Reaktoren als Schiffsantrieb

In den letzten Monaten verstärkt sich international die Suche nach „alternativen“ Schiffsantrieben. Ursache sind immer strengere Umweltschutzvorschriften auch auf hoher See (Schwefeldioxid, Stickoxide, Ruß etc.) und der „Kampf gegen CO2 zur Weltenrettung“. Bisher gibt es drei Wege:

  1. Ausrüstung der Schiffe mit Wäschern, wie sie schon seit Jahren in Kraftwerken üblich sind. Diese nehmen aber viel Platz ein und sind aufwendig im Betrieb. Vorteil: Man kann weiterhin Kraftstoffe minderer Qualität (z. B. hoher Schwefelgehalt) verwenden.
  2. Die Umstellung auf Gas-Diesel-Motoren, die mit über 98% Erdgas gefahren werden. Wegen des kleineren Energiegehalts (≈65% von Diesel) erfordern sie jedoch größere Tankanlagen, die überdies auch noch für LNG (-164°C) geeignet sein müssen. Abgesehen von hohen Investitionen, schlechterer Infrastruktur und höheren Betriebskosten, ergibt das weniger Schadstoffe und auch weniger CO2. Bislang galt es deshalb als Königsweg. Bis – erfahrene Energietechniker ahnen es – die „Grünen“ die „schlechte Klimabilanz von Methan“ aus dem Hut zogen: In der üblichen Manier wurden nun so hohe Schlupfraten unterstellt, daß solche Schiffe angeblich noch „klimaschädlicher“ sind.
  3. Die Verwendung von „alternativen Kraftstoffen“, wie Methanol (≈50% von Diesel), Wasserstoff (≈20% von Diesel) oder gar Ammoniak (bei -33°C oder 9bar, ≈33% von Diesel). Sie sollen mittels „Grünstrom“ aufwendig produziert werden. Abgesehen von ihrer Giftigkeit (CH4 O, NH3) erscheint das als eine Schnapsidee. Wo sollen die gewaltigen Mengen „Grünstrom“ eigentlich herkommen? In Wirklichkeit doch aus Kohle und Kernenergie?

Es verwundert daher nicht, daß immer mehr Reeder Kernreaktoren als Antrieb wieder entdecken.

Der Istzustand

Man muß zwischen militärischer (U-Boote, Flugzeugträger, Kreuzer) und ziviler Nutzung unterscheiden. Bisher sind die USA, Russland, Frankreich, GB, China und Indien nukleare Seemächte. Es wurden mehrere hundert Reaktoren von diesen Staaten für solche Schiffe gebaut. Wegen der speziellen Anforderungen sind diese Reaktoren für die zivile Nutzung ungeeignet. Es wurden überwiegend Druckwasserreaktoren mit hoher Anreicherung (>93% U235) und auch schnelle Reaktoren von den USA (USS Seawolf SSN-575 mit Natrium zur Kühlung) und Russland (Alfa-Klasse mit Blei-Wismut als Kühlmittel) eingesetzt. Eindeutig dominiert jedoch der Druckwasserreaktor.

Die zivile Nutzung setzte frühzeitig mit der Savannah (USA, 1962–1972), der Otto Hahn (D, 1968–1997), der Mutsu (Japan, 1974–1992) und der Sevmorput (UDSSR, 1988–2007 und wieder seit 2016) ein. Letzterer ist ein Container/Lash-Carrier, der immer noch in Betrieb ist. Die anderen sind aus wirtschaftlichen Gründen einen frühen Tod gestorben. Eine Sonderstellung nehmen die russischen Eisbrecher ein: Die Lenin (1959–1989) und die Taimyr Sovetskiy Soyuz (1989–2014) sind nicht mehr im Dienst. Jedoch der Taimyr (1989), der Vaygach (1990), der Yamal (1992), der 50 Let Pobedy (2007) und der Arktika (2020). Weitere sind in Planung. Es gibt also genug Betriebserfahrung.

Anforderungen an einen Schiffsantrieb

Für alle Antriebe gelten folgende Gesichtspunkte:

  • Energiedichte: Jedes Schiff muß nicht nur sein komplettes Antriebssystem bei sich tragen, sondern auch den gesamten Kraftstoffvorrat. Das daraus resultierende Gewicht bzw. Volumen geht einem Schiffskörper als Fracht verloren.
  • Wirkungsgrad: Bezieht sich nicht nur auf die Umwandlung des Kraftstoffs, sondern auch auf den gesamten Antriebsstrang.
  • Umweltbelastung: Während des Betriebs (z.B. Abgase) und auch bei Unglücken (z. B. Ölverschmutzung).
  • Sicherheit: Feuer, Kollisionen etc. Auf einem Schiff kann man weder weglaufen noch einfach die Feuerwehr rufen.
  • Verfügbarkeit: Ausfall der Antriebsanlage bedeutet automatisch Seenot. Aber auch Liegezeiten für Wartungsarbeiten oder Sicherheitsüberprüfungen bedeuten keine Auslastung und meist hohe Kosten.
  • Lastwechsel und Anfahren: Schiffsantriebe müssen den gesamten Geschwindigkeitsbereich von Null bis Höchstgeschwindigkeit ohne all zu große Verluste verändern können und dies muß möglichst schnell geschehen (Revierfahrt). Die Zeit bis zur Einsatzfähigkeit (Hafen, Kanaleinfahrten etc.) soll möglichst klein sein.
  • Wirtschaftlichkeit: Hängt maßgeblich von den Investitionskosten und dem Brennstoffverbrauch über die gesamte Lebensdauer ab (Öltanker oder Kreuzfahrer). Dies ist nur schwer im Voraus kalkulier- und optimierbar. Schiffe haben meist eine relativ kurze Lebensdauer (ca. 20 Jahre).

Reaktoren

Kernreaktoren sind sehr klein und leicht verglichen mit einem Schiffsdiesel. Das notwendige Gewicht kommt aber von der notwendigen Abschirmung gegen Strahlung. Man muß von etwa 2000 Tonnen ausgehen. Hinzu kommt noch der eigentliche Antrieb in Form einer Dampf- oder Gasturbinenanlage nebst Hilfsaggregaten. Für Handelsschiffe kommen in absehbarer Zeit nur Druckwasser- (PWR), Hochtemperatur- (HTR) oder Salzschmelze-Reaktoren (SSR) in Betracht. Druckwasserreaktoren haben so geringe Temperaturen, daß nur eine Dampfturbine verwendet werden kann. Die beiden anderen könnten auch Gasturbinen verwenden. PWR und HTR stehen unter Druck und sind damit auf einen entsprechend großen Sicherheitsbehälter angewiesen. HTR auf der Basis von Helium als Kühlmittel sind voluminös. PWR erfordern etwa alle zwei Jahre einen mehrwöchigen Hafenaufenthalt zum Wechseln der Brennelemente. HTR als Kugelhaufenreaktoren könnten kontinuierlich „abgebrannte“ Kugeln ersetzen. SSR könnten sogar die gesamte Lebensdauer des Schiffs ohne Brennstoffwechsel auskommen.

Abgesehen davon, daß bisher noch kein HTR und kein SSR auf einem Schiff eingebaut worden ist, ist die Auswahl des Reaktortyps nur im Zusammenhang mit Schiffstyp und Antriebsstrang möglich.

Antriebssystem

Dampf- (Rankine-Prozess) und Gasturbinen (Brayton-Prozess) sind erprobte Schiffsantriebe. Sie wirken üblicherweise über ein Untersetzungsgetriebe direkt auf die Schiffsschraube. Solche Getriebe sind komplex, teuer und oft auch störanfällig. Die Reaktoranlage sollte aus Stabilitätsgründen mitschiffs eingebaut werden. Damit ergibt sich eine sehr lange Welle. Moderne Containerschiffe haben einen Bedarf an elektrischer Energie von etwa 25% der Antriebsleistung. Es stellt sich damit die Frage, ob man nicht gleich zu einem vollelektrischen Antrieb übergeht, durch den man konstruktive Freiheit gewinnt. Man hätte dann das kleine „Kernkraftwerk“ gut und sicher in der Mitte des Schiffs eingebaut und könnte sogar sogenannte „Pods“ verwenden. Das sind Elektromotoren in 360° drehbaren Gondeln unter Wasser. Solche Schiffe brauchen keine Ruderanlage.

Verwendet man Reaktoren mit höheren Betriebstemperaturen (HTR ca. 700°C, SSR ca. 580 °C) könnte man auf Gasturbinen übergehen. Es sind offener und geschlossener Kreisprozess zu unterscheiden. Bei offenen Gasturbinen wird Luft angesaugt, in der Brennkammer erhitzt und diese tritt nach getaner Arbeit als Abgas aus dem Schornstein aus. Solche Gasturbinen sind im Schiffbau Stand der Technik. Die eigentliche Turbine ist nur sehr klein, das erforderliche Beiwerk (z. B. Luftfilter) aber durchaus voluminös. Wollte man nun Kernenergie einsetzen, müßte man die Brennkammer durch einen geeigneten Wärmeübertrager ersetzen. Es empfiehlt sich, einen HTR mit möglichst hohen Temperaturen zu verwenden, da der Wirkungsgrad solcher Turbinen stark temperaturabhängig ist. Solch eine Turbine erscheint für den Betrieb eines Handelsschiffs eher ungeeignet.

Eine vielversprechende Alternative ergibt ein geschlossener Kreislauf mit überkritischem scCO2 (supercritical). Bei CO2 in einem Betriebsbereich oberhalb des Kritischen Punkts (31°C und 74bar) erhält man – verglichen mit Dampfturbinen – eine extrem kleine Turbine mit viel weniger Stufen, da das scCO2 eine Dichte wie die Flüssigkeit, aber gleichzeitig die (geringe) Viskosität des Gases, hat. Bei 550°C und 80 bar Druck, kann man theoretisch Wirkungsgrade von bis zu 50% – gegenüber nur etwa 30% bei kleinen Druckwasserreaktoren – erreichen. Allerdings laufen solche Turbinen mit 40 bis 75 Tausend Umdrehungen pro Minute. Es erscheint deshalb nur die Verwendung als vollelektrischer Antrieb möglich. Kosten und Betriebssicherheit könnte nur ein realisiertes Schiff zeigen.

Lastwechsel und Anfahren

Ein Schiff muß von Stillstand im Hafen bis volle Fahrt betrieben werden. Außerdem ergibt sich eine unterschiedliche Belastung, je nach Beladung (Ballast), Strömung, Seegang etc. Ein Schiff muß auch jederzeit (Reede) anfahrbar sein. Auch das ist keine triviale Forderung. Ein Dieselmotor ist in diesen Disziplinen unschlagbar – ein Grund, warum er auch bei großen Schiffen die Dampfturbine verdrängt hat (Vorwärmung). Heute liegt die Grenze bei Dieselmotoren für Containerschiffe bei rund 80 MW Wellenleistung. Wie weit das noch zu steigern ist (Fertigung), wird sich zeigen. Die verfügbaren Motoren begrenzen jedoch die (sinnvolle) Größe eines Handelsschiffes.

Druckwasserreaktoren von Kernkraftwerken lassen sich nicht einfach auf Schiffe übertragen. Ein wesentlicher Faktor ist das Wieder-Anfahren nach Abschaltung. Durch den Zerfall der Spaltprodukte Jod und Tellur bilden sich Xenon und Samarium – zwei Elemente mit außerordentlich großen Einfangquerschnitten für Neutronen. Abhängig von der „Überschußreaktivität“ kann sich eine Totzeit von mehreren Stunden ergeben, bis der Reaktor überhaupt wieder in Betrieb gehen kann. Dies ist mit ein Grund, warum Marine-Reaktoren eine so hohe – aber unerwünschte (Proliferation) – Anreicherung besitzen.

Sicherheit und Verfügbarkeit

Die Vorschriften, die Überwachung und die Ausbildung müssen genauso streng sein, wie bei Kernkraftwerken an Land. Insbesondere die US-Marine beweist seit Jahrzehnten, daß ein unfallfreier Betrieb möglich ist. Schlechtes Gegenbeispiel ist die russische Marine. Schlechte Ausbildung, Schlamperei und Mangelwirtschaft haben sogar zu mehreren Totalverlusten und unzähligen Unfällen geführt. Auf nuklearen Schiffen muß ausreichend Redundanz bei technischen Anlagen vorhanden sein. So sollten mehrere Notdiesel vorhanden sein, die das gesamte Schiff, den Reaktor und sogar einen kleinen Notmotor (für eine Langsamfahrt bis zum nächsten Hafen oder wenigstens in ein sicheres Gebiet) mit elektrischer Energie versorgen können.

Brennstoffwechsel, notwendige (umfangreiche) Wartungsarbeiten und Sicherheitsüberprüfungen ergeben über die Nutzungsdauer erhebliche Ausfälle und erzeugen damit beträchtliche Kosten. Russische Eisbrecher mit ihren Saisoneinsätzen haben diese Probleme nicht. Es sind daher Konzepte ohne Brennelementewechsel erforderlich. Auch hier weisen Marineschiffe den Weg: Dort ist der Brennstoffwechsel erst nach der halben geplanten Nutzungsdauer nach etwa 20 Jahren vorgesehen. Dieser wird mit einer generellen Überholung und Modernisierung des Schiffs kombiniert. Nach der mehrmonatigen Liegezeit verläßt praktisch ein „neues“ Schiff die Werft.

Umweltbelastungen

Bei konventionellen Schiffen sind diese in Form von Abgasen und Abwässern permanent. Hier hat sich zwar gewaltiges getan (Primärmaßnahmen oder Abgasreinigung, Müllverbrennung, Kläranlage usw.), aber wegen der hohen Anzahl sind sie immer noch deutlich spürbar. Es ist abzuwarten, was den „Ökos“ noch alles einfällt. Es sei nur an das Schicksal des Dieselmotors bei PKW erinnert. Darüber hinaus ist durch die Erschaffung neuer Abgaben (CO2 Abgabe, Energiesteuer) die Kostenschraube stets gezielt überdehnbar.

Die Angst vor einem „Atomunfall“ ist ziemlich unbegründet. Wie die Totalverluste mit U-Booten gezeigt haben, ist das Strahlenrisiko sogar weit geringer als an Land. Wasser ist eine nahezu ideale Abschirmung (siehe Abklingbecken) und es würden sich bei einer Freisetzung in den Weiten der Meere radioaktive Stoffe sehr schnell verdünnen (siehe Kernwaffenversuche sogar unter Wasser im Pazifik). Die biologischen Auswirkungen wären kleiner als bei den bekannten Tanker- und Bohrinsel Unglücken.

Rechtliche Situation

Grundsätzlich muß jedes Schiff durch eine Klassifizierungsgesellschaft zugelassen sein. Ansonsten ist es frei auf der Hohen See zu fahren. Allerdings kann jeder Hafen die Erlaubnis zum Einlaufen verwehren. Das ist in der Tat grundsätzlich und in bestimmten Fällen geschehen. Wie sich das entwickelt, wird die Zukunft zeigen. Würde den Einsatz aber nicht grundsätzlich verhindern, da die großen Handelsrouten ohnehin zwischen den „Atommächten“ verlaufen. Allerdings ist eine möglichst enge Abstimmung zwischen möglichst vielen Staaten der beste Garant für eine (schnelle) Verbreitung.

Die Wirtschaftlichkeit

Letztendlich hängt immer alles von der Wirtschaftlichkeit ab. Man sollte sich durch das Scheitern von Savannah, Otto Hahn und Mutsu nicht täuschen lassen. Das waren lediglich Demonstrations- und Werbeobjekte. Dies gilt insbesondere für die Savannah, die eher eine schnittige Jacht als ein Handelsschiff war. Sie haben allerdings alle drei unter Beweis gestellt, daß ein Handelsschiff mit Kernenergieantrieb möglich ist.

Die Investitionskosten können heute nicht sicher abgeschätzt werden. Sie sind mit Sicherheit höher als bei einem konventionellen Schiff. Andererseits wäre mit einer steilen Lernkurve zu rechnen. Laufen erstmal ein paar Schiffe erfolgreich, ist schnell mit größeren Bestellungen zu rechnen. Standardisierungen sind dabei sehr hilfreich. In diesem Sinne ergibt sich gerade auf dem Land mit den SMR (Kleine Reaktoren bis 300 MWel und Kleinstreaktoren bis 20 MWel) eine förderliche Situation: Umstellung der Genehmigungsbehörden auf „kleine“ Reaktoren und Aufbau einer Industrie mit „Massenfertigung“. Der Schritt – insbesondere für Nationen mit nuklearer Marine – aufs Meer ist dann nur noch kurz.

Es müssen Betriebsmannschaften ausgebildet werden. Auch hier haben die Nationen mit nuklearer Marine einen entscheidenden Vorteil: Sie verfügen über solche Ausbildungsstätten, haben jahrzehntelange Erfahrung und sogar erfahrene „Gediente“. Außerdem hat sich seit dem Jahrhundert der Savannah und Otto Hahn eine Menge auf dem Gebiet der Automatisierung und Überwachung (Computer) und Fernwirktechnik (Satellitenkommunikation) getan.

Der wesentliche Faktor für die Betriebskosten eines Schiffs ist der Brennstoff. Fossile Brennstoffe werden teurer werden – nicht zuletzt wegen Umweltauflagen. Bei Kernreaktoren hingegen, spielen die Brennstoffkosten (Uran, Anreicherung, Entsorgung) schon heute eine nahezu vernachlässigbare Größe. Gehen die „modernen“ Reaktoren, die heutigen „Atommüll“ weiter nutzen, erst einmal in Betrieb, werden die Brennstoffkosten absehbar noch weiter sinken.

Bei Schiffen kommt noch eine Besonderheit hinzu: Die Antriebsleistung steigt mit der dritten Potenz (doppelte Geschwindigkeit, achtfache Leistung). Aus diesem Grund ist man in den letzten Jahrzehnten zu immer langsameren Schiffen übergegangen. Langsam, bedeutet aber weniger Umläufe pro Jahr (z. B. Shanghai – Wilhelmshaven – Shanghai) und das führt bei den Reedern zu mehr Schiffen und damit zu höheren Kosten. Ein weiterer Vorteil hoher Reisegeschwindigkeit sind kurze Transportzeiten. Es gibt genug Güter, wo das ein Kostenvorteil an sich ist. Deshalb gibt es Luftfracht oder Eisenbahntransporte sogar von China nach Duisburg. Mit steigenden Zinsen nimmt dieser Trend wieder zu. Insofern verwundert es nicht, daß man bereits Studien für ein nukleares Containerschiff mit 37,5 Knoten (über 1600 km pro Tag) gemacht hat. Solche Fahrzeiten müssen sogar gegen die Nutzungsgebühren und Passagedauern von Suez und Panama Kanal gegengerechnet werden. Dies ist nur ein Beispiel dafür, daß Wirtschaftlichkeit in der Logistik ein komplexes Thema ist.

Umrüsten von Kohlekraftwerken möglich?

In letzter Zeit tauchen immer wieder Pläne auf, ältere Kohlekraftwerke mit Kernreaktoren umzurüsten. Es erscheint notwendig, die Vor- und Nachteile etwas näher zu betrachten.

Der Ersatz

Bisher war es üblich, vollständig neue Kernkraftwerke zu errichten und anschließend ältere Kraftwerke still zu legen. Vorteil ist die freie Wahl des Standortes und die freie Gestaltung des Kernkraftwerks. Man erhält ein neues Kernkraftwerk (KKW) aus einem Guss. Allerdings ist dies auch die teuerste Lösung. Da der Neubau von KKW unter hohen Investitionen leidet, die zwar zu einem geringen Strompreis über die Laufzeit (heute mehr als 60 Jahre) führen, wird händeringend nach neuen Strategien gesucht. Als ein Weg erscheint die Umrüstung vorhandener Kohlekraftwerke mit SMR (Small Modular Reactor) als Wärmequelle. Man hofft dadurch die notwendigen Investitionen zu senken oder zumindest zu strecken. Grundsätzlich kann man schon jetzt festhalten, daß sich so etwas wahrscheinlich nur bei „jüngeren“ Kohlekraftwerken lohnt, bei denen noch eine Restlaufzeit von Jahrzehnten vorhanden ist. Volkswirtschaftlich dürfte es günstiger sein, diese Kraftwerke bis an ihre (wirtschaftliche) Lebensdauer weiter zu betreiben und erst dann still zu legen. Gleichwohl kann man auf jeden Fall den Standort „retten“ und weiter betreiben.

Der Standort

Jedes Kraftwerk braucht einen „Stromanschluss“, eine Wärmesenke, Betriebspersonal und diverse Infrastruktur. Das Kraftwerk muß seine erzeugte elektrische Energie in das vorhandene Stromnetz einspeisen. Bleibt man bei der vorhandenen Leistung, kann man die Hochspannungsleitungen und die notwendigen Schaltanlagen – sofern sie noch geeignet sind – weiter verwenden. Erste Schwierigkeit hierbei ist nicht technischer Art, sondern liegt in den speziellen Vorschriften für KKW. Der „Stromanschluss“ ist sicherheitsrelevant für die Notkühlung. Es müßten daher inhärent sichere Reaktoren verwendet werden, die keine aktive Notkühlung benötigen. Ähnliche Schwierigkeiten können bei der Genehmigung des alten Standorts entstehen – zumindest, wenn der Standort in unmittelbarer Nähe zu Wohngebieten liegt. Auch hierfür spielt die Sicherheitstechnik eine entscheidende Rolle.

Kraftwerke sind in ihren Gemeinden meist sehr beliebt: Sie bieten gut bezahlte Arbeitsplätze, die Gemeinde bekommt außergewöhnliche Steuereinnahmen und es fällt auch sonst noch einiges ab, um die gute Nachbarschaft zu fördern. Würde ein Kohlekraftwerk in ein KKW umgebaut werden, könnten alle Arbeitsplätze – sofern gewollt – erhalten bleiben. Viele könnten ohne Umschulung weiter arbeiten, einige müßten ihre Fachkenntnisse erweitern. Alles meist sehr kleine Unannehmlichkeiten im Vergleich zur Aufgabe. Wie die Erfahrung zeigt, wurden Gemeinden durch die Schließung überwiegend in den Abgrund gezogen: Die Preise für Immobilien sinken, viele Handwerker verlieren ihre Aufträge und die Einnahmen der Gemeinde sinken bei steigenden Ausgaben.

Jedes Kraftwerk braucht Kühlwasser. Es muß ein ausreichend großer Fluß vorhanden sein, ein See, ein Meeresarm oder eine ausreichende Wasserquelle für einen Kühlturm. Bleibt man in gleicher Größenordnung, kann man die vorhandenen Anlagen des Kohlekraftwerks weiter nutzen. Oft ist das Kühlwasser ein ganz wesentlicher Faktor bei der Standortsuche. Es muß nicht nur Wasser vorhanden sein, sondern es müssen auch alle Umweltauflagen erfüllbar sein. Was aber schon Jahrzehnte problemlos genutzt wurde, kann auch weiter genutzt werden.

Der Turbosatz

Im Turbosatz wird die Energie des Dampfes in elektrische Energie umgeformt. Der Generator wird durch die Turbine angetrieben. Turbine und Generator sind aufeinander abgestimmt (z. B. Drehzahl). Beide stehen auf dem elastisch gelagerten Turbinentisch (auf Federpaketen aus Stahlfedern). Wichtig dabei ist, daß alle drei Komponenten ein System bilden. Unterhalb befinden sich die Kondensatoren, in denen der Dampf durch das Kühlwasser niedergeschlagen wird. Ob Generator und Kondensatoren ohne große Umbauten weiterverwendet werden können, hängt von der Turbine ab.

Die Turbine ist für einen bestimmten Dampfzustand (Druck p und Temperatur t) und einen Massenstrom (kg/s) ausgelegt. Genau hier liegt die Problematik: Kohlekraftwerke sind für möglichst hohe Temperaturen und Drücke ausgelegt. Je höher die Dampftemperaturen, um so besser der Wirkungsgrad und damit um so geringer der Kohleverbrauch. Stellvertretend sei hier das Kraftwerk Boxberg Q genannt, das seit 2000 Strom ins Netz liefert. Es war seinerzeit das modernste Braunkohlekraftwerk mit einem Wirkungsgrad von 43% bei einer Leistung von 906 MWel. Hierfür ist ein Frischdampfdruck von 260 bar bei einer Temperatur von 540°C und einer Zwischenüberhitzung auf 580°C nötig. Damit ergeben sich bereits die Schwierigkeiten für eine Umnutzung durch Kernenergie:

  • Die Blockgröße erfordert mehrere SMR (Small Modular Reactor, definitionsgemäß mit einer Leistung < 300 MWel), die auf eine gemeinsame Turbine arbeiten müßten. Dies ist kein Vorteil, sondern eher ein Nachteil.
  • Die Austrittstemperatur der Reaktoren muß rund 600°C betragen. Damit fallen alle Leichtwasserreaktoren raus (Druckwasserreaktor 165 bar, 330°C; Siedewasserreaktor 71 bar, 286 °C ).
  • Wegen der notwendigen Austrittstemperatur von ungefähr 600°C kommen nur „zukünftige“ Reaktoren, wie z. B. aus den Familien: Gasgekühlt (z.B. HTR-PM, Xe-100), Salzschmelze (z.B. Kairos, Terrestrial Energy, Moltex Energy Waste Burner) oder Flüssigmetalle (BREST, TerraPower) in Frage. Es gibt noch unzählige andere Projekte, aber die aufgeführten Typen sind bereits auf dem Weg, den „Papier-Reaktor-Status“ zu verlassen. Realistisch betrachtet, dürften aber noch ein bis zwei Jahrzehnte bis zur Reife vergehen.
  • Hat man einen Reaktor gewählt, muß noch ein Dampferzeuger konstruiert werden. Keine einfache Aufgabe, denn auch dieser ist einmalig. Die Dimensionen sind bei der gesamten Dampfmenge von etwa 2400 to/h nicht zu unterschätzen. Sicherheitstechnisch problematisch ist die gewaltige Druckdifferenz von über 200 bar. Undichtigkeiten wirken hier immer in Richtung Reaktor. Es müssen bei der Paarung Kühlmittel des Reaktors / Frischdampf noch ganz neue Fragen bezüglich der Werkstoffe beantwortet werden.
  • Ein besonderer Stolperstein ist noch die bei Kohlekraftwerken übliche Zwischenüberhitzung: Wenn der Frischdampf aus dem Hochdruckteil der Turbine austritt, wird er noch einmal zum Kessel zurückgeschickt und wieder möglichst hoch erhitzt, bevor er in den Mitteldruckteil der Turbine zur weiteren Entspannung eintritt. Bisher hat so etwas noch keiner gebaut. Im Gegenteil, in den Anfangstagen der KKW hat man es mit einer fossilen Überhitzung versucht, da man mit Nassdampfmaschinen noch nicht so weit war.

Zusammenfassung

Die Größenordnung scheint verlockend: 2021 wurden 10244 TWh elektrischer Energie weltweit durch Kohlekraftwerke erzeugt (Stromverbrauch in Deutschland etwa 503,8 TWh). Dazu mußten fast 8,2 Milliarden to Kohle gefördert werden. Man muß es sich noch einmal in aller Ruhe deutlich machen: Weltweit wurde rund zwanzig mal so viel Strom aus Kohle gewonnen, wie ganz Deutschland in einem Jahr (2021) verbraucht hat! Schon das verdeutlicht die Unmöglichkeit, auch nur mittelfristig Kohle durch Kernenergie ersetzen zu wollen. Wenn es auch für manchen „Klimatologen“ eine bittere Erkenntnis sein mag, King Coal wird noch für Jahrzehnte – wenn nicht gar Jahrhunderte – dominieren, ob nun Deutschland aus der Kohleverstromung aussteigt oder nicht.

Jedes Kohlekraftwerk ist eine Milliardeninvestition. Hinzu kommt noch die Infrastruktur (Bergwerke, Massengutfrachter, Eisenbahnen etc.). Nur eine so dekadente Gesellschaft, wie die Deutsche, kann glauben, daß man ohne Konsequenzen einen solchen Kapitalstock vernichten kann. Andere Gesellschaften haben ganz andere Sorgen, als ausgerechnet die „Klimakatastrophe durch von Menschen freigesetztes CO2“. Der Rest der Welt, wird seine Kohlekraftwerke bis zu deren wirtschaftlichem Ende betreiben. Schließlich sind diese Teil der „Wohlstandsmaschine“, die zur weiteren Entwicklung zwingend nötig ist. Wenn es um die Einsparung von Kohle geht, bleibt auch noch der Weg, alte Kraftwerke mit geringem Wirkungsgrad durch neue zu ersetzen. Es wird sein, wie es immer war, erst wenn der Brennstoff so teuer wird, daß sich Alternativen lohnen, wird die Anzahl der Kohlekraftwerke schrumpfen. So bereits geschehen in den USA, wo (zeitweise) Erdgas günstiger war.

Realistisch betrachtet, kann höchsten der Zuwachs des weltweiten Strombedarfs durch Kernenergie abgedeckt werden. Eine Umrüstung erscheint bestenfalls in Einzelfällen sinnvoll. Die Entwicklung der Kernenergie wird davon unbeeinflußt weitergehen. Es werden weiterhin „große“ Leichtwasserreaktoren gebaut werden und die Entwicklung „kleiner“ Reaktoren wird ebenfalls weiter vorangehen. Sie werden vielmehr ganz neue Anwendungen (z. B Industrie, Nahwärme etc.) und die kostengünstige Beseitigung des „Atommülls“ erschließen. Sie werden somit auch an den Marktanteilen von Gas und Öl knabbern. Der Anteil von Wind und Sonne ist bereits (gerade in Europa) über das sinnvolle Maß hinausgeschossen – da hilft auch kein neues Schlangenöl aus „Grünem Wasserstoff“.

Reaktoren mit Salzschmelzen

Wenn man Salze hoch genug erhitzt, schmelzen sie und werden dünnfüssig wie Wasser. Es besteht also die Möglichkeit auf dieser Basis Reaktoren mit flüssigem Brennstoff zu bauen. Die Handhabung und Messtechnik für Salzschmelzen wurde erst Anfang des 20. Jahrhunderts für die Aluminiumindustrie entwickelt. Bis heute handelt es sich um ein recht exotisches Teilgebiet der Technik. Bereits 1944 schlug L.W. Nordheim einen Brutzyklus zur Nutzung von Thorium (Th232 —> U233, zerfällt nach Neutroneneinfang in mehreren Schritten) als Brennstoff vor. Bereits 1949 schlug A.M. Weinberg einen Reaktor mit Uran und Thorium haltigen Salzen des Fluor als Betriebsmittel für Flugzeuge vor. Bis heute, ist der Name Weinberg mit einer kontroversen Philosophie über Kernreaktoren verbunden. In den USA gipfelte diese Entwicklung im MSRE (Molten Salt Reactor Experiment), der von 1965 bis 1969 in Betrieb war. Es ist also beileibe keine neue Erfindung, sondern eher die Wiederaufnahme einer alten Entwicklungsschiene, deren Vor- und Nachteile im weiteren etwas beleuchtet werden sollen.

Die Neutronenfrage

Die Wahrscheinlichkeit für eine Kernspaltung hängt maßgeblich von der Geschwindigkeit der Neutronen im Reaktor ab: Je langsamer sie sind, um so größer ist bei Uran und Plutonium die Wahrscheinlichkeit einer Kernspaltung (Spaltungsquerschnitt in barn). Aber Vorsicht, dies gilt nur für die ungeraden Isotope (U233, U235, Pu239 etc.). Will man auch die geraden Isotope spalten (U238 etc.) geht das nur mit schnellen Neutronen. Man kann sogar mit Natururan (0,7% U235) kommerzielle Reaktoren bauen (Deuterium oder Graphit als Moderator), aber schon bei Leichtwasser (Druckwasser- oder Siedewasserreaktor) muß man das Uran aufwendig anreichern (ca. 3–5% U235). Will man auch das U238 spalten, muß man zwingend schnelle Neutronen verwenden und braucht eine sehr viel höhere Anreicherung bzw. entsprechend viel Plutonium.

Warum diese Vorüberlegungen? Neutronen werden durch Zusammenstöße mit den Materialien des Reaktors zwangsweise abgebremst. Man ist also nicht mehr frei bei der Auswahl der Salze. Wählt man „leichte“ Salze aus Lithium und Beryllium ist die Abbremsung bereits so stark, daß man nicht mehr von schnellen Neutronen sprechen kann. Man baut automatisch einen Reaktor mit thermischem Neutronenspektrum. „Thermisch“ ist eine Geschwindigkeitsangabe über die Temperatur im Reaktor, da man wegen der Brownschen Molekularbewegung diese Geschwindigkeit nicht unterschreiten kann. Will man ein härteres (schnellere Neutronen) Spektrum, muß man zwingend auf „schwere“ Salze aus z. B. Chlor übergehen.

Die Salze

Standard ist immer noch das Molten Salt Reactor Experiment (MSRE). Der MSRE wurde 1960 geplant, wurde 1965 zum ersten Mal kritisch und lief bis 1969 mit verschiedenen Brennstoffen. Er hatte ein thermisches Neutronenspektrum und eine Leistung von 7,34 MW. Das Salz bestand aus 65% Li7 F, 29,1% BeF2, 5% ZrF4 und 0,9% UF4 (alles in Molenprozent). Man kann hier schon einige grundlegende Überlegungen ableiten:

  • Um ein thermisches Spektrum zu erhalten muß das Salz überwiegend aus „leichten“ Kernen gebildet werden (Li7, F19, Be9, Zr90). Trotzdem war auch hier noch ein zusätzlicher Moderator aus Graphit erforderlich. Die Salze dürfen auch nicht parasitär gegenüber den Neutronen sein (zu große Einfangquerschnitte). Dies gilt besonders, wenn man aus dem Thorium Uran erbrüten will.
  • Es handelt sich um eine Mischung aus Fluorsalzen. Fluor ist bei Raumtemperatur gasförmig. Es gehört zu den stärksten Oxidationsmitteln und reagiert mit fast allen Elementen sehr heftig. Dies ist wichtig, da ja bei jeder Kernreaktion auch die chemische Verbindung zerbricht und nahezu das gesamte Periodensystem neu entsteht. Die radioaktiven Spaltprodukte sollen auch im Salz gebunden (Sicherheit bei Störfällen) werden.
  • Der Anteil an spaltbaren Atomen ist mit unter einem Prozent recht klein. Das Salz ist quasi nur mit Brennstoff – und später den Spaltprodukten – „verunreinigt“. Das ist wichtig, da die Salzmischung mit allen möglichen Bauteilen des Reaktor in Kontakt kommt und zu Korrosion führt – bis heute ein Problem dieses Reaktortyps.

Man hat den MSRE mit U235 (Anreicherung 32%), U233(≈91,5%) und Pu239 F3 erfolgreich betrieben. Das letzte Salz führt unmittelbar zum „Waste Burner“, in dem man Reaktorplutonium und Minore Aktinoide aus Leichtwasserreaktoren verwendet.

In der Natur kommen die beiden stabilen Isotope Li6 (7,6 %) und Li7 (92,4 %) vor. Für einen MSR ist nur Li7 erwünscht, da aus Li6 durch Neutroneneinfang (großer Querschnitt) radioaktives Tritium entsteht. Generell gilt, daß die Salze sehr rein sein müssen, was sie teuer macht.

Will man ein schnelles Neutronenspektrum, darf das Salz nur wenig leichte Kerne enthalten. Chlorsalze sind die Favoriten. Sie sind insbesondere für Uran-Plutonium-Kreisläufe das Salz der Wahl. Sie stehen damit in unmittelbarer Konkurrenz zu „schnellen Brütern“ mit Natrium oder Blei als Kühlmittel. Natürliches Chlor besteht zu 75,76% aus Cl35 und 24,24% Cl37. Cl35 und Cl36 haben sehr viel größere Einfangquerschnitte als Cl37. Es empfiehlt sich daher, möglichst reine Chlorsalze aus nur dem Isotop Cl37 zu verwenden. Diese sind aber sehr teuer.

Die Entfernung der Spaltprodukte

Durch Kernspaltung und Neutroneneinfang bildet sich mehr oder weniger das gesamte Periodensystem. Man kann lediglich Wahrscheinlichkeiten für die Zusammensetzung angeben:

  • Die Spaltprodukte sind radioaktiv. Damit ergibt sich der simple aber durchschlagende Zusammenhang: Je mehr davon in einem Reaktor vorhanden sind, desto größer ist die (potentielle) Freisetzung bei einem Störfall.
  • Die Art und Anzahl der Spaltprodukte bestimmt die Nachzerfallswärme nach Abschaltung des Reaktors und damit die erforderliche Notkühlung.
  • Die Spaltprodukte gehen neue chemische Verbindungen ein. Dies macht den Korrosionsschutz so komplex. Die neu gebildeten Verbindungen haben aber auch andere physikalische Eigenschaften (Schmelztemperatur, Dampfdruck etc.). Dadurch kann es auch bei Zwangsumlauf zu Ablagerungen und Ausgasung kommen.
  • Durch z. B. Gasblasen ändert sich der neutronenphysikalische Zustand im Reaktor. Deshalb sieht man mindestens eine kontinuierliche Gasabscheidung vor. Was alles gasförmig ist, hängt stark von der Betriebstemperatur ab. Beileibe treibt man durch das sog. Strippen mit Edelgas nicht nur die gewünschten, sondern auch andere Verbindungen aus, die sich dann in kalten Bereichen niederschlagen. So hat man z. B. beim Abbruch amerikanischer Salzbadreaktoren unerwartete Konzentrationen von Uranfluoriden in Abgasfiltern gefunden.
  • Reaktoren werden über die verzögerten Neutronen geregelt. Das sind Neuronen, die erst beim Zerfall gewisser radioaktiver Elemente frei werden. Dies macht zumindest die Berechnung kompliziert, da sich nicht nur ein zeitliches, sondern auch ein örtliches Problem ergibt. Anders als bei Reaktoren mit Brennelementen, bewegen sich die Kerne mit der Strömung des Salzes weiter. Sie werden unter Umständen an Stellen frei, wo man sie nicht braucht oder gar nicht haben will.

Verringerung des Inventars zur Sicherheit

Salzbadreaktoren sind nahezu drucklos. Dies ist gegenüber Leichtwasserreaktoren ein Vorteil. Platzt z.B. eine Rohrleitung, führt das nur zu einem Auslaufen und nicht zu einer „Explosion“. Hochdruckdampf hat enorme zerstörerische Kräfte. Es wird auch immer damit argumentiert, daß der geringe Druck zu dünnen Wänden und damit einer billigeren Konstruktion führt. Dies gilt es gegen die aggressive Chemie des heißen Salzes abzuwägen. Es wird wohl kaum gelingen, jemals 60+ Jahre Betrieb – wie bei modernen Leichtwasserreaktoren – zu erreichen.

Das Risiko eines Unfalls hängt immer von der Wahrscheinlichkeit (überwiegend eine Folge von Konstruktion und Betriebsumständen) und dem Schaden (überwiegend das Inventar an radioaktiven Stoffen zum Zeitpunkt des Unfalls) ab. Bei allen Reaktoren ergibt sich maßgeblich das radioaktive Inventar aus der (bis zum Unfall) produzierten Energie. Pauschale Urteile sind sinnlos. Werden unterschiedliche Reaktoren diesbezüglich verglichen, sind z.B. sehr genau die Wechselintervalle des Brennstoffs zu berücksichtigen. Bei heutigen Leichtwasserreaktoren wird jeweils ein Drittel des Brennstoffs jährlich entnommen. Demgegenüber gibt es bei Salzbadreaktoren Konzepte, bei denen diese zig Jahre laufen sollen und dann am Stück ausgetauscht werden.

Bei Salzbadreaktoren ist zumindest theoretisch eine kontinuierliche Wiederaufbereitung während des laufenden Betriebs möglich. Dies kann durch Abzweigen eines kleinen Teilstroms und Wiederaufbereitung in einem angeschlossenen chemischen Prozess geschehen. Andere Konzepte sehen ein Abscheiden durch Verdampfung im Vakuum vor. Man geht dabei von der Annahme aus, daß die Gase nur Spaltprodukte und keinen Brennstoff enthalten. Verbindliche Aussagen wird man erst nach vielen Betriebsjahren in vielen Reaktoren machen können. Leichtwasserreaktoren haben bezüglich der Genehmigung in diesem Sinne einen unschlagbaren Vorteil. Entscheidend ist nicht zuletzt die Frage ob der Kunde (meist gestandene Kraftwerker) sich mit soviel Chemie anfreunden kann.

Sicherheit

Reaktoren mit Salzschmelze sind inhärent sicher: Meint, sie brauchen kein System zur Schnellabschaltung. Sie gehen von selbst aus, wenn die Temperatur ansteigt, weil dadurch die Kettenreaktion in sich zusammenbricht. Sie können darüberhinaus auch noch „walk away“ sicher gebaut werden. Durch die große Wärmespeicherkapazität und dem großen Abstand zum Siedepunkt (Druckanstieg) ist eine dauerhafte Kühlung für die Nachzerfallswärme ohne ein (aktives) Notkühlsystem möglich. Unfälle, wie z. B. in Fukushima, scheinen damit physikalisch ausgeschlossen.

Ob allerdings MSR vollkommen ohne Regelstäbe etc. auskommen können, wird der Genehmigungsprozess zeigen. In der Öffentlichkeit geistert immer ein Pfropfen umher, der eine Rohrleitung verschließt und bei zu hoher Temperatur aufschmilzt und den Weg in einen Sicherheitstank frei gibt. Diese Vorstellung ist sehr laienhaft. Um einen solchen gefrorenen Pfropfen zu erzeugen, muß dieser im Betrieb dauerhaft aktiv gekühlt werden. Das ist gar nicht so einfach und es ergibt sich ein recht komplexes Bauteil. Trotzdem sind bei den Versuchsständen immer Undichtigkeiten aufgetreten. Im Ernstfall muß diese Verstopfung – auch nach jahrelangem Betrieb – sicher und schnell aufschmelzen. Auch das keine einfache Aufgabe. Es handelt sich nach längerer Zeit nicht mehr um das ursprünglich eingefrorene Salz. Es ergeben sich Schichtungen, Kristallisation usw. Jedenfalls hat die Praxis gezeigt, daß solche Pfropfen 10 bis 15 Minuten brauchen, bis sie den Weg in den Tank freigeben. Etliche Entwürfe sehen deshalb zusätzlich aktive Ventile vor.

Wertung

Es gibt nicht den einzig selig machenden Reaktortyp. Jedes Prinzip hat ganz spezifische Vor- und Nachteile. Es hängt alles vom Anwendungsfall ab:

  • Will man nur elektrische Energie erzeugen, wird der MSR genauso wenig die Leichtwasserreaktoren verdrängen, wie die Wärmepumpe den Heizkessel.
  • Braucht man sehr hohe Temperaturen, sind die gasgekühlten Hochtemperaturreaktoren die Wahl.
  • Will man auch das U238 nutzen, sind mit Natrium oder Blei gekühlte schnelle Reaktoren zumindest bisher unübertroffen. Sie sind auch hervorragend geeignet um die Minoren Aktinoide zu beseitigen und die Entsorgungsfrage ganz neu zu stellen.
  • Will man auch Thorium als zusätzliche Energiequelle nutzen, sind die Schwerwasserreaktoren eine echte Alternative.
  • Braucht man einen nuklearen Schiffsantrieb, bleiben (wahrscheinlich) nur Druckwasserreaktoren und MSR. Sie sind die einzig kompakten Reaktoren ohne freie Oberflächen.
  • MSR sind von Natur aus für „nicht ganz so hohe Temperaturen“ (<600°C) hervorragend geeignet. Spätestens nach dem Krieg gegen die Ukraine ist klar geworden, wie wichtig Wärme für die Industrie ist.

Gleichwohl ist es dringend nötig, endlich mal einen SMR zu bauen. Es macht einfach keinen Sinn, ewig nur über Vor- und Nachteile zu philosophieren. Man muß in der Technik praktische Erfahrungen sammeln. Schließlich sehen die heutigen Leichtwasserreaktoren der Generation III+ auch anders aus, als deren erste Generation. Am Ende entscheidet immer der Markt. Wir haben doch bei unseren Autos auch eine ganze Palette unterschiedlicher Antriebssysteme zur Auswahl.

Was ist los in Dänemark?

Was geschieht im schönen Dänemark, daß sich gleich zwei junge Unternehmen (Seaborg Technologies und Copenhagen Atomics) mit der Entwicklung von Kernreaktoren der Generation IV beschäftigen? War doch bisher für alle „Ökos“ Dänemark das Paradies für Windkraft und Bioenergie. Konnte man sich doch bisher einen schlanken ökologischen Fuß machen, da die Bevölkerung nicht einmal doppelt so groß ist wie die von Berlin und 76% der Arbeitnehmer in der Dienstleistung tätig sind und damit 79% des BIP erwirtschaften. Das bisschen Stahl für die Windmühlen, den Dünger für die intensive Landwirtschaft und die paar Autos konnte man sich bequem auf dem Weltmarkt zusammen kaufen. Die damit verbundenen Umweltbelastungen und der Energieverbrauch gehen halt auf das Konto der Erzeuger. Apropos Autos: Unsere grüne Verkehrssenatorin in Berlin bekommt immer leuchtende Augen, wenn sie von der „Fahrradstadt“ Kopenhagen schwärmt. Warum sollte man auch nicht in Kopenhagen Fahrrad fahren, ist doch annähernd so groß wie Bremen und genauso flach. Allerdings gibt es dort in der Innenstadt Hauptverkehrsachsen mit 3 Fahrspuren + 1 Busspur + 1 Fahrradspur. Nur die Fußgänger müssen sich etwas anpassen, da diese Magistralen nur mit zweimal grün zu überqueren sind. Schön sind auch die Nahverkehrszüge mit großen Fahrradabteilen. Trotzdem stehen die Pendler von und nach Kopenhagen (Großraum über 1,5 Millionen) täglich im Stau. Man kann eben nicht alles haben: Billige Wohnung und gut bezahlter Arbeitsplatz in Bullerbü geht nirgends auf der Welt.

In Dänemark ist aber ein weiteres dickes Ende abzusehen: Bereits heute wird schon oder erst – je nach Blickwinkel – die Hälfte der elektrischen Energie durch Windkraft erzeugt. Ein Netz mit so hohem fluktuierenden Anteil überhaupt am Laufen zu halten, geht nur mit der Wasserkraft in Norwegen, der Kernenergie in Schweden und der Kohle in Deutschland. Da aber alle „Ökos“ in Europa glauben, sie könnten ihre Stromlücken problemlos beim Nachbarn auffüllen, ist damit bald Schluß. Was bleibt, sind die hohen Stromkosten und wahrscheinliche Zwangsabschaltungen. Absehbar zeichnen sich die Grenzen des Wachstums der Windindustrie ab. Die immer größer werdenden Konflikte mit Umweltschützern und den belästigten Anwohnern haben die Schlangenölverkäufer bereits auf die Nord- und Ostsee hinausgetrieben. In einem in der Menschheitsgeschichte bisher nie da gewesenen Ausmaß und Tempo wird das Meer industrialisiert. Es ist halt wie mit den Schornsteinen der frühen Industrialisierung: Einige wenige waren ein willkommenes Fortschrittssymbol, aber ab einem gewissen Ausmaß zeichnete sich der Fluch der Luftverschmutzung ab. Einige wenige „Vogelschredder“ steckt die Natur locker weg, aber eine voll gepflasterte Nordsee wird zur ökologischen Katastrophe für Fauna und Flora. Wer gegenteiliges behauptet, ist ein Ignorant und hat nichts aus der Technikgeschichte gelernt.

Klein und smart passt gut zusammen

Es ist kein Zufall, daß sich gerade die dünner besiedelten Staaten für kleine und „moderne“ Reaktoren interessieren:

  • Ihre (lokalen) Netze sind meist zu klein, um konventionelle Reaktoren wirtschaftlich betreiben zu können.
  • Sie verfügen über keine Schwerindustrie, die die erforderlichen großen Bauteile (z. B. Reaktordruckbehälter) herstellen kann. Es sind deshalb besonders „drucklose“ Konzepte von Interesse.
  • Sie verfügen über zahlreiche kleine fossile Kraftwerke mit Kraft-Wärme-Kopplung (Fernwärme, Industriebetriebe) die ersetzt werden müssen.
  • Dänemark verfügt über eine beachtliche Flotte großer Containerschiffe (Maersk) für die neue Antriebskonzepte gefunden werden müssen (synthetische Brennstoffe und/oder nuklear).
  • Die skandinavischen Länder betreiben seit Jahrzehnten Leichtwasserreaktoren, die bereits eine Menge abgebrannter Brennelemente angehäuft haben – aber zu wenig für eine konventionelle Wiederaufbereitung. Die derzeitige Lösung, der dauerhaften unterirdischer Zwischenlagerung in Bergwerken, schreit förmlich nach neuen Ansätzen.

Geht man von diesen Rahmenbedingungen aus, ist es nicht verwunderlich, daß sich gleich zwei Unternehmen mit der Entwicklung von Reaktoren mit Salzschmelzen beschäftigen.

Salzschmelze-Reaktoren

Wenn man geeignete Salze auf einige hundert Grad erhitzt, werden sie flüssig wie Wasser. Andererseits sind sie dann noch weit entfernt zu verdampfen und damit Druck aufzubauen. Mit einfachen Worten: Man kann einen Reaktor bauen, der beachtliche Temperaturen (bis etwa 700°C) bereitstellt und trotzdem nahezu drucklos bleibt. Wenn man nun Salze aus Uran, Thorium, Plutonium und Minoren Aktinoiden (das sind die, die eine so langfristige Lagerung des Atommülls erforderlich machen) bildet und unter die Salzlösung mischt, erhält man einen Brennstoff, der gleichzeitig der Wärmeträger ist. Also anders als bei konventionellen Reaktoren, wo fester Brennstoff in Hüllrohre verpackt, mit Wasser, Natrium etc. zur Kühlung umgeben wird. Beide Konstruktionsweisen haben spezifische Vor- und Nachteile, die hier nicht näher diskutiert werden. – wie immer in der Technik, wo es grundsätzlich nur Optima gibt und nicht (nur) das Gute oder Schlechte. Selbst wenn man die Reaktortechnik auf Salzschmelzen einengt, ergeben sich noch dutzende verschiedene Konstruktionen. Es empfiehlt sich daher, vorab Gedanken zu machen, welche Anwendungen man anstrebt.

Die Gemeinsamkeiten der Dänen

Sowohl Seaborg, wie auch Copenhagen Atomics streben langfristig eine Serienproduktion an. Dafür müssen die Reaktoren so klein (Gewicht und Abmessungen) sein, daß sie sich komplett fertigen und transportieren lassen. Seaborg will sie auf Bargen in Werften installieren und anschließend betriebsbereit über den Wasserweg zum Verbraucher schleppen. Copenhagen Atomics geht noch einen Schritt weiter und will die komplette Anlage mit Pumpen, Wärmeübertragern und allem notwendigen Zubehör in einen handelsüblichen 40-Fuß-Container einbauen. Es geht also in die Richtung „Autofabrik“ und weit weg von der verfahrenstechnischen Großbaustelle heutiger Kernkraftwerke. Das kann die Kosten senken und vor allem ganz neue Märkte erschließen: Seit dem Krieg gegen die Ukraine wird auch hier breiten Schichten die Bedeutung von „Wärme“ und nicht nur elektrischer Energie für eine Industriegesellschaft bewußt. Es gibt einen riesigen Bedarf für Wärme mit „ein paar hundert Grad“ z. B. in der chemischen und verarbeitenden Industrie. Man stelle sich einmal vor, man könnte die tausende Kessel (< 100 MWth), die überwiegend aus teurem Erdgas und Heizöl nur Warmwasser und Dampf für die Produktion herstellen, durch „Nukleare Container“ ersetzen. Angeliefert und aufgestellt in wenigen Tagen, gemietet und betreut (die Reaktoren laufen voll automatisch) von Service Unternehmen, die für ein paar Cent die erforderliche Wärme bereitstellen. Welch verlockende Perspektive gegenüber dem irren Umweg aus „Grünem Wasserstoff“ Niedertemperaturwärme machen zu wollen.

Es gibt aber noch ein weiteres Anwendungsfeld, das sich Laien nicht so ohne weiteres erschließt, aber Reedern unter den Nägeln brennt: Seeschiffe geraten durch strengere Umweltschutzvorschriften und explodierende Treibstoffpreise immer mehr unter Druck. Langfristig bleibt nur der nukleare Antrieb als Ausweg, wenn man „fossil“ nicht mehr will. Egal ob bei großen Schiffen durch Reaktoren an Bord oder durch voll elektrischen Antrieb bei kleineren Schiffen mit „nuklearen Tankstellen“ auf dem Meer. Viele Reeder setzen auch auf Ammoniak als Treibstoff. Diesen Sektor hat auch Copenhagen Atomics in seinen Überlegungen.

Salzschmelze, zwei Fliegen mit einer Klappe?

Wenn man auf der Basis von Thorium arbeitet, erschließt man sich einen neuen Brennstoff, der noch viel häufiger als Uran vorkommt und zur Zeit schlicht weg Abfall (z. B. bei der Gewinnung seltener Erden) ist. Thorium erzeugt im Gegensatz zum Uranzyklus heutiger Leichtwasserreaktoren praktisch keinen langlebigen Atommüll (Plutonium-Isotopen, Minore Aktinoide). Im Gegenteil, man kann mit ihnen den Reaktor starten und sie so gewinnbringend vernichten. Copenhagen Atomics bezeichnet ihren Reaktor deshalb auch als „Waste Burner“. Gestartet wird der Reaktor mit einem Gemisch aus Thoriumfluorid und Plutoniumfluorid. So wie sich das Plutonium aufbraucht, wird gleichzeitig aus dem Thorium spaltbares Uran-233 „erbrütet“. Wichtig dabei ist, daß man – anders als für Mischoxid-Brennelemente für Leichtwasserreaktoren – kein möglichst reines Plutonium benötigt, sondern es kann durchaus mit Spaltprodukten verunreinigt sein (Proliferation) und soll sogar alle Minoren Aktinoide mit umfassen. Man kommt so zu wesentlich einfacheren Aufbereitungsverfahren für den zwischengelagerten „Atommüll“. Angestrebt sind hier eher reine (kurzlebige) Spaltprodukte, die einfach endgelagert werden können – kleine Menge (< 5%) und kurze Zerfallszeiten, die schnell zu schwach strahlendem „Restmüll“ führen. Ist der Gleichgewichtszustand erreicht, wird nur noch Thorium verbraucht.

Arbeiten wie bei Rickover

Man kann es sich heute gar nicht mehr vorstellen: Das erste Atom-U-Boot überhaupt, die USS Nautilus, wurde in nur fünf Jahren „erfunden“ und gebaut – und das mit den Hilfsmitteln der frühen 1950er Jahre. Dies war nur durch einen ingenieurtechnisch streng pragmatischen Ansatz möglich. An diese Vorgehensweise fühlt man sich bei Copenhagen Atomics erinnert. Werkstoffprobleme (Korrosion in heißem Salz) werden durch Tests gelöst. Zu diesem Zweck hat man sich eigene Prüfstände entwickelt, in denen vollautomatisch verschiedene Salzmischungen und (handelsübliche) Werkstoffe unter Betriebsbedingungen untersucht werden. Nicht „kaufbare“ Komponenten, wie z. B. die Umwälzpumpen sind selbst entwickelt und getestet worden. Das Gleiche betrifft die gesamte Instrumentierung und die notwendige Regelung. Salzmischungen in der erforderlichen Reinheit sind zumindest nicht in den erforderlichen Mengen zu kaufen. Deshalb wurde eine eigene Salzproduktion aufgebaut. Man ist jetzt an dem Punkt angekommen, einen „nicht nuklearen“ Reaktor in Originalgröße in Betrieb zu nehmen und damit Dauertests durchzuführen zu können.

Die Philosophie dahinter ist, nicht Unmengen von Papier und Berechnungen zu produzieren, mit denen man zu einer Genehmigungsbehörde geht und jahrelange theoretische Diskussionen führt, bis endlich mal etwas gebaut wird. Sondern ein konkretes Objekt vorzuzeigen und damit in den Genehmigungsprozess einzusteigen – quasi den Spieß umzudrehen. Was augenscheinlich funktioniert, muß mit starken Argumenten sicherheitstechnisch entkräftet oder eben zugelassen werden. Heute ist es eher üblich, bei theoretischen Diskussionen für jedes gelöste Problem drei neue aufzuwerfen. So kommt es, daß bei allen SMR-Projekten dreistellige Millionenbeträge der Investoren verbrannt sind, bevor der erste Spatenstich erfolgt. Das ist auch nicht verwunderlich, wenn man Genehmigungsverfahren als Stundenlohnarbeiten durchführt.

Bauen, statt nur Papier zu produzieren, hat noch einen weiteren Vorteil. So ist es Copenhagen Atomics gelungen, Gerätschaften die sie für den eigenen Reaktor entwickelt haben, bereits an andere Unternehmen und Forschungseinrichtungen zu verkaufen. Dies generiert nicht nur Umsatz während der Entwicklungsphase, sondern ermöglich ganz natürlich die Zusammenarbeit mit anderen Unternehmen und Forschungseinrichtungen. Darüberhinaus wird so sehr schnell aus einem Startup eine Marke.

Der schwierige Übergang in die nukleare Phase

An diesem Beispiel zeigt sich, in welch fatale Lage sich Europa selbst gebracht hat. Es mangelt nicht an klugen Köpfen, die sich für Kerntechnik begeistern. Immer mehr junge Leute gehen wieder den anspruchsvollen Weg eines Studiums der Kerntechnik. Das Bild von einer Jugend der „Freitagshüpfer“, die irgendwas aus den Weiten der „Genderwissenschaften“, dem „Klimaschutz“ oder sonstigen „Geschwätzwissenschaften“ studieren, um möglichst schnell eine Stellung im Staatsdienst zu ergattern, ist eine Erfindung der (meisten) Medien. Es wäre auch genug privates Kapital vorhanden, trotz aller Subventionen für „Grüne Technik“. Es klemmt heute an ganz anderen Dingen.

Ein Extrembeispiel ist Deutschland. Hier wäre ein Genehmigungsverfahren neuer Reaktoren gar nicht mehr möglich. Was ist, wenn Plan A, wir machen alles mit Wind, Sonne und Erdgas einfach nicht funktionirt? Wie lange glaubt man die Bevölkerung noch auf Kurs halten zu können, wenn die Energiepreise weiter steigen und Massenarbeitslosigkeit die Folge wird? Seit Minister Trittin hat man die deutschen Fachbehörden systematisch ruiniert, indem man frei werdende Stellen stets nach ideologischer Grundhaltung besetzt hat. Man hat sogar – im Gegensatz zu unseren Nachbarn – alles, was irgendwie nach Kerntechnik aussieht, an den Universitäten „auslaufen“ lassen. Was nicht sein darf, kann auch nicht sein.

Wie wird man in Dänemark reagieren, wenn im nächsten Schritt mit radioaktiven Stoffen gearbeitet werden müßte? Welche Behörden haben den Willen und die Fähigkeiten den Bau eines „Forschungsreaktors“ zu genehmigen und zu begleiten? Wahrscheinlich wird dieses Projekt, wie viele andere, Europa Richtung USA oder Asien verlassen müssen. Europa ist in Fragen von Wissenschaft und Technik zu einem mittelalterlichen Kirchenstaat verkommen. Erforscht oder gar gebaut werden darf nur noch, was das Wohlgefallen der „geistigen Obrigkeit“ findet.

Generation IV aus Kanada

Das kanadische Unternehmen Terrestrial Energy Inc plant den Bau eines Small Modular Reactor (SMR) auf dem Gelände des bestehenden Kernkraftwerks Darlington.

Der Reaktor

Der IMSR400 ist ein Reaktor mit einer thermischen Leistung von 400 MWth. Bei reiner Stromerzeugung kann er damit etwa 195 MWel liefern. Brennstoff und Kühlmittel sind Fluoride (Salzschmelze) mit und ohne Uran. Das „I“ bedeutet, daß sich alle wesentlichen Komponenten (Salzschmelze, Pumpen, Regelstäbe, Wärmeübertrager etc.) in einem hermetisch verschlossenen Behälter befinden. Dieser hat ungefähr eine Höhe von 7m und einen Durchmesser von 3,6m. Er kann relativ dünnwandig sein, da er nahezu drucklos ist. Die komplette Einheit soll in einer Fabrik vorgefertigt werden und verbleibt sieben Jahre im Kraftwerk in Betrieb. Dieser „Topf“ wird in einen weiteren Behälter im Kraftwerk gestellt, der die Funktion eines Containment übernimmt. Zwei dieser Behälter befinden sich in einem unterirdischen Silo. Nach sieben Betriebsjahren – wenn der Brennstoff erschöpft ist – wird der Reaktor auf den zweiten frischen Reaktor umgeschaltet. Der erste verbleibt im Silo, bis die Strahlung entsprechend abgeklungen ist. Dann wird die radioaktive Schmelze abgepumpt und der entleerte Reaktorbehälter in ein Zwischenlager auf dem Kraftwerksgelände abgestellt. Während des siebenjährigen Betriebs wird – im Gegensatz zu heutigen Leichtwasserreaktoren – der Reaktorbehälter nicht geöffnet.

Der Reaktor ist selbstregelnd. Steigt die Temperatur an, erlischt die Kernspaltung (negativer Temperaturkoeffizient) selbsttätig. Über die eingebauten Umwälzpumpen kann die Leistung – wie bei einem Siedewasserreaktor – sehr schnell verändert werden. Wird mehr Salzschmelze durch den Graphit-Moderator gepumpt, wird entsprechend mehr Uran (Anreicherung <5%) gespalten und die Leistung steigt. Soll der Reaktor dauerhaft abgeschaltet werden, fahren Regelstäbe in den Moderator ein. Vor einer unbeabsichtigten Leistungsexkursion schützen Kapseln mit löslichen Neutronenabsorbern, die beim Schmelzen in die Salzschmelze frei gesetzt werden.

Die Nachzerfallswärme wird über den Reaktorbehälter und das „Containment“ passiv an die Umgebungsluft abgeführt. Der Reaktor wäre damit „walk away“ sicher. Der Reaktor besteht wärmetechnisch aus drei Kreisläufen: Die im Brennstoff entstandene Energie wird durch Wärmeübertrager an einen sekundären Kreislauf aus gleichem Salz, aber ohne Uran und Spaltprodukte abgegeben. Dieser überträgt die Energie an einen tertiären Kreislauf aus „Solarsalz“ außerhalb des Reaktors. Diese etwas umständlich anmutende Anordnung garantiert, daß nur nicht radioaktive Salzschmelze den Reaktorbereich verläßt. Diese heiße Schmelze kann gespeichert werden, unmittelbar zur Dampferzeugung (konventionelle Anlagentechnik) verwendet oder als Fernwärme industriellen Prozessen zugeführt werden. Damit ergibt sich eine bisher nicht gekannte Flexibilität. Der Reaktor kann stets mit voller Leistung laufen (optimale Kosten) und die erzeugte Wärme den Anforderungen entsprechend aufgeteilt werden. Dies ermöglicht völlig neue Konzepte mit Wind- und Sonnenenergie. Ein ähnlicher Ansatz wurde bereits bei Solar-Turm-Kraftwerken probiert (daher der Name Solarsalz). Man kann das heiße Solarsalz (etwa 600°C) direkt einem Dampferzeuger zuführen oder in isolierten Tanks lagern. Wenn keine Sonne scheint, wird die gespeicherte Energie über einen konventionellen Dampfkreislauf zur Stromproduktion genutzt. Neben einer industriellen Nutzung (Heizwärme hoher Temperatur) zielt dieses Reaktorkonzept darauf ab, die immer größer werdenden Mengen an „Flatterstrom“ (Photovoltaik und Windmühlen) doch noch einer sinnvollen Verwendung zu führen zu können. Es ist daher kein Zufall, daß gerade die Großinvestoren (z. B. Berkshire Hathaway), die Milliarden Subventionen für „Erneuerbare“ abgegriffen haben, brennend an solchen Reaktorkonzepten interessiert sind, um ihre „gestrandeten Investitionen“ wieder flott zu machen. Sind die Subventionen abgelaufen, kann nur noch der Börsenpreis erzielt werden. Wie wir bereits in Deutschland sehen, reicht dieser aber meist nicht aus, um die Anlagen wirtschaftlich weiter zu betreiben. Die Sonne schickt zwar keine Rechnung, aber sie gibt auch kein Geld für die Betriebskosten.

Der Standort Darlington

Darlington liegt im Südosten von Kanada, nahe der Grenze mit den USA. Das Kernkraftwerk Darlington ging 1992–1993 in Betrieb und besteht aus vier Schwerwasser-Reaktoren vom Typ CANDU 850 mit je 878 MWel Nettoleistung. Eine hervorragende kerntechnische Infrastruktur ist also vorhanden. Die kanadische Regierung beschloss deshalb auf dem Gelände den ersten SMR in Kanada bauen zu lassen. Eine Genehmigung für den Standort (Umweltschutz etc.) liegt bereits vor. Es stehen drei Reaktortypen zur Auswahl: GE Hitachi’s BWRX-300 (Siedewasserreaktor), X-energy’s Xe-100 (Helium- Hochtemperaturreaktor) und der IMSR400 (Salzschmelze). Beste Aussichten haben wahrscheinlich zwei IMSR400 (Zwillingsanlage) mit zusammen 380 MWel, da sie eine rein kanadische Entwicklung sind. Kanada hofft auf bessere Exportmöglichkeiten, wenn alle Rechte kanadisch sind. Der Weltmarkt für den Ersatz alter Kohlekraftwerke in dieser Leistungsklasse ist riesig. Kanada hat traditionell Exporterfolge in Ländern, die nicht so gut mit den USA standen und gegenüber russischer Technik abgeneigt waren. Nur kauft heute kein Land mehr einen Papier-Reaktor. Es müssen Referenzkraftwerke vorgezeigt werden. Gleichwohl verzichtet die CNSC (Canadian Nuclear Safety Commission) nicht auf die jahrzehntelangen Erfahrungen in den USA und kooperiert mit der NRC (Nuclear Regulatory Commission) seit 2019 in einem gemeinsamen Zulassungsverfahren. Der IMSR (Integral Molten Salt Reactor) ist damit der erste unkonventionelle Reaktor, der gleichzeitig gemeinsam untersucht wird.

Kerntechnik heute

Kerntechnik ist heute mehr denn je ein internationales Geschäft. Je früher man zusammen arbeitet, umso leichter geht später der Verkauf und Bau in unterschiedlichen Ländern und Kulturen. Ebenso läßt sich der enorme Kapitalbedarf besser schultern. Außerdem sind Unternehmen der Kerntechnik ausnahmslos Spezialisten mit jahrzehntelanger Erfahrung und Know How. Für „Newcommer“ ist der Einstieg in diese Welt mit ihrer ausgeprägten Sicherheitskultur nur schwer möglich.

So entwickelt Terrestrial den Graphitmoderator zusammen mit Frazer-Nash, einem britisch-australischen Ingenieurunternehmen. Frazer-Nash bringt die praktischen Erfahrungen aus mehreren Jahrzehnten mit den 14 AGRs (Advanced Gas-cooled Reactors) in GB ein. Getestet wird das Reaktorgraphit seit 2020 von der niederländischen NRG (Nuclear Research and Consultancy Group) in deren Hoch-Fluss-Reaktor in Petten.

L3Harris liefert einen Simulator für den IMSR. Er dient nicht nur für die Ausbildung der zukünftigen Betriebsmannschaft (Orchid), sondern unterstützt schon die Entwickler mit der Simulations-Software MAPPS (hoch auflösende Simulation und Visualisierung aller Komponenten). L3Harris ist ein US-Unternehmen, der Simulator wird aber in Kanada entwickelt und gebaut.

Terrestrial Energy hat das kanadische Ingenieurunternehmen Hatch (9000 Mitarbeiter) mit der Planung, Ausschreibung, Bauplanung und der Kostenschätzung beauftragt. Hatch hat bereits eine Studie über den volkswirtschaftlichen Nutzen des Projekts veröffentlicht. BWXT Canada wurde mit der Planung des Dampfkreislaufs beauftragt. Der Entwicklung des Dampferzeugers (Solarsalz / Wasser) kommt dabei eine zentrale Bedeutung für das Projekt zu. Für den späteren Betrieb wurde Ontario Power als lokaler Versorger einbezogen. Selbst mit dem deutschen Pumpenhersteller KSB sollen Pumpen für den Primärkreislauf (Salzschmelze mit Uran) des IMSR entwickelt werden.

Durch die frühe Einbeziehung von Spezialisten als Partnerunternehmen für bestimmte Baugruppen, kann nicht nur die Entwicklungszeit, sondern insbesondere auch das Genehmigungsverfahren beschleunigt werden.

Brennstoff

Insbesondere für einen etwaigen Export müssen komplett neue Safeguards (Maßnahmen zur Überwachung von Nuklearmaterial) für diese Uran-Salze entwickelt werden. Dies geschieht in enger Zusammenarbeit mit dem CNL (Canadian Nuclear Laboratories) und der IAEA (International Atomic Energy Agency).

Für Brennstoffe in der Form von Salzschmelzen muß ein kompletter neuer Brennstoffkreislauf aufgebaut werden. Um die Sache nicht noch komplizierter zu machen, beschränkt sich Terrestrial Energy auf Uran mit einer Anreicherung von unter 5% U235 – also Brennstoff, wie er heute weltweit in Leichtwasserreaktoren verwendet wird. Damit kann man alle Vorstufen (Urangewinnung, Konversion und Anreicherung) bis zur Herstellung von Brennelementen komplett übernehmen. Erst mit der Herstellung der Uransalze scheiden sich die Wege. Dabei darf man auch die aufwendigen Transportketten nicht außer Acht lassen. Es ist deshalb beim IMSR auch kein Wechsel der Brennelemente vorgesehen. Der komplette „Reaktor“ soll nach sieben Betriebsjahren komplett durch einen „frischen Reaktor“ ausgetauscht werden. Man muß also nach sieben Jahren keine abgebrannten Brennelemente, sondern die ganzen „Töpfe“ mit all ihren Einbauten als „Atommüll“ zwischenlagern. Dies geschieht wohlwissend anfangs durch stehen lassen im Silo. Wenn die Strahlung auf ein handhabbares Maß abgeklungen ist, werden die „Töpfe“ in ein Zwischenlager auf dem Kraftwerksgelände abgestellt. Eine Wiederaufbereitung des Brennstoffs und eine Dekontamination der alten Reaktoren ist bis auf weiteres nicht vorgesehen. Prinzipiell ist dies möglich, aber erst sinnvoll, wenn man eine größere Anzahl verbrauchter „Reaktoren“ hat.

Partner beim Aufbau einer kompletten Kette für die Brennstoffversorgung ist Centrus Energy. Darüberhinaus gibt es auch eine Zusammenarbeit mit dem Brennstoffkonzern Cameco (Uranförderung, Reinigung, Konversion, Brennelemente für CANDU-Reaktoren etc.). Cameco möchte in den Bereich SMR diversifizieren und zusammen mit Terrestrial den Weltmarkt bedienen. Parallel gibt es eine ähnliche Zusammenarbeit mit Orano und Westinghouse für den Brennstoffkreislauf. Ziel ist es von Anfang an mit einer möglichst breiten Zulieferindustrie zu starten, um potentiellen Kunden eine unabhängige Versorgung zu ermöglichen. Die Energieversorger sind es heute gewohnt, über Systemgrenzen hinweg, Brennelemente für ihre Leichtwasserreaktoren einkaufen zu können. Versorgungssicherheit ist stets ein Killerkriterium.

Auch treten die engen Bindungen zwischen Kanada und GB wieder hervor: Das NNL (UK National Nuclear Laboratory) übernimmt viel Entwicklungsarbeit für den Brennstoff. In Bezug auf die notwendigen Tests der Brennstoffsalze greift man auf die jahrzehntelange Erfahrung in den USA zurück. Das ANL (US Department of Energy’s Argonne National Laboratory) übernimmt eine zentrale Rolle. Dies ist insbesondere für den Bau eines IMSR in den USA von ausschlaggebender Bedeutung, da bei diesem Reaktor das Brennstoffsalz der Kernbereich eines Genehmigungsverfahrens sein dürfte.

Politik

Die kanadischen Regierungen (auf Bundes- und Landesebene) stehen voll hinter dem Projekt. Es wurde nicht nur der unmittelbare Sinn der Energiegewinnung, sondern auch der industriepolitische und volkswirtschaftliche Vorteil erkannt. Kanada will ein unabhängiges Industrieland bleiben. Kerntechnik ist eine Schlüsseltechnologie, die alle anderen „High Tech Bereiche“ (Werkstofftechnik, Automatisierung, Software, usw.) nutzt und vor sich her treibt. Sie schafft jede Menge hochqualifizierter und gut bezahlter Arbeitsplätze. Überall in der Welt liegt das Lohnniveau deutlich über dem Durchschnitt.

Kanada hat schon immer – anders als in Deutschland – auf eine große Zustimmung in der Bevölkerung geachtet. So ist es sicherlich kein Zufall, daß Terrestrial nicht nur ein Grundsatzabkommen mit der FNPA (First Nations Power Authority) abgeschlossen hat, sondern auch Mitglied geworden ist. Die FNPA ist die einzige gemeinnützige Organisation im vollständigen Besitz und unter der Kontrolle der Indianerstämme (First Nations) in Nordamerika. Längst haben die Ureinwohner erkannt, daß es wenig Sinn macht, sich nur mit ein paar Arbeitsplätzen in den Bergwerken auf ihren Gebieten abspeisen zu lassen. Sie wollen gezielt in die Stromproduktion investieren, um die Lebensumstände ihrer Stämme zu entwickeln und gut bezahlte Arbeitsplätze für ihre Kinder zu erschaffen. SMR bieten für sie eine völlig neue Chance.

Der kanadischen Regierung ist es ernst. So hat sie im Oktober Terrestrial einen Zuschuss von umgerechnet 14 Millionen Euro gegeben, damit sie über 200 zusätzliche Mitarbeiter einstellen können, die das Genehmigungsverfahren beschleunigen sollen. Dieser Betrag wird als Investition des nationalen Innovationsfonds verbucht. Es ist weiterhin Ziel, bis 2028 den ersten IMSR ans Netz zu bringen. Dabei sollte man beachten, daß die kanadische Regierung durchaus nicht alle Eier in einen Korb legt. Parallel wird an noch zwei ausgewählten SMR gearbeitet: Dem nicht so exotischen Xe-100 von X-energy’s, einem Helium-Hochtemperaturreaktor und dem nahezu baufertigen Siedewasserreaktor BWRX-300 von Hitachi. Darüberhinaus werden natürlich die CANDU-Reaktoren modernisiert und weiter entwickelt. Kanada setzt voll auf Kernkraft.

Kernenergie als Schiffsantrieb

Auch der Schiffsverkehr gerät neben Stromerzeugung und Autoindustrie unter gewaltigen Druck. So hat die IMO (United Nations International Maritime Organisation) bereits eine Verringerung der CO2-Emissionen um 50% bis 2050 (bezogen auf 2008) beschlossen. Das erfordert eine gewaltige Kraftanstrengung die unser aller Lebenshaltungskosten betrifft. Der Seehandel ist das Herz des Welthandels. Die Größe dieses „Industriezweigs“ ist der Öffentlichkeit meist gar nicht bewußt. Immerhin machen die Reedereien, Hafenbetriebe, Versorger, Werften etc. jährlich einen Umsatz von rund 7000 Milliarden US-Dollar – das ist fast das Doppelte des Bruttoinlandsprodukts von Deutschland. An einem solchen Wirtschaftsgiganten schraubt man nicht mal eben herum. Man vergleiche dies mal mit den Versuchen einer „Dekarbonisierung“ der Autoindustrie und der Stromversorgung in Deutschland. Trotzdem sind Schiffe schon heute ein sehr umweltfreundliches Verkehrsmittel. Sie haben einen Anteil am Welthandel von über 90%, bei einem Anteil von nur etwa 3% an der „Luftverschmutzung“.

Situation heute

Dominierender Antrieb bei allen Frachtschiffen ist der Dieselmotor in all seinen Varianten. Er zeichnet sich durch einen geringen Verbrauch (Wirkungsgrad bis über 50%) bei ausgesprochener Robustheit aus. So hat er auch die Dampfmaschinen bei großen Schiffen abgelöst und ist deshalb selbst im Marineschiffbau eine Ergänzung zur Gasturbine. Er konnte bisher auch – wenn auch zu erhöhten Kosten – alle Anforderungen an die Luftreinhaltung (Ruß, Stickoxide) erfüllen. Wegen seiner Robustheit war er wirtschaftlich konkurrenzlos. Bislang konnte er mit billigem Schweröl (ein anderes Wort für Raffinerierückstände) betrieben werden. Dies geschieht in vielen Gegenden noch immer – ob legal oder illegal. Ein großes Containerschiff verbraucht über 200 to Öl pro Tag. Das entspricht in etwa dem Tankinhalt von drei Mittelklassewagen pro Minute.

Will man nun dem Klimaschutz-Wahn folgen, müssen diese etwa 600 to CO2 pro Schiff und Tag mindestens um die Hälfte verringert werden. Ein schwieriges und extrem kostenträchtiges Unterfangen. Im Moment sind folgende Strategien in der Erprobung:

  • verflüssigtes Erdgas LNG (CH4), welches problemlos in konventionellen Schiffsdieseln mit verfeuert werden kann. Allerdings nehmen die Kryotanks einen erheblichen Raum ein, der als Frachtraum verloren geht. Dies ist deshalb nur eine Übergangslösung bzw. nur für die Küstenschifffahrt geeignet.
  • Methanol (CH3 OH), das wenigstens bei Umgebungsbedingungen flüssig ist und damit in den Brennstofftanks gelagert werden kann. Leider ist der Heizwert nur halb so hoch, wie der von Diesel. Deshalb auch weniger für lange Reisen geeignet.
  • Soll es CO2-frei sein, ist Ammoniak (NH3) im Gespräch. Es ist giftig, aber wenigstens bei moderaten Bedingungen (bei 20°C etwa 9 bar erforderlich oder drucklos bei -33°C) flüssig zu lagern. Allerdings ist auch sein Energiegehalt nur etwa halb so groß, wie der von Diesel. Dies bedeutet bei Langstrecken einen erheblichen Verlust an Laderaum.
  • Gänzlich ungeeignet ist der Wasserstoff als Treibstoff. Wegen seiner extrem niedrigen Temperaturen (-253°C) und seines geringen Energiegehaltes pro Volumen. Man kommt schnell in die Verlegenheit, einen Flüssiggastanker mit Containerstellplätzen zu entwerfen. Wasserstoff ist – wenn überhaupt – nur für die Küstenschifffahrt geeignet. Wahrscheinlich sogar – wegen des ungünstigen Zündverlaufs für einen Verbrennungsmotor – über den Umweg einer Brennstoffzelle als Elektroantrieb.

Außerdem sollte man neben den Kosten auch nicht die Gesamtbilanz der CO2-Freisetzung vernachlässigen. Alle CO2 freien oder armen Brennstoffe sind chemische Produkte, die mit großem Energieaufwand hergestellt werden müssen. Die Herstellung mittels Wind und Sonne ist eine eher romantische Vorstellung. Die CO2– Abscheidung und Endlagerung wiederum ist für alle „Ökos“ Teufelswerk. Auch wer diesen Weg einschlagen will, landet daher zwangsläufig bei der Kernenergie. Wird der Wasserstoff nicht über Kernenergie hergestellt und die enormen Energiemengen zur Synthese von NH3 (hoher Druck und hohe Temperaturen notwendig) nicht ebenfalls durch Kernenergie abgedeckt, wird die „Dekarbonisierung“ ein Rohrkrepierer: Es würde mehr CO2 freigesetzt, als bei der direkten Verfeuerung von Diesel. Noch absurder ist die Verwendung von Methanol, welches aus Fossiler-Energie (z. B. Erdgas) gewonnen werden muß. Auf Phantasmen, wie die Gewinnung von CO2 aus der Luft – welches wohl an anderer Stelle bei der Energiegewinnung in die Luft geblasen wurde (?) – braucht man gar nicht einzugehen.

Der Schritt zur Kernenergie

Auch bei Containerschiffen gilt eine Kostendegression mit der Größe. Vorläufig ist das Ende der Fahnenstange bei 24 000 TEU (Twenty-foot Equivalent Unit) erreicht. Interessant ist, daß nicht die Hafenwirtschaft, sondern der Antrieb die technische Grenze vorgibt. Diese Ultra Large Container Vessel (ULCV) haben etwa eine Länge von 400m, eine Breite von 61m bei einer Tragfähigkeit von 230000 tdw. Die Grenze bei Schiffsdieseln liegt heute bei über 80 MW (z. B. Emma-Maersk-Klasse mit 14 770 TEU, 14 Zylinder-Zweitakter, Höchstgeschwindigkeit 27 kn (50 km/h) dauerhaft). Containerschiffe müssen schnell sein, damit sie sich in die eingespielten Umlaufzeiten für die Perlenketten der Logistik-Branche einreihen können. Darin ist das Problem der erforderlichen Antriebsleistung begründet: Die Antriebsleistung steigt mit der 3. Potenz der Geschwindigkeit. Verdoppelt man die Geschwindigkeit, verkürzt sich zwar die Reisezeit auf die Hälfte, aber die erforderliche Antriebsleistung steigt um das Achtfache und der Energieverbrauch somit um das Vierfache. In der Tat hat der Zwang der hohen Treibstoffpreise zu längeren Umlaufzeiten geführt, was wiederum die Anzahl der notwendigen Containerschiffe erhöht hat. Selbstverständlich führt auch das zu höheren Frachtraten und damit zu steigenden Konsumentenpreisen.

Genau an dieser Stelle kommt die Kernenergie in die Sichtweise der Reeder: Die Investition für ein Schiff mit Kernreaktor dürfte wesentlich höher sein, als die für einem Dieselantrieb. Der Brennstoffverbrauch (Uran, Thorium) ist aber demgegenüber zu vernachlässigen. Plötzlich senkt die Geschwindigkeit auch noch die anteiligen Investitionskosten. Heutige Hüllen sind bereits für 30 kn (56 km/h) gut. Mit dieser Reisegeschwindigkeit verkürzt sich eine Pazifik-Überquerung von 12 Tagen auf etwa 7 Tage. Eine Rotterdam-Korea-Rundreise von heute etwa 80 bis 85 Tagen auf etwa 45 Tage. Würde man dann statt dessen den Umweg um Afrika nehmen, könnte man die 1,5 Millionen USD Transitgebühren für den Kanal von Suez plus einem notwenigen Tankstopp in Singapore sparen.

Der wahrscheinliche Weg

Kernenergie und Schiffe ist überhaupt nichts neues. Man denke nur an die unzähligen Atom-U-Boote und Flugzeugträger etc. Schließlich fing mit dem Bau der Nautilus die moderne Reaktortechnik an. Die kommerzielle Nutzung ist in USA, Deutschland und Japan allerdings kläglich gescheitert. Diese Schiffe waren mehr als Werbeträger, denn als Frachtschiffe gedacht – schön aber unbrauchbar. Eine Sonderstellung nehmen noch die erfolgreichen russischen Eisbrecher ein.

Für Containerschiffe müssen neue Reaktorkonzepte her. Sie müssen ihre gesamte Brennstoffladung (30 Jahre für 30 kn) von Anbeginn mit an Bord haben. Es ist kein Brennelementewechsel in „normalen“ Häfen möglich. Dafür gibt es eine Reihe von Gründen. So müßten solche Häfen und deren Länder alle Anforderungen an Nuklear-Staaten erfüllen. Wegen der Nutzungsdauer (2×25 Jahre) werden z. B. die Druckwasserreaktoren der US-Marine mit hoch angereichertem Uran betrieben. Mit solchem waffengrädigen Uran darf nur in den einschlägigen Marine-Werften in den USA umgegangen werden. Für Handelsschiffe wäre das aus Gründen der Proliferation ein Killerkriterium.

Im Moment werden Flüssigsalzreaktoren in der Fachpresse favorisiert. Es ist kein Zufall, daß auch in Dänemark – von dem in Deutschland immer gern das Bild eines Öko-Bullerbüs gezeichnet wird – gleich zwei Konsortien an der Entwicklung solcher Reaktoren arbeiten. Schiffsdiesel (MAN B&W Diesel) und Container-Reederei (Maersk) sind traditionelle Branchen in Dänemark, in denen die Dänen immer international in der Spitzenklasse vertreten waren und die Entwicklung maßgeblich mit vorangetrieben haben.

Der Schiffsantrieb mit Reaktoren hat noch einen Nebeneffekt. Schiffe brauchen auch im Hafen beträchtliche Mengen elektrischer Energie (Kühl-Container, Anlagentechnik usw.). Heute ist es daher üblich, zumindest Hilfsdiesel auch während der Liegezeiten weiter zu betreiben. Die Versorgung mit „Landstrom“ ist eine Totgeburt wegen der enormen Spitzenleistungen für den Hafen. Im Gegenteil könnten die Schiffe mit Reaktoren, umweltfreundlichen Strom während der Liegezeiten preiswert für die Häfen liefern.

Sicherheit

Reaktoren für Schiffe müssen inhärent sicher sein. Sie müssen einen wachfreien Betrieb ermöglichen und extrem wartungsarm sein. Auf Hoher See muß sich bei Störungen die Betriebsmannschaft mit Bordmitteln selber helfen. Es sind deshalb Seeleute mit speziellen Kenntnissen über Reaktortechnik auszubilden und entsprechende Überwachungsregime zu entwickeln. Zumindest in der Anfangszeit sollten nukleare Schiffe nur unter der Flagge von Staaten mit Kernenergie betrieben werden dürfen. Eine ausgiebige Fernüberwachung ist zu entwickeln und (international) zu praktizieren. Nur so kann den Seefahrern Hilfestellung geleistet werden und Vertrauen in der Öffentlichkeit erhalten werden.

Kernreaktoren können gut geschützt (Kollisionen) und gut abgeschirmt (Schutz der Besatzung vor Strahlung) im Innern von Schiffen eingebaut werden. Sie müssen selbst bei einem Untergang in einem gesicherten Zustand verbleiben. Mit heutigen Mitteln könnten sogar versunkene Reaktoren in der Tiefsee ferngesteuert geborgen werden. Entsprechende Konstruktionen (Haltepunkte) und Hilfsmittel (z. B. zur Fernortung) sind vorzusehen. Schiffsunglücke wird man nie ausschließen können. Wie allerdings die gesunkenen Atom-U-Boote zeigen, geht auch von untergegangenen Reaktoren nur eine sehr geringe Gefahr aus. Das Meer selbst ist eine sehr gute Abschirmung.

Versicherung und Klassifizierung

Gerade im Transportgewerbe ist die Versicherung von speziellen Risiken Alltagsgeschäft. Man ist gewohnt im Schadensfall mit außergewöhnlich hohen Summen umzugehen. So wurde z. B. für Tanker als Konsequenz des Exxon Valdez Unglücks in Alaska eine unbegrenzte Haftung eingeführt (Pollution Act of 1990, OPA90). Damit sich Versicherungen auf so etwas einlassen können, sind genaue Sicherheitsvorschriften und deren Überwachung erforderlich. Bei Schiffen sind hierfür die Klassifikationsgesellschaften maßgeblich. Sie erarbeiten Konstruktionsvorschriften, führen die Bauüberwachung durch und erstellen die Betriebsvorschriften. Ferner führen sie regelmäßig Wiederholungsprüfungen durch. Daneben führen die nationalen Küstenschützer bei jedem Einlaufen Kontrollen durch. So gilt die US-Coast-Guard beispielsweise als besonders pingelig und ist von vielen Seeleuten gefürchtet. Bei Verstößen drohen hohe Geldstrafen für die Reeder bis hin zu (oft praktizierten) Gefängnisstrafen für das verantwortliche Personal.

Der Stand der Dinge

Es geht bei diesem Thema wieder einmal nicht darum, was irgendwelche „Experten für alles und nichts“ in Deutschland glauben darüber zu wissen, sondern was der Rest der Welt denkt und will. Die Thematik der nuklearen Schiffsantriebe ist bei der UNO angesiedelt, bei der Deutschland ohnehin meist nur eine Statistenrolle einnimmt. Es gibt drei internationale Abkommen unter der Aufsicht der IMO: SOLAS (Safety of Life at Sea), MARPOL (Prevention of Polution from ships) und STCW (Standards of Training, Certifikation and Watch keeping of Seafarers). Bereits das Kapitel 8 der SOLAS bezieht sich auf Schiffe mit nuklearem Antrieb. Es wurde bereits 1981 einstimmig verabschiedet. Es ist allerdings sehr speziell für Druckwasserreaktoren geschrieben (Stand der Technik vor 40 Jahren). Die IMO arbeitet bereits daran, diese Regeln für „modernere“ Reaktoren zu erweitern. Noch älter ist die ≫Convention on the Liability of Operators of Nuclear Ships≪ aus dem Jahre 1962. Gleichwohl ist dies eine ausbaufähige Basis. Bis 2023 soll die Klassifikation für Containerschiffe mit Nuklearantrieb fertig sein. 2025 soll ein ≫proof-of-concept≪ für einen Flüssigsalzreaktor vorliegen. Ab 2024/25 soll die Arbeit bei der IMO mit dem Ziel eines ersten Schiffs um 2030 aufgenommen werden.

Aussicht auf Erfolg

Man arbeitet in verschiedenen Ländern an Flüssigsalzreaktoren (MSR). Bisher schien ein Eindringen in den Markt der Stromerzeugung eher unwahrscheinlich. Zu etabliert sind dort die Leichtwasserreaktoren. Hier liegt aber ein völlig neuer Markt im Zusammenhang mit Handelsschiffen vor. MSR scheinen für diese Anwendung entscheidende Vorteile zu besitzen. Der Markt wäre alles andere als klein. Die beständig wachsende Weltflotte besteht heute schon aus über 100 000 Schiffen über 100 to. Dabei sind die größten 7000 verantwortlich für 50% der Luftverschmutzung. Ein Schiffsreaktor wäre deshalb schlagartig ein Massenprodukt. Eine völlig neue Situation für die kerntechnische Industrie. Hält der Klima-Wahn an, wird kaum ein anderer Weg bleiben. Die Herstellung „CO2armer“ Kraftstoffe kann nur für kleinere Schiffe eine notwendige Krücke sein.

Reeder sind und waren sehr innovativ. Viele Reedereien sind immer noch Familienbetriebe. Dies ist ein nicht zu unterschätzender Vorteil gegenüber Staatsbetrieben oder Großkonzernen. Wenn man eigenes Geld einsetzt, ist man sehr erfolgsorientiert. Andererseits sind Großreedereien in der Lage, sehr schnell auch dreistellige Millionenbeträge zu mobilisieren. Risikokapital gibt es genug, es muß jedenfalls nicht zwingend in das x-te Startup für „Digitalisierung“ oder „Fahrradkuriere“ gepumpt werden.

SMR-2021, KP-FHR

Hinter der sperrigen Abkürzung KP-FHR (Kairos Power – Fluoride salt cooled High Temperature Reactor) verbindet sich ein eher neuartiges Konzept, das hohe Temperaturen anstrebt, aber dabei auf erprobte Komponenten setzen will: Die Kombination von TRISO-Brennelementen mit Salzschmelze als Kühlmittel. Ursprünglich wollte man damit eine konventionelle Gasturbine antreiben, indem man Luft auf etwa 700 °C erhitzt und gegebenenfalls noch durch Verbrennung von Erdgas zur Abdeckung von Spitzenlasten weiter erhitzt. Für Kernreaktoren sollte damit ein neues Einsatzgebiet erschlossen werden. Für die Grundlast wäre weiterhin billige Kernenergie eingesetzt worden (Turbine läuft nur mit Luft) und zusätzliches Erdgas bei Lastspitzen (analog eines Nachbrenners bei Flugzeugen). Insgesamt wäre ein hoher Wirkungsgrad durch die erprobte Kombination von Gasturbine mit nachgeschaltetem Dampfkreislauf gewährleistet worden. Wie schon bei anderen Hochtemperaturreaktoren ist die Nutzung von Gasturbinen (vorläufig) gescheitert. Nunmehr geht man auch hier (vorläufig?) nur von einem konventionellen Dampfkreislauf aus. Allerdings mit höheren Dampfzuständen, wie sie in konventionellen Kohlekraftwerken üblich sind.

Der Stand der (finanziellen) Entwicklung

Kairos geht auf Forschungsprojekte an der University of California, Berkeley (UCB), dem Massachusetts Institute of Technology und der University of Wisconsin zurück. Alles unter der Koordination – und finanziellen Förderung – des U.S. Department of Energy im Rahmen eines Integrated Research Project (IRP). Wie so oft, entstehen aus solchen Forschungsprojekten neu gegründete Unternehmen, in denen die maßgeblich beteiligten „Forscher“ ihre Erkenntnisse kommerzialisieren. Selbstverständlich bleiben sie ihren alten Universitäten dabei eng verbunden. Im Falle von Kairos sind die Arbeiten nun soweit fortgeschritten, daß das „Energieministerium“ (schrittweise) einen Prototyp anstrebt. Es soll innerhalb von sieben Jahren der Demonstrationsreaktor „Hermes Reduced-Scale Test Reactor“ auf dem Gelände des East Tennessee Technology Park in Oak Ridge für geplant $629 realisiert werden. Das „Energieministerium“ hat dafür $303 Millionen Dollar fest in seinem Haushalt (verteilt über sieben Jahre) eingestellt. Das Geld wird fällig, wenn Kairos die andere Hälfte von privaten Investoren auftreibt. Dies ist ein in den USA erprobtes pragmatisches Förderungsmodell: Das Risiko wird hälftig von Investoren und Staat geteilt – gegenseitig wirkt die Zusage als Qualitätskriterium. Außerdem kann bei solchen Summen davon ausgegangen werden, daß die Entwicklung zielstrebig vorangetrieben wird. Die privaten Investoren lockt schließlich der wirtschaftliche Erfolg. Anders als in Deutschland, sind Gewinne in den USA nichts unanständiges.

Der Kugelhaufen

Die Kugeln für diesen Reaktor werden wahrscheinlich etwas kleiner (3 cm) als die üblichen TRISO-Elemente (4,3 cm) und enthalten rund 1,5 gr Uran verteilt in 4750 kleinsten mit einer Schutzschicht überzogenen Körnchen. Sie können damit über 11 000 kWh elektrische Energie produzieren, was etwa dem Verbrauch von 8 to Steinkohle oder 17 to Braunkohle entspricht. Wegen ihrer hohen Energiedichte sind diese Elemente nach ca. 1,4 Jahren abgebrannt und müssen ausgewechselt werden. In einem mit Helium gekühlten Hochtemperatur-Reaktor verbleiben die Kugeln etwa 2,5 Jahre und in Leichtwasserreaktoren rund drei Jahre.

Die Kugeln sollen einen etwas anderen Aufbau als klassische TRISO-Elemente haben: Der Kern besteht aus 25 mm porösem Graphit, umgeben von einer Kugelschale aus Brennstoffkörnern und einer äußeren Schutzschicht aus besonders widerstandfähigem Graphit. Die Brennstoffkörner haben einen Durchmesser von lediglich 400 Mikrometern und enthalten auf 19,75% angereichertes Uran. Die Geschwindigkeit mit der Spaltprodukte im Graphit wandern, hängt wesentlich von der Temperatur ab. Da die Betriebstemperatur hier mit 650°C deutlich geringer als beim AVR in Deutschland mit 950°C ist und die Verweilzeit der Kugeln kleiner, kann von einer wesentlich geringeren Verunreinigung des Kühlmittels – hier reaktionsfreudige Salzschmelze, damals Edelgas Helium – ausgegangen werden. Dies ist bei einem Reaktorunglück für die Freisetzung radioaktiver Stoffe in die Umwelt von ausschlaggebender Bedeutung. Die neutronenphysikalische Auslegung des Reaktors ist so angelegt, daß bei etwa 800°C Temperatur die Kettenreaktion ohne Eingriffe in sich zusammenbricht (stark negative Temperaturkoeffizienten). Man könnte also den Reaktor jederzeit verlassen, ohne ihn abzustellen. Demgegenüber sind die Brennelemente bei bis zu 1800°C ohne größere Schäden getestet worden. Der Siedepunkt der Salzschmelze liegt bei nur 1430°C. Dies ergibt zusammen eine wesentlich höhere Sicherheitsmarge als bei Leichtwasserreaktoren.

Das Kühlmittel

Bei diesem Reaktortyp wird weder mit Wasser noch mit Helium, sondern einem geschmolzenen Salz gekühlt. Dies stellt viele sicherheitstechnische Betrachtungen auf den Kopf: Nicht ein unzulässiges Verdampfen des Kühlmittels wird zum Problem, sondern das „Einfrieren“. Das hier verwendete „FLiBe-Salz“ hat einen Schmelzpunkt von 459°C, d. h. alle Komponenten müssen elektrisch beheizbar sein um den Reaktor überhaupt anfahren zu können. Außerdem muß unter allen Betriebszuständen und an allen Orten diese Temperatur sicher aufrecht erhalten bleiben, damit sich keine Ausscheidungen und Verstopfungen bilden. Andererseits ist diese Temperatur so hoch, daß Wartungs- und Inspektionsarbeiten schnell zu einem Problem werden.

Wesentliches Problem ist aber bei allen Salzschmelzen die Korrosion. Zwar hat man heute ein besseres Verständnis der Werkstofftechnik und jahrzehntelange Erfahrungen z. B. in Raffinerien, andererseits liegen aber immer noch keine Langzeiterfahrungen bei Kernreaktoren vor. Hier versucht man zumindest das Problem durch eine scharfe Trennung von Brennelement und Kühlmittel einzugrenzen. Bei einem Kernreaktor hat man es tatsächlich mit dem gesamten Periodensystem zu tun. Wie all diese Stoffe chemisch mit der Salzschmelze, den Reaktorwerkstoffen und untereinander reagieren, ist ein ingenieurtechnischer Albtraum. Deshalb versucht man hier ganz klassisch alle Spaltprodukte etc. im Brennelement zu halten. Andererseits geht man davon aus, daß die Diffusion von Cs137, Silber etc., die zu einem radioaktiven Staub bei mit Helium gekühlten Reaktoren führen, die den gesamten Reaktor verdrecken, besser beherrschbar ist, weil diese „Schadstoffe“ sofort im Salz gelöst werden.

FLiBe ist – wie der Name schon andeutet – ein Salz mit den Bestandteilen Fluor, Lithium und Beryllium. Die Arbeitsschutzvorschriften für Beryllium (Atemschutz, Schutzkleidung etc.), sind nicht kleiner als für radioaktive Stoffe – es ist nur schwerer zu erkennen. Besonders problematisch ist jedoch das Lithium. Lithium hat die unschöne Eigenschaft, daß es durch Neutronen Tritium bildet. Man kann zwar durch eine Anreicherung von Li7 auf 99,995% die Bildung erheblich verringern, aber nicht ausschließen. So bilden FLiBe-Reaktoren etwa 1000 bis 10 000 mal soviel Tritium wie Leichtwasserreaktoren. Dies kann zu grundsätzlichen Schwierigkeiten bei der Genehmigung führen. Auch bei diesem Problem wirkt sich die Trennung von Brennstoff und Kühlmittel positiv aus. Das Graphit zieht das Tritium an und absorbiert es an dessen Oberflächen. Deshalb sind zusätzlich noch Filterkatuschen in den Kühlmittelleitungen vorgesehen.

Der Zwischenkreislauf

Das FLiBe-Salz wird – unabhängig von eindiffundierten Spaltprodukten und Tritium – während seines Durchlaufs durch den Reaktorkern immer radioaktiv. Aus Fluor wird O19(26,9s Halbwertszeit) und N16 (7,1s Halbwertszeit) gebildet. Beides γ-Strahler mit 1,4 MeV bzw. 6,1 MeV. Von ausschlaggebender Bedeutung ist F20 (11,0s Halbwertszeit). Hinzu kommen noch aktivierte Korrosionsprodukte. Um die Bereiche mit Strahlenschutz klein zu halten, ist ein Zwischenkreislauf mit „Sonnensalz“ vorgesehen. Als „solar salt“ bezeichnet man üblicherweise eine Mischung aus 60% Natriumnitrat NaNO3 und 40% Kaliumnitrat KNO3. Sie hat einen Schmelzpunkt von 240°C und eine maximale Temperatur von etwa 565°C. So ist z. B. im Solar-Turmkraftwerk „Solar One“ ein Spitzenlast-Speicher mit zwei Tanks in denen 1400 to Solar-Salz gelagert sind in Betrieb. Diese Anlage kann 107 MWhth speichern und erzeugt damit 11 MWel für drei Stunden. Damit ergibt sich ein weiteres Anwendungsfeld: Bei entsprechender Auslegung der Turbine kann ein solcher SMR auch zur Abdeckung von Lastspitzen im Netz bzw. zur Auskopplung von Wärme für industrielle Zwecke eingesetzt werden.

Der Reaktorkern

Eine weitere Besonderheit gegenüber mit Helium gekühlten Reaktoren ist, daß die Brennstoffkugeln im Reaktor schwimmen. Sie werden deshalb von unten zugeführt und oben wieder abgefischt. Insbesondere die „Abfischmaschine“ ist noch nicht im Detail konstruiert. Sie muß den Reaktor nach oben sicher abdichten, die Kugeln einfangen, transportieren, reinigen und überprüfen – das alles beständig bei 650°C. Für 100 MWel sind etwa 440 000 Brennstoffkugeln (TRISO) und 204 000 Moderatorkugeln (aus reinem Graphit) im Reaktor. Jede Brennstoffkugel durchläuft etwa 8 mal den Reaktor und verbleibt bei voller Leistung rund 1,4 Jahre im Reaktor, bis sie abgebrannt ist (gemeint ist damit, bis das in ihr vorhandene Uran gespalten ist, die Kugel erscheint unverändert). Jede Kugel braucht ungefähr 60 Tage auf ihrem Weg von unten nach oben. Nach dem Abfischen verbleibt sie noch 4 Tage zur Abkühlung, bis sie wieder zurückgeführt wird. Bei voller Leistung müssen etwa 450 Kugeln pro Stunde entnommen und überprüft werden, das ergibt ungefähr 8 Sekunden pro Vorgang. Jeden Tag sind rund 920 Kugeln verbraucht und müssen durch frische ersetzt werden. Für eine vollständige Entleerung ist ein „Schnellgang“ vorgesehen, der etwa 3600 Kugel pro Stunde entnimmt. Abgesehen von Wartungsarbeiten könnte somit der Reaktor kontinuierlich in Betrieb bleiben.

Der Reaktor ist im Wesentlichen ein Zylinder von etwa 3,5 m Durchmesser und 12 m Höhe mit einer Wandstärke von 4 bis 6 cm. Der Kern – die eigentliche Wärmequelle – ist wesentlich kleiner. Er besteht aus einem Doppel-Hohlzylinder. In dessen innerem Ring schwimmen die Brennstoffkugeln, in seinem äußeren Ringraum die Moderatorkugeln. Der Innenraum ist gefüllt mit einem Reflektor aus Graphit in dem sich auch die Regelstäbe befinden. Der gesamte Einbau ist durch Graphitblöcke von dem Reaktortank isoliert. Genau diese festen Einbauten aus Graphit sind eine bekannte Schwachstelle bei all diesen Reaktortypen. Sie sind z. B. auch der Tod der britischen AGR-Reaktoren. Unter ständigem Neutronenbeschuss altert der Graphit. Heute hat man zwar ein besseres Verständnis der Vorgänge – gleichwohl bleibt die Lebensdauer begrenzt. Hier ist deshalb vorgesehen, irgendwann die Graphiteinbauten zu erneuern. Ob das dann wirtschaftlich ist, wird sich zeigen. Im Prinzip sind die Graphit-Volumina aus einzelnen Blöcken zusammengesetzt. Diese besitzen aber wegen der nötigen Einbauten, Kanäle fürs Salz etc. und der zu berücksichtigenden Wärmedehnung eine komplizierte Geometrie und erfordern sehr enge Fertigungstoleranzen. Aber es ist ja der Sinn von SMR, all diese Arbeiten in einer Fabrik und nicht auf der Baustelle auszuführen

Werkstoffe

Alle Hochtemperaturreaktoren tragen das gleiche Problem in sich, die hohen Temperaturen. Mit der Temperatur steigen die Probleme (z B. Zeitstandsfestigkeit, Korrosion) und damit die Kosten exponentiell an. Wäre dies nicht so, hätte man bereits fossile Kraftwerke mit ganz anderen Wirkungsgraden. Es stellt sich deshalb immer die Frage, wofür man überhaupt so hohe Temperaturen braucht. Hier beschränkt man sich bewußt auf eine Spanne von 550°C bis 650°C um nicht vollständig konventionelle Werkstoffe verlassen zu müssen. Man darf ja nicht vergessen, daß alles genehmigungsfähig – d. h. berechenbar und durch Versuche nachweisbar – sein muß. Hierin liegt ja gerade der Charme von Salzschmelzen: Nicht so hohe Temperaturen ohne zusätzliche Druckprobleme, bei hoher Wärmespeicherung. Geplant ist weitesgehend SS 316 (handelsüblicher austenitischer Edelstahl) zu verwenden.

Ein wesentliches Problem aller FLiBE-Reaktoren ist die hohe Tritiumproduktion. Über den Daumen gerechnet, produziert dieser kleine SMR (100 MWel) jeden Tag soviel Tritium, wie ein Leichtwasserreaktor (1000 MWel) in einem ganzen Jahr. Will man auf gleiche Werte kommen, müßte also 99,9% des Tritium zurückgehalten werden. Man setzt hier auf die Absorption am Graphit. Das ändert aber nichts daran, daß Tritium bei solchen Temperaturen sehr gut durch Stahl hindurch diffundiert. Bisher hat man gute Erfahrung mit einer Beschichtung aller Rohrleitungen mit Aluminiumoxid gemacht. Es bildet eine Sperrschicht, die sogar beim Kontakt mit Luft selbstheilend ist. Gleichwohl ist hier noch viel Forschung nötig, wenn man die Aufregung um das Tanklager in Fukushima berücksichtigt. Es könnte sich sonst eine (politisch) unüberwindliche Hürde für die Genehmigung von FLiBe-Reaktoren ergeben.

Einschätzung

Kairos ist ein „Startup“ mit dem Selbstverständnis eines Ingenieurunternehmens. Sie haben nicht vor, jemals einen solchen SMR selbst zu fertigen. Von Anfang an haben sie starke Partner mit ins Boot geholt. So übernimmt Materion die Entwicklung und Herstellung des FLiBe-Salzes und BWXT die Produktion der Brennelemente. Für den kritischen Bereich „Tritium“ sind seit September 2020 die Canadian Nuclear Laboratories (CNL) eingestiegen. Kanada hat mit Tritium große und jahrzehntelange Erfahrungen durch den Betrieb seiner Candu-Reaktoren. Darüberhinaus will Kanada einen SMR in Chalk River bauen. Kairos ist dafür in die engere Wahl gekommen. Das Genehmigungsverfahren (stark unterschiedlich zu den USA) wird von der kanadischen Regierung mit mehreren Millionen gefördert. Seit 2018 läuft das Genehmigungsverfahren in den USA. Nächster Schritt wird der Bau eines kleinen Demonstrationsreaktors im East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Hier geht es vor allem darum, die Kosten für die Serienproduktion modellhaft zu testen.

Es dürften keine „Killer-Kriterien“ mehr im Genehmigungsverfahren auftreten. Dafür liegen zu viele Forschungsergebnisse aus mehreren Jahrzehnten vor. Besonders traurig ist, daß selbst im Genehmigungsverfahren auf die Betriebsergebnisse des AVR in Jülich zurückgegriffen wird. Deutschland hätte sicherlich auch heute noch ein geschätzter Partner sein können, wenn nicht wahnsinnige Laiendarsteller den Weg zurück ins Mittelalter propagiert hätten.

SMR-2021 Einleitung

Die Kerntechnik bekommt gerade einen unerwarteten Aufschwung: Immer mehr junge Menschen drängen in die einschlägigen Studiengänge, es entstehen unzählige neu gegründete Unternehmen und es steht plötzlich auch viel privates Kapital zur Verfügung. Darüberhinaus zeigt dieser Winter in Texas auch dem gutgläubigsten Menschen, daß eine Stromversorgung (nur) aus Wind, Sonne und Erdgas ein totes Pferd ist.

  • Texas ist nahezu doppelt so groß wie Deutschland, hat aber nur etwa ein Drittel der Einwohner, die sich überwiegend in einigen Großstädten ballen. Windparks waren deshalb höchstens ein Thema für Vogelfreunde und Landschaftsschützer. Texas ist darüberhinaus auch noch sehr windreich durch seine Lage „zwischen Golf und mittlerem Westen“.
  • Texas liegt etwa auf der „Breite der Sahara“ (Corpus Christi 27°N, Amarillo 35°N; Kanarische Inseln 28°N, Bagdad 33°N). Mal sehen, wann in Deutschland wieder von der Photovoltaik in der Sahara gefaselt wird.
  • In Texas kommt das Erdgas aus der Erde. Trotz der inzwischen gigantischen Verflüssigungsanlagen für den Export, muß immer noch Erdgas abgefackelt werden. Das alles ändert aber nichts an der Tatsache, daß im Ernstfall nur das Gas am Anschluss des Kraftwerks zählt. Kommt noch parallel zum Strombedarf der Bedarf für die Gebäudeheizungen hinzu, ist schnell die Grenze erreicht. Wohl gemerkt, das Gas kommt in Texas aus der Erde und nicht aus dem fernen Russland.

Das Kapital ist bekanntlich ein scheues Reh. Nach den Milliarden-Pleiten in Texas wird man sich schnell umorientieren. Darüberhinaus fängt die Bevölkerung an zu fragen, warum man eigentlich zig Milliarden Steuergelder mit Wind und Sonne versenkt hat.

Was sind SMR?

SMR (Small Modular Reactor) sind kleine Kernkraftwerke mit einer elektrischen Leistung von bis zu 300 MWel. Eine ziemlich willkürliche Grenze, die auf kleine Reaktoren abzielt, die gerade noch mit der Eisenbahn (in den USA) transportierbar sein sollen. Eine weitere Untergruppe sind Mikroreaktoren mit einer elektrischen Leistung von bis zu etwa 10 MWel. Bei den bisherigen Kernkraftwerken hat man immer größere Leistungen (z. B. EPR mit 1650 MWel) angestrebt, um die in der Verfahrenstechnik üblichen Skaleneffekte zu erzielen. Problem dabei ist, daß man einen erheblichen Montageaufwand auf der Baustelle hat, da alle Bauteile sehr groß werden. Bei den SMR geht man umgekehrt den Weg, das Kraftwerk weitesgehend in Fabriken in Serie zu fertigen und zu testen. Es steht also Kosteneinsparung durch Skaleneffekte gegen Serienfertigung (wie z. B. im Flugzeugbau). Welcher Weg letztlich kostensparender ist, kann vorab gar nicht gesagt werden. Vielmehr kann durch SMR ein völlig neuer Markt der „kleinen Netze“ erschlossen werden. Das betrifft beileibe nicht nur Schwellenländer, sondern vielmehr lernen wir in Deutschland gerade, welche enormen Netzkosten entstehen, wenn man zentrale Windparks baut. Ferner ist die Finanzierung wegen des kleineren (absoluten) Kapitalbedarfes weniger risikoreich und damit leichter handhabbar. Ein „Kraftwerk von der Stange“ erfordert eine wesentlich kürzere Zeitspanne – also Vorfinanzierung – von der Bestellung bis zur Inbetriebnahme. Hinzu kommt, daß die kleineren Bauteile auch nur kleinere Fertigungsanlagen erfordern. Beispielsweise baut Indien zur Zeit 15 Schwerwasserreaktoren, da dafür alle Komponenten im eigenen Land hergestellt werden können. Der ursprünglich angedachte Bau von konventionellen Druckwasserreaktoren wurde aufgegeben, da dafür wesentliche Komponenten (z.B. Reaktordruckbehälter) im Ausland gegen Devisen gekauft werden müßten. Aus gleichem Grund treffen SMR auch in Europa (z. B. Tschechien, Großbritannien) auf großes Interesse.

Die Sicherheitsfrage

Bei kleineren Kraftwerken kann man näher an die Städte heranrücken und damit Kraft-Wärme-Kopplung in vorhandenen Fernwärmenetzen abgasfrei betreiben. Finnland z. B. plant mittelfristig die vorhandenen Kraftwerke in den Ballungszentren durch SMR zu ersetzen. Analog gelten die gleichen Überlegungen für Fernkälte und Meerwasserentsalzungsanlagen z. B. in der Golfregion. Will man jedoch in der Nähe von Großstädten bauen, müssen solche Kernkraftwerke zwingend „walk away“ sicher sein, damit sie überhaupt genehmigungsfähig sind. Dazu gehört insbesondere der Verzicht auf eine aktive Notkühlung. Reaktoren kleiner Leistung kommen dem physikalisch entgegen: Um die Leistung zu produzieren, ist eine entsprechende Anzahl von Kernspaltungen notwendig. Bei der Kernspaltung entstehen radioaktive Spaltprodukte, die auch nach der Abschaltung noch Zerfallswärme produzieren. Bei kleinen Reaktoren ist diese Nachzerfallswärme so gering, daß sie problemlos passiv abgeführt werden kann – oder anders ausgedrückt, die Temperatur im abgeschalteten Reaktor steigt nur so weit an, daß keine Grenzwerte erreicht werden. Dies war z. B. beim Unfall in Fukushima völlig anders. Dort hat die Nachzerfallswärme gereicht, um eine Kernschmelze auch noch nach der Abschaltung der Reaktoren auszulösen.

Damit Kernkraftwerke in oder in unmittelbarer Nähe zu Städten akzeptiert werden, muß faktisch gewährleistet sein, daß keine (nennenswerte) Radioaktivität das Betriebsgelände überschreitet. Damit an dieser Stelle kein Missverständnis entsteht: Es gibt keine absolute Sicherheit. Es wird auch zukünftig Unfälle in Kernkraftwerken geben, genauso wie immer wieder Flugzeuge abstürzen werden. Trotzdem fliegen Menschen. Der Mensch ist nämlich durchaus in der Lage, Risiken und Vorteile für sich abzuwägen – solange er nicht ideologisch verblödet wird. Selbst eine ideologische Verblödung kann aber nicht unendlich lange aufrecht erhalten werden: Gerade durch Tschernobyl und Fukushima sind die Märchen der „Atomkraftgegner“ von „Millionen-Toten“ etc. als Propaganda entlarvt worden. Auffällig still ist es in den letzten Jahren um die „Gefahren durch Atomkraft“ geworden. Übrig geblieben ist einzig die Lüge von dem „Millionen Jahre strahlenden Atommüll, für den es keine Lösung gibt“. Auch dieser Unsinn wird sich von selbst widerlegen.

Die Vielzahl der Entwürfe

Es gibt unzählige Entwürfe von Kernreaktoren. Jeder Professor, der etwas auf sich hält, erfindet einen neuen Reaktor zu Übungszwecken. Der Weg zu einem Kernkraftwerk ist aber lang. Irgendwann stirbt die überwiegende Anzahl wegen irgendwelcher unvorhergesehenen Detailprobleme. Hier werden nur Entwürfe betrachtet, für die ausreichend Unterlagen aus Genehmigungsverfahren, Veröffentlichungen etc. zur Verfügung stehen. Immerhin blieben noch über 90 Konzepte übrig, die sich auf dem Weg zu einem Prototypen befinden. Für jedes einzelne Konzept wurde bereits mindestens ein zweistelliger Millionenbetrag investiert und ein Unternehmen gegründet. Als erstes soll etwas Systematik in dieses Angebot gebracht werden. In späteren Folgen werden dann einzelne Entwürfe näher vorgestellt und diskutiert werden.

Neutronenspektrum

Je langsamer Neutronen sind, je höher ist die Wahrscheinlichkeit einer Spaltung eines U235 – Kerns. Demgegenüber können alle schnellen Neutronen auch Kerne von U238 bzw. anderer Aktinoiden spalten. Schnelle Reaktoren haben den Vorteil, daß sie mit „Atommüll“ (so verunglimpfen „Atomkraftgegner“ immer die abgebrannten Brennelemente aus Leichtwasserreaktoren) betrieben werden können. Eine verlockende Perspektive: Betrieb der Kernkraftwerke mit „Abfall“, bei gleichzeitiger Entschärfung der „Endlagerproblematik“ auf wenige Jahrzehnte bis Jahrhunderte. Nur hat alles seinen Preis, gerade kleine Reaktoren (im räumlichen Sinne, nicht nur im übertragenen, bezogen auf die Leistung) sind schwierig als schnelle Reaktoren zu bauen. Es ist deshalb nicht verwunderlich, daß 59 Entwürfe mit thermischem Spektrum und nur 20 als schnelle Reaktoren ausgeführt sind.

Die angestrebten geringen Abmessungen (Transport) sind faktisch auch bei thermischen Reaktoren nur über eine höhere Anreicherung realisierbar. Mit der bei heutigen Druckwasserreaktoren üblichen Anreicherung von weniger als 5% lassen sich kaum SMR bauen. Man hat deshalb den neuen Standard HALEU mit einer Anreicherung von knapp unter 20% eingeführt. Der Begriff „thermisch“ im Zusammenhang mit der Geschwindigkeit von Neutronen bezieht sich auf die Geschwindigkeitsverteilung der brownschen Molekularbewegung. Je höher deshalb die Betriebstemperatur eines Reaktors ist, um so höher auch die Geschwindigkeit der Neutronen und damit um so geringer die Wahrscheinlichkeit einer Spaltung eines Urankernes. Deshalb sind „Hochtemperaturreaktoren“ schon wegen der neutronenphysikalischen Auslegung anspruchsvoller.

Moderatoren

Wenn man Neutronen abbremsen will, benötigt man einen Moderator. Bei den Leichtwasserreaktoren ist das das Arbeitsmedium Wasser. Die einfachste Konstruktion ist der Siedewasserreaktor, bei dem der im Reaktor erzeugte Dampf unmittelbar die Turbine antreibt (5 Entwürfe). Demgegenüber wird beim Druckwasserreaktor erst in einem zusätzlichen Wärmeübertrager der Dampf erzeugt (24 Entwürfe). Eine gewisse Sonderstellung nehmen Schwerwasserreaktoren ein, in denen Deuterium die Funktion des Moderators übernimmt (2 Entwürfe). Bei Mikroreaktoren kommen noch andere Moderatoren zum Einsatz.

Kühlmittel

Bei thermischen Reaktoren kommen Wasser, Helium und Salzschmelzen zur Anwendung. Bei Wasser sind die erreichbaren Temperaturen durch die abhängigen Drücke begrenzt (31 Entwürfe). Für eine reine Stromerzeugung ist das jedoch kein Hinderungsgrund. Will man hohe Temperaturen erreichen, bleibt Helium (20 Entwürfe) oder eine Salzschmelze (13 Entwürfe). Bei beiden kommt man mit relativ geringem (Helium) oder gar Atmosphärendruck (Salze) aus. Will man schnelle Reaktoren bauen, bleibt nur Helium (2 Entwürfe), Blei (9 Entwürfe), Natrium (5 Entwürfe) oder Salzschmelzen (3 Entwürfe). Tauscht man Wasser gegen andere Kühlmittel, wird man zwar den hohen Druck und den Phasenübergang los – was oft als Sicherheitsgewinn dargestellt wird – handelt sich aber damit eine Menge neuer Probleme ein: Einfrieren bei Raumtemperatur (Blei und Salzschmelzen), Korrosion (Blei und Salzschmelzen), Staub (Helium), Brandgefahr (Natrium), Zeitstandsfestigkeit usw. Es verwundert deshalb nicht, daß die Überzahl der Entwürfe bei Wasser als Moderator und Kühlmittel bleibt. Durch die überragenden thermodynamischen Eigenschaften des Wasser-Dampf-Kreisprozesses ist das für eine Stromproduktion auch kein Hinderungsgrund. Oft gehörte Argumente von möglichen höheren Wirkungsgraden sind bei den geringen Brennstoffkosten eher Scheinargumente. Anders sieht es mit der Entwicklung von schnellen Reaktoren aus. Blei und Natrium haben hier eine überragende Stellung. Allerdings sind die Preise für Natururan immer noch im Keller und die Zwischenlagerung abgebrannter Brennelemente ist ebenfalls konkurrenzlos billig. In einigen Jahren könnte jedoch ein geschlossener Brennstoffkreislauf aus politischen Gründen (Angst vor Atommüll) zum Renner werden. Momentan liegt Russland bei dieser technischen Entwicklung mit großem Abstand vorn. Die USA haben das erkannt und starten gerade eine beeindruckende Aufholjagd.

Brennstoff

Standard ist immer noch Uran. Bei schnellen Reaktoren kann man den „Abfall“ der konventionellen Reaktoren weiter nutzen. Thorium bleibt vorläufig auch weiter ein Exot. Das Uran kann in unterschiedlichen chemischen Verbindungen (metallisch, Uranoxid, Urannitrid, Legierungen usw.) im Reaktor verwendet werden und in unterschiedlichen geometrischen Formen (als Brennstäbe, als TRISO-Elemente, im Kühlmittel aufgelöst usw.) eingebaut werden. Der Brennstoff ist in seiner chemischen Zusammensetzung und seiner geometrischen Form bestimmend für die maximale Betriebstemperatur. Ferner ist er das erste Glied der Sicherheitskette: Er bindet während des Betriebs die Spaltprodukte und soll diese auch bei einem Störfall zurückhalten. SMR benötigen wegen der höheren Anreicherung mehr Natururan und sind wegen der höheren Trennarbeit teurer in der Herstellung als konventionelle Brennelemente.

Die Hersteller

Mit deutlichem Abstand sind die beiden führenden Länder in der Entwicklung von SMR Russland und die USA.

Alle Projekte befinden sich in einer unterschiedlichen Realisierungsphase von Konstruktion, Genehmigungsverfahren, über Bau bis Probebetrieb. Der chinesische SMR vom Typ ACPR50S (Druckwasserreaktor in klassischer Bauweise mit 50 MWel) ist fast fertiggestellt. Er soll bei Serienfertigung als schwimmender Reaktor auf einem Ponton verwendet werden. Der argentinische SMR Carem (integrierter Druckwasserreaktor mit 30 MWel) ist eine Eigenentwicklung und soll 2023 in Betrieb gehen.

Land LWR Gas Blei Natrium Salz Summe
Argentinien– – – – 1
China– – 7
Dänemark– – – – 
Finnland– – – 
Frankreich1– – – 
GB1– – – 
Indonesien– – – 
Japan– 
Kanada– – 
Luxemburg– – – – 
Russland11 – 17 
Schweden– – – – 
Südafrika– – – – 
Süd Korea– – – 
USA21 
Summe29 17 13 – 
Betrachtete SMR-Entwürfe nach Ländern und Typen geordnet.

Der chinesische HTR-PM (Hochtemperaturreaktor, Kugelhaufen mit Helium, 105 MWel) befindet sich im Testbetrieb. Sein Vorläufer HTR-10 von der Tsinghua University, China (Kugelhaufen mit 2,5 MWel) ist seit 2018 in Betrieb. Der japanische HTTR 1 (prismatischer Hochtemperaturreaktor, Helium, 30 MWth) ist seit 2007 mit Unterbrechungen für Umbauten in Betrieb. Der russische RITM-200M (modularer Druckwasserreaktor mit 50 MWel) ist seit 2020 auf Eisbrechern in Betrieb und soll bis 2027 in Ust-Kuyga in Sibirien als Kraftwerk in Betrieb gehen. Der russische KLT-40S (Druckwasserreaktor in klassischer Bauweise, 35 MWel) ist zweifach auf einem schwimmenden Ponton seit 2020 in Pevek in Chukotka als Heizkraftwerk in Betrieb.

Terrestrial Energy aus Kanada

Kanada gehört zu den führenden Ländern auf dem Gebiet der friedlichen Nutzung der Kernenergie: Sie entwickeln (Terrestrial etc.), bauen eigene Kernkraftwerke (Candu Baureihe von Schwerwasserreaktoren) und betreiben sie seit Jahrzehnten sehr erfolgreich (Anteil ≈15% an der Stromproduktion). Damit widerlegen sie gleich zwei Argumentationsketten der „Atomkraftgegner“:

  • Kanada zeigt, daß es keinen Zusammenhang zwischen der friedlichen Nutzung der Kernenergie und dem Streben nach Kernwaffen gibt. Man kann sehr wohl erfolgreich Kerntechnik ohne einschlägige Rüstungsindustrie betreiben. In der vollen Bandbreite von Grundlagen-Forschung, über Entwicklung, bis hin zur Produktion – wie einst auch in Deutschland.
  • Kanada ist nicht nur mit schier unerschöpflichen Vorkommen an fossilen Energien (Erdgas, Kohle und Öl), sondern auch mit sog. „Alternativenergien“ (Wasserkraft, Wind und Holz) reichlich gesegnet. Es wäre damit nahezu frei in seiner Entscheidung, welche Energieformen genutzt werden sollen. Diese Entscheidungsfreiheit haben Länder, wie Frankreich, Deutschland, Süd Korea oder Japan wegen ihrer eingeschränkten Ressourcen leider nicht. Kanada teilt aber mit vergleichbaren Ländern, wie Rußland oder Brasilien, den Nachteil schierer Ausdehnung. Beispielsweise befinden sich geeignete Flüsse nicht unbedingt in der Nähe der großen Städte, bzw. der Industriezentren.

Groß braucht klein

In Kanada zeigt sich diese Problematik sehr deutlich: In der Provinz Ontario wird mit 15 Candu-Reaktoren mehr als die Hälfte der dort verbrauchten elektrischen Energie erzeugt. Andererseits gibt es in vielen Städten im hohen Norden praktisch keine Alternative zu Diesel-Generatoren. Der Dieselkraftstoff muß überdies noch zu extremen Kosten dort hin transportiert werden. Kanada ist und bleibt aber auch ein „Rohstoffland“ mit zahlreichen abgelegenen Förderstätten für die eine Alternative gefunden werden muß. Eine Analyse ergab folgendes:

  • Ölsände: In 96 Anlagen wurde ein Bedarf an Heizdampf und elektrischer Energie für „Steam-Assisted Gravity Drainage“ festgestellt. Im Durchschnitt mit einer Leistung von 210 MWel pro Anlage plus Dampf.
  • Dampf für die Schwerindustrie: 85 Standorte der Chemieindustrie und Raffinerien mit einer Leistung von 25 bis 50 MWel plus Dampf.
  • Abgelegene Gemeinden und Bergwerke: 79 Standorte mit einem Leistungsbedarf von über 1 MWel plus erheblichem Wärmebedarf für die Nahwärmenetze. 24 Bergwerke ohne Netzanschluss.
  • Alte Kohlekraftwerke: 29 Blöcke an 17 Standorten mit einer durchschnittlichen Leistung von 343 MWel. Hier könnten (nur die) Kesselanlagen durch kleine Reaktoren ersetzt werden, wenn die sonstigen Anlagen noch in einem brauchbaren Zustand sind. Dies ergibt besonders kostengünstige Lösungen.

Es verwundert deshalb nicht, daß gegenwärtig 10 verschiedene Kleinreaktoren mit Leistungen zwischen 3 und 200 MWel zur Genehmigung bei den kanadischen Behörden eingereicht wurden. Es wird von der kanadischen Regierung angestrebt, etwa vier verschiedene Konzepte als Prototypen im nächsten Jahrzehnt zu errichten. Alle Reaktoren stammen aus privaten Unternehmen und sind überwiegend durch Risikokapital finanziert. Dies zeigt deutlich, welche Veränderungen die kerntechnische Industrie momentan durchläuft. Private Investoren wollen ihr Geld zurück und möglichst einen Gewinn oben drauf. Man kann also von der nötigen Ernsthaftigkeit und einem beschleunigten Arbeiten ausgehen – Zeit ist immer auch Geld. Es geht zur Zeit zu, wie in der Software-Branche. Allerdings darf man nicht aus den Augen verlieren, daß hier immer der Staat in Form der Genehmigungsbehörden ein ausschlaggebendes Wort mit zu reden hat!

Beschreibung des Reaktors

Bei dem Reaktor des kanadischen Unternehmens Terrestrial Energy handelt es sich um einen SMR (Small Modular Reactor) von der Bauart „Integral Molten Salt Reactor“, mit einer Wärmeleistung von 400 MWth (≈190 MWel).

Der gesamte Reaktor befindet sich in einem etwa 7 m hohen Stahlbehälter mit einem Durchmesser von etwa 3,5 m und einem Transportgewicht von 170 to. Das sind – verglichen mit den heutigen Komponenten von Druckwasserreaktoren – einfach zu transportierende und handhabbare Abmessungen. Solch ein Reaktor kann deshalb komplett in einer Fabrik (in Serie) angefertigt werden und erst anschließend zur Baustelle transportiert werden. Dort sind nur wenige Wochen bis Monate nötig, um die erforderlichen Anschlussarbeiten und die Inbetriebsetzung durchzuführen. Ein Vorteil gegenüber konventionellen Kernkraftwerken, der gar nicht zu überschätzen ist. Das wirtschaftliche Risiko (Baukosten, Finanzierungskosten und das Risiko eines Fremdstrombezuges) bewegt sich plötzlich in einer üblichen und allgemein akzeptierten (Lieferant ⟺ Kunde) Größenordnung.

Vorgeschichte

Vielen mag die angestrebte Inbetriebnahme des ersten Kraftwerks in der ersten Hälfte der 2020er-Jahren sehr unwahrscheinlich erscheinen. Es handelt sich hierbei aber keinesfalls um einen „Erfinder-Reaktor“, sondern eher um eine konsequente Weiterentwicklung. Man kann auf ein umfangreiches Forschungs- und Entwicklungsprogramm zu Salzschmelze-Reaktoren in den Jahrzehnten 1950 bis 1970 am Oak Ridge National Laboratory (ORNL) in den USA zurückgreifen. Es gipfelte im erfolgreichen Bau und Betrieb des Molten Salt Reactor Experiment (MSRE) und der Konstruktion des Small modular Advanced High Temperature Reactor (SmAHTR), der zur Produktion von Wasserstoff gedacht war. Allerdings sollte man auch nicht die notwendigen Arbeiten unterschätzen, die für die von der Genehmigungsbehörde geforderten Nachweise erforderlich sind. Weltweit sind diese Arbeiten bereits im Gange: Von Bestrahlungsexperimenten in den Niederlanden bis – man lese und staune – zur Forschung an Salzen in Karlsruhe (European Commission’s Joint Research Center).

Brennstoff und Kühlmittel

Salzbadreaktoren unterscheiden sich grundsätzlich von anderen Reaktortypen: Bei ihnen ist der Brennstoff auch gleichzeitig das Kühlmittel. Störfälle durch den Verlust des Kühlmittels – Fukushima und Harrisburg – sind ausgeschlossen. Es gibt auch keine Begrenzung durch den Wärmetransport innerhalb der Brennstäbe und durch die Brennstabhülle an das Kühlmittel. Der Brennstoff ist bereits während des Betriebs geschmolzen und im „Kühlmittel“ gelöst. Man verwendet hier die chemische Verbindung Uranfluorid. Dieses Salz wird in geringer Menge anderen Salzen, wie Natriumflourid, Berylliumfluorid bzw. Lithiumfluorid zugesetzt. Die genaue Zusammensetzung ist bisher nicht veröffentlicht. Sie richtet sich wesentlich nach der angestrebten Betriebstemperatur von 625 bis 700 °C. Die Salzmischung soll bei möglichst geringer Temperatur bereits schmelzen, aber andererseits muß sie auch langfristig im Betrieb möglichst chemisch stabil sein und bleiben. Das Salz ist bei diesem Reaktor sicherheitstechnisch das wesentliche (z. B. Korrosion) und kritische Bauteil.

Da das Salz im Laufe der Zeit durch die Spaltprodukte hoch radioaktiv wird, ist ein sekundärer Kreislauf mit dem gleichen Salz ohne Brennstoff vorgesehen. Die Wärmeübertragung findet durch Wärmetauscher innerhalb des eigentlichen Reaktorbehälters statt (Integrierte Bauweise). Die Druckverluste (ca. 5 bar) im Moderator und den Wärmeübertragern wird durch Pumpen innerhalb des Gefäßes überwunden. Die Wärmeübertrager sind redundant vorhanden, sodaß bei etwaigen Leckagen einzelne Übertrager einfach stillgelegt werden können.

Beladungsrhythmus

Man beschränkt sich bewußt auf die Verwendung von sehr gering angereichertem Uran für die Erstbeladung und auf Uran mit einer Anreicherung von etwa 4,75 % U235 als Ergänzung während des Betriebs. Damit verwendet man (erst einmal) handelsübliches Material. Prinzipiell ist auch Thorium und Plutonium einsetzbar. Bei solch geringer Anreicherung benötigt man zwingend einen Moderator. Es wird ein Block aus Reaktorgraphit im unteren Teil des Reaktorgefäßes verwendet, durch dessen Kanäle das Salz von unten nach oben strömt. Nur in diesen Kanälen findet die Kernspaltung statt.

Die ganze Einheit bleibt nur etwa sieben Jahre in Betrieb. Dann vollzieht sich ein „Brennstoffwechsel“ durch die Inbetriebnahme einer neuen Einheit in einem zweiten Silo. Die alte Anlage verbleibt in ihrem Silo, bis der wesentliche Teil ihrer Strahlung abgeklungen ist. Dieser Vorgang entspricht der Lagerung der Brennelemente im Lagerbecken eines Leichtwasserreaktors. Nach angemessener Zeit wird das Salz in spezielle Lagerbehälter umgepumpt und die restliche Einheit aus dem Silo herausgehoben und ebenfalls in das Zwischenlager auf dem Kraftwerksgelände gebracht:

  • Ziel ist ein Betrieb des Kraftwerks (theoretisch) ohne Unterbrechung.
  • Möglichst geringer Personalaufwand vor Ort, da (fast) keine Wartung und Inspektion nötig wird. Die Anlage wird zwar auf eine Lebensdauer von 60 Jahren ausgelegt, aber der „Reaktor“ nur sieben Jahre betrieben. Alle Arbeiten können wieder in einer Fabrik durchgeführt werden. Dort kann entschieden werden, was Schrott ist (Vorbereitung zur Endlagerung) oder wieder verwendet werden kann. Das Vorgehen erinnert an den guten, alten „Austauschmotor“ bei Kraftfahrzeugen.
  • Die alten Salze können in einer Wiederaufbereitungsanlage behandelt werden und die Spaltprodukte zur Endlagerung verarbeitet werden.

Salzschmelzen haben eine recht geringe Viskosität und lassen sich somit auch über längere Strecken gut pumpen. Wichtig ist hierbei, daß bereits den Reaktor ein „garantiert nicht strahlendes“ Salz verläßt (innen liegende Wärmeübertrager). Die Grenze des nuklearen Teils liegt somit am Rand des Silos. Der Charme eines solchen Reaktors liegt in seiner hohen Betriebstemperatur und seinem sehr geringen Betriebsdruck. Man kann mit relativ kleinem Aufwand noch einen einen dritten Kreislauf aus sogenanntem „Solarsalz“ anschließen. Damit gelangt man zu zwei völlig neuen Möglichkeiten:

  1. Man kann die Hochtemperaturwärme relativ einfach und kostengünstig über eine längere Leitung transportieren. Eine industrielle Nutzung wird damit möglich. Wohl kaum eine Industrie- oder Chemieanlage wird sich nach einem „Atomkraftwerk“ auf ihrem Gelände sehnen. Völlig anders dürfte sich die Situation darstellen, wenn die kerntechnische Anlage „deutlich“ neben dem eigenen Gelände steht und man nur Nutzwärme kauft.
  2. Durch die Verwendung von „Solarsalz“ – wie es heute beispielsweise bei Solarturmkraftwerken (manchen auch als Grill für Vögel bekannt) zur Stromproduktion in der Nacht eingesetzt wird. Eine vollständige zeitliche Entkopplung von Strom- und Wärmeproduktion wäre damit möglich. Der Reaktor könnte ständig mit voller Leistung gefahren werden und beim Einsatz einer Turbine mit „Übergröße“ hätte man ein perfektes Spitzenkraftwerk für die Regelung von „Flatterstrom“. Speicher mit geschmolzenem Salz haben nicht nur eine große Speicherkapazität (Phasenumwandlung), sondern weisen auch durch ihre Selbst-Isolierung (zuerst erstarrt eine Schicht an der Oberfläche), geringe Wärmeverluste über längere Zeiträume aus.

Notkühlung

Wenn tatsächlich eine Überhitzung eintritt, wirkt das passive Kühlungssystem. Der Reaktorbehälter steckt in einem weiteren Schutzbehälter. Dieser Schutzmantel entspricht dem Containment eines konventionellen Reaktors. Beide Behälter sind nicht isoliert. Steigt die Temperatur im inneren Behälter an, nimmt die Abstrahlung an den Schutzbehälter zu. Die Wärme wird durch Naturkonvektion über den Luftspalt zwischen Schutzbehälter und Silo abgeführt.

Reaktivitätskontrolle

Der Reaktor hat einen so starken negativen Temperaturkoeffizienten, daß er ohne Regelstäbe auskommt. Je höher die Temperatur der Salzschmelze wird – aus welchem Grund auch immer – um so weniger Kerne werden gespalten. Umgekehrt nimmt die Kernspaltung wieder automatisch zu, wenn mehr Wärme abgenommen wird. Es sind lediglich Abschaltstäbe für eine dauerhafte Abschaltung vorgesehen. Als weiteres passives Sicherheitssystem gibt es noch Kapseln die schmelzen und starke Neutronenabsorber frei setzen.

Konstruktionsvorgabe ist ein inhärent sicheres, walk-away sicheres Kernkraftwerk zu bauen. Alle treibenden Kräfte, die in einem Störfall radioaktive Materialien frei setzen können (Tschernobyl), werden vermieden. Deshalb werden alle unter hohem Druck stehende Komponenten (Wasser-Dampf-Kreislauf) vom Reaktor fern gehalten. Es muß für keine Druckentlastung gesorgt werden und kein Kühlwasser zum Reaktor gebracht werden.

Der Reaktor braucht überhaupt kein Notabschalt- oder Notstromsystem. Somit vereinfacht sich das Genehmigungsverfahren und die wiederkehrenden Sicherheitsprüfungen enorm. Alle Instrumentierungen und Steuerungselemente können konventionelle Produkte (Kostenreduktion) sein.

Schlussbemerkung

Das kanadische Genehmigungsverfahren ist vierstufig. Stufe 1 wurde bereits erfolgreich abgeschlossen. Man befindet sich nun in der zweiten Stufe. Der Zeitrahmen von etwa fünf Jahren bis zur Inbetriebnahme einer ersten Demonstrationsanlage scheint sehr ehrgeizig, wenn auch nicht unmöglich. Inzwischen sind alle namhaften kanadischen Ingenieurgesellschaften und die kerntechnische Industrie in das Projekt eingestiegen. Aus dem innovativen Startup mit rund 50 Beschäftigten ist eine schlagkräftige Armee mit zehntausenden Ingenieuren geworden. Es gibt praktisch kein Problem, für das keine erfahrenen Mitarbeiter zur Verfügung stehen. Wer schon mal mit kanadischen Unternehmen gearbeitet hat, kennt deren grundsätzlich optimistische und entschlossenen Rangehensweise. Wo deutsche Ingenieurzirkel in endlosen Sitzungen immer wieder neue Probleme erschaffen, probieren Kanadier einfach mal aus.

Thorcon – neue Reaktoren aus/mit Indonesien?

Das US-Unternehmen Thorcon will Salzbadreaktoren in Indonesien bauen.

Indonesien

Für ein besseres Verständnis, erscheinen ein paar Worte über die Energiesituation in Indonesien angebracht. Indonesien besteht aus über 17000 Inseln und ist mit 253 Millionen Einwohnern (Stand 2014) das viertgrößte Land der Erde. Als Schwellenland hat es einen rasanten Anstieg des Primärenergieverbrauches zu verzeichnen. In der Dekade zwischen 2003 und 2013 um 43%. Die Hauptenergieträger sind Öl, Kohle und Erdgas. Indonesien ist seit 1885 ein Ölförderland. Inzwischen ist die Nachfrage durch Bevölkerungs- und Wirtschaftswachstum so stark gestiegen, daß es seit etwa 2003 Nettoölimporteur ist.

Es besitzt auch große Erdgasvorkommen (Platz 13 in der Weltrangliste, Platz 2 in Asien) und ist immer noch Nettoexporteur. Der Verbrauchsanstieg ist aber so groß, daß es neuerdings sogar Erdgas als LNG aus den USA importiert (20 Jahresvertrag mit Cheniere). Hinzu kommt die ungleiche Verteilung im Inselreich.

Eigentlich ist Indonesien Kohlenland mit über 500 Millionen Tonnen jährlich. Davon werden rund 80% exportiert (weltweit größter Exporteur nach Masse). Trotzdem beträgt der Inlandsverbrauch rund 80 Millionen Tonnen mit stark steigender Tendenz wegen des Zubaues von Kohlekraftwerken.

In Indonesien sind erst 84% der Bevölkerung überhaupt an das Stromnetz angeschlossen. Bei bisher erst 51 GWel installierter Leistung (88% fossil, davon 50% Kohle) ist das Netz chronisch überlastet. Die häufigen Zwangsabschaltungen sind eine enorme Belastung für Bevölkerung und Industrie.

Traurige Berühmtheit erlangte Indonesien durch die Brandrodung des Regenwaldes zur Anpflanzung gigantischer Palmölplantagen. Auch hier wieder ökosozialistische Wahnvorstellungen als entscheidende Triebkraft: Biokraftstoffe und Holzschnitzel zur „Klimarettung“ und gegen „Peakoil“.

Indonesiens Weg in die Kernenergie

Langfristig kommt Indonesien als bevölkerungsreiches Schwellenland – genauso wie China und Indien – nicht ohne eine Nutzung der Kernenergie aus. Man will aber offensichtlich einen etwas anderen Weg gehen: Nicht der schnelle Einstieg durch den Kauf fertiger Kraftwerke steht im Vordergrund, sondern der Aufbau einer eigenen kerntechnischen Industrie. Konsequent setzt man auf die Entwicklung „neuer“ Kernreaktoren. Dies ist zwar mit einem erheblichen Risiko verbunden, erlaubt aber eine konsequente Anpassung an lokale Verhältnisse und vermeidet hohe Lizenzgebühren. Für ein Inselreich bieten sich kleine Reaktoren (SMR) an, bevorzugt als schwimmende Einheiten.

Eine Entwicklungsschiene ist ein gasgekühlter Hochtemperaturreaktor mit Uran als TRISO Kugelhaufen. Der Prototyp RDE (Reaktor Daya Eksperimental) soll eine Leistung von 10 MWel haben, die später auf bis zu 100 MWel erweitert werden soll. Diese SMR (Small Modular Reactor) sind besonders für die „kleineren“ Inseln des Archipels vorgesehen. Noch dieses Jahr soll ein detaillierter Konstruktionsplan durch ein Konsortium aus Universitäten und privaten Unternehmen einer internationalen Kommission der IAEA zur Begutachtung vorgelegt werden. Grundlage für eine endgültige Entscheidung und die Finanzierung.

Schon 2015 hat die US-Firma Martingale (jetzt ThorCon International) mit einem staatlichen indonesischen Konsortium PT Industry Nuklir Indonesia (INUKI) ein Abkommen zum Bau eines Flüssigsalzreaktors abgeschlossen. Angeblich soll schon 2019 mit dem Bau begonnen werden und das erste Kraftwerk 2025 in Betrieb gehen.

Das ThorConIsle-Konzept

Der Guru der Flüssigsalzreaktoren Robert Hargraves verkündet in seinem neuesten Prospekt vollmundig, daß sein Kraftwerk weniger Investitionen als ein Kohlekraftwerk erfordern würde. Allerdings erinnert das schön bebilderte Verkaufsprospekt an einschlägige Exponate von Bauträgern: Alles schön, keine Probleme, super günstig, daher sofort kaufen.

Das Grundkonzept ist von den Russen abgekupfert: Man baut ein Schiff ohne Antrieb um zwei Reaktoren (plus dem nötigem Zubehör) herum. Alles etwas größer und schöner, versteht sich. Nur mit dem Unterschied, daß das russische Modell nach langer Bauzeit endlich schwimmt. Kein Supertanker – nur 2 x 35 MWel anstelle von 2 x 256 MWel – und „nur“ mit auf Eisbrechern erprobten Reaktoren, anstelle von frisch erfundenen Thorium-Flüssigsalz-Reaktoren. Schön wenn ein solches Kraftwerk mal gebaut wird, aber ganz gewiss nicht bis 2025 und dazu noch billiger als ein Kohlekraftwerk.

Die Idee Kernkraftwerke als Schiffe in Serie zu bauen, ist sicherlich für ein Inselreich verlockend. Nur ist eben ein Kernkraftwerk kein Supertanker (Schuhkarton ), sondern randvoll mit Technik. Insofern können die Baukosten nicht einfach übertragen werden.. Ein Schiff bleibt ein Schiff: Die Korrosionsprobleme im tropischen Meer sind gewaltig und erfordern erhöhte Betriebskosten. Ein Schiff kann auch keine „Betonburg“ (Terrorismus, Flugzeugabsturz etc.) sein. Ganz so einfach, wie im Prospekt, dürfte es nicht gehen: Man kippt einfach die Zwischenräume voll Beton und erhält so einen tollen Bunker. Wer z. B. das Genehmigungsverfahren für den AP-1000 (Sandwich aus Stahlplatten und Beton) verfolgt hat, ahnt, wie Genehmigungsbehörden ticken.

Alle Komponenten sollen zwischen 150 und 500 to schwer sein und sich sogar während des Betriebs auswechseln lassen. Auch hier scheint es mehr um Wunschdenken zu gehen.

Der Reaktor

Bei dem Reaktor handelt sich um eine Kanne, in der der eigentliche Reaktorbehälter (gen. Pot), die Umwälzpumpen und die Wärmetauscher untergebracht sind. Die Kanne wiegt knapp 400 to, wovon etwa 43 to auf die Salzfüllung entfallen. Dieses Gebilde soll spätesten nach acht Jahren komplett ausgebaut und mit einem Spezialschiff zur Wiederaufbereitung geschickt werden. Nach acht Jahren ist das Salz so voller Spaltprodukten, daß es nicht mehr weiter im Kraftwerk eingesetzt werden kann. Vor dem Transport soll es vier Jahre lagern, bis die Strahlung auf akzeptable Werte abgeklungen ist. Jeder Block hat deshalb zwei Kannen.

Die Kanne ist das Neuartige an diesem Konzept: Man tauscht nicht regelmäßig Brennstoff aus, sondern der eigentliche Reaktor ist eine „Batterie“, die komplett gewechselt wird. Vorteil dabei ist, daß man erforderliche Inspektionen und Reparaturen in einer Spezialfabrik durchführen kann. Der gesamte nukleare Teil („der strahlt.“) befindet sich in dieser Kanne. Alle anderen Komponenten sind „konventionell“. Mal sehen, was der Genehmigungsbehörde dazu alles einfällt….

Allerdings stellt das Batterieprinzip alle bisher geltenden Lehrmeinungen über Thorium-Reaktoren auf den Kopf:

  • Bisher ging man von einer kontinuierlichen Wiederaufbereitung aus. Man wollte das Spaltproduktinventar stets gering halten. So hätte man es bei einem schweren Störfall automatisch nur mit geringen Mengen zu tun.
  • Je mehr Neutronengifte – und im Sinne einer selbsterhaltenden Kettenreaktion ist schon Thorium selbst ein starker Parasit – vorhanden sind und je länger die Wechselintervalle sein sollen, um so mehr spaltbares Uran muß man am Anfang zugeben. Dieses muß auch noch möglichst hoch angereichert sein (hier geplant 19,7 %).

Das Salz

Als Brennstoff soll ein NaF – BeF2 – ThF4 – UF4 (mit 76 – 12 – 10,2 – 1,8 mol%) Salz verwendet werden. Es soll ganz tolle Lösungseigenschaften haben, die alle „gefährlichen“ Spaltprodukte zurückhalten. An dieser Stelle fällt mir immer der alte Chemikerwitz ein: Ruft der Professor überglücklich, ich habe endlich das ultimative Lösungsmittel gefunden. Antwortet der Laborant trocken, Glückwunsch und wo soll ich es jetzt hinein füllen? Bei einem solchen Salz ist das leider mehr als ein blöder Witz. Zumal hier auch noch mit Temperaturen von über 700 °C gearbeitet werden soll. Mit Schiffbaustahl (Kostenangaben) wird sich da leider gar nichts ausrichten lassen.

Beryllium und auch Berylliumfluorid sind sehr giftig und werden als krebserregend eingestuft. Wenn Beryllium ein Neutron einfängt, bildet es Helium und setzt dabei zwei Neutronen frei. Es wirkt dabei sowohl als Moderator, wie auch als Neutronenvervielfacher. Fluor und Fluorwasserstoff sind gasförmig und sehr giftig. Fluor ist äußerst reaktionsfreudig und geht mit fast allen Elementen stabile chemische Verbindungen ein. Mit Wasserstoff reagiert es letztendlich zu Flußsäure, die sogar Glas ätzt. Jede Kernspaltung zerstört auch die chemische Verbindung und neue chemische Elemente in Form der Spaltprodukte entstehen. Man hat es deshalb stets auch mit elementarem Fluor zu tun, der auch gern mit dem Strukturmaterial reagieren kann. Da Fluoride sehr reaktionsfreudig sind, reagieren sie natürlich auch wieder mit dem größten Teil der Spaltprodukte und binden diese sicher ein. Es gibt aber zwei Ausnahmen: Edelmetalle und Edelgase. Die Edelmetalle lagern sich innerhalb der Anlage ab und führen zu „Verschmutzungen“, die man regelmäßig und aufwendig wird entfernen müssen (Die Batterie doch komplett auf den Müll?). Die Edelgase müssen (eigentlich) durch Helium ständig aus dem Salz herausgespült werden.

Der immer wieder gern gehörte Hinweis aus der Salzbad-Scene auf den legendären MSRE-Reaktor, hilft in diesem Sinne leider auch nicht weiter: Er hat nur 1,5 Voll-Lastjahre (1966 bis 1969) gelaufen.

Das Sicherheitskonzept

Der Reaktor stellt sich immer selbstständig ab, wirbt ThorCon. Zwar ist dies durchaus kein Alleinstellungsmerkmal eines Flüssigsalzreaktors, aber trotzdem eine feine Sache. Locker mit „Walkaway Safe“ umschrieben. Es ist kein Hexenwerk, eine Kettenreaktion durch Überhitzung (Verkleinerung des makroskopischen Einfangquerschnittes) aus sich selbst heraus zusammenbrechen zu lassen, es bleibt aber immer noch die Nachzerfallswärme (Fukushima und Harrisburg): Sie muß entsprechend schnell abgeführt werden, sonst schmilzt der Reaktor. Auch hier gilt natürlich, je mehr Spaltprodukte im Reaktor enthalten sind (Batterie gegen kontinuierliche Aufbereitung), um so größer ist das Problem.

Die Konstrukteure von Flüssigsalzreaktoren gehen nun davon aus, daß das Salz unter allen denkbaren Umständen und überall im Reaktor schön fließfähig bleibt. Im Ernstfall läuft es dann problemlos in einen gekühlten Tank aus. Dazu denkt man sich an geeigneter Stelle einen Pfropfen als Verschluß, der während des Normalbetriebs durch permanente Kühlung erzeugt wird. Unterbricht man im Notfall die Kühlung, schmelzt das flüssige Salz den Pfropfen auf und gibt so den Weg frei. Der Nottank soll aus vielen Röhren bestehen, die über ihre Oberflächen die Wärme gegen eine Kühlwand abstrahlen. Die Wand wird mit Wasser gefüllt, welches verdampfen kann und sich in Kühltürmen auf Deck wieder niederschlägt. Das Kondensat läuft dann in die Hohlwand zurück.

Schlussbetrachtung

Indonesien muß wie jedes andere Schwellenland in die Kerntechnik einsteigen. Nicht nur zur Energiegewinnung, sondern auch um Anschluß an moderne Industriestaaten zu gewinnen. Kerntechnik ist neben Luft- und Raumfahrt die Schlüsseltechnologie schlechthin. In keiner anderen Branche kommen so viele Technologien mit ihren jeweiligen Spitzenleistungen zusammen. Insofern ist es nur konsequent, möglichst frühzeitig in die internationale Entwicklung „neuer“ Reaktortechnologien einzusteigen. Schon die Zusammenarbeit mit Spitzenuniversitäten und Hochtechnologieunternehmen stellt einen unschätzbaren Wert für die eigene Ausbildungslandschaft dar. Selbst wenn diese jungen Ingenieure später nicht in der Kerntechnik tätig werden, werden sie mit Sicherheit zu den gefragten Spitzenkräften in ihrer Heimat zählen. Keine „Entwicklungshilfe“, die „angepasste Technologie“ für die „große Transformation“ verbreiten will, wird auch nur ansatzweise vergleichbares hervorbringen. Technik – und damit die Gesellschaft –entwickelt sich halt immer nur durch machen weiter und nicht in irgendwelchen geisteswissenschaftlichen Seminaren.