehälter. Es ist so bemessen, daß es selbst bei der Lagerung von abgebrannten Brennelementen aus zehnjährigem Betrieb, keinerlei Eingriffe für sieben Tage erfordert.
  • Containment. Der Sicherheitsbehälter verhindert bei Störfällen den Austritt von radioaktiven Gasen. Er ist so groß, daß er die anfallende Kondensationswärme bei einem Störfall über seine Oberfläche an die Umgebung abgeben kann. Er umschließt den Reaktor mit all seinen Sicherheitssystemen. Zur Verhinderung von Knallgasexplosionen (Fukushima) ist er mit passiven Regeneratoren für Wasserstoff versehen.

Die ermittelte Wahrscheinlichkeit für Kernschäden CDF (Core damage frequency) wird mit einmal in einer Million Betriebsjahren angegeben und die Wahrscheinlichkeit für die Freisetzung größerer Mengen radioaktiver Stoffe LRF (Large Release frequency) mit weniger als einmal in zehn Millionen Betriebsjahren (Hinweis: 2 Reaktoren für ein Jahr, ergibt 2 Betriebsjahre in diesem Sinne). Diese Reaktoren sind nach chinesischer Auffassung so sicher, daß sie unmittelbar in chemischen Anlagen oder nahe Wohngebieten betrieben werden sollen.

Die Anwendungspalette

Die Auslegungslebensdauer beträgt 60 Jahre. Bei entsprechender Pflege und Nachrüstung kann von mindestens 100 Jahren ausgegangen werden. Photovoltaik- oder Windkraftanlagen sind nach wenigen Jahrzehnten Schrott, erfordern also vielfache Neuinvestitionen in diesem Zeitraum. Hinzu kommt, daß diese Reaktoren – wann immer man will – mit einer Verfügbarkeit von mindestens 90% laufen. Sie sind nicht wetterabhängig. Strebt man demgegenüber eine Vollversorgung nur durch Wind und Sonne an, muß man ein zigfaches dieser Leistung (Speicher- und Umwandlungsverluste) bauen und finanzieren. Wegen des gigantischen Flächenbedarfs scheidet eine dezentrale Versorgung von Großverbrauchern aus. Hinzu kommen deshalb noch die notwendigen Hochspannungstrassen. Diese SMR sind nicht exotisch, sondern bestehen aus Werkstoffen und Bauteilen die Industriestandard sind. Die integrierten Reaktoren sind dabei so klein (Länge mal Breite ca. 12m x 4m, 300 to Gewicht), daß sie problemlos über vorhandene Transportketten geliefert werden können. Durch die Fertigung in der Fabrik, sind die Montagezeiten nur gering. Die Rohbauten können durch Firmen vor Ort unter Anleitung (Schwellenländer) ausgeführt werden. Man darf auf die Preise gespannt sein.

Wer nun denkt, SMR ist gleich winzig, dem sollen einige Zahlen die möglichen Verwendungen aufzeigen. Jeder dieser Reaktoren kann z. B.:

  • als reines Kraftwerk rund eine Million MWh elektrische Energie produzieren,
  • oder eine Chemieanlage mit 600 Tonnen Heißdampf pro Stunde von 40bar und 290°C versorgen,
  • oder als „Kombi-Kraftwerk“ nur 300 to/h Heißdampf liefern, aber dafür noch zusätzlich rund 62 MW Strom,
  • oder in ariden Gebieten (Kalifornien, Israel, Golfregion) über eine angeschlossene Umkehrosmose 65 000 Kubikmeter Trinkwasser pro Tag liefern,
  • oder für landwirtschaftliche Zwecke 100 000 Kubikmeter pro Tag voll entsalztes Wasser über eine Entspannungsverdampfung herstellen und zusätzlich noch über 80 MW Strom liefern.
  • ähnliche Überlegungen gelten für eine Kraft-Wärme-Kopplung zur Fernwärme oder Fernkälte-Versorgung einer Großstadt bei gleichzeitiger Stromversorgung.
  • bzw. zur dezentralen Herstellung von Wasserstoff mit einem Elektrolyseur für den Verkehr, die Industrie oder zur Spitzenstromerzeugung in einer Region (rund 600 000 Nm3 pro Tag).

Beginn einer neuen Ära?

Im Juni 2021 begann der Bau eines neuen Reaktors im sibirischen chemischen Kombinat Seversk. Der Ort ist nicht zufällig gewählt, sondern es handelt sich um ein grundsätzlich neues System: Ein spezieller Reaktor mit angeschlossener Wiederaufbereitung. Ziel ist ein Kernkraftwerk, dem lediglich Uran (aus abgebrannten Brennelementen) zugeführt wird und nur (endlagerfähige) Spaltprodukte abgeführt werden. Der entscheidende Punkt gegenüber herkömmlichen Reaktoren ist der Abfall Spaltprodukte. Die Problematik der Endlagerung über sehr lange Zeiträume wäre damit vom Tisch, da Spaltprodukte in weniger als 300 Jahren zerfallen sind. Die sehr langlebigen Transurane werden bei diesem Reaktor kontinuierlich „mit verbrannt“. Diese „Stromfabrik“ besteht also aus drei Einheiten: Der (neuartigen) Brennelemente-Fabrik, dem Kernreaktor und der Wiederaufbereitungsanlage. Die Brennelemente-Fabrik soll 2023 und die Wiederaufbereitung 2024 gebaut werden. Der Reaktor soll 2026 in Betrieb gehen.

Der BREST-OD-300

Das Entwicklungsziel dieses Reaktors der vierten Generation war „natürliche Sicherheit“. Das Kühlmittel ist nicht Wasser unter hohem Druck, sondern nahezu druckloses Blei. Der Reaktorkern befindet sich deshalb nicht in einem dickwandigen Druckbehälter, sondern in einem (nahezu drucklosen) Tank für flüssiges Blei. Der Schmelzpunkt von Blei liegt bei rund 330°C. Dies ergibt ein neuartiges Sicherheitsproblem, denn es muß gewährleistet sein, daß das Blei an keiner Stelle einfriert und irgendwelche Kanäle verstopft. Andererseits ist der Siedepunkt mit über 1700°C so hoch, daß sich kein Druck im Reaktorkreislauf aufbauen kann. Leckagen sind unproblematisch, da Blei weder mit Luft noch mit Wasser heftig reagiert. Blei wird praktisch auch nicht aktiviert, sodaß nur ein einfacher Kreislauf nötig ist, was Kosten spart und das System vereinfacht. Die Austrittstemperatur des Blei beträgt rund 540°C. Ist also weit von der Siedetemperatur entfernt. Hinzu kommt die große Wärmespeicherfähigkeit des Blei (spezifisch und über das Tankvolumen), die alle Lastsprünge abfedert. Ein solcher Reaktor ist in seinem (sicherheitstechnischen) Verhalten sehr gutmütig.

Blei ist ein sehr schlechter Moderator, der die Neutronen kaum abbremst. Schnelle Neutronen können zwar alles Uran, Plutonium und sogar die minoren Aktinoide spalten – das allerdings mit einer weit geringen Wahrscheinlichkeit. Als Konsequenz muß man entweder eine hohe Anreicherung oder einen höheren Gehalt an Plutonium verwenden. In diesem Sinne sind solche Reaktoren sinnvollerweise als Nachfolger der Leichtwasserreaktoren anzusehen. Erst wenn man entsprechend viele abgebrannte Brennelemente besitzt – von „Atomkraftgegnern“ fälschlicherweise als „Atommüll“ bezeichnet – aus denen man das Plutonium extrahieren kann, kann man sinnvollerweise mit dem Aufbau einer Flotte schneller Reaktoren beginnen. Für jede Erstbeladung muß das Plutonium von außen kommen. Läuft ein solcher Reaktor, kann er genug neues Plutonium bilden um für seinen Weiterbetrieb selbst zu sorgen. Man muß dann nur die Spaltprodukte entfernen (die nukleare Asche) und die gespaltenen Kerne durch U238 – ebenfalls von „Atomkraftgegnern“ als „Atommüll“ bezeichnet – ersetzen. In diesem Sinne verfügen wir bereits heute über gigantische Energievorkommen in der Form abgebrannter Brennelemente aus Leichtwasserreaktoren. Bisher war die Nutzung wegen der geringen Natururan-Preise noch unwirtschaftlich. Allerdings kommen die stets steigenden Lagerkosten für abgebrannte Brennelemente einer schnelleren Nutzung entgegen.

Da Blei ein schlechter Moderator ist, kann man die Gitterabstände im Kern vergrößern. Durch den verringerten Strömungswiderstand kann man mehr Wärme über Naturkonvektion abführen, was die Notkühlung auch nach einem Blackout (Fukushima) ermöglicht. Zu diesem Zweck sind Kamine (2 von 4 genügen) vorhanden, die die Restwärme passiv an die Umgebungsluft abführen. Selbst unter vollständigem Verlust der Wärmesenke bei voller Leistung von 700 MWth erreicht die Hüllrohr-Temperatur am ungünstigsten Brennstab keine 900°C. Für die Hüllen aus Stahl kein großes Problem: Ein Unglück wie in Fukushima wäre gar nicht möglich. Es könnte kein Knallgas entstehen (Reaktion der Zirconium-Hüllen mit Wasserdampf) und es wäre keine aktive Not-Kühlung nötig. Treffender kann man nicht verdeutlichen, was mit „natürliche Sicherheit“ gemeint ist.

Die Brennstäbe

Auch hier geht man neue Wege. Bei herkömmlichen Reaktoren verwendet man Urandioxid als Brennstoff in Hüllrohren aus Zirkalloy. Uranoxid ist eine (spröde) Keramik mit schlechter Wärmeleitung. Es kann bei einem Störfall passieren, daß die Brennstäbe in ihrem Zentrum bereits aufschmelzen und Spaltprodukte frei setzen, während sie ansonsten noch intakt sind. Fallen sie kurzzeitig und lokal trocken (Kühlmittelverlust-Störfall), kann die Abschreckung durch die Notkühlung fatale Konsequenzen haben (Harrisburg, Fukushima).

Bei diesem Typ verwendet man Uran-Plutonium-Nitrid als Brennstoff. Es besitzt eine um 30% größere Dichte, eine 4 bis 8 fache Wärmeleitung, gute Rückhaltung für Spaltprodukte, gute Formstabilität und geringe Reaktionen mit der Edelstahl-Hülle. Die hohe Dichte und gute Wärmeleitung führen zu geringeren Temperaturgradienten zwischen Zentrum und Umfang. Dies führt zu einer hohen Lebensdauer der Brennelemente (Brennstoffwechsel nur alle fünf Jahre) und großen Sicherheitsreserven für Störfälle.

Der Kern besteht aus 169 Brennelementen, hat eine Höhe von lediglich 1,1m und beinhaltet rund 20 to Brennstoff. Die Brennelemente sind sechseckig, wodurch sich eine sehr dichte Packung ergibt. Sie sind rundum offen, um bei einer etwaigen Verstopfung auch Querströmung zu ermöglichen. Auf Grund der Brennstoffeigenschaften und der Konstruktion ist die Neutronenökonomie so gut, daß keine separate Brutzone erforderlich ist und trotzdem eine Konversionsrate von Eins („Selbstversorgung“) erzielt wird.

Wiederaufbereitung

Bisher wurde großtechnisch nur das PUREX-Verfahren angewendet. Dieses nass-chemische Verfahren zielt – ursprünglich aus der Rüstung kommend – auf die Rückgewinnung von möglichst reinem Uran und (insbesondere ) Plutonium ab. Alles andere ist Abfall. Dieser ist wegen der minoren Aktinoide besonders langlebig und erfordert ein geologisches Tiefenlager zur Endlagerung. Bei diesem Reaktorkonzept sieht die Fragestellung gänzlich anders aus. Hier gilt es nur die Spaltprodukte – die nukleare Asche – zu entfernen. Alles andere soll und kann als Energieträger verbleiben. Die Spaltprodukte können anschließend weiterverarbeitet oder verglast werden und in Edelstahlbehälter abgefüllt werden. Wegen der relativ geringen Halbwertszeiten kann dieser Abfall je nach Gusto „tiefengelagert“ oder „ingenieurgelagert“ werden. Auf jeden Fall, zu verschwindend geringen Kosten gegenüber der Endlagerung von kompletten Brennelementen.

Der BREST-OD-300 im Allgemeinen

Der Reaktor verfügt über eine elektrische Leistung von 300 MWel bei einer thermische Leistung von 700 MWth. Er wäre per Definition damit noch ein SMR. Der Hersteller selbst betrachtet ihn eher als Vorläufer für einen Reaktor mit 1200 MWel, der etwa Anfang der 2030er Jahre gebaut werden soll. Es ist der russische Weg der kleinen, aufeinander aufbauenden Schritte mit immer mehr gesammelten Erfahrungen, die in das jeweilige Nachfolgemodell einfließen können. In diesem Zusammenhang muß man feststellen, daß die Entwicklung bleigekühlter Reaktoren in Russland eine Jahrzehnte lange Tradition hat. Sie reicht bis auf die U-Boote der Alfa-Klasse (Bauzeitraum 1968–1975, Außerdienststellung 1983 bis 1997) zurück. Zahlreiche Probleme bezüglich Korrosion und Verschleiß konnten inzwischen gelöst werden.

Der Aufbau ähnelt klassischen Druckwasserreaktoren: In der Mitte befindet sich der Reaktor. Von ihm gehen vier Kühlkreisläufe (flüssiges Blei) ab. Jeder Kühlkreislauf versorgt zwei Dampferzeuger. Das in den beiden Dampferzeugern abgekühlte Blei wird von einer Umwälzpumpe angesaugt und dem Reaktor wieder zugeführt. Die acht Dampferzeuger produzieren etwa 1500 to/h Dampf mit einer Temperatur von über 500°C. Auf Grund der höheren Dampftemperaturen ergeben sich bessere Wirkungsgrade und andere Anwendungsgebiete (z. B. Wasserstoffherstellung durch Hochtemperatur-Elektrolyse, Raffinerien, chemische Industrie etc.). Jeder Kühlkreislauf bildet eine separate Baugruppe mit kompletter Notkühlung, Umwälzpumpe etc. in einer eigenen „Betonkammer“. Das Ganze ist von einem Betonzylinder als Schutz gegen Einwirkungen von außen umgeben.

Anders als bei Leichtwasserreaktoren wird der Kern durch eine Lademaschine versorgt. Sie kann Brennelemente entnehmen, umsetzen und durch frische ersetzen. Verbrauchte Elemente werden im Bleitank bis zum erforderlichen Abklingen zwischen gelagert. Sie stehen also stets unter dem gleichen Schutz (Fukushima) wie der Reaktorkern. Ein Brennstoffzyklus dauert fünf Jahre (Leichtwasserreaktor 9 bis 16 Monate üblich). Sind erst einmal die üblichen Kinderkrankheiten beseitigt, kann man von einer noch besseren Verfügbarkeit als heute (etwa 90%) ausgehen. Geplant ist ein Abbrand zwischen 5,5% und 9% Schwermetall. An dieser Stelle erscheint es sinnvoll, sich die Materialströme und Abfallmengen zu verdeutlichen. Wenn dieser Reaktor das ganze Jahr voll durchläuft (Grundlast) verbraucht er etwa 270 kg Uran. Das ist gleichzeitig die Menge hochaktiver Spaltprodukte die jährlich anfällt. Geht man von einem mittleren Abbrand von 8% Schwermetall aus, sind etwa 3,5 to frische Brennelemente jährlich nötig. Das alles erinnert mehr an eine Anlage im Labormaßstab. Wollte man diese Strommenge von 2,6 TWh mit einem Offshore-Windpark erzeugen, müßte dieser mindestens 1000 MW umfassen oder bei einem Photovoltaik-Park mindestens 2000 MW. Wobei dies lediglich die gleiche Energieproduktion wäre. Da aber Wind und Sonne nur zufällig und unvorhersehbar sind (Wettervorhersage), müßten noch die zwingend erforderlichen Stromspeicher (zusätzliche Investitionen) und deren Verluste (ca. 50% für längere Ausfallzeiten) hinzugerechnet werden. Diese wenigen Zahlen machen deutlich, daß zumindest Russland nicht zurück ins Mittelalter will, ob nun „Klimakatastrophe“ oder nicht.

Sicherheit

Die vierte Generation soll noch einmal um Größenordnungen „sicherer“ sein als die derzeitige dritte Generation. Gemeint ist damit die Wahrscheinlichkeit für Unglücke, bei denen Radioaktivität das Betriebsgelände überschreitet und damit Anlieger gefährdet. Diese Reaktoren sollen so sicher sein, daß sie unmittelbar in einer Chemieanlage betrieben werden können, denn sie sind nicht gefährlicher als diese Anlagen selbst, wodurch völlig neue Anwendungen für Kernenergie möglich sind.

Da diese Kernkraftwerke mit dem „Abfall“ der bisherigen Kernkraftwerke betrieben werden können, sind sie extrem „nachhaltig“. Damit sind nicht nur die abgebrannten Brennelemente gemeint, sondern auch das „Abfall-Uran-238“ aus den Anreicherungsanlagen. Ganz neben bei, löst sich auch die „Endlagerfrage“. Spaltprodukte sind im Vergleich zu den Aktinoiden kurzlebig. Diese Form von „Atommüll“ ist nach wenigen Jahrzehnten weiterverarbeitbar. In ihnen sind jede Menge wertvoller Stoffe enthalten. Schon heute werden seltene Isotope aus dem Abfall der militärischen Wiederaufbereitung für z.B. medizinische Anwendungen gewonnen. Wer aber unbedingt möchte, kann sie auch weiterhin in geologischen Tiefenlagern verschwinden lassen. Nur eben zu viel geringeren Kosten.

Beginn einer atemberaubenden Serie

Anfang September 2020 wurde der Reaktor Fuqing 5 mit 177 Brennelementen zum ersten mal beladen. Ein in mehrfacher Hinsicht bemerkenswertes Ereignis. Es ist der erste Reaktor der chinesischen Eigenentwicklung ≫Hualong One≪ – ein sogenannter „First Of A Kind“ (FOAK). Der Bau des allerersten Reaktors eines neuen Modells dauert zumeist sehr lange, da bei ihm noch viele Fehler gemacht werden, die zeitaufwendig behoben werden müssen. Abschreckendes Beispiel ist die Baustelle Olkiluoto in Finnland mit dem Baubeginn im Jahr 2004. Gänzlich anders die Situation bei Fuqing 5: Dort war der Baubeginn (erster nuklearer Beton) im Mai 2015. Rund 5 Jahre Bauzeit gegenüber 16 Jahren mit gigantischer Kostenexplosion. Deutlicher kann man die Leistungsfähigkeit der chinesischen kerntechnischen Industrie nicht darstellen. Doch damit noch nicht genug: Im Dezember 2015 war der Baubeginn für die Blöcke Fuqing 6 und Fangschenggang 3, im Dezember 2016 für Fangschenggang 4, im Oktober 2019 für Zhangzhou 1 und im September 2020 für Zhangzhou 2 und Taipingling 1. Um dem ganzen noch die Krone aufzusetzen, wurde parallel im August 2015 mit dem ersten Auslandsauftrag Karachi 2+3 in Pakistan begonnen. Man hat also gleichzeitig 9 Reaktoren eines neuen Typs in Arbeit. Da China auch noch andere Kernkraftwerke baut, kommt es seinem Ziel, in den nächsten Jahrzehnten durchschnittlich alle sechs Monate einen Kernreaktor in Betrieb zu nehmen, sehr nahe.

Die Geschichte des Hualong

Im Jahr 2012 wurde durch das zentrale Planungsbüro in Peking beschlossen, die Eigenentwicklungen ≫ACP1000≪ von China National Nuclear Corporation (CNNC) und ≫ACPR1000≪ von China General Nuclear (CGN) zu einem standardisierten Modell ≫Hualong One≪ zusammenzulegen. Es sollte ein Reaktor der dritten Generation entstehen, in dem auch ausdrücklich alle Erfahrungen des Unglücks in Fukushima berücksichtigt werden sollten. Da jeder Hersteller seine eigenen Zulieferketten hat, unterscheiden sich noch heute die Modelle geringfügig.

Ursprünglich sollten 2013 in Pakistan zwei ≫ACP1000≪ in der Nähe von Karachi gebaut werden. Dieses Vorhaben wurde 2015 in zwei ≫Hualong One≪ umgewandelt. Darüberhinaus befindet sich der ≫Hualong One≪ in der Variante Fuqing 5+6 in Großbritannien im Genehmigungsverfahren als Modell für das geplante Kernkraftwerk Bradwell. Allerdings ist es höchst fragwürdig, ob dieses Projekt noch politisch durchsetzbar ist. Nach den Ereignissen in Hongkong und um den Ausbau des Mobilfunknetzes durch Huawei ist die Stimmung in Großbritannien gekippt. China ist in einer Schlüsselfunktion wie der Stromversorgung nicht mehr erwünscht.

Die Lernkurve

Obwohl diese Serie von Hualog One weitestgehend parallel gebaut wird, kann man laufend Verbesserungen entdecken. Selbst an so simplen Bauteilen wie dem Containment. Es besteht aus Stahlringen (ca. 46m Durchmesser, etwa 7m hoch, Wandstärke 6 mm, mit einem Gewicht von 180 to), die auf einem separaten Platz auf der Baustelle aus vorgefertigten Segmenten zusammengeschweißt werden. Sie werden dann mit einem Schwerlastkran übereinander gestapelt und zu einem zylindrischen Containment montiert. Den oberen Abschluss bildet eine Kuppel, die ebenfalls vor Ort aus Segmenten zusammengeschweißt wird und mit einem Kran aufgesetzt wird. Auf diese Stahlkonstruktion wird nun die eigentliche Hülle aus Spannbeton aufbetoniert. Man erhält so ein gasdichtes und hochfestes Sandwich als Wand. Als Schutz gegen Flugzeugabstürze etc. wird diese Konstruktion noch einmal als äußere Hülle wiederholt. Zwischen den Wänden verbleibt ein Spalt, der später zur Überwachung im Unterdruck gehalten wird.

Vergleicht man nun die innere Kuppel von Fuqing 5 (Montage im Januar 2017) mit der von Fangschenggang 3 (Montage im Mai 2018), so stellt man fest, daß sich das Gewicht von 305 to auf 260 to verringert hat. Umfangreiche 3-D-Simulationen, eine Optimierung der Statik und die Verwendung besonders geformter Segmente haben zu diesem Fortschritt geführt. Materialeinsparungen sind praktisch auch immer Kosteneinsparungen.

Wie flexibel die Chinesen vorgehen, zeigt sich aber auch am Ablauf der Montage. Bisher hat man klassisch erst den Rohbau fertiggestellt und anschließend die Großkomponenten eingebracht. Dazu muß man die drei Dampferzeuger (Länge 21 m, 365 to) und das Druckgefäß waagerecht durch die Schleuse einbringen und innerhalb des Containment aufwendig aufrichten und mit dem Polarkran in Position bringen. Beim Kraftwerk Karachi hat man die Einbauten vor dem Aufsetzen der Kuppel eingebracht. Bei Fuqing 5 dauerte das Einbringen der Dampferzeuger und des Druckgefäßes rund 2,5 Monate. In Karachi reduzierte sich der Einbau auf rund 5 Stunden pro Dampferzeuger bzw. 3 Wochen für alle nuklearen Großkomponenten. Eine beträchtliche Zeit- und Kostenersparnis.

Die Rolle ausländischer Zulieferer

Klein, Schanzlin und Becker (KSB) aus Frankenthal war einst die Perle für Pumpen in der Kraftwerkstechnik. Der Ausstieg aus Kerntechnik und Kohle in Deutschland hat sie (noch) nicht aus dem Markt gedrängt, sondern lediglich ins Ausland vertrieben. So erhielt SEC-KSB den Auftrag für die sechs Hauptkühlmittelpumpen (10,000-Volt-Motor mit einer Antriebsleistung von 6600 kW, 110 to schwer, Leistung 24 500 Kubikmeter pro Stunde) für das Kraftwerk Zhangzhou. Ein Auftrag in dreistelliger Millionenhöhe. Dafür muß man in Deutschland eine ganze Menge Heizungspumpen verkaufen. SEC-KSB ist ein im Juni 2008 gegründetes Joint Venture zwischen Shanghai Electric (55%, wer da wohl das sagen hat?) und KSB (45%), welches für das komplette Geschäft mit kerntechnischen Komponenten in China verantwortlich ist. Ein typisches Schicksal eines deutschen Unternehmens der Spitzentechnologie: Entweder man macht den Laden in Öko-Deutschland sofort dicht oder man versucht sich ins Ausland zu verlagern.

Vielleicht verläuft ja das Schicksal von Rolls-Royce (R&R) etwas anders. R&R hat für das gleiche Kraftwerk ebenfalls einen dreistelligen Millionenauftrag eingeworben über die Lieferung der Neutronenfluss-Messeinrichtungen. Allerdings werden diese komplett in Grenoble Frankreich konstruiert, gefertigt und getestet…

Die Preise

Man kann den Chinesen nicht so richtig in die Karten schauen. Es handelt sich immer noch um eine Planwirtschaft mit ihren Eigenheiten bezüglich Kosten und Finanzierung. Man kann aber einen guten Eindruck über Geschäfte mit dem Ausland gewinnen. So hat sich schon 2016 der thailändische Energieversorger RATCH in das Kernkraftwerk Fangchenggang II eingekauft. Aus den Veröffentlichungen des Unternehmens kann man entnehmen, daß das Kraftwerk einen Wert von US$ 6 Milliarden, bei einer Leistung von 2 x 1180 MWel hat. Dies entspricht spezifischen Investitionskosten von 2542 US$/kW. Ganz ähnlich sind die Daten für das pakistanische Kraftwerk Karachi: CNNC gibt Pakistan einen Kredit über US$ 6,5 Milliarden. Es scheint, daß die Chinesen das gesamte Kernkraftwerk im engeren Sinne (2 x 1100 MMWel) komplett vorfinanzieren. Die Projektkosten für das Kernkraftwerk werden von dem pakistanischen Prime Minister Nawaz Sharif mit US$ 9.59 Milliarden angegeben. Dies ergibt spezifische Kosten von 4359 US$/kW für das Projekt mit allen notwendigen Ausgaben (z. B. Hochspannungsleitungen und Infrastruktur).

Bauweise

Bei dem Hualong One oder auch als HPR-1000 bezeichnet, handelt es sich um einen Druckwasserreaktor mit drei Kreisläufen (jeweils Dampferzeuger, Hauptkühlmittelpumpe und Hauptkühlmittelleitung) und einer Nennleistung von 1180 MWel. Er ist für eine Betriebsdauer von (mindestens) 60 Jahren ausgelegt. Er besitzt ein doppelwandiges Containment, welches gegen Flugzeugabstürze etc. ausgelegt ist. Das Brennelementelager und die Gebäude für sicherheitstechnische Anlagen sind ebenfalls gegen Flugzeugabstürze etc. verbunkert. Die Schnellabschaltung bei Störfällen erfolgt vollautomatisch. Erst nach 30 Minuten sind menschliche Eingriffe nötig. Erst nach 72 Stunden sind Hilfsmaßnahmen von außen nötig (z. B. Nachfüllen von Wasser in die internen Becken). Jeder Reaktor ist nicht nur für die Grundlast, sondern auch für einen extremen Lastfolgebetrieb konstruiert.

Innerhalb des Containment – genauso geschützt gegen Einwirkungen von außen wie der Reaktor selbst – befindet sich ein großer Wassertank (IRWST), der Wasserverluste im Kreislauf (z. B. Rohrbruch im Primärkreis) ersetzen kann. Es ist also kein „Umschalten“ in andere Gebäudeteile notwendig. Diesem Tank kann auch Wasser für die „Beregnung“ des Sicherheitsbehälters entnommen werden. Durch den Regen kann der Druck und die Temperatur im Notfall reguliert werden. Es können auch Chemikalien hinzugesetzt werden, die etwaige freigesetzte radioaktive Stoffe auswaschen und binden können (Lehre aus Fukushima). Dies entlastet die Filteranlagen, wenn die Luft nach einem schweren Störfall über den Kamin abgegeben werden muß. Aus dem IRWST kann auch ausreichend Wasser bereit gestellt werden, um die Kaverne, in der das Reaktordruckgefäß steht, vollständig zu fluten. Damit ist das Austreten von Kernschmelze aus dem Reaktordruckgefäß ausgeschlossen. Die gesamte Nachzerfallswärme wird über passive Systeme mit Naturumlauf und Wärmeübertrager an die Umgebung abgegeben. Insofern handelt es sich beim Hualong One um einen echten Reaktor der sogenannten Generation III+.

Solange der Primärkreislauf intakt ist, aber die Wärmesenke (Kühlturm, Meerwassereinlauf, Pumpen etc.) total ausfallen sollte (Fukushima), kann die Wärme über die Dampferzeuger sicher im Naturumlauf abgeführt werden. Zum Nachfüllen von Wasserverlusten dienen jeweils 2 x 50% Motorpumpen und 2 x 50% Pumpen mit Dampfturbinen, die Wasser aus Tanks entnehmen. Es liegt also auch hier nicht nur Redundanz, sondern auch Diversität vor.

Für die Notstromversorgung sind pro Reaktor zwei Notstromdiesel in getrennten Gebäuden vorgesehen. Zusätzlich gibt es im Kraftwerk noch eine weitere Notstromversorgung über eine Gasturbinenanlage (Lehre aus Fukushima) und transportable Notstromaggregate. Zusätzlich gibt es Batterien für eine Versorgungszeit von 72 h (Lehre aus Fukushima). An diese Gleichstromversorgung sind alle Instrumente, Notbeleuchtung, EDV sowie die Ventile der passiven Sicherheitseinrichtungen angeschlossen.

Wie die probabilistischen Sicherheitsberechnungen ergeben, ist beim Hualong One mit einem Kernschaden (CDF) in höchstens einer Million Betriebsjahren zu rechnen. Mit einer Freisetzung großer Mengen radioaktiver Stoffe in die Umwelt (LRF) in höchstens 10 Millionen Betriebsjahren. Um gleich den üblichen Missverständnissen entgegenzutreten: Es handelt sich um Betriebsjahre und nicht Kalenderjahre. Gemeint ist damit, wenn 10 gleiche Reaktoren ein Kalenderjahr lang laufen, ergibt das 10 Betriebsjahre. Und ja, es handelt sich um Wahrscheinlichkeiten, ein Schaden könnte auch schon morgen eintreten. Absolute Sicherheit gibt es halt in der Natur nicht. Solche Zahlen dienen Fachleuten nur um unterschiedliche Risiken vergleichbar zu machen. Was aber ausschlaggebend ist, hier handelt es sich um Eintrittswahrscheinlichkeiten für Ereignisse – nicht um Opferzahlen. Spätestens nach Tschernobyl und Fukushima wissen wir doch, daß auch schwerste Unglücke in Kernkraftwerken zu wenig bis gar keinen Todesopfern führen. Ganz im Gegensatz z. B. zu einem Flugzeugabsturz. Der Kampfschrei der „Anti-Atomkraft-Bewegung“: Millionen Tote, für zehntausende von Jahren unbewohnbar, war und ist einfach nur grottenschlechte Propaganda – wenngleich er gerade in Deutschland höchst erfolgreich war und ist.

Erster Reaktor in Weißrussland

In Ostrovets in der Region Grodno (54° 36′ 49″ N, 25° 57′ 19″ E) geht das erste Kernkraftwerk Weißrussland ans Netz. Es besteht aus zwei Druckwasserreaktoren des Typs VVER-1200 mit insgesamt 2340 MWel,netto. Die Auftragserteilung und erste Baustellenvorbereitungen erfolgten noch 2011. Die Grundplatte von Reaktor 1 wurde im November 2013 und von Reaktor 2 im May 2014 betoniert (offizieller Baubeginn eines Kernkraftwerks). Damit hat auch die russische Nuklearindustrie gezeigt, daß sie Kernkraftwerke fristgerecht und ohne Kostenüberschreitungen im Ausland fertigstellen kann. Der erste Reaktor dieses Typs ging 2016 (Novovoronezh II-1) in Betrieb. Es folgten 2017 Leningrad II-1 und 2019 Novovoronezh II-2. Auch hier zeigt sich wieder, der Bau von Kernkraftwerken in der vorgesehenen Zeit zu festen Kosten ist keine Hexerei. Das Geheimnis liegt im Bau möglichst baugleicher Kraftwerke in dichter Folge: So hat man stets geübtes Personal im Einsatz und dies ist die beste Garantie vor Termin- und Kostenüberschreitungen.

Preis und Finanzierung

Die Exporterfolge der russischen Nuklearindustrie beruhen auf der gleichzeitigen Finanzierung durch russische Banken. Der Auftragswert für das Kraftwerk betrug 10 Milliarden US$ (entsprechend 4274 US$/kW). Das ist durchaus günstig für ein Kraftwerk der Generation III+ mit allem Schnickschnack, wie doppeltem Beton-Containment und Kernfänger. Bei diesem Typ hat sich der Hersteller eng an europäischen Vorstellungen orientiert, wie sie auch im französischen EPR realisiert werden.

Die Finanzierung erfolgt quasi nach einem Bauherrenmodell: Es gibt einen Zahlungsplan mit festgelegten Raten zu festgelegten Zahlungsbedingungen. Dies ergibt eine interessante Aufteilung des Risikos zwischen Auftragnehmer und Auftraggeber. Bis zur jeweiligen vertragsgemäßen Teillieferung trägt der Anbieter das Risiko von Kostensteigerungen durch Bauverzögerungen. Erst ab diesem Zeitpunkt wirken sich für den Auftraggeber zusätzliche Zinszahlungen durch eine verzögerte Inbetriebnahme aus. Wird eine Rate an den Hersteller fällig, wird diese durch eine russische Bank als Kredit für Weißrussland bereitgestellt. Erst ab diesem Moment muß der Kapitaldienst durch den Auftraggeber geleistet werden. Rußland finanziert so etwa 90% der Baukosten vor. Ganz nebenbei, haben die USA inzwischen erkannt, welchen Exportvorteil Rußland gegenüber finanzschwachen Ländern durch dieses Modell hat und streben wieder staatliche Ausfallbürgschaften an. So hat Rosatom im März 2020 veröffentlicht, daß es für die nächsten zehn Jahre über ein Auftragsvolumen im Ausland von US$ 140 Milliarden verfügt. Rosatom besteht aus 400 Unternehmen mit mehr als 250 000 Mitarbeitern. Für Rußland bedeutet dies nicht nur die Einwerbung von Exportaufträgen, sondern auch die Wandlung der stets schwankenden Deviseneinnahmen aus dem Rohstoffgeschäft in stetige langfristige Zahlungsströme – z. B. für Pensionszahlungen.

Die russische kerntechnische Industrie ist seit dem Zusammenbruch der Sowjetunion wie ein Phönix aus der Asche wiederauferstanden. Im Oktober 2015 wurde der erste Reaktordruckbehälter von Atomash in Wolgodonsk – nach 30 Jahren Pause – hergestellt. Das Werk wurde 1973 gegründet und stellte bis 1986 allein 14 Reaktorgefäße her. 1997 ging es endgültig pleite und hangelte sich dann mit Aufträgen aus dem Gas- und Ölsektor durch. Heute ist es wieder das Zentrum für Druckwasserreaktoren und verfügt über die Kapazität von vier kompletten Kernkraftwerken (Druckgefässe, Dampferzeuger etc.) jährlich. Das Werk verfügt über einen eigenen Anschluß an den Wolga-Don-Kanal. In diesem Jahr wurden bereits drei Reaktordruckgefäße und 17 Dampferzeuger für Projekte in Indien, Bangladesch und der Türkei ausgeliefert.

Der Bauablauf

Man bevorzugte in Weißrussland ein zur Errichtung paralleles, abschnittsweises Genehmigungsverfahren. Dies funktioniert sehr gut bei Serienbauweise ohne große lokale Anpassungen. Wie hier gezeigt, kann das die gesamte Bauzeit einschließlich notwendiger Planung und Vertragsverhandlungen vom „Wunsch“ ein Kernkraftwerk zu bauen, bis zur Inbetriebnahme auf rund zehn Jahre begrenzen. Wendet man dieses Verfahren jedoch beim erstmaligen Bau eines Kernkraftwerks (FOAK) an, kann es sehr schnell zu einem wirtschaftlichen Desaster führen. Eindringliches Beispiel hierfür ist die „ewige“ Baustelle des EPR in Finnland.

Auch bei diesem Projekt zeigt sich wieder der grundsätzliche Vorteil von Baustellen mit doppelten Blöcken. Auch die französische Industrie ist nun diesem Weg in Hinkley Point gefolgt. Die gesamte Baustelleneinrichtung, wie z. B. Schwerlastkran, Werkstätten, Unterkünfte usw. halbiert sich automatisch (bezogen auf die spezifischen Kosten). Man kann bei allen Projekten bereits beim zweiten Block eine merkliche Senkung der notwendigen Arbeitsstunden feststellen, da man bereits vor Ort eine geübte und aufeinander eingestellte Truppe im Einsatz hat. Dies gilt um so mehr, je mehr man lokale Unternehmen beauftragt. So kam man in Ostrovets mit angeblich 3000 Fachkräften aus.

Am 10. July 2016 ereignete sich beim Einbau des Reaktordruckbehälters ein Missgeschick: „Der Behälter rutschte langsam etwa 4 m ab und setzte sanft auf den Grund auf, keine Beschädigung, die Aufhängung am Gehäuse wurde verschoben“, so die offizielle Stellungnahme. Auf Wunsch der weißrussischen Genehmigungsbehörde wurde er durch einen neuen ersetzt. Am folgenden 3. April wurde der für Block 2 vorgesehene Behälter in Block 1 eingebaut. Für den Block 2 wurde der ursprünglich für das Kraftwerk Kaliningrad 2 vorgesehene Reaktordruckbehälter ersatzweise geliefert. An diesem Beispiel erkennt man, wie robust die Strategie einer Serienfertigung ist. Der notwendige Ersatz eines Bauteils mit 36 Monaten Lieferzeit wäre bei einem Einzelprojekt zu einer wirtschaftlichen Katastrophe geworden. So konnte der Fahrplan nahezu eingehalten werden und im August 2020 die Beladung mit den 163 Brennelementen abgeschlossen werden.

Der nukleare Friedhof

Es ist eine russische Tradition, die nuklearen Abfälle in unmittelbarer Nähe des Kraftwerks zu lagern. Man hat deshalb parallel die Genehmigung für ein Endlager durchgeführt. Die erste Stufe für US$ 10 Millionen soll bis 2028 fertiggestellt sein. Man geht bei einer Betriebsdauer des Kernkraftwerks von (erstmal) 60 Jahren aus. In diesem Zeitraum sollen 9360 m3 feste Abfälle (leicht und mittelaktiv) und 60 m3 hochaktive Abfälle anfallen. Beim Abbruch der Anlage sollen noch einmal 4100 m3 leicht und mittelaktive Abfälle und 85 m3 hochaktive Abfälle anfallen. Die leicht und mittelaktiven Abfälle sollen dauerhaft lokal gelagert werden. Für die hochaktiven Abfälle wird ein unterirdisches Zwischenlager geschaffen.

Die Geschichte der VVER-Baureihe

In Rußland werden Druckwasserreaktoren als Wasser/Wasser-Energie Reaktoren (VVER) bezeichnet. Diesem Kürzel wird die gerundete elektrische Leistung in Megawatt und gegebenenfalls eine Fertigungsnummer angehängt. So ist der VVER-1200 ein Druckwasserreaktor mit rund 1200 MW elektrischer Leistung. Erst am 8.9.1964 wurde der erste Druckwasserreaktor als VVER-210 im Kraftwerk Novovoronezh kritisch und blieb bis 1984 in Betrieb. 1971 folgte der erste VVER-440 und 1980 der erste VVER-1000. Die beiden letzten Typen wurden auch exportiert (Ukraine, Armenien, Finnland, Bulgarien, Ungarn, Tschechien., Slowakei, Iran, China).

Alleinstellungsmerkmal aller VVER sind liegende Dampferzeuger und sechseckige Brennelemente. Das grundsätzliche Konstruktionsprinzip wurde bis heute beibehalten und ist ausgereizt. Durch die stetige Leistungssteigerung ergibt sich eine evolutionäre Entwicklung, bei der man die Betriebserfahrungen, technische Weiterentwicklungen (z. B. Werkstoffe) und zusätzliche Sicherheitsanforderungen (Containment, Kernfänger etc.) stets in die nächste Baureihe ohne all zu große Entwicklungsrisiken einfließen lassen kann. Führt man jedoch eine Baureihe über einen solch langen Zeitraum fort, verkompliziert dies irgendwann die Anlage. Dies gilt beispielsweise für die liegenden Dampferzeuger (Durchmesser 4 m, Höhe 5 m, Länge 15 m, Gewicht 340 to). Stehende Pumpen, Druckbehälter usw. mit liegenden Dampferzeugern zu verbinden, führt zu einer sehr unaufgeräumten Konstruktion mit langen und verschlungenen Rohrleitungen. Dies erschwert Wartung und Wiederholungsprüfungen. Das Reaktordruckgefäß wächst auch mit steigender Leistung. Durch die Beibehaltung der Grundkonstruktion mit zwei Anschlussebenen (4 Rücklauf und 4 Vorlaufleitungen plus Noteinspeisung) besteht das Druckgefäß aus 6 geschmiedeten Ringen und einer Kalotte. Die Schweißarbeiten am oberen und unteren Teil dauern jeweils 15 Tage bei einer Temperatur von 200 °C. Anschließend muß jede Hälfte noch bei 300 °C geglüht werden um die Spannungen in den Nähten zu verringern. Nachdem beide Hälften in einem weiteren Schritt zusammengeschweißt wurden, muß das gesamte Gefäß noch komplett mit einer korrosionsbeständigen Legierung plattiert werden. Alles sehr umständlich und damit teuer. Die Fertigungszeit beträgt deshalb etwa 36 Monate.

Hintergründe

Weißrussland ist als selbstständiger Staat aus der Auflösung der Sowjetunion hervorgegangen. Es ist ein relativ kleines und dünn besiedeltes Land mit knapp 60% der Fläche von Deutschland, aber nur 10 Millionen Einwohnern. Durch die enge Verknüpfung der Wirtschaft in der ehemaligen Sowjetunion – die bis heute noch nicht überwunden ist – kommt praktisch die gesamte Kohle, das Rohöl und Erdgas immer noch aus Rußland. Diese extreme Abhängigkeit hat immer wieder zu Spannungen zwischen beiden Ländern geführt. Vereinfacht kann man sagen, daß Putin-Rußland hat immer wieder versucht durch angedrohte Preiserhöhungen und Lieferunterbrechungen Weißrussland seinen Willen aufzudrücken – umgekehrt hat Weißrussland versucht, seine „Kosten“ durch Erhöhung von Transitgebühren erträglich zu halten. Insofern sind die Ostsee-Pipeline und das Kernkraftwerk Ostrovets unmittelbare Produkte dieses Konflikts. Rußland mußte Weißrussland ein Kernkraftwerk bauen und vorfinanzieren, sonst hätte es Weißrussland durch den Bau der Ostsee-Pipeline unweigerlich in die Arme des „Westens“ getrieben. Ein weiterer Satellitenstaat wäre dem „roten Zaren“ – wie schon vorher die Ukraine – davongelaufen.

Ein Kernkraftwerk entzieht sich weitestgehend politischer Erpressbarkeit: Wegen der außerordentlichen Energiedichte von Uran kann es für Monate und Jahre ohne neue Brennstofflieferungen betrieben werden. Auch ein russisches Kernkraftwerk stellt heute kein Problem mehr da. Es gibt für die Reaktoren heute Brennelemente von verschiedenen Herstellern außerhalb der russischen Einflußsphäre. Auch die Versorgung mit Ersatzteilen und „Kow-how“ ist nicht unbedingt ein Problem. Eine enge Kooperation mit der Ukraine, Finnland usw. kann im Ernstfall helfen – es haben schließlich all diese Länder ein Problem mit russischer Technik und Politik.

Der erste Reaktor der VAE ist kritisch

Mit der Inbetriebnahme des Kernkraftwerks Barakah sind die Vereinigten Arabischen Emirate (VAE) als 33. Nation in den weltweiten Kreis der Nationen mit friedlicher Nutzung der Kernenergie aufgestiegen. Ein unter verschieden Gesichtspunkten erwähnenswerter Schritt.

Proliferation

Die VAE haben sich bewußt zur ausschließlichen friedlichen Nutzung bekannt. Sie haben deshalb bewußt auf einen eigenen Brennstoffkreislauf vertraglich verzichtet: Keine Anreicherung von Uran und keinerlei Gewinnung von Plutonium um „Verdachtsmomente“ einer militärischen Nutzung vollständig auszuschließen. Bezug von Brennstoff nur in der Form einsatzbereiter Brennelemente. So radikal hat sich bisher keine Nation positioniert. Extremes Gegenbeispiel ist der Nachbar auf der anderen Seite des Golfs. Im Mullah-Iran wird die Anreicherung von Uran und die Gewinnung von (waffengrädigem) Plutonium leichtgläubigen Europäern als notwendig für den Betrieb des Kernkraftwerks Busher verkauft.

Der Verzicht auf einen eigenen Brennstoffkreislauf hat einerseits enorme diplomatische Verwerfungen ausgelöst und andererseits interessante neuartige Ansätze erschaffen. So haben die USA größte Bauschmerzen bei der Lieferung von Kernkraftwerken an Saudi Arabien oder Indien. Indien ist bereits faktisch „Atommacht“. Saudi Arabien ist nicht grundsätzlich bereit einen faktischen Verzicht auf Kernwaffen auszusprechen solange der „Erzfeind Iran“ weiter offen an der „Atombombe“ bastelt. Schon aus diesem Grunde ist das – insbesondere von Deutschland immer noch verzweifelt hoch gelobte „Iranabkommen“ äußerst kontraproduktiv gewesen. Andererseits ist durch die inzwischen verwirklichte Brennstoffbank mehr als ein Ansatz für die Nichtverbreitung von Kernwaffen geschaffen worden.

Um die Brennstoffversorgung zu sichern, wurde die Versorgung durch die VAE in fünf Bereiche vom Uranbergbau bis zum Brennelement gegliedert. Für jede Stufe wird mit mehreren Lieferanten aus unterschiedlichen Ländern Lieferverträge abgeschlossen. Für die Erstbeladung allein mit sechs Unternehmen. Für abgebrannte Brennelemente werden drei Perioden (bis 20 Jahre, bis 200 Jahre und darüber hinaus) definiert. Für die Lagerung bis zu 20 Jahren sind Abklingbecken vorgesehen. Alle sechs Jahre sollen die Elemente in oberirdische Betontresore für mindestens (mögliche) 200 Jahre umgelagert werden. Für den Zeitraum danach kann eine Wiederaufbereitung im Ausland durchgeführt oder eine direkte Endlagerung vorgenommen werden. Eine endgültige Entscheidung wird dann wahrscheinlich nach Kosten gefällt werden.

Die Energiesituation in den VAE

Im Jahr 2007 wurde eine umfangreiche Energiestudie durchgeführt. Man kam zu der Erkenntnis, daß der Verbrauch an elektrischer Energie mit einer Rate von 9% jährlich wachsen würde. Es blieb daher nur der Weg über den Neubau von Kernkraftwerken oder Kohlekraftwerken. Ab dem Jahr 2007 wurde die VAE bereits zum Netto-Gasimporteur mit stetig steigender Tendenz. Noch heute wird fast 98% der elektrischen Energie aus Erdgas gewonnen. Der Primärenergieverbrauch wurde 2018 aus etwa 40% Öl und 59% Erdgas gedeckt. Im Jahr 2017 wurden 127 TWh elektrische Energie verbraucht. Das Kernkraftwerk Barakah mit 4 Blöcken vom Typ APR1400 kann rund 44 TWh jährlich produzieren. Damit können erhebliche Mengen Erdgas in den nächsten Jahren für die Industrie oder den Export freigesetzt werden.

Finanzierung

Nach internationaler Ausschreibung und mehr als einjähriger Prüfung ging der Auftrag 2009 an die Korea Electric Power Company über die schlüsselfertige Lieferung zum Festpreis von 20 Milliarden USD für das Kernkraftwerk Barakah (3600 USD/kW). Es war der erste Exporterfolg Koreas für Reaktoren der sog. III. Generation. Insofern ein mutiger Schritt auf beiden Seiten. Vor der Entscheidung wurden zahlreiche internationale Fachleute mit Erfahrungen im Bau von Kernkraftwerken im Auftrag der VAE nach Korea entsandt. Ihr Auftrag war die Beurteilung der Zulieferer und der Baustellen des gleichen Typs. Die VAE selbst verfügen über zahlreiche Erfahrungen in der Abwicklung von Großprojekten ihrer Öl- und Gasindustrie und den Bau und Betrieb zahlreicher Gas-Kombi-Kraftwerke.

Im Jahr 2016 gingen die VAE und Korea eine gegenseitige Beteiligung ein. Man gründete ≫Barakah One (BO)≪ als Finanzierungs- und ≫Nawah≪ als gemeinsame Betriebsgesellschaft. An diesen beiden Gesellschaft hat jeweils die ≫Emirates Nuclear Energy Corporation (ENEC)≪ einen Anteil von 82% und die ≫Korea Electric Power Corporation (KEPCO)≪ einen Anteil von 18%. BO verfügt über ein Kapital von 24,4 Milliarden USD. Davon sind 4,7 Milliarden Eigenkapital und rund 19,6 Milliarden Fremdfinanzierung. Das Department of Finance of Abu Dhabi hat 16,2 Milliarden beigesteuert und die Export-Importbank von Korea (KEXIM) 2,5 Milliarden. Weitere Mittel kommen von einem Bankenkonsortium (National Bank of Abu Dhabi, First Gulf Bank, HSBC, Standard Chartered Bank). Das Volumen beinhaltet den Auftragswert (overnight cost), die Zinsen und etwaige Kostensteigerung durch Inflation während der Bauzeit, sowie die erste Brennstoffladung.

Die Baustelle als ein Konjunkturprogramm

Im July 2012 begann der Bau mit dem Betonieren der Grundplatte des Reaktors 1. Diese Arbeiten gelten international als der Baubeginn eines Kernkraftwerks. Im May 2013 folgte die Grundplatte des Reaktors 2 und im September 2014 Grundplatte 3 bzw. im September 2015 Grundplatte 4. Hier wird schon das Prinzip eines kostengünstigen Bauens erkennbar: Man baut viermal die gleiche Anlage, aber geringfügig zeitversetzt. So hat man jeweils nach dem Bau der Anlage 1 ein bereits geübtes Team für die Anlagen 2 bis 4 vor Ort. Dies bietet die größte Rationalisierung und Sicherheit vor Fehlern, die zu Bauverzögerungen führen. Eine stets wiederkehrende Erfahrung auf allen Baustellen der Welt. Dieser Takt wurde auch bei den Komponenten gehalten: Z. B. Einbau des ersten Reaktordruckgefäßes im May 2014, im Reaktor 2 im Juni 2015, im Reaktor 3 July 2016 und 2017 im Reaktor 4. Eine solche Auftragsvergabe wirkt sich natürlich auch kostensenkend bei den Zulieferern aus. Eine Kleinserie ist immer günstiger als eine spezielle Einzelanfertigung. Jedes „erste Mal“ birgt immer das Risiko nicht vorhergesehener Probleme, die automatisch zu Verzögerungen führen.

Auf der Baustelle arbeiteten mehr als 18 000 Menschen. So viele Menschen über so lange Zeit mit Unterkunft, Essen, sauberer Arbeitsbekleidung etc. zu versorgen, ist ein enormer Input für die lokale Wirtschaft. Hinzu kommen die Aufträge im Inland. Rund 1400 Unternehmen aus den VAE erhielten vom Generalunternehmer Aufträge über mehr als 3 Milliarden USD. Viel bedeutender als der Geldwert ist jedoch der Wissenstransfer: Alle Produkte und Dienstleistungen müssen den strengen Qualitätsanforderungen der Kerntechnik genügen. So haben die koreanischen Zulieferer durch tatkräftige Hilfe dazu beigetragen, daß zahlreiche Unternehmen sich erstmalig für eine Zulassung bei der American Society of Mechanical Engineers (ASME) zertifizieren konnten. So besitzen z. B. Emirates Steel durch ihre Lieferung für Betonstahl nun eine ASME-Zulassung für Kernkraftwerke. Solche Zertifikate müssen beileibe keine Eintagsfliegen sein. So konnte der Kabellieferant Ducab inzwischen sogar Kabel für das Kernkraftwerk Shin Hanul in Korea liefern. Es ist kein Zufall, daß hier keine Rede mehr von DIN und sonstigen deutschen Regelwerken ist. Keine Exporte von Kernkraftwerken, keine Verbreitung von deutscher Spitzentechnik. Wer seinen Betrieb einmal aufwendig auf die US-Maßsysteme und ihre Technik-Philosophie eingestellt hat, wird nur sehr unwillig alles ändern. Dies gilt auch für andere Produkte.

Die Folgeaufträge

Ein solches Projekt ergibt eine gegenseitige Verknüpfung der Wirtschaftsbeziehungen für Jahrzehnte. Für den Lieferanten ergeben sich unzählige lukrative Folgeaufträge. So hat die Korea Hydro und Nuclear Power (KHNP) mit der Betriebsgesellschaft Nawah ein ≫Operating Support Service Agreement (QSSA)≪ abgeschlossen. Für 10 Jahre nach Fertigstellung sollen 400 Fachkräfte von KHNP den Betrieb vor Ort unterstützen. Der Auftragswert: 880 Millionen USD. Hinzu kam 2017 ein weiteres Abkommen zwischen KHNP und Nawah über den gemeinsamen Einkauf von Ersatzteilen für die koreanischen und VAE Kraftwerke vom Typ APR1400. Im März 2019 hat Nawah einen fünfjährigen Wartungsvertrag mit Kepco und Doosan Heavy Industries abgeschlossen. Man muß nicht nur unzählige „Elektro-Golfs“ verkaufen, bis man einen Umsatz von 20 Milliarden erzielt hat, sondern bei einem Kernkraftwerk fallen einem auch noch weitere Milliardenaufträge quasi ins Haus. Nicht zu unterschätzen, welche ganz anderen Aufträge man durch solch enge Kontakte einwerben kann. So haben sich die Koreaner schon vorher durch den Bau von Gaskraftwerken und Meerwasserentsalzungsanlagen einen Namen in den VAE gemacht. So wie einst Siemens – jedenfalls sind nicht immer höhere Lohnkosten in Deutschland eine Ausrede für alles. Politischer Wille spielt auch eine nicht ganz unwichtige Rolle. Wenn man jedenfalls sein Heil in der Neuerfindung mittelalterlicher Techniken sucht, sollte man sich über keinen Stellenabbau wundern.

Der steinige Weg

Es ist eine nicht zu unterschätzende Leistung, ein bitterarmes Volk aus einer nahezu unbewohnbaren Salzwüste in das 21. Jahrhundert zu katapultieren. Inzwischen setzt sich in allen Ölförderländern die Erkenntnis durch, daß nur durch eine konsequente Industrialisierung dauerhaft gut bezahlte und anspruchsvolle Arbeitsplätze geschaffen werden können. Davor steht wiederum Bildung und Ausbildung. So ist die Emirates Nuclear Energy Corporation (ENEC) buchstäblich aus dem Nichts 2008 entstanden. Heute hat die ENEC über 2900 Mitarbeiter. Der Anteil der Emiratis ist inzwischen auf 60% angestiegen und der Anteil der Frauen beträgt 20%, was vielleicht viele „Gender-GaGa-Anhänger“ erstaunen mag. Hier wächst eine Generation hoch qualifizierter Frauen heran, von denen bereits einige Führungspositionen – ganz ohne Quote, sondern durch Fleiß (Kerntechnik-Studium) und Befähigung – erklommen haben.

Der Weg ist durchaus eine Orientierung für andere Schwellen- oder gar Entwicklungsländer die Kernenergie nutzen wollen. Auch Wissen kann importiert werden. Man hat Fachleute aus aller Welt mit mindestens 25-jähriger einschlägiger Berufserfahrung angeworben. Der eigene Nachwuchs lernt durch die unmittelbare Zusammenarbeit an dem konkreten Projekt. Für die Grundausbildung sind vier Züge vorgesehen:

  1. Weiterbildung von erfahrenem Personal aus anderen Industriezweigen des Landes.
  2. Studium von besonders qualifizierten Studenten der eigenen Hochschulen zur Erlangung eines „Nuclear Masters“ an renommierten Universitäten im Ausland.
  3. Aufbau eines „Bachelors der Kerntechnik“ an den Hochschulen des Landes.
  4. Techniker für Wartung und Betrieb im eigenen Kraftwerk.

KHNP und ENEC haben 2016 einen Vertrag über die Entsendung von 50 Fachkräften für die Ausbildung in Korea abgeschlossen. Daraus sind unter anderem 10 voll ausgebildete und zertifizierte Reaktorfahrer hervorgegangen. Seit 2010 läuft das ≫Energy Pioneers Program≪ mit den USA. Bisher wurden 500 Emiratis ausgebildet. Weiter werden 200 Emiratis durch die USA zu Reaktorfahrern ausgebildet. Im July 2019 wurden die ersten 15 Reaktorfahrer nach 3-jähriger praktischer Ausbildung in Korea, Südafrika und USA von der ENEC zugelassen. Für den Betrieb des Kraftwerks geht ENEC von etwa 2000 Dauerarbeitsplätzen aus.

Zwangsläufige Verzögerungen

Die Kernenergie in den VAE wurde praktisch auf einem weißen Blatt begonnen. Von Anfang an hat man die Kooperation mit dem Ausland angestrebt um aus Erfahrungen und Fehlern zu lernen. Auf Transparenz gegenüber allen internationalen Institutionen wurde stets großer Wert gelegt. Die Federal Authority for Nuclear Regulation (FANR) der VAE ging nie allein vor.

Bereits im Mai 2017 wurden vertragsgemäß die Brennelemente für den ersten Reaktor geliefert und im Kraftwerk bis zur Erlangung einer Betriebsgenehmigung eingelagert. Im Oktober 2017 hat ein ≫Pre-Operational Safety Review Team (Pre-OSART)≪ der ≫World Association of Nuclear Operators (WANO)≪ die Anlage auf ihre Betriebssicherheit überprüft. 15 internationale Fachleute aus 7 Ländern haben 18 Tage vor Ort das Kraftwerk begutachtet. Hierbei geht es vor allen Dingen um die Einhaltung der Sicherheitsstandards der ≫International Atomic Energy Agency (IAEA)≪. Der Bericht schloß mit einem Lob für die Bildung der „Multi-Kulti“ Betriebsmannschaft, aber auch mit einiger Kritik ab. Es wurde für die Behebung der Mängel ein Zeitraum von 18 Monaten vorgegeben.

Im März 2018 wurde der erste Reaktor offiziell fertig gestellt und dem Kunden übergeben. Damit sind alle Tests und Prüfungen unter Fremdenergie abgeschlossen und die Betriebsfähigkeit nachgewiesen. Der Reaktor durfte aber erst mit Kernbrennstoff beladen werden, nachdem die Betriebsgesellschaft Nawah eine Betriebserlaubnis erhalten hatte.

Im November 2019 führte die WANO eine ≫Pre-Start Up Review≪ durch und erklärte den Reaktor 1 für betriebsbereit. Am 17.02.2020 erteilte die FANR als zuständige Institution der Nawah eine Betriebsgenehmigung für 60 Jahre. Dies geschah nachdem über 14 000 eingereichte Seiten technische Dokumentation geprüft, 255 Inspektionen durchgeführt, 2000 ergänzende Anfragen bearbeitet und 40 internationale Inspektionen durch WANO und IAEA durchgeführt worden waren. Damit konnte Reaktor 1 mit Kernbrennstoff beladen werden. Die Erstbeladung konnte bereits durch ein Team aus 90% Emitatis eigenverantwortlich durchgeführt werden. Trotz Corona konnte nun endlich zum 1. August der erste Block seine Kettenreaktion einleiten. Es beginnen jetzt die üblichen Garantietests in verschiedenen Leistungsstufen. Man strebt eine vollständige Übergabe bis Ende des Jahres an. Gleichwohl wird schon in dieser Inbetriebnahmephase elektrische Energie in das Verteilnetz der VAE eingespeist.