Wasserstoff, der neue Heilsbringer

Es gibt einen guten Grundsatz im Bankgeschäft: Werfe nie gutes Geld schlechtem hinterher. Energiewende geht anders. Zuerst hat man die Landschaft mit Windmühlen und Sonnenkollektoren zugepflastert. Die zwei zentralen Werbeslogans waren ≫Die Sonne schickt keine Rechnung≪ und ≫Irgendwo weht immer der Wind≪. Beide gleichermaßen trivial und im Zusammenhang mit dem europäischen Stromnetz schlicht weg falsch. Kritik wurde einfach – z. B. durch die unvergleichliche Energie-Fach-Frau Claudia Kemfert –weg gelächelt. Sie schwafelte sich monatelang mit ihrem ≫smarten Netz≪ und ihren ≫intelligenten Zählern≪ durch die Gesprächsrunden im Staatsfernsehen. Leider kam die gemeine Hausfrau sehr schnell dahinter, daß es sich dabei nur um Neusprech für Rationierung handelte. Lebensmittelkarten, egal ob elektronisch oder nicht, sind nun mal in Deutschland aus Erfahrung gemieden. Auch wollte besagte Hausfrau ungern die Wäsche des nachts im Plattenbau schleudern lassen oder solange im Saft stehen lassen, bis mal wieder der Wind weht. Was natürlich unsere Schlangenölverkäufer und Kombinatsleiter nicht davon abhält – nun eher in aller Stille – die guten alten Stromzähler durch neue und wesentlich teurere auszutauschen. Geschäft ist Geschäft und man erfüllt damit natürlich nur die Vorgaben der Politik. Innerlich war man schon immer irgendwie kritisch.

Nun weiß man aber aus der Werbung, daß es wenig effektiv ist, abgedroschene Werbeslogans weiter zu senden. Es mußte also ein neuer Gimmick her, mit dem man in einschlägigen Talkshows brillieren konnte: Das batteriebetriebene Elektroauto ward geboren. Wohlgemerkt, die Betonung lag auf ≫batteriebetrieben≪. Damit sollte der Hipster aus der Vorstadt sein Auto aufladen, wenn die Sonne scheint oder der Wind weht und sollte sogar noch ein Zubrot erzielen können, wenn er dem Prekariat im Sozialbau bei kalter Dunkelflaute mit ein bischen Strom aus seinem Drittauto aushelfen würde. Leider ist dieser Markt zu klein, um für die deutsche Autoindustrie profitabel zu sein. Otto-Normalverbraucher hingegen muß lange und schwer arbeiten, bis er ein paar Zehntausend Euro für ein Elektroauto über hat. Er wird sich hüten, sein Fahrzeug irgendwelchen Windmüllern als Speicher zur Verfügung zu stellen. Wohlwissend, daß die Batterie das teuerste Bauteil an seinem Auto ist und deren Lebensdauer stark von der Anzahl der Ladezyklen abhängt. Ganz nebenbei, wird von ihm als Steuerzahler auch noch erwartet, daß er jeden Tag pünktlich auf seiner Arbeitsstätte erscheint. Chef, meine Batterie war leer, geht nicht. Wenn sich das Elektroauto tatsächlich ausbreitet, wird es zu einer Zunahme der Nachfrage nach elektrischer Energie und vor allem auch elektrischer Leistung führen. Mit einfachen, aber deutlichen Worten: Wir brauchen noch mehr konventionelle Kraftwerke als heute. Kohle und Kernenergie soll es aus ideologischen Gründen nicht mehr sein, also muß was anderes her. Die nächste Schnapsidee lautet Neudeutsch ≫Power to Gas≪ oder doch wenigstens ≫Wasserstoff≪, denn die GröKaZ irrt sich nie oder wie man früher auch sagte ≫Die Partei hat immer recht≪.

Wasserstoff

Wasserstoff hat den Charme aus fast überall verfügbarem Wasser herstellbar zu sein und nach getaner Arbeit auch wieder zu Wasser zu werden. Das die Umwandlung nicht so ganz einfach ist und durchaus auch nicht ganz ohne Schadstoffe vonstatten geht, soll hier erst einmal nicht interessieren. In diesem Zusammenhang geht es um die Frage der Speicherung. Was die Stromversorgung angeht, haben sich unsere grünen Schlehmile schon einen Weg ausgesucht. Sie wollen Wasserstoff durch ihre Windmühlen und Sonnenkollektoren erzeugen oder präziser gesagt, aus der von ihnen produzierten elektrischen Energie. Dies ist beileibe keine feinsinnige sprachliche Unterscheidung. Würden sie die Anlagen selber bauen und betreiben, würden sie an den Kapital- und Betriebskosten schlichtweg ersticken und das alles nur, um die ≫Nachfrage nach elektrischer Leistung≪ befriedigen zu können. Man kann es nicht oft genug betonen, solche Anlagen können nur dann Wasserstoff produzieren, wenn auch Wind weht bzw. die Sonne scheint. Wobei noch nicht einmal geklärt ist, ob solch eine Wasserstoffherstellung bei ständig schwankender und zufälliger Stromproduktion überhaupt funktioniert. Man denke nur mal einen Augenblick an tagelangen Frost im Winter. Wasser einfrieren lassen oder die bereits kostspielig gewonnene Energie zur notwendigen Heizung der Wasserstoffproduktion verbraten? Mit Sicherheit wird man auch hier den bewährten Weg des Schmarotzen gehen: Das Stromnetz und zukünftig auch noch das Erdgasnetz, werden sich selbstverständlich kostenlos den Bedürfnissen der grünen Energiebarone anpassen und unterordnen müssen. Alle notwendigen Mehrkosten werden wie gehabt direkt auf die Allgemeinheit umgelegt (Netzentgeld etc.).

Noch einmal zurück zur aktuellen Frage: Ist Wasserstoff als Antrieb bei Kraftfahrzeugen besser geeignet, als die (berüchtigte) Batterie? Beide haben das gleiche Problem: Geringe Energiedichte und/oder lange Ladezeiten. Jedes Fahrzeug (ausgenommen Schienenfahrzeuge) muß nicht nur sein komplettes Antriebssystem, sondern auch seinen kompletten Energievorrat mit sich führen. Bei Benzin und Diesel ist das bekanntlich kein Problem, denn es sind Flüssigkeiten mit hoher Energiedichte. Flüssigkeit bedeutet nahezu drucklos, hohe Energiedichte bedeutet kleiner Tank und was immer gern vergessen wird, beides zusammen ergibt eine sehr kurze Zeit zur vollständigen Betankung. Eine Autobahntankstelle mit Elektrozapfsäulen oder Verdichter für Wasserstoff benötigt einen eigenen Hochspannungsanschluss um die benötigte elektrische Leistung bereitzustellen. Wie gesagt, Wasserstoff ist ein Gas und es gibt damit nur drei Möglichkeiten es im Auto mitzuführen: In Druckgasflaschen (mindestens 300 bar), in einem Kryotank (Temperatur -252 °C) oder chemisch gebunden. Die Lösung Druckgas ist technisch einfach und kostengünstig und bei PKW wohl auch die einzig realistische. Aber auch hier wieder der Nachteil langer Ladezeiten bzw. geringer Reichweite (bei der notwendigen Verdichtung im Tank erwärmt sich das Gas und verringert somit die mögliche Beladung). Dämmert es jetzt, warum schon jetzt hinter vorgehaltener Hand von ≫synthetischen Kraftstoffen≪ gewispert wird? Das ist lediglich ein Neusprechwort für das, was Deutschland schon im zweiten Weltkrieg machen mußte. Diesmal will man nur nicht Braunkohle als Ausgangsstoff verwenden. Dabei nicht vergessen, wir reden nicht mehr nur von dem Sektor Stromerzeugung, sondern inzwischen auch schon von Verkehr und immer öfter auch von Industrie und Gebäuden. Alles versorgt durch Wind und Sonne. Bald auch wieder ≫Volk ohne Raum≪ für Windkraftanlagen? Regiert von Vegetariern als ≫Schutzstaffel≪ des Klimas?

Jetzt auch noch Kernkraftwerke

Das ist kein Witz. In den USA planen bereits Kernkraftwerke auf ihrem Gelände eine Wasserstoffproduktion aufzubauen. Es gibt dafür auch reichlich Subventionen, „wegen Klima“. Erstes Projekt ist der Bau einer Elektrolyseanlage für das Kernkraftwerk Davis Besse (Druckwasserreaktor mit 894 MWel) in Oak Harbor, Ohio. Die Anlage soll $11,5 Millionen kosten (davon $9,2 Millionen Zuschuss vom US Department of Energy). Sie soll 1–3 MWel aus dem Kernkraftwerk nutzen, um damit Wasserstoff für die Versorgung öffentlicher Fahrzeuge und der lokalen Wirtschaft bereitzustellen. Das Demonstrationsprojekt wird federführend vom Idaho National Laboratory (INL) betreut, Industriepartner ist FirstEnergy Solutions, die Partner als Stromversorger sind Xcel Energy und Arizona Public Service. Das Projekt soll mindestens zwei Jahre laufen. Betriebsbeginn soll schon nächstes Jahr sein.

Das Interesse der Versorger in Arizona an diesem Projekt ist nicht ganz abwegig. Das Kernkraftwerk Palo Verde in Tonopa, Arizona produziert mit seinen drei Reaktoren (3397 MWel) rund 35% des gesamten Verbrauchs an elektrischer Energie in diesem Bundesstaat. Arizona ist aber auch der Sonnenstaat der USA. Vor einigen Jahren gab es erbitterte Auseinandersetzungen um einen „Atomausstieg“ und alternativ eine Vollversorgung durch „Sonnenstrom“. Die Bürger in Arizona entschieden sich durch Volksentscheid für die Erhaltung ihres Kernkraftwerks. Gleichwohl nimmt die Produktion durch „Sonnenkraftwerke“ dank hoher Steuervergünstigungen im gesamten Süden der USA beständig zu. Dies führt zu erheblichen Störungen im Stromnetz. Die Preise für Spitzenstrom an heißen Sommertagen (Klimaanlagen) betragen inzwischen mehr als $8 pro kWh. Diese Stunden sind die Domäne der offenen Gasturbinen (geringe Investition, aber hoher Gasverbrauch). Noch ist Erdgas als Beiprodukt der Ölförderung in Texas und New Mexico extrem billig. Die Brennstoffkosten liegen bei rund $Cent 3,4 pro kWhel. Dies muß aber nicht so bleiben.

Letztendlich wird sich die Frage, Wasserstoff hergestellt aus Erdgas (heute überwiegende Produktion) oder aus Kernenergie über den Preis entscheiden. Am Preis aber, will die Politik über eine CO2 – Abgabe zukünftig kräftig drehen. Mit Sicherheit wird aber Wasserstoff aus „Wind und Sonne“ kein konkurrenzfähiges Produkt ergeben. Die geringe Arbeitsausnutzung solcher Anlagen und ihre wetterabhängige Zufallsproduktion können niemals mit Kernkraftwerken konkurrieren. Ist dies der Grund, warum unser Wirtschaftsminister neuerdings immer öfter darauf hinweist, daß wir heute schließlich auch den größten Teil unserer Primärenergie (Steinkohle, Erdgas, Öl) importieren?

Terrestrial Energy aus Kanada

Kanada gehört zu den führenden Ländern auf dem Gebiet der friedlichen Nutzung der Kernenergie: Sie entwickeln (Terrestrial etc.), bauen eigene Kernkraftwerke (Candu Baureihe von Schwerwasserreaktoren) und betreiben sie seit Jahrzehnten sehr erfolgreich (Anteil ≈15% an der Stromproduktion). Damit widerlegen sie gleich zwei Argumentationsketten der „Atomkraftgegner“:

  • Kanada zeigt, daß es keinen Zusammenhang zwischen der friedlichen Nutzung der Kernenergie und dem Streben nach Kernwaffen gibt. Man kann sehr wohl erfolgreich Kerntechnik ohne einschlägige Rüstungsindustrie betreiben. In der vollen Bandbreite von Grundlagen-Forschung, über Entwicklung, bis hin zur Produktion – wie einst auch in Deutschland.
  • Kanada ist nicht nur mit schier unerschöpflichen Vorkommen an fossilen Energien (Erdgas, Kohle und Öl), sondern auch mit sog. „Alternativenergien“ (Wasserkraft, Wind und Holz) reichlich gesegnet. Es wäre damit nahezu frei in seiner Entscheidung, welche Energieformen genutzt werden sollen. Diese Entscheidungsfreiheit haben Länder, wie Frankreich, Deutschland, Süd Korea oder Japan wegen ihrer eingeschränkten Ressourcen leider nicht. Kanada teilt aber mit vergleichbaren Ländern, wie Rußland oder Brasilien, den Nachteil schierer Ausdehnung. Beispielsweise befinden sich geeignete Flüsse nicht unbedingt in der Nähe der großen Städte, bzw. der Industriezentren.

Groß braucht klein

In Kanada zeigt sich diese Problematik sehr deutlich: In der Provinz Ontario wird mit 15 Candu-Reaktoren mehr als die Hälfte der dort verbrauchten elektrischen Energie erzeugt. Andererseits gibt es in vielen Städten im hohen Norden praktisch keine Alternative zu Diesel-Generatoren. Der Dieselkraftstoff muß überdies noch zu extremen Kosten dort hin transportiert werden. Kanada ist und bleibt aber auch ein „Rohstoffland“ mit zahlreichen abgelegenen Förderstätten für die eine Alternative gefunden werden muß. Eine Analyse ergab folgendes:

  • Ölsände: In 96 Anlagen wurde ein Bedarf an Heizdampf und elektrischer Energie für „Steam-Assisted Gravity Drainage“ festgestellt. Im Durchschnitt mit einer Leistung von 210 MWel pro Anlage plus Dampf.
  • Dampf für die Schwerindustrie: 85 Standorte der Chemieindustrie und Raffinerien mit einer Leistung von 25 bis 50 MWel plus Dampf.
  • Abgelegene Gemeinden und Bergwerke: 79 Standorte mit einem Leistungsbedarf von über 1 MWel plus erheblichem Wärmebedarf für die Nahwärmenetze. 24 Bergwerke ohne Netzanschluss.
  • Alte Kohlekraftwerke: 29 Blöcke an 17 Standorten mit einer durchschnittlichen Leistung von 343 MWel. Hier könnten (nur die) Kesselanlagen durch kleine Reaktoren ersetzt werden, wenn die sonstigen Anlagen noch in einem brauchbaren Zustand sind. Dies ergibt besonders kostengünstige Lösungen.

Es verwundert deshalb nicht, daß gegenwärtig 10 verschiedene Kleinreaktoren mit Leistungen zwischen 3 und 200 MWel zur Genehmigung bei den kanadischen Behörden eingereicht wurden. Es wird von der kanadischen Regierung angestrebt, etwa vier verschiedene Konzepte als Prototypen im nächsten Jahrzehnt zu errichten. Alle Reaktoren stammen aus privaten Unternehmen und sind überwiegend durch Risikokapital finanziert. Dies zeigt deutlich, welche Veränderungen die kerntechnische Industrie momentan durchläuft. Private Investoren wollen ihr Geld zurück und möglichst einen Gewinn oben drauf. Man kann also von der nötigen Ernsthaftigkeit und einem beschleunigten Arbeiten ausgehen – Zeit ist immer auch Geld. Es geht zur Zeit zu, wie in der Software-Branche. Allerdings darf man nicht aus den Augen verlieren, daß hier immer der Staat in Form der Genehmigungsbehörden ein ausschlaggebendes Wort mit zu reden hat!

Beschreibung des Reaktors

Bei dem Reaktor des kanadischen Unternehmens Terrestrial Energy handelt es sich um einen SMR (Small Modular Reactor) von der Bauart „Integral Molten Salt Reactor“, mit einer Wärmeleistung von 400 MWth (≈190 MWel).

Der gesamte Reaktor befindet sich in einem etwa 7 m hohen Stahlbehälter mit einem Durchmesser von etwa 3,5 m und einem Transportgewicht von 170 to. Das sind – verglichen mit den heutigen Komponenten von Druckwasserreaktoren – einfach zu transportierende und handhabbare Abmessungen. Solch ein Reaktor kann deshalb komplett in einer Fabrik (in Serie) angefertigt werden und erst anschließend zur Baustelle transportiert werden. Dort sind nur wenige Wochen bis Monate nötig, um die erforderlichen Anschlussarbeiten und die Inbetriebsetzung durchzuführen. Ein Vorteil gegenüber konventionellen Kernkraftwerken, der gar nicht zu überschätzen ist. Das wirtschaftliche Risiko (Baukosten, Finanzierungskosten und das Risiko eines Fremdstrombezuges) bewegt sich plötzlich in einer üblichen und allgemein akzeptierten (Lieferant ⟺ Kunde) Größenordnung.

Vorgeschichte

Vielen mag die angestrebte Inbetriebnahme des ersten Kraftwerks in der ersten Hälfte der 2020er-Jahren sehr unwahrscheinlich erscheinen. Es handelt sich hierbei aber keinesfalls um einen „Erfinder-Reaktor“, sondern eher um eine konsequente Weiterentwicklung. Man kann auf ein umfangreiches Forschungs- und Entwicklungsprogramm zu Salzschmelze-Reaktoren in den Jahrzehnten 1950 bis 1970 am Oak Ridge National Laboratory (ORNL) in den USA zurückgreifen. Es gipfelte im erfolgreichen Bau und Betrieb des Molten Salt Reactor Experiment (MSRE) und der Konstruktion des Small modular Advanced High Temperature Reactor (SmAHTR), der zur Produktion von Wasserstoff gedacht war. Allerdings sollte man auch nicht die notwendigen Arbeiten unterschätzen, die für die von der Genehmigungsbehörde geforderten Nachweise erforderlich sind. Weltweit sind diese Arbeiten bereits im Gange: Von Bestrahlungsexperimenten in den Niederlanden bis – man lese und staune – zur Forschung an Salzen in Karlsruhe (European Commission’s Joint Research Center).

Brennstoff und Kühlmittel

Salzbadreaktoren unterscheiden sich grundsätzlich von anderen Reaktortypen: Bei ihnen ist der Brennstoff auch gleichzeitig das Kühlmittel. Störfälle durch den Verlust des Kühlmittels – Fukushima und Harrisburg – sind ausgeschlossen. Es gibt auch keine Begrenzung durch den Wärmetransport innerhalb der Brennstäbe und durch die Brennstabhülle an das Kühlmittel. Der Brennstoff ist bereits während des Betriebs geschmolzen und im „Kühlmittel“ gelöst. Man verwendet hier die chemische Verbindung Uranfluorid. Dieses Salz wird in geringer Menge anderen Salzen, wie Natriumflourid, Berylliumfluorid bzw. Lithiumfluorid zugesetzt. Die genaue Zusammensetzung ist bisher nicht veröffentlicht. Sie richtet sich wesentlich nach der angestrebten Betriebstemperatur von 625 bis 700 °C. Die Salzmischung soll bei möglichst geringer Temperatur bereits schmelzen, aber andererseits muß sie auch langfristig im Betrieb möglichst chemisch stabil sein und bleiben. Das Salz ist bei diesem Reaktor sicherheitstechnisch das wesentliche (z. B. Korrosion) und kritische Bauteil.

Da das Salz im Laufe der Zeit durch die Spaltprodukte hoch radioaktiv wird, ist ein sekundärer Kreislauf mit dem gleichen Salz ohne Brennstoff vorgesehen. Die Wärmeübertragung findet durch Wärmetauscher innerhalb des eigentlichen Reaktorbehälters statt (Integrierte Bauweise). Die Druckverluste (ca. 5 bar) im Moderator und den Wärmeübertragern wird durch Pumpen innerhalb des Gefäßes überwunden. Die Wärmeübertrager sind redundant vorhanden, sodaß bei etwaigen Leckagen einzelne Übertrager einfach stillgelegt werden können.

Beladungsrhythmus

Man beschränkt sich bewußt auf die Verwendung von sehr gering angereichertem Uran für die Erstbeladung und auf Uran mit einer Anreicherung von etwa 4,75 % U235 als Ergänzung während des Betriebs. Damit verwendet man (erst einmal) handelsübliches Material. Prinzipiell ist auch Thorium und Plutonium einsetzbar. Bei solch geringer Anreicherung benötigt man zwingend einen Moderator. Es wird ein Block aus Reaktorgraphit im unteren Teil des Reaktorgefäßes verwendet, durch dessen Kanäle das Salz von unten nach oben strömt. Nur in diesen Kanälen findet die Kernspaltung statt.

Die ganze Einheit bleibt nur etwa sieben Jahre in Betrieb. Dann vollzieht sich ein „Brennstoffwechsel“ durch die Inbetriebnahme einer neuen Einheit in einem zweiten Silo. Die alte Anlage verbleibt in ihrem Silo, bis der wesentliche Teil ihrer Strahlung abgeklungen ist. Dieser Vorgang entspricht der Lagerung der Brennelemente im Lagerbecken eines Leichtwasserreaktors. Nach angemessener Zeit wird das Salz in spezielle Lagerbehälter umgepumpt und die restliche Einheit aus dem Silo herausgehoben und ebenfalls in das Zwischenlager auf dem Kraftwerksgelände gebracht:

  • Ziel ist ein Betrieb des Kraftwerks (theoretisch) ohne Unterbrechung.
  • Möglichst geringer Personalaufwand vor Ort, da (fast) keine Wartung und Inspektion nötig wird. Die Anlage wird zwar auf eine Lebensdauer von 60 Jahren ausgelegt, aber der „Reaktor“ nur sieben Jahre betrieben. Alle Arbeiten können wieder in einer Fabrik durchgeführt werden. Dort kann entschieden werden, was Schrott ist (Vorbereitung zur Endlagerung) oder wieder verwendet werden kann. Das Vorgehen erinnert an den guten, alten „Austauschmotor“ bei Kraftfahrzeugen.
  • Die alten Salze können in einer Wiederaufbereitungsanlage behandelt werden und die Spaltprodukte zur Endlagerung verarbeitet werden.

Salzschmelzen haben eine recht geringe Viskosität und lassen sich somit auch über längere Strecken gut pumpen. Wichtig ist hierbei, daß bereits den Reaktor ein „garantiert nicht strahlendes“ Salz verläßt (innen liegende Wärmeübertrager). Die Grenze des nuklearen Teils liegt somit am Rand des Silos. Der Charme eines solchen Reaktors liegt in seiner hohen Betriebstemperatur und seinem sehr geringen Betriebsdruck. Man kann mit relativ kleinem Aufwand noch einen einen dritten Kreislauf aus sogenanntem „Solarsalz“ anschließen. Damit gelangt man zu zwei völlig neuen Möglichkeiten:

  1. Man kann die Hochtemperaturwärme relativ einfach und kostengünstig über eine längere Leitung transportieren. Eine industrielle Nutzung wird damit möglich. Wohl kaum eine Industrie- oder Chemieanlage wird sich nach einem „Atomkraftwerk“ auf ihrem Gelände sehnen. Völlig anders dürfte sich die Situation darstellen, wenn die kerntechnische Anlage „deutlich“ neben dem eigenen Gelände steht und man nur Nutzwärme kauft.
  2. Durch die Verwendung von „Solarsalz“ – wie es heute beispielsweise bei Solarturmkraftwerken (manchen auch als Grill für Vögel bekannt) zur Stromproduktion in der Nacht eingesetzt wird. Eine vollständige zeitliche Entkopplung von Strom- und Wärmeproduktion wäre damit möglich. Der Reaktor könnte ständig mit voller Leistung gefahren werden und beim Einsatz einer Turbine mit „Übergröße“ hätte man ein perfektes Spitzenkraftwerk für die Regelung von „Flatterstrom“. Speicher mit geschmolzenem Salz haben nicht nur eine große Speicherkapazität (Phasenumwandlung), sondern weisen auch durch ihre Selbst-Isolierung (zuerst erstarrt eine Schicht an der Oberfläche), geringe Wärmeverluste über längere Zeiträume aus.

Notkühlung

Wenn tatsächlich eine Überhitzung eintritt, wirkt das passive Kühlungssystem. Der Reaktorbehälter steckt in einem weiteren Schutzbehälter. Dieser Schutzmantel entspricht dem Containment eines konventionellen Reaktors. Beide Behälter sind nicht isoliert. Steigt die Temperatur im inneren Behälter an, nimmt die Abstrahlung an den Schutzbehälter zu. Die Wärme wird durch Naturkonvektion über den Luftspalt zwischen Schutzbehälter und Silo abgeführt.

Reaktivitätskontrolle

Der Reaktor hat einen so starken negativen Temperaturkoeffizienten, daß er ohne Regelstäbe auskommt. Je höher die Temperatur der Salzschmelze wird – aus welchem Grund auch immer – um so weniger Kerne werden gespalten. Umgekehrt nimmt die Kernspaltung wieder automatisch zu, wenn mehr Wärme abgenommen wird. Es sind lediglich Abschaltstäbe für eine dauerhafte Abschaltung vorgesehen. Als weiteres passives Sicherheitssystem gibt es noch Kapseln die schmelzen und starke Neutronenabsorber frei setzen.

Konstruktionsvorgabe ist ein inhärent sicheres, walk-away sicheres Kernkraftwerk zu bauen. Alle treibenden Kräfte, die in einem Störfall radioaktive Materialien frei setzen können (Tschernobyl), werden vermieden. Deshalb werden alle unter hohem Druck stehende Komponenten (Wasser-Dampf-Kreislauf) vom Reaktor fern gehalten. Es muß für keine Druckentlastung gesorgt werden und kein Kühlwasser zum Reaktor gebracht werden.

Der Reaktor braucht überhaupt kein Notabschalt- oder Notstromsystem. Somit vereinfacht sich das Genehmigungsverfahren und die wiederkehrenden Sicherheitsprüfungen enorm. Alle Instrumentierungen und Steuerungselemente können konventionelle Produkte (Kostenreduktion) sein.

Schlussbemerkung

Das kanadische Genehmigungsverfahren ist vierstufig. Stufe 1 wurde bereits erfolgreich abgeschlossen. Man befindet sich nun in der zweiten Stufe. Der Zeitrahmen von etwa fünf Jahren bis zur Inbetriebnahme einer ersten Demonstrationsanlage scheint sehr ehrgeizig, wenn auch nicht unmöglich. Inzwischen sind alle namhaften kanadischen Ingenieurgesellschaften und die kerntechnische Industrie in das Projekt eingestiegen. Aus dem innovativen Startup mit rund 50 Beschäftigten ist eine schlagkräftige Armee mit zehntausenden Ingenieuren geworden. Es gibt praktisch kein Problem, für das keine erfahrenen Mitarbeiter zur Verfügung stehen. Wer schon mal mit kanadischen Unternehmen gearbeitet hat, kennt deren grundsätzlich optimistische und entschlossenen Rangehensweise. Wo deutsche Ingenieurzirkel in endlosen Sitzungen immer wieder neue Probleme erschaffen, probieren Kanadier einfach mal aus.

Westinghouse eVinci Microreactor

Tote leben länger. Westinghouse ist schon öfter verkauft worden oder pleite gegangen, aber immer wieder wie Phönix aus der Asche auferstanden. Westinghouse hat 1957 weltweit den ersten Druckwasserreaktor (Shippingport, 60 MWel) gebaut und ist am Bau des AP1000 (Druckwasserreaktor der III. Generation, vier bereits in China in Betrieb.) in den USA erstickt. Inzwischen unter dem neuen Eigentümer Brookfield erfolgreich restrukturiert.

Ohne Zweifel zählt Westinghouse zu den besonders innovativen Unternehmen auf dem Gebiet der Kerntechnik. Deswegen verwundert es auch nicht, daß sie sich mit ihrem „eVinci“ weltweit an die Spitze der Entwicklung sogenannter „Mikro-Reaktoren“ setzen. Dabei handelt es sich um „Kleinst-Kernkraftwerke“ im Leistungsbereich einiger hundert Kilowatt bis zu etwa 25 Megawatt elektrischer Leistung. Gemeinsam ist dieser Klasse, daß sie vollständig (in Serie) in einer Fabrik gefertigt werden und komplett auf einem LKW (etwa in einem Container) ausgeliefert werden sollen. Man zielt damit auf einen völlig neuen Markt: Das Kernkraftwerk nicht mehr als Milliarden teueres Großkraftwerk, sondern als dezentrales „Block-Heiz-Kraftwerk“. Ironischerweise ist diese Entwicklung erst durch die wetterabhängige Erzeugung mit Wind und Sonne so richtig angefacht worden. Die einstigen Vorteile des guten alten Stromnetzes – Versorgungssicherheit bei günstigen Kosten – drohen durch die „Regenerativen Energien“ systematisch zerstört zu werden. Will man nicht zurück ins Mittelalter, sind also schnellstens neue Lösungen gefragt.

Das Konstruktionsprinzip

Will man direkt in die Städte oder Industrieanlagen (Raffinerien, Chemieparks etc.) ist die maximale Leistung auf einige zehn Megawatt begrenzt. Diese Kernkraftwerke müssen für einen Inselbetrieb ausgelegt sein: Ohne ein Netz in Betrieb zu nehmen (Schwarzstart), nahezu unterbrechungsfrei laufen (kein Brennelementewechsel), äußerst robust auf Lastschwankungen reagieren können und nicht zuletzt – „sicher sein“.

Bei allen schweren Störfällen – Three Mile Island, Tschernobyl, Fukushima – war der Verlust des Kühlmittels (Wasser) ausschlaggebend. Während des Unfallgeschehens kamen noch Reaktionen des Kühlmittels mit den Reaktorwerkstoffen hinzu: Die Bildung von Wasserstoff und die anschließende Knallgas-Explosion führte z. B. in Fukushima erst zur Freisetzung von radioaktiven Stoffen. Es ist damit logisch, daß der gesamte Kühlwasserkreislauf besondere Sorgfalt bei jeder Wiederholungsprüfung erfordert (Zeitdauer und Kosten) und all seine Bauteile den Kostentreiber „nuclear grade“ erfüllen müssen. Hinzu kommt, daß insbesondere bei Druckwasserreaktoren erhebliche Druckverluste auftreten, die durch Pumpen mit großer Antriebsleistung ersetzt werden müssen. Ein Ausfall der Stromversorgung, wie z. B. in Fukushima durch die gewaltige Flutwelle, ergibt damit sofort ein ernsthaftes Sicherheitsproblem. Könnte man das Kühlmittel Wasser ersetzen und darüberhinaus noch ein rein passives „Umwälzverfahren“ anwenden, ergebe sich sofort ein Quantensprung in der Sicherheitstechnik.

Seit Anbeginn der Kernkrafttechnik hat man Natrium als Kühlmittel verwendet. Neben seinen herausragenden thermodynamischen Eigenschaften, besitzt es auch hervorragende neutronenphysikalische Eigenschaften. Allerdings war früher die Marschrichtung eine völlig andere: Man wollte sogenannte „Schnelle Brüter“ bauen, die aus Uran-238 mehr leicht spaltbares Plutonium-239 erzeugen, als sie während ihres Betriebs verbrauchen. Ursache war die falsche Annahme, daß die Vorräte an (wirtschaftlich) gewinnbarem Natururan nur sehr klein wären. Heute schwimmen wir weltweit nicht nur in Natururan, sondern auch bereits in Plutonium. Im Gegenteil, das Plutonium wird als „Endlager-Risiko“ und damit Handikap der Kernenergie betrachtet.

Strebt man einen „Schnellen Brüter“ an, muß dieser ein möglichst großes Volumen haben (Ausfluß von Neutronen) und daraus ergibt sich automatisch eine große Leistung. Schon muß man wieder die gleichen Sicherheitsprobleme wie bei einem Druckwasserreaktor lösen und stets im Griff behalten: Großes Kühlmittelvolumen, das auch noch zum Abtransport der Wärme ständig (aktiv) umgepumpt werden muß und unter keinen Umständen verloren gehen darf. Will man jedoch nur einen Reaktor (relativ) kleiner Leistung bauen, kann man diese Probleme geschickt umschiffen.

Wärmerohe als Kühlmedium

Beim eVinci wird der Wärmetransport vom festen Kern zum Arbeitsgas durch Wärmerohre (heat pipes) bewerkstelligt. Wärmerohre sind (dünne) Metallrohre mit einem Docht versehen, die teilweise mit einer Flüssigkeit gefüllt sind und anschließend gasdicht verschweißt werden. Das mit Flüssigkeit gefüllte Ende steckt in der Wärmequelle (Reaktorkern) und das mit Dampf gefüllte Ende in der Wärmesenke (Arbeitsgas). Die Flüssigkeit im Rohr wird nun kontinuierlich verdampft, breitet sich im Rohr aus und kondensiert am gekühlten Ende. Dort bildet sich ein Flüssigkeitsfilm, der durch die Kapillarwirkung im Docht wieder zum heißen Ende zurück strömt. Das Wärmerohr ist also stets mit Sattdampf gefüllt und besitzt dadurch annähernd die gleiche Temperatur an beiden Enden. Ist die Rohrwand dünn und besteht aus gut leitendem Material, können große Wärmeströme durch die Rohroberfläche übertragen werden. Das Wärmerohr kann immer nur in eine Richtung die Wärme transportieren, ist aber durch den „Docht“ nicht von der Lage abhängig.

Das Temperaturniveau hängt von der Flüssigkeit ab. Im eVinci sollen mit Natrium gefüllte Wärmerohre eingesetzt werden. Natrium hat einen Schmelzpunkt von ungefähr 98°C und einen Siedepunkt von 883°C bei Atmosphärendruck. Die übliche Bandbreite für mit Natrium gefüllte Wärmerohre beträgt etwa 600°C bis 1200°C. Strebt man eine „niedrige“ Temperatur von 600°C an, muß man im Wärmerohr einen sehr geringen Druck von etwa 0,06 bar einhalten. Die Kombination aus Temperatur und Druck ist keine besondere Herausforderung, da man sich damit noch im Bereich konventioneller Stähle bewegt.

Die Wärmerohre funktionieren vollständig passiv. Der einzige Antrieb ist die Wärmeproduktion im Kern – gleichgültig ob im Betrieb oder als Nachzerfallswärme nach einer Abschaltung. Da jedes einzelne Wärmerohr ein in sich geschlossener Kühlkreislauf ist, stellt ein Versagen einiger Rohre für den Reaktor kein großes Problem dar. Im Gegensatz zu einem kleinen Loch in einem Druckwasserreaktor, das bereits die Sicherheitskette auslösen muß.

Der Aufbau des Kerns

Der Kern besteht aus einem massiven Stahlblock, der mit ca. 2000 Längsbohrungen von etwa 1,5 m Länge versehen ist. In den Längsbohrungen stecken die Brennelemente und die Wärmerohre. Das Verhältnis zwischen „Brennstäben“ und Wärmerohren beträgt etwa 1:2. In der Fertigung dieses „durchlöcherten Stahlblocks“ liegt ein zentrales Fertigungsproblem des Reaktors. Mit einfachem Bohren wird es nicht gelingen, da die Wände zwischen den Bohrungen möglichst dünn sein sollten um eine gute Wärmeübertragung zu gewährleisten. Der Stahlblock gibt der ganzen Konstruktion Halt, Schutz und transportiert die Wärme gleichmäßig zu den Wärmerohren. Es kann also nichts auslaufen und es steht auch nichts unter Überdruck.

Allerdings fehlt hier noch der Moderator. Bei einem Druckwasserreaktor übernimmt das Wasser selbst die notwendige Abbremsung der Neutronen. Beim eVinci soll Zirkoniumhydrid (ZrH2) diese Aufgabe übernehmen. Wahrscheinlich auch als Legierung aus Uran, Zirkon und Wasserstoff. Für diese Legierungen existieren jahrzehntelange Betriebserfahrungen in den TRIGA-Forschungsreaktoren. Diese Brennstoffe besitzen ein ausgeprägtes Verhalten zur Selbstregulierung der Leistung (stark negativer Temperaturkoeffizient der Reaktivität): Erhöht sich die Brennstofftemperatur ungebührlich, bricht die Kettenreaktion praktisch sofort ein und infolge auch die Wärmeproduktion. Ein Schmelzen des Brennstoffs wird sicher verhindert.

Der Brennstoff

Als Brennelemente sollen die – auch hier schon näher beschriebenen – TRISO Elemente verwendet werden. Sie besitzen ausgezeichnete Eigenschaften bezüglich hoher Temperaturbeständigkeit und dem Rückhaltevermögen von Spaltprodukten. Erinnert sei nur an die zwanzigjährige Erfolgsgeschichte des Kugelhaufenreaktors in Jülich. Unzählige Versuche in Deutschland und China haben die „Walk-Away-Sicherheit“ nachgewiesen. Dieser Brennstoff kann auch nach schwersten Störfällen, wie z. B. in Fukushima, nicht schmelzen und damit größere Mengen radioaktiver Stoffe freisetzen.

Allerdings benötigt man bei solch kleinen Reaktoren höher angereichertes Uran als bei Leichtwasserreaktoren. Ferner wird hier das „Batterie-Konzept“ angestrebt. Man liefert den betriebsbereiten Reaktor, schließt ihn an und läßt ihn für mindestens zehn Jahre (nahezu) vollautomatisch und ohne Unterbrechung laufen. Quasi ein Blockheizkraftwerk ohne Tankstelle. Durch die Wahl der TRISO-Brennelemente ist man zukünftig sehr flexibel. Neben Uran (HALEU) sind auch Plutonium und Thorium einsetzbar. Nur die Brennstoffherstellung muß verändert werden.

Das Arbeitsmedium

Da bei dieser Konstruktion der Kern mit seiner Neutronenstrahlung durch die Wärmerohre physikalisch vom Arbeitsmedium CO2 getrennt ist, hat man stets ein „sauberes“ Arbeitsmedium. Man muß also nicht noch einen sekundären Dampf-Kreislauf wie z. B. beim Kugelhaufenreaktor (radioaktiver Staub durch Abrieb der Brennelemente) oder einem mit Natrium gekühlten Reaktor (Aktivierung des Natriums durch schnelle Neutronen) hinzufügen. Dies spart Bauvolumen, Bauteile (die Funktion des Zwischenwärmetauschers übernehmen die Wärmerohre) und letztendlich Kosten. Im Prinzip ist man damit in der Wahl des Arbeitsmediums völlig frei. Allerdings sollte man die „Drucklosigkeit“ dieses Reaktortyps nicht grundlos aufgeben. Druckdifferenz bei hoher Temperatur bedeutet automatisch Wandstärke und damit Gewicht. Der Vorteil des einfachen Transports könnte schnell verloren gehen.

Beim eVinci ist zur Stromproduktion eine Gasturbine mit CO2 als Arbeitsmedium vorgesehen. Mit CO2 als Betriebsstoff besitzt man in der Kerntechnik jahrzehntelange Erfahrung (z. B. die gasgekühlten Kernkraftwerke in Großbritannien). CO2 läßt sich aber auch sehr gut als Medium für eine Gasturbine einsetzen. Man kommt damit mit wesentlich kleineren Arbeitsdrücken als bei Wasser aus. Die hohe angestrebte Betriebstemperatur von 600°C+ bei diesem Reaktor, erlaubt trotzdem akzeptable Wirkungsgrade. Noch wichtiger ist die Temperatur am kalten Ende des Turbinenaustritts: Eine Gasturbine arbeitete – anders als eine Dampfturbine – ohnehin mit so hohen Temperaturen, daß problemlos eine Kühlung mit Umgebungsluft möglich ist. Ein nicht zu unterschätzender Vorteil für alle „Wüstengebiete“ bzw. Flüsse, bei denen die zulässige Temperaturerhöhung bereits ausgereizt ist. Momentan ist der Einsatz von Turbinen mit überkritischem CO2 Kreisprozess geplant. Solche Turbinen gibt es bereits für diese Leistungsklasse. Ein weiterer Vorteil für die Beschränkung als „Mikroreaktor“. Des weiteren will man sich im ersten Schritt auf eine Temperatur von 600°C beschränken, sodaß man sich noch voll im Bereich konventioneller Kraftwerkstechnik bewegt.

Wieder ein Papierreaktor mehr?

Danach schaut es diesmal wahrlich nicht aus. Der eVinci besteht aus Komponenten, an denen bereits seit Jahrzehnten in den „National Laboratories“ geforscht und entwickelt wird. Das Gesamtkonzept mag revolutionär anmuten, die Grundlagen sind längst in aller Stille geschaffen worden. Deshalb ist der Terminplan auch sehr eng gestrickt. Fertigstellung eines Prototyps – noch ohne Kernbrennstoff – bis Ende 2020. An diesem „Modell“ sollen die Fertigungsverfahren ausprobiert werden und die Berechnungsverfahren etc. verifiziert werden. Inbetriebnahme eines Prototyps durch Westinghouse noch 2024. Bereitstellung von genehmigungsfähigen und lieferbaren Reaktoren für das Verteidigungsministerium bis 2026. In diesem Zusammenhang ist interessant, daß die kanadischen Genehmigungsbehörden ein paralleles Genehmigungsverfahren aufgenommen haben. Ziel dort ist die Versorgung abgelegener Minen mit Strom und Wärme. Es ergibt sich damit erstmalig die Situation, daß die Entwicklung eines „Prototypen“ – wie in guten alten Zeiten – in der Hand des Energieministeriums verbleibt. Parallel wird ein kommerzielles Genehmigungsverfahren von zwei nationalen Behörden gleichzeitig entwickelt. Konkurrenz belebt das Geschäft. Das bisher praktizierte „Totprüfen“ durch immer neu erfundene Sicherheitsnachweise – in Stundenlohnarbeit versteht sich – scheint diesmal ausgeschlossen.

Betrachtet man die Ströme an Forschungsgelder innerhalb der Kerntechnik in den USA der letzten zwei Jahre, so wird der Stellenwert dieses Projekts deutlich. Dies betrifft sowohl die absolute Höhe, als vor allem den relativen Anteil. Große Summen fließen bereits in Fertigungsverfahren. So wird eine vollautomatische Fertigung für die Wärmerohre entwickelt. Diese soll die Produktionskosten auf unter ein Zehntel der bisherigen Kosten senken. Gleiches gilt für die Produktion von TRISO-Brennelementen und eine neue Anreicherungsanlage für HALEU. Erklärtes Ziel ist ein Kraftwerk für einen Preis unter 2000 US$/kW anzubieten. Ausdrücklich in Konkurrenz zu Erdgas-Kombikraftwerken. Diese Kraftwerke sollen innerhalb von 30 Tagen ab Auslieferung vor Ort einsetzbar sein. Sie sollen in Fabriken, ähnlich denen für Flugzeugtriebwerke, in Serie gefertigt werden.

Warum das alles?

Man mag es gut finden oder nicht. Mal wieder scheint der Krieg Vater aller technischen Entwicklungen zu sein. Das US-Militär befindet sich mitten im Umbruch. Weg von der jahrzehntelangen Jagd auf irgendwelche Taliban mit Kalaschnikows und am Ende der Träume von der „Friedensdividende“ aus dem Zusammenbruch der Sowjetunion. China wird immer aggressiver (Südchinesisches Meer) und Parallelen zum Japan der 1930er Jahre erscheinen immer beängstigender. Hinzu kommt der Potentat Putin mit seinen Eskapaden in Osteuropa und Syrien, der sich inzwischen als die beste Werbeabteilung der amerikanischen Rüstungsindustrie erweist. Man muß sein Geschwafel über seine Wunderwaffen nur wörtlich nehmen und schon hat man Vorlagen für neue Rüstungsprogramme. Im Rahmen der Umstrukturierung wird immer deutlicher, daß der nächste „große Krieg“ voll elektrisch wird: Immer mehr Radaranlagen, immer mehr Datenverkehr, immer mehr Computer und sogar Laser-Waffen. All dies erfordert immer mehr elektrische Leistung, möglichst nah an der Front. Diese Energieerzeugungsanlagen müssen aber ständig mit Treibstoff versorgt werden, was zusätzliche Kräfte bindet – besonders in den Weiten des Pazifiks. Ganz ähnlich ist die Entwicklung bei der Marine. Hinzu kommt dort die neuartige Bedrohung durch präzise Mittelstreckenraketen. Eine Antwort auf diese Bedrohung ist die Kombination aus klassischen Schiffen mit „Roboter-Schiffen“. Diese Schiffe machen aber nur Sinn, wenn sie – ohne Besatzung – quasi endlos über die Weltmeere ziehen können. Kernreaktoren bieten sich als Antrieb geradezu an, sind aber mit heutiger Technik nicht finanzierbar. Billige Mikroreaktoren wären eine Lösung.

Immer wenn sich Militärs etwas in den Kopf gesetzt haben, bekommen sie kurz über lang ihre Wünsche erfüllt. Ganz besonders, wenn in breiten Bevölkerungskreisen eine Angst vor einer konkreten Bedrohung vorhanden ist. Dann spielen Kosten keine Rolle mehr. In den USA ist es schon immer Tradition gewesen, neuartige militärische Entwicklungen möglichst schnell in die zivilen Märkte überzuführen (Spielekonsolen, GPS etc..). Geheimhaltung ist sowieso nur beschränkt möglich, aber große Stückzahlen senken die Kosten. In diesem Sinne, ist in der Tat mit dem schnellen Aufbau von „Reaktor-Fabriken“ zu rechnen. Dies paßt auch zum aktuellen Zeitgeist: Donald Trump ist mit dem Slogan angetreten, die Industriearbeitsplätze zurück zu holen. Er hat dabei sicherlich nicht an Nähereien für Hemden gedacht. Alle, die dies milde als „populistisch“ abgetan haben, könnte das Lachen bald vergehen.

NELA

Das Kunstwort NELA ist eine Abkürzung für den Nuclear Energy Leadership Act. Eine Anweisung des US-Senats („Länderkammer der USA“) an den Secretary of Energy („Energieminister“ ), die Ziele für die zukünftige friedliche Nutzung der Kernenergie in den USA aufzustellen, eine vielseitig verwendbare Quelle für schnelle Neutronen auf der Basis eines Kernreaktors zu bauen (VTR) und High-Assay-Uran (Anmerkung: Uran mit knapp unter 20% Anreicherung, HALEU) für Forschung, Entwicklung und den Bau eines fortschrittlichen Reaktors etc. bereit zu stellen.

Die Reaktion auf dieses Gesetz – z. B. durch den Milliardär Bill Gates – war geradezu euphorisch. Der ehemalige Mitbegründer von Microsoft hält Kernenergie für eine der wichtigsten Zukunftstechnologien und ist auch aktiv und mit eigenem Geld an der Förderung beteiligt. So soll in seine Gründung TerraPower LLC Nuclear Energy bereits über eine Milliarde US-Dollar Risikokapital geflossen sein. Er war auch nicht ganz unschuldig an dieser Gesetzgebung, da seine Ankündigung mit seinem Reaktortyp nach China abzuwandern, mächtig Staub aufgewirbelt hat – man muß nicht extra erwähnen, daß dieser Schachzug bei Donald Trump voll ins Schwarze getroffen hat.

Politische Auswirkungen

Mag auch im deutschen Staatsfernsehen immer wieder der Eindruck geschürt werden, die USA seinen vollkommen gespalten und stünden kurz vor einem Bürgerkrieg, so ist dieses Gesetz ausdrücklich von Demokraten und Republikanern gemeinsam eingebracht worden.

Es gibt aber noch einen weiteren Hinweis für eine in der Bevölkerung breit vorhandene Zustimmung. Im Senat ist jeder Bundesstaat – unabhängig von Größe und Bevölkerung – durch zwei Senatoren vertreten. Jeder Senator ist für sechs Jahre gewählt und die Wahlen finden zeitversetzt alle zwei Jahre statt. Anders als in Deutschland („Parteiendemokratie“), werden die Senatoren direkt durch die Einwohner ihres Bundesstaates gewählt. Sie besitzen daher einen hohen Bekanntheitsgrad und entsprechendes Ansehen – deshalb wird keiner ein Gesetz einbringen, das seine Wiederwahl gefährdet. Insofern wird die Standortsuche nur eine Formsache sein. Verzögerungen durch „Bürgerproteste“ sind nicht zu erwarten.

Inhalt der Anweisung

NELA beinhaltet eine Menge tiefgreifender Veränderungen für die zukünftige Entwicklung der friedlichen Nutzung der Kernenergie: Endlich scheint der Gegensatz von hohen Investitionen – bei später extrem geringen Betriebskosten – verstanden und als Besonderheit der Kerntechnik akzeptiert zu sein. Es soll eine Wiederbelebung der sog. „schnellen Reaktoren“ erfolgen, diesmal jedoch nicht wegen (falsch eingeschätzter) kleiner Uranreserven, sondern zur „Entschärfung“ der Atommüll-Problematik. Die Zeit ist dafür reif. Gibt es doch auch in den USA mehrere tausend Tonnen abgebrannter Brennelemente, die durch jahrzehntelange Lagerung bereits so stark abgeklungen sind, daß sie förmlich nach einer Wiederaufbereitung schreien.

(Section 2) Genehmigung von langfristigen Energielieferungsverträgen

In den USA sind Verträge zwischen Energieerzeugern und öffentlichen Versorgern über die PPA (Power Purchase Agreement) reglementiert. Zukünftig dürfen Verträge über eine Laufzeit von 40 Jahren (bisher 10 Jahre) für Kernkraftwerke abgeschlossen werden. Die Zahlungsströme über die Vertragslaufzeit sind eine wichtige Grundlage für eine Finanzierung durch Kreditgeber.

(Section 3) Langfristige Pilotverträge

Der Energieminister soll insbesondere mit dem Verteidigungsminister und dem Minister für die Heimatverteidigung langfristige Verträge zur Versorgung mit Kernenergie ausarbeiten. Ziel ist mindestens ein Vertrag mit einem kommerziellen Kernkraftwerk bis zum 31.12.2023.

Der Minister soll neuartige Reaktoren (first-of-a-kind ) und neue kerntechnische Verfahren besonders berücksichtigen, die eine zuverlässige und belastbare (Anmerkung: also ausdrücklich keine wetterabhängigen und an Rohrleitungen gebundene Systeme) Energieversorgung von besonders wichtigen Einrichtungen ermöglichen. Insbesondere für abgelegene Regionen (Anmerkung: Militärstützpunkte etc.) und bei Inselbetrieb geeignete Systeme.

Es sind unter diesen Umständen ausdrücklich höhere, als Marktpreise erlaubt.

(Section 4) Entwicklungsziele für fortschrittliche Kernreaktoren

Unter fortschrittliche Reaktoren werden auch Prototypen verstanden, die besondere Fortschritte zur jeweils neusten Generation aufweisen:

  • Zusätzliche inhärente Sicherheiten,
  • geringerwertige (Anmerkung: Im Sinne von Menge und Aktivität) Abfälle,
  • bessere Brennstoffausnutzung (Anmerkung: Weniger Natur-Uran),
  • größere Toleranz gegenüber Ausfall der Kühlung,
  • höhere Verfügbarkeit (Anmerkung: Brennelementewechsel etc.),
  • besserer Wirkungsgrad,
  • geringerer Verbrauch an Kühlwasser,
  • die Fähigkeit zur Erzeugung elektrischer Energie und Heizwärme,
  • Anpassung an wachsende Verbräuche durch einen modularen Aufbau,
  • flexible Leistungsbereitstellung zum Ausgleich zwischen dem Angebot an wetterabhängigen Energien und der Verbrauchernachfrage
  • und Fusionsreaktoren.

Es soll ein Projekt zur Demonstration durchgeführt werden. Darunter wird ein fortschrittlicher Reaktor verstanden, der

  • innerhalb eines Versorgungsgebietes als Kraftwerk eingesetzt wird,
  • oder in irgendeinem anderen Zusammenhang, der den kommerziellen Einsatz eines solchen Reaktors erlaubt, eingesetzt wird.

Zu diesem Zweck soll der Minister möglichst bald nach dem Inkrafttreten, die Forschung und Entwicklung von fortschrittlicher, bezahlbarer und sauberer Kernenergie im eigenen Land vorantreiben. Zu diesem Zweck soll die Eignung verschiedener fortschrittlicher Reaktortechnologien für eine Anwendung durch private Unternehmen nachgewiesen werden:

  • zur Gewinnung von emissionsfreier elektrischer Leistung bei einem Energiepreis von bis zu 60 $ pro Megawattstunde, gemittelt über die geplante Lebensdauer des Kraftwerks,
  • zur Versorgung durch Fernwärme, Wärme in industriellen Prozessen und zur Herstellung synthetischer Kraftstoffe,
  • als Backup (Anmerkung: Für „Flatterstrom“) oder beim Einsatz von betriebsnotwendigen Strom-Versorgungsanlagen (Anmerkung: Rechenzentren, militärische Anlagen etc.).

Entwicklungsziele für die (staatliche) Kernforschung sind in diesem Sinne Demonstrationsprojekte, die nicht durch private Unternehmen durchgeführt werden können, da diese nicht in der Lage oder willens sind, das erhebliche finanzielle Risiko der Forschung zu tragen. Es soll der Zugang von Privatunternehmen zu staatlichen Forschungseinrichtungen oder die Nutzung staatlicher Forschungsergebnisse erleichtert werden.

Der Minister soll bis zum 30.9.2028 mindestens in ein Abkommen mit mindestens vier verschiedenen fortschrittlichen Reaktoren eintreten. Der Minister soll in diesem Sinne verschiedene Verfahren zur primären Kühlung (Anmerkung: Metalle, Gas, Salzschmelzen etc.) aussuchen. Er sollte dabei anstreben, daß die Langzeitkosten für elektrische Energie und Wärme konkurrenzfähig sind. Die in die Auswahl einbezogenen Reaktortypen sind durch externe Gutachten zu überprüfen. Es sollen in Zusammenarbeit mit privaten Unternehmen geeignete Liegenschaften ermittelt werden. Es sind staatliche Stellen, die National Laboratories und „höhere Bildungseinrichtungen“ direkt anzusprechen. Neben traditionellen Abnehmern, wie z. B. Stromversorger, sind auch potentielle Anwender neuer Technologien, wie z. B die petrochemische Industrie, sowie die Entwickler fortschrittlicher Reaktoren einzubeziehen.

Der Minister soll sicherstellen, daß er die Forschung auf Schlüsselgebieten der Kernenergie erleichtert, die Erkenntnisse über den gesamten Entwicklungsprozess, die Sicherheitstests und das Genehmigungsverfahren umsetzt. Aufgelegte Forschungsprogramme sollten Wert darauf legen, daß sie Lösungen für die Strahlenbelastung (Anmerkung: Schnelle Neutronen sind fürs Material schädlicher als thermische) und korrodierende Kühlmittel (Anmerkung: z. B. Salzschmelzen) bereitstellen und für die Zulassung fortschrittlicher Brennstoffe (Anmerkung: z. B. metallische zur einfacheren Wiederaufbereitung) sorgen.

Herausforderungen bezüglich Modellierung und Simulation, die den Konstruktionsprozess und das Zulassungsverfahren beschleunigen können, sind zeitnah zu realisieren.

Zugehörige Technologien, wie z.B. elektro-chemische Verfahren oder Wiederaufbereitungsverfahren, die das Volumen der Abfälle und deren Halbwertszeiten verringern, sind entwickelt. Die Infrastruktur, wie z. B. die „versatile fast neutron source“ und Prüfstände für Salzschmelzen sind errichtet. Das Grundlagenwissen über die Physik und Chemie von anderen Kühlmitteln als Wasser, wurde vertieft. Um die Kosten für die Realisierung fortschrittlicher Kernreaktoren zu senken, wurden fortschrittliche Herstellungs- und Konstruktionsverfahren, sowie Materialien untersucht.

(Section 5) Strategische Planung für die Kernenergie

Nicht später als 180 Tage nach dem Inkrafttreten soll der Minister den Fachausschüssen von Senat und Parlament einen 10-Jahres-Plan für die Strategie der Umsetzung vorlegen.(Anmerkung: Bisher gibt es keine übergreifende Koordinierung der Forschung und Entwicklung. Kernforschung wird von verschiedensten Regierungsstellen mit jeweils eigener Zielsetzung betrieben.)

Mindestens im Zwei-Jahres-Turnus hat der Minister den einschlägigen Fachausschüssen von Senat und Parlament einen aktualisierten 10-Jahres-Plan vorzulegen. Die Abweichungen oder die nicht Erfüllung sind zu begründen. (Anmerkung: Damit soll erreicht werden, daß neueste Forschungsergebnisse – von wem auch immer – unmittelbar in die laufende Entwicklung neuartiger Reaktoren einfliessen können und so die Zeitdauer bis zur Markteinführung verkürzt wird.)

(Section 6) Vielseitig verwendbare Quelle schneller Neutronen auf der Basis eines Reaktors

Als „Schnelle Neutronen“ werden hier Neutronen mit einer Bewegungsenergie von über 100 Kiloelektronenvolt verstanden. Der Minister soll für diese Quelle verantwortlich sein und sie soll als öffentliche Einrichtung betrieben werden. (Anmerkung: Hinter dieser „Quelle“ verbirgt sich ein Reaktor auf der Basis des PRISM Konzepts von GE Hitachi. Aufträge wurden bereits erteilt und Mittel von bis zu 800 Milionen Dollar jährlich in den Haushalt eingestellt. Man rechnet mit Gesamtkosten von bis zu sechs Milliarden Dollar. Es wird also diesmal nicht gekleckert. Als „Forschungsreaktor“ unterliegt er auch nicht dem normalen Genehmigungsverfahren mit seiner bekannt langen Dauer – auch hier heißt es: Zurück in die Zukunft.)

Der VTR (Versatile Test Reactor) soll die öffentliche Forschung mit „schnellen Neutronen“ sicherstellen. (Anmerkung: Seit der Ausserbetriebsetzung des Halden-Reaktors in Norwegen ist selbst die Industrie bei Bestrahlungsexperimenten auf China und Rußland angewiesen – ein absolutes No Go für die nationale Sicherheit.) Der Minister soll gewährleisten, daß die Quelle die Bestrahlung mit dem schnellen Neutronenspektrum ermöglicht und für neuartige Forschungsanforderungen erweiterbar ist. Der Minister soll gewährleisten:

  • Die Fähigkeit Experimente und Materialtests unter hohen Temperaturen durchzuführen.
  • Hohe Flüsse von schnellen Neutronen, wie sie bisher an anderen Forschungseinrichtungen nicht möglich sind.
  • Eine optimale Basis für zukünftige Forscher zu schaffen.
  • Eine maximale Flexibilität bei der Bestrahlung und ein maximales Volumen zu schaffen, damit so viele Forschergruppen wie praktikabel, tätig sein können.
  • Möglichkeiten zur Bestrahlung von Neutronen mit einem geringeren Energiespektrum zu gewährleisten.
  • Verschiedene Kreisläufe für Tests mit verschiedenen Brennstoffen und Kühlmitteln.
  • Zusätzliche Einrichtungen zur Untersuchung der Eigenschaften vor und nach der Bestrahlung.
  • Geringe Kosten für den Betrieb und Unterhalt über die gesamte Lebenszeit.

Der Minister soll bis spätestens zum Ende des Jahres 2025 die Anlage in Betrieb nehmen. (Anmerkung: Make America Great Again. Dieses Programm ist nur mit dem Bau des ersten Atom U-Boots oder dem Apollo-Programm in seinem Ehrgeiz vergleichbar.)

(Section 7) Programm zur Sicherheit von fortgeschrittenem Brennstoff

Zur Unterstützung der Kernwaffenproduktion und der Schiffsreaktoren (der Marine) benötigen die USA einen vollständigen Brennstoffkreislauf für leicht- und hochangereichertes Uran: Uranminen, Konversion, Anreicherung und Brennstoffherstellung.

Viele Unternehmen in den USA benötigen den Zugang zu Uran mit einer Anreicherung von knapp unter 20%-U235 (HALEU) für:

  • Erste Brennstofftests
  • Betrieb von Demonstrationsreaktoren
  • Kommerzieller Betrieb von fortschrittlichen Reaktoren

Bis heute existiert keine Anlage zur Herstellung von Brennstoff mit einer Anreicherung von mehr als 5%-U235 in den USA. Ein gesunder kommerzieller Brennstoffkreislauf mit höherer Anreicherung wäre gut für die einschlägigen Bereiche der nationalen Sicherheit und für die fortschrittliche kerntechnische Industrie der USA. Durch die Bereitstellung von Uran mit einer Anreicherung von knapp bis unter 20% aus den Beständen für die Rüstung für erste Brennstofftests und einen Demonstrationsreaktor könnte

  • der Weg bis zur Markteinführung solcher Konzepte,
  • die Entwicklung eines Marktes für fortgeschrittene Reaktoren
  • und ein wachsender kommerzieller Brennstoffkreislauf

beschleunigt werden. (Anmerkung: Hier wird das „Henne-Ei“ Problem durch eine Öffnung der Schatulle der Rüstung durchbrochen. Ein Zeichen, daß es mit einer möglichst schnellen Umsetzung sehr ernst gemeint ist. Gleichzeitig wird mit der Verwendung von höher angereichertem Uran die Plutonium-Problematik geschickt umschifft. Auch diese Pragmatik, deutet auf den festen Willen zu einer schnellen Entwicklung hin.)

Der Minister soll nicht später als in einem Jahr nach Inkraftsetzung höher angereichertes Uran bereitstellen und Verträge für Verkauf, Weiterverkauf, Übertragung und Vermietung zur Verwendung in kommerziellen oder nicht kommerziellen Reaktoren ausarbeiten.

Jeder Mietvertrag sollte eine Klausel enthalten, daß der Brennstoff im Eigentum des Ministeriums verbleibt, einschließlich einer Endlagerung der radioaktiven Abfälle infolge der Bestrahlung, und einer Wiederaufbereitung.(Anmerkung: Bei einer Miete könnten also die vorhandenen (militärischen) Wiederaufbereitungsanlagen und das WIPP als (staatliches) Endlager genutzt werden. Dies dürfte Störungen durch die „Anti-Atombewegung“ nahezu unmöglich machen.)

Bis Ende 2022 hat der Minister zwei Tonnen (bezogen auf den Gehalt von U235) und bis Ende 2025 zehn Tonnen zur Verfügung zu stellen. Dieses Programm endet 2034 oder wenn genug Uran aus kommerziellen Quellen zur Verfügung steht.

(Section 8) Qualitätsoffensive für Universitäten

Das Parlament stellt fest, daß Kernkraftwerke in den USA Milliarden Dollar Auftragsvolumen erzeugen und zehntausenden Amerikanern gut bezahlte Arbeitsplätze geben; dies gilt insbesondere in den Standort-Gemeinden. Der Weltmarkt für kommerzielle Kernkraftwerke wird in der Dekade 2018–2028 (nach Angabe der Handelskammer) um 740 Milliarden Dollar wachsen. Die Teilnahme und (wieder gewonnene) Führerschaft auf diesem Markt kann zu entsprechenden Exporten führen. Den Einfluß auf die internationalen Standards für Sicherheit, Schutz und gegen Weiterverbreitung könnten über die Handelsbeziehungen aufrechterhalten und weiter ausgebaut werden. Dies erfordert umfangreiche Investitionen in fortschrittliche Kerntechnik. Um die Welt in die nächste Generation kommerzieller Kernreaktoren zu führen, muß die Industrie für fortschrittliche Kernenergie in einen Zustand beschleunigten Wachstums versetzt werden. Dazu müssen Kooperationen (public-private-partnerships) zwischen den öffentlichen Institutionen und der Privatwirtschaft geschaffen werden. Neue Reaktoren stellen besondere Anforderungen an die Genehmigungs- und Überwachungsinstitutionen. Dafür sind hoch qualifizierte Arbeitskräfte nötig. Die Universitäten sollen jährlich mindestens 600 Absolventen (undergraduate students) bzw. 500 Absolventen (graduate students) der Kerntechnik hervorbringen. Dies ist der Mindestbedarf um eine internationale Führung auf diesem Gebiet zu erlangen. (Anmerkung: Hinzu kommen noch die von der Marine selbst ausgebildeten und aus deren aktiven Dienst ausgeschiedenen.)

Um auf dem neusten Stand Forschung und Entwicklung betreiben zu können, sind zusätzlich Fachkräfte auf den Gebieten Rüstungskontrolle, Nuklearmedizin und fortschrittlicher Fertigungsverfahren etc. auszubilden. (Anmerkung: Wie gut, daß auf Grund der unendlichen Weisheit unserer Kanzlerin, Deutschland bald nur noch „Windmühlenbauer“ und „Batterien in Autos Einsetzer“ braucht. Angepaßte Technologie halt, für die, „die noch nicht so lange hier leben“.)

Abschließende Bemerkungen

Es scheint, der Riese USA ist erwacht. Inzwischen kommen rund zwei Drittel aller neuen Kernkraftwerke aus China und Rußland. Die USA sind nicht mehr lange der größte Produzent elektrischer Energie aus Kernenergie. Das bedeutet, die Führungsrolle geht verloren. Die Druckwasser-Technologie ist ausgereizt. Es ist absehbar, wann China und Rußland vollständig aus eigener Kraft Kernkraftwerke auf internationalem Niveau bauen können. China wegen seiner breiteren industriellen Basis sicherlich früher. Beide Länder drängen massiv auf die Märkte in Schwellenländern. Was sie technisch noch nicht leisten können, machen sie über den Preis wett.

Hinzu kommt der Schock über die beiden aus dem Ruder gelaufenen Baustellen Vogtle und Summers: Man kriegt einen selbst entwickelten Reaktor im eigenen Land nicht mehr termingerecht und zu den geplanten Kosten fertig. Für die kerntechnische Industrie hat das wie die Unglücke mit der Raumfähre auf die Raumfahrtindustrie gewirkt. Es war höchste Zeit sich neu zu erfinden. Aus dem „Raumgleiter“ wurde ein privat entwickelter „Bleistift“, der senkrecht auf einem Ponton im Meer zur Wiederverwendung landet. Inzwischen plant man die Reise zum Mars.

In der Kerntechnik kommt die Abkehr vom immer größer werden (Kostendegression), zum genauen Gegenteil hin. Anstatt immer mehr (erforderliche) Sicherheitssysteme, hin zu „inhärenter Sicherheit“. Zur Kostensenkung Serienfertigung in der Fabrik. Ganz nebenbei die Erschließung neuer Märkte durch diese Maßnahmen: Kleinere Stromnetze, Länder die gar nicht so viel Kapital für ein konventionelles Kernkraftwerk aufbringen können, Länder die nicht über die Infrastruktur für Betrieb und Wartung verfügen usw.

Hinzu kommt die größer werdende – oder zumindest so empfundene – Problematik des „Atommülls“. Ein Leichtwasserreaktor produziert zwar – gemessen an einem fossilen Kraftwerk – verschwindend geringe Mengen an Abfall, aber mit steigender Anzahl werden auch die abgebrannten Brennelemente spürbar. Die naßchemische Wiederaufbereitung mit anschließender erneuter Verwendung des Plutoniums in Leichtwasserreaktoren (Mischoxid) hat sich auch nicht als der Hit erwiesen. Will man das „Atommüllproblem“ besser in den Griff kriegen, ist der Übergang zu Reaktoren mit schnellem Neutronenspektrum nötig. Nur mit schnellen Neutronen kann man alle Uran- und Plutoniumkerne erfolgreich spalten. So wird aus abgebrannten Brennelementen wieder neuer Brennstoff. Das verringert den Einsatz des Brennstoffs für eine vorgegebene Menge elektrischer Energie mindestens um den Faktor 60. Weniger Brennstoff, weniger Abfall. Hinzu kommt aber noch ein zweiter Vorteil: Nicht nur weniger, sondern auch weniger langlebiger Abfall. Die übrig bleibenden Spaltprodukte stellen nur eine Strahlenquelle für Jahrzehnte oder wenige Jahrhunderte dar. Früher stand das „Brüten“, heute das „vollständig aufbrauchen“ im Vordergrund. Brütertechnologie wird auf absehbare Zeit – wenn überhaupt jemals – nicht gebraucht. Schon heute haben wir Plutonium im Überfluß und Uran und Thorium sowieso. Deshalb kann man auch bei dieser Reaktortechnologie von den „Gigawattmaschinen“ abschied nehmen und auf kleinere, inhärent sichere Einheiten übergehen. Diese sind „walk-away-safe“. Man kann einfach die Turbine abstellen und nach Hause gehen. Keine Science Fiction, sondern zig mal beim EBER II praktiziert. Das Kernkraftwerk zur Strom- und Wärmeversorgung mitten in der Stadt, alles andere als Utopie. Natürlich für das Zeitalter nach dem Zusammenbruch des Öko-Sozialismus, versteht sich.

U-Battery aus Europa

Auch in Europa geht (noch) die Reaktorentwicklung weiter. Es begann 2008 an den Universitäten: University of Manchester (UK) und Technology University of Delft (NL). Es ging um die Entwicklung eines Reaktors zur Stromerzeugung und zur gleichzeitigen Auskopplung von Wärme (mit Temperaturen bis 750 °C) für Heiz- und industrielle Zwecke. Vorgabe war eine optimale Lösung für das Dreieck aus: Sicherheit, Wirtschaftlichkeit und Umweltfreundlichkeit zu finden.

Interessant ist schon mal die Erschließung völlig neuer Marktsegmente durch die Reaktorleistung (hier 10 MWth und 4 MWel) und die nutzbare Temperatur (hier 750 °C). Diese neue Klasse wird als MMR (.micro modular reactor) bezeichnet. Wie schon die Bezeichnung „Uran-Batterie“ andeutet, wird ferner eine ununterbrochene Betriebszeit von mindestens 5 – 10 Jahren vorgesehen. Hiermit wird das Marktsegment der Kraft-Wärme-Kopplung auf der Basis von „Schiffsdieseln“ und kleinen Gasturbinen angestrebt. Ein sich in der Industrie immer weiter (steigende Strompreise und sinkende Versorgungssicherheit durch Wind und Sonne) verbreitendes Konzept. Hinzu kommen die Inselnetze in abgelegenen Regionen (Kleinstädte), Bergwerke und Produktionsplattformen auf dem Meer, Verdichterstationen in Pipelines usw. Hierfür kann ebenfalls auch die hohe Betriebstemperatur — selbst bei reiner Stromproduktion — von Vorteil sein, da sie problemlos Trockenkühlung (Wüstengebiete) erlaubt.

Die treibende Kraft hinter diesem Projekt ist — in diesem Sinne sicherlich nicht ganz zufällig — das Konsortium URENCO. Ein weltweiter Betreiber von Urananreicherungsanlagen. Solche Kaskaden aus Zentrifugen brauchen kontinuierlich gewaltige Mengen elektrische Energie. Man sucht also selbst nach einer Lösung für die immer teurere Versorgung.

Der Reaktor

Wieder ein neuer „Papierreaktor“ mehr, könnte man denken. Ganz so ist es aber nicht. Man hat von Anfang an auf erprobte Technik gesetzt. Es ist reine Entwicklungsarbeit — insbesondere für die Nachweise in einem erfolgreichen Genehmigungsverfahren — aber keine Forschung mehr zu leisten. Insofern ist der angestrebte Baubeginn 2024 durchaus realisierbar.

Fangen wir mit dem Brennstoff an. Es sind [TRISO] (TRISO) Brennelemente vorgesehen. Dieser Brennstofftyp ist bereits in mehreren Ländern erfolgreich angewendet worden. Diese Brennelemente überstehen problemlos Temperaturen von 1800 °C. Dadurch sind solche Reaktoren inhärent sicher. Gemeint ist damit, daß die Kettenreaktion auf jeden Fall infolge des Temperaturanstiegs zusammenbricht und eine Kernschmelze durch die Nachzerfallswärme (Fukushima) ausgeschlossen ist. Man braucht somit keine Notkühlsysteme, dies spart Kosten und vor allem: Was man nicht hat, kann auch nicht kaputt gehen oder falsch bedient werden. Der Sicherheitsgewinn ist dadurch so groß, daß sich alle denkbaren Unfälle nur auf den Reaktor und sein schützendes Gebäude beschränken. Nennenswerte Radioaktivität kann nicht austreten und damit beschränken sich alle Sicherheitsanforderungen nur noch auf das Kraftwerksgelände selbst. Eine „revolutionäre Feststellung“, der sich die Genehmigungsbehörden langsam anschließen. Dies hat erhebliche Auswirkungen auf die möglichen Standorte, Versicherungsprämien etc. Ein nicht mehr umkehrbarer Schritt auf dem Weg zu einem „normalen Kraftwerk“ oder einer „üblichen Chemieanlage“. Die Errichtung solcher Reaktoren in unmittelbarer Nähe zu Städten (Fernwärme) oder Industrieanlagen (Chemiepark, Automobilwerk etc.) ist nur noch eine Frage der Zeit.

Als Kühlmittel ist Helium vorgesehen. Der Reaktorkern wird aus sechseckigen Brennelementen als massiver Block aufgebaut. Mit dieser Technik besitzt GB eine jahrzehntelange Erfahrung. Kein Land besitzt mehr Betriebsjahre mit Reaktorgraphit. Der Vorteil gegenüber einem Kugelhaufen sind definierte Kanäle für das Kühlmittel und die Regelstäbe. Vor allen Dingen ergibt sich aber kein Staubproblem aus dem Abrieb der Kugeln während des Betriebs. Die notwendigen Rohrleitungen und das Gebläse zur Umwälzung des Heliums bleiben sauber. Dies erleichtert etwaige Wartungs- und Reparaturarbeiten. Der komplette Reaktor kann in einer Fabrik gebaut und getestet werden und mit einem LKW einsatzbereit auf die Baustelle gebracht werden.

Als Brennstoff dient angereichertes Uran. Die Anreicherung (< 20% U235) erlaubt einen mehrjährigen Betrieb ohne einen Brennstoffwechsel („Batterie“). Ob der Brennstoff vor Ort im Kraftwerk gewechselt werden muß oder der gesamte Reaktor zurück zum Hersteller gebracht werden kann, ist noch nicht abschließend geklärt (Strahlenschutz). Der Ansatz einer „Batterie“ verringert jedenfalls die Größe eines etwaigen Brennelementenlagers am Kraftwerk und schließt eine mißbräuchliche Nutzung praktisch aus (Proliferation). Damit ist ein solches Kraftwerk auch problemlos in „zwielichtigen Staaten“ einsetzbar. Ferner verringert sich der Personalaufwand im Kraftwerk. Ein solches Kraftwerk wäre halbautomatisch und fernüberwacht betreibbar. Was den Umfang des erforderlichen Werkschutzes anbelangt, sind die Genehmigungsbehörden noch gefragt. Eine Chemieanlage — egal wie gefährlich — kommt heutzutage mit einem üblichen Werkschutz aus, während von Kernkraftwerken erwartet wird, eine komplette Privatarmee zu unterhalten. Alles Ausgeburten von „Atomkraftgegnern“ um die Kosten in die Höhe zu treiben. Verkauft wird so etwas als Schutz gegen den Terrorismus.

Der konventionelle Teil

Man plant keinen Dampfkreislauf, sondern eine Gasturbine als Antrieb des Generators. Kein ganz neuer Gedanke, aber bisher ist z. B. Südafrika an der Entwicklung einer Heliumturbine gescheitert. Helium ist thermodynamisch zu eigenwillig und außerdem ist bei einem Kugelhaufenreaktor mit einer radioaktiven Staubbelastung zu rechnen. Bei der U-Battery hat man sich deshalb für einen sekundären Kreislauf mit Stickstoff entschieden. Vordergründig kompliziert und verteuert ein zusätzlicher Wärmeübertrager zwischen Reaktorkreislauf (Helium) und Turbinenkreislauf (Stickstoff) das Kraftwerk, aber man hat es sekundärseitig nur noch mit einem sauberen und nicht strahlenden Gas zur beliebigen Verwendung zu tun. Stickstoff ist nahezu Luft (rund 78% N2) und man kann deshalb handelsübliche Gasturbinen verwenden. Auch an dieser Stelle erscheint das wirtschaftliche Risiko sehr gering. Der Wärmeübertrager Helium/Stickstoff übernimmt lediglich die Funktion der Brennkammer eines Flugzeugtriebwerkes (Leistungsklasse). Bei der vorgesehenen hohen Temperatur von 750°C des Stickstoffs bleibt nach der Turbine noch jegliche Freiheit für die Verwendung der Abwärme (Fernwärme, Prozessdampf etc.). Die immer noch hohe Temperatur am Austritt einer Gasturbine erlaubt problemlos eine Kühlung mit Umgebungsluft ohne große Verschlechterung des Wirkungsgrades. Ein immenser Vorteil für alle ariden Gebiete.

Die Projektierer

Eine zügige Verwirklichung scheint durch die Zusammensetzung der beteiligten Unternehmen nicht unwahrscheinlich: Amec Foster Wheeler (über 40000 Mitarbeiter in 50 Ländern) mit umfangreicher Erfahrung in Öl- und Gasprojekten. Cammel Laird als Werft. Laing O’Rourke als Ingenieurunternehmen. Atkins für Spezialtransporte. Rolls Royce als international führender Produzent von Gasturbinen (Flugzeuge und Schiffe), darüberhinaus mit umfangreicher Erfahrung in der Kerntechnik.

Bemerkenswert ist die Ausweitung des Projektes auf den Commonwealth. Kanada und Indien sind bereits dabei. Läßt der „Brexit“ hier grüßen? Nach bisherigem Stand der Dinge, könnte der erste Reaktor in Chalk River in Kanada gebaut werden. Dies ist auch kein Zufall, da in Kanada bereits über 200 potentielle Standorte für einen solchen MMR ermittelt wurden. Für diese potentiellen Kunden ist bereits ein neuartiges Geschäftsmodell in Arbeit: Sie bezahlen nur die gelieferte Wärme und und die elektrische Energie. Das Kraftwerk wird dann von einer Zweckgesellschaft finanziert, gebaut und betrieben. So kann dem Kunden das wirtschaftliche Risiko abgenommen werden. Es ist nicht anzunehmen, daß irgendein Bergwerk oder eine Ölraffinerie bereit ist in das „Abenteuer Kerntechnik“ einzusteigen. Andererseits sind solche sog. „Betreibermodelle“ in der einschlägigen Industrie lange bekannt und erprobt.

Noch ein paar Daten

Der Reaktor hat einen Durchmesser von etwa 1,8 m und eine Länge von etwa 6 m. Er ist damit problemlos auf einem LKW transportierbar. Das Helium soll einen Betriebsdruck von ca. 40 bar haben und eine Austrittstemperatur von 750 °C. Damit ergibt sich eine notwendige Wandstärke von unter 100 mm. Dies ist wichtig, weil hierfür keine speziellen Schmieden bzw. Rohlinge erforderlich sind. Nur wenige Unternehmen weltweit können demgegenüber Druckbehälter für Leichtwasserreaktoren schmieden.

Als Brennstoff soll auf knapp 20% angereichertes Uran (high assay, low enriched uranium (HALEU)) verwendet werden. Damit werden die TRISO-Kügelchen hergestellt, die zu Tabletten mit einer Höhe von ca. 40 mm und einem Außendurchmesser von ca. 26 mm gepreßt werden. Aus diesen werden die sechseckigen Brennelemente mit einer Kantenlänge von 36 cm und einer Höhe von 80 cm aufgebaut. Sie enthalten alle Kanäle für Regelstäbe, Instrumentierung usw. Der Kern des Reaktors besteht aus je 6 Brennelementen in 4 Lagen übereinander. Er beinhaltet etwa 200 kg Uran. Dies reicht für einen ununterbrochenen Vollastbetrieb von 5 Jahren.

Eine Doppelblockanlage (2 x 4 MWel) erfordert einen Bauplatz von ca. 10 x 12 m (Reaktoren, Wärmeübertrager und Turbinen im „Keller“, Halle für Wartungsarbeiten darüber). Hinzu käme noch Platz für Schaltanlagen, Kühler, Büros etc.

Es wird von Baukosten zwischen 45 bis 78 Millionen € für eine Doppelblockanlage ausgegangen (5600 bis 9750 €/KW). Das mag auf den ersten Blick hoch anmuten, aber man bewegt sich mit dieser Leistung von 8 MWel im Marktsegment der sog. Dieselmotoren-Kraftwerke. Hinzu kommen in entlegenen Standorten noch die meist höheren Kosten für den Dieselkraftstoff. Der für die „U-Battery“ ermittelte Strompreis von 9 Cent/KWh dürfte somit für den angepeilten Kundenkreis sehr attraktiv sein.

Inzwischen gibt es eine sehr enge Kooperation zwischen Kanada und GB. Ein paralleles, aber kooperatives Genehmigungsverfahren zeichnet sich ab. Weiterhin sind Indien, Japan, Polen, USA und Neuseeland bereits mit im Boot. Vielleicht schon die erste Morgendämmerung, wohin die Reise von GB nach dem Brexit geht? Jedenfalls nicht in das Rest-Europa, in dem unsere Kanzlerin so gut und gerne lebt.

Thorcon – neue Reaktoren aus/mit Indonesien?

Das US-Unternehmen Thorcon will Salzbadreaktoren in Indonesien bauen.

Indonesien

Für ein besseres Verständnis, erscheinen ein paar Worte über die Energiesituation in Indonesien angebracht. Indonesien besteht aus über 17000 Inseln und ist mit 253 Millionen Einwohnern (Stand 2014) das viertgrößte Land der Erde. Als Schwellenland hat es einen rasanten Anstieg des Primärenergieverbrauches zu verzeichnen. In der Dekade zwischen 2003 und 2013 um 43%. Die Hauptenergieträger sind Öl, Kohle und Erdgas. Indonesien ist seit 1885 ein Ölförderland. Inzwischen ist die Nachfrage durch Bevölkerungs- und Wirtschaftswachstum so stark gestiegen, daß es seit etwa 2003 Nettoölimporteur ist.

Es besitzt auch große Erdgasvorkommen (Platz 13 in der Weltrangliste, Platz 2 in Asien) und ist immer noch Nettoexporteur. Der Verbrauchsanstieg ist aber so groß, daß es neuerdings sogar Erdgas als LNG aus den USA importiert (20 Jahresvertrag mit Cheniere). Hinzu kommt die ungleiche Verteilung im Inselreich.

Eigentlich ist Indonesien Kohlenland mit über 500 Millionen Tonnen jährlich. Davon werden rund 80% exportiert (weltweit größter Exporteur nach Masse). Trotzdem beträgt der Inlandsverbrauch rund 80 Millionen Tonnen mit stark steigender Tendenz wegen des Zubaues von Kohlekraftwerken.

In Indonesien sind erst 84% der Bevölkerung überhaupt an das Stromnetz angeschlossen. Bei bisher erst 51 GWel installierter Leistung (88% fossil, davon 50% Kohle) ist das Netz chronisch überlastet. Die häufigen Zwangsabschaltungen sind eine enorme Belastung für Bevölkerung und Industrie.

Traurige Berühmtheit erlangte Indonesien durch die Brandrodung des Regenwaldes zur Anpflanzung gigantischer Palmölplantagen. Auch hier wieder ökosozialistische Wahnvorstellungen als entscheidende Triebkraft: Biokraftstoffe und Holzschnitzel zur „Klimarettung“ und gegen „Peakoil“.

Indonesiens Weg in die Kernenergie

Langfristig kommt Indonesien als bevölkerungsreiches Schwellenland – genauso wie China und Indien – nicht ohne eine Nutzung der Kernenergie aus. Man will aber offensichtlich einen etwas anderen Weg gehen: Nicht der schnelle Einstieg durch den Kauf fertiger Kraftwerke steht im Vordergrund, sondern der Aufbau einer eigenen kerntechnischen Industrie. Konsequent setzt man auf die Entwicklung „neuer“ Kernreaktoren. Dies ist zwar mit einem erheblichen Risiko verbunden, erlaubt aber eine konsequente Anpassung an lokale Verhältnisse und vermeidet hohe Lizenzgebühren. Für ein Inselreich bieten sich kleine Reaktoren (SMR) an, bevorzugt als schwimmende Einheiten.

Eine Entwicklungsschiene ist ein gasgekühlter Hochtemperaturreaktor mit Uran als TRISO Kugelhaufen. Der Prototyp RDE (Reaktor Daya Eksperimental) soll eine Leistung von 10 MWel haben, die später auf bis zu 100 MWel erweitert werden soll. Diese SMR (Small Modular Reactor) sind besonders für die „kleineren“ Inseln des Archipels vorgesehen. Noch dieses Jahr soll ein detaillierter Konstruktionsplan durch ein Konsortium aus Universitäten und privaten Unternehmen einer internationalen Kommission der IAEA zur Begutachtung vorgelegt werden. Grundlage für eine endgültige Entscheidung und die Finanzierung.

Schon 2015 hat die US-Firma Martingale (jetzt ThorCon International) mit einem staatlichen indonesischen Konsortium PT Industry Nuklir Indonesia (INUKI) ein Abkommen zum Bau eines Flüssigsalzreaktors abgeschlossen. Angeblich soll schon 2019 mit dem Bau begonnen werden und das erste Kraftwerk 2025 in Betrieb gehen.

Das ThorConIsle-Konzept

Der Guru der Flüssigsalzreaktoren Robert Hargraves verkündet in seinem neuesten Prospekt vollmundig, daß sein Kraftwerk weniger Investitionen als ein Kohlekraftwerk erfordern würde. Allerdings erinnert das schön bebilderte Verkaufsprospekt an einschlägige Exponate von Bauträgern: Alles schön, keine Probleme, super günstig, daher sofort kaufen.

Das Grundkonzept ist von den Russen abgekupfert: Man baut ein Schiff ohne Antrieb um zwei Reaktoren (plus dem nötigem Zubehör) herum. Alles etwas größer und schöner, versteht sich. Nur mit dem Unterschied, daß das russische Modell nach langer Bauzeit endlich schwimmt. Kein Supertanker – nur 2 x 35 MWel anstelle von 2 x 256 MWel – und „nur“ mit auf Eisbrechern erprobten Reaktoren, anstelle von frisch erfundenen Thorium-Flüssigsalz-Reaktoren. Schön wenn ein solches Kraftwerk mal gebaut wird, aber ganz gewiss nicht bis 2025 und dazu noch billiger als ein Kohlekraftwerk.

Die Idee Kernkraftwerke als Schiffe in Serie zu bauen, ist sicherlich für ein Inselreich verlockend. Nur ist eben ein Kernkraftwerk kein Supertanker (Schuhkarton ), sondern randvoll mit Technik. Insofern können die Baukosten nicht einfach übertragen werden.. Ein Schiff bleibt ein Schiff: Die Korrosionsprobleme im tropischen Meer sind gewaltig und erfordern erhöhte Betriebskosten. Ein Schiff kann auch keine „Betonburg“ (Terrorismus, Flugzeugabsturz etc.) sein. Ganz so einfach, wie im Prospekt, dürfte es nicht gehen: Man kippt einfach die Zwischenräume voll Beton und erhält so einen tollen Bunker. Wer z. B. das Genehmigungsverfahren für den AP-1000 (Sandwich aus Stahlplatten und Beton) verfolgt hat, ahnt, wie Genehmigungsbehörden ticken.

Alle Komponenten sollen zwischen 150 und 500 to schwer sein und sich sogar während des Betriebs auswechseln lassen. Auch hier scheint es mehr um Wunschdenken zu gehen.

Der Reaktor

Bei dem Reaktor handelt sich um eine Kanne, in der der eigentliche Reaktorbehälter (gen. Pot), die Umwälzpumpen und die Wärmetauscher untergebracht sind. Die Kanne wiegt knapp 400 to, wovon etwa 43 to auf die Salzfüllung entfallen. Dieses Gebilde soll spätesten nach acht Jahren komplett ausgebaut und mit einem Spezialschiff zur Wiederaufbereitung geschickt werden. Nach acht Jahren ist das Salz so voller Spaltprodukten, daß es nicht mehr weiter im Kraftwerk eingesetzt werden kann. Vor dem Transport soll es vier Jahre lagern, bis die Strahlung auf akzeptable Werte abgeklungen ist. Jeder Block hat deshalb zwei Kannen.

Die Kanne ist das Neuartige an diesem Konzept: Man tauscht nicht regelmäßig Brennstoff aus, sondern der eigentliche Reaktor ist eine „Batterie“, die komplett gewechselt wird. Vorteil dabei ist, daß man erforderliche Inspektionen und Reparaturen in einer Spezialfabrik durchführen kann. Der gesamte nukleare Teil („der strahlt.“) befindet sich in dieser Kanne. Alle anderen Komponenten sind „konventionell“. Mal sehen, was der Genehmigungsbehörde dazu alles einfällt….

Allerdings stellt das Batterieprinzip alle bisher geltenden Lehrmeinungen über Thorium-Reaktoren auf den Kopf:

  • Bisher ging man von einer kontinuierlichen Wiederaufbereitung aus. Man wollte das Spaltproduktinventar stets gering halten. So hätte man es bei einem schweren Störfall automatisch nur mit geringen Mengen zu tun.
  • Je mehr Neutronengifte – und im Sinne einer selbsterhaltenden Kettenreaktion ist schon Thorium selbst ein starker Parasit – vorhanden sind und je länger die Wechselintervalle sein sollen, um so mehr spaltbares Uran muß man am Anfang zugeben. Dieses muß auch noch möglichst hoch angereichert sein (hier geplant 19,7 %).

Das Salz

Als Brennstoff soll ein NaF – BeF2 – ThF4 – UF4 (mit 76 – 12 – 10,2 – 1,8 mol%) Salz verwendet werden. Es soll ganz tolle Lösungseigenschaften haben, die alle „gefährlichen“ Spaltprodukte zurückhalten. An dieser Stelle fällt mir immer der alte Chemikerwitz ein: Ruft der Professor überglücklich, ich habe endlich das ultimative Lösungsmittel gefunden. Antwortet der Laborant trocken, Glückwunsch und wo soll ich es jetzt hinein füllen? Bei einem solchen Salz ist das leider mehr als ein blöder Witz. Zumal hier auch noch mit Temperaturen von über 700 °C gearbeitet werden soll. Mit Schiffbaustahl (Kostenangaben) wird sich da leider gar nichts ausrichten lassen.

Beryllium und auch Berylliumfluorid sind sehr giftig und werden als krebserregend eingestuft. Wenn Beryllium ein Neutron einfängt, bildet es Helium und setzt dabei zwei Neutronen frei. Es wirkt dabei sowohl als Moderator, wie auch als Neutronenvervielfacher. Fluor und Fluorwasserstoff sind gasförmig und sehr giftig. Fluor ist äußerst reaktionsfreudig und geht mit fast allen Elementen stabile chemische Verbindungen ein. Mit Wasserstoff reagiert es letztendlich zu Flußsäure, die sogar Glas ätzt. Jede Kernspaltung zerstört auch die chemische Verbindung und neue chemische Elemente in Form der Spaltprodukte entstehen. Man hat es deshalb stets auch mit elementarem Fluor zu tun, der auch gern mit dem Strukturmaterial reagieren kann. Da Fluoride sehr reaktionsfreudig sind, reagieren sie natürlich auch wieder mit dem größten Teil der Spaltprodukte und binden diese sicher ein. Es gibt aber zwei Ausnahmen: Edelmetalle und Edelgase. Die Edelmetalle lagern sich innerhalb der Anlage ab und führen zu „Verschmutzungen“, die man regelmäßig und aufwendig wird entfernen müssen (Die Batterie doch komplett auf den Müll?). Die Edelgase müssen (eigentlich) durch Helium ständig aus dem Salz herausgespült werden.

Der immer wieder gern gehörte Hinweis aus der Salzbad-Scene auf den legendären MSRE-Reaktor, hilft in diesem Sinne leider auch nicht weiter: Er hat nur 1,5 Voll-Lastjahre (1966 bis 1969) gelaufen.

Das Sicherheitskonzept

Der Reaktor stellt sich immer selbstständig ab, wirbt ThorCon. Zwar ist dies durchaus kein Alleinstellungsmerkmal eines Flüssigsalzreaktors, aber trotzdem eine feine Sache. Locker mit „Walkaway Safe“ umschrieben. Es ist kein Hexenwerk, eine Kettenreaktion durch Überhitzung (Verkleinerung des makroskopischen Einfangquerschnittes) aus sich selbst heraus zusammenbrechen zu lassen, es bleibt aber immer noch die Nachzerfallswärme (Fukushima und Harrisburg): Sie muß entsprechend schnell abgeführt werden, sonst schmilzt der Reaktor. Auch hier gilt natürlich, je mehr Spaltprodukte im Reaktor enthalten sind (Batterie gegen kontinuierliche Aufbereitung), um so größer ist das Problem.

Die Konstrukteure von Flüssigsalzreaktoren gehen nun davon aus, daß das Salz unter allen denkbaren Umständen und überall im Reaktor schön fließfähig bleibt. Im Ernstfall läuft es dann problemlos in einen gekühlten Tank aus. Dazu denkt man sich an geeigneter Stelle einen Pfropfen als Verschluß, der während des Normalbetriebs durch permanente Kühlung erzeugt wird. Unterbricht man im Notfall die Kühlung, schmelzt das flüssige Salz den Pfropfen auf und gibt so den Weg frei. Der Nottank soll aus vielen Röhren bestehen, die über ihre Oberflächen die Wärme gegen eine Kühlwand abstrahlen. Die Wand wird mit Wasser gefüllt, welches verdampfen kann und sich in Kühltürmen auf Deck wieder niederschlägt. Das Kondensat läuft dann in die Hohlwand zurück.

Schlussbetrachtung

Indonesien muß wie jedes andere Schwellenland in die Kerntechnik einsteigen. Nicht nur zur Energiegewinnung, sondern auch um Anschluß an moderne Industriestaaten zu gewinnen. Kerntechnik ist neben Luft- und Raumfahrt die Schlüsseltechnologie schlechthin. In keiner anderen Branche kommen so viele Technologien mit ihren jeweiligen Spitzenleistungen zusammen. Insofern ist es nur konsequent, möglichst frühzeitig in die internationale Entwicklung „neuer“ Reaktortechnologien einzusteigen. Schon die Zusammenarbeit mit Spitzenuniversitäten und Hochtechnologieunternehmen stellt einen unschätzbaren Wert für die eigene Ausbildungslandschaft dar. Selbst wenn diese jungen Ingenieure später nicht in der Kerntechnik tätig werden, werden sie mit Sicherheit zu den gefragten Spitzenkräften in ihrer Heimat zählen. Keine „Entwicklungshilfe“, die „angepasste Technologie“ für die „große Transformation“ verbreiten will, wird auch nur ansatzweise vergleichbares hervorbringen. Technik – und damit die Gesellschaft –entwickelt sich halt immer nur durch machen weiter und nicht in irgendwelchen geisteswissenschaftlichen Seminaren.

Die Chinesen sind gelandet

Bisher etwas unbeachtet, beginnen die Chinesen den europäischen Markt für Kernkraftwerke zu erobern. Der erste Schritt ist mit dem Genehmigungsverfahren in Großbritannien eingeleitet.

Die französische Vorgeschichte

Schon seit längerem betreibt der staatliche französische Energieversorger EDF (Electricite de France) auch die Kernkraftwerke in England. Etwas ungewöhnlich, handelt es sich doch um gasgekühlte (CO2) und mit Graphit moderierte Reaktoren älteren Datums. Ein Typ, der schon lange in Frankreich abgeschaltet wurde. Gleichwohl ist EDF somit als ein zuverlässiger und etablierter Betreiber in GB bekannt.

Es war damit folgerichtig, daß auch bei der Renaissance der Kernkraft die EDF an vorderster Stelle mit dabei sein würde. Es entstand das Projekt Hinkley Point C in Somerset mit zwei ebenfalls französischen Reaktoren vom Typ EPR. Alles schien ganz einfach – wenn nicht der französische Versorger chronisch unterfinanziert wäre. Es mußte deshalb unbedingt ein kapitalkräftiger Investor mit ins Boot, zumal noch weitere Kernkraftwerke geplant waren. Die Chance für den chinesischen Staat einen Fuß in die Tür des europäischen Marktes zu bekommen. Seltsamerweise ist die Angst vor einer Abhängigkeit in der volkswirtschaftlichen Schlüsselgröße der Stromversorgung von der chinesischen Diktatur noch geringer, als die Furcht vor dem „friedliebenden und aufrechten Demokraten“ Putin. Irgendwie scheint in den Hirnen europäischer Politiker der Irrglaube, elektrische Energie sei so etwas ähnliches wie Kartoffeln, fest verwurzelt zu sein.

Die chinesische Vorgeschichte

China baut inzwischen mehrere Reaktoren pro Jahr. Hunderttausende hoch qualifizierte und überdurchschnittlich bezahlte Arbeitskräfte sind dafür nötig. Allerdings ist jedem klar, daß auch in einem Riesenreich der Markt irgendwann gesättigt ist. Darüberhinaus muß man eine Menge Autos, PC’s oder Jacken aus recyceltem Plastik verkaufen, um den Umsatz nur eines einzigen Kraftwerks zu erzielen. Ein Wissen, das in Deutschland völlig verloren gegangen zu sein scheint. Deshalb der konsequente Schritt der Chinesen in den Export.

Allerdings ist das einfacher beschlossen, als umgesetzt. Ein wichtiger Hebel ist der Preis und die Finanzierung. Trotzdem ist für ein solch sensibles Produkt auch eine gewisse Reputation nötig. Es reicht (noch nicht) der Nachweis einer großen Stückzahl im eigenen Land. Dies gilt besonders für geheimniskrämerische, sozialistisch geprägte Diktaturen wie China und Rußland. Man versucht deshalb wenigstens den Goldstandard eines „westlichen Genehmigungsverfahrens“ zu erlangen. Ein teures und aufwendiges Unterfangen, wie bereits Rußland in Finnland zu spüren bekommt. Es ist halt ein himmelweiter Unterschied, ob man sich in irgendwelchen Hinterzimmern – unter gegenseitig wohlgesonnenen Fachleuten – Papierberge hin und her schiebt oder im Internetzeitalter unter den Argusaugen von „Atomkraftgegnern“ ein transparentes Verfahren durchstehen muß.

Hinzu kommen bei den Chinesen noch komplizierte Lizenzfragen. Man hat sich aus aller Welt Kernkraftwerke zusammengekauft. Ein Wirrwarr von Lizenzverträgen. Deshalb versucht man es hier mit einer vermeintlichen Eigenentwicklung. So etwas ist in Industrieländern schlicht unverkäuflich. Nicht einmal über den Preis oder politische Kompensationsgeschäfte. Ein Bau in England als Referenz, erscheint daher wie ein Sechser im Lotto. Deshalb also der gemeinsame Antrag von China General Nuclear Power Corporation (CGN), Electricite de France (EDF S.A.) and General Nuclear International (GNI) zum Bau und Betrieb von bis zu sechs Reaktoren. Einschließlich großzügiger Finanzierung, versteht sich.

Die Entstehungsgeschichte des Hualong

Ihren Gemischtwarenladen – nicht nur an Leichtwasserreaktoren – haben die Chinesen nach dem Unglück von Fukushima geschickt zu bereinigen versucht. Es soll zukünftig nur noch ein Typ gebaut werden – sicherheitstechnisch auf den neusten Stand der Technik gebracht versteht sich.

Alles begann mit der Übernahme französischer Druckwassertechnik, die zum Bau der Reihe M310 im Jahr 1987 führte (4 Reaktoren, Inbetriebnahmen 1994–2003). Dies führte zur Baureihe CPR1000 im Jahr 2005 (13 Reaktoren, Inbetriebnahmen 2010–2016). Die Erfahrungen aus Bau und Betrieb führten 2010 zur überarbeiteten Baureihe CPR1000+ (2 Reaktoren, Inbetriebnahmen 2016–2017). Die Denkpause nach dem Unglück von Fukushima führte zur Baureihe ACPR1000 (4 Reaktoren, noch im Bau). Bisheriger Abschluss dieser evolutionären Entwicklung ist der Typ HPR1000, der seit 2015 im Bau ist. Dies ist auch die Basis des ersten Exports Karachi 2, welches seit 2015 in Pakistan gebaut wird.

China verfügt also über genügend Erfahrung in der Abwicklung solcher Großprojekte. Leider muß man aktuell sagen, sogar über mehr Praxis als die USA und Frankreich. Durch deren lange Pausen beim Neubau von Kernkraftwerken sind dort die Erfahrungen abgerissen und müssen erst wieder mühselig neu erworben werden. Von Deutschland braucht man in diesem Zusammenhang gar nicht mehr zu reden. Hier ist die Deindustrialisierung bereits so weit fortgeschritten, daß man nicht mal mehr einen vergleichbar simplen Flughafen bauen kann.

Die eingereichten Unterlagen

Im Oktober 2017 wurden die ersten Unterlagen bei der britischen Genehmigungsbehörde eingereicht. In ihnen wird immer von einem UK-HPR1000 gesprochen. Man ist sich also darüber im Klaren, daß es eine spezielle Version geben muß, damit sie in GB genehmigungsfähig ist. Interessant an den eingereichten Unterlagen ist, daß es Beschreibungen des Hualong sind, wie er gerade im Kraftwerk Fangchenggang als Block 3 gebaut wird (HPR1000(FCG3)). Auf diese Weise erhält man einen – wenn auch sehr kleinen – Einblick in die aktuelle chinesische Reaktortechnik.

Bereits aus den beigefügten Zeichnungen kann man erkennen, daß es sich um einen typischen „französischen Reaktor“ handelt, wie er dutzendfach in Frankreich steht. Charakteristisch sind die drei Dampferzeuger und die dreifachen (redundanten) Sicherheitssysteme. Es handelt sich keinesfalls um eine Neukonstruktion mit grundsätzlich passivem Sicherheitsansatz wie z. B. der AP1000 von Westinghouse oder einem evolutionär weiterentwickelten Konvoi-Reaktor wie den EPR mit vierfacher Redundanz. Es wird interessant sein, wie die Genehmigungsbehörde darauf reagieren wird. So wie er eingereicht wurde, ist er eher ein Neubau vorhandener und nachgerüsteter französischer Reaktoren. Entweder müssen die Chinesen noch richtig Geld in die Hand nehmen um das Sicherheitsniveau moderner westlicher Reaktoren zu erreichen oder GB gibt sich mit geringeren – als möglichen – Sicherheiten zufrieden. Dann könnte man aber auch Reaktoren in Korea oder Rußland kaufen. In diesem Zusammenhang wird auch das Genehmigungsverfahren des russischen Kernkraftwerks in Finnland noch sehr interessant werden. Ist doch auch dort der unmittelbare Vergleich zum EPR gegeben. Jedenfalls ist der Hualong keinen Deut sicherer als die Kernkraftwerke, die gerade in Deutschland vom Netz genommen werden. Absurdistan läßt grüßen. Auch der Betrieb dürfte keineswegs günstiger sein. Dafür sorgt schon die Dreisträngigkeit (Sicherheitsphilosophie: Ein System versagt, ein weiteres startet nicht, d. h. es steht noch ein drittes zur Verfügung. Bei vierfacher Redundanz kann man somit Wartungsarbeiten während des Betriebs durchführen.). Ebenso die konventionelle Leitungsführung (Wiederholungsprüfungen) und die Hauptkühlmittelpumpen.

Einige Unterschiede zum EPR

Die Leistung des Hualong beträgt nur 70% des EPR. Dies ist kein prinzipieller Nachteil. Allerdings beträgt die Leistung der Dampferzeuger mit 1050 MWth fast 93% der Leistung der Dampferzeuger des EPR. Man hat also durch Weglassen eines Stranges Baukosten gespart.

Der Kern des Hualong besteht aus nur 177 Brennelementen gegenüber 241 Brennelementen beim EPR. Aber die lineare Wärmeleistung ist mit 179 W/mgegenüber 170 W/m2 sogar höher. Auch hier wurde also zur Kosteneinsparung geknautscht. Ebenso ist die aktive Höhe des Kerns mit 3,66 m kleiner als beim EPR mit 4,20 m. Interessant werden die Ergebnisse der thermohydraulischen Vergleichsrechnungen mit ein und demselben Programm sein. Es ist die klassische Frage nach der Optimierung von Kosten und Sicherheitszugewinn die sich hier stellt.

Die Auslegungslebensdauer (nicht zu verwechseln mit der tatsächlichen oder wirtschaftlichen Lebensdauer; sie sind wesentlich höher) wird keck mit 60 Jahren angegeben. Lebensdauer ist aber immer eine Frage der Konstruktion, der verwendeten Materialien und Fertigungsverfahren, der Qualitätssicherung und des Betriebs. Schon die Konstruktion gibt zu denken: Der EPR hat im Druckbehälter einen ca. 30 cm dicken Reflektor aus Stahl, der als Schutzschild für das Reaktordruckgefäß gegen die Bestrahlung mit Neutronen dient. Qualitätssicherung nach europäischen Maßstäben ist die nächste Frage. Man denke nur an das Theater um den Kohlenstoffgehalt im Deckel des EPR von Flamanville. Ein vermeintlicher Kostenvorteil chinesischer und russischer Fertigungsstätten kann schnell in einen Nachteil mit unkalkulierbaren Kostensteigerungen umschlagen, denn man wird weder in Finnland noch GB bereit sein, ein erhöhtes Risiko einzugehen – egal ob aus mangelnden technischen Fähigkeiten des Herstellers oder systemtypischer Schlamperei.

Der EPR hat einen sog. „Core-Catcher“, der bei einer Kernschmelze verhindern soll, daß der Sicherheitsbehälter zerstört wird. Beim Hualong wird die Grube, in der sich der Druckbehälter befindet mit „ausreichend borierten“ Wasser geflutet. So soll ein durchschmelzen des Druckbehälters verhindert werden. Nicht verkehrt, kommt aber sehr auf die konstruktive Gestaltung an.

Dem vollständigen Verlust jeglicher äußeren Wärmesenke (Fukushima Störfall) soll durch einen Wassertank oben am Reaktorgebäude begegnet werden. In diesen ringförmigen Tank soll sich der Dampf aus den Dampferzeugern niederschlagen. Dieses Prinzip wurde offensichtlich von den Russen übernommen. Wie hoch der Sicherheitsgewinn sein soll, wird eine probabilistische Fehleranalyse zeigen müssen. Es riecht ein wenig nach „Weißer Salbe“ oder PR-Gag. Gerne wird von den Russen immer ein Generation III+ angeführt – nur hat ein Wassertank auf dem Dach noch wenig mit einem passiven Sicherheitskonzept für schwerste Störfälle zu tun (z. B. AP1000 von Westinghouse oder ESBWR von GE/Hitachi).

Jedenfalls benötigt der Hualong genauso elektrische Energie, wie schon jeder Reaktor der zweiten Generation. Bricht die Stromversorgung komplett zusammen, schmilzt sein Core genauso, wie in den Reaktoren von Fukushima. Alles hängt – wie übrigens auch beim EPR – von einer stets funktionierenden Stromversorgung ab. Der „Sicherheitsgewinn“ beim EPR und seinem russischen Pendant (richtiger ist eigentlich die Strahlenbelastung der Umgebung nach einem Fukushima Störfall) gegenüber einem aktuellen Reaktor in Deutschland, ergibt sich allein aus dem „Core Catcher“. Es wird noch unwahrscheinlicher, daß große Mengen Spaltprodukte auch bei einer vollständigen Zerstörung von Kern und Druckbehälter freigesetzt werden.

Nachtrag

Damit kein falscher Eindruck entsteht, es geht hier nicht um eine Abwertung chinesischer Reaktoren, denn es geht immer um die Abwägung von Sicherheit und Kosten, was letztendlich immer eine rein politische Entscheidung ist. Als deutscher Ingenieur tut man sich etwas schwerer damit, da wir zum Gürtel gern die Hosenträger bevorzugen. Andererseits hat uns genau diese Mentalität vor einem Tschernobyl oder Fukushima bewahrt. Deutschland war immer ganz vorne dabei, wenn es um Risikoanalysen und die Umsetzung der daraus resultierenden Konsequenzen ging.

Darin liegt die eigentliche Tragik: Einschlägig bekannte Politiker haben wieder einmal – diesmal durch ein dubioses „Vorangehen“ – versucht, mit ihrer verdrehten Ideologie die Welt zu beglücken. Die Welt wird sich aber mitnichten von der Kernenergie abwenden. Einigen besonders schlichten Gemütern war es einfach egal. Sollen sich doch ferne Völker „verstrahlen“, wir versorgen unser Bullerbü mit Wind, Sonne und Biokost. Das Aufwachen in der Realität wird heilsam sein: Vielleicht werden ja tatsächlich bald Kernkraftwerke in unseren Nachbarländern neu errichtet, die sicherheitstechnisch bestenfalls dem Standard der Kraftwerke entsprechen, die wir gerade voller Begeisterung abschalten. Ähnlichkeiten mit „Hans im Glück“ sind rein zufällig.

SMR, aktualisierter Stand

In der letzten Zeit kommt erneut Bewegung in die Entwicklung „kleiner“ Reaktoren. Anlass für eine Aktualisierung.

Was genau, soll ein SMR sein?

Die Definition eines „SMR“ (Small Modular Reactor) ist etwas vage. In den USA beruht sie auf dem ENERGY POLICY ACT von 2015. Im Abschnitt 608 „Treatment of Modular Reactors“ ist sie wie folgend definiert: Ein Kraftwerk mit höchstens 1300 MWel Gesamtleistung, welches aus mindestens zwei Blöcken mit einer elektrischen Leistung von 100 bis 300 MWel besteht. Dies ist eine etwas sehr geschraubte Definition, aber Politiker und Juristen brauchen wohl so etwas. Wenigstens wird nichts über die anzuwendende Technik vorgeschrieben. Inzwischen gibt es SMR-Entwürfe mit den Kühlmitteln Wasser, Edelgas, Salzschmelze und Flüssigmetall in der Entwicklung.

Zu welchen technischen Verrenkungen solche politischen Akte dann führen, sieht man am Projekt von NuScale Power: Dort werden zwei Reaktoren mit einer äquivalenten Leistung von je 50 MWel auf eine gemeinsame Turbine vorgeschlagen. Förderkriterium erfüllt. Es gibt aber zahlreiche Anwendungen, wo durchaus eine kleinere (thermische) Leistung sinnvoller ist: Kleine Städte in abgelegenen Regionen (Sibirien), Militärische Stützpunkte auf Inseln (China), Ölförderung und Minen (Kanada) etc. Wie es ausschaut, sind genau hier die ersten Anwendungen zu erwarten.

Weltmarkt

Im Jahr 2016 bestand der weltweite Primärenergieverbrauch zu 85% aus fossilen Energieträgern (33% Öl, 28% Kohle und 24% Erdgas). Demgegenüber ist die Kernenergie mit 5% geradezu vernachlässigbar. Sie wurde (nahezu) ausschließlich in der Stromversorgung eingesetzt. Dies hat sie übrigens mit den wetterabhängigen Energieformen Wasserkraft (7%) und „Renewables“ (3%) gemeinsam.

Der Bedarf an elektrischer Energie wird weltweit weiter ansteigen. Nach Schätzungen gibt es derzeit 1,2 Milliarden Menschen, die über keinen Stromanschluss verfügen und fast 3 Milliarden Menschen, die nicht einmal einen Kochherd besitzen. Alles Menschen, die alles dafür geben ihren mittelalterlichen Verhältnissen zu entfliehen – ganz im Gegenteil zu gewissen übersättigten Kreisen bei uns, deren falsches Ideal genau diesem Leben im vorindustriellen Zeitalter entspricht.

Will man in den Weiten Afrikas, Indiens usw. Kernenergie nutzbar machen, sind kleine Reaktoren der einzig gangbare Weg. Mit der heutigen Standardgröße von 1000+ MWel ist sonst der jahrzehntelange Weg über fossile Kraftwerke und großflächige Netze nötig. Um es an dieser Stelle deutlich zu sagen, wer das nicht will, muß unserer Erde noch zweimal Europa oder noch einmal China mit seinen fossilen Kraftwerken zusätzlich zumuten. Ob nun in Deutschland 40 Kohlekraftwerke geschlossen werden oder nicht, ist dafür nur der berühmte Tropfen auf den heißen Stein. Ganz nebenbei ist diese Frage auch der Lackmustest für alle „Klimaschützer“: Geht es wirklich um „Klimaschutz“ oder doch nur um „Gesellschaftsveränderung“?

Letztendlich wird der Preis pro installiertem Megawatt entscheiden. Er dürfte grundsätzlich höher sein, als bei fossilen Kraftwerken. Jedenfalls solange, wie man die bürokratischen Anforderungen aufrecht erhält. Allerdings muß man neben den höheren Brennstoffpreisen auch die notwendige Infrastruktur berücksichtigen: Ein Gaskraftwerk ist nur dann günstiger, wenn bereits eine geeignete Gasversorgung vorhanden ist. Für ein Kohlekraftwerk muß eine Eisenbahnlinie vorhanden sein. Hier kann ein SMR seinen Vorteil des geringen Kernbrennstoffverbrauchs – gerade in flächigen Ländern mit schlechter Infrastruktur – voll ausspielen.

Der wirtschaftliche Blickwinkel

Üblicherweise werden bei Kraftwerken die spezifischen Produktionskosten mit zunehmender Leistung kleiner. Dies betrifft sowohl die spezifischen Investitionskosten (EUR/MW), wie auch die Betriebskosten (EUR/MWh). Bei Kernkraftwerken ergibt sich aber eine Besonderheit: Hohe Finanzierungskosten (Investition) bei nahezu vernachlässigbaren Brennstoffkosten. Eine wesentliche Ursache für die hohen Finanzierungskosten ist die lange Projektdauer. Vom ersten Beschluss ein Kraftwerk zu bauen, bis zur ersten Stromproduktion vergehen oft Jahrzehnte. In dieser langen Zeit summieren sich die Zinsen und Zinseszinsen zu beträchtlichen Schuldenbergen.

Wichtig dabei ist, daß die „Bauzeit“ weniger von der Größe abhängt, als von der Stückzahl. Wenn man nahezu baugleiche Kraftwerke in Serie baut – wie einst in USA und Frankreich und heute in China – kann man auch Großkraftwerke in wenigen Jahren erstellen. Es kommt viel mehr auf die Organisation und das Vorhandensein von erfahrenen Fachkräften an. Negativbeispiele sind hierfür die Projekte von Areva in Finnland und Frankreich und die Baustellen des AP-1000 in den USA. Immer, wenn man mit unerfahrenem Personal „neue“ Typen baut, geht alles schief, was nur schief gehen kann – und darüber hinaus. Es ist deshalb nicht verwunderlich, daß beide Modelle in China – obwohl wesentlich später begonnen – als erste fertig werden.

Genau diesen Umstand versucht man durch eine industrielle Serienproduktion bei den SMR zu umschiffen. Allerdings liegt darin auch die größte Schwierigkeit. Für ein so komplexes Gebilde wie ein Kernkraftwerk, gibt es nur Parallelen im Flugzeugbau. Hier wie dort, kostet es Milliarden, bis ein neues Modell bis zur Serienreife entwickelt ist. Der Weltmarkt für Verkehrsflugzeuge reduziert sich daher nahezu auf zwei Konzerne.

Momentan sind hierzu nur die USA in der Lage. Nur sie verfügen über das notwendige Kapital und die fachliche Infrastruktur. Wohl gemerkt, es geht nicht darum mal einen kleinen Reaktor zu bauen, sondern eine ganz neue Industrie zu erschaffen.

Die nationale Sicherheit

Letztendlich ist der Erfolg von SMR eine rein politische Frage. Will man oder will man nicht. Bemerkenswert in diesem Zusammenhang sind die Diskussionen in Großbritannien. Dort will man immer stärker, nachdem man bereits schmerzlich erfahren hat, was Deindustrialisierung für Folgen hat. Man ist sich aber darüber im Klaren, daß es ohne einen (finanziell) starken Partner nicht geht. Eine europäische Lösung erscheint immer unwahrscheinlicher – nicht nur wegen des Brexit. Die Chinesen klopfen bereits an der Tür. Wahrscheinlich bleibt nur die atlantische Verbindung übrig.

In den USA spielt die SMR-Lobby nun verstärkt die Karte der „Nationalen Sicherheit“ aus. Dafür gibt es zwei gewichtige Argumente. Eins ist die bereits im Verborgenen existierende Industrie für Schiffsreaktoren. Sie baut bereits in Kleinserien erfolgreich „SMR“. Seit der Diskussion über die Kostenexplosion bei der neusten Trägergeneration ist man einer Öffnung in Richtung ziviler Technik nicht mehr so abgeneigt. Die andere Argumentationsschiene betrifft die Weiterverbreitung von Kernwaffen. Durch ihre technologische Führung konnte die USA die Trennung von ziviler und militärischer Technik bei der Lieferung von Kernkraftwerken erfolgreich steuern. Heute gibt es aber mit Rußland (in Iran) und China (in Pakistan) zwei Spieler, die wesentlich lockerer mit diesem Problem umgehen. Wollen die USA weiterhin Einfluß ausüben, müssen sie schnellstens etwas neues bringen. Besonders für Staaten, die noch gar keine friedliche Nutzung der Kernenergie haben.

Die Förderung

Kein (privates) Energieversorgungsunternehmen kauft heute noch ein völlig neues Modell. Das wirtschaftliche Risiko ist einfach zu groß. Dies gilt um so mehr in einer Welt, in der aus ideologischen Gründen bestimmte Energieformen besonders bevorzugt und subventioniert werden. Planwirtschaft wuchert wie Krebs in einer Volkswirtschaft und verdrängt systematisch technische und wirtschaftliche Kriterien. Am Ende steht der erlebte Zusammenbruch solcher Systeme.

In der realen Welt hofft man deshalb die politischen Fehlentscheidungen durch Forschungsförderung, Risikoübernahme, Subventionen etc. wieder zu heilen. Die SMR-Entwicklung ist dafür ein Paradebeispiel. Erst hat man ein bürokratisches und unkalkulierbares Genehmigungsverfahren erschaffen, welches man nun durch den Einsatz weiterer Steuergelder zu heilen versucht. In den USA hat man ein spezielles Förderprogramm für die Genehmigung von SMR als Leichtwasserreaktoren aufgelegt. Alle anderen Typen werden noch auf der Ebene von Forschungsreaktoren behandelt – Realisierung, wenn überhaupt, erst in Jahrzehnten zu erwarten.

Wenn man dann ein genehmigtes Modell hat, ist es trotzdem immer noch ein „Papierreaktor. Man muß dann noch jemanden finden, der auch einen gebaut haben will. Das ist der wesentliche Unterschied zwischen Kerntechnik und z. B. Flugzeugbau. Selbst wenn man einen Prototyp hat, kann man noch keine Bestellungen einsammeln, da auch für die Kunden nahezu unkalkulierbare politische Hürden existieren. Um es kurz zu machen, wenn Politik und Gesellschaft nicht radikal neu über das notwendige Eingehen von Risiken (Kern-, Gentechnik, Digitalisierung usw.) nachdenken, wird man generell keine Neuentwicklungen in den sog. Demokratien durchführen können – mit der Konsequenz, daß sich diese Gesellschaftsform durch Stagnation selbst abschafft. Vielleicht ist aber genau das, das wahre Ziel der „Großen Transformation“.

Im Moment sieht es so aus, daß man sich dessen zumindest in den USA und GB bewußt ist und deshalb die Frage der Energieversorgung auf die Ebene der „nationalen Sicherheit“ hievt, was nichts anderes heißt, daß der Staat für seine selbst geschaffenen Regularien auch die finanzielle Verantwortung übernehmen muß. Zahlen muß sowieso immer die Gesellschaft. Die Ebene der Steuermittel mit vorausgehenden Haushaltsberatungen und politischen Abwägungen der Einsatzzwecke ist jedoch wesentlich demokratischer, als das deutsche Modell der Zwangsgebühren, die nichts weiter als Schattenhaushalte sind.

So ist man in den USA auf gehandelt 20 Milliarden Dollar an bereitzustellenden Haushaltsmitteln für die „neue Kerntechnik“ angekommen. Wer Sicherheit will, muß dafür Geld bereitstellen. Anders als bei Rüstungsausgaben kann man allerdings von höheren Rückflüssen ausgehen.

Die internationale Situation

Jedenfalls ist die Kerntechnik weltweit alles andere als tot. Interessant ist die Liste der unterschiedlichen SMR-Projekte im Jahr 2017 in alphabetischer Reihenfolge der Länder: Argentinien (1), China (4), Dänemark (1), Frankreich (1), Indien (1), Japan (5), Kanada (2), Korea (1), Rußland (15), Südafrika (2), UK (1), USA (11).

Bereits im Bau befinden sich der CAREM-2S in Argentinien, der KLT-40S in Rußland und der HTR-PM in China.

Weit fortgeschritten im Genehmigungsverfahren bzw. der Konstruktion und damit kurzfristig baubar wären: SMART in Korea, RITM-200, BREST300-OD, SVBR und ABV-6M in Rußland, PRISM, NuScale, und mPower in den USA, PBMR-400 in Südafrika, 4S und GTHTR300 in Japan, ACP100 in China.

Bei den bereits im Bau befindlichen Reaktoren handelt es sich um erprobte Konzepte: Leichtwasserreaktoren und Kugelhaufenreaktor. Bei den kurzfristig realisierbaren Reaktoren kommen noch Reaktoren mit Natrium und Blei als Kühlmittel hinzu. Beides ebenfalls erprobte Konzepte mit teilweise Jahrzehnten Betriebserfahrungen zumindest als Prototypen.

Als einziger Reaktor mit kurzfristigem Potential für die Großserie scheint sich der Entwurf von NuScale Power heraus zu kristallisieren. Hoch modular, da nur eine Leistung von 50 MWel pro Reaktor. Voll integrierte Bauweise mit Dampferzeugern, Druckhaltung usw. in einem Behälter, daher komplett zu transportieren nach vollständigem Test in der Fabrik. Neuartiges Sicherheitskonzept als „Thermosflasche im Wasserbad“, bei dem der Austritt von Radioaktivität auch nach schwersten Störfällen ausgeschlossen ist. Wann und von wem wird die Fabrik dafür gebaut?

Die Kugelhaufen sind zurück

Weltweit tauchen Meldungen über Hochtemperaturreaktoren (HTR) mit Kugelhaufen als Kern auf. Es könnte eine Renaissance geben, wenn man es richtig anpackt.

Geschichte

Die Verwendung eines Gases als Kühlmittel geht bis auf die Anfänge der Kerntechnik zurück: 1956 ging in Calder Hall in Großbritannien das erste Magnox-Kraftwerk mit einer elektrischen Leistung von 50 MW ans Netz. Die Bezeichnung Magnox leitete sich aus dem Material für die Brennstabhüllen Magnesium und dem Kühlmittel Kohlendioxid ab. Bei dieser Werkstoffkombination ergab sich nur ein geringer Wirkungsgrad von rund 20%. Später ging man zu Brennstabhüllen aus Stahl, angereichertem Uran, höheren Drücken beim CO2 und höheren Betriebstemperaturen über. Dieser Advanced Gas Reactor (AGR) Typ ist teilweise heute noch in Betrieb, wird aber schon lange nicht mehr neu gebaut.

Das „Helium-Zeitalter“ begann 1965 in Großbritannien mit dem Dragon-Reaktor (20 MWth) und in Deutschland 1966 mit dem AVR Kugelhaufenreaktor in Jülich – eine 21 jährige Erfolgsgeschichte. Der AVR als Versuchskraftwerk ist weltweit die Mutter aller Kugelhaufen-Reaktoren bis zum heutigen Tag geblieben. Man kann mit Fug und Recht sagen, daß in Deutschland dieser mit Helium gekühlte Hochtemperaturreaktor bis zur Anwendungsreife entwickelt worden ist. Analog zu den Leichtwasserreaktoren in den USA. Ganz besonders betrifft dies die Forschung und Entwicklung der TRISO Brennelemente. Nicht auszudenken, wo der Entwicklungsstand heute wäre, wenn nicht die Wahnvorstellungen der Ökosozialisten aus SPD und Grünen über Deutschland hereingebrochen wären. Inhärent sichere Reaktoren, hohe Temperaturen auch zur Prozeßwärme, Trockenkühlung, kalte Fernwärme, Kohleveredelung: Alles deutsche Produkte, die heute weltweit (mühselig) nachvollzogen werden.

Der Unterschied

Bei Leichtwasserreaktoren (LWR) ist das Wasser Kühlmittel, Moderator („Neutronenbremse“) und Arbeitsmedium in einem. Dadurch kann man sehr kleine Kerne – nicht unbedingt Reaktoren – mit sehr hoher Leistungsdichte bauen. Genau diese hohe Leistungsdichte ist aber sicherheitstechnisch ein Problem bzw. Nachteil.

Bei den Hochtemperaturreaktoren ist das Gas ein reines Kühlmittel. Da es keinen Phasenübergang mehr gibt (vom Wasser als Flüssigkeit zum Dampf als Gas) ist der Temperatur- und Druckanstieg kontinuierlich und gemäßigt. Physikalische Explosionen sind damit ausgeschlossen. Verwendet man ein Edelgas wie Helium, sind auch chemische Reaktionen auszuschließen. Anders als bei den Störfällen von Harrisburg und Fukushima: Durch hohe Temperaturen und Trockenfallen der Brennstäbe kam es zur Wasserstoffbildung. Wie die Explosionen in Fukushima zeigten, ein ernsthaftes Sicherheitsrisiko.

Da Helium kaum mit Neutronen reagiert, wird es auch nicht aktiviert. Anders als z. B. die Kühlmittel CO2 und Wasser. Man braucht allerdings einen zusätzlichen Moderator. In diesem Falle das Reaktorgraphit der Brennelemente. Da das Bremsvermögen kleiner ist, benötigt man entsprechend mehr Volumen. Sicherheitstechnisch ist dies wiederum ein Vorteil: Man gewinnt bei einem Störfall wegen der Speicherfähigkeit wertvolle Zeit. Reaktorgraphit verträgt sehr hohe Temperaturen, ohne sich wesentlich zu verändern. Die möglichen hohen Temperaturen sind ein weiterer Sicherheitsgewinn durch passive Kühlung. Die unmittelbar nach einer Schnellabschaltung entstehende große Wärmeleistung durch den Zerfall der kurzlebigen Spaltprodukte, kann im Graphit zwischengespeichert werden. Die hohen – ohne Festigkeitseinbußen, Druckanstiege etc. – möglichen Temperaturen ergeben zur Umwelt eine große treibende Temperaturdifferenz. Die Wärmeabgabe durch Konvektion erfolgt proportional zur Temperaturdifferenz. Die Wärmeabgabe durch Strahlung sogar mit der vierten Potenz. Bei kleinen Reaktoren (Verhältnis von Oberfläche zu Volumen) ist dies ohne zusätzliche Sicherheitseinrichtungen beherrschbar. Können Brennelemente, Einbauten und Kühlmittel eine hohe Temperatur vertragen, kommt man damit automatisch zu einer inhärenten Sicherheit auch nach der Abschaltung. Ein Störfall wie in Fukushima ist – auch ohne Nachkühlung – ausgeschlossen. Es gibt keine – nicht einmal eine theoretische – Kernschmelze.

Das Arbeitsmedium

Grundsätzlich gibt es zwei Wege zur Erzeugung mechanischer Energie aus der Reaktorwärme: Über eine Heliumturbine oder eine Dampfturbine. Auch die Chinesen haben sich wie einst die Deutschen, zu einem konventionellen Dampfkreislauf entschieden. Man verfügt damit ab dem Wärmeübertrager über eine konventionelle und erprobte Kraftwerkstechnik. Wenn man unbedingt will, kann man damit einen Wirkungsgrad von nahezu 50% erzielen, wie es in modernsten Kohlekraftwerken üblich ist. Ein reines Optimierungsproblem, was bei den geringen Brennstoffpreisen eines Kernkraftwerks nicht unbedingt erforderlich ist. Wenn man bewußt auf etwas elektrischen Wirkungsgrad verzichtet, kann man Abwärme mit höherer Temperatur auskoppeln zur Verwendung in Fernwärmenetzen oder einen Trockenkühlturm verwenden. Dies wurde bereits beim THTR in Hamm-Uentrop erfolgreich vorgeführt. Die Stromerzeugung in ariden Gebieten ist ein nicht zu unterschätzender Markt. Aktuell ist z. B. Saudi Arabien und Südafrika brennend an Hochtemperaturreaktoren interessiert.

Südafrika ist bei dem Versuch einer Heliumturbine gescheitert. Zumindest die Lösung einer doppelten Aufgabe: Neuer Reaktor und neues System zur Energiewandlung, war absehbar eine Überforderung. Die unvermeidbare Verunreinigung des Heliums durch Graphitabrieb und Spaltprodukte führt zu dauerhaften Wartungsproblemen. Es sprechen aber auch grundsätzliche thermodynamische Überlegungen gegen eine Heliumturbine. Helium hat eine sehr geringe Dichte bei hoher Schallgeschwindigkeit. Bei der Entspannung in einer Düse ergeben sich sehr hohe Strömungsgeschwindigkeiten bzw. sehr hohe Schaufelgeschwindigkeiten im Verdichter. Beides führt zu notwendig hohen Drehzahlen. Ferner benötigt man bei Helium für ein vorgegebenes Druckverhältnis wesentlich mehr Stufen und Zwischenkühler als z. B. bei Luft. Zusätzlich muß man wegen der geringeren spezifischen Wärmekapazität des Heliums auch noch wesentlich größere Volumenströme umwälzen. (Hinweis für Thermodynamiker: Abschätzung über die Adiabatengleichung unter Berücksichtigung der unterschiedlichen Exponenten vornehmen.) Vermeintliche Vorteile hoher Temperaturen und Einkreissysteme werden so schnell wieder aufgefressen.

Der Brennstoff

Wie schon die Bezeichnung Kugelhaufenreaktor vermuten läßt, besteht der Kern aus Kugeln. Basis dieser Kugeln sind die TRISO (Tri-coated Isotropic) Elemente. Ein winzig kleiner Kern aus Brennstoff ist von mehreren Schichten Reaktorgraphit und einer Schutzschicht aus Siliciumcarbid ummantelt. Dies ist ein sehr flexibles Konzept. Das Brennstoffpartikel hat einen Durchmesser von weniger als einem halben Millimeter und besteht chemisch aus Oxiden oder Karbiden. Es kann aus Uran-, Plutonium- oder Thoriumisotopen im geeigneten Mischungsverhältnis bestehen. Die Kohlenstoffschichten dienen als Moderator und als Puffer für Spaltgase. Die Siliciumcarbid-Schicht dient als „Brennstoffhülle“ zur Zurückhaltung der Spaltprodukte. Das fertige TRISO-Element ist ein Kügelchen von etwa einem Millimeter Durchmesser. Aus diesen Kügelchen preßt man nun Kugeln von 50 mm Durchmesser, die noch mit einer weiteren Schutzschicht aus Graphit überzogen werden. Es ergeben sich – chemisch wie mechanisch – sehr widerstandsfähige, tennisballgroße Brennelemente.

An dieser Stelle sei vermerkt, daß man diese TRISO-Elemente auch zu Brennstäben pressen kann. Diese werden in hexagonale „Bausteine“ aus Graphit eingesetzt, aus denen man einen Kern „aufmauern“ kann. Diese Bausteine enthalten Kanäle in denen das Gas gerichtet strömen kann und auch Kontrollstäbe etc. eingesetzt werden können. Das ist das andere derzeit verfolgte Konzept für gasgekühlte Hochtemperaturreaktoren. Mit ihm lassen sich auch größere Reaktoren bauen.

Ein Haufen ist ein Haufen

Die Idee, einen schlanken Silo zu bauen und den von oben kontinuierlich mit Kugeln zu befüllen, erscheint als eine verblüffend einfache Idee. Die sich ergebenden Hohlräume zwischen den Kugeln dienen dabei dem Kühlmittel Helium zur Durchströmung. Aber wo Licht ist, ist auch Schatten. Jeder Kern eines Reaktors hat unterschiedliche Zonen mit unterschiedlichem Neutronenfluß und damit unterschiedlicher Leistung. Bei ortsfesten Brennelementen kann man z. B. über eine unterschiedliche Anreicherung diese Effekte ausgleichen. Bei einem stetig rutschenden Kugelhaufen geht das nicht.

  • Die Wege und die Durchlaufzeit einer einzelnen Kugel sind nicht vorhersagbar.
  • Man kann in dieser Schüttung praktisch keine Regelstäbe oder Meßsonden einbauen.
  • Die Strömungsverhältnisse des Kühlgases sind unbestimmt.

Dies führt alles zu stark unterschiedlichen Temperaturen, der eine Kugel bei einem Durchlauf ausgesetzt war. Auch wenn die Austrittstemperatur stets im grünen Bereich war, sind einzelne Kugeln sehr stark erwärmt worden. Je höher die gewünschte Austrittstemperatur, um so höher auch die Anzahl überlasteter Kugeln und dadurch in das Kühlmittel freigesetzte Spaltprodukte.

Nur bei kleinen Kernen kann man die unterschiedliche Leistungsverteilung durch Reflektoren an den Behälterwänden ausreichend kompensieren. In diese Reflektorschicht kann man auch Regelstäbe zur sicheren Abschaltung einführen. Zwar braucht ein Kugelhaufen nicht so viele Regelstäbe, da er ja kontinuierlich mit frischen Elementen beschickt wird und nicht den gesamten Brennstoff für den Zyklus schon am Anfang in sich haben muß (Überschußreaktivität), aber ganz kann man nicht darauf verzichten. An dieser Stelle wird klar, daß Kugelhaufenreaktoren nur als Kleinreaktoren (SMR) geeignet sind. Mit zunehmender Größe, kehren sich die Vorteile schnell in Nachteile um. Deshalb auch die andere Entwicklungsschiene, aus TRISO-Kügelchen Brennelemente als Bausteine herzustellen.

Die Sicherheit

Wenn man sich auf kleine Leistungen und moderate Austrittstemperaturen beschränkt, erhält man einen nahezu „unkaputtbaren“ Kernreaktor. Der Versuchsreaktor AVR hatte eine Leistung von 46 MWth und eine elektrische Leistung von 15 MWel. Die in China in Bau befindliche Weiterentwicklung eine thermische Leistung von 250 MWth pro Modul bei noch vernünftigen Austrittstemperaturen von 750 °C. Was spricht eigentlich wirklich gegen diese Bandbreite? Es gibt zwei riesige Märkte für „kleine“ Reaktoren: Alle dünn besiedelten Gebiete von Alaska bis Afrika und den Markt der Kraft-Wärme-Kopplung (einschließlich Fernkälte) in Ballungsgebieten. Hier kommt es auf geringen Personalaufwand für den Betrieb (möglichst automatisch) und Robustheit (Sicherheit, Zuverlässigkeit und geringe Wartung) an. Wer ein Kernkraftwerk, wie einen Schiffsdiesel baut, dem stehen hier alle Türen offen. Es ist kein Zufall, daß sich gerade Saudi Arabien für den chinesischen HTR interessiert: Ein riesiges Land, was konventionelle Stromnetze sehr teuer macht. Lokaler Bedarf nicht nur an elektrischer Energie, sondern immer auch gleichzeitig an Kälte (Klimatisierung) und Trinkwasser, bei gleichzeitigem Mangel an Kühlwasser für konventionelle Kraftwerke. Ähnliches gilt für Südafrika: Es mangelt nicht an Energie (riesige Kohlevorräte), sondern an Kühlwasser für Kraftwerke.

Die Temperaturfrage

Wir verfügen noch mindestens für Jahrhunderte über ausreichend billige fossile Energien. Je weniger man davon für Stromerzeugung und Heizung verfeuert, je länger kann man die Preise stabil halten. Es besteht also für Jahrzehnte gar keine Notwendigkeit für nukleare Prozeßwärme mit hohen Temperaturen und damit auch kein Markt! Schon allein, wenn man das Erdgas, was man heute in Kraftwerken verfeuert, zur (billigen) Wasserstoffproduktion verwendet, kann man damit die Weltmärkte überschwemmen.

Mit der Temperatur steigt der technische Aufwand exponentiell an. Temperatur ist in der Kraftwerkstechnik der Kostentreiber Nummer eins. Die Kerntechnik leidet aber bereits unter den Investitionskosten. Es ist dringend ein umlenken in die andere Richtung notwendig. Keine exotischen Experimente (Heliumturbine), sondern Einsatz erprobter Technik. Dampfturbinen mit unter 600 °C Eintrittstemperaturen um bei handhabbaren Werkstoffen zu bleiben.

Nimmt man dies als Richtwert, kommt man beim Reaktor deutlich unter 800 °C Austrittstemperatur an. Bei TRISO-Elementen ist die im Störfall freigesetzte Menge an Spaltprodukten stark temperaturabhängig. Nicht nur die maximale Temperatur im Störfall, sondern auch durchaus der Temperaturverlauf im Betrieb sind bestimmend. Je weiter man von den Grenzwerten Abstand hält, um so geringer ist die Freisetzung ins Helium. Je sauberer das Helium ist, je kleiner die potentielle Strahlenbelastung der unmittelbaren Umgebung.

Dies muß ja niemanden von der Jagd nach Temperaturrekorden abhalten. Es wird hier nur für einen ingenieurmäßigen, evolutionären Weg plädiert. Kein Ingenieur hat bei der Entwicklung der Verkehrsflugzeuge gleich Schallgeschwindigkeit gefordert. Vielleicht von geträumt, aber realistischer Weise nicht unmittelbar angestrebt.

Zusammenfassung

Wenn man konsequent die (derzeitigen) Grenzen der Technik akzeptiert und sich auf die Vorteile der Kugelhaufenreaktoren besinnt, kann man sehr schnell einen Durchbruch erzielen. Der PC hat seinen Siegeszug nicht angetreten, weil er in Konkurrenz zu Großrechnern angetreten ist, sondern weil er das „persönliche“ in den Vordergrund gestellt hat. Rausgekommen sind heute Rechner, die mehr leisten, als Großrechner in den 1960er Jahren und das zu einem „Mitnahmepreis“.

Für die Kugelhaufenreaktoren heißt das:

  • Konsequente Betonung der Sicherheit. Es ist möglich einen Rektor zu bauen, der so sicher ist, daß man ihn in einem Wohngebiet bedenkenlos aufstellen könnte.
  • Schwerpunkt auf einen automatischen Betrieb mit Fernüberwachung und geringem Wartungsaufwand.
  • Senkung der Investitionskosten durch Besinnung auf handelsübliche Technik.

Für die öffentliche Akzeptanz sind medienwirksame Vorführungen an Demonstrationskraftwerken notwendig: Trennung bei voller Last vom Netz, völliger Verlust des Kühlgases usw. Nachweis ist dabei, daß nicht mehr an Strahlung als aus einem konventionellen Kraftwerk die Grundstücksgrenze übertritt. Nur so, kann der Angstindustrie und ihrer Propaganda wirksam entgegen getreten werden.

Für die Fachwelt der Kunden (Stadtwerke, Industrie, usw.) steht die Bedienbarkeit und die Kosten im Vordergrund. Nichts ist vertrauenserweckender, als eine vertraute Technik (z. B. konventionelle Dampfturbine), mit der man sich auskennt und Erfahrung (Werkstofftechnik, Schweißtechnik etc.) hat. In diesem Sinne, kann man den Kollegen in China nur viel Erfolg auf ihrem eingeschlagenen Weg wünschen.

TRANSATOMIC – schon wieder ein neuer Reaktortyp?

Es tut sich wieder verstärkt etwas bei der Weiterentwicklung der Reaktortechnik in den USA.

Gänzlich anders als in Deutschland, in dem man sich mehr denn je zurück ins Mittelalter träumt, setzt man in USA verstärkt auf die Ausbildung junger Ingenieure und Wissenschaftler und ermutigt sie, eigene Unternehmen zu gründen. Eines der Programme ist das Gateway for Accelerated Innovation in Nuclear (GAIN), des U.S. Department of Energy (DOE). Vereinfacht gesagt, gibt es dort Gutscheine, die die (sonst kostenpflichtige) Nutzung staatlicher Forschungseinrichtungen durch Unternehmensgründungen ermöglichen. Acht solcher „Gutscheine“ im Gesamtwert von zwei Millionen Dollar gingen an sog. startups aus der Kerntechnik.

Eines dieser jungen Unternehmen der Kerntechnik ist Transatomic Power Corporation (TPC). Wie so oft in den USA, ist es eine Gründung von Absolventen des MIT. Glückliches Amerika, in dem noch immer tausende junger Menschen bereit sind, sich den Strapazen eines Kerntechnik-Studienganges aussetzen, während man hierzulande lieber „irgendwas mit Medien“ studiert. Allerdings kennt man in den USA auch keine Zwangsgebühren zur Schaffung von hoch dotierten Nachrichtenvorlesern und Volksbelehrern. Jeder Staat setzt halt seine eigenen Prioritäten.

Noch etwas ist in den USA völlig anders. Das junge Unternehmen hat bereits mehrere Millionen Dollar privates Risikokapital eingesammelt. Es braucht noch mehr Kapital und hat deshalb ein Papier veröffentlicht, in dem das Konzept seines Reaktors näher beschrieben ist. Sicherlich ein erhebliches wirtschaftliches Risiko. Man vertraut offensichtlich darauf, mangelnde „Geldmacht“ durch Schnelligkeit kompensieren zu können. Erklärtes Ziel ist es, möglichst schnell einen kleinen Versuchsreaktor mit 20 MWth zu bauen. Das erste kommerzielle Kraftwerk soll rund 500 MWel (1250 MWth.) Leistung haben und rund zwei Milliarden Dollar kosten.

Abgebrannte Brennelemente als Brennstoff

Der Reaktor ist vom Typ „molten salt“. Der Brennstoff wird in geschmolzenem Salz gelöst, welches gleichzeitig dem Wärmetransport dient. Populär ist dieser Reaktortyp im Zusammenhang mit Thorium gemacht worden. Man beschränkt sich hier bewußt auf Uran als Brennstoff, um auf die dafür vorhandene Infrastruktur zurückgreifen zu können. Thorium wird eher als Option in ferner Zukunft gesehen.

Der besondere Charme dieses Konzeptes liegt in der Verwendung abgebrannter Brennelemente aus Leichtwasserreaktoren als Brennstoff. Solche abgebrannten Brennelemente bestehen zu rund 95% aus Uran-238 und etwa je einem Prozent Uran-235 und Plutonium. Der Rest sind Spaltprodukte als Abfall. Das klassische Modell, wie es z.B. in Frankreich praktiziert wird, ist die Wiederaufbereitung nach dem Purex-Verfahren: Man erhält sehr reines Uran, welches als Ersatz für Natururan wieder in den Kreislauf zurückgeführt wird und reines Plutonium, welches als Mischoxid zu neuen Brennelementen verarbeitet wird. Die Spaltprodukte mit Spuren von Aktinoiden werden verglast und als Atommüll endgelagert. Für diese chemischen Prozeßschritte (Wiederaufbereitungsanlage) geht man von Kosten in Höhe von 1300 bis 3000 US-Dollar pro kg aus. Bei heutigen Preisen für Natururan eine unwirtschaftliche Angelegenheit. Deshalb füllen sich die Lager mit abgebrannten Brennelementen auch weiterhin. Allein in den USA lagern über 70.000 to ausgedienter Brennelemente. Für die „Zwischenlagerung“ in Behältern (ähnlich den Castoren in Deutschland) geht man von etwa 100 Dollar pro kg aus. Für die „Entsorgung“ haben sich bereits über 31 Milliarden US-Dollar Rücklagen angesammelt – was etwa 400 Dollar pro kg entspricht.

Wem es gelingt, einen Reaktor zu bauen, der die abgebrannten Brennelemente „frißt“, ist in der Rolle einer Müllverbrennungsanlage: Er wird für die Beseitigung des Mülls bezahlt und kann sich mit seinem Preis an den anderen Möglichkeiten (z. B. Müllkippe) orientieren. Die entstehende Wärme ist umsonst. Die elektrische Energie aus der „Müllbeseitigung“ ist ein weiteres Zubrot. Es kommt lediglich darauf an, eine besonders günstige „Müllverbrennungsanlage“ zu bauen. Genau an diesem Punkt, setzt TPC an.

Das Transatomic Konzept

Die Angst vor dem „Atommüll“ wird mit seiner Langlebigkeit begründet. Es gibt wahrlich gefährlichere Stoffe, als abgebrannte Brennelemente. Solange man sie nicht aufisst, sind sie recht harmlos. Es ist aber die berechtigte Angst, ob man diese Stoffe für Jahrmillionen sicher von der Biosphäre fern halten kann, die viele Menschen umtreibt. Spaltprodukte sind in diesem Sinne kein Problem, da sie in wenigen hundert Jahren faktisch von selbst verschwunden sind. Jahrhunderte sind aber durch technische Bauwerke (Kathedralen, Pyramiden etc.) oder natürliche Barrieren (einige hundert Meter gewachsene Erdschichten) sicher beherrschbar.

Man kann aber alle langlebigen Aktinoide durch Spaltung in kurzlebige Spaltprodukte umwandeln und dabei noch riesige Mengen Energie erzeugen – am besten in einem Kernkraftwerk. Ein solcher Reaktor muß besonders sparsam mit den bei einer Spaltung freiwerdenden Neutronen umgehen, um möglichst viele andere Kerne umzuwandeln und letztendlich zu spalten.

  • Spaltprodukte haben teilweise sehr große Einfangquerschnitte. Mit anderen Worten, sie wirken parasitär indem sie wertvolle Neutronen „wegfangen“. Die Konsequenz ist eine integrierte Wiederaufbereitung. Dies läßt sich nur über eine Brennstofflösung erreichen.
  • Es dürfen nur möglichst wenig Neutronen das System verlassen. Dazu muß man den Reaktor mit einem Reflektor versehen, der die Neutronen wieder in den Reaktor zurück streut. Idealerweise verwendet man dafür ebenfalls Uran, damit nicht zurück streubare Neutronen bei ihrem Einfang wenigstens neuen Spaltstoff – hier Plutonium – erzeugen.
  • Bei Reaktoren mit festen Brennstoffen, kann man die Spaltstoffe nicht kontinuierlich ersetzen. Man benötigt deshalb zu Anfang eine Überschußreaktivität. So zu sagen, mehr Spaltstoff als eigentlich zuträglich ist. Diese Überschußreaktivität muß durch Regelstäbe und abbrennbare Gifte kompensiert werden: Wertvolle Neutronen werden unnütz weg gefangen.

Will man mit möglichst geringer Anreicherung auskommen – was einem bereits abgebrannten Brennelement entspricht – muß man zwingend auf ein thermisches Neutronenspektrum übergehen. Sogenannte „Schnelle Brüter“ erfordern eine zweistellige Anreicherung. Also wesentlich höher, als sie in einem frischen Brennelement für einen Leichtwasserreaktor vorliegen. Man kann in einem thermischen Reaktor zwar nicht brüten – also mehr Spaltstoff erzeugen als beim Betrieb verbraucht wird – aber fast genau soviel erzeugen, wie verbraucht wird. Man muß es auch gar nicht, da ja der „Atommüll“ noch Spaltstoff enthält.

Wieviel wird nun gespart?

Ein heutiger Leichtwasserreaktor produziert pro 1000 MWel etwa 20 to abgebrannter Brennelemente pro Jahr. Geht man von einer direkten Endlagerung aus, ist dies die Menge „Atommüll“ die in ein Endlager muß. Erzeugt man die gleiche elektrische Energie aus eben solchem „Atommüll“, ist diese Menge schon mal komplett eingespart.

Gleichzeitig wird aber auch der ursprünglich vorhandene „Atommüll“ in der Form abgebrannter Brennelemente weniger. Die Energie wird durch die Spaltung von Atomkernen erzeugt. Sie sind nach der Spaltung unwiederbringlich vernichtet. Wird Uran noch von vielen Menschen als natürlich und damit relativ harmlos angesehen, ist z. B. Plutonium für sie reines Teufelszeug. Genau diese Stoffgruppe dient aber bei diesem Reaktortyp als Brennstoff und wird beständig verbraucht.

Ein solcher Reaktor produziert rund 1 to Spaltprodukte pro 1000 MWel und Jahr. Die Spaltprodukte sind darüberhinaus in einigen Jahrhunderten – gegenüber 100.000den von Jahren bei Plutonium – verschwunden. In Bezug auf die Energieversorgung sind solche Reaktoren eine echte Alternative zu sog. „Schnellen Brütern“. Bereits die vorhandenen abgebrannten Brennelemente und die absehbar hinzukommenden, wären eine schier unerschöpfliche Energiequelle.

Was ist neu bei diesem Reaktortyp?

In den USA hat man über Jahrzehnte Erfahrungen mit Salzschmelzen in Versuchsreaktoren gesammelt. Hier strebt man bewußt die Verwendung von Uran und nicht von Thorium an. Dies hat bezüglich des Salzes Konsequenzen: Lithiumfluorid kann wesentlich höhere Konzentrationen Uran gelöst halten (LiF-(Actinoid)F4) als das bekanntere FLiBe-Salz. Erst dadurch ist der Einsatz abgebrannter Brennelemente (niedrige Anreicherung) möglich. Allerdings liegt die Schmelztemperatur dieses Brennstoffs bei etwa 500 °C. Ein wesentliches Sicherheitskriterium ist daher, Verstopfungen in Kanälen und Rohrleitungen durch Ablagerungen, sicher zu vermeiden.

Als Moderator sollen Stäbe aus Zirconiumhydrid eingesetzt werden. Sie wirken wie „umgekehrte Regelstäbe“: Je tiefer sie in die Schmelze eingetaucht werden, um so mehr Neutronen werden abgebremst und die Spaltungsrate erhöht sich. Die Moderation solcher Stäbe ist gegenüber früher verwendetem Graphit so viel besser, daß fast der doppelte Raum für die Salzschmelze bei einem vorgegebenen Reaktorvolumen zur Verfügung steht. Ein weiterer wichtiger Schritt zu der Verwendung von „Atommüll“ als Brennstoff.

Die integrierte Wiederaufbereitung

Die Spaltprodukte müssen kontinuierlich aus der Salzschmelze entfernt werden. Sie wirken nicht nur parasitär, sondern stellen auch das eigentliche Sicherheitsproblem dar. Je weniger Spaltprodukte gelöst sind, um so weniger Radioaktivität könnte bei einem Störfall freigesetzt werden.

Etwa 20% der Spaltprodukte sind Edelgase. Sie sollen mit Helium aus der Salzschmelze abgeschieden werden und anschließend in Druckgasflaschen gelagert werden.

Rund 40% der Spaltprodukte sind Metalle, die Kolloide in der Schmelze bilden. Sie sollen mit Geweben aus Nickel ausgefiltert werden.

Der Rest – hauptsächlich Lanthanoide – sind sehr gut in der Salzschmelze gelöst. Sie sollen mittels flüssigen Metallen extrahiert werden und anschließend in eine keramische Form zur Lagerung überführt werden.

In der Abscheidung, Behandlung und Lagerung der Spaltprodukte dürfte die größte Hemmschwelle bei der Einführung von Reaktoren mit Salzschmelzen liegen. Welcher Energieversorger will schon gern eine Chemiefabrik betreiben? Vielleicht werden deshalb erste Anwendungen dieses Reaktors gerade in der chemischen Industrie liegen.

Zusammenfassung

Der Gedanke, „Atommüll“ möglichst direkt als Brennstoff einzusetzen, hat Charme. Wirtschaftlich kommt man damit in die Situation einer Müllverbrennungsanlage. Man kann sich an den Aufbereitungs- und Entsorgungspreisen des Marktes orientieren. Diese Einnahmen sind schon mal vorhanden. Die Stromproduktion ist ein Zubrot. Es wird noch sehr viel Entwicklungszeit nötig werden, bis ein genehmigungsfähiger Reaktor vorliegt. Auch die Kostenschätzung über zwei Milliarden Dollar für den ersten kommerziellen Reaktor, ist in diesem Sinne mit der gebotenen Vorsicht zu betrachten. Allerdings handelt es sich bei diesem Reaktor nicht um ein Produkt einer „Erfindermesse“. Man hat sehr sorgfältig den Stand der Technik analysiert und bewegt sich auf allen Ebenen auf dem machbaren und gangbaren Weg. Es ist nur zu hoffen, daß diesem jungen Unternehmen noch etwas Zeit verbleibt, bis es – wie so viele vor ihm – auf und weg gekauft wird.

Weltweit tut sich etwas in der Entsorgungsfrage: Salzbadreaktoren, Entwicklung metallischer Brennstoffe – sogar für Leichtwasserreaktoren – und abgespeckte chemische Wiederaufbereitungsverfahren in Rußland.