Die Chinesen sind gelandet

Bisher etwas unbeachtet, beginnen die Chinesen den europäischen Markt für Kernkraftwerke zu erobern. Der erste Schritt ist mit dem Genehmigungsverfahren in Großbritannien eingeleitet.

Die französische Vorgeschichte

Schon seit längerem betreibt der staatliche französische Energieversorger EDF (Electricite de France) auch die Kernkraftwerke in England. Etwas ungewöhnlich, handelt es sich doch um gasgekühlte (CO2) und mit Graphit moderierte Reaktoren älteren Datums. Ein Typ, der schon lange in Frankreich abgeschaltet wurde. Gleichwohl ist EDF somit als ein zuverlässiger und etablierter Betreiber in GB bekannt.

Es war damit folgerichtig, daß auch bei der Renaissance der Kernkraft die EDF an vorderster Stelle mit dabei sein würde. Es entstand das Projekt Hinkley Point C in Somerset mit zwei ebenfalls französischen Reaktoren vom Typ EPR. Alles schien ganz einfach – wenn nicht der französische Versorger chronisch unterfinanziert wäre. Es mußte deshalb unbedingt ein kapitalkräftiger Investor mit ins Boot, zumal noch weitere Kernkraftwerke geplant waren. Die Chance für den chinesischen Staat einen Fuß in die Tür des europäischen Marktes zu bekommen. Seltsamerweise ist die Angst vor einer Abhängigkeit in der volkswirtschaftlichen Schlüsselgröße der Stromversorgung von der chinesischen Diktatur noch geringer, als die Furcht vor dem „friedliebenden und aufrechten Demokraten“ Putin. Irgendwie scheint in den Hirnen europäischer Politiker der Irrglaube, elektrische Energie sei so etwas ähnliches wie Kartoffeln, fest verwurzelt zu sein.

Die chinesische Vorgeschichte

China baut inzwischen mehrere Reaktoren pro Jahr. Hunderttausende hoch qualifizierte und überdurchschnittlich bezahlte Arbeitskräfte sind dafür nötig. Allerdings ist jedem klar, daß auch in einem Riesenreich der Markt irgendwann gesättigt ist. Darüberhinaus muß man eine Menge Autos, PC’s oder Jacken aus recyceltem Plastik verkaufen, um den Umsatz nur eines einzigen Kraftwerks zu erzielen. Ein Wissen, das in Deutschland völlig verloren gegangen zu sein scheint. Deshalb der konsequente Schritt der Chinesen in den Export.

Allerdings ist das einfacher beschlossen, als umgesetzt. Ein wichtiger Hebel ist der Preis und die Finanzierung. Trotzdem ist für ein solch sensibles Produkt auch eine gewisse Reputation nötig. Es reicht (noch nicht) der Nachweis einer großen Stückzahl im eigenen Land. Dies gilt besonders für geheimniskrämerische, sozialistisch geprägte Diktaturen wie China und Rußland. Man versucht deshalb wenigstens den Goldstandard eines „westlichen Genehmigungsverfahrens“ zu erlangen. Ein teures und aufwendiges Unterfangen, wie bereits Rußland in Finnland zu spüren bekommt. Es ist halt ein himmelweiter Unterschied, ob man sich in irgendwelchen Hinterzimmern – unter gegenseitig wohlgesonnenen Fachleuten – Papierberge hin und her schiebt oder im Internetzeitalter unter den Argusaugen von „Atomkraftgegnern“ ein transparentes Verfahren durchstehen muß.

Hinzu kommen bei den Chinesen noch komplizierte Lizenzfragen. Man hat sich aus aller Welt Kernkraftwerke zusammengekauft. Ein Wirrwarr von Lizenzverträgen. Deshalb versucht man es hier mit einer vermeintlichen Eigenentwicklung. So etwas ist in Industrieländern schlicht unverkäuflich. Nicht einmal über den Preis oder politische Kompensationsgeschäfte. Ein Bau in England als Referenz, erscheint daher wie ein Sechser im Lotto. Deshalb also der gemeinsame Antrag von China General Nuclear Power Corporation (CGN), Electricite de France (EDF S.A.) and General Nuclear International (GNI) zum Bau und Betrieb von bis zu sechs Reaktoren. Einschließlich großzügiger Finanzierung, versteht sich.

Die Entstehungsgeschichte des Hualong

Ihren Gemischtwarenladen – nicht nur an Leichtwasserreaktoren – haben die Chinesen nach dem Unglück von Fukushima geschickt zu bereinigen versucht. Es soll zukünftig nur noch ein Typ gebaut werden – sicherheitstechnisch auf den neusten Stand der Technik gebracht versteht sich.

Alles begann mit der Übernahme französischer Druckwassertechnik, die zum Bau der Reihe M310 im Jahr 1987 führte (4 Reaktoren, Inbetriebnahmen 1994–2003). Dies führte zur Baureihe CPR1000 im Jahr 2005 (13 Reaktoren, Inbetriebnahmen 2010–2016). Die Erfahrungen aus Bau und Betrieb führten 2010 zur überarbeiteten Baureihe CPR1000+ (2 Reaktoren, Inbetriebnahmen 2016–2017). Die Denkpause nach dem Unglück von Fukushima führte zur Baureihe ACPR1000 (4 Reaktoren, noch im Bau). Bisheriger Abschluss dieser evolutionären Entwicklung ist der Typ HPR1000, der seit 2015 im Bau ist. Dies ist auch die Basis des ersten Exports Karachi 2, welches seit 2015 in Pakistan gebaut wird.

China verfügt also über genügend Erfahrung in der Abwicklung solcher Großprojekte. Leider muß man aktuell sagen, sogar über mehr Praxis als die USA und Frankreich. Durch deren lange Pausen beim Neubau von Kernkraftwerken sind dort die Erfahrungen abgerissen und müssen erst wieder mühselig neu erworben werden. Von Deutschland braucht man in diesem Zusammenhang gar nicht mehr zu reden. Hier ist die Deindustrialisierung bereits so weit fortgeschritten, daß man nicht mal mehr einen vergleichbar simplen Flughafen bauen kann.

Die eingereichten Unterlagen

Im Oktober 2017 wurden die ersten Unterlagen bei der britischen Genehmigungsbehörde eingereicht. In ihnen wird immer von einem UK-HPR1000 gesprochen. Man ist sich also darüber im Klaren, daß es eine spezielle Version geben muß, damit sie in GB genehmigungsfähig ist. Interessant an den eingereichten Unterlagen ist, daß es Beschreibungen des Hualong sind, wie er gerade im Kraftwerk Fangchenggang als Block 3 gebaut wird (HPR1000(FCG3)). Auf diese Weise erhält man einen – wenn auch sehr kleinen – Einblick in die aktuelle chinesische Reaktortechnik.

Bereits aus den beigefügten Zeichnungen kann man erkennen, daß es sich um einen typischen „französischen Reaktor“ handelt, wie er dutzendfach in Frankreich steht. Charakteristisch sind die drei Dampferzeuger und die dreifachen (redundanten) Sicherheitssysteme. Es handelt sich keinesfalls um eine Neukonstruktion mit grundsätzlich passivem Sicherheitsansatz wie z. B. der AP1000 von Westinghouse oder einem evolutionär weiterentwickelten Konvoi-Reaktor wie den EPR mit vierfacher Redundanz. Es wird interessant sein, wie die Genehmigungsbehörde darauf reagieren wird. So wie er eingereicht wurde, ist er eher ein Neubau vorhandener und nachgerüsteter französischer Reaktoren. Entweder müssen die Chinesen noch richtig Geld in die Hand nehmen um das Sicherheitsniveau moderner westlicher Reaktoren zu erreichen oder GB gibt sich mit geringeren – als möglichen – Sicherheiten zufrieden. Dann könnte man aber auch Reaktoren in Korea oder Rußland kaufen. In diesem Zusammenhang wird auch das Genehmigungsverfahren des russischen Kernkraftwerks in Finnland noch sehr interessant werden. Ist doch auch dort der unmittelbare Vergleich zum EPR gegeben. Jedenfalls ist der Hualong keinen Deut sicherer als die Kernkraftwerke, die gerade in Deutschland vom Netz genommen werden. Absurdistan läßt grüßen. Auch der Betrieb dürfte keineswegs günstiger sein. Dafür sorgt schon die Dreisträngigkeit (Sicherheitsphilosophie: Ein System versagt, ein weiteres startet nicht, d. h. es steht noch ein drittes zur Verfügung. Bei vierfacher Redundanz kann man somit Wartungsarbeiten während des Betriebs durchführen.). Ebenso die konventionelle Leitungsführung (Wiederholungsprüfungen) und die Hauptkühlmittelpumpen.

Einige Unterschiede zum EPR

Die Leistung des Hualong beträgt nur 70% des EPR. Dies ist kein prinzipieller Nachteil. Allerdings beträgt die Leistung der Dampferzeuger mit 1050 MWth fast 93% der Leistung der Dampferzeuger des EPR. Man hat also durch Weglassen eines Stranges Baukosten gespart.

Der Kern des Hualong besteht aus nur 177 Brennelementen gegenüber 241 Brennelementen beim EPR. Aber die lineare Wärmeleistung ist mit 179 W/mgegenüber 170 W/m2 sogar höher. Auch hier wurde also zur Kosteneinsparung geknautscht. Ebenso ist die aktive Höhe des Kerns mit 3,66 m kleiner als beim EPR mit 4,20 m. Interessant werden die Ergebnisse der thermohydraulischen Vergleichsrechnungen mit ein und demselben Programm sein. Es ist die klassische Frage nach der Optimierung von Kosten und Sicherheitszugewinn die sich hier stellt.

Die Auslegungslebensdauer (nicht zu verwechseln mit der tatsächlichen oder wirtschaftlichen Lebensdauer; sie sind wesentlich höher) wird keck mit 60 Jahren angegeben. Lebensdauer ist aber immer eine Frage der Konstruktion, der verwendeten Materialien und Fertigungsverfahren, der Qualitätssicherung und des Betriebs. Schon die Konstruktion gibt zu denken: Der EPR hat im Druckbehälter einen ca. 30 cm dicken Reflektor aus Stahl, der als Schutzschild für das Reaktordruckgefäß gegen die Bestrahlung mit Neutronen dient. Qualitätssicherung nach europäischen Maßstäben ist die nächste Frage. Man denke nur an das Theater um den Kohlenstoffgehalt im Deckel des EPR von Flamanville. Ein vermeintlicher Kostenvorteil chinesischer und russischer Fertigungsstätten kann schnell in einen Nachteil mit unkalkulierbaren Kostensteigerungen umschlagen, denn man wird weder in Finnland noch GB bereit sein, ein erhöhtes Risiko einzugehen – egal ob aus mangelnden technischen Fähigkeiten des Herstellers oder systemtypischer Schlamperei.

Der EPR hat einen sog. „Core-Catcher“, der bei einer Kernschmelze verhindern soll, daß der Sicherheitsbehälter zerstört wird. Beim Hualong wird die Grube, in der sich der Druckbehälter befindet mit „ausreichend borierten“ Wasser geflutet. So soll ein durchschmelzen des Druckbehälters verhindert werden. Nicht verkehrt, kommt aber sehr auf die konstruktive Gestaltung an.

Dem vollständigen Verlust jeglicher äußeren Wärmesenke (Fukushima Störfall) soll durch einen Wassertank oben am Reaktorgebäude begegnet werden. In diesen ringförmigen Tank soll sich der Dampf aus den Dampferzeugern niederschlagen. Dieses Prinzip wurde offensichtlich von den Russen übernommen. Wie hoch der Sicherheitsgewinn sein soll, wird eine probabilistische Fehleranalyse zeigen müssen. Es riecht ein wenig nach „Weißer Salbe“ oder PR-Gag. Gerne wird von den Russen immer ein Generation III+ angeführt – nur hat ein Wassertank auf dem Dach noch wenig mit einem passiven Sicherheitskonzept für schwerste Störfälle zu tun (z. B. AP1000 von Westinghouse oder ESBWR von GE/Hitachi).

Jedenfalls benötigt der Hualong genauso elektrische Energie, wie schon jeder Reaktor der zweiten Generation. Bricht die Stromversorgung komplett zusammen, schmilzt sein Core genauso, wie in den Reaktoren von Fukushima. Alles hängt – wie übrigens auch beim EPR – von einer stets funktionierenden Stromversorgung ab. Der „Sicherheitsgewinn“ beim EPR und seinem russischen Pendant (richtiger ist eigentlich die Strahlenbelastung der Umgebung nach einem Fukushima Störfall) gegenüber einem aktuellen Reaktor in Deutschland, ergibt sich allein aus dem „Core Catcher“. Es wird noch unwahrscheinlicher, daß große Mengen Spaltprodukte auch bei einer vollständigen Zerstörung von Kern und Druckbehälter freigesetzt werden.

Nachtrag

Damit kein falscher Eindruck entsteht, es geht hier nicht um eine Abwertung chinesischer Reaktoren, denn es geht immer um die Abwägung von Sicherheit und Kosten, was letztendlich immer eine rein politische Entscheidung ist. Als deutscher Ingenieur tut man sich etwas schwerer damit, da wir zum Gürtel gern die Hosenträger bevorzugen. Andererseits hat uns genau diese Mentalität vor einem Tschernobyl oder Fukushima bewahrt. Deutschland war immer ganz vorne dabei, wenn es um Risikoanalysen und die Umsetzung der daraus resultierenden Konsequenzen ging.

Darin liegt die eigentliche Tragik: Einschlägig bekannte Politiker haben wieder einmal – diesmal durch ein dubioses „Vorangehen“ – versucht, mit ihrer verdrehten Ideologie die Welt zu beglücken. Die Welt wird sich aber mitnichten von der Kernenergie abwenden. Einigen besonders schlichten Gemütern war es einfach egal. Sollen sich doch ferne Völker „verstrahlen“, wir versorgen unser Bullerbü mit Wind, Sonne und Biokost. Das Aufwachen in der Realität wird heilsam sein: Vielleicht werden ja tatsächlich bald Kernkraftwerke in unseren Nachbarländern neu errichtet, die sicherheitstechnisch bestenfalls dem Standard der Kraftwerke entsprechen, die wir gerade voller Begeisterung abschalten. Ähnlichkeiten mit „Hans im Glück“ sind rein zufällig.

Reaktortypen in Europa – Teil6, CANDU

Der CANDU (Canada Deuterium Uranium) Reaktor ist der einzige Schwerwasserreaktor, der sich weltweit durchgesetzt hat. Er ist in seiner neuesten Ausführung ein echter Gen III+ Reaktor mit passiver Sicherheit. Für manche mutet er vielleicht etwas exotisch an, besitzt aber sehr viel Potential für die Nutzung von Thorium und die Weiterverwendung ausgedienter Brennelemente von Leichtwasserreaktoren – gerne auch als „Atommüll“ verunglimpft.

Geschichte

SNC-Lavalin und China Nuclear Power Engineering Company wollen zusammen zwei weitere Reaktoren dieses Typs in Rumänien errichten. Bereits seit 1997 und 2007 laufen dort sehr erfolgreich zwei solche Reaktoren. Wie in zahlreichen anderen Ländern auch: Indien, Südkorea, Rumänien, Pakistan, Argentinien und China. Insgesamt wurden 47 CANDU-Reaktoren gebaut, davon bilden 22 Reaktoren das Rückgrat der kanadischen Stromversorgung. Keine schlechte Bilanz, wenn man bedenkt, wie viele Totgeburten es seit den 1940er Jahren gegeben hat.

In Kanada begann die Entwicklung von Schwerwasserreaktoren bereits während des zweiten Weltkrieges. Es war ein etwas ungeliebter Seitenarm des Manhattan-Projekts unter maßgeblichem Einfluß des französischen Wissenschaftlers Joliot, der wegen seiner politischen Ansichten in den USA als potentielles Sicherheitsrisiko eingestuft war. In den 1960er Jahren wurde die kommerzielle Entwicklung von der kanadischen Regierung forciert: Kanada verfügte über keine Anreicherung und keine Schwerindustrie, die in der Lage war, Reaktordruckgefäße zu schmieden. Beide Argumente besitzen heute noch für viele Entwicklungs- und Schwellenländer Gültigkeit. Man kann sich nahezu aus allen Ecken der Welt mit Natururan versorgen, während man bei der Anreicherung nach wie vor, maßgeblich auf die „Atommächte“ angewiesen ist. Wegen des einfachen Aufbaues ist ein Übergang auf nationale Fertigung in relativ kurzer Zeit und kleinen Stückzahlen möglich.

Allerdings besitzt der CANDU einen entscheidenden (politischen) Nachteil: Mit ihm läßt sich hervorragend waffengrädiges Plutonium und Tritium herstellen. Diesen Weg hat Indien mit seiner ersten Bombe „Smiling Buddha“ vorgemacht, dessen Plutonium aus dem Schwerwasser-Forschungsreaktor „CIRUS“ stammte.

Aufbau

Bei den CANDU-Reaktoren handelt es sich um Druckwasserreaktoren mit schwerem Wasser (D2 O.) als Moderator und Kühlmittel. Das schwere Wasser wird durch Pumpen zwischen dem Kern und den Dampferzeugern umgewälzt. In den Dampferzeugern wird der Dampf für die Turbine erzeugt. Man könnte also sagen, ab dem Reaktorgefäß handelt es sich um einen „ganz normalen Druckwasserreaktor“.

Er besitzt jedoch kein Druckgefäß, sondern zahlreiche Druckröhren. Bei einem EC6 sind es 380 horizontale Röhren, in denen sich jeweils 12 Brennelemente befinden. Die Brennelemente sind rund und nicht rechteckig (wie bei Leichtwasserreaktoren), sodaß sie die Druckröhren optimal ausfüllen. Sie sind auch wesentlich kleiner (etwa 50 cm lang und 10 cm im Durchmesser) und bestehen aus nur 37 Brennstäben. Durch die Abmessungen und ihr geringes Gewicht (rund 25 kg) sind sie optimal für eine vollautomatische Handhabung geeignet. Durch die hohe Anzahl (37 Stück x 12 Brennelemente x 380 Brennstoffkanäle) ergibt sich eine sehr flexible Anordnung und Materialausstattung, auf die später noch eingegangen wird. Durch die vollautomatischen Lademaschinen, die unter voller Last eingesetzt werden können, ergibt sich stets eine optimale Durchmischung und Anordnung. Es ist kaum Überschußreaktivität nötig, die bei Leichtwasserreaktoren am Anfang des Ladezyklus durchVergiftung (z. B. Borsäure, Gadolinium etc.) abgebaut werden muß.

Die Brennstoffkanäle sind schachbrettartig, horizontal in einem Wassertank – der sog. Calandria – angeordnet. Dieser Tank ist vollständig mit schwerem Wasser gefüllt und bildet den eigentlichen Moderator und Reflektor. Die Calandria befindet sich in einem weiteren Wassertank zur Abschirmung, der mit normalem Wasser gefüllt ist. Dieses System ist von einem Tresor aus Stahlbeton umgeben. Oberhalb befinden sich die vier Umwälzpumpen und die vier Dampferzeuger. Zusätzlich ist der gesamte Reaktor von einer Stahlbetonhülle (Containment) umgeben. Äußerlich ist deshalb ein EC6-CANDU kaum von einem üblichen Druckwasserreaktor zu unterscheiden.

Sicherheitskonzept

Jeder Brennstoffkanal ist von einem zweiten Rohr umgeben. Der sich ergebende Spalt dient zur Wärmeisolierung. Das schwere Wasser der Calandria ist kalt und wird auch ständig über eigene Wärmeübertrager kalt gehalten. Zusammen mit dem Wasser der Abschirmung ergibt sich ein großer Wärmespeicher für die Abfuhr der Nachzerfallswärme. Geht Kühlwasser durch Leckagen verloren, kann dieses aus einem großen Wassertank auf dem Dach des Sicherheitsbehälters ersetzt werden. Dafür sind keine Pumpen, sondern nur die Schwerkraft nötig.

Als einziger Reaktortyp verfügt der CANDU über zwei vollständig voneinander unabhängige Schnellabschaltungssysteme: Oberhalb der Calandria befinden sich von Elektromagneten gehaltene Regelstäbe. Bei einer Schnellabschaltung fallen sie durch die Schwerkraft getrieben in die Calandria ein. Seitlich befinden sich Druckbehälter mit Gadoliniumnitrat, die durch das Gaspolster aus Helium angetrieben, ihre Flüssigkeit zur Vergiftung in die Calandria einspritzen.

Warum überhaupt schweres Wasser?

Deuterium ist Wasserstoff, dessen Kern nicht nur aus einem Proton besteht, sondern zusätzlich noch ein Neutron enthält. Es verbindet sich mit Sauerstoff zu schwerem Wasser. Es kommt daher überall auf der Erde in unerschöpflicher Menge vor. Allerdings in nur sehr geringer Konzentration von 0,000018%. Die Anreicherung ist wegen des relativ großen Massenunterschieds zwar relativ einfach, erfordert gleichwohl viel Energie und Apparatur. Mit anderen Worten, es ist recht teuer. Die hohen Investitionskosten sind deshalb der Hauptnachteil beim CANDU. Enthält doch ein EC6 über 472 to davon, bei nur etwa 700 MWel. Leistung. Der laufende Verbrauch ist nur sehr gering. Ein weiterer Nachteil ist die erhöhte Produktion von Tritium. Da Deuterium bereits ein Neutron enthält, ist die Aufnahme eines weiteren sehr viel wahrscheinlicher, als bei normalem Wasser.

Ausschlaggebend sind die überragenden neutronenphysikalischen Eigenschaften. Die Wahrscheinlichkeit für eine Spaltung steigt umgekehrt proportional mit der Geschwindigkeit der Neutronen. Abgebremst werden die Neutronen durch Zusammenstöße mit dem Moderator. Je kleiner die Kerne sind, je mehr Energie geht bei einem einzelnen Stoß verloren – dies spricht für Wasserstoff als Moderator. Leider gibt ein Kern nicht jedes Neutron wieder her. Jedes absorbierte Neutron ist aber für eine weitere Spaltung verloren. Je größer die Wahrscheinlichkeit für eine Streuung ist und um so kleiner die Wahrscheinlichkeit für eine Absorption, desto besser ist das Material als Moderator geeignet. Man mißt dies mit der „Moderating Ratio“ MR. Sie beträgt bei H2 O nur 62. Im Gegensatz dazu, ist sie bei D2O. mit 4830 fast 78 mal so gut. Zusätzlich kann man den Bremseffekt noch verbessern, wenn man den Moderator möglichst kühl hält. Dies ist der Grund für die kalte Calandria.

Alles zusammen, führt dazu, daß man bei einem CANDU mit Natururan auskommt und trotzdem mittlere Abbrände von 7500 MWd/toU erzielt. Dies ergibt nicht nur die beste Ausnutzung von Natururan, sondern eröffnet noch ganz andere Brennstoffkreisläufe.

CANDU und Leichtwasserreaktoren im Verbund

In jedem Reaktor werden nicht nur Kerne gespalten, sondern auch immer neue Kerne durch das Einfangen von Neutronen gebildet. Allerdings ist die Nutzungsdauer der Beladung immer zeitlich begrenzt – egal in welcher Form der Brennstoff vorliegt. Es verhält sich mit dem Brennelement wie mit einer Weinflasche: Nach dem Gebrauch ist sie für den Nutzer Abfall, aber deshalb noch kein Müll. Man kann auch die leere Flasche vielfältig weiter nutzen oder sie recyceln.

Auch wenn die Brennstäbe in den Leichtwasserreaktoren nicht mehr nutzbar sind, enthalten sie doch noch unzählige Wertstoffe. In diesem Zusammenhang sind Uran und Plutonium von Interesse. Man kann diese beiden auf verschiedene Art und Weise nutzen:

  • Zuerst sollte man sie so lange – wie wirtschaftlich vertretbar – lagern. Genau das, geschieht im Moment weltweit. Radioaktive Stoffe besitzen die angenehme Eigenschaft, daß sie nur zerfallen können, also stetig weniger werden. Je mehr Spaltprodukte aber zerfallen sind, desto geringer ist die Strahlungsleistung geworden. Ein enormer Vorteil bei der weiteren Verarbeitung.
  • Man kann diese Brennelemente z. B. nach dem Purex-Verfahren wieder aufbereiten. Man erhält als Produkt hochreines Uran und Plutonium. Das Uran ist aber ohne eine weitere Anreicherung nicht wieder in einem Leichtwasserreaktor verwendbar. Hier kommen die CANDU’s ins Spiel:
  • Das Uran aus der Wiederaufbereitung hat einen etwas höheren Gehalt an U235 (ungefähr 0,9% plus 0,6% Pu) als Natururan. Man kann nun dieses Uran mit abgereichertem Uran aus Anreicherungsanlagen zu synthetischem Natururan verschneiden. Man spart also den Aufwand für eine weitere Anreicherung.
  • Viel sinnvoller ist es, das Uran aus der Wiederaufbereitung im ursprünglichen Zustand zu verwenden. Man muß es nicht verschneiden, sondern kann es durch die unzählige Kombination von Brennstäben aus unterschiedlichen Materialien als sehr viel effektivere Neutronenquelle einsetzen.
  • Es ist sogar möglich, die abgebrannten Brennelemente aus Leichtwasserreaktoren in CANDU-Reaktoren ein weiteres mal zu nutzen: Man müßte sie lediglich auf Länge schneiden und erneut in eine Hülle einschweißen. Allerdings bräuchte man hierfür wegen der hohen Strahlenbelastung eine fernbediente Herstellung und Handhabung. China führt bereits in seinen laufenden Reaktoren Versuche aus. Es wurde in Zusammenarbeit mit den Kanadiern ein umfangreiches Entwicklungsprogramm gestartet.
  • Man kann aber auch die abgebrannten Brennstäbe vorher pulverisieren und erhitzen. Da der größte Teil der Spaltprodukte (z. B. die Edelgase und Jod) schon bei relativ geringen Temperaturen ausgasen, können sie einfach abgeschieden werden. Man erhält nach dem Sintern „neue“ Brennelemente, mit wesentlich geringerer Strahlenbelastung (als die unbehandelten Brennelemente) und weniger parasitärem (bezüglich der Neutronen) Inhalt. Diese Schiene – mit teilweiser Wiederaufbereitung – wird in Korea verfolgt und als DUPIC-Verfahren (Direct Use of spent PWR fuel In Candu) bezeichnet.

Es gibt also zahlreiche Wege, aus Leichtwasser- und Schwerwasserreaktoren einen Energieverbund herzustellen. Man kann in etwa sagen, daß vier Leichtwasserreaktoren mit ihren abgebrannten Brennelementen einen Schwerwasserreaktor versorgen können. Dies könnte das evolutionäre Glied zur Nutzung – und damit Beseitigung – von „Atommüll“ sein: Man ersetzt das kostspielige PUREX-Verfahren durch „Neuverpackung“ oder „Teilreinigung“. Diese Verfahrensschritte sind sicherlich wesentlich eher mit der Gewinnung von Natururan wirtschaftlich konkurrenzfähig.

Thorium

Neben Uran, kann man auch mit Thorium Reaktoren betreiben. Thorium ist in manchen Ländern (z. B. Indien) leicht zu fördern oder fällt sogar als Abfall an (z. B. Produktion seltener Erden in China). Allerdings kann man mit Thorium keine selbsterhaltende Kettenreaktion erzeugen. Vorher muß man daraus U233 erbrüten. Anders als bei Uran, funktioniert das Brüten bei Thorium auch sehr gut mit thermischen Neutronen. Es war daher schon frühzeitig ein Gedanke, Thorium als Brennstoff in Schwerwasserreaktoren einzusetzen.

Aus der Konstruktion von Brennstoffkanälen, die mit Brennelementen gefüllt sind, die sich wiederum aus Brennstäben zusammensetzen, ergeben sich beim CANDU zwei grundsätzliche Varianten: Der gemischte Kern (mixed-core) und das gemischte Brennelement (mixed-fuel-bundle).

Bei einem gemischten Kern, verwendet man Brennelemente aus reinem Thorium, die zum Erbrüten von U233 dienen. Die hier verschluckten Neutronen müssen an anderer Stelle im Reaktor erzeugt werden. Dafür verwendet man Brennelemente mit leicht angereichertem Uran oder aus Mischoxid. Hierfür bietet sich – wie weiter oben schon beschrieben – idealerweise der „Abfall“ aus Leichtwasserreaktoren an. Diese Strategie erfordert – wegen der wechselnden Orte und der unterschiedlichen Verweilzeiten in den Kanälen – eine komplexe Steuerung der Lademaschinen. Wenn man nur reines Thorium in einem Brennelement einsetzt, kommt man zu einer besonders eleganten „Einfach-Nutzung“. Aus Thorium bilden sich durch das Einfangen von Neutronen weit weniger langlebige Aktinoiden, als aus Uran. Da man es im wesentlichen nur mit (kurzlebigen) Spaltprodukten zu tun hat, ergibt sich ein „Atommüll“, der besonders gut für eine „Endlagerung“ geeignet ist. Diese Beschränkung auf eine technische Zwischenlagerung – ohne Wiederaufbereitung und/oder geologisches „Endlager“ – ist ein weiterer Anreiz für Länder mit großen Thoriumvorkommen (z. B. Norwegen).

Der andere Weg sind die gemischten Brennelemente. Dort wird bevorzugt der mittlere Brennstab aus reinem Thorium hergestellt und die ihn konzentrisch umgebenden Stäbe aus leicht angereichertem Uran. Dies vereinfacht das Umsetzen, hat aber eine schlechtere Ausnutzung der Neutronen zur Folge. Wenn man bereits gebrütete Brennelemente verwendet, um deren Stäbe in gemischten Brennelementen weiterzuverwenden, benötigt man keinerlei Wiederaufbereitung. Dieser Brennstoffkreislauf bietet sich besonders für Länder an, die unbedingt und nachweisbar auf Kernwaffen verzichten wollen.

Man kann mit Schwerwasserreaktoren Konversionsraten von nahezu eins erreichen. Wenn man über mehrere CANDU-Reaktoren verfügt, kann man einige davon vollkommen mit Thorium betreiben. Lediglich einige müssen zusätzlich leicht angereichertes Uran bzw. Mischoxid verwenden um den Fehlbedarf an U233abzudecken. Ein Land wie z. B. Indien, mit großen Mengen eigenem Thorium, aber kaum eigenem (wirtschaftlichem) Uran, kann so einen beträchtlichen Anteil aus heimischen Energieträgern abdecken.

Neben der Streckung von Uranvorräten bietet die Verwendung von Thoriumoxid noch eine Reihe anderer Vorteile: Bessere Wärmeleitung, höherer Schmelzpunkt, sehr gute chemische Stabilität und weniger Bildung von Aktinoiden.

Schlußwort

Mit diesem Beitrag, soll die Serie über die Reaktortypen in Europa vorläufig abgeschlossen werden. Eigentlich fehlen hier noch die russischen Druckwasserreaktoren wie sie in Finnland und der Türkei gebaut werden sollen. Bisher mangelt es aber nach wie vor an frei zugänglichen Informationen.

Sinn dieser Serie sollte es sein, interessierten Menschen einen Überblick darüber zu verschaffen, was geht, was man morgen bestellen und bauen könnte, was genehmigt und erprobt ist. Forschung und Entwicklung stehen auf einem anderen Blatt. Man kann – wenn man politisch will – sofort mit dem Ausbau der Kernenergie beginnen bzw. fortschreiten. China macht es eindrucksvoll vor: Den Einstieg in das Zeitalter der Kerntechnik auf breiter Front durch Nutzung von allem, was der Weltmarkt hergibt. Ein gigantischer Vergleich unter gleichen Rahmenbedingungen. Bisher gab es das nur in den USA – und man erinnert sich kaum, in Deutschland. Vielleicht muß man wirklich schon daran erinnern. Es gab einmal deutsche Siedewasser-, Druckwasser-, Schwerwasser-, Thorium-Hochtemperaturreaktoren und natriumgekühlte schnelle Reaktoren. Alle gebaut und mit besten Betriebserfahrungen und ganz ohne schwere Unfälle. Wenn es dem Esel zu gut geht, geht er aufs Eis tanzen, sagt ein altes Sprichwort. Jedenfalls reist heute eine ehemalige Pionierleiterin nach Japan, um der dortigen Regierung deutsche Wind- und Sonnentechnik schmackhaft zu machen. Selbstverständlich bei ausdrücklicher Verweigerung eines Besuchs in Fukushima. Zu viel Realität, konnte man im Politbüro noch nie ertragen. Das Ergebnis ist bekannt.

Reaktortypen in Europa – Teil3, AP1000

AP1000 ist die Warenmarke eines Druckwasserreaktors der Generation III+ des Herstellers Westinghouse. Westinghouse ist die Mutter aller Druckwasserreaktoren. Sie erschuf 1954 unter Hyman G. Rickover und Alvin M. Weinberg diesen Reaktortyp für den Antrieb des ersten Atom-U-Boots USS Nautilus (SSN-571).

Geschichte

Der AP1000 entwickelt sich zum „Golf“ der Kernkraftwerke. Inzwischen sind acht Reaktoren in Bau: Je zwei in Sanmen und Haiyang in China und in Vogtle (Georgia) und Summer (South Carolina) in USA. Zahlreiche andere befinden sich weltweit im Vergabeverfahren. So sind drei Reaktoren in Moorside (West Cumbria, nordwestlich von Sellafield, UK) in Vorbereitung. Sie sollen durch NuGen, ein Joint Venture aus Toshiba (Westinghouse gehört zu Toshiba) und GDF SUEZ errichtet und betrieben werden.

Ständig steigende Investitionskosten und steigende Sicherheitsanforderungen zwangen Westinghouse das Konzept grundlegend zu überarbeiten. Über 50 Jahre Betriebserfahrung gipfelten in einer völlig neuen Konstruktion mit vier zentralen Anforderungen:

  • Vereinfachte Konstruktion: Was man nicht hat, kostet auch nichts und kann nicht versagen,
  • Übergang von aktiven auf passive Sicherheitssysteme,
  • modularer Aufbau und
  • parallele Errichtung von Bau und Anlagentechnik.

Der AP1000 ist ein schönes Beispiel dafür, was man erreichen kann, wenn man den Mut hat, eine Konstruktion noch einmal mit einem weißen Blatt Papier von Anfang an zu beginnen. Vorgabe war ein Druckwasserreaktor mit einer mittleren Leistung von rund 1000 MWel. Schon damit setzte man sich ab. Man versuchte gar nicht erst eine Kostensenkung über eine Leistungssteigerung zu erzielen, sondern setze lieber auf die Nachfrage des Weltmarktes. Die Größe entsprach nur etwa 2/3 der letzten Typen der zweiten Generation. Dieser Rückschritt sollte dafür die Märkte der Schwellenländer mit noch kleinen Netzen einschließen.

Durch die „geringe“ Leistung kommt man mit nur zwei modernen Dampferzeugern gegenüber üblicherweise vier aus. Dies spart schon mal beträchtlich umbauten Raum, der bei Kernkraftwerken besonders teuer ist (Sicherheitsbehälter, Betonbunker etc.). Durch weiteres, konsequentes „weglassen“ ergibt sich der Druckwasserreaktor mit dem geringsten Beton- und Stahleinsatz pro MWel.

Ein weiterer Ansatz zur Senkung der Stromerzeugungskosten ist die Verlängerung der Nutzungsdauer: Die Ausdehnung auf genehmigte 60 Jahre verteilt die Kapitalkosten auf wesentlich mehr produzierte KWh. Weniger sicherheitsrelevante Teile (z. B. Noteinspeisepumpen mit zugehörigen Ventilen und Rohrleitungen) oder robustere Konstruktionen (z. B. dichtungslose Hauptkühlmittelpumpen) verringern die Wartungskosten und die notwendigen Wiederholungsprüfungen. Eine nicht zu vernachlässigende Einsparung über die Lebensdauer eines Kraftwerks.

Pumpen

Üblicherweise stehen die Hauptkühlmittelpumpen zwischen den Dampferzeugern. Sie sind mit diesen und dem Reaktordruckgefäß über Rohrleitungen verbunden. Die Pumpen saugen das abgekühlte Wasser aus den Dampferzeugern an und drücken es zurück durch den Kern. Beim AP1000 haben sie die gleiche Aufgabe. Sie sind aber paarweise direkt an den Dampferzeugern angeflanscht. Dies erspart nicht nur Rohrleitungen, sondern vereinfacht diese erheblich. Es sind weniger Formstücke und Schweißnähte erforderlich und der Schutz gegen Erdbeben gestaltet sich wesentlich einfacher.

Die Pumpen selbst, sind für zivile Druckwasserreaktoren ungewöhnlich. Sie verfügen über mit Wasser geschmierte Gleitlager und sind voll gekapselt. Der Läufer und der Stator sind in wasserdichte Hüllen eingeschweißt. Das Pumpenrad sitzt direkt auf der Welle des Antriebsmotors. Sie benötigen damit keine Wellendichtungen und sind somit extrem wartungsarm. Sie sind für eine Betriebsdauer von 60 Jahren ausgelegt und zugelassen. Dieser Pumpentyp ist sehr anspruchsvoll in der Fertigung. Die USA verfügen jedoch über eine jahrzehntelange Erfahrung mit diesem Pumpentyp in ihrer Marine.

Passive Sicherheit

Unter „Passiver Sicherheit“ versteht man, daß bei keinem Störfall Pumpen, Diesel etc. benötigt werden um den Reaktor in einen sicheren Zustand zu überführen und zu halten. Alle Armaturen müssen nur einmal ausgelöst werden (voll offen oder voll geschlossen) und nach Auslösung ohne Hilfsenergie auskommen. Es sollten keine Eingriffe durch das Personal nötig sein.

Hinter dieser Definition verbirgt sich noch ein weiterer Ansatz zur Kostensenkung: Man kann „Sicherheit“ oder „Verteidigung“ in mehreren Stufen definieren. Bevor ein Ereignis zu einem Störfall wird, kann man durch automatische Stellglieder die Folgen abwenden. So kann man z. B. bei einem Generatorschaden den Dampf direkt in den Kondensator leiten und dadurch eine Notkühlung verhindern. Alle für diese Umleitung notwendigen Komponenten bräuchten nur den bei konventionellen Kraftwerken üblichen Qualitätsstandard besitzen, da sie das eigentliche Sicherheitssystem (gemeint ist damit das passive Notkühlsystem) nicht berühren. Nur die Komponenten des passiven Sicherheitssystems müssten den Stempel „nuclear grade“ tragen. Oft sind solche Teile völlig identisch mit dem „Industriestandard“ – unterscheiden sich lediglich im bürokratischen Aufwand und im Preis.

Man kann die Sicherheit – bezogen auf eine eventuelle Freisetzung von radioaktiven Stoffen in die Umwelt – noch steigern, indem man eine konsequente Diversifizierung betreibt. Ferner sieht man für wahrscheinlichere Ereignisse eine höhere Anzahl von Verteidigungsstufen vor.

Der Station Blackout

Vor Fukushima war der größte anzunehmende Unfall (GAU) der entscheidende Sicherheitsmaßstab. Man ging von einem plötzlichen Verlust der Reaktorkühlung infolge einer abgerissenen Hauptkühlmittelleitung aus. Um ein solches Ereignis zu beherrschen – ohne Freisetzung nennenswerter Radioaktivität in die Umwelt – muß bei Reaktoren mit aktivem Sicherheitskonzept auf jeden Fall ausreichend elektrische Energie vorhanden sein. Mindestens ein Notstromdiesel muß starten und die entsprechenden Schaltanlagen müssen funktionstüchtig sein. In Fukushima hat beides ein Tsunami außer Gefecht gesetzt.

Seit Fukushima ist der „station blackout“ ins öffentliche Interesse geraten. Gemeint ist damit der völlige Verlust von Wechselstrom (Kraftstrom) im Kraftwerk. Es ist nur noch Gleichstrom aus Batterien für Steuerung und Notbeleuchtung vorhanden. Es ist daher interessant, wie der AP1000 auf solch eine Situation reagieren würde:

Durch den Stromausfall fallen die Regelstäbe durch ihr Eigengewicht in den Reaktorkern ein und unterbrechen jede Kettenreaktion. Allerdings beträgt in diesem Moment die Nachzerfallswärme noch rund 6% der thermischen Leistung (ungefähr 200 MW), die sicher abgeführt werden müssen. Durch den Stromausfall, fallen alle Pumpen aus. Durch die in den Schwungrädern der Hauptkühlmittelpumpen gespeicherte Energie, laufen diese noch geraume Zeit nach und halten den Primärkreislauf aufrecht. Allerdings ist nach etwa zwei Minuten der Wasserstand auf der Sekundärseite der Dampferzeuger auf sein zulässiges Minimum gefallen, da die Speisepumpen auch nicht mehr laufen können. Dieser Zustand öffnet automatisch die beiden Ventile zur Notkühlung (die Ventile sind im Betrieb elektromagnetisch geschlossen, d. h. Strom weg = Ventil offen). Nur ein Ventil müßte öffnen (Redundanz), um die volle Wärmeleistung abzuführen. Das Wasser strömt nun vom Reaktorkern zu einem Wärmeübertrager (PRHR HX) in dem Wassertank innerhalb der Sicherheitshülle (PRHR). Dieser Tank liegt deutlich oberhalb des Reaktordruckgefässes, wodurch sich ein Naturumlauf ergibt. Nach rund zwei Stunden ist die Nachzerfallswärme auf rund ein Prozent (immerhin noch rund 34 MW) abgefallen. Nach ungefähr fünf Stunden wäre der Tank soweit aufgeheizt, daß das Wasser zu sieden beginnt. Der Sicherheitsbehälter ist ein Zylinder aus 45 mm dickem Stahlblech (bessere Wärmeleitung als Beton). Der Dampf würde an den Wänden kondensieren und über ein Auffangsystem zurück in den Tank laufen. Der Sicherheitsbehälter wiederum, würde seine Wärme an die Umgebungsluft abgeben. Die Umgebungsluft steigt wie in einem Kamin im Zwischenraum zwischen Sicherheitshülle und Betonwand der Schutzhülle (gegen Flugzeugabsturz usw.) auf. Steigt der Druck im Sicherheitsbehälter über einen Grenzwert an, werden zur Steigerung der Kühlung die pneumatisch betätigten Ventile der Beregnungsanlage geöffnet. Ganz oben, auf dem Dach des Reaktors befindet sich ein charakteristischer, ringförmiger Wassertank. Aus ihm würde nun Wasser durch Schwerkraft auf die äußere Seite des Sicherheitsbehälters „regnen“ und diesen stärker kühlen. Der Inhalt des Tanks reicht für 72 Stunden Beregnung.

Durch die (gewollte) Abkühlung des Reaktors zieht sich das gesamte Wasser des Primärkreislaufes wieder zusammen. Der Wasserstand im Druckhalter sinkt. Genauso würde er sinken, wenn der klassische GAU – irgendein Leck im Primärkreis – eingetreten wäre. Damit ein zeitweiliges „trocken fallen“ der Brennelemente (Harrisburg und Fukushima) sicher verhindert werden kann, wird rechtzeitig Wasser nachgespeist. Hierfür gibt es sog. Akkumulatoren. Das sind Behälter, die teilweise mit Wasser gefüllt sind und durch ein Stickstoffpolster unter Druck gehalten werden. Aus diesen strömt automatisch (Rückschlagventile, die durch den Druck im Primärkreis geschlossen gehalten werden, Druck zu klein = Ventil offen) Wasser in den Reaktordruckbehälter nach.

Ist der Druck – egal ob durch ein Leck oder Abkühlung – bis auf Umgebungsdruck abgebaut, kann die Kühlung direkt über die Verdampfung des Wassers im Druckbehälter endlos weiter erfolgen. Dieser Zustand kann auch gewollt oder automatisch angestrebt werden. Würde die Kühlung – aus welchen Gründen auch immer – versagen, würde der Druck im Reaktorbehälter immer weiter ansteigen. Um dies zu verhindern, kann man den Druck über ein Abblasen des Druckhalters abbauen. Dies ist ein Beispiel, wie man durch den geschickten Aufbau einer Sicherheitskette das eventuelle Versagen einzelner Glieder überbrücken kann: Würden tatsächlich beide Ventile (2 x 100%) des Notkühlkreislaufes versagen (siehe weiter oben) müßte trotzdem nicht die Kühlung ausfallen, sondern es würde lediglich ein anderer Weg beschritten.

Die 72 h Regel

Beim AP1000 bezieht sich die passive Sicherheit nicht nur auf die Anlagentechnik, sondern auch auf das Personal. Seit den Störfällen von Harrisburg und Tschernobyl weiß man um die Bedeutung von Bedienungsfehlern. Gerade in der Zeit unmittelbar nach der Störung ist die Wahrscheinlichkeit dafür besonders hoch: Das Schichtpersonal muß erst seinen Schock überwinden, eine wahre Informationsflut muß erst einmal verarbeitet werden damit man sich überhaupt einen Überblick verschaffen kann und dann müssen die richtigen Maßnahmen auch noch erkannt und eingeleitet werden. Andererseits sind drei volle Tage eine recht lange Zeit, um etwas zu reparieren, Fachleute außerhalb des Kraftwerks hinzu zu ziehen oder sogar Ersatzgerät herbeizuschaffen. Dies gilt selbst bei schwersten Naturkatastrophen wie in Fukushima.

Dabei sind die 72 Stunden als Mindestwert bei ungünstigsten Bedingungen zu verstehen. Nach Ablauf dieser Zeitspanne sind weitere Auffanglinien vorgesehen. So können z. B. die Kühlwasserbehälter auch von außen über die Feuerlöschtanks auf dem Gelände nachgefüllt werden. Hierfür ist allerdings wenigstens ein kleiner Hilfsdiesel, der zusätzlich zu den eigentlichen Notstromdieseln vorhanden ist, nötig. Der Treibstoffvorrat beträgt vier Tage. Inzwischen dürften längst Hilfskräfte und Material aus den Notfallcentern eingetroffen sein.

Die Strategie zur Kostensenkung

So makaber es klingen mag, aber die Unglücke von Tschernobyl (vollkommen explodierter Reaktor) und Fukushima (in drei Reaktoren gleichzeitige Kernschmelze) haben den „Atomkraftgegnern“ ihr stärkstes Argument von dem „unkalkulierbaren Restrisiko“ bei Kernkraftwerken entzogen. Nur noch sehr schlichte Gemüter glauben das Märchen „Millionen-Tote-für-10000-Jahre-unbewohnbar“. Es ist also kein Zufall, daß sich die „Bewegung“ nun auf angeblich „zu teuer“, konzentriert. Für die Investitionskosten sind folgende Faktoren ausschlaggebend:

  • Unnötig kompliziert: Doppelte Betonbunker, Core catcher, weitere Notstromdiesel, Pumpen etc.
  • Bürokratismus: „Nuclear grade“ erfordert einen – teilweise absurden – bürokratischen Aufwand. Oft kostet das gleiche Bauteil als „nuclear grade“ geadelt, den vier bis fünffachen Preis. Um eine Diskussion über Sinn und Zweck zu vermeiden, sollte dieser Standard nur noch für echte Sicherheitstechnik verlangt sein. So könnte man beispielsweise bei einem Reaktor mit passiver Sicherheit, die Notstromdiesel aus diesem Verfahren entlassen – als wenn es in anderen Bereichen (IT, Luftfahrt, Seefahrt etc.) keine Sicherheitsnormen gäbe.
  • Bauzeit: Je länger die Bauzeit dauert, desto höher sind automatisch die Baukosten (Verzinsung), das Risiko (z. B. Inflation) und der ausgefallene Gewinn (z. B. Zukauf von Strom). Eine Verkürzung läßt sich grundsätzlich nur durch parallele Abläufe erzielen.
  • Baustelle: Arbeiten auf Baustellen sind grundsätzlich teurer, als eine Fertigung in einer Fabrik. Hinzu kommt meist noch ein schwer zu kalkulierendes Witterungsrisiko.
  • Serien: Jeder „first of a kind“ ist teurer als die Nachfolgemodelle. Hat man erst einmal die „Konstruktionsfehler“ behoben und das Personal seine Erfahrungen gesammelt, geht die Arbeit wesentlich flotter. Dies hat sich auch jetzt beim Bau der ersten AP1000 in China und USA wieder gezeigt.

Westinghouse hat konsequent auf eine Modularisierung bei paralleler Fertigung gesetzt. Im Schiffbau nennt man das „Sektionsbauweise“. Ziel ist die Errichtung eines Kernkraftwerks in 36 Monaten. Diesen sind noch der Vorlauf für die Baustelleneinrichtung und die Inbetriebnahme hinzu zu rechnen, sodaß ein Zeitraum von rund fünf Jahren zwischen Auftragserteilung und Übergabe an den Kunden liegt.

Der Rohbau

Üblich ist es schon immer, alle großen Bauteile: Reaktordruckgefäß, Dampferzeuger, Druckhalter, Turbine und Generator, Kühlmittelpumpen etc. möglichst schnell zu vergeben. Diese Aggregate werden von Spezialfirmen gefertigt und getestet und kommen möglichst komplett auf die Baustelle.

Gänzlich anders verhielt es sich bisher mit dem baulichen Teil: Der Hochbau wurde ganz konventionell in Ortbeton hergestellt. Dabei arbeitete man sich, wie bei jedem anderen Gebäude auch, vom Keller bis zum Dach stückweise voran. Wie auf jeder anderen Baustelle auch, konnte man mit dem Innenausbau erst beginnen, wenn der Rohbau fertig war.

Beim AP1000 hat man konsequent mit dieser Tradition gebrochen. Hier gilt: Möglichst wenig Arbeiten auf der unmittelbaren Baustelle und weitgehendste Fertigung in den Fabriken der Zulieferer. Um möglichst parallel arbeiten zu können, werden die Sektionen auf dem Baustellengelände aus den gelieferten Modulen zusammengebaut und die Sektionen termingerecht mit einem Schwerlastkran (3200 to) zu dem eigentlichen Reaktor zusammengefügt.

Konventionell (Schalung aus Holz, Eisengeflecht vor Ort und mit Beton ausgegossen) gebaut, wird nur noch die Grundplatte, auf der die gesamte „nukleare Insel“ steht. Schon die sich anschließende „Reaktorgrube“ ist eine komplette Sektion in Sandwich-Bauweise. So geht es Sektion für Sektion nach oben. Der Schwerlastkran stapelt alle wie auf einer Werft über- und nebeneinander. Dazu gehören auch ganze Baugruppen aus Rohrleitung, Pumpen, Ventilen usw., fertig lackiert, in Stahlgestellen. Die eigentliche Montage vollzieht sich in der erdbebenfesten Verbindung der Gestelle mit dem Baukörper und dem Anschluß an die Versorgungsleitungen etc. Da diese Module schon bei ihren Herstellern vollständig getestet und abgenommen worden sind, verkürzt sich auch die spätere Inbetriebnahme erheblich.

Das Sandwich

Für eine konventionelle Betonwand muß der Zimmermann eine Schalung aus Holz bauen und die Eisenflechter die Moniereisen einbringen. Nach dem Aushärten des Beton muß alles noch mühselig ausgeschalt und meist auch noch nachgearbeitet werden. Eine kosten- und vor allem zeitaufwendige Arbeit. Außerdem sind Zimmerleute keine Feinmechaniker.

Ein Sandwich besteht aus zwei Stahlplatten, die später mit Beton ausgegossen werden. Die Stahlplatten-Konstruktion übernimmt die Funktion einer verlorenen Schalung und enthält auch noch das „notwendige Eisen“, was die Festigkeit eines Stahlbeton ausmacht. Auf den ersten Blick keine revolutionäre Erfindung. Nur sind die Wände und Decken in einem Kraftwerk meist nicht massiv, sondern haben unzählige Durchbrüche und Einbauten. Wenn man die Anlagentechnik auch in Modulen vorfertigen will, müssen diese in der Toleranz von Maschinenbauern und nicht von Zimmerleuten ausgeführt werden. Wenige Millimeter Versatz, enden in einer teuren Katastrophe. Die einzelnen Platten werden nun – wie auf einer Werft – vollautomatisch aus- und zugeschnitten. Die Verstärkungen (die das Eisengeflecht bei konventionellem Beton ersetzen) werden auf Schweißmaschinen angebracht und die Platten zu Modulen zusammengeschweißt. Die Größe der Module ist dabei maßgeblich durch den Transportweg begrenzt. Die größte Sektion besteht z. B. in Vogtle aus 72 Modulen, die auf der Baustelle zusammengeschweißt werden und mittels eines Schwerlasttransporters und des Schwerlastkranes in den Sicherheitsbehälter eingesetzt wurde. Diese Sektion wiegt ohne Betonfüllung rund 1000 to.

Neue Herausforderungen

Die Aufteilung in drei Bauphasen: Fertigung von Modulen bei den Herstellern, zusammenfügen der Module zu Sektionen auf separaten Vormontageplätzen und der Zusammenbau der Sektionen zum eigentlichen Reaktor, erfordert eine besonders ausgefeilte Planung und Logistik.

Ein solches Vorhaben kann nur gelingen, wenn man von Anfang an, wirklich alle Elemente auf einem entsprechenden Rechner in vierdimensionaler (drei Orts- und eine Zeitachse) Abbildung zur Verfügung hat. Solche Werkzeuge gibt es noch nicht sehr lange. Zum Werkzeug gehören aber noch die entsprechend qualifizierten Konstrukteure mit praktischer Erfahrung und eine Lernkurve. So waren z. B. bei den ersten Reaktoren in China einige Abstände zwischen den Kabelbahnen und den Decken des nächsten Moduls zu knapp bemessen. Es ergaben sich tote Ecken bezüglich der Lackierung, usw. Alles Dinge, die zu Zeitverzug und ungeplanter Nacharbeit geführt haben.

Es ist eine ungeheure Disziplin und straffe Organisation über die gesamte Laufzeit eines Projekts erforderlich: Jede Änderung bei einem Zulieferer – irgendwo auf der Welt – kann dutzende Änderungen, zusätzliche Prüfungen usw. bei anderen Zulieferern auslösen. Gerade Dokumentation und Prüfungen sind in der kerntechnischen Industrie eine besondere Herausforderung. In den USA hat letzteres zu erheblichen Verzögerungen beim Bau des Kraftwerks Vogtle geführt. Ein Hersteller aus Louisiana – der seit Jahrzehnten erfolgreich im Bau von Ölförderanlagen etc. tätig war – war mit diesen „Gepflogenheiten der Kerntechnik“ nicht hinreichend vertraut. Im Endergebnis mußten etliche Module aus China nachbestellt werden.

Die Sektionsbauweise ist auch nicht ohne Tücken und erfordert entsprechendes Fachpersonal auf der Baustelle. Es müssen komplizierte und stabile Leergerüste gebaut werden, um die Sektionen aus Modulen passgerecht zusammen zu bauen. Der Verzug beim Schweißen und die Temperaturschwankungen sind bei so großen Bauteilen eine weitere Herausforderung. Der Schwerpunkt ist ebenfalls nicht immer genau festgelegt, was das Anheben ohne zusätzliche Belastungen nicht einfacher macht. Für Sektionen bis zu 1000 to müssen entsprechende Kräne und Transporter bereitgehalten werden. Für diese selbst, muß die Infrastruktur (Schwerlaststraßen, Bewegungsräume, Energieversorgung etc.) geschaffen werden.

Ausblick

Der AP1000 setzt die Maßstäbe für den Bau moderner Druckwasserreaktoren. Seine Weichen werden z. Zt. in China gestellt. Er kann seine wirtschaftlichen Vorteile erst in einer größeren Serie voll ausspielen. Die Lernkurve zeichnet sich bereits in USA und China deutlich ab. Es ist nur eine Frage der Stückzahl, wann die Investitionskosten für ein solches Kernkraftwerk unter das Niveau eines Kohlekraftwerks nach deutschen Standards (Wirkungsgrad 46%, mit Entstickung und Rauchgasentschwefelung, zugehörige Entsorgungsanlagen etc.) gesunken sind. Genau diese Frage, stellt sich aber bereits heute – wie schon in den 1970er Jahren in Deutschland –, wenn man die Luftverschmutzung in Peking betrachtet. Anschließend steht für China ein gigantischer Weltmarkt offen. Wir sprechen bereits in Europa nicht nur über Moorside, sondern auch über Polen, Tschechien und Bulgarien.

Im nächsten Teil4 geht es um die Siedewasserreaktoren, wie sie z. B. für den Standort Wylfa Newydd (Insel Anglesey in Nord Wales, GB) vorgesehen sind.

 

Reaktortypen in Europa – Teil2, EPR

EPR ist eine Warenmarke des französischen Herstellers Areva für einen Druckwasserreaktor der dritten Generation. Interessant ist schon die unterschiedliche Herleitung der drei Buchstaben EPR: European oder Evolutionary Pressurized Water Reactor. Beides ist angebracht.

Die Geschichte

Inzwischen sind von diesem Typ vier Reaktoren in Bau: Olkiluoto 3 in Finnland (seit Oktober 2005), Flamanville 3 in Frankreich (seit Dezember 2007) und Taishan 1 und 2 in China (seit Oktober 2009). Wahrscheinlich wird in den nächsten Jahren mit dem Bau zweier weiterer Reaktoren in Hinkley Point in Großbritannien begonnen werden.

Auf den ersten Blick eine Erfolgsbilanz. Wie kam es dazu? Ende der 1990er Jahre kam in Deutschland die Rot/Grüne-Koalition an die Macht. Die Kombinatsleitung von Siemens läutete in gewohnter Staatstreue den sofortigen und umfassenden Ausstieg aus der Kernenergie ein. Eine unternehmerische Fehlentscheidung. Heute sind die ganzen Staatsaufträge an Telefonen, Eisenbahnzügen etc. zu „besonders auskömmlichen Preisen“ längst Geschichte. Noch kann man ein paar Windmühlen nach altem Muster „an den Mann bringen“. Aber die einzige Zukunftstechnologie, in der Siemens wirklich einmal zur Weltspitze gehörte, ist unwiederbringlich und ohne Not „abgewickelt“ worden. Siemens fand in Framatome (Vorläufer von Areva) einen dankbaren Abnehmer. Die Franzosen konnten nach ihrem beispielhaften Ausbauprogramm von 57 Reaktoren ihre Kapazitäten nur durch den Ausbau des Auslandsgeschäftes aufrecht erhalten. Ein „Made in Germany“ kam ihnen dabei sicherlich nicht ungelegen. Siemens reichte der Einfuß von 34% der Aktien an dem neuen Gemeinschaftsunternehmen. Kernenergie war ja nicht mehr politisch korrekt und man wollte seinen (damals) lukrativen Kunden – die Öffentliche Hand – nicht verärgern. Man glaubte damals wohl auch noch, seinen überlegenen Turbinenbau allein weiter führen zu können. So als ob Daimler sein Autogeschäft verkaufen würde um zukünftig nur noch mit dem Reifengeschäft zu überleben. Jedenfalls ist Olkiluoto wohl das letzte Kernkraftwerk mit einer deutschen Turbine. Alle weiteren EPR haben natürlich französische Turbosätze der Marke Arabella. Dies gilt selbstverständlich auch für alle weiteren Geschäfte mit China. Ob die Kombinatsleitung den Chinesen ersatzweise politisch korrekte Windmühlen angeboten hat, weiß man nicht. Es gab ja mal eine Zeit lang in bildungsfernen Kreisen den festen Glauben, Deutschland würde „vorweg gehen“ mit seiner Energiepolitik.

Die Mitarbeiter in Frankreich und Deutschland waren jedenfalls redlich bemüht, das beste aus beiden Welten zu erschaffen. Grundlage des EPR sind die französische Baureihe N4 (Kraftwerke Chooz 1+2, Civaux 1+2) und die deutsche Konvoi Baureihe (Neckar 2, Emsland, Isar 2). Es war von Anfang an eine evolutionäre und ausdrücklich keine revolutionäre Entwicklung geplant. Außerdem nahm man nicht nur die Genehmigungsbehörden in beiden Ländern mit ins Boot, sondern auch 12 europäische Energieversorgungsunternehmen. Es sollte ein Reaktor entstehen, der europaweit genehmigungsfähig war. Heute ist er auch in China und USA geprüft und grundsätzlich zugelassen worden.

Das Problem der Größe

Jedes elektrische Netz kann nur eine gewisse Blockgröße vertragen. Über den Daumen gilt immer noch die Regel von maximal zehn Prozent der Leistung, die im Netz anliegt. Ist der Reaktor zu groß, scheiden weltweit eine Menge Netze aus. Das ist ein Problem bei der Vermarktung des EPR. Areva hat bereits schon länger die Problematik erkannt und bietet nun in Kooperation mit Mitsubishi auch einen kleineren Druckwasserreaktor (ATMEA mit ca. 1100 MWel) an. Wahrscheinlich werden die ersten Anlagen in der Türkei errichtet. Demgegenüber sollen die vier EPR von Olkiluoto bis Taishan eine Leistung zwischen 1600 und 1660 MWel erreichen. Die Vorläufer – z. B. das größte deutsche Kernkraftwerk Isar 2 – hatten eine Leistung von etwa 1400 MWel..

Bei Kraftwerken gibt es eine bedeutende Kostendegression. Je mehr man einen gegebenen Entwurf vergrößert, um so kleiner werden die spezifischen Investitions- und Betriebskosten. Man wollte ja ausdrücklich eine evolutionäre Entwicklung. Jetzt steckt man dafür in einer Größenfalle – und was fast noch schlimmer ist – die Kosten sind trotzdem viel zu hoch. Der EPR ist in diesem Sinne kein glücklicher Entwurf.

Die grünen Phantasien

Besonders von den deutschen Genehmigungsbehörden wurden die beiden Sicherheitsanforderungen „Absturz eines Jumbo“ und das „China Syndrom“ aus Hollywood eingebracht. Man glaubte in Deutschland lange genug, man müsste nur über jedes Stöckchen springen, das einem „Atomkraftgegner“ hin halten und dann würden sie auch irgendwann Kernkraftwerke ganz toll finden. Die simple Strategie, die Kosten durch immer neue Ideen immer weiter in die Höhe zu treiben, wurde nicht erkannt. Jetzt steht man mit einer millionenteuren doppelten Sicherheitshülle aus Beton und dem Gimmick eines „core catcher“ da und die „Atomkraftgegner“ lieben den EPR immer noch nicht.

Der Flugzeugabsturz

Solange es Kernkraftwerke gibt, hat man sich über „Einwirkungen von außen (EVA)“ Gedanken gemacht. Schon immer gehörte ein Flugzeugabsturz dazu. Frühzeitig bekamen deshalb die Reaktoren eine entsprechende Betonhülle als Schutz. Die vier Unglücksreaktoren in Fukushima hatten noch keine – mit den bekannten Konsequenzen. Bei ihnen war nur der unmittelbare Bereich um das Reaktordruckgefäß durch dicke Betonabschirmungen geschützt. Von Anfang an stellte sich die Frage, wie dick eine Betonhülle als Bunker sein müßte. In Deutschland ging man vom Absturz eines Militärjets vom Typ Phantom F4 aus. Eine heute noch sinnvolle Annahme – selbst nach den Ereignissen des 11. September. Die Phantom ist bis heute das Flugzeug mit der „größten Dichte“. Ein Militärjet noch aus dem „Stahlzeitalter“. Die Triebwerke einer im Tiefflug dahin rasenden Phantom, würden wie Rammböcke auf die Schutzhülle eines Reaktors wirken. Dahingegen entspricht die Wirkung einer abstürzenden A380 oder eines Jumbojets eher einer Bierdose. Die Terrorflieger des 11. September konnten selbst ein filigranes Hochhaus bzw. das Pentagon nur zum Wackeln bringen. Etwas anderes ist die ungeheure Brandlast eines voll betankten Großraumflugzeuges, aber gegen die hilft Beton nur bedingt.

Jedenfalls steht der EPR heute mit einer doppelten Betonhülle dar. Der innere Teil – das Containment – besteht aus ca. 1,3 m dickem Spannbeton und die äußere Schutzhülle aus einer weiteren ca. 1,8 m dicken Betonhülle. Zusätzlich verschwinden alle nuklearen Komponenten (Dampferzeuger, Reaktordruckgefäß usw.) hinter weiteren Betonmauern, die als Abschirmung gegen Strahlung dienen. Dieses „Bunkersystem“ ist mit Sicherheit stark genug, um jedem Flugzeugabsturz oder einem Terroranschlag zu widerstehen. Wir erinnern uns: Tschernobyl hatte nicht einmal ein Containment und in Fukushima waren nur die Reaktoren geschützt. Das Brennelementebecken stand in einer normalen Industriehalle. Anders als beim ERP, bei dem sogar das Lagergebäude für die Brennelemente und diverse Sicherheitsanlagen mit einer Betonhülle verbunkert sind.

Beton kann nicht schaden, er ist nur sehr teuer. Erschwerend kommt beim EPR die lohnintensive und zeitraubende Ausführung als Ortbeton hinzu. Dies wurde zumindest in Olkiluoto völlig unterschätzt.

Grundsätzlich ist die Konstruktion aus zwei Hüllen mit Zwischenraum sicherheitstechnisch zu begrüßen. Wird das Containment durch eine Explosion (Fukushima) oder was auch immer beschädigt, kann die äußere Hülle ihre Funktion wenigstens zum Teil übernehmen. Der Zwischenraum wird ständig abgesaugt und in leichtem Unterdruck gehalten. Die „radioaktiv belastete Luft“ wird vor der Abgabe über den Kamin gefiltert. Durch eine solche Maßnahme kann selbst, wenn die gasförmigen Spaltprodukte im Reaktor freigesetzt werden sollten, der größte Teil zurück gehalten bzw. auf ein erträgliches Maß verdünnt werden.

Der core catcher

Dank Hollywood ist jeder „Atomkraftgegner“ mit dem „China Syndrom“ vertraut: Eine einmal eingetretene Kernschmelze soll endlos andauern. Selbst die unfreiwilligen Großversuche von Harrisburg, Tschernobyl und Fukushima können einen rechtgläubigen „Atomkraftgegner“ nicht von diesem Irrglauben abbringen.

Fangen wir mal mit dem Schlimmsten an:

  • Der Reaktor in Tschernobyl stand in einer einfachen Industriehalle. Nachdem eine Kernschmelze stattgefunden hatte, verabschiedete sich der Reaktor durch eine physikalische Explosion. Er spie wie ein Vulkan den größten Teil seines radioaktiven Inhalts in die Umwelt aus. Dies ist der schlimmste – überhaupt vorstellbare – Unfall.
  • In Fukushima trat in mehreren Reaktoren (zumindest teilweise) eine Kernschmelze ein. Ursache war hierfür der zeitweise Ausfall der Stromversorgung und dadurch ein Mangel an Kühlwasser. Die Nachzerfallswärme konnte die Brennelemente (teilweise) schmelzen lassen. Die Nachzerfallswärme nimmt aber sehr schnell ab und die Kühlung konnte – wenn auch verspätet – wieder aufgenommen werden. Wieviel Corium sich tatsächlich durch die Reaktorgefäße gefressen hat, wird erst eine genaue Untersuchung zeigen können. Jedenfalls hat die Menge nicht einmal gereicht, um den Betonboden der Reaktorgrube zu durchschmelzen. Ursache für die Freisetzung von Radioaktivität sind schlicht weg Konstruktionsfehler: Die Wasserstoffexplosion und die „Untertunnelung“ des Kraftwerks.
  • Bei dem TMI-Reaktor in Harrisburg hatte man wenigstens alles grundsätzlich richtig konstruiert, obwohl dann später alles schief lief. Maßgeblich durch Bedienungsfehler fiel ein Teil des Kerns unbemerkt trocken. Es entstand Wasserstoff, welcher aber nicht zu einer heftigen Explosion führte. Das Reaktordruckgefäß blieb ganz und in ihm sammelten sich Bruchstücke und Schmelze. Es gelangte praktisch keine unzulässig hohe Radioaktivität in die Umwelt.

Anstatt durch Aufklärung entgegen zu wirken, versuchte man den Segen der „Atomkraftgegner“ durch die Erfindung des core catcher zu erlangen. Ein von Anfang an sinnloses Unterfangen. Die Strategie der „Atomkraftgegner“ ging vielmehr auf: Die Kosten wurden weiter in die Höhe getrieben um mit einer vorgeblich „unwirtschaftlichen Atomkraft“ argumentieren zu können.

Wie sieht dieses Ding nun beim EPR aus? Man pflastert den Boden unterhalb des Reaktordruckgefäßes mit Steinen aus einer feuerfesten Keramik. Gemäß den Vorstellungen aus Hollywood frisst sich das Corium als glühende Schmelze durch das Reaktordruckgefäß und sammelt sich in der feuerfesten Wanne. In der Realität nimmt die Nachzerfallswärme zwar exponentiell ab, nach Drehbuch natürlich nicht, sondern der Boden der Wanne aus einem Spezialbeton schmilzt langsam auf und die Schmelze rinnt anschließend über eine Schräge in eine großflächige Vertiefung. Diese soll dauerhaft und automatisch durch Wasser gekühlt werden. Dort soll die Schmelze dann dauerhaft erstarren. Man könnte dieses Konzept auch mit: „Richtige Antworten auf falsche Fragestellungen umschreiben.“ Jedenfalls kostet allein der umbaute Raum für diese technische Glanzleistung zig Millionen.

Die magische Zahl vier

Der EPR hat vier Primärkreise: Um das Druckgefäß im Zentrum stehen kreisförmig angeordnet vier Dampferzeuger. Zwischen ihnen stehen die vier Hauptkühlmittelpumpen für die Umwälzung des Wassers durch den Reaktorkern und die Wärmeübertrager. All diese Komponenten stehen in Betonkammern, die der Abschirmung der Strahlung dienen. Damit ist der Sicherheitsbehälter auch während des Betriebes begehbar.

Dieser Grundanordnung folgend, gibt es auch vier vollständige Sicherheitseinrichtungen, deren Komponenten in vier voneinander völlig getrennten Gebäuden um den Sicherheitsbehälter angeordnet sind. Diese vier Sicherheitsabschnitte, sowie die Bedienungszentrale und das Gebäude für die Brennelemente, sind ebenfalls (wie das zylindrische Reaktorgebäude) gegen Flugzeugabstürze verbunkert.

Etwas abseits liegen zwei Gebäude, die die Notstromversorgung enthalten. Sie befinden sich jeweils in Deckung durch den eigentlichen Reaktorbau. Da sie ebenfalls vollständig redundant sind, geht man nur von höchstens einem Schaden bei einem Flugzeugabsturz aus. Die Gebäude sind mit wasserdichten Türen verschlossen. Ein Auslöschen durch eine Flutwelle (Fukushima) wäre ausgeschlossen.

Jedes, der vier Notkühlsysteme, kann allein die gesamte Wärme abführen (4 x 100%). In erster Linie dient das zur Verbesserung der Verfügbarkeit. Da alle vier Züge völlig voneinander unabhängig sind, kann man Wartungsarbeiten im laufenden Betrieb ausführen. Wenn ein System gewartet wird, stehen immer noch drei zur Verfügung.

Die Nachzerfallswärme

Bei einem Störfall wird das Kernkraftwerk durch eine Unterbrechung der Kettenreaktion abgeschaltet. Das Einfahren der Steuerstäbe entspricht z. B. dem Ausschalten der Feuerung bei einem konventionellen Kraftwerk. Bei beiden muß nun noch die im System gespeicherte Wärme abgeführt werden. Es gibt bei einem Kernkraftwerk aber zusätzlich den physikalischen Effekt der Nachzerfallswärme: Der radioaktive Zerfall der Spaltprodukte läßt sich durch nichts aufhalten. Es wird also auch nach der Abschaltung noch Wärme produziert! Die freiwerdende Wärme hängt von verschiedenen Umständen ab. In den ersten Sekunden können es über 5% der thermischen Leistung sein. Die Nachzerfallswärme nimmt sehr schnell ab und es sind nach einer Stunde nur noch rund 1%. Gleichwohl handelt es sich um gewaltige Leistungen. Ist ein EPR längere Zeit mit Höchstlast im Netz gewesen, sind das entsprechend 225 MW bzw. noch 45 MW nach einer Stunde. Diese Wärme muß auf jeden Fall – auch bei widrigsten äußeren Umständen (Fukushima) – abgeführt werden, da sonst der Kern schmilzt.

Praktisch ist die einzige Möglichkeit solche Leistungen sicher abzuführen, die Verdampfung. Ist die äußere Wärmesenke (Fluß, Meer oder Kühlturm) nicht mehr nutzbar, muß dies ausschließlich über die Notkühlung möglich sein. Zuerst baut man über Ventile am Druckhalter den Druck im Primärkreis ab. Schon durch dieses „auskochen“ tritt eine merklich Kühlung ein. Allerdings muß die abgelassene Wassermenge möglichst schnell ersetzt werden, da sonst das Reaktordruckgefäß ausdampft und der Kern (teilweise, wie in Harrisburg) trocken fällt. Ist der Druck auf ein gewisses Niveau abgefallen (ungefähr 100 bar) setzt eine Nachspeisung von Kühlwasser ein. Für den Antrieb der Pumpen ist aber elektrische Energie nötig. Würde die Notstromversorgung – wie in Fukushima – versagen, würde die Überhitzung des Kerns eher noch schneller eintreten. Das Reaktormodell aus den 1960er Jahren hatte bereits eine pfiffigere Idee: Der abgelassene Dampf wurde vor der Kondensation in der wassergefüllten Ringkammer über eine kleine Turbine geleitet. Diese Turbine treibt eine kleine Speisepumpe, die Wasser aus dem Ringraum zurück in das Druckgefäß speist. Dies funktioniert bis zu einem gewissen Temperaturausgleich recht gut. Eine Notmaßnahme, die zumindest in den ersten Minuten ohne jede Hilfsenergie sehr gut funktioniert hat.

Gegenüber seinen Vorläufern hat der EPR durch das Wasserbecken am Boden einen Sicherheitsgewinn: Das Wasser dient nicht nur zur Noteinspeisung, sondern stellt auch eine Wärmesenke innerhalb des Sicherheitsbehälters dar. Das Wasser kann durch Wärmeübertrager gepumpt werden, um es „kühl“ zu erhalten. Die Lagerung am Boden kommt der statischen Belastung bei Erdbeben entgegen, vergibt aber die Chance einer passiven Nachspeisung durch Schwerkraft.

Bei dem EPR ergibt sich kein grundsätzlicher Sicherheitsgewinn gegenüber seinen Vorgängern des Konvoi. Er arbeitet nach den gleichen Prinzipien: Lediglich die Stückzahl und Aufstellung der Sicherheitseinrichtungen wurde erhöht: Je zwei Notstromdiesel in zwei verschiedenen Gebäuden (2 x 2 x 8 MW Redundanz) und je ein Notstromaggregat zusätzlich im Gebäude (2 x 1 MW Diversität). Es bleibt aber das alte Problem aktiver Sicherheitssysteme: Strom weg, Wasser weg! Die vorgeblich um den Faktor zehn erhöhte Sicherheit, ergibt sich rechnerisch hauptsächlich aus dem Core Catcher.

Der Zugewinn an Lebensdauer

Beim EPR ist die konstruktive Nutzungsdauer von 40 auf 60 Jahre erhöht. Dies ist durch eine konsequente Überarbeitung aller Bauteile geschehen. So ist man z. B. beim Druckgefäß und den Hauptkühlmittelleitungen auf den Werkstoff Alloy 690 (59,5% Nickel, 30% Chrom, 9,2% Eisen etc.) übergegangen. Er besitzt bessere Korrosionsbeständigkeit und bildet nicht soviel „Atommüll“ durch Neutroneneinfang. Zusätzlich hat man das Druckgefäß mit einem Reflektor aus Stahl ausgestattet. Durch das Zurückstreuen von Neutronen in den Kern kann man den Brennstoff besser ausnutzen und gleichzeitig den Druckbehälter weniger belasten (Versprödung durch Neutronen).

Sicherheit und Wartung stehen in enger Beziehung. Schweißnähte weisen immer Fehler auf, die in regelmäßigen Abständen überprüft werden müssen. Solche Wiederholungsprüfungen sind zeitaufwendig (Verfügbarkeit) und kostspielig. Je weniger Schweißnähte, desto besser. Wenn schon Schweißnähte, dann an gut zugänglichen Stellen. Man hat deshalb beim EPR wesentlich komplizierter geschmiedete Formstücke (hohe Investitionskosten) für die Hauptkühlmittelleitungen verwendet bzw. durch Aushalsungen beim Druckbehälter die Anschlüsse vorverlegt.

Schlusswort

Ohne jede Frage hat man in hunderten von Betriebsjahren eine Menge Erfahrungen gesammelt. Hinzu kamen die realen „Großversuche“ aus Harrisburg und Fukushima. Insofern ist der EPR nicht mehr mit den ersten Druckwasserreaktoren vergleichbar. Als Ersatz für gasgekühlte Reaktoren (Hinkley Point) oder als Zubau (Olkiluoto, Taishan) ist er sicherlich eine gute Lösung. Aber ist der Sicherheitsgewinn beispielsweise gegenüber einer Konvoi-Anlage so viel höher, daß ein Ersatz durch einen EPR zu rechtfertigen wäre? Zumal man mit wenigen Nachrüstungen bzw. Ersatzteilen (z. B. Dampferzeuger) sehr kostengünstig eine Betriebsdauer von 80 und mehr Jahren erreichen könnte. Genug Zeit jedenfalls, um auf fortschrittlichere Konzepte umzusteigen.

Im nächsten Teil geht es um den APR-1000 von Westinghouse, der in Moore Side (und anderswo) geplant ist.

Hinkley Point C

Der Aufreger der Woche, ist der geplante Neubau zweier Reaktoren als Ersatz für das Kernkraftwerk Hinkley Point. Für die einen ist es der lang ersehnte Neubeginn, für andere ein Sündenfall der europäischen Subventionswirtschaft. Vor allem ist es jedoch ein hoch komplexer Vorgang, für den man etwas mehr Zeit benötigt als in den „Qualitätsmedien“ zur Verfügung steht.

Die Geschichte

Großbritannien (GB) ist die Mutter der sog. „Strom-Markt-Liberalisierung“ in Europa. Traditionell gab es Gebietsmonopole, in denen „Energieversorger“ tätig waren. Als Ausgleich für ihr Monopol, mußten sie ihre Tarife durch eine staatliche Aufsicht kontrollieren und genehmigen lassen. Nach der „Liberalisierung“ sollte elektrische Energie – wie andere Wirtschaftsgüter auch – zwischen Erzeugern und Verbrauchern gehandelt werden. Eine „Strombörse“ sollte hierfür der zentrale Marktplatz sein. So weit, so schlecht. Märkte kann man nicht verordnen, sondern Märkte ergeben sich und müssen sich frei organisieren können. Heute steht man in GB vor einem Scherbenhaufen. Böse Zungen behaupten, daß das heutige Theater um Hinkley Point nur das zwangsläufige Ergebnis für eine seit 30 Jahren nicht vorhandene Energiepolitik sei. Eine sicherlich nicht ganz falsche Feststellung. Noch treffender könnte man sagen, ein bischen Planwirtschaft geht genauso wenig, wie ein bischen schwanger. Um auch weiterhin seinen politischen Einfluß geltend machen zu können, hat man ganz schnell ein prinzipielles „Marktversagen“ in der Form einer von Menschen verursachen „Klimakatastrophe“ konstruiert. Früher gab es eine „Aufsichtsbehörde“ mit klar definierter Verantwortung und Aufgabenstellung. Heute ist die Elektrizitätswirtschaft zu einem Tummelplatz für Laiendarsteller und skrupellose Geschäftemacher verkommen. Im Ergebnis haben sich immer mehr seriöse Investoren aus diesem Sektor zurückgezogen. Dafür wurden immer mehr Kräfte aus dem dunklen Reich der „Gesellschaftsveränderer“ magisch angezogen. Wie konnte es dazu kommen?

Am Anfang und am Ende steht das Atom

In GB gab es zwar nie eine der deutschen „Anti-Atomkraft-Bewegung“ vergleichbare Strömung in der Bevölkerung, gleichwohl erkannten auch dort Politiker das Potential für eine „Gesellschaftsveränderung“. Man versuchte deshalb den Sektor Kernenergie möglichst lange aus der „Strom-Markt-Liberalisierung“ heraus zu halten. Letztendlich wurde auch er „privatisiert“. Die Kernkraftwerke wurden komplett an die staatliche französische EDF verkauft. Von einem Staatskonzern Unternehmertum zu erwarten, dürfte ungefähr genauso erfolgreich sein, wie die Übertragung eines Schnapsgeschäftes an einen Alkoholiker. Parallel wurden die „Alternativenergien“ massiv bevorzugt. Mit dem Ergebnis, daß man auch bald keinen Dummen mehr finden konnte, der gewillt war, in fossile Kraftwerke zu investieren. Nun steht man vor einem Scherbenhaufen: Rund ein Drittel aller Kraftwerke müssen in den nächsten Jahren aus Altersschwäche vom Netz gehen. Dies führt zu einer Versorgungslücke von wahrscheinlich 60 GW. Eine volkswirtschaftliche Herausforderung, wie in einem Schwellenland. Die Zeit wird knapp. Längst hat man gemerkt, daß Windenergie ohne konventionelle Kraftwerke gar nicht funktionieren kann. Da helfen auch noch so hohe Investitionen nicht weiter. Den Weg über den Neubau von Kohlekraftwerken traut man sich nicht zu gehen, hat man doch erst mit großem politischen Aufwand die „Klimakatastrophe“ erschaffen. Der einst erträumte Weg über „flexible und umweltfreundliche Gaskraftwerke“ ist bei der benötigten Stückzahl auch nicht realistisch. Zumindest das Handelsdefizit würde explodieren und das Pfund ruinieren. Man kann es drehen und wenden wie man will, aber zum Schluß landet man wieder bei der (ungeliebten) Kernenergie.

Weisse Salbe oder Reform

Solange man an dem „Einspeisevorrang“ für Windenergie fest hält, wird man keinen Investor für konventionelle Kraftwerke finden. Jedes zusätzliche Windrad drückt die Preise für Strom an der Börse weiter in den Keller und senkt zusätzlich die Auslastung der konventionellen Kraftwerke. Würde man die Einspeisung begrenzen – wenn der Wind einmal zufällig kräftig weht – wären die Windmüller aber über Nacht pleite. Dies wäre zwar die volkswirtschaftlich sinnvollste Lösung, ist aber (zur Zeit noch nicht) politisch durchsetzbar. Deshalb handelt man lieber nach dem alten Grundsatz: Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen: In Deutschland nennt man das „Kapazitätsmärkte“, in GB „Contracts for Difference CfD“. Zwar ist beides durchaus nicht das Selbe, dient aber dem gleichen Zweck. Es dient dazu, die Kosten für ein zusätzliches System für die Zeiten der Dunkel-Flaute nicht dem Verursacher (Windmüller), sondern dem Verbraucher aufs Auge zu drücken. Noch einmal in aller Deutlichkeit: Würde man den „Erneuerbaren“ abverlangen, zu jedem Zeitpunkt den erforderlichen Anteil an der Netzleistung bereitzustellen, wäre der Traum von der „Energiewende“ über Nacht beendet. Es würden sich nämlich die wahren Kosten für jeden ersichtlich zeigen. Jeder Windmüller müßte entweder auf eigene Kosten Speicher bauen oder Notstromaggregate errichten oder Ersatzleistung bei anderen Kraftwerken zu kaufen. Wenn er keinen Strom liefern kann, weil das Netz voll ist (Starkwind) bekommt er auch kein Geld. Alles Selbstverständlichkeiten, die für jedes konventionelle Kraftwerk gültig sind. Ein „Kapazitätsmarkt“ wäre nicht notwendig oder würde sich von selbst ergeben – ganz nach Standort des Betrachters.

Windenergie ist nicht gleichwertig zu Kernenergie

Der Strom aus der Steckdose ist ein homogenes Gut im wirtschaftlichen Sinne. Es ist physikalisch in engen Grenzen (Frequenz, Spannung) immer gleich. Egal ob heute oder morgen oder in Berlin oder am Bodensee. Genauso wie Dieselkraftstoff, bei dem es auch egal ist, wo man tankt. Zu diesem homogenen Wirtschaftsgut wird die elektrische Energie aber noch nicht durch die Erzeugung, sondern erst durch das Netz (Netz nicht nur im Sinne von Drähten, sondern einschließlich Schaltanlagen, Transformatoren, Frequenzregler etc.). Ganz anders als beim Dieselkraftstoff. Der bleibt immer gleich, egal ob er frisch aus der Raffinerie kommt oder aus einem Lagertank. Damit ergibt sich wirtschaftlich ein grundlegender Unterschied: Diesel kann man lagern, bis die Preise günstiger sind (Arbitrage). Elektrische Energie muß man in dem Moment verkaufen, wo sie entsteht (z. B. Windbö). Andersherum gilt genauso: Der aktuelle Strompreis kann noch so hoch sein, wenn Flaute ist hat man nichts davon. Genauso wenig nutzt es, wenn der Sturm in der Nordsee tobt, man aber mangels Leitungen den Strom nicht nach Bayern transportieren kann.

Letztendlich muß der Verbraucher immer alle Kosten tragen. Für einen Vergleich unterschiedlicher Erzeuger ist aber eine richtige Zuordnung der Kosten sehr wohl nötig, will man nicht Äpfel und Birnen gleich setzen. Ein einfaches Beispiel mag das verdeutlichen: Bei einem Kernkraftwerk werden die Schaltanlagen und Anschlußleitungen bis zum „relevanten Anschlußpunkt“ den Baukosten des Kraftwerks zugeschlagen, weil sie als sicherheitsrelevant gelten. Bei Windkraftanlagen ist das genau andersherum, um die Windenergie künstlich günstig zu rechnen. Hier schmarotzt der Anlagenbetreiber von der Allgemeinheit. Insofern sind Investitionskosten ohne genaue Kenntnisse der Verhältnisse nicht unmittelbar gegenüber zu stellen. Begriffe wie „Netzparität“, sind nichts weiter als Irreführung der Verbraucher.

Entspricht 16 nun 34 oder nicht?

Die Baukosten für zwei EPR-Blöcke mit zusammen 3200 MW werden mit 16 Milliarden Pfund angegeben. Dies ist für sich schon ein stolzer Preis. Verwundern kann das jedoch nicht, da die Vergabe ohne Konkurrenz erfolgt. Dies ist nur politisch zu erklären: Der Segen aus Brüssel war sicherlich nur mit massiver Unterstützung von Frankreich möglich. Dürfte dieser Preis Realität werden, dürfte sich der EPR und Areva als sein Hersteller auf dem Weltmarkt erledigt haben. Er wäre schlichtweg nicht konkurrenzfähig. Wie eigenartig das Vergabeverfahren verlaufen ist, erkennt man schon daran, daß der Angebotspreis kurz vor Abgabe noch einmal um zwei Milliarden erhöht worden ist. Dies wurde mit einem zusätzlichen Erwerb eines Grundstückes und den Ausbildungskosten für die Betriebsmannschaft begründet. Vielleicht platzt das ganze Geschäft noch, weil Areva vorher die Luft ausgeht. Vielleicht ist Hinkley Point auch der Einstieg der Chinesen in das europäische Geschäft mit Kernkraftwerken. EDF hat ohnehin nur eine Beteiligung zwischen 45 bis 50% geplant. China General Nuclear und China National Nuclear Corporation sind schon lange als Partner vorgesehen.

Welche Kosten nun die wirklichen Kosten sind, ist so alt wie die Kerntechnik. Die Baukosten werden mit rund 16 Milliarden Pfund angegeben. Genauer gesagt sind dies die „Über-Nacht-Kosten“. Nun beträgt aber die geplante Zeit bis zur Inbetriebnahme etwa 10 Jahre. In dieser Zeit müssen alle Ausgaben über Kredite finanziert werden. Einschließlich der Finanzierungskosten soll das hier etwa 34 Milliarden Pfund ergeben. Weitere rund 10 Milliarden Pfund sollen auf die Rückstellungen für „Atommüll“ und die Abbruchkosten für das Kraftwerk entfallen. So ergibt sich die Zahl von 43 Milliarden Euro, die durch die Presselandschaft geistert. Man sollte dabei nicht vergessen, daß dies alles nur kalkulatorische Kosten zur Rechtfertigung des vertraglich vereinbarten „strike price“ von 92,50 Pfund pro MWh sind.

Es ging hier um ein „Beihilfeverfahren“, in dem die Kosten möglichst hoch angesetzt werden müssen, um das gewollte Ergebnis zu erhalten. Deutlich wird das an der erfolgreichen „Subventionskürzung“ bei der Finanzierung um über eine Milliarde Pfund, die Almunia stolz verkündet hat. Um was geht es genau dabei? Die Finanzierung eines Kernkraftwerks ist mit erheblichen, nicht kalkulierbaren – weil staatlich verursachten – Risiken verbunden. Man kann erst die Kredite zurückbezahlen, wenn man Strom liefern kann. Der Zeitpunkt ist aber unbestimmt, da laufend die Anforderungen der Behörden verändert werden können. Dieses (unkalkulierbare) Risiko, lassen sich die Banken mit erheblichen Zinsaufschlägen vergüten. Aus diesem Gedanken wurde die staatliche Bürgschaft (bis zur Inbetriebnahme) erschaffen. Durch diese Bürgschaft ist der Kredit einer Staatsanleihe gleichwertig. Allerdings kostet eine Bürgschaft immer Gebühren. Der Staat subventioniert hier nicht, sondern kassiert im Gegenteil ab! Zahlen muß – wie immer – der Verbraucher. Für Hinkley Point ist eine Bürgschaft über 10 Milliarden Pfund bzw. 65% der auflaufenden Kosten vorgesehen. Man setzt nun einen fiktiven Zinssatz mit Bürgschaft in Relation zu einem durchschnittlichen Zinssatz für Kredite und hat flugs eine – freilich rein theoretische – Subvention.

Es ging hier auch mehr um die grundsätzliche Absegnung eines Verfahrens. Eine solche Anleihe kann sehr langfristig angelegt werden und dürfte sich zu einem Renner für die Versicherungswirtschaft, Pensionskassen usw. im Zeitalter der niedrigen Zinsen erweisen. Dies war übrigens der Gedanke, der hinter der Erschaffung von Desertec, dem Projekt Strom aus der Sahara, stand. Nur hatten die energiewirtschaftlichen Laien der Münchener Rück auf das falsche Produkt gesetzt. Trotzdem ist die Idee Geld wert. Hier schlummert ein europaweites, gigantisches Infrastrukturprogramm. In diesem Sinne ist auch das chinesische Interesse kein Zufall. Man sucht auch dort händeringend langfristige, sichere und lukrative Anlagemöglichkeiten für die gigantischen Devisenreserven. Kapital gibt es genug, man muß nur die ideologischen Bedenken über Bord werfen.

Ist CfD gleich EEG oder doch nicht?

Um die Antwort vorweg zu nehmen: Das Hinkley Point Modell ist eher eine Abkehr vom deutschen EEG-Modell und eine Rückwärtsbesinnung auf die gute alte Zeit der Energieversorger mit genehmigungspflichtigen Preisen. Insofern hinkt auch hier der Vergleich mit der Förderung von Windenergie.

Nach dem EEG-Modell wird ein einmal beschlossener Energiepreis für die gesamte Laufzeit gewährt. Egal, wie hoch die erzielbaren Preise sind. Selbst wenn eine Entsorgungsgebühr für den erzeugten Strom an der Börse entrichtet werden muß (negative Energiepreise). Die Subvention wird jährlich als Zuschlag auf alle verbrauchten Kilowattstunden umgelegt. Das System ist rein an der Erzeugung orientiert. Je mehr Windstrom erzeugt wird, um so mehr drückt das auf die Börsenpreise und um so höher werden die Subventionen. Langfristig müssen sich die konventionellen Kraftwerke nicht nur ihre eigenen Kosten, sondern auch die Entsorgungsgebühren für Wind und Sonne in den Zeiten der Dunkel-Flaute zurückholen. Dies wird zu extremen Preisschwankungen an der Börse führen. Nicht einmal „Kapazitätsmärkte“ können dagegen etwas ausrichten.

Beim „strike price“ wird ebenfalls ein Preis festgelegt (hier die 92,50 Pfund/MWh auf der Basis 2012), der langfristig gezahlt wird. Immer wenn die an der Börse erzielbaren Preise geringer sind, wird die Differenz draufgelegt. Sind die erzielten Preise jedoch höher, muß diese Differenz zurückbezahlt werden. In der reinen Lehre, sollte es hierfür ein Bankkonto mit Zinsen geben, dessen Kredite durch den Staat (wegen der dann niedrigen Zinsen) verbürgt werden sollten. Dies war angeblich nicht „beihilfekonform“ und soll jetzt über kontinuierliche Umlagen bzw. Vergütungen bei den Stromrechnungen erfolgen. Hier liegt der entscheidende Unterschied zum EEG-Modell: Ein Kernkraftwerk kann immer Strom liefern, wenn es der Betreiber will – eine Windmühle nur, wenn die Natur es will. Kernkraftwerke können die hohen Börsenpreise bei „Spitzenlast“ in der Dunkel-Flaute voll mitnehmen. „Kapazitätsmärkte“ lassen sich so mit dem CfD-Modell elegant umschiffen. Die Kostentransparenz ist größer.

Die Preisaufsicht ist wieder zurück

In der Zeit der Gebietsmonopole, mußten sich die Energieversorger die Preise für die Endverbraucher genehmigen lassen. Ein Modell, welches noch in vielen Teilen der Welt praktiziert wird. Später glaubte man dies durch den freien Handel einer Börse ersetzen zu können. Leider ist dieser „freie Handel“ nie wirklich frei gewesen. Insofern hat es auch nie eine transparente und marktkonforme Preisfindung gegeben. Es war nur ein Alibi für eine Planwirtschaft.

Der von Brüssel genehmigte Preis ist nicht mehr auf ewig festgeschrieben, sondern plötzlich anerkannt veränderlich und bedarf somit einer Kontrolle. Er ist – klassisch, wie eine Preisgleitklausel – mit der allgemeinen Inflationsrate indexiert. Es ist ausdrücklich festgehalten, daß bei geringeren Baukosten als angesetzt, der „strike price“ angepaßt werden muß. Das gleiche gilt, wenn der Gewinn höher als vorgesehen ausfällt. Beides wohl eher fromme Wünsche, handelt es sich doch beim Bauherrn und Betreiber um staatliche Unternehmen. Zumindest die „hauseigene Gewerkschaft der EDF“ wird eher für das 15. und 16. Monatsgehalt streiken, bevor es dem Kunden auch nur einen Cent Preissenkung zugesteht. Man darf gespannt sein, mit welchen Befugnissen die Preisaufsicht ausgestattet werden wird.

Brüssel hat das ursprünglich auf 35 Jahre begrenzte Modell auf die voraussichtlich Lebensdauer von 60 Jahren ausgedehnt. Man will damit verhindern, daß das dann weitestgehend abgeschriebene Kraftwerk zu einer Gewinnexplosion bei dem Betreiber führt. Auch in dem erweiterten Zeitraum, müssen zusätzliche Gewinne zwischen Betreiber und Kunden aufgeteilt werden. Allerdings kehrt man mit diesem Ansatz nahezu vollständig zu dem Modell regulierter Märkte zurück. Eigentlich sollten an einer Börse die Preise durch Angebot und Nachfrage gefunden werden. Der Gewinn sollte dabei der Lohn für das eingegangene unternehmerische Risiko sein. Was unterscheidet das CfD-Modell eigentlich noch von einer rein öffentlichen Energieversorgung?

Nachwort

Man mag ja zur Kernenergie stehen wie man will. Nur was sind die Alternativen? Wenn man die gleiche elektrische Energie (3,2 GW, Arbeitsausnutzung ca. 90%) z. B. mit Sonnenenergie erzeugen wollte, müßte man rund 30 GW (Arbeitsausnutzung ca. 10%) Photovoltaik installieren. Trotzdem bleibt es in der Nacht dunkel – und die Nächte sind im Winterhalbjahr in GB verdammt lang. Im Gegensatz würden 30 GW an einem sonnigen Sonntag das Netz in GB förmlich explodieren lassen. Wollte man diese Leistung auf dem Festland entsorgen, müßte man erst gigantische Netzkupplungen durch den Ärmelkanal bauen.

Windkraftanlagen auf dem Festland erscheinen manchen als die kostengünstigste Lösung. Bei den Windverhältnissen in GB müßte man für die gleiche Energiemenge ungefähr 10 GW bauen und zusätzlich Gaskraftwerke mit etwa 3 GW für die Zeiten mit schwachem Wind. Das ergibt eine Kette von fast 1000 km Windkraftanlagen an der Küste. Wohlgemerkt, nur als Ersatz für dieses eine Kernkraftwerk Hinkley Point!

Oder auch gern einmal anders herum: Der Offshore-Windpark London Array – Paradebeispiel deutscher Energieversorger – hat eine Grundfläche von etwa 100 km2 bei einer Leistung von 0,63 GW. Weil ja der Wind auf dem Meer immer so schön weht (denkt die Landratte) geht man dort von einer Arbeitsausnutzung von 40% aus. Mit anderen Worten, dieses Wunderwerk grüner Baukunst, produziert weniger als 1/10 der elektrischen Energie eines Kernkraftwerkes.

SMR Teil 2 – Leichtwasserreaktoren

Leichtwasserreaktoren haben in den letzten zwanzig Jahren täglich mehr Energie produziert, als Saudi Arabien Öl fördert. Sie sind die Arbeitspferde der Energieversorger. Kein anders Reaktorkonzept konnte bisher dagegen antreten.

Sieger der ersten Runde des Förderungsprogramm des Department of Energy (DoE) war Babcock & Wilcox (B&W) mit seinem mPower Konzept, zusammen mit Bechtel und Tennessee Valley Authority. Sicherlich kein Zufall, sind doch (fast) alle kommerziellen Reaktoren Leichtwasserreaktoren und B&W ist der Hoflieferant der US-Navy – hat also jahrzehntelange Erfahrung im Bau kleiner Druckwasserreaktoren.

Die Gruppe der kleinen Druckwasserreaktoren

Bei konventionellen Druckwasserreaktoren sind um das „nukleare Herz“, dem Reaktordruckgefäß, die Dampferzeuger (2 bis 4 Stück), der Druckhalter und die Hauptkühlmittelpumpen in einer Ebene gruppiert. Diese Baugruppen sind alle mit dem eigentlichen Reaktor durch dicke und kompliziert geformte Rohrleitungen verbunden. Eine solche Konstruktion erfordert langwierige und kostspielige Montagearbeiten unter den erschwerten Bedingungen einer Baustelle. Die vielen Rohrleitungen bleiben für die gesamte Lebensdauer des Kraftwerks „Schwachstellen“, die regelmäßig gewartet und geprüft werden müssen. Der gesamte Raum muß in einem Containment (Stahlbehälter aus zentimeterdicken Platten) und einer Stahlbetonhülle (meterdick, z. B. gegen Flugzeugabstürze) eingeschlossen werden.

Bei einem Small Modular Reaktor (SMR) stapelt man alle erforderlichen Komponenten vertikal übereinander und packt sie alle zusammen in einen Druckbehälter. Dadurch entfallen die vielen Rohrleitungen und Ventile zu ihrer Verbindung. Was es gar nicht gibt, kann auch nicht kaputt gehen. Der „größte – im Sinne eines Auslegungskriteriums – anzunehmende Unfall“ (GAU, oft zitiert und kaum verstanden), der Verlust des Kühlmittels, wird weniger wahrscheinlich und läßt sich einfacher bekämpfen. Allerdings sind bei dieser „integrierten Bauweise“ die Größen der einzelnen Komponenten begrenzt, will man noch eine transportierbare Gesamteinheit haben. Will man ein Kraftwerk mit heute üblicher Leistung bauen, muß man daher mehrere solcher Einheiten „modular“ an einem Standort errichten.

Geht man von diesem Konstruktionsprinzip aus, erhält man ein röhrenförmiges (kleiner Durchmesser, große Länge) Gebilde. Die Länge – als Bauhöhe umgesetzt – läßt sich hervorragend für passive Sicherheitskonzepte nutzen. Die schlanke Bauweise erlaubt es, den kompletten Reaktor in eine Grube zu versenken: Durch die unterirdische Bauweise hat man einen hervorragenden Schutz gegen alle Einwirkungen von außen (EVA) gewonnen.

Das Grundprinzip der Anordnung übereinander, eint diese Gruppe. Gleichwohl, sind im Detail eine Menge Variationen möglich und vielleicht sogar nötig. So meldete allein nuSkale diesen Monat voller Stolz, daß sie über 100 verschiedene Patente in 17 Ländern für ihren Reaktor angemeldet haben. Inzwischen dürften die SMR-Patente in die Tausende gehen. Nach einer sterbenden Industrie sieht das jedenfalls nicht aus.

Das mPower Konzept

Das „Nuclear Steam Supply System“ (NSSS) von Babcock & Wilcox (B&W) ist besonders schlank geraten: Es hat eine Höhe von über 25 m bei einem Durchmesser von 4 m und wiegt 570 (ohne Brennstoff) bzw. 650 to (mit Brennstoff). Damit soll es in den USA noch auf dem Schienenweg transportierbar sein. Seine Wärmeleistung beträgt 530 MWth und seine elektrische Leistung 155 MWel (mit Luftkondensator) oder 180 MWel bei Wasserkühlung. Ein komplettes Kraftwerk mit zwei Blöcken und allen erforderlichen Hilfs- und Nebenanlagen (300 – 360 MWel) soll einen Flächenbedarf von etwa 16 ha haben. Damit ist die Hauptstoßrichtung klar: Der Ersatz bestehender, alter Kohlekraftwerke.

Das Core besteht aus 69 Brennelementen mit 2413 mm aktiver Länge in klassischer 17 x 17 Anordnung bei einer Anreicherung von weniger als 5 % U235.. Hierbei zielt man auf die kostengünstige Weiterverwendung handelsüblicher Brennelemente für Druckwasserreaktoren ab. Bei diesem kleinen Reaktor kann man damit Laufzeiten von rund 4 Jahren zwischen den Nachladungen erreichen. Durch die Doppelblockbauweise ergibt sich somit eine extrem hohe Arbeitsausnutzung von (erwartet) über 95%. Das integrierte Brennelementelagerbecken kann Brennelemente aus 20 Betriebsjahren aufnehmen.

Die Turmbauweise erlaubt vollständig passive Sicherheitseinrichtungen, wodurch ein Unglück wie in Fukushima (völliger Stromausfall) von vornherein ausgeschlossen ist. Die Brennelemente sitzen ganz unten im Druckbehälter. Darüber kommt die gesamte Steuereinheit (Regelstäbe und ihre Antriebe) und darüber die Dampferzeuger. Ganz oben sitzen die acht Umwälzpumpen und der Druckhalter. Bei einem Stromausfall würden die Regelstäbe sofort und vollautomatisch durch die Schwerkraft in den Reaktorkern fallen und diesen abschalten. Die – im ersten Moment noch sehr hohe – Nachzerfallswärme erwärmt das Kühlwasser weiter und treibt durch den entstehenden Dichteunterschied das Kühlwasser durch den inneren Kamin nach oben. In den höher gelegenen Dampferzeugern kühlt es sich ab und sinkt im Außenraum des Reaktorbehälters wieder nach unten: Ein Naturumlauf entsteht, der für die sichere und automatische Abfuhr der Restwärme sorgt.

Als „Notstrom“ werden nur entsprechende Batterien für die Instrumentierung und Beleuchtung etc. vorgehalten. Große Notstromaggregate mit Schalt- und Hilfsanlagen werden nicht benötigt. Auch hier gilt wieder: Was es gar nicht gibt, kann im Ernstfall auch nicht versagen!

Westinghouse SMR (NextStart Alliance)

Westinghouse hat den ersten Druckwasserreaktor überhaupt entwickelt (Nautilus Atom-U-Boot 1954), das erste kommerzielle Kernkraftwerk (Shippingport 1957) gebaut und ist bei fast allen (westlichen) Druckwasserreaktoren Lizenzgeber. Es ist also nicht überraschend, wenn der Marktführer auch in diesem Segment dabei ist. Die NextStart SMR Alliance ist ein Zusammenschluss mehrerer Energieversorger und Gemeinden, die bis zu fünf Reaktoren im Ameren Missouri’s Callaway Energy Center errichten will.

Der Westinghouse SMR soll eine Leistung von 800 MWth und mindestens 225 MWel haben. Er unterscheidet sich von seinem Konstruktionsprinzip nicht wesentlich vom vorher beschriebenen B&W „Kleinreaktor“. Seine Zykluszeit soll 24 Monate betragen (bei Verwendung der Brennelemente des AP1000). Seine Lastfolgegeschwindigkeit im Bereich von 20 bis 100% Auslegungsleistung beträgt 5% pro Minute. Der Reaktor kann selbstregelnd Lastsprünge von 10 % mit einer Rate von 2% pro Minute dauerhaft ausregeln. Das alte Propagandamärchen der „Atomkraftgegner“ von den „unflexiblen AKW’s“ trifft auch bei diesen Reaktortypen nicht zu. Im Gegenteil dreht Westinghouse den Spieß werbewirksam um und offeriert diesen Reaktor als (immer notwendiges) Backup für Windkraft- und Solaranlagen zur CO2 – freien Stromversorgung.

Westinghouse integriert in das Containment noch einen zusätzlichen Wasservorrat und bekämpft auch noch passiv einen völligen Verlust des Kühlwasserkreislaufes. Damit dieser Störfall eintreten kann, müßte das Druckgefäß des SMR zerstört worden sein. In diesem Fall könnte das Wasser auslaufen und würde sich im Sumpf des Containment sammeln. Damit jeder Zeit der Kern des Reaktors mit Wasser bedeckt bleibt (und nicht wie in Fukushima und Harrisburg teilweise und zeitweise trocken fallen kann), wird automatisch Wasser aus den Speichern im Containment zusätzlich hinzugefügt. Alle Systeme sind so bemessen, daß sich der Reaktor auch nach einem schweren Unglück selbst in einen sicheren Zustand versetzt und mindestens für die folgenden 7 Tage keines menschlichen Eingriffs bedarf.

Wenn nur der Strom total ausfällt, aber das Reaktordruckgefäß nicht geplatzt ist, funktioniert die passive Notkühlung in drei gestaffelten Ebenen. Solange der normale Kühlkreislauf (Kühlturm oder Kühlwasser) noch Wasser enthält, wird über diesen durch Verdunstung die Nachzerfallswärme abgeführt. Versagt dieser sekundäre Kreislauf des Kraftwerks, tritt die innere Notkühlung in Kraft. Das kalte und borierte Wasser in den Nottanks strömt in den Reaktor. Gleichzeitig kann das heiße Wasser den Reaktor verlassen und in die Notkühlbehälter zurückströmen – es entsteht ein Naturumlauf. Damit das Wasser in den Notkühlbehältern auch weiterhin „kalt“ bleibt, besitzt jeder dieser Behälter im oberen Teil einen Wärmeübertrager. Diese Wärmeübertrager sind außerhalb des Containment mit „offenen Schwimmbecken“ verbunden, die durch Verdunstung die Energie an die Umwelt abgeben können. Bricht auch dieser Kühlkreislauf in sich zusammen, kann die Wärme immer noch durch Verdampfung des Wassers im Sumpf des Containment und durch anschließende Kondensation an der Oberfläche des Containment abgeführt werden.

Ausdrücklich wird der Markt für diesen Reaktortyp auch in der Fernwärmeversorgung und zur Meerwasserentsalzung gesehen. Peking hat z. B. viele Kohleheizwerke, die stark zur unerträglichen Luftverschmutzung beitragen. Es ist also kein Zufall, daß bereits Kooperationsverhandlungen laufen.

NuScale

Diese Variante ist aus einem durch das U.S. Department of Energy (USDOE) geförderten Forschungsprojekt am Idaho National Environment & Engineering Laboratory (INEEL) und der Oregon State University (OSU) hervorgegangen. Im Jahre 2008 hat dieses „Startup“ einen Genehmigungsantrag bei der US Nuclear Regulatory Commission (USNRC) für einen 45 MWel. Reaktor gestellt. Im Jahr 2011 ist das Unternehmen praktisch vollständig von FLUOR übernommen worden. Es besteht zudem eine sehr enge Verbindung mit Rolls-Royce.

Das NuScale Modul hat nur eine thermische Leistung von 160 MWth und eine elektrische Leistung von mindestens 45 MWel.. Bei einem Durchmesser von 4,5 m, einer Höhe von 24 m und einem Gewicht von 650 to ist es aber fast genau so groß, wie die beiden schon vorgestellten SMR. Die geringe Energiedichte führt zu einer starken Vereinfachung. Das Unternehmen gibt die spezifischen Investitionskosten mit weniger als 5.000 $/kW an.

Bei dem Konzept handelt es sich um einen Zwitter aus Siedewasser- und Druckwasserreaktor. So etwas ähnliches gab es auch schon in Deutschland, unter der Bezeichnung FDR, als Antrieb der Otto Hahn. Dieses Konzept hat sich schon damals als sehr robust und gutmütig erwiesen. Der NuSkale SMR kommt völlig ohne Umwälzpumpen aus. Man nimmt im Reaktorkern einen etwas höheren (als bei einem reinen Druckwasserreaktor üblichen) Dampfanteil in Kauf, bekommt dafür aber einen großen Dichteunterschied (bezogen auf das „kalte“ Eintrittswasser), der hervorragend einen Naturumlauf anregt. Allerdings erzeugt man keinen Dampf, den man direkt auf die Turbine gibt (wie bei einem Siedewasserreaktor), sondern „beheizt“ damit nur die zwei in dem Reaktordruckgefäß integrierten Dampferzeuger. Man hat also wie bei einem konventionellen Druckwasserreaktor einen physikalisch voneinander getrennten Primär- (durch den Reaktorkern) und Sekundärkreislauf (über die Turbine).

Das NuScale-Konzept bricht radikal mit einigen Gewohnheiten:

  • Man geht von bis zu zwölf Reaktoren aus, die zu einem Kraftwerk mit dann mindestens 540 MWel. zusammengefaßt werden Sie sollen in zwei Reihen zu sechs Reaktoren in einem „unterirdischen Schwimmbecken“ angeordnet werden. Bei einem Ladezyklus von 24 Monaten, könnte somit alle zwei Monate ein Brennelementewechsel erfolgen. Bei einem zusätzlichen „Reservemodul“ könnte das Kraftwerk nahezu mit 100 % Arbeitsausnutzung durchlaufen. Die „Auszeit“ eines konventionellen Kernkraftwerk entfällt. Ebenso wird die Personalspitze(üblicherweise mehr als 1000 Leute beim Brennelementewechsel) vermieden. Der Brennelementewechsel mit seinen Wiederholungsprüfungen wird zu einem stetigen „Wartungsprozess“ umgestaltet. Dies kann zu beträchtlichen Kosteneinsparungen führen.
  • Durch den Verzicht von Umwälzpumpen wird die Konstruktion noch einmal stark vereinfacht.
  • Durch die Aufstellung in einem „großen Schwimmbecken“ sind die Reaktoren vor Erdbeben und Druckwellen praktisch vollkommen geschützt. Überflutungen (Fukushima) sind kein Sicherheitsrisiko mehr, da ja die Reaktoren ohnehin ständig im Wasser stehen.
  • Die Reaktoren verzichten vollständig auf Wechselstrom (Fukushima) und benutzen lediglich passive Sicherheits- und Kühlsysteme. Elektrische Energie ist nur für die Instrumentierung und Beleuchtung notwendig. Relativ kleine Batterien sind hierfür ausreichend. Der Batterie- und Kontrollraum befindet sich im unterirdischen Teil des Kraftwerks.
  • Selbst wenn es zu einer Beschädigung des Reaktorkerns kommen würde (Fukushima), würden radioaktive Stoffe im Schwimmbecken und Reaktorgebäude zurückgehalten werden. Außerdem beträgt das radioaktive Inventar in jedem Modul weniger als 5% eines konventionellen Reaktors. Somit ist auch die bei einem Unfall abzuführende Restwärme entsprechend klein.
  • Im Containment herrscht Vakuum. Eine Bildung explosiver Gase (Fukushima) ist somit ausgeschlossen. Es wirkt wie eine Thermosflasche. Zusätzliche Isolierungen sind nicht erforderlich. Andererseits würde es bei einer Zerstörung des eigentlichen Druckbehälters, den entweichenden Dampf aufnehmen und eine „Wärmebrücke“ zum umgebenden Wasser herstellen.

Die überragende sicherheitstechnische Philosophie dieses Konzeptes ist, daß sich auch nach schwersten Zerstörungen (z. B. Tsunami in Fukushima) der Reaktor ohne menschliche Eingriffe selbsttätig in einen sicheren Zustand überführt und dort ohne jeden (nötigen) Eingriff ewig verbleibt! Dies mag noch einmal an der „Notkühlung“ verdeutlicht werden: Wenn die äußere Wärmesenke entfällt (Ausfall der Kühlwasserpumpen in Fukushima durch den Tsunami), alle Stromquellen ausfallen (Zerstörung der Schaltanlagen und Notstromaggregate durch die Flutwelle in Fukushima), dient das „Schwimmbecken“ zur Aufnahme der Nachzerfallswärme. Es ist so bemessen, daß sein Wasserinhalt durch Erwärmung und Verdunstung den Reaktorkern sicher kühlt. Selbst, wenn man kein Wasser nachfüllen würde, wäre es erst nach etwa einem Monat leer. Dann aber, ist die Nachzerfallswärme bereits so stark abgeklungen (< 400 kW pro Modul), daß die „Luftkühlung“ in dem nun leeren Wasserbecken, sicher ausreichen würde.

Das Brennelementelagerbecken ist zur Aufnahme von 15 Betriebsjahren ausgelegt. Es befindet sich ebenfalls im unterirdischen Teil und kann für mindestens 30 Tage ohne zusätzliches Wasser auskommen (Fukushima). Es besteht aus einem Edelstahlbecken in einer Stahlbetonwanne. Stahlbecken und Betonwanne sind seismisch von einander isoliert, sodaß auch schwerste Erdbeben praktisch wirkungslos für die gelagerten Brennelemente sind.

Die NuScale Konstruktion ist ein schönes Beispiel, wie man Jahrzehnte alte Entwürfe der Leichtwasserreaktoren noch einmal ganz neu durchdenken kann. Es ist der radikalste Ansatz unter den zur Genehmigung eingereichten Konzepten. Die Wahrscheinlichkeit für eine schwere Beschädigung des Reaktorkerns mit teilweiser Kernschmelze – wie in Harrisburg und Fukushima geschehen – verringert sich auf unter ein Ereignis in zehn Millionen Betriebsjahren. Selbst wenn es eintreten würde, wären die Auswirkungen auf die Umwelt noch geringer. Es wird bereits diskutiert, ob bei diesem Reaktortyp überhaupt noch eine „Sicherheitszone“ mit potentieller Evakuierung der Anwohner, erforderlich ist. Jedenfalls gibt es in USA bereits ein reges Interesse zahlreicher Gemeinden und Städte zur dezentralen, kostengünstigen, umweltschonenden und krisensicheren (Wirbelstürme, Tornados, etc.) Versorgung mit Strom und Fernwärme.

Holtec international

Einem klassischen Reaktor noch am ähnlichsten, ist das von Holtec im Jahre 2012 eingereichte Konzept des „Holtec Inherently-Safe Modular Reactor“ (HI-SMUR) mit einer geplanten Leistung von 145 MWel.. Er besteht aus den klassischen drei Baugruppen: Reaktor, Dampferzeuger und Druckhalter. Der Druckbehälter ist ein fast 32 m langes Gebilde, welches in einer brunnenförmigen Grube versenkt ist. Es ist mit den Dampferzeugern entweder durch ein „Rohrstück“ (senkrechte Variante) verbunden oder die waagerechten Dampferzeuger sind direkt angeschweißt. Liegende Dampferzeuger sind nur bei russischen Konstruktionen gebräuchlich. Werden stehende Dampferzeuger verwendet, baut dieser Typ oberirdisch noch einmal 28 m hoch.

Der Entwurf ist sehr eigenwillig. Man hat ursprünglich waagerechte Dampferzeuger mit separater Überhitzung vorgesehen. Angeblich kann man durch eine angestrebte Überhitzung auf handelsübliche Industrieturbinen zurückgreifen. Man verzichtet auf Umwälzpumpen, bei gleichzeitig großem Abstand vom Siedezustand. Man ist deshalb auf eine sehr große Temperaturspreizung (TE = 177 °C und TA = 302 °C bei p = 155 bar) angewiesen. Eine regenerative Speisewasservorwärmung ist praktisch ausgeschlossen. Das ganze ähnelt eher einer Dampflokomotive, als einem modernen Kraftwerk.

Das Brennstoffkonzept ist auch etwas ungewöhnlich. Es ist keine Borierung zur Kompensation der Überschußreaktivität vorgesehen. Das heißt, es muß alles über abbrennbare Gifte (Gd und Er) geschehen. Der gesamte Brennstoff soll sich in einer Kartusche aus nur 32 Brennelementen befinden. Bei einem so kleinen Core dürfte der Neutronenfluß nur sehr schwer in den Griff zu bekommen sein bzw. jeder Brennstab müßte eine individuelle Anreicherung erhalten. Man will die Kassette nach 100 h (Nachzerfallswärme) in einem Stück auswechseln. Ein Brennelementewechsel soll so weniger als eine Woche dauern. Gleichwohl, soll die Zykluszeit 42 Monate betragen. Wenn sich nicht einige revolutionäre Erfindungen dahinter verbergen, die bisher noch nicht öffentlich zugänglich sind, dürfte eher der Wunsch der Vater sein.

Bisher kooperiert Holtec mit Shaw und Areva. Ein Prototyp wäre auf der Savannah River Site des DoE’s geplant. Die Bauzeit wird mit nur 2 Jahren, bei Kosten von nur 675 Millionen US-Dollar angegeben. Man wird sehen.

Carem

Anfang Dezember 2013 wurde der Auftrag für das Reaktordruckgefäß des „Central Argentina de Elementos Modulares“ CAREM-Reaktor erteilt. Es handelt sich dabei um ein 200 to schweres, 11 m hohes Gefäß mit einem Durchmesser von 3,5 m. Es ist für den Prototyp eines argentinischen SMR mit einer Leistung von 25 MWel gedacht. Später soll dieser Reaktor eine Leistung von 100 bis 200 MWel. erreichen. Es handelt sich ebenfalls um eine voll integrierte Bauweise, mit ausschließlich passiven Sicherheitseinrichtungen.

Schwimmender SMR aus Russland

Der staatliche russische Hersteller Rosenergoatom baut in Petersburg eine Barge mit zwei Reaktoren, die nach Chukotka in Sibirien geschleppt werden soll, um dort Bergwerke mit Energie zu versorgen. Die Reaktoren sind eine zivile Abwandlung der KLT-40S Baureihe für Eisbrecher, mit einer Leistung von 35 MWel. Vorteil dieses „Kraftwerks“ ist, daß es auf einer seit Jahren erprobten Technik basiert. Die russische Eisbrecherflotte versieht zuverlässig ihren Dienst im nördlichen Eismeer. Ein nicht zu unterschätzender Vorteil bei der Versorgung entlegener Gegenden.

Sehr Interessant ist das Geschäftsmodell. Eine solche barge wird fix und fertig zum Einsatzort geschleppt. Der Kunde braucht nur für den Stromanschluss an Land zu sorgen. Weitere Investitionen oder Unterhaltskosten fallen für ihn nicht an. Nach drei Jahren wird die barge für einen Brennelementewechsel und notwendige Wiederholungsprüfungen abgeschleppt und durch eine andere barge ersetzt. Da bei einem Kernkraftwerk die Brennstoffkosten ohnehin eine untergeordnete Rolle spielen, kann der Kunde das Kraftwerk für eine pauschale Jahresgebühr mieten. Ob und wieviel Strom er verbraucht, braucht ihn nicht mehr zu kümmern. Eine feste Kalkulationsgrundlage, die für Öl- und Minengesellschaften höchst verlockend ist. Als einzige Hürde in westlichen Regionen erscheint lediglich (noch) das „Made in Russia“. Jedenfalls hat er keine Vorauszahlungen zu leisten, hat keinerlei Reparaturkosten und braucht sich nicht um die Entsorgung des „Atommülls“ zu kümmern. Russland kann seinen „Heimvorteil“ des geschlossenen Brennstoffkreislaufs voll ausspielen.

Parallel hat Russland noch ein größeres Modell mit 300 MWel auf der Basis des VBER-300 PWR Druckwasserreaktors in der Entwicklung.

Abschließender Hinweis

Dieser Artikel kann und soll nur einen Überblick über den Stand der internationalen Entwicklung geben. Wer bis hierhin nicht durch so viel Technik abgeschreckt worden ist, dem empfehle ich, einfach mal die Typen und Hersteller zu googeln. Besonders die Seiten der Hersteller verfügen über zahlreiche Zeichnungen und Animationen. Zwar ausnahmslos in Englisch, aber mit der Grundlage dieses Artikels lassen sie sich hoffentlich auch für nicht Techniker verstehen.

 

ACP-1000, Chinas erster richtiger Export

Im August 2013 hat sich China zum ersten mal als Exporteur „richtiger“ Kernkraftwerke auf dem Weltmarkt gezeigt: China hat mit Pakistan einen Vertrag zur Lieferung eines Kraftwerks mit zwei ACP-1000 Reaktoren abgeschlossen. Die Angelegenheit erscheint gleich aus mehreren Gründen bemerkenswert: Es handelt sich bei den Reaktoren um eine Eigenentwicklung von Reaktoren der sog. III. Generation und den besonderen politischen Umständen. Mit Argentinien steht man angeblich vor einem weiteren Abschluss. China scheint also sehr viel schneller auf dem Weltmarkt zu erscheinen, als manch einer sich „im Westen“ hat vorstellen können. Betrachtet man den günstigen Preis von 9,6 Milliarden US-Dollar – was umgerechnet etwa 3300 €/kW entspricht – kann man erwarten, daß China den internationalen Kraftwerksmarkt ähnlich wie bei Mobiltelefonen, Kopierern und Unterhaltungselektronik aufmischen wird. Dies war zwar schon lange angekündigt, aber nicht so schnell zu erwarten gewesen. China will auf dem Kraftwerkssektor unbedingt Weltmarktführer werden. Wird ihm das gelingen, wird sich das für das alte Europa noch zu einem industriellen Albtraum entwickeln. Insofern kann man schon heute allen Politikern und sonstigen Vertretern der „Sozialindustrie und Bio-Bauern-Republik“ zu ihrem Erfolg gratulieren.

Der politische Hintergrund

China demonstriert mit seinem Export von Kernkraftwerken nach Pakistan einmal mehr Stärke und imperiales Gehabe im asiatischen Raum. Für China sind internationale Verträge nur so lange gültig, wie sie dem eigen Vorteil dienen. Sieht China auch nur eigene Interessen berührt – siehe die Haltung zum Giftgaseinsatz in Syrien – sind sie nicht das Papier wert, auf dem sie geschrieben stehen. Eine chinesische Grundeinstellung, für die sie bei allen asiatischen Nachbarn bekannt und gefürchtet sind. Eigentlich, verstößt China nicht nur gegen seine Verpflichtungen aus seiner Mitgliedschaft in der IAEA (International Atomic Energy Agency), sondern auch gegen die erst 2005 abgeschlossenen NSG (Nuclear Suppliers Group) Verträge. Dort hat sich China verpflichtet, keine weiteren Reaktoren (Chashma im Punjab mit 2 x 300 MWe) mehr an Pakistan zu liefern. Der Grund dieses Abkommens ist, daß Pakistan selbst ein Atomwaffenstaat ist und sich beharrlich weigert, den internationalen Abkommen zur Nicht-Weiterverbreitung beizutreten. Es hat durch den nachgewiesenen Handel mit „Atomwaffentechnik“ wiederholt unter Beweis gestellt, daß es eine ausgesprochene Außenseiterrolle einnimmt. Insbesondere sein Nachbar Indien fürchtet die zunehmende Islamisierung des Landes und weitere Übergriffe und Anschläge. China behauptet in seiner ihm eigen Art, daß es sich keinesfalls um den Bruch internationaler Abkommen, sondern lediglich um die Fortsetzung des Chashma-Projekts (Entfernung über 700 km) handelt. Man kann also davon ausgehen, daß China sich als der bevorzugte Lieferant für Kerntechnik für alle zweifelhaften Regime etablieren wird.

Die Energiepolitik in China

Zur Zeit hat China 15 Reaktoren in Betrieb und 30 im Bau. Weitere 51 Reaktoren befinden sich im fortgeschrittenen Planungsstadium und 120 in der Vorstudie. Die Ereignisse in Fukushima führten zu einer zwanzig Monate dauernden Bedenkzeit, in der erstmal keine weiteren Projekte in Angriff genommen wurden. Als Folge dieser Verzögerung wurde das Ausbauziel für 2020 von 80 GWe auf 58 GWe gesenkt. Gleichwohl wurde das Ausbauziel für 2030 mit 200 GWe unverändert gelassen. China hätte damit rund doppelt so viele Reaktoren wie die USA und etwa vier mal so viele, wie Frankreich. Wer solche Planzahlen vorgibt, ist dazu genötigt, eine kerntechnische Industrie von bisher nicht gekannter Größenordnung aufzubauen. Selbst wenn China gewillt und finanziell in der Lage wäre, diese Stückzahl zu importieren, wäre der Weltmarkt dazu gar nicht in der Lage – jedenfalls nicht ohne eine Preisexplosion.

Bisher erscheint das kerntechnische Programm sehr verzettelt. Man hat sich alle verfügbaren Reaktortypen am Weltmarkt zusammengekauft und entsprechende Kooperations- und Lizenzabkommen geschlossen. Andererseits war dies mit einer enormen Lernkurve verbunden. Vorbild war und ist jedoch Frankreich: Man möchte sich möglichst auf einen Reaktortyp beschränken und dadurch die vollen Skalenvorteile nutzen. Dies betrifft vor allem den Betrieb. Anders als in Deutschland, ist das oberste Staatsziel, möglichst viel elektrische Energie, zu möglichst geringen Preisen bereit zu stellen. Dies wird als notwendiges Fundament einer modernen Wohlstandsgesellschaft gesehen.

Der ursprüngliche Plan sah die konsequente Nationalisierung des ursprünglich von Frankreich importierten 910 MWe Reaktors M310+ vor. Er gipfelte in dem als CPR-1000 bezeichneten Reaktortyp, der faktisch ein Nachbau der 34 in Frankreich gebauten Reaktoren mit je 157 Brennelementen war. Von diesem Typ sollten 60 Stück in Serie gebaut werden. Doch Fukushima veränderte die Lage grundlegend. Man kam zum Schluß, in Zukunft nur noch Reaktoren der III. Generation zu bauen und die im Bau befindlichen Reaktoren der II. Generation nach Möglichkeit zu ertüchtigen. Durch diesen Beschluss wurde das Ausbauprogramm etwas durcheinander gewirbelt: Bisher sind nur zwei Typen der III. Generation (AP-1000 von Westinghouse und EPR von Areva) im Bau. Bis zur endgültigen Entscheidung, welcher Reaktor in Großserie gebaut wird, sollen noch erste Betriebsergebnisse abgewartet werden. Neben dem engen Zeitplan ergeben sich auch noch juristische Probleme in Bezug auf die Lizenzabkommen. Wahrscheinlicher Sieger dürfte der in Modulbauweise zu errichtende AP-1000 sein. Allerdings hat man mit Westinghouse erst eine gemeinsame Vergrößerung auf mindestens 1400 MWe (CAP-1400) beschlossen. Diese Neuentwicklung ist bereits vollumfänglich für den Export durch China freigegeben.

Der ACP-1000

Hier kommt nun der ACP-1000 ins Spiel: Wie ein Kaninchen aus dem Zylinder, erscheint ein vollständig selbstständig entwickelter und vollständig durch eigene Rechte abgesicherter chinesischer Reaktor der 1000 MWe Klasse auf der (politischen) Bildfläche. Unverhohlen läßt man damit drohen, daß mindestens 60 % der ausländischen Firmen ihre chinesischen Aufträge ab 2020 verlieren könnten, wenn China den Weg dieser Eigenentwicklung beschreiten würde. Im Moment könnte man bereits 85% des Reaktors mit eigenen Produkten – ohne Lizenzgebühren – produzieren. Durch den hohen Eigenanteil, könnte man bereits heute 10 % günstiger als der Rest der Welt anbieten. Alles etwas vollmundig. Die zwei ersten Reaktoren überhaupt, sollen als Block 5 und 6 im Kernkraftwerk Fuqing in der Fujien Provinz errichtet werden. Baubeginn soll noch dieses Jahr sein. Im Zusammenhang mit einer angeblich vollständigen Eigenentwicklung ist dies etwas dubios. Bisher braucht in China, jedes als „Nuclear Grade“ deklarierte Bauteil (damit sind alle Komponenten gemeint, die für einen sicheren Betrieb ausschlaggebend sind), eine spezielle Zulassung der Genehmigungsbehörde. Um diese Zulassung zu erlangen, muß nachgewiesen werden, daß der Betrieb diese Komponente seit mindestens fünf Jahren produziert und sie in einem Kernkraftwerk erfolgreich eingesetzt wird. Letzteres muß durch den Verwender schriftlich bestätigt werden. Erstes bezieht sich sogar auf Fertigungsstätten ausländischer Firmen in China. Namhafte deutsche Hersteller sind an dieser Klausel gescheitert.

Bisher weiß man über den ACP-1000 nicht sehr viel. Es soll sich um eine Weiterentwicklung der französischen Standardbauweise mit drei Sekundärkreisläufen handeln. Seine Leistung soll 1100 MWe bei 3060 MWth betragen. Der Reaktorkern ist eine angeblich vollständige Eigenentwicklung mit 177 Brennelementen von 3,66 m Länge (Lizenzfrage?). Er ist für ein Wechselintervall von 18 Monaten bei einem Abbrand von 45000 MWd/tU ausgelegt. Ausdrücklich wird die hohe Lastfolgefähigkeit durch eine voll digitale Regelung erwähnt. Durch den Einsatz „passiver Elemente“ bei „modernster aktiver Sicherheit“ soll es sich angeblich um einen Reaktor der III+. Generation handeln. Einen vollständigen Einblick wird man erst erhalten, wenn dieser Reaktor durch eine westliche Genehmigungsbehörde zertifiziert wird. Angeblich, ist dies demnächst vorgesehen.

Konsequenzen

Die Träume vieler europäischer Konzerne, vom großartigen chinesischen Markt dürften ausgeträumt sein. Die deutsche Krabbelgruppenmentalität vom „solidarischen Umgang miteinander“ ist für chinesische Maßstäbe völlig widernatürlich. Im chinesischen Geschäftsleben gilt ausschließlich das Recht des Stärkeren. Wer nicht stets besser ist, hat nicht einmal ein Recht auf Anerkennung. China hat sich alle Reaktormodelle bauen und erklären lassen. Jetzt kommt die Phase der gnadenlosen Verwertung des erlernten. Wer jetzt noch etwas verkaufen will, müßte schon wieder besser sein. Das unendlich langsame Europa kann dieses Tempo nicht mithalten. Ein radikales Umdenken wäre erforderlich. Dafür fehlt es aber (bisher) am erforderlichen politischen Willen. Für die chinesische Führung sind Rüstungsindustrie, Nahrungsmittel- und Energieversorgung die drei zentralen Staatsbereiche. Zumindest in Deutschland, ist Energieverbrauch inzwischen etwas ganz böses und jede Energietechnik, die über den Stand des Mittelalters hinausgeht, eine beängstigende Vorstellung. Träum schön weiter, Michel!

Wie man einen Reaktor kaputt repariert

Der amerikanische Energieversorger Southern California Edison’s gab am 7.6.2013 bekannt, sein Kernkraftwerk San Onofre nuclear plants (SONGS) endgültig still zu legen. Ausschlaggebend war die Feststellung der Atomaufsicht (NRC), daß sie mindestens ein Jahr für die endgültige Entscheidung benötigen würde, ob das Kraftwerk mit reduzierter Leistung wieder ans Netz gehen dürfte. Zu den technischen Details später. Wer der NRC einfach nur Unfähigkeit unterstellt, macht sich die Sache zu einfach. Es ist – das auch aus Deutschland hinlänglich bekannte – geschickte Taktieren und Ausnutzen von „Gesetzeslücken“ durch „Atomkraftgegner“. Letztendlich ging es um die juristische Spitzfindigkeit, ob für den Betrieb mit 70% Leistung gegenüber 100% Leistung eine neue Betriebsgenehmigung erforderlich ist. Wenn dies der Fall wäre, müßte ein entsprechendes öffentliches Anhörungsverfahren durchgeführt werden, welches wiederum die Einhaltung von Mindestfristen erforderlich macht. Kein Unternehmen kann eine Entscheidung über mehrere Milliarden Dollar über Jahre in der Schwebe halten. Es tritt daher die alte Kaufmannsregel in Kraft: Ein Ende mit Schrecken, ist besser als ein Schrecken ohne Ende.

Geschichte

Das Kernkraftwerk besteht aus drei Reaktoren. Block 1 hatte eine Leistung von 456 MWe und war 25 Jahre in Betrieb (1968 bis 1992). Er befindet sich im Zustand des „sicheren Einschlusses“ und dient dem restlichen Kraftwerk als atomares Zwischenlager. Die Blöcke 2 und 3 mit einer Nettoleistung von zusammen 2150 MWe gingen im August 1983 und April 1984 in Betrieb. Sie haben eine Betriebserlaubnis bis ins Jahr 2022. Ein entscheidender Punkt in diesem Drama.

SONGS liegt ziemlich genau zwischen San Diego und Los Angeles im südlichen Kalifornien. Eine immer noch wachsende Region mit latentem Mangel an elektrischer Energie und hoher Luftverschmutzung. Ein Ersatz durch ein Kohlekraftwerk scheidet aus. Selbst der Neubau von Gaskraftwerken (z. Zt. extrem billiges Erdgas in USA) wird schwierig werden. Der Bau einer neuen Starkstromleitung wird ebenfalls sehr teuer und befindet sich noch in der Prüfung. Seit der Ausserbetriebnahme der beiden Reaktoren liegt der Strompreis in Südkalifornien bereits permanent rund 5 Dollar pro MWh über dem Preis in Nordkalifornien. Das alles war lange bekannt bzw. absehbar.

Da man sich zu einem rechtzeitigen Neubau eines Kernkraftwerks nicht durchringen wollte, entschloss man sich – wie einst in Deutschland – zu einer „Laufzeitverlängerung“ um weitere 20 Jahre. Dabei war klar, daß für einen wirtschaftlichen Betrieb und eine Betriebsgenehmigung umfangreiche Modernisierungen nötig waren. Dickster Brocken war hierbei die Erneuerung der Dampferzeuger für über 500 Millionen Dollar. Wegen der Abmessungen grundsätzlich ein heikles Unterfangen. Auch der Crystal River Nuclear Plant ist durch einen solchen Umbau zum Totalschaden geworden. Die ursprünglich gedachte Lebensdauer von 30+ Jahren, hat genau in der Schwierigkeit des Austausches der Großkomponenten (Dampferzeuger, Druckgefäß etc.) ihre Begründung. Die „Laufzeitverlängerung“ bei Reaktoren der ersten und zweiten Generation ist wirtschaftlich immer fragwürdig gewesen und bleibt es auch heute. Irgendwann wird die ständige Modernisierung bei jedem Auto und Flugzeug zu einem „Groschengrab“. Ein „Oldtimer“ wird zwangsläufig zu einem Luxusgut. Dies gilt besonders, wenn es den ursprünglichen Hersteller (Combustion Engineering CE) gar nicht mehr gibt und die Konstruktion eher exotisch war. CE baute grundsätzlich nur zwei (sonst 2, 3 oder 4 üblich, je nach Leistung) Dampferzeuger in seine Reaktoren ein. Deshalb waren die Dampferzeuger von SONGS die voluminösesten überhaupt. Eine Tatsache, die der Anbieter Mitsubishi Heavy Industries (MHI) ganz offensichtlich unterschätzt hat.

Technik der Dampferzeuger

Die Dampferzeuger sind neben dem Reaktordruckbehälter die größten und schwergewichtigsten Komponenten eines Druckwasserreaktors. Sie liegen innerhalb des Sicherheitsbehälters, der bestimmungsgemäß möglichst dicht sein soll. Will man sie austauschen, muß eine entsprechend große Montageöffnung in den Sicherheitsbehälter und die äußere Betonhülle (danach außergewöhnliche Abplatzungen im Spannbeton bei Crystal River) gebrochen werden.

Um die Vorgänge bei SONGS zu verstehen, muß man sich den Aufbau eines solchen Dampferzeugers vor Augen führen. Er ist das Bindeglied zwischen dem Wasserkreislauf des eigentlichen Reaktors und dem Dampfkreislauf der Turbine. Das heiße Wasser aus dem Reaktor strömt innerhalb der U-förmigen Rohre und überträgt dabei seine Wärme an das äußere Wasser des Dampfkreislaufes. Innerhalb der Rohre (primärseitig) sind die Verhältnisse noch einfach zu berechnen. Außerhalb (sekundärseitig) sind die Verhältnisse wegen der Verdampfung sehr kompliziert. Wie in einem Kochtopf bilden sich unzählige Dampfblasen, die sich ausdehnen, aufsteigen und dabei noch Wasser mitreißen. Es kommt dadurch zu erheblichen mechanischen Belastungen für die Rohre und alle Einbauten. Die Rohre sind nur sehr dünn (etwa 2 cm) und mehrere Meter lang. Ohne geeignete Abstützungen würden sie wie Grashalme im Wind hin und her geschlagen und durch permanentes Zusammenschlagen beschädigt. Die Auslegung und Fertigung solcher Abstandsplatten ist recht kompliziert, denn jeder Spalt zwischen Rohr und Abstandshalter bzw. Bodenplatte ist ein Ort der Korrosion. Durch die Korrosion werden die Rohre ebenfalls geschwächt bzw. eingebeult. Man verwendet deshalb recht exotische Legierungen (früher Inconel 600, heute Inconel 690) und eine komplexe Wasserchemie. Schäden lassen sich trotzdem nicht vermeiden. Bei jeder Inspektion werden die Rohre einzeln überprüft. Wenn ihre Wandstärke um ⅓ dünner geworden ist, werden sie durch Pfropfen dauerhaft verschlossen. Damit das überhaupt geschehen kann, sind ursprünglich 10 bis 20 Prozent mehr Rohre vorhanden, als für die Auslegungsleistung benötigt werden. Während des Betriebs gibt es eine Leckageüberwachung.

Bei der Inbetriebnahme der neuen Dampferzeuger traten unerwartete Vibrationen auf. Solche Vibrationen deuten immer auf einen erhöhten Verschleiß hin. Man stellte daher die Reaktoren ab und begann eine mehrmonatige Untersuchung. Das Ergebnis war ein Verschluß bereits geschädigter Rohre und die Entdeckung eines wahrscheinlichen Fehlers in der Konstruktion von MHI (Falsche Berechnung der Strömungszustände sekundärseitig). Wichtigste Erkenntnis war aber, daß die Vibrationen erst oberhalb einer Leistung von 70% auftraten. Es wurde der NRC daher vorgeschlagen, die Reaktoren für sechs Monate mit einer maximalen Leistung von 70% wieder in Betrieb zu nehmen und dann erneut auf Verschleiß zu prüfen. Gleichzeitig wurden Entwicklungsarbeiten für eine Ertüchtigung der Wärmetauscher durch MHI eingeleitet.

Das Ende

Am 13. Mai knickte das Atomic Safety and Licensing Board (ASaLB) Panel vor Friends of the Earth (FoE) ein. Für alle, die nicht so vertraut sind mit der Materie, ein Einschub: FoE ist einer der ältesten und einflussreichsten „Kampfeinheiten der Anti-Atomkraftbewegung“ oder noch treffender formuliert: Der Solarindustrie. Ihr erster Angestellter war Amory Lovins, der Guru aller Sonnenanbeter. Sich in Kalifornien mit dem Sierra Club und FoE anzulegen, ist ungefähr so, wie gegen Putin in Moskau zu demonstrieren. Der Sierra Club kämpft neuerdings nicht nur gegen Kernenergie, sondern auch massiv gegen die Kohlenindustrie. Dafür kommen die größten Spender aus dem Gassektor. Bei dem ASaLB handelt es sich um eine rein juristische Institution. Technik spielt dort keine Rolle. Insofern dürfte der Urteilsspruch nicht überraschen:

  1. Der Antrag auf eine Begrenzung der Leistung auf 70% entspricht nicht der Genehmigung und stellt eine schwerwiegende Änderung dar,
  2. Block 2 kann nicht sicher mit der genehmigten Leistung betrieben werden, deshalb muß die Genehmigung erneuert werden,
  3. Eine Wiederinbetriebnahme dieser Dampferzeuger in ihrem aktuellen Zustand mit nur 70% Leistung ist außerhalb geschichtlicher Erfahrung und der zeitweise Betrieb mit verringerter Leistung entspricht einem Versuch oder Test, für den es einer gesonderten Genehmigung bedarf.

Moral von der Geschichte: Juristen haben sich schlau aus der Schusslinie gebracht, Problem an die NRC delegiert, Kosten zahlen die Stromkunden, Luftverschmutzung nimmt weiter zu, aber Hauptsache die Solar- und Gasindustrie ist zufrieden gestellt.

Ganz neben bei, verlieren auch noch 900 Angestellte von den bisher 1500 Angestellten des Kraftwerks über Nacht ihre Arbeit.

Konsequenzen

Irgendwann ist jedes Kernkraftwerk am Ende seiner wirtschaftlichen Lebensdauer angekommen. Wer nicht den Mut besitzt ein neues zu bauen, begibt sich unter Umständen auf dünnes Eis: Ein massiver Umbau ist mit erheblichen Risiken verbunden. Ein Abriss und Neubau ist oft günstiger. Eine an und für sich Alltagserfahrung.

Fairerweise muß man aber sagen, daß ein Neubau heutzutage ein sehr langwieriges und kostspieliges Unterfangen ist. Das hat überhaupt nichts mit Technik und Betriebswirtschaft zu tun, sondern ist ausschließlich politisch verursacht. Wer das nicht glauben mag, sollte sich einmal die unterschiedlichen Planungs- und Bauzeiten für gleiche Reaktortypen in unterschiedlichen Ländern anschauen. Die teilweise abenteuerlichen Umbauten in USA sind ein Ergebnis für „vorhandene Standort-Genehmigungen“ und die wohlwollende lokale Unterstützung bei bestehenden Reaktoren im Gegensatz zum Risiko einer von „Anti-Atomgruppen“ verängstigten Bevölkerung an neuen Standorten.

Ein neues Phänomen – auch in Deutschland – ist die Mobilisierung von Rücklagen. Entgegen jahrzehntelanger Propaganda, sind die finanziellen Rücklagen für die Beseitigung der „Atomruinen“ so gewaltig bemessen gewesen, daß es verlockend geworden ist, sie zu heben. Im Falle SONGS betragen sie mehr als 2 Milliarden Dollar. Inzwischen steht eine auf „Abbruch“ spezialisierte Industrie weltweit zur Verfügung.

Das größte Hemmnis (nur in einigen Ländern !!) für die Investitionen in Kernkraftwerke ist die zeitliche Unkalkulierbarkeit. Sie muß über Risikozuschläge und zusätzliche Finanzierungskosten bedient werden. SONGS ist ein typisches Beispiel: Es geht beim Umbau etwas technisch schief. Die Konsequenz ist ein Stillstand der Arbeiten von mindestens einem Jahr aus rein juristischen Gründen. Es gibt aber ausdrückliche keine Garantie für diese Frist und das Ergebnis ist offen. Wahrscheinlich sind eher neue Verzögerungen, da sich die erfahrensten „Anti-Atomkraft-Kämpfer“ eingeschaltet haben. Jeder Tag Stillstand kostet aber dem Energieversorger mehr als eine Million Dollar pro Tag!

Der Restwert des Kernkraftwerks betrug rund 1,5 Milliarden Dollar. Die Umbauaktion schlägt mit weiteren 500 Millionen zu Buche. Allerdings beginnen nun juristische Auseinandersetzungen, wieviel davon MHI zu tragen hat und wieviel zusätzlich von Versicherungen übernommen wird. Man kann es aber drehen und wenden wie man will, letztendlich tragen die Stromkunden den Schaden. Das ist auch gut so. Kalifornien ist bereits einmal durch seine völlig verquaste Energiepolitik an den Rand des Staatsbankrott getrieben worden. Der folgende politische Erdrutsch führte zu einem Gouverneur Schwarzenegger.

Baubeginn für zweiten Reaktor

Ende März erfolgte der offizielle Baubeginn des zweiten Reaktorblocks für das Kernkraftwerk Barakah in Abu Dhabi in der Vereinigten Arabischen Emiraten (UAE). Baubeginn für den ersten Block war im July 2012. Die Blöcke 3 und 4 sollen folgen. Alle vier Reaktoren sollen in den Jahren 2017 bis 2020 ans Netz gehen. Im Jahre 2009 wurde der Auftrag für knapp 16 Milliarden Euro an ein koreanisches Konsortium vergeben. Samsung, Hyundai und Doosan Heavy Industries werden dieses Kraftwerk mit 5600 MWe errichten. Bemerkenswert ist der spezifische Preis von deutlich unter 3000 EUR/kW. Der erwartete Strompreis wird mit rund 2 Cent/kWh angegeben. Für diesen Preis kann man heute in Deutschland nicht mal mehr Strom aus Braunkohle produzieren. So viel nur zum „energiegewendeten“ Industriestandort Deutschland im Jahre 2020.

Warum Kernenergie im Ölland?

In allen Golfstaaten hat in den letzten Jahren eine bemerkenswerte Industrialisierung statt gefunden: Riesige petrochemische Anlagen, Stahlwerke, Kupfer und Aluminiumhütten etc. Basis ist und bleibt der Reichtum an Öl und Erdgas. Man setzt allerdings konsequent auf den verstärkten Export von veredelten Produkten an der Stelle von Rohstoffen. Verknüpft ist das alles mit einer rasant wachsenden Bevölkerung und zunehmendem Wohlstand. So verdoppelt sich der Strombedarf in den Emiraten etwa alle zehn Jahre. Hinzu kommt noch ein riesiger Bedarf an Trinkwasser, der ausschließlich über energieintensive Meerwasser-Entsalzungsanlagen gewonnen werden muß.

In allen Golfstaaten begann die Elektrifizierung mit Ölkraftwerken. Schon in den 1970er Jahren ergab sich ein neuer Zielkonflikt: Das Rohöl (in Weltmartktpreisen) wurde immer teurer und gleichzeitig nahmen die Umweltprobleme durch das Abfackeln der Begleitgase immer mehr zu. Folgerichtig wurde eine Umstellung auf Gaskraftwerke betrieben. Man konnte in den Emiraten mit dieser Politik zwei Ziele erreichen: Gewinnung zusätzlicher Ölmengen für den Export und Umweltschutz. Es wurden Kombikraftwerke in Serie gebaut: Mit dem Erdgas werden Gasturbinen betrieben und deren Abgas anschließend in Dampfkesseln zur weiteren Stromerzeugung genutzt. Zusätzlich sind die Dampfturbinen mit Anzapfungen zur Auskoppelung von Niedertemperaturdampf versehen, der in Enstspannungsverdampfern Trinkwasser aus Meerwasser erzeugt. Dieser Verbund auf der Basis (einst) billig vorhandenen Brennstoffs war so günstig, daß in den Emiraten beispielsweise Aluminiumwerke betrieben werden können. Sonst eher eine Domäne billiger Wasserkraft. Inzwischen ist jedoch der Gasverbrauch so stark angestiegen, daß z. B. Erdgas aus dem benachbarten Katar importiert werden muß. Und schon drückt auch hier der Weltmarktpreis für Erdgas auf die Eigenerzeugung. Umfangreiche Studien kamen zu dem Ergebnis, daß der weiter steigende Strom- und Trinkwasserbedarf sinnvoll nur durch (importierte) Kohle oder Kernkraft gedeckt werden kann.

Man wählte als ersten Schritt den Einstieg in eine erprobte Technik: Die Kernenergie. Im zweiten Schritt ist für Dubai ein Kohlekraftwerk mit CO2-Abscheidung geplant. Auch hier wird ein mehrfacher Nutzen angestrebt: Das abgeschiedene Kohlendioxid soll in „alte“ Ölfelder zur zusätzlichen Ölgewinnung verpreßt werden. Überkritisches Kohlendioxid ist einer der besten Lösungsmittel überhaupt. In Texas wird diese Methode bereits in großem Maßstab angewendet, um vermeintlich „trockene“ Ölfelder weiter zu entölen. Dort ist diese Methode wirtschaftlich, weil man große natürliche Kohlendioxidvorkommen in unmittelbarer Nähe der Ölfelder hat. In Norwegen fördert man stark kohlendioxidhaltiges Erdgas. Das Kohlendioxid wird nach Abscheidung ebenfalls wieder in die Lagerstätte verpreßt um den Lagerstättendruck aufrecht zu erhalten. Was die „unterirdische Lagerung von CO2“ betrifft, handelt es sich also um eine seit langem erprobte Technologie. Bleibt noch die Abscheidung im Kraftwerk: Einst auch eine verfahrenstechnische Domäne Deutschlands – bis „Grüne“ meinten, daß CO2 ganz, ganz böse und gefährlich sei. Mal sehen, welches Land den Auftrag für das Kraftwerk erhält. Aber der Deutsche Michel wird sich trotzdem glücklich schätzen, wenn er für sein Erdgas und Benzin noch ein weiteres „CO2-Zertifikat“ oben drauf kaufen darf, zur Wohlstandsförderung in den Ölstaaten. Er hat es halt nicht besser verdient.

Warum nicht Sonne?

Nun, alle Golfstaaten bauen durchaus „Sonnenkraftwerke“. Nur leider scheint auch in der Wüste nachts keine Sonne. Zwar gibt es ein paar mehr Sonnenstunden dort, aber leider ist es auch bedeutend wärmer und alle Verfahren zur Stromgewinnung knicken mit steigender Temperatur ein. Man kann dort also gar nicht so viel mehr elektrische Energie mit einem Sonnenkollektor gewinnen. Um die gleiche Energie, wie ein Kernkraftwerk mit seiner Arbeitsverfügbarkeit von 90 % zu gewinnen, benötigte man gigantische Flächen, Speicher und riesige Mengen Wasser zur Kühlung und/oder Reinigung. Tatsachen, die gerne von „Sonnenmännchen“ in ihren Werbebroschüren verschwiegen werden. Insofern kann auch in der Golfregion Sonnenenergie nur ergänzend eingesetzt werden. Eine Vollversorgung ist – nicht nur aus wirtschaftlichen Gründen – illusorisch.

Es gibt auch reichlich Wind in der Golfregion. Nur bläst der Wind noch zufälliger und wenn er bläst, ähnelt er mehr einem Sandstrahlgebläse. Außerdem macht es wenig Sinn, seine Küsten zu „verspargeln“, wenn man auch den Tourismus fördern will. Alles in allem, eher schlechte Bedingungen für „Alternativtechnik“.

Die Emirate sind der Musterfall für alle wüstenähnlichen Regionen. Wer glaubte, man könne diese Regionen zur Stromversorgung von Europa nutzen, ist einem Märchen aufgesessen. Die Mittel reichen nicht einmal für eine Selbstversorgung dieser Länder. Es ist daher kein Zufall, daß gerade die aufstrebenden Nationen in Kernkraftwerken ihre einzige Möglichkeit sehen. Hinzu kommt in diesen Ländern die notorische Trinkwasserknappheit. Meerwasserentsalzung ist die einzige Alternative. Wenn all diese Länder hierfür Kohle einsetzen wollten, würde der Weltmarkt aus den Fugen geraten. Die heimischen Gas- und Ölvorkommen (so weit vorhanden) werden als Devisenbringer ohnehin dringend benötigt.

Proliferation

Die UAE sind auch in politischer Hinsicht ein Musterfall: Um gar nicht erst den Verdacht zu erwecken, nach Kernwaffen zu streben, haben sie sich verpflichtet auf Urananreicherung und Wiederaufbereitung zu verzichten. Im Gegenzug garantiert man ihnen die Versorgung mit Brennstoff. Dies ist ein Modell, auf das sich auch andere Länder einlassen können und wahrscheinlich auch müssen, wenn sie die volle Unterstützung der Weltgemeinschaft genießen wollen. Iran ist das krasse Gegenbeispiel.

Zumindest der letzte Punkt ist auch für Deutschland von Vorteil. Die Gespensterdebatte um ein „Atommüll-Endlager“ ist überflüssig geworden, da sich kurz über lang ein internationaler Markt für Wiederaufbereitung herausbilden wird. Wie schnell das geschieht, hängt allein von der Wachstumsgeschwindigkeit der Kernenergie und von den Preisen für Natururan ab. Der Tag wird nicht mehr so fern sein, wo Deutschland seine „Uran- und Plutoniumvorräte“ auf dem Weltmarkt verkaufen kann. Deshalb bauen ähnlich kleine Länder, wie Schweden und Finnland auch „rückholbare Endlager“. Man vergräbt zwar durchaus Schätze, aber stets um sie sicher zu lagern und nicht um sie zu vergessen. Abgenutzte Brennelemente sind Wertstoffe und kein Müll.

Dampferzeuger aus China

Anfang Mai wurde der erste in China gefertigte Dampferzeuger für einen EPR (European Pressurized Water Reactor) auf der Baustelle in Taishan (140 km westlich von Hong Kong) angeliefert. Was ist daran so bemerkenswert? Nun, der EPR ist der modernste Reaktor (sog. Generation III+) von Areva. Ursprünglich eine gemeinsame Entwicklung von Deutschland und Frankreich. Er sollte die Weiterentwicklung der bis dahin modernsten Reaktoren (Konvoi und N4) in beiden Ländern sein. Dieser Typ verkörpert über mehrere Jahrzehnte gewachsene Erfahrung in Bau und Betrieb. Außerhalb von China sind nur zwei weitere Reaktoren (Olkiluoto in Finnland und Flamanville in Frankreich) z. Zt. im Bau. Man kann mit Fug und Recht sagen, dieses Modell ist das mit Abstand anspruchsvollste Projekt, was der europäische Anlagenbau (noch) zu bieten hatte. In seiner Komplexität und seinen technischen Anforderungen höchstens noch mit dem Airbus vergleichbar. Eine Nation, die solche Kernkraftwerke bauen kann, ist auch jederzeit auf allen anderen Gebieten der Anlagentechnik (Chemieanlagen, Raffinerien, Spezialschiffbau etc.) ein ernsthafter Konkurrent. Wer andererseits freiwillig aus der „Hochtechnologie“ aussteigt, leitet unweigerlich die Deindustrialisierung ein. Der Fortschritt kennt nur eine Richtung: Wer die Entwicklung (freiwillig oder unfreiwillig) einstellt, muß gnadenlos auf dem Weltmarkt aussteigen. Der Niedergang der DDR ist ein schönes Beispiel dafür. Letztendlich führt das „Rumwursteln im Mangel“ immer auch zu einem gesellschaftlichen Zusammenbruch.

Der Dampferzeuger als technisches Objekt

Was macht den Dampferzeuger eines Kernkraftwerks so besonders, daß weniger als eine Hand voll Länder dazu in der Lage sind? Die schiere Größe und die Komplexität. Trauriges Beispiel hierfür, sind die von Mitsubishi aus Japan neu gelieferten Dampferzeuger für das Kraftwerk San Onofre in USA. Sie waren in kürzester Zeit schwer beschädigt, was zu einem mehrmonatigen Ausfall des Kraftwerks geführt hat. Wahrscheinlicher Grund: Falsche Berechnung der Strömungsverhältnisse. Wieder einmal, ist die Kerntechnik der Antrieb für die Entwicklung verbesserter Simulationsprogramme. Die heute in vielen Industriezweigen verwendeten Thermo-Hydraulischen-Simulationen (Verknüpfte Berechnung von Strömungen und Wärmeübertragung) würde es ohne die Kerntechnik schlicht nicht geben. Die hierfür nötigen „Super-Computer“ ebenfalls nicht. Wer meint, aus dieser Entwicklung aussteigen zu können, endet zwangsläufig bei den bemitleidenswerten „Klimamodellen“ aus der Berliner Vorstadt, mit denen man uns weiß machen möchte, man könne die „Welttemperatur“ auf einige zehntel Grad genau berechnen.

Viel unmittelbarer ist der Zusammenhang auf der „mechanischen“ Seite. Ein solcher Dampferzeuger hat ein Gewicht von etwa 550 to bei einer Länge von 25 Metern. Wer solche Massen wie ein rohes Ei heben, transportieren und auf den Millimeter genau absetzen kann, braucht sich auch vor anderen Baumaßnahmen nicht zu fürchten. Dies erfordert eine entsprechende Infrastruktur und vor allem „Fachkräfte“ mit jahrelanger praktischer Erfahrung. Viel entscheidender ist jedoch, die Fertigung solch großer Teile, in der erforderlichen Präzision, aus speziellen Materialien. Bisher ist der Bau von Bearbeitungszentren eine Domäne der deutschen Werkzeugmaschinenindustrie. Was geschieht aber, wenn Europa den Schwermaschinenbau immer mehr aufgibt? Die Werkzeugmaschinenhersteller werden ihren Kunden nach Asien folgen müssen.

Die Kerntechnik war stets ein Hort für die Verarbeitung exotischer Werkstoffe. Die Dampferzeuger sind ein typisches Beispiel. Sie müssen die gesamte im Reaktor erzeugte Wärme übertragen und daraus Dampf erzeugen. Dazu ist eine entsprechende Druckdifferenz und Wärmeübertragungsfläche nötig. Ein Druckwasserreaktor muß wegen der Neutronenphysik mit flüssigem Wasser betrieben werden. Eine Turbine mit Dampf. Damit das Wasser bei einer Temperatur von rund 330 °C noch flüssig bleibt, muß es unter einem Druck von etwa 155 bar stehen. Der damit hergestellte Dampf von knapp 300 °C hat aber nur einen Druck von etwa 78 bar. Diese enorme Druckdifferenz von etwa 80 bar muß sicher beherrscht werden. Für solch hohe Drücke kommen praktisch nur dünne Rohre in Frage, denn die Wärme soll ja durch die Rohrwand hindurch übertragen werden. Solche Dampferzeugerrohre haben eine Wandstärke von lediglich einem Millimeter, bei einem Außendurchmesser von weniger als 2 Zentimetern. Wie kann man aber fast 24.000 Liter pro Sekunde durch solch enge Rohre pumpen? Nur indem man tausende Rohre parallel schaltet und genau das ist die nächste Herausforderung: Zehntausende Röhren müssen pro Reaktor hergestellt, gebogen, befestigt und abgedichtet werden. Das Material muß eine gute Wärmeleitung besitzen, bei möglichst hoher Festigkeit und Korrosionsbeständigkeit. Hinzu kommen noch jede Menge Einbauten und Instrumentierung. So etwas kann man nur in einer Fabrik bauen, die eher einem Labor oder Krankenhaus gleicht, aber nicht in einer Schlosserei. Mit hoch qualifizierten (und deshalb auch gut bezahlten) Fachkräften.

Die gesellschaftlichen Konsequenzen

Die ersten vier Dampferzeuger für den Block Taishan 1 wurden noch komplett bei bei Areva in Chalon-StMarcel gefertigt. Die weiteren vier für Taishan 2 kommen bereits aus chinesischer Fertigung. Das Lerntempo ist bemerkenswert. Entscheidend ist aber folgendes: Niemand baut eine eigene Fabrik für nur vier Dampferzeuger. Ein solcher Schritt macht nur Sinn, wenn man vor hat, noch ganz viele zu bauen. Zuerst lockt der eigene Inlandsmarkt. Für Areva dürfte sich schon dieses Geschäft mit dem Wissenstransfer erledigt haben. Der chinesische Markt für Kernkraftwerke ist gegenüber dem europäischen gigantisch. China kann also in kürzester Zeit Kostenvorteile durch Serienproduktion erzielen. Mit diesen Kostenvorteilen wird es in spätestens einem Jahrzehnt massiv auf den Weltmarkt drücken. China wird aber auch die eingekaufte Technik weiterentwickeln. Die „kleine“ Areva hat langfristig keine Chance mitzuhalten. Wenn nicht jetzt massiv umgedacht wird, hat Europa in weniger als einer Generation eine weitere Schlüsseltechnik verspielt: Nach dem Bau von Computern wird auch der Kraftwerksbau aus Europa verschwinden und mit ihm im Fahrwasser, ganze Industriezweige. Aber wahrscheinlich ist das der wahre Grund für die „Energiewende“: Es geht nicht um ein bischen „Ökologismus“ sondern schlicht weg (mal wieder) um „Gesellschaftsveränderung“.