Flugscharen zu Schwertern?

Kaum baut China seinen dritten natriumgekühlten Reaktor mit schnellem Neutronenspektrum, kommen die einschlägigen „Atomkraftgegner“ wieder unter ihren Steinen hervorgekrochen und erzählen das Märchen von den „Bomben aus den schnellen Brütern“ neu. Diesmal in der Version ‎China. Genau dieser Henry Sokolski hat schon 2010 seine steilen Thesen bei der Heirich Böll Stiftung (Die grüne politische Stiftung) unter dem Titel Wege aus dem nuklearen Dilemma verbreitet. Eigentlich nur neuer Wein aus alten Schläuchen. Gleichwohl Hauptgift der „Atomkraftgegner“ im doppelten Sinne: Erstens, der Mythos vom nicht wiederverwendbaren Atommüll und die „Endlagerfrage“ muß aufrecht erhalten bleiben und zweitens, es gibt keine Trennung zwischen friedlicher Nutzung der Kernenergie und „Atombomben“. Genau das, was schlichte Gemüter mit guten Herzen an die Wahlurnen oder auf Demos treiben soll. Es ist deshalb nötig, die Schleier der Propaganda etwas beiseite zu schieben.

Die Rolle Chinas

Da uns Claudia Kemfert und ihre Kumpane in unzähligen Auftritten im Staatsfernsehen erklärt haben, daß Wind und Sonne die einzig wahren Energieträger sind und „Atomkraft ganz, ganz unwirtschaftlich ist“, muß natürlich eine Begründung für den Ausbau der Kernenergie in China her: Was geht da besser, als „atomare“ Aufrüstung? Die Enthüllung ist, China baut gar keine Kern-Kraftwerke für die Stromerzeugung, sondern will nur Plutonium erzeugen, um daraus Bomben zu bauen oder wenigstens die Welt zu vergiften. Klingt alles – aber bestimmt nicht zufällig – nach Dr. Fu Manchu bzw. ist einfach nur schlechte Propaganda. Aber Vorsicht, langjährige Erfahrung mit dem Ökosozialismus zeigt, daß es denen egal ist, ob wahr oder falsch, Hauptsache die Spinnereien werden so lange in allen Medien wiederholt, bis jeder sie nachplappert und sie dadurch auf mystische Art wahr erscheinen.

Man mag ja über das kommunistische China denken was man will, aber China hat es gar nicht nötig, heimlich Kernwaffen zu produzieren. China ist seit 1964 „Atommacht“ – ganz im Gegenteil z. B. zum Iran. Inzwischen mit allem was dazu gehört, wie z. B. Raketen. Niemand dürfte daran zweifeln, daß China in der Lage wäre, weltweit einen „Atomschlag“ auszuführen. Aber will es das wirklich? Zweifellos hat China imperiale Gelüste, aber gerade deshalb wird es einen Atomkrieg vermeiden. Die blitzartige Einäscherung von Shanghai (ca. 26 Millionen Menschen) oder Peking (ca. 20 Millionen) würde China schneller in die Knie zwingen, als Hiroshima und Nagasaki das japanische Kaiserreich. China ist mit seiner Bevölkerungsstruktur längst nicht mehr in der Lage einen Atomkrieg zu führen. China kann auch nur auf Abschreckung setzen. Dafür reichen seine geschätzt 350 Sprengköpfe aus. Das mag gegenüber Russland (6375 Sprengköpfe) und USA (5800) gering erscheinen, ist aber in der Größenordnung von GB und Frankreich. Gerade für seine imperialen Züge im Pazifik – und nicht zuletzt für die latente Bedrohung von Taiwan – braucht es eine starke konventionelle Armee und Marine. Ein nukleares Wettrüsten frißt aber Unmengen Geld.

Selbst wenn China einen Ausbau seiner Nuklearstreitkräfte plant, kann es sogar auf Vorräte an für Waffen geeignetem Plutonium (geschätzt 2,5 bis 3,5 to) für weitere 480 Sprengköpfe zurückgreifen. Darüberhinaus noch auf hochangereichertes Uran (geschätzt 11 bis 17 to) für weitere etwa 1000 Sprengköpfe. Wenn das nicht reicht, kann man noch entsprechende Produktionsanlagen reaktivieren.

Plutonium ist nicht gleich Plutonium

An dieser Stelle ist noch ein bißchen Neutronenphysik nötig. Plutonium wird in jedem Reaktortyp aus U238 durch das Einfangen von Neutronen gebildet. Die Typen unterscheiden sich lediglich durch ihre Konversionsrate. Bei Leichtwasserreaktoren beträgt diese etwa 0,6. Das heißt statistisch betrachtet, wenn 10 Kerne gespalten wurden, haben sich 6 Plutoniumatome neu gebildet. Ist die Konversionsrate größer 1, spricht man von Brütern. Es werden also mehr Kerne – die zu Spontanspaltungen neigen, wie U235 und Pu239 – neu gebildet als verbraucht. Mit schnellen Neutronen kann man alle Kerne spalten, braucht aber eine höhere Anreicherung als bei langsamen (abgebremsten oder moderierten) Neutronen.

Wenn nun ein Neutron auf einen Kern Pu239 (Halbwertszeit 24 110 Jahre) trifft, wird er nicht zwingend gespalten, sondern es bildet sich (manchmal) Pu240 (Halbwertszeit 6 564 Jahre), aus diesem kann sich Pu241(Halbwertszeit 14,35 Jahre) bilden und daraus sogar Pu242 (Halbwertszeit 375 000 Jahre). Wichtig ist nur, daß man je nach Fahrweise und Betriebsdauer des Reaktors ein wildes Isotopengemisch erhält, welches man chemisch nicht trennen kann. Aus verschiedenen Gründen ist aber lediglich das Isotop Pu239 für eine Kernwaffe geeignet. Man unterscheidet deshalb zwischen Reaktor-Plutonium und Waffen-Plutonium. Letzteres muß mindestens eine Reinheit von 93% Pu239 haben. Es ist deshalb Unsinn – aber immer wieder gern von „Atomkraftgegnern“ gemacht – aus der Menge an anfallendem Reaktorplutonium aus Kernkraftwerken irgendwelche „Atombomben“ zusammen zu spekulieren. Noch einmal in aller Deutlichkeit: Aus dem Reaktorplutonium üblicher Kernkraftwerke läßt sich nur eine „Atombombe“ bauen, mit der man nicht einmal Fensterscheiben zum wackeln bringen kann.

Gleichwohl ist es kein Problem, Waffen-Plutonium herzustellen, wenn man die Erzeugung verstanden hat. Aus U238 bildet sich U239, welches mit einer Halbwertszeit von 24 Minuten in Np239 zerfällt und dieses zerfällt wiederum mit einer Halbwertszeit von 2,4 Tagen in Pu239. Der wesentliche Trick ist also, man läßt die Brennstäbe nur kurz im Reaktor verweilen. Will man hochreines Waffen-Plutonium herstellen, hat man dafür immer spezielle Anlagen verwendet, in denen die entstandene Wärme einfach als Abfall an die Umgebung abgegeben wurde. Die Brennelemente waren nur so kurz „abgebrannt“, daß sie einfach in Wasserbecken fielen und früher sogar nur mit Zangen entnommen wurden. Da sie so schwach strahlen, ist die Wiederaufbereitung ebenfalls viel einfacher als bei Brennelementen aus Kernkraftwerken. Kurzum, es ist einfach idiotisch, „Atombomben“ mit Kernkraftwerken herstellen zu wollen. Ganz besonders dann, wenn man – wie China als anerkannte „Atommacht“ – Heimlichkeit gar nicht nötig hat.

Warum baut China nun Natriumgekühlte-Reaktoren?

China setzt voll auf Kernenergie. Man geht beim Ausbau langfristig und in klar definierten Schritten vor. Erst kauft und klaut man das gesamte weltweit vorhandene Wissen zusammen. Diese Phase ist bezüglich Reaktoren der dritten Generation abgeschlossen. Jetzt geht man in die Serienproduktion mit „Eigenentwicklungen“, für die man keine Lizenzgebühren mehr bezahlt und keine Einschränkungen mehr akzeptieren muß. Chinesische Druckwasserreaktoren haben inzwischen Bauzeiten von rund fünf Jahren und Baukosten auf dem Niveau modernster Kohlekraftwerke mit Rauchgaswäsche und höchsten Wirkungsgraden. Die Auslegungslebensdauer bewegt sich auf dem internationalen Standard von 60 Jahren und wird real 100 Jahre überschreiten. Die Reaktoren, die heute ans Netz gehen, werden die Jahrhundertwende noch überleben. Wie immer, wird nicht die Technik, sondern die individuelle Wirtschaftlichkeit über deren Ende entscheiden.

China hat aber von Anbeginn der Nutzung von Kernenergie ein Problem: Zumindest die wirtschaftlich förderbaren Uranvorkommen im eigenen Land sind sehr gering. Deshalb gilt schon heute die Dreierregel: Ein Drittel aus inländischer Förderung, ein Drittel durch Kauf am Weltmarkt und ein Drittel aus ausländischen, aber von China betriebenen, Minen. Man darf dabei nie aus den Augen verlieren, daß ein abgebranntes Brennelement immer noch rund 95% Energieträger enthält. Es baut sich also ein gewaltiger Schatz auf, den es (langfristig) zu heben gilt. Die einzig verfügbare erprobte Technik zur Spaltung von U238 kommt derzeit aus Russland in der Form des mit Natrium gekühlten und schnellem Neutronenspektrum betriebenen BN-600. Dieser Reaktor ist seit 1981 in Beloyarsk am Netz. Inzwischen haben umfangreiche Nachrüstungen (seit 2010) stattgefunden und drei neue Dampferzeuger sind in Vorbereitung, die die genehmigte Betriebsdauer auf 60 Jahre erhöhen. Auf der Basis dieses Typs (1500 MWth, 600 MWel) hat China zwei Reaktoren für das Kraftwerk Xiapu bestellt. Sie sind seit 2018 in Bau und sollen 2023 bzw. 2026 den kommerziellen Betrieb aufnehmen. Sie können mit Uranoxid (Anreicherung 17 bis 26%) oder Mischoxid (100 GWd/t Abbrand) bestückt werden. Später ist sogar eine Beladung mit metallischem Brennstoff (100–120 GWd/t) vorgesehen. Dies würde auch ganz neue Wege bezüglich der Wiederaufbereitung ermöglichen. Der Brennstoff für die ersten sieben Jahre kommt von TCEL aus Russland. China geht auch hier wieder extrem konservativ vor.

Eine grobe Abschätzung ergibt für diese Reaktoren bei einer Erstbeladung mit Mischoxid einen Bedarf von etwa 10 to pro Reaktor. Dabei ist ein Verhältnis von (abgereichertem) Uran und Plutonium von etwa 8:2 erforderlich. Jedes Jahr dürfte eine Nachladung von rund 5 to MOX-Brennelementen pro Reaktor nötig sein. Die tatsächlichen Werte hängen stark von der jährlichen Auslastung und dem erzielten Abbrand (Werkstoffproblematik) ab. Die Energiedichte von natriumgekühlten Reaktoren ist sehr hoch: Der Reaktorkern eines BN-600 ist nur etwa 1m hoch, bei einem Durchmesser von etwa 2m (369 Brennelemente mit je 127 Brennstäben).

Die Wiederaufbereitung

Parallel läuft ein Programm zur Wiederaufbereitung. Aufbauend auf die umfangreiche Erfahrung aus der Waffenproduktion wurde bis 2005 eine Pilotanlage zur Aufbereitung ziviler Brennelemente gebaut. Ab 2010 begann der heiße Testbetrieb. Zahlreiche Verzögerungen ergaben aber erst 2017 einen halbwegs zufrieden stellenden Betrieb. Im Jahre 2011 wurde der Bau einer Anlage mit einer Kapazität von 200 toSM/a in Jinta beschlossen. Sie sollte 2020 in Betrieb gehen. Neben dieser Anlage wird auch eine Fertigung für MOX-Brennelemente mit einer Kapazität von 20 t/a errichtet. Diese Anlagen reichen für einen BN-600 Reaktor aus. Parallel ziehen sich seit Jahren Verhandlungen mit Frankreich über eine Wiederaufbereitungsanlage mit 800 t/a für Brennelemente aus Druckwasserreaktoren hin. Bisher scheiterten die Verhandlungen an den Preisvorstellungen der EDF.

Bezüglich der Wiederaufbereitung steht China nicht unter Zeitdruck: (Noch) sind die Weltmarktpreise für Uran niedrig, China verfügt bereits über große Kapazitäten zur Anreicherung und zur Produktion von Brennelementen für Druckwasserreaktoren. Die zeitlich nahezu unbefristete Lagerung von abgebrannten Brennelementen ist kein Problem – schon gar nicht für China mit seinen Wüsten. Es ist also folgerichtig, sich auf den Zubau der konventionellen Reaktorflotte (Generation III) zu konzentrieren. Jedes neue Kernkraftwerk am Netz kann potentiell alte umweltverschmutzende Kohlekraftwerke ersetzen. Der derzeitige Einstieg in die Reaktoren mit Natriumkühlung ist vergleichbar mit dem Einstieg in die Druckwasserreaktoren in den 1980er Jahren. Auch diesmal wird weniger auf Exotik als auf erprobte Technik gesetzt – nur verengt sich hier der Weltmarkt derzeit auf Russland.

Zusammenfassung

China setzt konsequent auf den Ausbau der Kernenergie:

  • Am Ende von 2019 verfügte China über eine installierte Leistung von 50 GWel. Geplant war eine Leistung von 58 GWel. Die kleine Delle kam durch die Reaktion auf das Unglück von Fukushima. Im laufenden Fünfjahrplan (2021 – 2025) ist eine Leistung von 70 GWel geplant. Beauftragt sind vier Reaktoren vom Typ CAP1000, vier vom russischen Typ VVER- V491, ein SMR vom Typ ACP100 und ein Hualong One. Alles Druckwasserreaktoren der III. Generation.
  • Seit 2011 ist der Chinese Experimental Fast Reactor (CEFR) mit einer Leistung von 65 MWth / 20 MWel in Betrieb. Er wird mit auf 64% angereichertem Uran betrieben. Reaktor und Brennstoff kommen aus Russland.
  • Seit 2017 bzw. 2020 befinden sich zwei schnelle Reaktoren mit Natriumkühlung in Xiapu in Bau. Die beiden russischen Reaktoren mit 1500 MWth / 600 MWel sollen 2023 bzw. 2026 ans Netz gehen. Die Brennstoffversorgung für sieben Jahre erfolgt aus einer neuen Fabrik in Russland. Beide Länder erzielen dadurch für ihre Programme mit schnellen Reaktoren einen bedeutenden Kostenvorteil. Beide Länder bevorzugen zusammen eine evolutionäre Strategie in Richtung 1000 MWel. (Russland verfügt bereits über einen BN-800 in Beloyarsk).
  • Bereits 1983 hat China einen geschlossenen Brennstoffkreislauf beschlossen. Seit 2015 gibt es eine Testanlage für die Aufbereitung ziviler Brennelemente in Jinta. Sie soll eine Kapazität von 50 to/a haben. Ihr Bau und Betrieb war mit zahlreichen Schwierigkeiten verbunden.
  • In Jiuquan ist eine 200 to/a Demonstrationsanlage in Bau. Die Bauarbeiten sind fertig und letztes Jahr hat die Montage der Verfahrenstechnik begonnen. Geplante Inbetriebnahme ist 2025. Inzwischen ist ein baugleicher zweiter Strang in Arbeit, der noch vor 2030 fertiggestellt sein soll.
  • Seit 2018 sind neben den zwei Wiederaufbereitungsanlagen auch zwei Brennelementefabriken für Mischoxid mit einer Kapazität von je 20 to/a in Bau. In ihnen kann das aus der Wiederaufbereitung von abgebrannten Brennelementen aus den Druckwasserreaktoren zurückgewonnene Uran und Plutonium zu neuen Brennelementen verarbeitet werden.
  • In Beishan laufen seit Jahren die vorbereitenden Untersuchungen und Baumaßnahmen für ein geologisches Endlager für die hochaktiven Reststoffe. Geplant ist eine Inbetriebnahme bis 2050.

SMR-2021, Xe-100

Anfang April unterzeichneten X-energy, Energy Northwest, und der Grant County (Washington) Public Utility District (PUD) eine Absichtserklärung einen Hochtemperaturreaktor für geschätzt $2,4 Milliarden als Demonstrationsprojekt bis 2027 zu bauen. Das TRi Energy Partnership – ein Wortspiel aus dem TRISO-Brennstoff bzw. der Tri-Cities area – übernimmt die Projektentwicklung für die Genehmigung, den Bau und Betrieb des Kraftwerks. Der angedachte Standort ist neben dem Kernkraftwerk Columbia, einem 1,174-MWe Siedewasserreaktor nahe Richland im Bundesstaat Washington. An diesem Standort sind alle Voraussetzungen für den Transport (Schiene, Straße, Wasserweg) sowie fachkundiges Personal vorhanden. Damit sind erst einmal alle Bedingungen für eine hälftige Finanzierung (50% Staat, 50% privates Risikokapital) nach dem Advanced Reactor Demonstration Program des „US Energieministeriums“ erfüllt.

Der Entwurf

Der Xe-100 besteht aus zwei Zylindern: Dem Reaktor mit einem Durchmesser von etwa 4,9m und einer Höhe von 19,5m und dem Dampferzeuger mit einem Durchmesser von etwa 6,5m und einer Höhe von 25m. Der Reaktor dürfte etwa 200 to wiegen und der Dampferzeuger etwa 700 to. Beides Maße und Gewichte, wie sie z. B. bei Raffinerien und Chemieanlagen heute üblich sind. Insofern sind Montage und Transport für einschlägige Unternehmen kein Problem. Beide Zylinder sind nur durch ein Doppelrohr für das Helium miteinander verschraubt. Eine solche Einheit soll eine Wärmeleistung von 200 MWth und eine elektrische Leistung von etwa 75 MWel haben. Die Eintrittstemperatur in den Reaktor beträgt 260°C und die Austrittstemperatur 750°C. Um überhaupt mit dem Gas Helium ausreichend Wärme bei akzeptabler Strömungsgeschwindigkeit transportieren zu können (kein Phasenübergang), beträgt der Betriebsdruck 70bar. Damit muß man wieder die Festigkeitsprobleme beherrschen, die sich aus der Kombination von hohem Druck bei hoher Temperatur ergeben. Mit anderen Worten: Die beiden „Zylinder“ werden entsprechend dickwandig und damit teuer. Ähnliches gilt für die spiralförmigen Rohre des Dampferzeugers, da sie auf Werte (165bar, 565°C) konventioneller Kraftwerke ausgelegt sind. Alles technisch beherrschbar, aber schon vom Ansatz her teuer.

Die Leistung eines solchen Moduls ist auch durch das „Kugelhaufen-Prinzip“ begrenzt. Das Ganze funktioniert wie ein Silo: Es werden ständig oben frische Brennstoffkugeln dem Reaktor zugeführt (ca. 175 Kugeln täglich) und unten wieder die entsprechende Menge abgebrannter Brennelemente abgezogen. Da die spezifische Leistung bei diesem Prinzip etwa 30 mal geringer als in einem konventionellen Druckwasserreaktor ist, ergibt sich ein „Haufen“ aus rund 220 000 Kugeln. Je größer jedoch ein Reaktorkern ist, um so mehr neigt er zu einem „Eigenleben“. Die sich ergebenden ungleichen Zustände müssen durch Regelstäbe im Griff behalten werden. Ab einer gewissen Größe ist es aber praktisch unmöglich, Regelstäbe in solch einen Haufen einzufahren ohne die Kugeln und die Regelstäbe zu beschädigen.

Sicherheit

Zentrales Sicherheitselement sind auch hier die TRISO-Brennelemente. In jeder einzelnen „Brennstoffkugel“ (6 cm Durchmesser) befinden sich rund 18 000 einzelne „Brennelemente“. Jedes einzelne Körnchen hat seine eigene Schutzhülle aus mehreren Schichten aus denen Spaltprodukte erst einmal entkommen müssen. Hätten sie es geschafft, müßten sie noch die Speicher- und Schutzschichten der Kugel durchdringen. Erst dann könnten sie ins „Kühlmittel“ Helium – das ständig (mit einfachen Mitteln) überwacht wird – gelangen. Bis an die Umwelt müßten sie dann noch den Druckbehälter, das Gebäude etc. überwinden. Die Sicherheitsfrage konzentriert sich damit auf die Beständigkeit der Kugeln. Die Tests über Bestrahlung und Temperatur sind bereits erfolgreich abgeschlossen. Für die Freisetzung von radioaktiven Stoffen ist die Stabilität von Brennelementen (Harrisburg, Fukushima) maßgeblich. Graphitkugeln können nicht schmelzen, sondern sublimieren (unmittelbare Verdampfung ohne Verflüssigung) bei über 3900°C. Diese Temperatur kann aber unter keinen Umständen (nicht im Betrieb und auch nicht durch Nachzerfallswärme) im Reaktor erreicht werden. Jede einzelne Kugel übernimmt quasi die Funktion des Containments von konventionellen Reaktoren (Verhinderung der Freisetzung radioaktiver Stoffe an die Umgebung).

Die Menge an spaltbarem Material (auf 15,5% angereichertes Uran) bzw. der Spaltprodukte (maximaler Abbrand 160 MWd/kg) ist schon durch das Volumen des Reaktors begrenzt. Es ist nur soviel „Überschussreaktivität“ vorhanden, daß die Veränderungen im Betrieb (z. B. Xenonvergiftung im Lastfolgebetrieb) über die Regelstäbe (2 mal 9 Stück) kompensiert werden können. Selbst wenn alle Regelstäbe vollständig gezogen sind, bricht die Kettenreaktion (stark negativer Temperaturkoeffizent) lange vor Erreichen der zulässigen Temperaturen in sich zusammen – der Reaktor ist „walk away sicher“. Fehlbedienungen sind ausgeschlossen bzw. der Reaktor könnte (zeitweise) ohne Personal betrieben werden. Selbst bei einem Ausfall der Kühlung (entweichen des Heliums) reicht die passive Wärmeabfuhr über Strahlung und Wärmeleitung aus um ein Unglück zu verhindern (Fukushima).

Revolutionärer Bestandteil des Genehmigungsverfahrens wird der Nachweis sein, daß keine unzulässige Strahlenbelastung außerhalb des Betriebsgeländes (400m um den Reaktor im Gegensatz zu 10 Meilen) auftreten kann. Alle erforderlichen Nachweise und Auflagen (Besiedelungsdichte, Evakuierungspläne etc.) für eine Genehmigung würden entfallen. Mit anderen Worten: Ein solcher Reaktor könnte unmittelbar neben einem Wohngebiet (z. B. Fernwärme) oder in einem Industriegebiet (Raffinerie, Chemiepark) gebaut werden.

Geschichte

X-energy wurde 2009 von Dr. Kam Ghaffarian gegründet. Es gelang ihm einige Fachleute mit Erfahrung auf dem Gebiet der Kugelhaufenreaktoren anzuwerben. Leitender Ingenieur z. B. ist Dr. Eben Mulder, der schon in Südafrika in der Entwicklung von Hochtemperaturreaktoren tätig war und einst auf diesem Gebiet in Deutschland promovierte. X-energy wuchs schnell und hatte bis 2017 bereits über $34 Millionen Kapital eingeworben. In diesem Jahr startete das Projekt eines 320 MWel Kraftwerks, bestehend aus vier Reaktormodulen. Federführend beteiligt ist Southern Nuclear (betreibt mehrere Kernkraftwerke und baut Vogtle) als Energieversorger und Burns & McDonnell als Ingenieurunternehmen. Richtungsweisend für andere Industriezweige ist die Entwicklung eines „Digitalen Zwillings“ des Reaktors (separat gefördert durch das Energieministerium). Stark vereinfacht gesagt, ist die gesamte Konstruktion als 3D-Modell digital vorhanden und verknüpft mit einschlägigen Programmen zur probabilistischen Sicherheitsanalyse, virtual reality usw. Ziel ist die systematische Ermittlung von Schwachstellen bereits in der Konstruktionsphase und z. B. der Test von Fertigungsrobotern etc. vorab am digitalen Modell. Dieser Ansatz hat sich bereits als revolutionär bei der Entwicklung von Kampfflugzeugen gezeigt. Wie schon immer, ist die Kerntechnik das Labor des technischen Fortschritts für die gesamte Industrie. Nur hier (außerhalb der Rüstungsindustrie) arbeiten die notwendigen Spitzenkräfte aus unterschiedlichen Disziplinen eng zusammen.

Bei den gasgekühlten Hochtemperaturreaktoren handelt es sich nicht um eine neue Erfindung, sondern eine evolutionäre Entwicklung in verschiedenen Ländern: USA (1944 ORNL, 1966–1974 Peach Bottom, 1967–1988 Fort St. Vrain, ab 2005 NGNP), UK (1966–1975 Dragon), Deutschland (1967–1988 AVR, 1986–1989 THTR), Japan (ab 1998 HTTR) und China (ab 2000 HTR-10). Es kommen über 70 Jahre Forschung und Entwicklung allein in Demonstrationsanlagen zusammen. Dieser Schatz an Daten ist für ein schnelles Genehmigungsverfahren von ausschlaggebender Bedeutung.

Marktpotential

Die Demonstrationsanlage soll aus vier Reaktoren bestehen und eine Leistung von 320 MWel haben. Damit wäre der Beweis für ein funktionstüchtiges Kraftwerk zum Ersatz alter fossiler Kraftwerke an einem gegebenen Standort erbracht. Ob es allerdings eine schlaue Idee ist, ein „Großkraftwerk“ aus zig Modulen zusammenzusetzen, muß sich noch erweisen. Allerdings muß man ganz klar feststellen, daß das Prinzip Kugelhaufenreaktor aus physikalischen Gründen nicht beliebig skalierbar ist. Dieses Reaktorprinzip bleibt nur kleineren Leistungen vorbehalten. Man braucht zur Produktion elektrischer Energie auch keine hohen Temperaturen. Eine Verbesserung des Wirkungsgrades ist bei heutigen Uranpreisen eher eine akademische Fragestellung. Das (bisherige) Alleinstellungsmerkmal liegt vielmehr in der „Walk Away Sicherheit“: Gelingt es, eine Zulassung als Reaktor zu bekommen, der auch bei einem schweren Störfall nur Auswirkungen auf das Betriebsgelände, aber nicht auf die Nachbarschaft hat, eröffnen sich völlig neue Anwendungen:

  • Man kann unmittelbar neben chemischen Anlagen bauen,
  • man kann nukleare Fernwärme nahe Wohngebieten betreiben,
  • man kann einen zeitweiligen Betrieb ohne Personal anstreben,
  • man kann solche SMR dezentral einsetzen, bzw. an abgelegenen Verbrauchsschwerpunkten.

Die Produktion von Heißdampf mit 565°C erlaubt nicht nur den Kauf von Dampfturbinen von der Stange, sondern zielt auch auf typische verfahrenstechnische Anwendungen ab (Raffinerien, Grundchemikalien etc.). So hat X-energy allein in den petrochemischen Anlagen an der Golfküste 41 Dampferzeuger ermittelt. Letztendlich stellt sich die Frage, was eine MWhth bzw. MWhel aus einem Xe-100 Reaktor kostet. Liegt der Preis unterhalb einer Kesselanlage mit Erdgas, läuft das Geschäft in großem Maßstab an. Wenn nicht, ist das Reaktorkonzept eher eine Totgeburt. Die Branche steht nicht zum ersten Mal wieder vor einem Henne-Ei Problem…

Internationale Kontakte

Jordanien ist ein typischer Vertreter von Ländern, deren Mangel an Kühlwasser das Hauptproblem bei der Elektrifizierung ist. Hochtemperaturreaktoren lassen sich auch mit Trockenkühltürmen betreiben. Auch das keine ganz neue Idee: Der THTR in Hamm-Uentrop hatte bereits einen solchen. Schon 2017 hat die Jordan Atomic Energy Commission (JAEC) mit X-energy eine Kooperation abgeschlossen. Zusätzlich haben Saudi Arabien und Jordanien auch Verhandlungen mit China über Hochtemperaturreaktoren geführt.

Letztes Jahr hat X-energy auch ein Genehmigungsverfahren in Kanada gestartet. Es gibt dort die sog. Vendor Design Review (VDR). Ein Verfahren das risikoorientiert ist und drei Schritte umfaßt: Im ersten Schritt wird lediglich geprüft, ob der Reaktor grundsätzlich alle kanadischen Vorschriften erfüllt. Im folgenden zweiten Schritt werden die als kritisch empfundenen Punkte näher betrachtet und diskutiert. In der dritten Phase kann der Antragsteller alle Auflagen aus den vorhergehenden Schritten noch nachbessern. Diese Vorgehensweise erlaubt dem Antragsteller besonders bei innovativen Konzepten jederzeit die Notbremse ziehen zu können, wenn die Kosten explodieren sollten und eine Genehmigung zumindest in weiter Ferne erscheint. Da die Entwicklung des Xe-100 schon weit fortgeschritten ist, werden die ersten beiden Phasen zusammen abgehandelt. Eine Zulassung in Kanada ist für X-energy äußerst wertvoll, da Kanada über eine starke kerntechnische Industrie mit vollständigen Lieferketten verfügt. Die Zulieferer sind aber verständlicherweise erst bereit zu investieren, wenn sie genau wissen, was sie produzieren müssen. So konnte bereits Hatch als Partner für die Detailkonstruktion und den weltweiten Vertrieb gewonnen werden. Ontario Power Generation (OPG) hat in Zusammenarbeit mit anderen Provinzen federführend den (geplanten) Bau eines SMR und den Aufbau der Lieferketten in Angriff genommen. In die engere Betrachtung ist neben dem Xe-100 von X-energy, der Integral Molten Salt Reactor (IMSR) von Terrestrial Energy und der BWRX-300 von General Electric gekommen. Im Moment setzt kein Land außerhalb der USA so konsequent auf die Entwicklung von SMR, wie Kanada. Das macht Sinn, da Kanada mit dem Ausbau seiner Schwerwasserreaktoren mittlerer Größe langsam an die Grenzen stößt. Ein so weites Land mit seinen umfangreichen Bergbauaktivitäten, Ölsänden usw. braucht dringend dezentrale Einheiten. Hinzu kommt der erhebliche Heizwärmebedarf eines nördlichen Landes: Sonne geht gar nicht und mit Windparks hat man nur schlechte Erfahrungen gemacht.

SMR-2021, KP-FHR

Hinter der sperrigen Abkürzung KP-FHR (Kairos Power – Fluoride salt cooled High Temperature Reactor) verbindet sich ein eher neuartiges Konzept, das hohe Temperaturen anstrebt, aber dabei auf erprobte Komponenten setzen will: Die Kombination von TRISO-Brennelementen mit Salzschmelze als Kühlmittel. Ursprünglich wollte man damit eine konventionelle Gasturbine antreiben, indem man Luft auf etwa 700 °C erhitzt und gegebenenfalls noch durch Verbrennung von Erdgas zur Abdeckung von Spitzenlasten weiter erhitzt. Für Kernreaktoren sollte damit ein neues Einsatzgebiet erschlossen werden. Für die Grundlast wäre weiterhin billige Kernenergie eingesetzt worden (Turbine läuft nur mit Luft) und zusätzliches Erdgas bei Lastspitzen (analog eines Nachbrenners bei Flugzeugen). Insgesamt wäre ein hoher Wirkungsgrad durch die erprobte Kombination von Gasturbine mit nachgeschaltetem Dampfkreislauf gewährleistet worden. Wie schon bei anderen Hochtemperaturreaktoren ist die Nutzung von Gasturbinen (vorläufig) gescheitert. Nunmehr geht man auch hier (vorläufig?) nur von einem konventionellen Dampfkreislauf aus. Allerdings mit höheren Dampfzuständen, wie sie in konventionellen Kohlekraftwerken üblich sind.

Der Stand der (finanziellen) Entwicklung

Kairos geht auf Forschungsprojekte an der University of California, Berkeley (UCB), dem Massachusetts Institute of Technology und der University of Wisconsin zurück. Alles unter der Koordination – und finanziellen Förderung – des U.S. Department of Energy im Rahmen eines Integrated Research Project (IRP). Wie so oft, entstehen aus solchen Forschungsprojekten neu gegründete Unternehmen, in denen die maßgeblich beteiligten „Forscher“ ihre Erkenntnisse kommerzialisieren. Selbstverständlich bleiben sie ihren alten Universitäten dabei eng verbunden. Im Falle von Kairos sind die Arbeiten nun soweit fortgeschritten, daß das „Energieministerium“ (schrittweise) einen Prototyp anstrebt. Es soll innerhalb von sieben Jahren der Demonstrationsreaktor „Hermes Reduced-Scale Test Reactor“ auf dem Gelände des East Tennessee Technology Park in Oak Ridge für geplant $629 realisiert werden. Das „Energieministerium“ hat dafür $303 Millionen Dollar fest in seinem Haushalt (verteilt über sieben Jahre) eingestellt. Das Geld wird fällig, wenn Kairos die andere Hälfte von privaten Investoren auftreibt. Dies ist ein in den USA erprobtes pragmatisches Förderungsmodell: Das Risiko wird hälftig von Investoren und Staat geteilt – gegenseitig wirkt die Zusage als Qualitätskriterium. Außerdem kann bei solchen Summen davon ausgegangen werden, daß die Entwicklung zielstrebig vorangetrieben wird. Die privaten Investoren lockt schließlich der wirtschaftliche Erfolg. Anders als in Deutschland, sind Gewinne in den USA nichts unanständiges.

Der Kugelhaufen

Die Kugeln für diesen Reaktor werden wahrscheinlich etwas kleiner (3 cm) als die üblichen TRISO-Elemente (4,3 cm) und enthalten rund 1,5 gr Uran verteilt in 4750 kleinsten mit einer Schutzschicht überzogenen Körnchen. Sie können damit über 11 000 kWh elektrische Energie produzieren, was etwa dem Verbrauch von 8 to Steinkohle oder 17 to Braunkohle entspricht. Wegen ihrer hohen Energiedichte sind diese Elemente nach ca. 1,4 Jahren abgebrannt und müssen ausgewechselt werden. In einem mit Helium gekühlten Hochtemperatur-Reaktor verbleiben die Kugeln etwa 2,5 Jahre und in Leichtwasserreaktoren rund drei Jahre.

Die Kugeln sollen einen etwas anderen Aufbau als klassische TRISO-Elemente haben: Der Kern besteht aus 25 mm porösem Graphit, umgeben von einer Kugelschale aus Brennstoffkörnern und einer äußeren Schutzschicht aus besonders widerstandfähigem Graphit. Die Brennstoffkörner haben einen Durchmesser von lediglich 400 Mikrometern und enthalten auf 19,75% angereichertes Uran. Die Geschwindigkeit mit der Spaltprodukte im Graphit wandern, hängt wesentlich von der Temperatur ab. Da die Betriebstemperatur hier mit 650°C deutlich geringer als beim AVR in Deutschland mit 950°C ist und die Verweilzeit der Kugeln kleiner, kann von einer wesentlich geringeren Verunreinigung des Kühlmittels – hier reaktionsfreudige Salzschmelze, damals Edelgas Helium – ausgegangen werden. Dies ist bei einem Reaktorunglück für die Freisetzung radioaktiver Stoffe in die Umwelt von ausschlaggebender Bedeutung. Die neutronenphysikalische Auslegung des Reaktors ist so angelegt, daß bei etwa 800°C Temperatur die Kettenreaktion ohne Eingriffe in sich zusammenbricht (stark negative Temperaturkoeffizienten). Man könnte also den Reaktor jederzeit verlassen, ohne ihn abzustellen. Demgegenüber sind die Brennelemente bei bis zu 1800°C ohne größere Schäden getestet worden. Der Siedepunkt der Salzschmelze liegt bei nur 1430°C. Dies ergibt zusammen eine wesentlich höhere Sicherheitsmarge als bei Leichtwasserreaktoren.

Das Kühlmittel

Bei diesem Reaktortyp wird weder mit Wasser noch mit Helium, sondern einem geschmolzenen Salz gekühlt. Dies stellt viele sicherheitstechnische Betrachtungen auf den Kopf: Nicht ein unzulässiges Verdampfen des Kühlmittels wird zum Problem, sondern das „Einfrieren“. Das hier verwendete „FLiBe-Salz“ hat einen Schmelzpunkt von 459°C, d. h. alle Komponenten müssen elektrisch beheizbar sein um den Reaktor überhaupt anfahren zu können. Außerdem muß unter allen Betriebszuständen und an allen Orten diese Temperatur sicher aufrecht erhalten bleiben, damit sich keine Ausscheidungen und Verstopfungen bilden. Andererseits ist diese Temperatur so hoch, daß Wartungs- und Inspektionsarbeiten schnell zu einem Problem werden.

Wesentliches Problem ist aber bei allen Salzschmelzen die Korrosion. Zwar hat man heute ein besseres Verständnis der Werkstofftechnik und jahrzehntelange Erfahrungen z. B. in Raffinerien, andererseits liegen aber immer noch keine Langzeiterfahrungen bei Kernreaktoren vor. Hier versucht man zumindest das Problem durch eine scharfe Trennung von Brennelement und Kühlmittel einzugrenzen. Bei einem Kernreaktor hat man es tatsächlich mit dem gesamten Periodensystem zu tun. Wie all diese Stoffe chemisch mit der Salzschmelze, den Reaktorwerkstoffen und untereinander reagieren, ist ein ingenieurtechnischer Albtraum. Deshalb versucht man hier ganz klassisch alle Spaltprodukte etc. im Brennelement zu halten. Andererseits geht man davon aus, daß die Diffusion von Cs137, Silber etc., die zu einem radioaktiven Staub bei mit Helium gekühlten Reaktoren führen, die den gesamten Reaktor verdrecken, besser beherrschbar ist, weil diese „Schadstoffe“ sofort im Salz gelöst werden.

FLiBe ist – wie der Name schon andeutet – ein Salz mit den Bestandteilen Fluor, Lithium und Beryllium. Die Arbeitsschutzvorschriften für Beryllium (Atemschutz, Schutzkleidung etc.), sind nicht kleiner als für radioaktive Stoffe – es ist nur schwerer zu erkennen. Besonders problematisch ist jedoch das Lithium. Lithium hat die unschöne Eigenschaft, daß es durch Neutronen Tritium bildet. Man kann zwar durch eine Anreicherung von Li7 auf 99,995% die Bildung erheblich verringern, aber nicht ausschließen. So bilden FLiBe-Reaktoren etwa 1000 bis 10 000 mal soviel Tritium wie Leichtwasserreaktoren. Dies kann zu grundsätzlichen Schwierigkeiten bei der Genehmigung führen. Auch bei diesem Problem wirkt sich die Trennung von Brennstoff und Kühlmittel positiv aus. Das Graphit zieht das Tritium an und absorbiert es an dessen Oberflächen. Deshalb sind zusätzlich noch Filterkatuschen in den Kühlmittelleitungen vorgesehen.

Der Zwischenkreislauf

Das FLiBe-Salz wird – unabhängig von eindiffundierten Spaltprodukten und Tritium – während seines Durchlaufs durch den Reaktorkern immer radioaktiv. Aus Fluor wird O19(26,9s Halbwertszeit) und N16 (7,1s Halbwertszeit) gebildet. Beides γ-Strahler mit 1,4 MeV bzw. 6,1 MeV. Von ausschlaggebender Bedeutung ist F20 (11,0s Halbwertszeit). Hinzu kommen noch aktivierte Korrosionsprodukte. Um die Bereiche mit Strahlenschutz klein zu halten, ist ein Zwischenkreislauf mit „Sonnensalz“ vorgesehen. Als „solar salt“ bezeichnet man üblicherweise eine Mischung aus 60% Natriumnitrat NaNO3 und 40% Kaliumnitrat KNO3. Sie hat einen Schmelzpunkt von 240°C und eine maximale Temperatur von etwa 565°C. So ist z. B. im Solar-Turmkraftwerk „Solar One“ ein Spitzenlast-Speicher mit zwei Tanks in denen 1400 to Solar-Salz gelagert sind in Betrieb. Diese Anlage kann 107 MWhth speichern und erzeugt damit 11 MWel für drei Stunden. Damit ergibt sich ein weiteres Anwendungsfeld: Bei entsprechender Auslegung der Turbine kann ein solcher SMR auch zur Abdeckung von Lastspitzen im Netz bzw. zur Auskopplung von Wärme für industrielle Zwecke eingesetzt werden.

Der Reaktorkern

Eine weitere Besonderheit gegenüber mit Helium gekühlten Reaktoren ist, daß die Brennstoffkugeln im Reaktor schwimmen. Sie werden deshalb von unten zugeführt und oben wieder abgefischt. Insbesondere die „Abfischmaschine“ ist noch nicht im Detail konstruiert. Sie muß den Reaktor nach oben sicher abdichten, die Kugeln einfangen, transportieren, reinigen und überprüfen – das alles beständig bei 650°C. Für 100 MWel sind etwa 440 000 Brennstoffkugeln (TRISO) und 204 000 Moderatorkugeln (aus reinem Graphit) im Reaktor. Jede Brennstoffkugel durchläuft etwa 8 mal den Reaktor und verbleibt bei voller Leistung rund 1,4 Jahre im Reaktor, bis sie abgebrannt ist (gemeint ist damit, bis das in ihr vorhandene Uran gespalten ist, die Kugel erscheint unverändert). Jede Kugel braucht ungefähr 60 Tage auf ihrem Weg von unten nach oben. Nach dem Abfischen verbleibt sie noch 4 Tage zur Abkühlung, bis sie wieder zurückgeführt wird. Bei voller Leistung müssen etwa 450 Kugeln pro Stunde entnommen und überprüft werden, das ergibt ungefähr 8 Sekunden pro Vorgang. Jeden Tag sind rund 920 Kugeln verbraucht und müssen durch frische ersetzt werden. Für eine vollständige Entleerung ist ein „Schnellgang“ vorgesehen, der etwa 3600 Kugel pro Stunde entnimmt. Abgesehen von Wartungsarbeiten könnte somit der Reaktor kontinuierlich in Betrieb bleiben.

Der Reaktor ist im Wesentlichen ein Zylinder von etwa 3,5 m Durchmesser und 12 m Höhe mit einer Wandstärke von 4 bis 6 cm. Der Kern – die eigentliche Wärmequelle – ist wesentlich kleiner. Er besteht aus einem Doppel-Hohlzylinder. In dessen innerem Ring schwimmen die Brennstoffkugeln, in seinem äußeren Ringraum die Moderatorkugeln. Der Innenraum ist gefüllt mit einem Reflektor aus Graphit in dem sich auch die Regelstäbe befinden. Der gesamte Einbau ist durch Graphitblöcke von dem Reaktortank isoliert. Genau diese festen Einbauten aus Graphit sind eine bekannte Schwachstelle bei all diesen Reaktortypen. Sie sind z. B. auch der Tod der britischen AGR-Reaktoren. Unter ständigem Neutronenbeschuss altert der Graphit. Heute hat man zwar ein besseres Verständnis der Vorgänge – gleichwohl bleibt die Lebensdauer begrenzt. Hier ist deshalb vorgesehen, irgendwann die Graphiteinbauten zu erneuern. Ob das dann wirtschaftlich ist, wird sich zeigen. Im Prinzip sind die Graphit-Volumina aus einzelnen Blöcken zusammengesetzt. Diese besitzen aber wegen der nötigen Einbauten, Kanäle fürs Salz etc. und der zu berücksichtigenden Wärmedehnung eine komplizierte Geometrie und erfordern sehr enge Fertigungstoleranzen. Aber es ist ja der Sinn von SMR, all diese Arbeiten in einer Fabrik und nicht auf der Baustelle auszuführen

Werkstoffe

Alle Hochtemperaturreaktoren tragen das gleiche Problem in sich, die hohen Temperaturen. Mit der Temperatur steigen die Probleme (z B. Zeitstandsfestigkeit, Korrosion) und damit die Kosten exponentiell an. Wäre dies nicht so, hätte man bereits fossile Kraftwerke mit ganz anderen Wirkungsgraden. Es stellt sich deshalb immer die Frage, wofür man überhaupt so hohe Temperaturen braucht. Hier beschränkt man sich bewußt auf eine Spanne von 550°C bis 650°C um nicht vollständig konventionelle Werkstoffe verlassen zu müssen. Man darf ja nicht vergessen, daß alles genehmigungsfähig – d. h. berechenbar und durch Versuche nachweisbar – sein muß. Hierin liegt ja gerade der Charme von Salzschmelzen: Nicht so hohe Temperaturen ohne zusätzliche Druckprobleme, bei hoher Wärmespeicherung. Geplant ist weitesgehend SS 316 (handelsüblicher austenitischer Edelstahl) zu verwenden.

Ein wesentliches Problem aller FLiBE-Reaktoren ist die hohe Tritiumproduktion. Über den Daumen gerechnet, produziert dieser kleine SMR (100 MWel) jeden Tag soviel Tritium, wie ein Leichtwasserreaktor (1000 MWel) in einem ganzen Jahr. Will man auf gleiche Werte kommen, müßte also 99,9% des Tritium zurückgehalten werden. Man setzt hier auf die Absorption am Graphit. Das ändert aber nichts daran, daß Tritium bei solchen Temperaturen sehr gut durch Stahl hindurch diffundiert. Bisher hat man gute Erfahrung mit einer Beschichtung aller Rohrleitungen mit Aluminiumoxid gemacht. Es bildet eine Sperrschicht, die sogar beim Kontakt mit Luft selbstheilend ist. Gleichwohl ist hier noch viel Forschung nötig, wenn man die Aufregung um das Tanklager in Fukushima berücksichtigt. Es könnte sich sonst eine (politisch) unüberwindliche Hürde für die Genehmigung von FLiBe-Reaktoren ergeben.

Einschätzung

Kairos ist ein „Startup“ mit dem Selbstverständnis eines Ingenieurunternehmens. Sie haben nicht vor, jemals einen solchen SMR selbst zu fertigen. Von Anfang an haben sie starke Partner mit ins Boot geholt. So übernimmt Materion die Entwicklung und Herstellung des FLiBe-Salzes und BWXT die Produktion der Brennelemente. Für den kritischen Bereich „Tritium“ sind seit September 2020 die Canadian Nuclear Laboratories (CNL) eingestiegen. Kanada hat mit Tritium große und jahrzehntelange Erfahrungen durch den Betrieb seiner Candu-Reaktoren. Darüberhinaus will Kanada einen SMR in Chalk River bauen. Kairos ist dafür in die engere Wahl gekommen. Das Genehmigungsverfahren (stark unterschiedlich zu den USA) wird von der kanadischen Regierung mit mehreren Millionen gefördert. Seit 2018 läuft das Genehmigungsverfahren in den USA. Nächster Schritt wird der Bau eines kleinen Demonstrationsreaktors im East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Hier geht es vor allem darum, die Kosten für die Serienproduktion modellhaft zu testen.

Es dürften keine „Killer-Kriterien“ mehr im Genehmigungsverfahren auftreten. Dafür liegen zu viele Forschungsergebnisse aus mehreren Jahrzehnten vor. Besonders traurig ist, daß selbst im Genehmigungsverfahren auf die Betriebsergebnisse des AVR in Jülich zurückgegriffen wird. Deutschland hätte sicherlich auch heute noch ein geschätzter Partner sein können, wenn nicht wahnsinnige Laiendarsteller den Weg zurück ins Mittelalter propagiert hätten.

Seit 10 Jahren Fukushima

Eigentlich wollte ich nichts zum „Fukushima-Jubiläum“ schreiben. Es ist alles gesagt. Wer will, kennt die Fakten. Man muß nur ein wenig im Internet stöbern. Wäre da nicht das ZDF hinter dem Busch hervorgekrochen mit seiner Sendung „Der ewige Gau? 10 Jahre Fukushima“. Gäbe es einen Karl-Eduard Richard Arthur von Schnitzler – auch Sudel Ede genannt – Preis, das ZDF hätte ihn mit Sicherheit in der Tasche. In bester Tradition schneidet man alte Aufnahmen des West-Fernsehens neu zusammen und läßt sie von den einschlägig Verdächtigen: Green Peace, Partei Bündnis 90/Die Grünen usw. kommentieren. Selbst der alte Lehrer Arnie Gunderson mit seiner Verschwörungstheorie von dem explodierten Brennelemente-Lagerbecken darf nicht fehlen. Die Verknüpfung „Atombombe“ gleich „Atomkraftwerk“ ist einfach zu verlockend. Als Staatsfunker braucht man nicht einmal elementare handwerkliche Fähigkeiten zu beachten: Eine simple Google-Abfrage und man hätte Aufnahmen des besenreinen Lagerbeckens von Block 4 senden können. Ausgewogenheit – also die Berücksichtigung von Pro und Kontra – ist mit der Einführung der Wohnungssteuer „Rundfunkgebühr“ sowieso nicht mehr nötig. Man dient nur seinem Herrn, der die nächste Gebührenerhöhung festsetzt. Sollen die Zuschauer doch abschalten, wenn sie soviel Propaganda nicht ertragen.

Was geschah am 11. März 2011?

Um 14:46 (Japan Standard Time) erschütterte das “Tohoku Earthquake” den Osten Japans mit einer Magnitude von 9.0 auf der Richterskala. Das Epizentrum lag etwa 130 km östlich der Oshika Halbinsel in 24 km Tiefe. Quelle war ein Sprung der ineinander verhakten nordamerikanischen und pazifischen Platte. Dieser Sprung löste einen Tsunami aus, der über die japanische Küste hereinbrach. Er zerstörte mehr als eine Million Gebäude, tötete 19 729 Menschen, weitere 2 559 Opfer blieben bis heute vermißt und verletzte 6 233 Menschen zum Teil schwer. Ganze Landstriche waren innerhalb von Minuten dem Erdboden gleich gemacht. Für uns Mitteleuropäer eine unvorstellbare Naturkatastrophe von apokalyptischem Ausmaß.

Im Zusammenhang mit dem Reaktorunglück ist nur von Bedeutung, daß solche Tsunamis in Japan nicht unwahrscheinlich sind. Mit anderen (deutlichen) Worten: Dieses Kraftwerk hätte so nie an diesem Ort gebaut werden dürfen. Dies war unter Fachleuten – bitte nicht verwechseln mit „Atomexperten“ – bekannt. Es gab sogar einige wenige, die unter Inkaufnahme erheblicher beruflich Konsequenzen dabei nicht mitgespielt haben.

Die Ereignisse im Kernkraftwerk

Im Kernkraftwerk Fukushima waren drei der sechs Blöcke in Betrieb. Block 4 war bereits vollständig entladen für einen Brennstoffwechsel mit Wartungsarbeiten. Die Blöcke 5 und 6 waren in Vorbereitung zum Wiederanfahren nach erfolgtem Brennelementewechsel. Durch das Erdbeben wurden alle sechs Hochspannungstrassen unterbrochen. Die Notstromdiesel zur Eigenversorgung im Inselbetrieb starteten.

Für das Verständnis der Abläufe ist wichtig, daß zuerst alles nach Plan verlief: Durch die Erdbebensensoren wurde eine Schnellabschaltung ausgelöst und auch in Fukushima startete die Notversorgung – wie in fast allen japanischen Kernkraftwerken. Es wäre nichts passiert, wenn die Flutwelle nicht gekommen wäre oder man das Kraftwerk „wasserdicht“ gebaut hätte. Der Vorgang einer Schnellabschaltung infolge eines Erdbebens ist in Japan Routine. Die Betriebsmannschaft war allerdings bezüglich des Tsunami so ahnungslos, daß sie sogar die Abkühlung des Blocks 1 noch verzögerte, um – wie erwartet – möglichst schnell wieder ans Netz zu kommen. Dies war leider eine fatale Fehlentscheidung, wie sich bald herausstellen sollte. Es verstrich fast eine wertvolle Stunde in Ahnungslosigkeit. Hier zeigt sich, wie wichtig ein Kommunikationssystem ist, das auch bei schweren Naturkatastrophen intakt bleibt: Wäre die Betriebsmannschaft über die Gefahr eines schweren Tsunami informiert worden, hätte sie mit Sicherheit ganz anders reagiert. Bei den Reaktoren 2 und 3 wurde die Isolation der Reaktoren von dem konventionellen Teil des Kraftwerks automatisch durchgeführt und die notwendigen Notkühlsysteme ausgelöst. Bis zu diesem Zeitpunkt waren alle drei Reaktoren in einem sicheren Zustand und auch die Notkühlung funktionierte wie geplant.

Etwa 50 Minuten nach dem Erdbeben (das hätte die „goldene Stunde“ sein können) brach eine Wasserwand auf das Kraftwerk ein und schlug alle Außeneinrichtungen der Blöcke 1 bis 4 kurz und klein. Dies war die Folge des bekannten Konstruktionsfehlers: Die Lage des Kraftwerks über dem Meeresspiegel war viel zu niedrig. Bereits in den etwas abgelegenen (neueren) Blöcke 5 und 6 waren die Zerstörungen wesentlich geringer. Sämtliche Kühlwasserpumpen der Blöcke 1 bis 4 sind abgesoffen und damit war keine Außenkühlung mehr möglich. Die Notstromdiesel, die Schaltanlagen und alle Batterien im Keller des Turbinengebäudes wurden durch das hereinbrechende Meerwasser zerstört. Zunächst überlebten die Diesel von Block 2 und 4, bis sie durch die zerstörten Schaltanlagen außer Gefecht gesetzt wurden. Die Batterien von Block 3 hielten noch durch, bis sie erschöpft waren. Es gab sogar einen zusätzlichen luftgekühlten Generator für den Block 6 – wenn man nur den Strom hätte nutzen können. Durch den totalen Stromausfall (station blackout) war die Mannschaft blind und kraftlos. Man hatte bald keine Informationen durch die Messgeräte mehr und konnte auch keine elektrischen Stellglieder mehr betätigen. So ließ sich das Ventil, welches man im Block 1 geschlossen hatte, um die Abkühlung zu verringern, nun nicht mehr öffnen. Hilfe von außen ließ auf sich warten, weil die Feuerwehr erstmal die zerstörten und verschütteten Straßen räumen mußte um sich zum Kraftwerk vorkämpfen zu können. Die Kernschmelze setzte etwa 5 Stunden später in Block 1 ein. Unter den hohen Temperaturen zersetzten sich die Brennstabhüllen durch eine chemische Reaktion zwischen Wasserdampf und Zirconium. Der Kern des Reaktors – eine Konstruktion mit Toleranzen von weniger als einem Millimeter – fällt nun unkontrolliert in sich zusammen. Da die Nachzerfallswärme immer noch weiter wirkt, schmelzen Teile sogar auf. Es entsteht ein „Corium“, eine Legierung aus allen Bauteilen des Kerns, die nach dem Erkalten eine lavaähnliche Schlacke bildet. Deren Beseitigung ist die zentrale Herausforderung des Rückbaus. Man hat nicht mehr eine verfahrenstechnische Anlage vor sich, sondern einen Stahlbehälter mit einer harten, widerborstigen Masse, die man zerkleinern und bergen muß. Sinnvollerweise wird dies erst in Jahrzehnten mit noch zu entwickelnden Robotern erfolgen.

Durch den ansteigenden Druck wurde der Deckel im Reaktor 1 undicht und es entwich Wasserstoff in das obere Stockwerk. Eine ganz normale Industriehalle und kein „Betonbunker“, wie er in modernen Kraftwerken üblich ist. Etwa nach 24 Stunden explodierte das gebildete Knallgas und lieferte die spektakulären und immer wieder gern gezeigten Bilder. Nur hat dies nichts mit Kerntechnik zu tun, sondern ist eher ein Vorgeschmack auf die viel gepriesene „Wasserstoffwirtschaft“.

Im Block 2 funktionierte die Notkühlung noch drei Tage. Allerdings stieg auch dort Druck und Temperatur an, weil durch den Ausfall der Kühlwasserpumpen die Wärme nicht mehr an die Umwelt abgegeben werden konnte. Der Versuch einer Druckentlastung damit die Feuerwehr Wasser einleiten konnte, scheiterte und es kam ebenfalls zu einer Teilschmelze. Allerdings weniger schlimm als in Block 1. Es gab auch keine Knallgasexplosion, da der „Schuppen“ über dem Reaktordruckbehälter schon durch die Explosion in Block 1 soweit zerstört war, daß der Wasserstoff abziehen konnte.

In Block 3 konnte man mittels Strom aus Batterien die Notkühlung noch etwas steuern. Da aber die Wärmesenke Meerwasser nicht mehr zur Verfügung stand, kam es auch dort zu einer Kernschmelze. Hier strömte das gebildete Knallgas nicht nur in den „Schuppen“ oberhalb des Blocks 3, sondern auch über die gemeinsamen Lüftungskanäle in den „Schuppen“ des gar nicht in Betrieb befindlichen Block 4. Wieder zwei spektakuläre Explosionen von Knallgas. Nun waren alle „Schuppen“ zerstört wie nach einem Bombenangriff und der Schutt in alle Brennelemente-Lagerbecken gefallen. Um die Brennelemente bergen zu können, muß erstmal der Schutt beräumt werden. Davor wiederum mußten erstmal neue Gebäude gebaut werden um etwaige Verseuchungen bei den Bergungsarbeiten zu verhindern. Das alles brauchte und braucht Zeit.

Der Irrsinn der Evakuierung

Völlig überhastet und von „Strahlungsangst“ getrieben, ordnete man großräumige Evakuierungen an. Infolge dieser Evakuierungen kam es zu zahlreichen Todesfällen, weil man Schwerkranke von Intensivstationen und hochbetagte Pflegefälle einem Transport und Notunterkünften aussetzte. Nachweislich ist aber kein Mensch durch Strahlung gestorben. Die Strahlungsdosen sind so gering, daß man nicht einmal mit einer erhöhten Rate von Krebsfällen rechnen kann. Anfangs lagen die Strahlendosen im Sperrgebiet bei 50 bis 100mSv/year. Durch Dekontaminierung wurden die Werte auf 1 bis 20 mSv/year gesenkt. Ein wahnsinniger Aufwand, der eher an „Buße“ als an Strahlenschutz erinnert.

So ist es halt, wenn man den Weg der Wissenschaft verläßt und sich dem Populismus hingibt. Geht man den Agitatoren von Green Peace und Co auf den Leim, wird es einem nicht vergönnt, sondern die Berge von abgetragenem – und sorgfältig in Säcke verpacktem – Mutterboden (!) werden als tödliche Strahlenquellen genüßlich vorgeführt. Man hinterfragt keine Sekunde die Prognosen über „Strahlentote“ und „Krebsopfer“ unmittelbar nach dem Unglück. Nein, die gleichen Angstmacher dürfen von der „Beinahe-Katastrophe“ in Tokio schwadronieren. Man sollte das tunlichst nicht einfach als Spinnereien ewig Unbelehrbarer abtun. Ganz im Gegenteil, es ist die Vorbereitung für z. B. den Kampf gegen den Bau von Kernkraftwerken nahe Danzig. Die Antifanten müssen rechtzeitig aufgestachelt werden. Mit Angst läßt sich nicht nur hervorragend regieren, sondern auch Spannungen mit (nicht folgsamen) Nachbarländern schüren. Die „Energiewende“ ist längst zu einem politisch-wirtschaftlichen Geschwür geworden, neben dem jede „Masken-Affäre“ wie Tauschgeschäfte unter Kindern auf dem Schulhof anmuten. Gerade dieses Filmchen und die darin auftretenden Darsteller sind ein Beispiel dafür, wie inzwischen eine ganze Generation „Angstmacher“ sich lukrative Posten ergattert hat, die diese wahrscheinlich nie mit ihren studierten Berufen hätten erreichen können.

Die Moritat vom Atommüll

Unsere Filmschaffenden vom ZDF-Kollektiv „schneide und sende“ haben beharrlich alte Wochenschauberichte von Arbeitsmännern, die durch Ruinen kraxeln, endlosen Tanklagern, Berge von Plastiksäcken etc. zusammengeschnitten. Man kennt diesen Arbeitsstil noch von der Berichterstattung über Trump: Immer wurde nur Material anderer (gleichgesinnter) Sender „nachgesendet“, niemals jedoch eine Rede von Trump im Original gesendet. Ist das einfach nur Faulheit oder hat Betreutes-Denken-TV Angst, die Zuschauer könnten zu viel von der tatsächlichen Welt erfahren? Wo sind die Aufnahmen vom Kraftwerksgelände heute, wo man sich längst ohne jede Schutzkleidung bewegen kann? Wo sind die Aufnahmen von den Ingenieuren vor Ort in ihren Computer Räumen (von denen manche deutsche Universität nur träumen kann), die die Arbeiten steuern und überwachen? Es wird doch sonst so gern von künstlicher Intelligenz, Robotertechnik, Simulationstechnik etc. geschwätzt. All das hätte man im Einsatz in der Ruine von Fukushima filmen können. Dazu hätte man sich vor Ort noch mit den führenden internationalen Fachleuten auf diesen Gebieten unterhalten können. Paßt natürlich alles nicht in das ideologisch gewünschte Bild einer sterbenden Technik. Ahnungslose Rentner (die Zielgruppe des ZDF) hätten sonst noch glauben können, sie hätten einen Bericht von der Hannover Messe gesehen.

Stattdessen Luftbilder von einem Tanklager. Eigentlich ein Beweis, wie umsichtig man vorgeht. Man hat nicht einfach das radioaktive Wasser ins Meer gekippt – was nebenbei gesagt, kein großer Schaden gewesen wäre – sondern hat es aufwendig zur Aufbereitung zwischengelagert. Hat man so etwas schon mal bei einem Unfall in einem Chemiewerk gesehen? Wie wäre es gewesen, wenn man mal die Reinigungsanlagen gefilmt hätte und die betreuenden Wissenschaftler z. B. aus Russland und Frankreich befragt hätte, wieviel Gehirnschmalz dafür notwendig war, Konzentrationen in Trinkwasserqualität zu erzielen? Stattdessen minutenlanges Gejammer über Tritium. Aber Vorsicht, das Narrativ vom unbeherrschbaren Atommüll hätte bei manch einem Zuschauer hinterfragt werden können.

Die Konsequenzen

Die Welt hat nach Fukushima erstmal den Atem angehalten. Man ist wie nie zuvor in der Technikgeschichte zusammengerückt und hat die tragischen Ereignisse analysiert. Heute gehen selbstverständlich russische, chinesische und amerikanische Fachleute gegenseitig in ihren Kernkraftwerken ein und aus. Suchen Schwachstellen und beraten sich gegenseitig. Dies geschieht über alle politischen Gegensätze und Spannungen hinweg. Fukushima war ein Ereignis für die Kerntechnik, wie der Untergang der Titanic für die Seefahrt. Schrecklich, aber nicht zerstörend. Nur unsere Führerin hat den „Mantel der Geschichte wehen gespürt“. Sie, die als so bedächtig dargestellte, hat sofort fest zugegriffen. Man könnte auch sagen, wie ein Skorpion tödlich zugestochen, um ihre öko-sozialistischen Träume zu beschleunigen. Milliardenwerte mit einem Federstrich vernichtet und Deutschland international ins Abseits gespielt. Chapeau Frau Merkel, sie werden ihren Platz in der Geschichte einnehmen.

SMR-2021 Einleitung

Die Kerntechnik bekommt gerade einen unerwarteten Aufschwung: Immer mehr junge Menschen drängen in die einschlägigen Studiengänge, es entstehen unzählige neu gegründete Unternehmen und es steht plötzlich auch viel privates Kapital zur Verfügung. Darüberhinaus zeigt dieser Winter in Texas auch dem gutgläubigsten Menschen, daß eine Stromversorgung (nur) aus Wind, Sonne und Erdgas ein totes Pferd ist.

  • Texas ist nahezu doppelt so groß wie Deutschland, hat aber nur etwa ein Drittel der Einwohner, die sich überwiegend in einigen Großstädten ballen. Windparks waren deshalb höchstens ein Thema für Vogelfreunde und Landschaftsschützer. Texas ist darüberhinaus auch noch sehr windreich durch seine Lage „zwischen Golf und mittlerem Westen“.
  • Texas liegt etwa auf der „Breite der Sahara“ (Corpus Christi 27°N, Amarillo 35°N; Kanarische Inseln 28°N, Bagdad 33°N). Mal sehen, wann in Deutschland wieder von der Photovoltaik in der Sahara gefaselt wird.
  • In Texas kommt das Erdgas aus der Erde. Trotz der inzwischen gigantischen Verflüssigungsanlagen für den Export, muß immer noch Erdgas abgefackelt werden. Das alles ändert aber nichts an der Tatsache, daß im Ernstfall nur das Gas am Anschluss des Kraftwerks zählt. Kommt noch parallel zum Strombedarf der Bedarf für die Gebäudeheizungen hinzu, ist schnell die Grenze erreicht. Wohl gemerkt, das Gas kommt in Texas aus der Erde und nicht aus dem fernen Russland.

Das Kapital ist bekanntlich ein scheues Reh. Nach den Milliarden-Pleiten in Texas wird man sich schnell umorientieren. Darüberhinaus fängt die Bevölkerung an zu fragen, warum man eigentlich zig Milliarden Steuergelder mit Wind und Sonne versenkt hat.

Was sind SMR?

SMR (Small Modular Reactor) sind kleine Kernkraftwerke mit einer elektrischen Leistung von bis zu 300 MWel. Eine ziemlich willkürliche Grenze, die auf kleine Reaktoren abzielt, die gerade noch mit der Eisenbahn (in den USA) transportierbar sein sollen. Eine weitere Untergruppe sind Mikroreaktoren mit einer elektrischen Leistung von bis zu etwa 10 MWel. Bei den bisherigen Kernkraftwerken hat man immer größere Leistungen (z. B. EPR mit 1650 MWel) angestrebt, um die in der Verfahrenstechnik üblichen Skaleneffekte zu erzielen. Problem dabei ist, daß man einen erheblichen Montageaufwand auf der Baustelle hat, da alle Bauteile sehr groß werden. Bei den SMR geht man umgekehrt den Weg, das Kraftwerk weitesgehend in Fabriken in Serie zu fertigen und zu testen. Es steht also Kosteneinsparung durch Skaleneffekte gegen Serienfertigung (wie z. B. im Flugzeugbau). Welcher Weg letztlich kostensparender ist, kann vorab gar nicht gesagt werden. Vielmehr kann durch SMR ein völlig neuer Markt der „kleinen Netze“ erschlossen werden. Das betrifft beileibe nicht nur Schwellenländer, sondern vielmehr lernen wir in Deutschland gerade, welche enormen Netzkosten entstehen, wenn man zentrale Windparks baut. Ferner ist die Finanzierung wegen des kleineren (absoluten) Kapitalbedarfes weniger risikoreich und damit leichter handhabbar. Ein „Kraftwerk von der Stange“ erfordert eine wesentlich kürzere Zeitspanne – also Vorfinanzierung – von der Bestellung bis zur Inbetriebnahme. Hinzu kommt, daß die kleineren Bauteile auch nur kleinere Fertigungsanlagen erfordern. Beispielsweise baut Indien zur Zeit 15 Schwerwasserreaktoren, da dafür alle Komponenten im eigenen Land hergestellt werden können. Der ursprünglich angedachte Bau von konventionellen Druckwasserreaktoren wurde aufgegeben, da dafür wesentliche Komponenten (z.B. Reaktordruckbehälter) im Ausland gegen Devisen gekauft werden müßten. Aus gleichem Grund treffen SMR auch in Europa (z. B. Tschechien, Großbritannien) auf großes Interesse.

Die Sicherheitsfrage

Bei kleineren Kraftwerken kann man näher an die Städte heranrücken und damit Kraft-Wärme-Kopplung in vorhandenen Fernwärmenetzen abgasfrei betreiben. Finnland z. B. plant mittelfristig die vorhandenen Kraftwerke in den Ballungszentren durch SMR zu ersetzen. Analog gelten die gleichen Überlegungen für Fernkälte und Meerwasserentsalzungsanlagen z. B. in der Golfregion. Will man jedoch in der Nähe von Großstädten bauen, müssen solche Kernkraftwerke zwingend „walk away“ sicher sein, damit sie überhaupt genehmigungsfähig sind. Dazu gehört insbesondere der Verzicht auf eine aktive Notkühlung. Reaktoren kleiner Leistung kommen dem physikalisch entgegen: Um die Leistung zu produzieren, ist eine entsprechende Anzahl von Kernspaltungen notwendig. Bei der Kernspaltung entstehen radioaktive Spaltprodukte, die auch nach der Abschaltung noch Zerfallswärme produzieren. Bei kleinen Reaktoren ist diese Nachzerfallswärme so gering, daß sie problemlos passiv abgeführt werden kann – oder anders ausgedrückt, die Temperatur im abgeschalteten Reaktor steigt nur so weit an, daß keine Grenzwerte erreicht werden. Dies war z. B. beim Unfall in Fukushima völlig anders. Dort hat die Nachzerfallswärme gereicht, um eine Kernschmelze auch noch nach der Abschaltung der Reaktoren auszulösen.

Damit Kernkraftwerke in oder in unmittelbarer Nähe zu Städten akzeptiert werden, muß faktisch gewährleistet sein, daß keine (nennenswerte) Radioaktivität das Betriebsgelände überschreitet. Damit an dieser Stelle kein Missverständnis entsteht: Es gibt keine absolute Sicherheit. Es wird auch zukünftig Unfälle in Kernkraftwerken geben, genauso wie immer wieder Flugzeuge abstürzen werden. Trotzdem fliegen Menschen. Der Mensch ist nämlich durchaus in der Lage, Risiken und Vorteile für sich abzuwägen – solange er nicht ideologisch verblödet wird. Selbst eine ideologische Verblödung kann aber nicht unendlich lange aufrecht erhalten werden: Gerade durch Tschernobyl und Fukushima sind die Märchen der „Atomkraftgegner“ von „Millionen-Toten“ etc. als Propaganda entlarvt worden. Auffällig still ist es in den letzten Jahren um die „Gefahren durch Atomkraft“ geworden. Übrig geblieben ist einzig die Lüge von dem „Millionen Jahre strahlenden Atommüll, für den es keine Lösung gibt“. Auch dieser Unsinn wird sich von selbst widerlegen.

Die Vielzahl der Entwürfe

Es gibt unzählige Entwürfe von Kernreaktoren. Jeder Professor, der etwas auf sich hält, erfindet einen neuen Reaktor zu Übungszwecken. Der Weg zu einem Kernkraftwerk ist aber lang. Irgendwann stirbt die überwiegende Anzahl wegen irgendwelcher unvorhergesehenen Detailprobleme. Hier werden nur Entwürfe betrachtet, für die ausreichend Unterlagen aus Genehmigungsverfahren, Veröffentlichungen etc. zur Verfügung stehen. Immerhin blieben noch über 90 Konzepte übrig, die sich auf dem Weg zu einem Prototypen befinden. Für jedes einzelne Konzept wurde bereits mindestens ein zweistelliger Millionenbetrag investiert und ein Unternehmen gegründet. Als erstes soll etwas Systematik in dieses Angebot gebracht werden. In späteren Folgen werden dann einzelne Entwürfe näher vorgestellt und diskutiert werden.

Neutronenspektrum

Je langsamer Neutronen sind, je höher ist die Wahrscheinlichkeit einer Spaltung eines U235 – Kerns. Demgegenüber können alle schnellen Neutronen auch Kerne von U238 bzw. anderer Aktinoiden spalten. Schnelle Reaktoren haben den Vorteil, daß sie mit „Atommüll“ (so verunglimpfen „Atomkraftgegner“ immer die abgebrannten Brennelemente aus Leichtwasserreaktoren) betrieben werden können. Eine verlockende Perspektive: Betrieb der Kernkraftwerke mit „Abfall“, bei gleichzeitiger Entschärfung der „Endlagerproblematik“ auf wenige Jahrzehnte bis Jahrhunderte. Nur hat alles seinen Preis, gerade kleine Reaktoren (im räumlichen Sinne, nicht nur im übertragenen, bezogen auf die Leistung) sind schwierig als schnelle Reaktoren zu bauen. Es ist deshalb nicht verwunderlich, daß 59 Entwürfe mit thermischem Spektrum und nur 20 als schnelle Reaktoren ausgeführt sind.

Die angestrebten geringen Abmessungen (Transport) sind faktisch auch bei thermischen Reaktoren nur über eine höhere Anreicherung realisierbar. Mit der bei heutigen Druckwasserreaktoren üblichen Anreicherung von weniger als 5% lassen sich kaum SMR bauen. Man hat deshalb den neuen Standard HALEU mit einer Anreicherung von knapp unter 20% eingeführt. Der Begriff „thermisch“ im Zusammenhang mit der Geschwindigkeit von Neutronen bezieht sich auf die Geschwindigkeitsverteilung der brownschen Molekularbewegung. Je höher deshalb die Betriebstemperatur eines Reaktors ist, um so höher auch die Geschwindigkeit der Neutronen und damit um so geringer die Wahrscheinlichkeit einer Spaltung eines Urankernes. Deshalb sind „Hochtemperaturreaktoren“ schon wegen der neutronenphysikalischen Auslegung anspruchsvoller.

Moderatoren

Wenn man Neutronen abbremsen will, benötigt man einen Moderator. Bei den Leichtwasserreaktoren ist das das Arbeitsmedium Wasser. Die einfachste Konstruktion ist der Siedewasserreaktor, bei dem der im Reaktor erzeugte Dampf unmittelbar die Turbine antreibt (5 Entwürfe). Demgegenüber wird beim Druckwasserreaktor erst in einem zusätzlichen Wärmeübertrager der Dampf erzeugt (24 Entwürfe). Eine gewisse Sonderstellung nehmen Schwerwasserreaktoren ein, in denen Deuterium die Funktion des Moderators übernimmt (2 Entwürfe). Bei Mikroreaktoren kommen noch andere Moderatoren zum Einsatz.

Kühlmittel

Bei thermischen Reaktoren kommen Wasser, Helium und Salzschmelzen zur Anwendung. Bei Wasser sind die erreichbaren Temperaturen durch die abhängigen Drücke begrenzt (31 Entwürfe). Für eine reine Stromerzeugung ist das jedoch kein Hinderungsgrund. Will man hohe Temperaturen erreichen, bleibt Helium (20 Entwürfe) oder eine Salzschmelze (13 Entwürfe). Bei beiden kommt man mit relativ geringem (Helium) oder gar Atmosphärendruck (Salze) aus. Will man schnelle Reaktoren bauen, bleibt nur Helium (2 Entwürfe), Blei (9 Entwürfe), Natrium (5 Entwürfe) oder Salzschmelzen (3 Entwürfe). Tauscht man Wasser gegen andere Kühlmittel, wird man zwar den hohen Druck und den Phasenübergang los – was oft als Sicherheitsgewinn dargestellt wird – handelt sich aber damit eine Menge neuer Probleme ein: Einfrieren bei Raumtemperatur (Blei und Salzschmelzen), Korrosion (Blei und Salzschmelzen), Staub (Helium), Brandgefahr (Natrium), Zeitstandsfestigkeit usw. Es verwundert deshalb nicht, daß die Überzahl der Entwürfe bei Wasser als Moderator und Kühlmittel bleibt. Durch die überragenden thermodynamischen Eigenschaften des Wasser-Dampf-Kreisprozesses ist das für eine Stromproduktion auch kein Hinderungsgrund. Oft gehörte Argumente von möglichen höheren Wirkungsgraden sind bei den geringen Brennstoffkosten eher Scheinargumente. Anders sieht es mit der Entwicklung von schnellen Reaktoren aus. Blei und Natrium haben hier eine überragende Stellung. Allerdings sind die Preise für Natururan immer noch im Keller und die Zwischenlagerung abgebrannter Brennelemente ist ebenfalls konkurrenzlos billig. In einigen Jahren könnte jedoch ein geschlossener Brennstoffkreislauf aus politischen Gründen (Angst vor Atommüll) zum Renner werden. Momentan liegt Russland bei dieser technischen Entwicklung mit großem Abstand vorn. Die USA haben das erkannt und starten gerade eine beeindruckende Aufholjagd.

Brennstoff

Standard ist immer noch Uran. Bei schnellen Reaktoren kann man den „Abfall“ der konventionellen Reaktoren weiter nutzen. Thorium bleibt vorläufig auch weiter ein Exot. Das Uran kann in unterschiedlichen chemischen Verbindungen (metallisch, Uranoxid, Urannitrid, Legierungen usw.) im Reaktor verwendet werden und in unterschiedlichen geometrischen Formen (als Brennstäbe, als TRISO-Elemente, im Kühlmittel aufgelöst usw.) eingebaut werden. Der Brennstoff ist in seiner chemischen Zusammensetzung und seiner geometrischen Form bestimmend für die maximale Betriebstemperatur. Ferner ist er das erste Glied der Sicherheitskette: Er bindet während des Betriebs die Spaltprodukte und soll diese auch bei einem Störfall zurückhalten. SMR benötigen wegen der höheren Anreicherung mehr Natururan und sind wegen der höheren Trennarbeit teurer in der Herstellung als konventionelle Brennelemente.

Die Hersteller

Mit deutlichem Abstand sind die beiden führenden Länder in der Entwicklung von SMR Russland und die USA.

Alle Projekte befinden sich in einer unterschiedlichen Realisierungsphase von Konstruktion, Genehmigungsverfahren, über Bau bis Probebetrieb. Der chinesische SMR vom Typ ACPR50S (Druckwasserreaktor in klassischer Bauweise mit 50 MWel) ist fast fertiggestellt. Er soll bei Serienfertigung als schwimmender Reaktor auf einem Ponton verwendet werden. Der argentinische SMR Carem (integrierter Druckwasserreaktor mit 30 MWel) ist eine Eigenentwicklung und soll 2023 in Betrieb gehen.

Land LWR Gas Blei Natrium Salz Summe
Argentinien– – – – 1
China– – 7
Dänemark– – – – 
Finnland– – – 
Frankreich1– – – 
GB1– – – 
Indonesien– – – 
Japan– 
Kanada– – 
Luxemburg– – – – 
Russland11 – 17 
Schweden– – – – 
Südafrika– – – – 
Süd Korea– – – 
USA21 
Summe29 17 13 – 
Betrachtete SMR-Entwürfe nach Ländern und Typen geordnet.

Der chinesische HTR-PM (Hochtemperaturreaktor, Kugelhaufen mit Helium, 105 MWel) befindet sich im Testbetrieb. Sein Vorläufer HTR-10 von der Tsinghua University, China (Kugelhaufen mit 2,5 MWel) ist seit 2018 in Betrieb. Der japanische HTTR 1 (prismatischer Hochtemperaturreaktor, Helium, 30 MWth) ist seit 2007 mit Unterbrechungen für Umbauten in Betrieb. Der russische RITM-200M (modularer Druckwasserreaktor mit 50 MWel) ist seit 2020 auf Eisbrechern in Betrieb und soll bis 2027 in Ust-Kuyga in Sibirien als Kraftwerk in Betrieb gehen. Der russische KLT-40S (Druckwasserreaktor in klassischer Bauweise, 35 MWel) ist zweifach auf einem schwimmenden Ponton seit 2020 in Pevek in Chukotka als Heizkraftwerk in Betrieb.

Wasserstoff und Kernenergie

Nun ist der Hype um Wasserstoff auch bis zu den Kernkraftwerken durchgedrungen. Warum auch nicht? Wenn der Staat Subventionen austeilt, greift man halt gerne zu. Bisher ist Wasserstoff (H2) überwiegend ein Grundstoff für die Düngemittel-Industrie (Ammoniak NH3) und zur Veredelung in der Petrochemischen-Industrie (z. B. Entschwefelung von Kraftstoffen, Methanolherstellung etc.). Heute werden über 95% aus fossilen Energieträgern – hauptsächlich aus Erdgas durch Dampfreformierung – und knapp 5% über Elektrolyse als Nebenprodukt z. B. bei der Chlor-Elektrolyse gewonnen. Nachdem sich nun auch bei „Energiewendern“ die Erkenntnis rumspricht, daß man für die Stromproduktion durch Windmühlen Wind benötigt und bei der Photovoltaik zumindest Tageslicht, kommt man auf die Schnapsidee Wasserstoff als Energieträger im großen Maßstab einzusetzen. Die neuen Zauberwörter der Schlangenölverkäufer sind „Wasserstoffwirtschaft“ und „Sektorenkopplung“: Man will nicht nur elektrische Energie während der Dunkelflauten aus Wasserstoff herstellen, sondern ihn auch als Kraftstoff, zur Gebäudeheizung und für alle möglichen industriellen Anwendungen einsetzen. Auf solch eine Kopfgeburt kann nur einer kommen, für den Thermodynamik lediglich ein Wort mir 13 Buchstaben ist.

Hans im Glück

Wasserstoff kommt in der Natur praktisch nur in chemischen Verbindungen (Wasser H2 O, Erdgas CH4 usw.) vor. Diese müssen erstmal geknackt werden um Wasserstoff zu gewinnen. Dazu ist viel Energie nötig. Will man Wasser mittels Elektrolyse zerlegen, benötigt man etwa 4,4 kWh pro Normkubikmeter Wasserstoffgas. Verbrennt man diesen einen Normkubikmeter wieder, kann man nur 3,0 kWh (unterer Heizwert) zurückgewinnen. Geschieht dies in einem modernen Kombikraftwerk (Wirkungsgrad 60%) werden daraus nur 1,8 kWh elektrische Energie zurückgewonnen. Wohlgemerkt, hier wurde noch kein einziger Kubikmeter transportiert oder gespeichert. Beides ist – ob verdichtet oder verflüssigt – nur mit beträchtlichem Energieaufwand möglich. Wie man es auch dreht und wendet, in der Praxis bekommt man nur rund 1/3 zurück – oder anders ausgedrückt haben sich die Stromkosten (ohne jede Investition für die Elektrolyse) schon allein wegen der Umwandlungsverluste verdreifacht.

Man hat uns ja inzwischen beigebracht, daß der Wind – wie schon vorher die Sonne – keine Rechnung schickt. Gleichwohl sind gewaltige Investitionen in die Errichtung von Windparks notwendig. Hinzu kommen noch Betriebs- und Wartungskosten, die ebenfalls nicht gering sind, wie man heute gelernt hat. Alle Kosten müssen jedenfalls durch die Stromerlöse und Subventionen wieder eingebracht werden. Unter Grundlast in einem Netz versteht man die kleinste Leistung die immer anliegt – 24 Stunden am Tag, 7 Tage die Woche. Will man die Grundlast durch Windmühlen abdecken, braucht man dafür etwa die 8–9 fache installierte Leistung. Der Grund ist trivial: Wenn kein Wind weht, wird auch kein Strom produziert, egal wie viele Windmühlen man gebaut hat! Will man in schwachen Zeiten zu füttern, muß man die erforderliche Menge elektrischer Energie vorher produziert haben. In 2019 betrug die Arbeitsausnutzung der Windmühlen in Deutschland 28% (installierte Leistung 53,912 GW, Stromproduktion 131,8 TWh). Leider muß man die hierfür produzierte Energie speichern und bekommt über den Weg Wasserstoff nur etwa 1/3 zurück (siehe oben). Hinzu kommen selbstverständlich noch die Investitionen für die Elektrolyse, die Speicher und das Backup-Kraftwerk. Man könnte es auch anders formulieren: Wer den Menschen vorgaukelt, es wäre eine (wirtschaftliche) Stromversorgung nur mit Wind und Sonne möglich, der lügt. Es ist deshalb kein Zufall, daß alle einschlägigen „Energiewender*Innen“ immer von Zwangsabschaltungen – sprachlich getarnt als „Smart-Meter“ – und Konsum- und Wohlstandsverzicht – sprachlich getarnt als „Energieeffizienz“ – schwadronieren.

Transport und Speicherung

Wasserstoff ist ein Gas mit extrem geringer Dichte: Ein ganzer Kubikmeter wiegt noch nicht einmal 90 Gramm. Es muß deshalb verdichtet oder verflüssigt werden um es überhaupt transportieren und lagern zu können. Wenn man es auf 700 bar verdichtet (Industriestandard für PKW) hat es gerade mal einen Energiegehalt von 1,32 kWh/Liter. Selbst wenn man es durch Abkühlung auf -253°C verflüssigt, beträgt sein Energiegehalt gerade mal 2,34 kWh/Liter. Zum Vergleich: Benzin hat einen Energiegehalt von rund 8,7 kWh/Liter.

Selbst für den Transport in Rohrleitungen oder der Speicherung in Kavernen muß es verdichtet werden. Jede Verdichtung erfordert eine Menge elektrische Energie und ist immer mit erheblichen Verlusten verbunden. Wenn es in Pipelines strömt, entstehen ebenfalls Verluste durch Reibung. Man bevorzugt deshalb für sehr lange Strecken eine Verflüssigung und Tankschiffe. Allerdings werden für die Verflüssigung von Wasserstoff allein rund 35% seiner Energie benötigt. Spätestens hier sollte der geneigte Leser verstehen, warum wir uns in einer Welt von Mineralölen und Erdgas bewegen. Oder anders ausgedrückt, welche brutalen Konsequenzen drohen, wenn wir alle Fahrzeuge auf Wasserstoff umstellen wollen. Das Gerede von „Sektorkopplung“ (Strom aus Wind und Sonne wird benutzt um Kraftstoffe und andere Energieträger herzustellen) ist nur ein weiteres Neusprechwort für „Mobilitätsverzicht“. Ganz davon zu schweigen, daß Deutschland viel zu klein ist, um es mit der erforderlichen Anzahl von Windmühlen zupflastern zu können. Bahnt sich hier schon wieder das „Volk ohne Raum“ an?

Wasserstoff durch Kernenergie

Hat man erst einmal die Konsequenzen des „Grünen Wasserstoffs“ verstanden, ist die Produktion durch vorhandene Druckwasserreaktoren nicht mehr so abwegig. Immer unter der Voraussetzung, man lehnt die Produktion aus fossilen Energieträgern ab. Das erste Argument liefert die Arbeitsausnutzung (Kernkraftwerk 90%, Windmühlen in Deutschland 28%) oder mit anderen Worten, wie viel Wasserstoff man mit einer gegebenen Anlage produzieren kann. Das zweite Argument sind die Energiekosten. Wärmeenergie ist immer billiger als elektrische Energie. Dies ist der Grund, warum heute rund 95% des Wasserstoffs aus Erdgas hergestellt werden. Aber auch bei der Elektrolyse kann man durch erhöhte Temperaturen elektrische Energie einsparen. Bei einem Kraftwerk ist die Auskopplung von Wärme kein Problem. Der Anbau an konventionelle Kernkraftwerke ist hier nur der erste Schritt. Kommen (später) Reaktoren mit höheren Betriebstemperaturen zum Einsatz, wird der Vorteil noch gravierender. In fernerer Zukunft könnten Hochtemperaturreaktoren sogar den Weg über chemische Verfahren (z. B. Jod-Schwefelsäure) gehen.

Das U.S. Department of Energy (DOE) fördert eine Dampf-Elektrolyse-Anlage an einem Kernkraftwerk (wahrscheinlich Prairie Island Nuclear Generating Station von Xcel Energy) in USA mit $13,8 Millionen. Xcel Energy verfügt über einen hohen Anteil von Windenergie mit dem entsprechend stark schwankenden Angebot. Eine Fragestellung soll deshalb sein, ob man Energie aus dem Reaktor auskoppeln kann, ohne diesen bei Windspitzen abregeln zu müssen. Dies wäre damit die erste unmittelbare Kopplung von Wind- und Kernenergie bei einem Versorger. Böse Zungen könnten auch sagen: Eine den Markt verzerrende Subvention der Windenergie soll durch Subventionen bei einem vorhandenen Kernkraftwerk geheilt werden.

Ein zweites Förderprogramm des DOE über $12,5 Millionen unterstützt die Kooperation von FuelCell Energy of Danbury mit dem Idaho National Laboratory. Ziel ist die Entwicklung von Festkörper-Elektrolyse-Zellen mit hohem Wirkungsgrad und geringen Kosten als 200 bis 500 MW Module zur Nachrüstung bei Kernkraftwerken. Es soll der Wechsel zwischen Wasserstoffherstellung und Stromproduktion demonstriert werden, um Kernkraftwerken ein zweites wirtschaftliches Standbein zu erschließen.

Ausblick

Im Jahr 2019 wurden weltweit 69 Millionen to Wasserstoff in Raffinerien und Düngemittelfabriken verbraucht. Der Markt ist also vorhanden. Allerdings wird nur sehr wenig Wasserstoff über größere Entfernungen transportiert. Wegen der bekannten Transportschwierigkeiten wird er unmittelbar in der Nähe der Verbraucher erzeugt. Es gibt allerdings bedeutende regionale Pipeline-Systeme z. B. in den USA an der Golfküste, die verschiedene Chemiezentren untereinander verbinden. In dieser Region ist ein bedeutender Ausbau für „Blauen Wasserstoff“ geplant. Dabei wird der aus den reichlich vorhandenen Erdgasvorkommen über Dampfreformierung gewonnen. Das dabei anfallende CO2 ist beileibe kein Abfall, sondern kann an die Ölproduzenten in dieser Region verkauft werden. Ein doppeltes Geschäft wird möglich: Einsparung von CO2 – Abgaben und zusätzliche Ölförderung aus bereits erschöpften Quellen. Damit ist auch klar, warum die Erdgasindustrie immer ein Förderer der „Alternativ-Energien“ war und ist. Man weiß sehr genau über die Dunkel-Flauten bescheid. Erdgas ist der Energieträger, der mit den geringsten Investitionen Backup-Kraftwerke erlaubt – jede Windmühle und jeder Sonnenkollektor bedeutet also zusätzlichen Absatz. Es gibt momentan auch kein Henne-Ei-Problem: Man kann den Absatz an Wasserstoff schnell durch Beimischung zum Erdgas steigern. Es laufen bereits Verhandlungen über neue Spezifikationen. Es scheint möglich, bis zu 20% Wasserstoff ohne große Modifikationen an den Pipelines und Verbrauchern unter mischen zu können. Auch hier wird klar, wer größtes Interesse an der Einführung von CO2 – Abgaben hat.

Beginn einer atemberaubenden Serie

Anfang September 2020 wurde der Reaktor Fuqing 5 mit 177 Brennelementen zum ersten mal beladen. Ein in mehrfacher Hinsicht bemerkenswertes Ereignis. Es ist der erste Reaktor der chinesischen Eigenentwicklung ≫Hualong One≪ – ein sogenannter „First Of A Kind“ (FOAK). Der Bau des allerersten Reaktors eines neuen Modells dauert zumeist sehr lange, da bei ihm noch viele Fehler gemacht werden, die zeitaufwendig behoben werden müssen. Abschreckendes Beispiel ist die Baustelle Olkiluoto in Finnland mit dem Baubeginn im Jahr 2004. Gänzlich anders die Situation bei Fuqing 5: Dort war der Baubeginn (erster nuklearer Beton) im Mai 2015. Rund 5 Jahre Bauzeit gegenüber 16 Jahren mit gigantischer Kostenexplosion. Deutlicher kann man die Leistungsfähigkeit der chinesischen kerntechnischen Industrie nicht darstellen. Doch damit noch nicht genug: Im Dezember 2015 war der Baubeginn für die Blöcke Fuqing 6 und Fangschenggang 3, im Dezember 2016 für Fangschenggang 4, im Oktober 2019 für Zhangzhou 1 und im September 2020 für Zhangzhou 2 und Taipingling 1. Um dem ganzen noch die Krone aufzusetzen, wurde parallel im August 2015 mit dem ersten Auslandsauftrag Karachi 2+3 in Pakistan begonnen. Man hat also gleichzeitig 9 Reaktoren eines neuen Typs in Arbeit. Da China auch noch andere Kernkraftwerke baut, kommt es seinem Ziel, in den nächsten Jahrzehnten durchschnittlich alle sechs Monate einen Kernreaktor in Betrieb zu nehmen, sehr nahe.

Die Geschichte des Hualong

Im Jahr 2012 wurde durch das zentrale Planungsbüro in Peking beschlossen, die Eigenentwicklungen ≫ACP1000≪ von China National Nuclear Corporation (CNNC) und ≫ACPR1000≪ von China General Nuclear (CGN) zu einem standardisierten Modell ≫Hualong One≪ zusammenzulegen. Es sollte ein Reaktor der dritten Generation entstehen, in dem auch ausdrücklich alle Erfahrungen des Unglücks in Fukushima berücksichtigt werden sollten. Da jeder Hersteller seine eigenen Zulieferketten hat, unterscheiden sich noch heute die Modelle geringfügig.

Ursprünglich sollten 2013 in Pakistan zwei ≫ACP1000≪ in der Nähe von Karachi gebaut werden. Dieses Vorhaben wurde 2015 in zwei ≫Hualong One≪ umgewandelt. Darüberhinaus befindet sich der ≫Hualong One≪ in der Variante Fuqing 5+6 in Großbritannien im Genehmigungsverfahren als Modell für das geplante Kernkraftwerk Bradwell. Allerdings ist es höchst fragwürdig, ob dieses Projekt noch politisch durchsetzbar ist. Nach den Ereignissen in Hongkong und um den Ausbau des Mobilfunknetzes durch Huawei ist die Stimmung in Großbritannien gekippt. China ist in einer Schlüsselfunktion wie der Stromversorgung nicht mehr erwünscht.

Die Lernkurve

Obwohl diese Serie von Hualog One weitestgehend parallel gebaut wird, kann man laufend Verbesserungen entdecken. Selbst an so simplen Bauteilen wie dem Containment. Es besteht aus Stahlringen (ca. 46m Durchmesser, etwa 7m hoch, Wandstärke 6 mm, mit einem Gewicht von 180 to), die auf einem separaten Platz auf der Baustelle aus vorgefertigten Segmenten zusammengeschweißt werden. Sie werden dann mit einem Schwerlastkran übereinander gestapelt und zu einem zylindrischen Containment montiert. Den oberen Abschluss bildet eine Kuppel, die ebenfalls vor Ort aus Segmenten zusammengeschweißt wird und mit einem Kran aufgesetzt wird. Auf diese Stahlkonstruktion wird nun die eigentliche Hülle aus Spannbeton aufbetoniert. Man erhält so ein gasdichtes und hochfestes Sandwich als Wand. Als Schutz gegen Flugzeugabstürze etc. wird diese Konstruktion noch einmal als äußere Hülle wiederholt. Zwischen den Wänden verbleibt ein Spalt, der später zur Überwachung im Unterdruck gehalten wird.

Vergleicht man nun die innere Kuppel von Fuqing 5 (Montage im Januar 2017) mit der von Fangschenggang 3 (Montage im Mai 2018), so stellt man fest, daß sich das Gewicht von 305 to auf 260 to verringert hat. Umfangreiche 3-D-Simulationen, eine Optimierung der Statik und die Verwendung besonders geformter Segmente haben zu diesem Fortschritt geführt. Materialeinsparungen sind praktisch auch immer Kosteneinsparungen.

Wie flexibel die Chinesen vorgehen, zeigt sich aber auch am Ablauf der Montage. Bisher hat man klassisch erst den Rohbau fertiggestellt und anschließend die Großkomponenten eingebracht. Dazu muß man die drei Dampferzeuger (Länge 21 m, 365 to) und das Druckgefäß waagerecht durch die Schleuse einbringen und innerhalb des Containment aufwendig aufrichten und mit dem Polarkran in Position bringen. Beim Kraftwerk Karachi hat man die Einbauten vor dem Aufsetzen der Kuppel eingebracht. Bei Fuqing 5 dauerte das Einbringen der Dampferzeuger und des Druckgefäßes rund 2,5 Monate. In Karachi reduzierte sich der Einbau auf rund 5 Stunden pro Dampferzeuger bzw. 3 Wochen für alle nuklearen Großkomponenten. Eine beträchtliche Zeit- und Kostenersparnis.

Die Rolle ausländischer Zulieferer

Klein, Schanzlin und Becker (KSB) aus Frankenthal war einst die Perle für Pumpen in der Kraftwerkstechnik. Der Ausstieg aus Kerntechnik und Kohle in Deutschland hat sie (noch) nicht aus dem Markt gedrängt, sondern lediglich ins Ausland vertrieben. So erhielt SEC-KSB den Auftrag für die sechs Hauptkühlmittelpumpen (10,000-Volt-Motor mit einer Antriebsleistung von 6600 kW, 110 to schwer, Leistung 24 500 Kubikmeter pro Stunde) für das Kraftwerk Zhangzhou. Ein Auftrag in dreistelliger Millionenhöhe. Dafür muß man in Deutschland eine ganze Menge Heizungspumpen verkaufen. SEC-KSB ist ein im Juni 2008 gegründetes Joint Venture zwischen Shanghai Electric (55%, wer da wohl das sagen hat?) und KSB (45%), welches für das komplette Geschäft mit kerntechnischen Komponenten in China verantwortlich ist. Ein typisches Schicksal eines deutschen Unternehmens der Spitzentechnologie: Entweder man macht den Laden in Öko-Deutschland sofort dicht oder man versucht sich ins Ausland zu verlagern.

Vielleicht verläuft ja das Schicksal von Rolls-Royce (R&R) etwas anders. R&R hat für das gleiche Kraftwerk ebenfalls einen dreistelligen Millionenauftrag eingeworben über die Lieferung der Neutronenfluss-Messeinrichtungen. Allerdings werden diese komplett in Grenoble Frankreich konstruiert, gefertigt und getestet…

Die Preise

Man kann den Chinesen nicht so richtig in die Karten schauen. Es handelt sich immer noch um eine Planwirtschaft mit ihren Eigenheiten bezüglich Kosten und Finanzierung. Man kann aber einen guten Eindruck über Geschäfte mit dem Ausland gewinnen. So hat sich schon 2016 der thailändische Energieversorger RATCH in das Kernkraftwerk Fangchenggang II eingekauft. Aus den Veröffentlichungen des Unternehmens kann man entnehmen, daß das Kraftwerk einen Wert von US$ 6 Milliarden, bei einer Leistung von 2 x 1180 MWel hat. Dies entspricht spezifischen Investitionskosten von 2542 US$/kW. Ganz ähnlich sind die Daten für das pakistanische Kraftwerk Karachi: CNNC gibt Pakistan einen Kredit über US$ 6,5 Milliarden. Es scheint, daß die Chinesen das gesamte Kernkraftwerk im engeren Sinne (2 x 1100 MMWel) komplett vorfinanzieren. Die Projektkosten für das Kernkraftwerk werden von dem pakistanischen Prime Minister Nawaz Sharif mit US$ 9.59 Milliarden angegeben. Dies ergibt spezifische Kosten von 4359 US$/kW für das Projekt mit allen notwendigen Ausgaben (z. B. Hochspannungsleitungen und Infrastruktur).

Bauweise

Bei dem Hualong One oder auch als HPR-1000 bezeichnet, handelt es sich um einen Druckwasserreaktor mit drei Kreisläufen (jeweils Dampferzeuger, Hauptkühlmittelpumpe und Hauptkühlmittelleitung) und einer Nennleistung von 1180 MWel. Er ist für eine Betriebsdauer von (mindestens) 60 Jahren ausgelegt. Er besitzt ein doppelwandiges Containment, welches gegen Flugzeugabstürze etc. ausgelegt ist. Das Brennelementelager und die Gebäude für sicherheitstechnische Anlagen sind ebenfalls gegen Flugzeugabstürze etc. verbunkert. Die Schnellabschaltung bei Störfällen erfolgt vollautomatisch. Erst nach 30 Minuten sind menschliche Eingriffe nötig. Erst nach 72 Stunden sind Hilfsmaßnahmen von außen nötig (z. B. Nachfüllen von Wasser in die internen Becken). Jeder Reaktor ist nicht nur für die Grundlast, sondern auch für einen extremen Lastfolgebetrieb konstruiert.

Innerhalb des Containment – genauso geschützt gegen Einwirkungen von außen wie der Reaktor selbst – befindet sich ein großer Wassertank (IRWST), der Wasserverluste im Kreislauf (z. B. Rohrbruch im Primärkreis) ersetzen kann. Es ist also kein „Umschalten“ in andere Gebäudeteile notwendig. Diesem Tank kann auch Wasser für die „Beregnung“ des Sicherheitsbehälters entnommen werden. Durch den Regen kann der Druck und die Temperatur im Notfall reguliert werden. Es können auch Chemikalien hinzugesetzt werden, die etwaige freigesetzte radioaktive Stoffe auswaschen und binden können (Lehre aus Fukushima). Dies entlastet die Filteranlagen, wenn die Luft nach einem schweren Störfall über den Kamin abgegeben werden muß. Aus dem IRWST kann auch ausreichend Wasser bereit gestellt werden, um die Kaverne, in der das Reaktordruckgefäß steht, vollständig zu fluten. Damit ist das Austreten von Kernschmelze aus dem Reaktordruckgefäß ausgeschlossen. Die gesamte Nachzerfallswärme wird über passive Systeme mit Naturumlauf und Wärmeübertrager an die Umgebung abgegeben. Insofern handelt es sich beim Hualong One um einen echten Reaktor der sogenannten Generation III+.

Solange der Primärkreislauf intakt ist, aber die Wärmesenke (Kühlturm, Meerwassereinlauf, Pumpen etc.) total ausfallen sollte (Fukushima), kann die Wärme über die Dampferzeuger sicher im Naturumlauf abgeführt werden. Zum Nachfüllen von Wasserverlusten dienen jeweils 2 x 50% Motorpumpen und 2 x 50% Pumpen mit Dampfturbinen, die Wasser aus Tanks entnehmen. Es liegt also auch hier nicht nur Redundanz, sondern auch Diversität vor.

Für die Notstromversorgung sind pro Reaktor zwei Notstromdiesel in getrennten Gebäuden vorgesehen. Zusätzlich gibt es im Kraftwerk noch eine weitere Notstromversorgung über eine Gasturbinenanlage (Lehre aus Fukushima) und transportable Notstromaggregate. Zusätzlich gibt es Batterien für eine Versorgungszeit von 72 h (Lehre aus Fukushima). An diese Gleichstromversorgung sind alle Instrumente, Notbeleuchtung, EDV sowie die Ventile der passiven Sicherheitseinrichtungen angeschlossen.

Wie die probabilistischen Sicherheitsberechnungen ergeben, ist beim Hualong One mit einem Kernschaden (CDF) in höchstens einer Million Betriebsjahren zu rechnen. Mit einer Freisetzung großer Mengen radioaktiver Stoffe in die Umwelt (LRF) in höchstens 10 Millionen Betriebsjahren. Um gleich den üblichen Missverständnissen entgegenzutreten: Es handelt sich um Betriebsjahre und nicht Kalenderjahre. Gemeint ist damit, wenn 10 gleiche Reaktoren ein Kalenderjahr lang laufen, ergibt das 10 Betriebsjahre. Und ja, es handelt sich um Wahrscheinlichkeiten, ein Schaden könnte auch schon morgen eintreten. Absolute Sicherheit gibt es halt in der Natur nicht. Solche Zahlen dienen Fachleuten nur um unterschiedliche Risiken vergleichbar zu machen. Was aber ausschlaggebend ist, hier handelt es sich um Eintrittswahrscheinlichkeiten für Ereignisse – nicht um Opferzahlen. Spätestens nach Tschernobyl und Fukushima wissen wir doch, daß auch schwerste Unglücke in Kernkraftwerken zu wenig bis gar keinen Todesopfern führen. Ganz im Gegensatz z. B. zu einem Flugzeugabsturz. Der Kampfschrei der „Anti-Atomkraft-Bewegung“: Millionen Tote, für zehntausende von Jahren unbewohnbar, war und ist einfach nur grottenschlechte Propaganda – wenngleich er gerade in Deutschland höchst erfolgreich war und ist.

Erster Reaktor in Weißrussland

In Ostrovets in der Region Grodno (54° 36′ 49″ N, 25° 57′ 19″ E) geht das erste Kernkraftwerk Weißrussland ans Netz. Es besteht aus zwei Druckwasserreaktoren des Typs VVER-1200 mit insgesamt 2340 MWel,netto. Die Auftragserteilung und erste Baustellenvorbereitungen erfolgten noch 2011. Die Grundplatte von Reaktor 1 wurde im November 2013 und von Reaktor 2 im May 2014 betoniert (offizieller Baubeginn eines Kernkraftwerks). Damit hat auch die russische Nuklearindustrie gezeigt, daß sie Kernkraftwerke fristgerecht und ohne Kostenüberschreitungen im Ausland fertigstellen kann. Der erste Reaktor dieses Typs ging 2016 (Novovoronezh II-1) in Betrieb. Es folgten 2017 Leningrad II-1 und 2019 Novovoronezh II-2. Auch hier zeigt sich wieder, der Bau von Kernkraftwerken in der vorgesehenen Zeit zu festen Kosten ist keine Hexerei. Das Geheimnis liegt im Bau möglichst baugleicher Kraftwerke in dichter Folge: So hat man stets geübtes Personal im Einsatz und dies ist die beste Garantie vor Termin- und Kostenüberschreitungen.

Preis und Finanzierung

Die Exporterfolge der russischen Nuklearindustrie beruhen auf der gleichzeitigen Finanzierung durch russische Banken. Der Auftragswert für das Kraftwerk betrug 10 Milliarden US$ (entsprechend 4274 US$/kW). Das ist durchaus günstig für ein Kraftwerk der Generation III+ mit allem Schnickschnack, wie doppeltem Beton-Containment und Kernfänger. Bei diesem Typ hat sich der Hersteller eng an europäischen Vorstellungen orientiert, wie sie auch im französischen EPR realisiert werden.

Die Finanzierung erfolgt quasi nach einem Bauherrenmodell: Es gibt einen Zahlungsplan mit festgelegten Raten zu festgelegten Zahlungsbedingungen. Dies ergibt eine interessante Aufteilung des Risikos zwischen Auftragnehmer und Auftraggeber. Bis zur jeweiligen vertragsgemäßen Teillieferung trägt der Anbieter das Risiko von Kostensteigerungen durch Bauverzögerungen. Erst ab diesem Zeitpunkt wirken sich für den Auftraggeber zusätzliche Zinszahlungen durch eine verzögerte Inbetriebnahme aus. Wird eine Rate an den Hersteller fällig, wird diese durch eine russische Bank als Kredit für Weißrussland bereitgestellt. Erst ab diesem Moment muß der Kapitaldienst durch den Auftraggeber geleistet werden. Rußland finanziert so etwa 90% der Baukosten vor. Ganz nebenbei, haben die USA inzwischen erkannt, welchen Exportvorteil Rußland gegenüber finanzschwachen Ländern durch dieses Modell hat und streben wieder staatliche Ausfallbürgschaften an. So hat Rosatom im März 2020 veröffentlicht, daß es für die nächsten zehn Jahre über ein Auftragsvolumen im Ausland von US$ 140 Milliarden verfügt. Rosatom besteht aus 400 Unternehmen mit mehr als 250 000 Mitarbeitern. Für Rußland bedeutet dies nicht nur die Einwerbung von Exportaufträgen, sondern auch die Wandlung der stets schwankenden Deviseneinnahmen aus dem Rohstoffgeschäft in stetige langfristige Zahlungsströme – z. B. für Pensionszahlungen.

Die russische kerntechnische Industrie ist seit dem Zusammenbruch der Sowjetunion wie ein Phönix aus der Asche wiederauferstanden. Im Oktober 2015 wurde der erste Reaktordruckbehälter von Atomash in Wolgodonsk – nach 30 Jahren Pause – hergestellt. Das Werk wurde 1973 gegründet und stellte bis 1986 allein 14 Reaktorgefäße her. 1997 ging es endgültig pleite und hangelte sich dann mit Aufträgen aus dem Gas- und Ölsektor durch. Heute ist es wieder das Zentrum für Druckwasserreaktoren und verfügt über die Kapazität von vier kompletten Kernkraftwerken (Druckgefässe, Dampferzeuger etc.) jährlich. Das Werk verfügt über einen eigenen Anschluß an den Wolga-Don-Kanal. In diesem Jahr wurden bereits drei Reaktordruckgefäße und 17 Dampferzeuger für Projekte in Indien, Bangladesch und der Türkei ausgeliefert.

Der Bauablauf

Man bevorzugte in Weißrussland ein zur Errichtung paralleles, abschnittsweises Genehmigungsverfahren. Dies funktioniert sehr gut bei Serienbauweise ohne große lokale Anpassungen. Wie hier gezeigt, kann das die gesamte Bauzeit einschließlich notwendiger Planung und Vertragsverhandlungen vom „Wunsch“ ein Kernkraftwerk zu bauen, bis zur Inbetriebnahme auf rund zehn Jahre begrenzen. Wendet man dieses Verfahren jedoch beim erstmaligen Bau eines Kernkraftwerks (FOAK) an, kann es sehr schnell zu einem wirtschaftlichen Desaster führen. Eindringliches Beispiel hierfür ist die „ewige“ Baustelle des EPR in Finnland.

Auch bei diesem Projekt zeigt sich wieder der grundsätzliche Vorteil von Baustellen mit doppelten Blöcken. Auch die französische Industrie ist nun diesem Weg in Hinkley Point gefolgt. Die gesamte Baustelleneinrichtung, wie z. B. Schwerlastkran, Werkstätten, Unterkünfte usw. halbiert sich automatisch (bezogen auf die spezifischen Kosten). Man kann bei allen Projekten bereits beim zweiten Block eine merkliche Senkung der notwendigen Arbeitsstunden feststellen, da man bereits vor Ort eine geübte und aufeinander eingestellte Truppe im Einsatz hat. Dies gilt um so mehr, je mehr man lokale Unternehmen beauftragt. So kam man in Ostrovets mit angeblich 3000 Fachkräften aus.

Am 10. July 2016 ereignete sich beim Einbau des Reaktordruckbehälters ein Missgeschick: „Der Behälter rutschte langsam etwa 4 m ab und setzte sanft auf den Grund auf, keine Beschädigung, die Aufhängung am Gehäuse wurde verschoben“, so die offizielle Stellungnahme. Auf Wunsch der weißrussischen Genehmigungsbehörde wurde er durch einen neuen ersetzt. Am folgenden 3. April wurde der für Block 2 vorgesehene Behälter in Block 1 eingebaut. Für den Block 2 wurde der ursprünglich für das Kraftwerk Kaliningrad 2 vorgesehene Reaktordruckbehälter ersatzweise geliefert. An diesem Beispiel erkennt man, wie robust die Strategie einer Serienfertigung ist. Der notwendige Ersatz eines Bauteils mit 36 Monaten Lieferzeit wäre bei einem Einzelprojekt zu einer wirtschaftlichen Katastrophe geworden. So konnte der Fahrplan nahezu eingehalten werden und im August 2020 die Beladung mit den 163 Brennelementen abgeschlossen werden.

Der nukleare Friedhof

Es ist eine russische Tradition, die nuklearen Abfälle in unmittelbarer Nähe des Kraftwerks zu lagern. Man hat deshalb parallel die Genehmigung für ein Endlager durchgeführt. Die erste Stufe für US$ 10 Millionen soll bis 2028 fertiggestellt sein. Man geht bei einer Betriebsdauer des Kernkraftwerks von (erstmal) 60 Jahren aus. In diesem Zeitraum sollen 9360 m3 feste Abfälle (leicht und mittelaktiv) und 60 m3 hochaktive Abfälle anfallen. Beim Abbruch der Anlage sollen noch einmal 4100 m3 leicht und mittelaktive Abfälle und 85 m3 hochaktive Abfälle anfallen. Die leicht und mittelaktiven Abfälle sollen dauerhaft lokal gelagert werden. Für die hochaktiven Abfälle wird ein unterirdisches Zwischenlager geschaffen.

Die Geschichte der VVER-Baureihe

In Rußland werden Druckwasserreaktoren als Wasser/Wasser-Energie Reaktoren (VVER) bezeichnet. Diesem Kürzel wird die gerundete elektrische Leistung in Megawatt und gegebenenfalls eine Fertigungsnummer angehängt. So ist der VVER-1200 ein Druckwasserreaktor mit rund 1200 MW elektrischer Leistung. Erst am 8.9.1964 wurde der erste Druckwasserreaktor als VVER-210 im Kraftwerk Novovoronezh kritisch und blieb bis 1984 in Betrieb. 1971 folgte der erste VVER-440 und 1980 der erste VVER-1000. Die beiden letzten Typen wurden auch exportiert (Ukraine, Armenien, Finnland, Bulgarien, Ungarn, Tschechien., Slowakei, Iran, China).

Alleinstellungsmerkmal aller VVER sind liegende Dampferzeuger und sechseckige Brennelemente. Das grundsätzliche Konstruktionsprinzip wurde bis heute beibehalten und ist ausgereizt. Durch die stetige Leistungssteigerung ergibt sich eine evolutionäre Entwicklung, bei der man die Betriebserfahrungen, technische Weiterentwicklungen (z. B. Werkstoffe) und zusätzliche Sicherheitsanforderungen (Containment, Kernfänger etc.) stets in die nächste Baureihe ohne all zu große Entwicklungsrisiken einfließen lassen kann. Führt man jedoch eine Baureihe über einen solch langen Zeitraum fort, verkompliziert dies irgendwann die Anlage. Dies gilt beispielsweise für die liegenden Dampferzeuger (Durchmesser 4 m, Höhe 5 m, Länge 15 m, Gewicht 340 to). Stehende Pumpen, Druckbehälter usw. mit liegenden Dampferzeugern zu verbinden, führt zu einer sehr unaufgeräumten Konstruktion mit langen und verschlungenen Rohrleitungen. Dies erschwert Wartung und Wiederholungsprüfungen. Das Reaktordruckgefäß wächst auch mit steigender Leistung. Durch die Beibehaltung der Grundkonstruktion mit zwei Anschlussebenen (4 Rücklauf und 4 Vorlaufleitungen plus Noteinspeisung) besteht das Druckgefäß aus 6 geschmiedeten Ringen und einer Kalotte. Die Schweißarbeiten am oberen und unteren Teil dauern jeweils 15 Tage bei einer Temperatur von 200 °C. Anschließend muß jede Hälfte noch bei 300 °C geglüht werden um die Spannungen in den Nähten zu verringern. Nachdem beide Hälften in einem weiteren Schritt zusammengeschweißt wurden, muß das gesamte Gefäß noch komplett mit einer korrosionsbeständigen Legierung plattiert werden. Alles sehr umständlich und damit teuer. Die Fertigungszeit beträgt deshalb etwa 36 Monate.

Hintergründe

Weißrussland ist als selbstständiger Staat aus der Auflösung der Sowjetunion hervorgegangen. Es ist ein relativ kleines und dünn besiedeltes Land mit knapp 60% der Fläche von Deutschland, aber nur 10 Millionen Einwohnern. Durch die enge Verknüpfung der Wirtschaft in der ehemaligen Sowjetunion – die bis heute noch nicht überwunden ist – kommt praktisch die gesamte Kohle, das Rohöl und Erdgas immer noch aus Rußland. Diese extreme Abhängigkeit hat immer wieder zu Spannungen zwischen beiden Ländern geführt. Vereinfacht kann man sagen, daß Putin-Rußland hat immer wieder versucht durch angedrohte Preiserhöhungen und Lieferunterbrechungen Weißrussland seinen Willen aufzudrücken – umgekehrt hat Weißrussland versucht, seine „Kosten“ durch Erhöhung von Transitgebühren erträglich zu halten. Insofern sind die Ostsee-Pipeline und das Kernkraftwerk Ostrovets unmittelbare Produkte dieses Konflikts. Rußland mußte Weißrussland ein Kernkraftwerk bauen und vorfinanzieren, sonst hätte es Weißrussland durch den Bau der Ostsee-Pipeline unweigerlich in die Arme des „Westens“ getrieben. Ein weiterer Satellitenstaat wäre dem „roten Zaren“ – wie schon vorher die Ukraine – davongelaufen.

Ein Kernkraftwerk entzieht sich weitestgehend politischer Erpressbarkeit: Wegen der außerordentlichen Energiedichte von Uran kann es für Monate und Jahre ohne neue Brennstofflieferungen betrieben werden. Auch ein russisches Kernkraftwerk stellt heute kein Problem mehr da. Es gibt für die Reaktoren heute Brennelemente von verschiedenen Herstellern außerhalb der russischen Einflußsphäre. Auch die Versorgung mit Ersatzteilen und „Kow-how“ ist nicht unbedingt ein Problem. Eine enge Kooperation mit der Ukraine, Finnland usw. kann im Ernstfall helfen – es haben schließlich all diese Länder ein Problem mit russischer Technik und Politik.

Der erste Reaktor der VAE ist kritisch

Mit der Inbetriebnahme des Kernkraftwerks Barakah sind die Vereinigten Arabischen Emirate (VAE) als 33. Nation in den weltweiten Kreis der Nationen mit friedlicher Nutzung der Kernenergie aufgestiegen. Ein unter verschieden Gesichtspunkten erwähnenswerter Schritt.

Proliferation

Die VAE haben sich bewußt zur ausschließlichen friedlichen Nutzung bekannt. Sie haben deshalb bewußt auf einen eigenen Brennstoffkreislauf vertraglich verzichtet: Keine Anreicherung von Uran und keinerlei Gewinnung von Plutonium um „Verdachtsmomente“ einer militärischen Nutzung vollständig auszuschließen. Bezug von Brennstoff nur in der Form einsatzbereiter Brennelemente. So radikal hat sich bisher keine Nation positioniert. Extremes Gegenbeispiel ist der Nachbar auf der anderen Seite des Golfs. Im Mullah-Iran wird die Anreicherung von Uran und die Gewinnung von (waffengrädigem) Plutonium leichtgläubigen Europäern als notwendig für den Betrieb des Kernkraftwerks Busher verkauft.

Der Verzicht auf einen eigenen Brennstoffkreislauf hat einerseits enorme diplomatische Verwerfungen ausgelöst und andererseits interessante neuartige Ansätze erschaffen. So haben die USA größte Bauschmerzen bei der Lieferung von Kernkraftwerken an Saudi Arabien oder Indien. Indien ist bereits faktisch „Atommacht“. Saudi Arabien ist nicht grundsätzlich bereit einen faktischen Verzicht auf Kernwaffen auszusprechen solange der „Erzfeind Iran“ weiter offen an der „Atombombe“ bastelt. Schon aus diesem Grunde ist das – insbesondere von Deutschland immer noch verzweifelt hoch gelobte „Iranabkommen“ äußerst kontraproduktiv gewesen. Andererseits ist durch die inzwischen verwirklichte Brennstoffbank mehr als ein Ansatz für die Nichtverbreitung von Kernwaffen geschaffen worden.

Um die Brennstoffversorgung zu sichern, wurde die Versorgung durch die VAE in fünf Bereiche vom Uranbergbau bis zum Brennelement gegliedert. Für jede Stufe wird mit mehreren Lieferanten aus unterschiedlichen Ländern Lieferverträge abgeschlossen. Für die Erstbeladung allein mit sechs Unternehmen. Für abgebrannte Brennelemente werden drei Perioden (bis 20 Jahre, bis 200 Jahre und darüber hinaus) definiert. Für die Lagerung bis zu 20 Jahren sind Abklingbecken vorgesehen. Alle sechs Jahre sollen die Elemente in oberirdische Betontresore für mindestens (mögliche) 200 Jahre umgelagert werden. Für den Zeitraum danach kann eine Wiederaufbereitung im Ausland durchgeführt oder eine direkte Endlagerung vorgenommen werden. Eine endgültige Entscheidung wird dann wahrscheinlich nach Kosten gefällt werden.

Die Energiesituation in den VAE

Im Jahr 2007 wurde eine umfangreiche Energiestudie durchgeführt. Man kam zu der Erkenntnis, daß der Verbrauch an elektrischer Energie mit einer Rate von 9% jährlich wachsen würde. Es blieb daher nur der Weg über den Neubau von Kernkraftwerken oder Kohlekraftwerken. Ab dem Jahr 2007 wurde die VAE bereits zum Netto-Gasimporteur mit stetig steigender Tendenz. Noch heute wird fast 98% der elektrischen Energie aus Erdgas gewonnen. Der Primärenergieverbrauch wurde 2018 aus etwa 40% Öl und 59% Erdgas gedeckt. Im Jahr 2017 wurden 127 TWh elektrische Energie verbraucht. Das Kernkraftwerk Barakah mit 4 Blöcken vom Typ APR1400 kann rund 44 TWh jährlich produzieren. Damit können erhebliche Mengen Erdgas in den nächsten Jahren für die Industrie oder den Export freigesetzt werden.

Finanzierung

Nach internationaler Ausschreibung und mehr als einjähriger Prüfung ging der Auftrag 2009 an die Korea Electric Power Company über die schlüsselfertige Lieferung zum Festpreis von 20 Milliarden USD für das Kernkraftwerk Barakah (3600 USD/kW). Es war der erste Exporterfolg Koreas für Reaktoren der sog. III. Generation. Insofern ein mutiger Schritt auf beiden Seiten. Vor der Entscheidung wurden zahlreiche internationale Fachleute mit Erfahrungen im Bau von Kernkraftwerken im Auftrag der VAE nach Korea entsandt. Ihr Auftrag war die Beurteilung der Zulieferer und der Baustellen des gleichen Typs. Die VAE selbst verfügen über zahlreiche Erfahrungen in der Abwicklung von Großprojekten ihrer Öl- und Gasindustrie und den Bau und Betrieb zahlreicher Gas-Kombi-Kraftwerke.

Im Jahr 2016 gingen die VAE und Korea eine gegenseitige Beteiligung ein. Man gründete ≫Barakah One (BO)≪ als Finanzierungs- und ≫Nawah≪ als gemeinsame Betriebsgesellschaft. An diesen beiden Gesellschaft hat jeweils die ≫Emirates Nuclear Energy Corporation (ENEC)≪ einen Anteil von 82% und die ≫Korea Electric Power Corporation (KEPCO)≪ einen Anteil von 18%. BO verfügt über ein Kapital von 24,4 Milliarden USD. Davon sind 4,7 Milliarden Eigenkapital und rund 19,6 Milliarden Fremdfinanzierung. Das Department of Finance of Abu Dhabi hat 16,2 Milliarden beigesteuert und die Export-Importbank von Korea (KEXIM) 2,5 Milliarden. Weitere Mittel kommen von einem Bankenkonsortium (National Bank of Abu Dhabi, First Gulf Bank, HSBC, Standard Chartered Bank). Das Volumen beinhaltet den Auftragswert (overnight cost), die Zinsen und etwaige Kostensteigerung durch Inflation während der Bauzeit, sowie die erste Brennstoffladung.

Die Baustelle als ein Konjunkturprogramm

Im July 2012 begann der Bau mit dem Betonieren der Grundplatte des Reaktors 1. Diese Arbeiten gelten international als der Baubeginn eines Kernkraftwerks. Im May 2013 folgte die Grundplatte des Reaktors 2 und im September 2014 Grundplatte 3 bzw. im September 2015 Grundplatte 4. Hier wird schon das Prinzip eines kostengünstigen Bauens erkennbar: Man baut viermal die gleiche Anlage, aber geringfügig zeitversetzt. So hat man jeweils nach dem Bau der Anlage 1 ein bereits geübtes Team für die Anlagen 2 bis 4 vor Ort. Dies bietet die größte Rationalisierung und Sicherheit vor Fehlern, die zu Bauverzögerungen führen. Eine stets wiederkehrende Erfahrung auf allen Baustellen der Welt. Dieser Takt wurde auch bei den Komponenten gehalten: Z. B. Einbau des ersten Reaktordruckgefäßes im May 2014, im Reaktor 2 im Juni 2015, im Reaktor 3 July 2016 und 2017 im Reaktor 4. Eine solche Auftragsvergabe wirkt sich natürlich auch kostensenkend bei den Zulieferern aus. Eine Kleinserie ist immer günstiger als eine spezielle Einzelanfertigung. Jedes „erste Mal“ birgt immer das Risiko nicht vorhergesehener Probleme, die automatisch zu Verzögerungen führen.

Auf der Baustelle arbeiteten mehr als 18 000 Menschen. So viele Menschen über so lange Zeit mit Unterkunft, Essen, sauberer Arbeitsbekleidung etc. zu versorgen, ist ein enormer Input für die lokale Wirtschaft. Hinzu kommen die Aufträge im Inland. Rund 1400 Unternehmen aus den VAE erhielten vom Generalunternehmer Aufträge über mehr als 3 Milliarden USD. Viel bedeutender als der Geldwert ist jedoch der Wissenstransfer: Alle Produkte und Dienstleistungen müssen den strengen Qualitätsanforderungen der Kerntechnik genügen. So haben die koreanischen Zulieferer durch tatkräftige Hilfe dazu beigetragen, daß zahlreiche Unternehmen sich erstmalig für eine Zulassung bei der American Society of Mechanical Engineers (ASME) zertifizieren konnten. So besitzen z. B. Emirates Steel durch ihre Lieferung für Betonstahl nun eine ASME-Zulassung für Kernkraftwerke. Solche Zertifikate müssen beileibe keine Eintagsfliegen sein. So konnte der Kabellieferant Ducab inzwischen sogar Kabel für das Kernkraftwerk Shin Hanul in Korea liefern. Es ist kein Zufall, daß hier keine Rede mehr von DIN und sonstigen deutschen Regelwerken ist. Keine Exporte von Kernkraftwerken, keine Verbreitung von deutscher Spitzentechnik. Wer seinen Betrieb einmal aufwendig auf die US-Maßsysteme und ihre Technik-Philosophie eingestellt hat, wird nur sehr unwillig alles ändern. Dies gilt auch für andere Produkte.

Die Folgeaufträge

Ein solches Projekt ergibt eine gegenseitige Verknüpfung der Wirtschaftsbeziehungen für Jahrzehnte. Für den Lieferanten ergeben sich unzählige lukrative Folgeaufträge. So hat die Korea Hydro und Nuclear Power (KHNP) mit der Betriebsgesellschaft Nawah ein ≫Operating Support Service Agreement (QSSA)≪ abgeschlossen. Für 10 Jahre nach Fertigstellung sollen 400 Fachkräfte von KHNP den Betrieb vor Ort unterstützen. Der Auftragswert: 880 Millionen USD. Hinzu kam 2017 ein weiteres Abkommen zwischen KHNP und Nawah über den gemeinsamen Einkauf von Ersatzteilen für die koreanischen und VAE Kraftwerke vom Typ APR1400. Im März 2019 hat Nawah einen fünfjährigen Wartungsvertrag mit Kepco und Doosan Heavy Industries abgeschlossen. Man muß nicht nur unzählige „Elektro-Golfs“ verkaufen, bis man einen Umsatz von 20 Milliarden erzielt hat, sondern bei einem Kernkraftwerk fallen einem auch noch weitere Milliardenaufträge quasi ins Haus. Nicht zu unterschätzen, welche ganz anderen Aufträge man durch solch enge Kontakte einwerben kann. So haben sich die Koreaner schon vorher durch den Bau von Gaskraftwerken und Meerwasserentsalzungsanlagen einen Namen in den VAE gemacht. So wie einst Siemens – jedenfalls sind nicht immer höhere Lohnkosten in Deutschland eine Ausrede für alles. Politischer Wille spielt auch eine nicht ganz unwichtige Rolle. Wenn man jedenfalls sein Heil in der Neuerfindung mittelalterlicher Techniken sucht, sollte man sich über keinen Stellenabbau wundern.

Der steinige Weg

Es ist eine nicht zu unterschätzende Leistung, ein bitterarmes Volk aus einer nahezu unbewohnbaren Salzwüste in das 21. Jahrhundert zu katapultieren. Inzwischen setzt sich in allen Ölförderländern die Erkenntnis durch, daß nur durch eine konsequente Industrialisierung dauerhaft gut bezahlte und anspruchsvolle Arbeitsplätze geschaffen werden können. Davor steht wiederum Bildung und Ausbildung. So ist die Emirates Nuclear Energy Corporation (ENEC) buchstäblich aus dem Nichts 2008 entstanden. Heute hat die ENEC über 2900 Mitarbeiter. Der Anteil der Emiratis ist inzwischen auf 60% angestiegen und der Anteil der Frauen beträgt 20%, was vielleicht viele „Gender-GaGa-Anhänger“ erstaunen mag. Hier wächst eine Generation hoch qualifizierter Frauen heran, von denen bereits einige Führungspositionen – ganz ohne Quote, sondern durch Fleiß (Kerntechnik-Studium) und Befähigung – erklommen haben.

Der Weg ist durchaus eine Orientierung für andere Schwellen- oder gar Entwicklungsländer die Kernenergie nutzen wollen. Auch Wissen kann importiert werden. Man hat Fachleute aus aller Welt mit mindestens 25-jähriger einschlägiger Berufserfahrung angeworben. Der eigene Nachwuchs lernt durch die unmittelbare Zusammenarbeit an dem konkreten Projekt. Für die Grundausbildung sind vier Züge vorgesehen:

  1. Weiterbildung von erfahrenem Personal aus anderen Industriezweigen des Landes.
  2. Studium von besonders qualifizierten Studenten der eigenen Hochschulen zur Erlangung eines „Nuclear Masters“ an renommierten Universitäten im Ausland.
  3. Aufbau eines „Bachelors der Kerntechnik“ an den Hochschulen des Landes.
  4. Techniker für Wartung und Betrieb im eigenen Kraftwerk.

KHNP und ENEC haben 2016 einen Vertrag über die Entsendung von 50 Fachkräften für die Ausbildung in Korea abgeschlossen. Daraus sind unter anderem 10 voll ausgebildete und zertifizierte Reaktorfahrer hervorgegangen. Seit 2010 läuft das ≫Energy Pioneers Program≪ mit den USA. Bisher wurden 500 Emiratis ausgebildet. Weiter werden 200 Emiratis durch die USA zu Reaktorfahrern ausgebildet. Im July 2019 wurden die ersten 15 Reaktorfahrer nach 3-jähriger praktischer Ausbildung in Korea, Südafrika und USA von der ENEC zugelassen. Für den Betrieb des Kraftwerks geht ENEC von etwa 2000 Dauerarbeitsplätzen aus.

Zwangsläufige Verzögerungen

Die Kernenergie in den VAE wurde praktisch auf einem weißen Blatt begonnen. Von Anfang an hat man die Kooperation mit dem Ausland angestrebt um aus Erfahrungen und Fehlern zu lernen. Auf Transparenz gegenüber allen internationalen Institutionen wurde stets großer Wert gelegt. Die Federal Authority for Nuclear Regulation (FANR) der VAE ging nie allein vor.

Bereits im Mai 2017 wurden vertragsgemäß die Brennelemente für den ersten Reaktor geliefert und im Kraftwerk bis zur Erlangung einer Betriebsgenehmigung eingelagert. Im Oktober 2017 hat ein ≫Pre-Operational Safety Review Team (Pre-OSART)≪ der ≫World Association of Nuclear Operators (WANO)≪ die Anlage auf ihre Betriebssicherheit überprüft. 15 internationale Fachleute aus 7 Ländern haben 18 Tage vor Ort das Kraftwerk begutachtet. Hierbei geht es vor allen Dingen um die Einhaltung der Sicherheitsstandards der ≫International Atomic Energy Agency (IAEA)≪. Der Bericht schloß mit einem Lob für die Bildung der „Multi-Kulti“ Betriebsmannschaft, aber auch mit einiger Kritik ab. Es wurde für die Behebung der Mängel ein Zeitraum von 18 Monaten vorgegeben.

Im März 2018 wurde der erste Reaktor offiziell fertig gestellt und dem Kunden übergeben. Damit sind alle Tests und Prüfungen unter Fremdenergie abgeschlossen und die Betriebsfähigkeit nachgewiesen. Der Reaktor durfte aber erst mit Kernbrennstoff beladen werden, nachdem die Betriebsgesellschaft Nawah eine Betriebserlaubnis erhalten hatte.

Im November 2019 führte die WANO eine ≫Pre-Start Up Review≪ durch und erklärte den Reaktor 1 für betriebsbereit. Am 17.02.2020 erteilte die FANR als zuständige Institution der Nawah eine Betriebsgenehmigung für 60 Jahre. Dies geschah nachdem über 14 000 eingereichte Seiten technische Dokumentation geprüft, 255 Inspektionen durchgeführt, 2000 ergänzende Anfragen bearbeitet und 40 internationale Inspektionen durch WANO und IAEA durchgeführt worden waren. Damit konnte Reaktor 1 mit Kernbrennstoff beladen werden. Die Erstbeladung konnte bereits durch ein Team aus 90% Emitatis eigenverantwortlich durchgeführt werden. Trotz Corona konnte nun endlich zum 1. August der erste Block seine Kettenreaktion einleiten. Es beginnen jetzt die üblichen Garantietests in verschiedenen Leistungsstufen. Man strebt eine vollständige Übergabe bis Ende des Jahres an. Gleichwohl wird schon in dieser Inbetriebnahmephase elektrische Energie in das Verteilnetz der VAE eingespeist.

APR1400 aus Korea

Der APR1400 (Advanced Power Reactor mit 1400 MWel) besitzt sogar die Zulassung der US-Genehmigungsbehörde. Es ist allerdings unwahrscheinlich, daß er je auf dem Gebiet der Vereinigten Staaten errichtet wird. Trotzdem hat die Korea Hydro & Nuclear Power Company Ltd. (KHNP) zig Millionen in diesen umfangreichen Genehmigungsprozess investiert. Diese Zulassung gilt international als der „Goldstandard“. Nahezu ein muß, wenn man ein Kernkraftwerk auf dem Weltmarkt an Länder mit ausreichend harten Devisen verkaufen will – und nur das verspricht langfristig Gewinn. China versucht über eine Kooperation mit EDF ihren HUALONG-Reaktor wenigstens in GB zugelassen zu bekommen. Rußland lernt gerade in Finnland und der Türkei, wie umfangreich und inhaltsschwer ein Genehmigungsverfahren in „westlichen Kulturen“ ist. Die sprichwörtliche Geheimniskrämerei und Arroganz gegenüber „kleinen Nationen“ ist dabei wenig hilfreich, eher hinderlich. So ist das mit viel Selbstbewußtsein gestartete Projekt Hanhikivi 1 in Finnland seit Jahren im Genehmigungsverfahren stecken geblieben. Man wollte schon 2018 mit dem Bau begonnen haben und hofft nun wenigstens auf eine Genehmigung bis 2021. Die resultierenden Kosten (Festspreisangebot) bei jetzt schon absehbarer Verzögerung um mindestens 10 Jahre könnten noch eine harte Nuss für Putin werden, stammen die Mittel doch aus dem russischen Pensionsfond. So viel vorweg, um die Leistung der koreanischen Industrie und den Startvorteil auf dem Weltmarkt richtig einzuordnen.

Ein weiterer Vorteil ist, daß mit Shin Kori 3 (seit 2016) und Shin Kori 4 (seit 2019) bereits zwei Reaktoren erfolgreich am Netz sind. Shin Kori 5 ist seit 2017 und Shin Kori 6 seit 2018 in Bau, ebenso Shin Hanul 1 und Shin Hanul 2. Vier weitere Reaktoren stehen vor der Fertigstellung in Barakah in den vereinigten Emiraten. Was aber fast noch wichtiger in der heutigen Zeit ist, der Bau von Barakah 1 begann 2012 und die fristgerechte Fertigstellung erfolgte 2018 – in einem entfernten Land, mitten in der Wüste, fast ohne vorhandene kerntechnische Infrastruktur. Parallel mußte die gesamte zugehörige Betriebsmannschaft erst ausgebildet werden, was zu einiger Verzögerung bei der Inbetriebnahme führt. Besonders attraktiv ist jedoch der Preis mit rund 3600 US$ pro Kilowatt. Wohlgemerkt für eine Energiequelle mit 90 %iger Verfügbarkeit gemäß Bedarf. Damit kann keine Sonnenenergie – auch nicht am Golf – konkurrieren, denn auch dort ist es des Nachts dunkel und oft genug ist der Himmel am Tage bedeckt (jährliche Arbeitsausnutzung). Wie konnte Süd-Korea dies Gelingen?

Die koreanische Geschichte der Kernkraftwerke

Korea unterteilt seine kerntechnische Geschichte selbst in vier Phasen. In der ersten Phase (70er Jahre) wurden Kernkraftwerke vollständig importiert. In der zweiten Phase (80er Jahre) wurden immer mehr nukleare Komponenten im eigenen Land hergestellt. Hierfür wurden enge Kooperationen – einschließlich Wissenstransfer – mit den einschlägigen Zulieferern im Ausland abgeschlossen. Hierdurch gelang es sehr schnell, eine eigene kerntechnische Industrie aufzubauen. Das Ziel der dritten Phase (90er Jahre) war die Entwicklung eines möglichst unabhängigen (im Sinne von Lizenzbedingungen) eigenen Reaktors. Ausländische Zulieferer konnten nur noch als Subunternehmer einheimischer Zulieferer tätig werden. Es entstand der Reaktor OPR1000. Von ihm wurden im Zeitraum von 1989 bis 2015 zehn Reaktoren in Korea gebaut und in Betrieb genommen. Parallel wurde die komplette kerntechnische Infrastruktur von Forschung, Entwicklung, Schulung, Genehmigungsverfahren usw. installiert. Aus Korea wurde eine international respektierte Kernenergienation. Ausdrücklich ohne jedes militärische Interesse. Ganz im Gegensatz zum Glaubensbekenntnis tumber „Atomkraftgegner“, daß Kernenergie immer einen militärischen Hintergrund hat. Im rohstoffarmen Südkorea ging es vielmehr um eine gesicherte Eigenversorgung mit Energie und hochwertige Exportgüter. Bis hierher, eine Menge Parallelen zu Deutschland…

Nach dem Reaktorunfall in Harrisburg USA und Tschernobyl in der Sowjetunion setzte weltweit ein Run auf die Entwicklung noch sicherer Reaktoren der sog. „III. Generation“ ein. Eine (teilweise) Kernschmelze wie in Harrisburg sollte noch unwahrscheinlicher werden und selbst über die bisherigen Auslegungskriterien hinausgehende Unfälle sollten in ihre Wirkung auf das Betriebsgelände beschränkt werden. Aus diesen Überlegungen entstand in Südkorea seit Anfang des Jahrhunderts der Typ APR1400. Man orientierte sich wieder an den USA (Modell 80+ von Combustion Engineering), achtete aber auf eine Unabhängigkeit über Lizenzerwerb und konsequente Entwicklung eigener Berechnungs- und Konstruktionsverfahren. Heute kann man ein komplettes Kernkraftwerk der Generation III, einschließlich (digitaler) Steuerung und Regelung und aller nuklearen Komponenten bauen. Ein Zustand, den China gerade erst erreicht und Russland immer noch nicht erreicht hat (Regelung, Turbine etc.).

Wie sich durch Projekte in Flamanville (EPR in Frankreich) oder Vogtle (AP1000 in USA) zeigt, ist aber die nahezu wichtigste Voraussetzung für die Einhaltung geplanter Bauzeiten eine geübte Mannschaft an qualifizierten Fachleuten. Südkorea hat dies durch den kontinuierlichen Ausbau erreicht. Eine jahrzehntelange Unterbrechung hingegen, bedeutet faktisch einen Neuanfang in der Kerntechnik. Wissen und Übung geht schlichtweg verloren. Ferner ist für die Kosten auch eine möglichst einfache Konstruktion erforderlich. Jeder Kubikmeter umbauter Raum treibt die Kosten vielfach, jede Schweißnaht auf der Baustelle ist eine potenzielle Fehlerquelle etc.

Die Konstruktion des APR1400

Der APR1400 ist eine konsequente evolutionäre Weiterentwicklung vorhandener Druckwasserreaktoren. In jedes Bauteil sind die Betriebs- und Montageerfahrungen der vorausgegangenen 10 OPR 1000 eingeflossen. Eine schrittweise Entwicklung, wie man sie z. B. auch aus der Automobilindustrie (vom Golf x, über den Golf y zum Golf z) kennt. Entwicklungssprünge und Verfahrenswechsel hingegen (z. B. vom Käfer mit luftgekühltem Benzinmotor auf den Golf Diesel), sind immer mit Risiko und Kinderkrankheiten verbunden. Mit anderen Worten, man hat gar nicht versucht den „Superreaktor“ zu bauen, sondern vielmehr eine solide Arbeitsmaschine, die dafür aber kostengünstig ist.

Bei den Sicherheitsanforderungen eines Reaktors der sogenannten „dritten Generation“ hat man sich konsequent an den Forschungs- und Entwicklungsarbeiten in den USA (CE80+ von Combustion Engineering/Westinghouse) orientiert. Die dort entwickelten Rechenprogramme und Versuche an Modellen und in Kraftwerken haben die Zulassung enorm beschleunigt. Dies betrifft ganz besonders auch die Werkstoffe, denn anders als z. B. in der „Klimafolgenforschung“ muß jedes Rechenprogramm seine Aussagefähigkeit durch Nachrechnung von Versuchen unter Beweis stellen. Eine höchst kosten- und zeitintensive Angelegenheit.

Bei der Konstruktion und Zulassung hat man gleich ein „Plant Life“ von 60 Jahren angesetzt. Es scheint leider immer wieder notwendig, darauf hinzuweisen, daß es bei einem Kernkraftwerk keine technische Lebensdauer gibt, sondern lediglich eine wirtschaftliche. So ist z. B. die Betriebserlaubnis für vier Kraftwerke in USA (Peach Bottom 2,3 und Turkey Point 3,4) bereits auf 80 Jahre verdoppelt worden. Alles hängt nur von den Wartungs- und Modernisierungskosten ab. So gibt es andererseits z. B. in Japan Kraftwerke jüngeren Datums, die wegen erforderlicher Anpassung an heutige Sicherheitsanforderungen (Tsunami) nicht mehr zu vertretbaren Kosten nachrüstbar sind. Von ideologischem Aktionismus wie in Deutschland, gar nicht zu reden. Eine Orientierung bietet immer der Verschleiß (Neutronenbeschuß) des Reaktordruckgefäßes. Heute besitzt man spezielle Werkstoffe und ein besseres Verständnis der Zusammenhänge als noch vor 50 Jahren. So kann man einen rechnerischen Nachweis für mindestens 60 Jahre erbringen. Entsprechend der später tatsächlich aufgezeichneten Belastungen kann die „Lebensdauer“ weiter angepaßt werden.

Ähnlich sieht es mit den Dampferzeugern aus. Einerseits hat sich die Qualität, die Wasserchemie, die Werkstoffe (Inconel 690) usw. bedeutend verbessert, andererseits kann man schlicht durch eine Überdimensionierung eine Reserve schaffen. So besitzt jeder der zwei Dampferzeuger 13102 Rohre, von denen bis zu 10% ohne Leistungseinbuße verschlossen werden können.

Der Brennstoff ist für Wechselintervalle von mindestens 18 Monaten ausgelegt. Dies erlaubt eine Arbeitsverfügbarkeit von deutlich über 90%. Die Instrumentierung und Steuerung ist voll digital. Südkorea kann eine Eigenentwicklung anbieten. Es handelt sich um eine offene Architektur, die ebenfalls eine Nutzungsdauer von zig Jahrzehnten auch bei Hardware-Veränderungen erlaubt. Die Steuerung ist so konzipiert, daß der Reaktor voll automatisch Laständerungen folgen kann.

Sicherheitssysteme

Anders als z. B. bei dem französischen EPR wurde auf sicherheitstechnischen Schnickschnack wie eine doppelte Betonhülle (gegen fiktive Flugzeugabstürze und Terror) und einen „Core Catcher“ (gegen Hollywoods China Syndrom) verzichtet. Beides Kostentreiber. Trotzdem wurde die Wahrscheinlichkeit für eine Beschädigung des Kerns (Unfall in Harrisburg) auf unter ein Ereignis in 100 000 Reaktorbetriebsjahren und ein Containment-Versagen (Fukushima) mit Freisetzung von Radioaktivität auf weniger als einmal in 1 Million Reaktorbetriebsjahren gedrückt.

Reaktorkern

Ein Reaktorkern muß stets ausreichend gekühlt werden (Nachzerfallswärme nach Abschaltung). Wenn Kühlmittel verloren geht (z. B. Bruch einer Rohrleitung) muß dies sofort ersetzt werden. Der APR1400 besitzt hierfür einen ausreichend großen Tank innerhalb des Sicherheitsbehälters (IRWST, in-containment refueling water storage tank). Einem Wasserverlust und damit Druckverlust im Primärkreislauf wird passiv durch einen Druckspeicher entgegengewirkt. Es ist ein Druckbehälter mit Stickstoffpolster, der ab einem Systemdruck von 40 bar etwa 51 m3 nachspeisen kann. Es ist ein passives Sicherheitssystem (keine Fremdenergie nötig), das automatisch auslöst. Zusätzlich gibt es vier völlig voneinander getrennte Noteinspeisungen, die mit elektrischen Pumpen oder Dampfturbinen betrieben werden. Sie speisen direkt über eigene Anschlüsse in den Druckbehälter – oder wenn noch möglich – in die Dampferzeuger ein. Bei Störfällen, die über die Auslegung hinausgehen, wird zusätzlich die Grube, in der sich der Reaktordruckbehälters befindet mit Wasser gefüllt. So wird der Druckbehälter auch dann dauerhaft gekühlt, wenn bereits eine Kernschmelze eingetreten ist (Fukushima). In den ersten 30 Minuten laufen alle Maßnahmen ohne jeden Eingriff des Betriebspersonals ab. Man will damit Fehlbedienungen (Harrisburg) verhindern, bis das Personal sich einen detaillierten Überblick verschafft hat und wieder etwas Ruhe eingekehrt ist. Die weitere Notkühlung ist für einen automatischen Betrieb über acht Stunden ausgelegt. Genug Zeit, um auch Hilfe von außen heranführen zu können.

Sicherheitsbehälter

Das Containment besteht aus einem zylindrischen Spannbetonbehälter. Er übernimmt den Schutz gegen Einwirkungen von außen (Flugzeugabsturz, Terror etc.). Gleichzeitig verhindert er die Freisetzung von radioaktiven Stoffen auch bei schwersten Störfällen mit zerstörtem Kern. Gegen Wasserstoffexplosionen (Fukushima) gibt es 30 Katalysatoren und 10 Zündeinrichtungen, die gefährliche Konzentrationen verhindern. In dem Sicherheitsbehälter befinden sich Sprinkler, die radioaktive Stoffe (z. B. Jod) aus der Atmosphäre im Containment auswaschen können, bevor sie über die Filteranlagen und den Kamin in die Umwelt gelangen (Tschernobyl, Fukushima). Zusätzlichen Schutz gegen Einwirkungen von außen bietet die Architektur: Alle Hilfs- und Nebengebäude sind schützend um das Containment angeordnet. Dabei wird das Prinzip vierfacher Sicherheit beibehalten. Es gibt vier hermetisch von einander getrennter Gebäudeteile. Sie sind durch Brandmauern und Flutschutz (Fukushima) vollständig getrennt.

Bauweise

Durch den konsequenten Einsatz von 3-D-Simulationen und Baustellenmanagement konnte die Bauzeit schon bei Shin-Kori 3&4 auf 55 Monate (vom ersten Beton der Grundplatte bis zur Übergabe) beschränkt werden. Bei einem „Bau in Serie“ geht man von 48 Monaten Bauzeit aus. Dies wird auch durch eine Sektionsbauweise mit vorgefertigten Modulen, Einsatz von Schweißrobotern, Einbringung von Dampferzeugern und Druckgefäß von oben mittels Schwerlastkran etc. erreicht. Wichtig ist die kontinuierliche Auslieferung von Kernkraftwerken im In- und Ausland. Nur so kann auf allen Teilgebieten mit geübten Fachkräften gearbeitet werden und Erfahrungen geteilt werden. Reißt die Pipeline für viele Jahre ab – wie in USA und Frankreich geschehen – fängt man quasi wieder von vorne an. Kraftwerksbau wird zum unkalkulierbaren wirtschaftlichen Risiko (gemacht).

Nachwort

Südkorea und China beweisen, daß Kernenergie immer noch die kostengünstigste und zuverlässigste (vom Wetter unabhängig) Methode ist elektrischen Strom zu erzeugen. Selbst in Ländern, in denen fossile Energieträger (USA, China, Indien, arabischer Raum) reichlich vorhanden sind. Man muß es nur richtig machen!

Druck- und Siedewasserreaktoren sind noch lange nicht an ihrem technologischen Ende angekommen. Genauso wenig, wie Heizkessel durch Wärmepumpen und „Mao-Diesel“ verdrängt worden sind, obwohl das schon vor fast 50 Jahren in den Ölkrisen 1973 und 1976 prophezeit wurde. Es gilt auch weiterhin die Kostendegression durch Anlagengröße. Reaktorgrößen zwischen 1000 und 1500 MWel werden deshalb weiterhin gebaut werden. Industriell gefertigte Kleinreaktoren (SMR) werden noch für lange Zeit ein Nischenprodukt bleiben. Betrachtet man die Gesamtkosten (Personal, Bewachung, Wiederholungsprüfungen usw.) werden sie noch unter Beweis stellen müssen, daß die Stromkosten tatsächlich geringer sind.

Vergleicht man Deutschland und Südkorea, stellt man eine Menge Parallelen fest. Nicht nur die Rohstoffarmut und das Wiedererstehen nach schrecklichen Kriegen. Wenn Deutschland nicht von Öko-Sozialistischen-Irrlehren heimgesucht worden wäre und es in der Energiewirtschaft Unternehmer (ein Unternehmer unternimmt etwas) an der Stelle von Kombinatsleitern (sich selbst als ausführender Arm der Politik verstehend, nur auf staatliche Subventionen schielend) geben würde, wäre Deutschland noch heute ein hoch geschätzter Lieferant von Kraftwerken auf dem Weltmarkt. Wohlstand durch Exporterfolge wäre garantiert und als Bonbon zusätzlich „billige Strompreise“ im Inland und nicht Zwangsabschaltungen von „Kleinverdienern und Rentnern“. Wie ging noch mal das Märchen von „Hans im Glück“?