Abrüstungsverträge – Schnee von gestern?

In wenigen Wochen (am 2.8.19) läuft der INF-Vertrag (Intermediate-Range Nuclear Forces Treaty von 1987) sang und klanglos aus. Er hat die Stationierung von Kernwaffen mit mittlerer Reichweite zwischen 500 bis 5500 km erfolgreich verhindert. Kann sich überhaupt noch einer an die harten Auseinandersetzungen um den „NATO-Doppelbeschluss“ erinnern? Eine Million Demonstranten für Abrüstung in Bonn und heute? Es wird Freitags ein bischen gehüpft gegen CO2. Die EU-Außenbeauftragte Federica Mogherini schwafelt ein bischen gelangweilt daher: „Die nächsten Tage bieten die letzte Chance zum Dialog und dafür, die notwendigen Maßnahmen zum Erhalt dieses wichtigen Pfeilers der europäischen Sicherheitsarchitektur zu ergreifen“. Genau, es ist die gleiche Dame, die das unselige Abkommen mit dem Iran maßgeblich verbockt und die Reaktion der USA offensichtlich völlig falsch eingeschätzt hat. Die Dame scheint – wie die meisten deutschen Politiker auch – keinen Globus zu besitzen, sonst würde sie erkennen, daß Europa unmittelbar davon bedroht wird. Wir Deutschen fürchten uns ja sowieso nur vor diesem Donald Trump; Putin und die Mullahs sind dagegen reine Friedensengel, die doch nur mit uns Geschäfte machen wollen um unseren Wohlstand zu mehren – jedenfalls teilt uns dies all abendlich der Staatsrundfunk mit. Von der Aktuellen-Kamera lernen, heißt siegen lernen….

Gleichzeitig stehen die START und ABM-Verträge (Strategic Arms Reduction Treaty von 1982, 1993, 2011 und Anti-Ballistic Missile Treaty von 1972) zur Disposition. Wird dieses Bündel aufgeschnürt, steht damit die Doktrin von der „Abschreckung durch gesicherte gegenseitige Vernichtung“ ganz grundsätzlich in Frage. Der „Atomkrieg“ wird wieder als führbar erklärt. Eine weitere Illusion der westlichen Welt wird damit brutal hinweg gefegt. Aber damit nicht genug, wenn der New START im Februar 2021 ausläuft, geht es nicht nur um ein paar Interkontinentalraketen. Ganz unmittelbar sind mit ihm die NTM-Verträge (National Technical Means of verification) seit 50 Jahren verknüpft. Ganz einfach gesprochen, geht es darum, keine Satelliten zu stören (jaming), zu täuschen (spoofing) und nicht zu zerstören. Auch hier zündelt Putin ganz gewaltig: Störung der GPS-Signale in Norwegen 2019, Fälschung der Signale im Schwarzen Meer (vorgetäuschte Abweichungen von über 40 km) und vor Wochen Verfälschung der GPS-Signale bei Start und Landung an Flughäfen in Israel. Hier wird eine Büchse der Pandora geöffnet, die in unserem heutigen Kommunikationszeitalter noch viel zerstörerischer sein könnte.

Wohin die Reise geht, erkennt man daran, daß nun auch noch das Teststoppabkommen CTBT (Comprehensive Nuclear Test Ban Treaty) unterlaufen wird. Es wurde 1996 von Bill Clinton unterzeichnet, aber nie vom US-Senat ratifiziert. Es war wegen seiner Schwächen ebenso umstritten, wie das Iran-Abkommen (JCPOA Joint Comprehensive Plan of Action). Wie konnte es zu dieser Entwicklung kommen und welche Interessen stehen dahinter?

Die veränderte Welt

Während des „Kalten Krieges“ war die Welt übersichtlich und einfach strukturiert: Es gab die zwei Blöcke USA und Sowjetunion. Beide Parteien konnten sich an einen Tisch setzen und ein unterschriftsreifes Abkommen aushandeln. Noch besser: Es war entsprechend detailliert, sodaß es anschließend auch ratifiziert werden konnte. Dieser Vertrag war dann das Maß aller Dinge. Jeder Block achtete darüberhinaus darauf, daß „Atommächte“ in seinem Einflussbereich nicht aus der Reihe tanzten.

Dies ist heute völlig anders. Es gibt nicht nur die Staaten, die bereits über Kernwaffen verfügen, sondern unzählige, die danach streben. Aktuell herausragende Problemfälle sind Iran und Nordkorea. Schon diese beiden könnten nicht unterschiedlicher sein. Bei Nordkorea kann man davon ausgehen, daß die Kernwaffen nur der „Verteidigung“ dienen sollen. Die Herrschenden in Nordkorea wollen nicht ernsthaft einen „Atomkrieg“ führen – wohl wissend um die Konsequenzen für das eigene Überleben. Es handelt sich hier eher um „politische Waffen“. Verhandlungen und Abkommen zwischen den betroffenen Staaten erscheinen damit durchaus möglich. Völlig anders verhält es sich mit dem Mullah-Regime des Iran: Dieses Regime ist nicht nur offen imperialistisch und überzieht all seine Nachbarn mit Krieg um die Vorherrschaft über „seinen persischen Golf“ zu erlangen, sondern schlimmer noch, ist von einem mittelalterlichen religiösen Sendungsbewusstsein getrieben. Es gibt bereits heute den Verwendungszweck seiner angestrebten Kernwaffen an: Die Auslöschung des Staates Israel und damit die „Endlösung der Judenfrage“. Selbst eine Abschreckung erscheint völlig sinnlos, wird doch jedes Selbstmordattentat nach deren Glauben mit 72 Jungfrauen im Paradies belohnt. Vor diesem Hintergrund ist es schon bemerkenswert, wie Europa – mit Deutschland wieder einmal vorne-weg-gehend – den US-Sanktionen in den Rückken fällt. Gelingt es nicht, die Mullahs durch Sanktionen in die Knie zu zwingen, ist ein Präventivschlag Israels unvermeidlich. Dann wird sich nur noch die Frage stellen, auf welcher Seite man mit in den Krieg ziehen muß.

Eskalation zur Deeskalation

Es gibt aber noch einen weiteren Problemfall. Putin kehrt wieder zu der Doktrin eines „führbaren Atomkrieges“ zurück. Diesmal verbrämt unter der schwachsinnigen Parole „Eskalation zur Deeskalation“. Er glaubt, wenn Rußland eine kleine Kernwaffe gegen Nato-Truppen einsetzt, wird die Nato einknicken und nicht mit einem großen atomaren Gegenschlag antworten. Putin ist – im Aktuelle-Kamera-Deutsch würde man sagen – ein unverbesserlicher Revanchist. Er kann den Zerfall seiner geliebten Sowjetunion nicht überwinden und meint immer noch, dies sei ein Werk des bösen Westens und einiger Schwächlinge, wie Gorbatschow und Jelzin geschuldet und nicht ein logischer Zusammenbruch des Sozialismus. Am Ende seiner gefühlt ewigen Herrschaft erkennt er, daß Rußland immer noch ein Schwellenland mit Kernwaffen ist (Nigeria With Nukes), in dem seine neureiche Clique sich lieber Luxusjachten und Fußballvereine im Westen kauft, als ihr (geraubtes) Geld in Rußland zu investieren. Spätestens nach dem Abenteuer in Syrien ist jedem russischen Militär klar, was eine offene militärische Auseinandersetzung mit der Nato für Folgen hätte. Eine Luftabwehr, die lediglich eine Gefährdung der eigenen Luftwaffe (Abschuß eines eigenen Spionageflugzeugs mit 15 Mann Besatzung) und Nachbarländer (Raketeneinschlag auf Zypern) darstellt, ein wie weiland die Kaiserliche Flotte qualmender Flugzeugträger, der nur in Begleitung von Schleppern auslaufen kann und Bomber, die nur mit eingelegtem Autopilot Krankenhäuser zerbomben können. Was in seinem zwanghaften Imponiergehabe übrig bleibt, sind Kernwaffen. Rußland unterläuft sämtliche Abrüstungsverträge und versenkt wieder Unsummen in eine „atomare Aufrüstung“. Zum Glück sind die Militärs in den USA (bisher) nicht auf das Spiel mit begrenzten Kernwaffenschlägen eingestiegen. Man ist dort nach wie vor der Meinung, daß man auf einen Angriff mit „kleinen“ Kernwaffen mit einem vernichtenden konventionellen Gegenschlag antworten könne. Für sie sind die Putinschen Bömbchen so etwas wie die Kamikaze-Flieger des untergehenden Japan. Gleichwohl wären die Hauptleidtragenden die europäische Bevölkerung.

INF-Abkommen

Um so weniger kann man verstehen, warum der Bruch des INF-Abkommens in Europa so klaglos hingenommen wird. Putin protzt unverhohlen mit neuen landgestützten Marschflugkörpern mittlerer Reichweite. Mit ihnen bedroht er von Königsberg aus (die Stationierung von SSC-8s in 2014 war ein eindeutiger Bruch der INF-Verträge) Berlin etc. mit einer nuklearen Auslöschung – nicht etwa New York oder Washington. Die Strategie ist heute wie damals die Gleiche: Erpressung von Europa ohne (gehofft) die Gefahr eines nuklearen Gegenschlages durch die USA. Im Gegensatz zu Helmut Schmidt läßt man heute die Atommacht GB beleidigt aus er EU austreten und die fünfte Kolonne fordert schon wieder lautstark den Abzug von Atombomben von deutschem Boden. Vor einer Teilhabe an Kernwaffen durch die Bundeswehr braucht Putin sich bald ohnehin nicht mehr zu fürchten, da Deutschland demnächst über keine Flugzeuge mehr verfügt, die ihm diese als Antwort entgegen tragen könnten. Deutschland ergibt sich schon, bevor überhaupt der erste Schuß gefallen ist. Aus Putin-Verstehern werden schon bald (zwangsweise) Putin-Willkommenheisser. Was Honnecker nicht vermochte, wird Angela in aller Stille verwirklichen – ein vereinigtes sozialistisches Deutschland von Moskaus Gnaden.

Das Teststoppabkommen

Nun ist das alles aber nicht so ganz einfach. Im Zeitalter der „gegenseitig gesicherten Vernichtung“ ging alles um Megatonnen. Man mußte auf jeden Fall die gegnerischen Städte mit einem Schlag pulverisieren, egal wie genau man traf. Will man einen „führbaren Atomkrieg“, müssen die Sprengkörper flexibel einstellbar sein um den Kollateralschaden möglichst klein zu halten. Das ist aber gar nicht so einfach und erfordert wesentlich mehr Wissen und Aufwand als bei einer Hiroshima- oder Nagasaki-Bombe. Wohl gemerkt, es geht nicht um eine Miniaturisierung, sondern um eine Programmierung der gewünschten Sprengwirkung. Damit sind wir bei der Bedeutung von Kernwaffentests.

Kernwaffen sind recht komplizierte Gebilde. Bis zum heutigen Tage versteht man die physikalischen Abläufe nicht bis ins letzte Detail. Man braucht also Tests ob die Konstruktion überhaupt funktioniert. Diese Tests sind aber jedes mal „echte Atombomben“ mit all ihren zerstörerischen Konsequenzen. Um dieser Zwickmühle zu entkommen, machte man sich schon frühzeitig Gedanken über die Begrenzung von Tests. Es begann eine jahrzehntelange Verhandlungskette: Verbot von Tests in der Atmosphäre, Begrenzung der maximalen Sprengkraft, bis hin zum Teststopp. Leider muß man feststellen, daß sich „Vernunft“ nicht grundsätzlich weiter entwickelt. 1988 war man so weit, daß man auf den Versuchsgeländen von Nevada und Semipalatinsk unter gegenseitiger Beobachtung und wechselseitiger Installation von Meßtechnik, Kernwaffentests durchführte. Diese gegenseitigen Tests dienten der Kalibrierung der Meßtechnik zur Überwachung der Einhaltung der Teststopps und damit zur Vertrauensbildung. 30 Jahre später ist es undenkbar, daß Putin auf seinem Testgelände amerikanische Spezialisten und Meßtechnik zulassen würde. So ist es halt, wenn man einem Geheimdienstoffizier in dritter Generation die politische Verantwortung überläßt….

Der Geist des CTBT

Schon bei der Verhandlung des CTBT (Comprehensive Nuclear Test Ban Treaty) wurden grundsätzliche Fragen in den USA gestellt:

  • Kann der Bestand an Kernwaffen ohne Testexplosionen gewartet werden? Wie gesagt, man versteht eine Kernwaffenexplosion immer noch nicht bis ins letzte Detail. Es ist aber sicher, daß das Plutonium, der konventionelle Sprengstoff und die Elektronik des Zünders altern.
  • Wie gut können die USA Kernwaffentests erkennen, lokalisieren und identifizieren? Hierfür sind weltweite Messnetze (seismisch, per Satelliten, per Flugzeug etc.), genaue Kenntnisse der Erdschichten, der meteorologischen Verhältnisse etc. und über mögliche Verschleierungstechniken nötig.
  • Was können die USA tun, um den Bestand möglichst nachhaltig zu erhalten (z. B. Wiederverwendung der Spaltstoffe etc.) und welcher technische und politische Aufwand muß betrieben werden um ein internationales Kontrollsystem zu betreiben?
  • Welche Neuentwicklungen von Bauteilen sind unter dem CTBT möglich oder was geschieht, wenn man auf den Zustand vor dem Abkommen zurückkehren muß?

Besonders der letzte Punkt ist höchst aktuell, da man davon ausgehen muß, daß Rußland dieses Abkommen ebenfalls bereits gebrochen oder zumindest überdehnt hat. Wer einen Atomkrieg führen will, braucht andere Kernwaffen, als jemand, der eine gesicherte Vernichtung in einem Zweitschlag garantieren will.

Die Entwicklung von Kernwaffen vollzieht sich heute durch Simulationen auf Super-Computern. Noch immer werden hier die leistungsfähigsten Rechner verwendet. Üblicherweise gibt es erst eine kommerzielle Freigabe, wenn bereits die nächste Generation in Betrieb geht. Nur China kann derzeit bei diesem Rennen überhaupt noch einigermaßen mithalten. Aber mit einer schnellen Maschine ist es noch nicht getan. Man braucht auch noch die (äußerst komplexen) Programme und da geht es nicht wie bei der „Klimafolgen-Abschätzung“ zu: Jede neue Programmversion muß die alten Kernwaffentests nachbilden können. Trotzdem bleibt für jede neue Konstruktion eine Unsicherheit. Dies gilt schon mal für die Plutoniumlegierungen selbst.

Hydronuclear

Man darf zwar keine kompletten Kernwaffen testen, es ist aber durchaus erlaubt, Teile zu testen. Für Tests zur Zündung verwendet man beispielsweise so geringe Mengen Spaltstoff, daß garantiert keine Kettenreaktion (unterkritische Anordnung) ausgelöst werden kann. Die Aggregatzustände (fest, flüssig, gasförmig) hängen von Druck und Temperatur ab. Wenn die Schockwelle des Zünders auf die Probe trifft und sich durch die Probe ausbreitet, ändert sich beständig die Dichte. Wichtige Größen für die Zustandsgleichungen (equation-of-state) zur Simulation. Das alles erfordert eine aufwendige Meßtechnik und ist überdies sehr schmutzig, da Plutonium von der Probe abplatzt und zerstäubt wird. So hat man von dem ehemaligen Testgelände der Sowjetunion (heute Kasachstan) mehrere hundert Kilo waffengrädiges Plutonium aus solchen Tests bei einer Reinigungsaktion 1996–2012 wieder eingesammelt. Man führt deshalb solche Tests unterirdisch in Stollen aus.

Solche Tests sind zur Wartung eines Kernwaffenarsenals ständig nötig. Plutonium altert z. B. durch den radioaktiven Zerfall. Die entstehenden Helium Kerne (α-Strahler) erzeugen beispielsweise Spannungen im kristallinen Gitter der Legierung, die die mechanischen Eigenschaften verändern, wodurch sich der Verlauf der Zündung verändert…

One-Point Safe

Entstanden sind solche Hydronukleare Tests in der Zeit 1958–1961 durch die Frage einer möglichen Selbstentzündung. Kernwaffen sind so gebaut, daß sie nur gewollt gezündet werden können – selbst wenn der Sprengstoff des Zünders ungewollt explodiert. Man definiert eine Kernwaffe als „one-point safe“, wenn sie bei einer ungewollten Explosion mit einer Wahrscheinlichkeit von einem Fall in einer Million eine (kerntechnische) Sprengkraft von bis zu vier Pfund TNT-Sprengstoff erzeugt. Dies geschah bei einem Zusammenstoß eines B52-Bombers mit seinem Tankflugzeug in der Nähe von Palomares in Spanien 1962. Bei mindestens einer Bombe explodierte der Sprengstoff des Zünders und zerfetzte die Bombe ohne eine Kernwaffenexplosion auszulösen.

Zero-Yield

Man kann sogar Tests mit kritischen Anordnungen durchführen, bei denen durch den Zünder tatsächlich eine Kettenreaktion ausgelöst wird. Diese Versuche sind so ausgelegt, daß dabei nur der Gegenwert von 4gr bis 20gr TNT aus der Kernspaltung stammen. Allerdings liegt genau in dieser Grauzone zwischen „keinem Kernwaffentest“ und „noch Zero-Yield“ die Problematik des Teststopp-Abkommens. Die USA verdächtigen Rußland bereits auch dieses Abkommen gebrochen zu haben.

Es gibt nämlich zahlreiche Tricks die Überwachung zu hintergehen. So ist man sich einig, daß erst Kernwaffentest mit einer Leistung ab 100 to TNT mit den heute üblichen Methoden und Kenntnissen der Testgelände nachgewiesen werden können. Die historische Maßeinheit TNT ist nur eine Krücke zur (groben) Veranschaulichung. Man rechnet einfach die aus der Kernspaltung frei gewordene Energie – je 1000 Kilokalorien pro kg – in Sprengstoff um. Damit ist nicht einmal (Strahlung etc.) die Explosionswirkung richtig erfaßt. Bei konventionellem Sprengstoff breiten sich die Explosionswellen nur kugelförmig aus. Bei einer Kernexplosion überlagern sich die vom Boden reflektierten Wellen: Die zerstörerische Wirkung ist erheblich größer.

Damit kommen wir wieder zum Schwachsinn der „Eskalation zur Deeskalation“ zurück. 100 bis 1000 Tonnen TNT sind schon eine ganze Menge für eine Terrorwaffe bei heutiger Zielgenauigkeit. Insofern liegt Putin nicht ganz falsch. Zumindest für Deutschland mit seiner sprichwörtlichen „Atomangst“ dürften ein paar solcher Bömbchen wohl zur sofortigen Kapitulation führen. Selbstverständlich würden deswegen weder die USA noch Frankreich oder GB Moskau in Schutt und Asche legen. Wir dürften noch sehr unsicheren Zeiten entgegengehen.

Westinghouse eVinci Microreactor

Tote leben länger. Westinghouse ist schon öfter verkauft worden oder pleite gegangen, aber immer wieder wie Phönix aus der Asche auferstanden. Westinghouse hat 1957 weltweit den ersten Druckwasserreaktor (Shippingport, 60 MWel) gebaut und ist am Bau des AP1000 (Druckwasserreaktor der III. Generation, vier bereits in China in Betrieb.) in den USA erstickt. Inzwischen unter dem neuen Eigentümer Brookfield erfolgreich restrukturiert.

Ohne Zweifel zählt Westinghouse zu den besonders innovativen Unternehmen auf dem Gebiet der Kerntechnik. Deswegen verwundert es auch nicht, daß sie sich mit ihrem „eVinci“ weltweit an die Spitze der Entwicklung sogenannter „Mikro-Reaktoren“ setzen. Dabei handelt es sich um „Kleinst-Kernkraftwerke“ im Leistungsbereich einiger hundert Kilowatt bis zu etwa 25 Megawatt elektrischer Leistung. Gemeinsam ist dieser Klasse, daß sie vollständig (in Serie) in einer Fabrik gefertigt werden und komplett auf einem LKW (etwa in einem Container) ausgeliefert werden sollen. Man zielt damit auf einen völlig neuen Markt: Das Kernkraftwerk nicht mehr als Milliarden teueres Großkraftwerk, sondern als dezentrales „Block-Heiz-Kraftwerk“. Ironischerweise ist diese Entwicklung erst durch die wetterabhängige Erzeugung mit Wind und Sonne so richtig angefacht worden. Die einstigen Vorteile des guten alten Stromnetzes – Versorgungssicherheit bei günstigen Kosten – drohen durch die „Regenerativen Energien“ systematisch zerstört zu werden. Will man nicht zurück ins Mittelalter, sind also schnellstens neue Lösungen gefragt.

Das Konstruktionsprinzip

Will man direkt in die Städte oder Industrieanlagen (Raffinerien, Chemieparks etc.) ist die maximale Leistung auf einige zehn Megawatt begrenzt. Diese Kernkraftwerke müssen für einen Inselbetrieb ausgelegt sein: Ohne ein Netz in Betrieb zu nehmen (Schwarzstart), nahezu unterbrechungsfrei laufen (kein Brennelementewechsel), äußerst robust auf Lastschwankungen reagieren können und nicht zuletzt – „sicher sein“.

Bei allen schweren Störfällen – Three Mile Island, Tschernobyl, Fukushima – war der Verlust des Kühlmittels (Wasser) ausschlaggebend. Während des Unfallgeschehens kamen noch Reaktionen des Kühlmittels mit den Reaktorwerkstoffen hinzu: Die Bildung von Wasserstoff und die anschließende Knallgas-Explosion führte z. B. in Fukushima erst zur Freisetzung von radioaktiven Stoffen. Es ist damit logisch, daß der gesamte Kühlwasserkreislauf besondere Sorgfalt bei jeder Wiederholungsprüfung erfordert (Zeitdauer und Kosten) und all seine Bauteile den Kostentreiber „nuclear grade“ erfüllen müssen. Hinzu kommt, daß insbesondere bei Druckwasserreaktoren erhebliche Druckverluste auftreten, die durch Pumpen mit großer Antriebsleistung ersetzt werden müssen. Ein Ausfall der Stromversorgung, wie z. B. in Fukushima durch die gewaltige Flutwelle, ergibt damit sofort ein ernsthaftes Sicherheitsproblem. Könnte man das Kühlmittel Wasser ersetzen und darüberhinaus noch ein rein passives „Umwälzverfahren“ anwenden, ergebe sich sofort ein Quantensprung in der Sicherheitstechnik.

Seit Anbeginn der Kernkrafttechnik hat man Natrium als Kühlmittel verwendet. Neben seinen herausragenden thermodynamischen Eigenschaften, besitzt es auch hervorragende neutronenphysikalische Eigenschaften. Allerdings war früher die Marschrichtung eine völlig andere: Man wollte sogenannte „Schnelle Brüter“ bauen, die aus Uran-238 mehr leicht spaltbares Plutonium-239 erzeugen, als sie während ihres Betriebs verbrauchen. Ursache war die falsche Annahme, daß die Vorräte an (wirtschaftlich) gewinnbarem Natururan nur sehr klein wären. Heute schwimmen wir weltweit nicht nur in Natururan, sondern auch bereits in Plutonium. Im Gegenteil, das Plutonium wird als „Endlager-Risiko“ und damit Handikap der Kernenergie betrachtet.

Strebt man einen „Schnellen Brüter“ an, muß dieser ein möglichst großes Volumen haben (Ausfluß von Neutronen) und daraus ergibt sich automatisch eine große Leistung. Schon muß man wieder die gleichen Sicherheitsprobleme wie bei einem Druckwasserreaktor lösen und stets im Griff behalten: Großes Kühlmittelvolumen, das auch noch zum Abtransport der Wärme ständig (aktiv) umgepumpt werden muß und unter keinen Umständen verloren gehen darf. Will man jedoch nur einen Reaktor (relativ) kleiner Leistung bauen, kann man diese Probleme geschickt umschiffen.

Wärmerohe als Kühlmedium

Beim eVinci wird der Wärmetransport vom festen Kern zum Arbeitsgas durch Wärmerohre (heat pipes) bewerkstelligt. Wärmerohre sind (dünne) Metallrohre mit einem Docht versehen, die teilweise mit einer Flüssigkeit gefüllt sind und anschließend gasdicht verschweißt werden. Das mit Flüssigkeit gefüllte Ende steckt in der Wärmequelle (Reaktorkern) und das mit Dampf gefüllte Ende in der Wärmesenke (Arbeitsgas). Die Flüssigkeit im Rohr wird nun kontinuierlich verdampft, breitet sich im Rohr aus und kondensiert am gekühlten Ende. Dort bildet sich ein Flüssigkeitsfilm, der durch die Kapillarwirkung im Docht wieder zum heißen Ende zurück strömt. Das Wärmerohr ist also stets mit Sattdampf gefüllt und besitzt dadurch annähernd die gleiche Temperatur an beiden Enden. Ist die Rohrwand dünn und besteht aus gut leitendem Material, können große Wärmeströme durch die Rohroberfläche übertragen werden. Das Wärmerohr kann immer nur in eine Richtung die Wärme transportieren, ist aber durch den „Docht“ nicht von der Lage abhängig.

Das Temperaturniveau hängt von der Flüssigkeit ab. Im eVinci sollen mit Natrium gefüllte Wärmerohre eingesetzt werden. Natrium hat einen Schmelzpunkt von ungefähr 98°C und einen Siedepunkt von 883°C bei Atmosphärendruck. Die übliche Bandbreite für mit Natrium gefüllte Wärmerohre beträgt etwa 600°C bis 1200°C. Strebt man eine „niedrige“ Temperatur von 600°C an, muß man im Wärmerohr einen sehr geringen Druck von etwa 0,06 bar einhalten. Die Kombination aus Temperatur und Druck ist keine besondere Herausforderung, da man sich damit noch im Bereich konventioneller Stähle bewegt.

Die Wärmerohre funktionieren vollständig passiv. Der einzige Antrieb ist die Wärmeproduktion im Kern – gleichgültig ob im Betrieb oder als Nachzerfallswärme nach einer Abschaltung. Da jedes einzelne Wärmerohr ein in sich geschlossener Kühlkreislauf ist, stellt ein Versagen einiger Rohre für den Reaktor kein großes Problem dar. Im Gegensatz zu einem kleinen Loch in einem Druckwasserreaktor, das bereits die Sicherheitskette auslösen muß.

Der Aufbau des Kerns

Der Kern besteht aus einem massiven Stahlblock, der mit ca. 2000 Längsbohrungen von etwa 1,5 m Länge versehen ist. In den Längsbohrungen stecken die Brennelemente und die Wärmerohre. Das Verhältnis zwischen „Brennstäben“ und Wärmerohren beträgt etwa 1:2. In der Fertigung dieses „durchlöcherten Stahlblocks“ liegt ein zentrales Fertigungsproblem des Reaktors. Mit einfachem Bohren wird es nicht gelingen, da die Wände zwischen den Bohrungen möglichst dünn sein sollten um eine gute Wärmeübertragung zu gewährleisten. Der Stahlblock gibt der ganzen Konstruktion Halt, Schutz und transportiert die Wärme gleichmäßig zu den Wärmerohren. Es kann also nichts auslaufen und es steht auch nichts unter Überdruck.

Allerdings fehlt hier noch der Moderator. Bei einem Druckwasserreaktor übernimmt das Wasser selbst die notwendige Abbremsung der Neutronen. Beim eVinci soll Zirkoniumhydrid (ZrH2) diese Aufgabe übernehmen. Wahrscheinlich auch als Legierung aus Uran, Zirkon und Wasserstoff. Für diese Legierungen existieren jahrzehntelange Betriebserfahrungen in den TRIGA-Forschungsreaktoren. Diese Brennstoffe besitzen ein ausgeprägtes Verhalten zur Selbstregulierung der Leistung (stark negativer Temperaturkoeffizient der Reaktivität): Erhöht sich die Brennstofftemperatur ungebührlich, bricht die Kettenreaktion praktisch sofort ein und infolge auch die Wärmeproduktion. Ein Schmelzen des Brennstoffs wird sicher verhindert.

Der Brennstoff

Als Brennelemente sollen die – auch hier schon näher beschriebenen – TRISO Elemente verwendet werden. Sie besitzen ausgezeichnete Eigenschaften bezüglich hoher Temperaturbeständigkeit und dem Rückhaltevermögen von Spaltprodukten. Erinnert sei nur an die zwanzigjährige Erfolgsgeschichte des Kugelhaufenreaktors in Jülich. Unzählige Versuche in Deutschland und China haben die „Walk-Away-Sicherheit“ nachgewiesen. Dieser Brennstoff kann auch nach schwersten Störfällen, wie z. B. in Fukushima, nicht schmelzen und damit größere Mengen radioaktiver Stoffe freisetzen.

Allerdings benötigt man bei solch kleinen Reaktoren höher angereichertes Uran als bei Leichtwasserreaktoren. Ferner wird hier das „Batterie-Konzept“ angestrebt. Man liefert den betriebsbereiten Reaktor, schließt ihn an und läßt ihn für mindestens zehn Jahre (nahezu) vollautomatisch und ohne Unterbrechung laufen. Quasi ein Blockheizkraftwerk ohne Tankstelle. Durch die Wahl der TRISO-Brennelemente ist man zukünftig sehr flexibel. Neben Uran (HALEU) sind auch Plutonium und Thorium einsetzbar. Nur die Brennstoffherstellung muß verändert werden.

Das Arbeitsmedium

Da bei dieser Konstruktion der Kern mit seiner Neutronenstrahlung durch die Wärmerohre physikalisch vom Arbeitsmedium CO2 getrennt ist, hat man stets ein „sauberes“ Arbeitsmedium. Man muß also nicht noch einen sekundären Dampf-Kreislauf wie z. B. beim Kugelhaufenreaktor (radioaktiver Staub durch Abrieb der Brennelemente) oder einem mit Natrium gekühlten Reaktor (Aktivierung des Natriums durch schnelle Neutronen) hinzufügen. Dies spart Bauvolumen, Bauteile (die Funktion des Zwischenwärmetauschers übernehmen die Wärmerohre) und letztendlich Kosten. Im Prinzip ist man damit in der Wahl des Arbeitsmediums völlig frei. Allerdings sollte man die „Drucklosigkeit“ dieses Reaktortyps nicht grundlos aufgeben. Druckdifferenz bei hoher Temperatur bedeutet automatisch Wandstärke und damit Gewicht. Der Vorteil des einfachen Transports könnte schnell verloren gehen.

Beim eVinci ist zur Stromproduktion eine Gasturbine mit CO2 als Arbeitsmedium vorgesehen. Mit CO2 als Betriebsstoff besitzt man in der Kerntechnik jahrzehntelange Erfahrung (z. B. die gasgekühlten Kernkraftwerke in Großbritannien). CO2 läßt sich aber auch sehr gut als Medium für eine Gasturbine einsetzen. Man kommt damit mit wesentlich kleineren Arbeitsdrücken als bei Wasser aus. Die hohe angestrebte Betriebstemperatur von 600°C+ bei diesem Reaktor, erlaubt trotzdem akzeptable Wirkungsgrade. Noch wichtiger ist die Temperatur am kalten Ende des Turbinenaustritts: Eine Gasturbine arbeitete – anders als eine Dampfturbine – ohnehin mit so hohen Temperaturen, daß problemlos eine Kühlung mit Umgebungsluft möglich ist. Ein nicht zu unterschätzender Vorteil für alle „Wüstengebiete“ bzw. Flüsse, bei denen die zulässige Temperaturerhöhung bereits ausgereizt ist. Momentan ist der Einsatz von Turbinen mit überkritischem CO2 Kreisprozess geplant. Solche Turbinen gibt es bereits für diese Leistungsklasse. Ein weiterer Vorteil für die Beschränkung als „Mikroreaktor“. Des weiteren will man sich im ersten Schritt auf eine Temperatur von 600°C beschränken, sodaß man sich noch voll im Bereich konventioneller Kraftwerkstechnik bewegt.

Wieder ein Papierreaktor mehr?

Danach schaut es diesmal wahrlich nicht aus. Der eVinci besteht aus Komponenten, an denen bereits seit Jahrzehnten in den „National Laboratories“ geforscht und entwickelt wird. Das Gesamtkonzept mag revolutionär anmuten, die Grundlagen sind längst in aller Stille geschaffen worden. Deshalb ist der Terminplan auch sehr eng gestrickt. Fertigstellung eines Prototyps – noch ohne Kernbrennstoff – bis Ende 2020. An diesem „Modell“ sollen die Fertigungsverfahren ausprobiert werden und die Berechnungsverfahren etc. verifiziert werden. Inbetriebnahme eines Prototyps durch Westinghouse noch 2024. Bereitstellung von genehmigungsfähigen und lieferbaren Reaktoren für das Verteidigungsministerium bis 2026. In diesem Zusammenhang ist interessant, daß die kanadischen Genehmigungsbehörden ein paralleles Genehmigungsverfahren aufgenommen haben. Ziel dort ist die Versorgung abgelegener Minen mit Strom und Wärme. Es ergibt sich damit erstmalig die Situation, daß die Entwicklung eines „Prototypen“ – wie in guten alten Zeiten – in der Hand des Energieministeriums verbleibt. Parallel wird ein kommerzielles Genehmigungsverfahren von zwei nationalen Behörden gleichzeitig entwickelt. Konkurrenz belebt das Geschäft. Das bisher praktizierte „Totprüfen“ durch immer neu erfundene Sicherheitsnachweise – in Stundenlohnarbeit versteht sich – scheint diesmal ausgeschlossen.

Betrachtet man die Ströme an Forschungsgelder innerhalb der Kerntechnik in den USA der letzten zwei Jahre, so wird der Stellenwert dieses Projekts deutlich. Dies betrifft sowohl die absolute Höhe, als vor allem den relativen Anteil. Große Summen fließen bereits in Fertigungsverfahren. So wird eine vollautomatische Fertigung für die Wärmerohre entwickelt. Diese soll die Produktionskosten auf unter ein Zehntel der bisherigen Kosten senken. Gleiches gilt für die Produktion von TRISO-Brennelementen und eine neue Anreicherungsanlage für HALEU. Erklärtes Ziel ist ein Kraftwerk für einen Preis unter 2000 US$/kW anzubieten. Ausdrücklich in Konkurrenz zu Erdgas-Kombikraftwerken. Diese Kraftwerke sollen innerhalb von 30 Tagen ab Auslieferung vor Ort einsetzbar sein. Sie sollen in Fabriken, ähnlich denen für Flugzeugtriebwerke, in Serie gefertigt werden.

Warum das alles?

Man mag es gut finden oder nicht. Mal wieder scheint der Krieg Vater aller technischen Entwicklungen zu sein. Das US-Militär befindet sich mitten im Umbruch. Weg von der jahrzehntelangen Jagd auf irgendwelche Taliban mit Kalaschnikows und am Ende der Träume von der „Friedensdividende“ aus dem Zusammenbruch der Sowjetunion. China wird immer aggressiver (Südchinesisches Meer) und Parallelen zum Japan der 1930er Jahre erscheinen immer beängstigender. Hinzu kommt der Potentat Putin mit seinen Eskapaden in Osteuropa und Syrien, der sich inzwischen als die beste Werbeabteilung der amerikanischen Rüstungsindustrie erweist. Man muß sein Geschwafel über seine Wunderwaffen nur wörtlich nehmen und schon hat man Vorlagen für neue Rüstungsprogramme. Im Rahmen der Umstrukturierung wird immer deutlicher, daß der nächste „große Krieg“ voll elektrisch wird: Immer mehr Radaranlagen, immer mehr Datenverkehr, immer mehr Computer und sogar Laser-Waffen. All dies erfordert immer mehr elektrische Leistung, möglichst nah an der Front. Diese Energieerzeugungsanlagen müssen aber ständig mit Treibstoff versorgt werden, was zusätzliche Kräfte bindet – besonders in den Weiten des Pazifiks. Ganz ähnlich ist die Entwicklung bei der Marine. Hinzu kommt dort die neuartige Bedrohung durch präzise Mittelstreckenraketen. Eine Antwort auf diese Bedrohung ist die Kombination aus klassischen Schiffen mit „Roboter-Schiffen“. Diese Schiffe machen aber nur Sinn, wenn sie – ohne Besatzung – quasi endlos über die Weltmeere ziehen können. Kernreaktoren bieten sich als Antrieb geradezu an, sind aber mit heutiger Technik nicht finanzierbar. Billige Mikroreaktoren wären eine Lösung.

Immer wenn sich Militärs etwas in den Kopf gesetzt haben, bekommen sie kurz über lang ihre Wünsche erfüllt. Ganz besonders, wenn in breiten Bevölkerungskreisen eine Angst vor einer konkreten Bedrohung vorhanden ist. Dann spielen Kosten keine Rolle mehr. In den USA ist es schon immer Tradition gewesen, neuartige militärische Entwicklungen möglichst schnell in die zivilen Märkte überzuführen (Spielekonsolen, GPS etc..). Geheimhaltung ist sowieso nur beschränkt möglich, aber große Stückzahlen senken die Kosten. In diesem Sinne, ist in der Tat mit dem schnellen Aufbau von „Reaktor-Fabriken“ zu rechnen. Dies paßt auch zum aktuellen Zeitgeist: Donald Trump ist mit dem Slogan angetreten, die Industriearbeitsplätze zurück zu holen. Er hat dabei sicherlich nicht an Nähereien für Hemden gedacht. Alle, die dies milde als „populistisch“ abgetan haben, könnte das Lachen bald vergehen.

Micro-Reactor, die Renaissance made in USA?

Langsam zeichnet sich ab, welchen Weg die Trump-Administration für die Kernenergie vor hat. Nachdem die Fesseln des Obama-Zeitalters für die fossilen Energien erfolgreich durchschnitten wurden, wird der Umbau der Energieerzeugung nun auch konsequent auf die Kernenergie ausgedehnt. Die Reihenfolge war folgerichtig: Die meisten Arbeitsplätze und das schnellste Wirtschaftswachstum konnte kurzfristig nur über die Öl- und Gasindustrie geschaffen werden. Hier traf alles zusammen: Hohe Nachfrage zu akzeptablen Preisen auf dem Weltmarkt mit vorhandenem Wissen und Kapital im eigenen Land. Nebenbei wurde noch die Kohleindustrie stabilisiert und die überbordende Förderung für „alternative Energien“ zurechtgestutzt. Ein einziger Albtraum für jeden gläubigen „Klimaschützer“. Nachdem der Präsident nun das sichere Fundament für seine Wiederwahl gelegt hat, kehrt etwas Ruhe ein und man kann sich langfristigen Projekten wie der Kernenergie widmen.

Die Lage der Kerntechnik in den USA

Der Schock kam mit dem Desaster der Neubauprojekte Vogtle und Summers. Die USA sind nicht mehr in der Lage, einen in den USA entwickelten Reaktortyp fristgerecht und zu den vereinbarten Preisen fertigzustellen. Zu aller Schande wurden die gleichen Reaktoren in Lizenz in China errichtet und sind inzwischen am Netz. Es gibt in den USA — wie in Deutschland und Frankreich — keine leistungsfähige Industrie mehr, die solch komplexe Projekte unter den speziellen Randbedingungen der Kerntechnik durchziehen kann. Der Faden ist durch die jahrzehntelange Zwangspause beim Neubau einfach abgerissen. Man lernt in Vogtle und Olkiluoto genauso wieder von vorn, wie in den fünfziger und sechziger Jahren. Da sich auch in den USA keine weiteren Kernkraftwerke als Anschlussaufträge abzeichnen, droht eine Abwärtsspirale.

Wie immer, wenn man in einer Sackgasse steckt, muß man die Situation analysieren und neu denken. Es ist etwas von dem „Apple-Geist“ nötig, der mitten in der Krise der Computerindustrie das Smartphone erfunden hat. Heutige Kernkraftwerke erfordern riesigen Kapitaleinsatz, lange Bauzeiten (vom ersten Genehmigungsantrag bis zur Fertigstellung), große Stäbe von erfahrenen Fachkräften. Solche Randbedingungen sind heute nur noch in Staatswirtschaften zu realisieren. Will man verhindern, daß China und Rußland das weltweite Monopol für Kernkraftwerke erhalten, muß man deshalb genau hier ansetzen. Der eingeschlagene Weg läuft über eine Serienproduktion anstelle einer Kosteneinsparung über einen „Größenvorteil“. Ein revolutionärer Ansatz, wie einst der Umstieg vom „Handy“ auf das Smartphone. Ganz wichtig ist hierbei die Schaffung eines Zusatznutzens, der für sich allein einen Kaufanreiz darstellt — zumindest für eine vorhandene kaufkräftige Konsumentengruppe als Starter.

Tot geschriebene, leben länger

Die kerntechnische Industrie in den USA ist noch lange nicht tot. Jedenfalls so lange, wie sie über einschlägige Forschungszentren mit zehntausenden (der besten) Fachleute weltweit verfügt und eine — etwas im Verborgenen blühende — Reaktorindustrie vorhanden ist. Wenig beachtet, existiert das „Büro für Schiffsreaktoren“, welches 82 Kriegsschiffe mit Kernreaktoren unterhält, über sechs Werften, vier Übungsreaktoren an denen jährlich 3500 Studenten ausgebildet werden, zwei eigenen Forschungszentren (Bettis/Knolls), hunderten von klassifizierten Zulieferern und einem eigenen, kompletten Brennstoffkreislauf, verfügt. Dort weht immer noch der Geist von Admiral Rickover. Völlig geräuschlos — und vor allem ohne spektakuläre Unfälle — wird dort Reaktortechnik auf höchstem und sonst weltweit unerreichtem Niveau betrieben. Allein diese Organisation kann (wieder) als Keimzelle einer neuen Industrie dienen. Außerdem hat sich offensichtlich der öffentliche Wind gedreht: Es gibt mehr als 70 neugegründete Unternehmen, die sich mit den unterschiedlichsten Reaktortypen beschäftigen. Universitäten brauchen sich keine Sorgen mehr über den Nachwuchs zu machen.

In diesem Umfeld fehlt es nur noch an politischem Willen. Dieser scheint nun endlich in der Gestalt von Präsident Trump gekommen zu sein. Er hat das Zeug zu einem Kennedy der Kerntechnik zu werden. So, wie einst die Mondlandung zu einer Explosion der Raumfahrt geführt hat, könnte heute der „Micro-Reactor“ eine Initialzündung für einen neuen Industriezweig auslösen.

Was macht dieses Konzept so anders?

Grundgedanke ist die Serienfertigung. Die heutigen (unvorhersehbaren) Bauzeiten für Kernkraftwerke in westlichen Ländern sind für jeden Investor völlig indiskutabel. Zwar bekommt man nicht einmal ein Gaskraftwerk beim Kaufmann um die Ecke, aber zumindest Termingerecht in einem überschaubaren Zeitraum. Die unvorhersehbaren Zeiträume sind die Hauptursache für die hohen Kosten. Dies zeigen die Preise für baugleiche Kraftwerke in China überdeutlich — z. B. gegenüber den ewigen Baustellen in USA (Vogtel), Frankreich (Flamanville) und Finnland (Olkiluoto).

Die notwendige Erstinvestition für eine kleine Leistung ist entsprechend gering gegenüber einem großen konventionellen Kernkraftwerk. Das wirtschaftliche Risiko ist dadurch leichter handhabbar. In wie weit die Serienfertigung hierbei mit einer Kostendegression durch Größe mithalten kann, wird die Zukunft zeigen. Viel wichtiger ist jedoch, daß sich durch die geringen Leistungen völlig neue Märkte für die Kerntechnik erschließen. Auch die Großraumflugzeuge haben in der Luftfahrt nicht die Neuentwicklung kleiner Jets verhindert. Im Gegenteil, haben die kleinen Flugzeuge völlig neue Märkte erschlossen und damit die Luftfahrt insgesamt belebt.

Die Brennstoffkosten sind bei Kernkraftwerken vernachlässigbar — ausdrücklich auch unter Einschluß der notwendigen Entsorgungskosten! Man sollte deshalb nicht den Wirkungsgrad, sondern die Investitionskosten und die Robustheit in den Vordergrund stellen. Lange Betriebszeiten (geplant mindestens 10 Jahre) zwischen den Brennstoffwechseln ergeben schnell geringere Stromkosten zu festen Preisen (Leistung in kW x Betriebsstunden = produzierte Kilowattstunden) gegenüber Windmühlen und Sonnenkollektoren. Aber das absolute Killerargument gegenüber allen wetterabhängigen Verfahren ist: Immer wenn der Schalter umgelegt wird, ist die benötigte elektrische Leistung vorhanden. Ganz ohne Speicher und sonstigen teuren Ballast und auch noch ohne Luftbelastung.

Der ungesehene Markt

Alle Kleinreaktoren leiden unter dem „Henne-Ei-Problem“: Größere Stückzahlen sollen über eine Serienfertigung die Preise drastisch senken. Es fehlt aber der Kunde, der für einen ersten Reaktor bereit ist, das volle Risiko und den notwendigerweise erhöhten Preis zu tragen. Ein Problem, das der Flugzeugindustrie wohl bekannt ist. Es gibt jedoch einen Kunden, der mit diesem Phänomen gewohnt ist umzugehen und überdies noch durch den Steuerzahler gedeckt ist: Das Militär.

Für das US-Militär ist die Versorgung mit Energie stets ein strategisches Problem gewesen. Jeder Versorger muß im Ernstfall durch Kampftruppen (z. B. Begleitung von Konvois) geschützt werden — bindet also Kampfkraft. Außerdem schreitet mit stark zunehmender Geschwindigkeit die Elektrifizierung des Militärs voran (Kommunikation, Radargeräte usw., bis hin zu Waffensystemen selbst). Gleichzeitig werden die vorhandenen Stromnetze auch in USA durch den vermehrten Einsatz von „Erneuerbaren“ immer störungsanfälliger und die Stromkosten steigen immer weiter. Der Scheidepunkt zwischen immer mehr zusätzlicher Notstromversorgung zur Absicherung und Eigenversorgung rückt immer näher. Das US-Verteidigungsministerium ist für über 500 Liegenschaften mit mehr als einem Megawatt Anschlussleistung allein auf dem eigenen Staatsgebiet Auftraggeber und somit einer der größten Stromkunden überhaupt (ca. 21% des gesamten öffentlichen Verbrauchs). 90% dieser Objekte kann mit 4 x 10 MWel voll versorgt werden. Hinzu kommen noch langfristig Heizwärme und Trinkwasser (Meerwasserentsalzung). Im ersten Schritt wird aber eine reine Stromversorgung angestrebt. Da die Spitzenlast nur im Ernstfall benötigt wird, kann sich Zukünftig eine Umkehrung anbieten: Das militärische Kraftwerk speist Überschußstrom ins Netz und senkt damit die eigenen Kosten. Somit ergeben sich folgende Anforderungen:

  • Kleine Abmessungen und geringes Gewicht, damit die „Kleinkraftwerke“ später auch im Feld folgen können.
  • Um möglichst viele Anwendungsfälle zu erschließen, nur eine kleine Leistung — bis 10 MWel derzeit angestrebt.
  • Inhärente („walk away“) Sicherheit.
  • Möglicher Betrieb über den vollen Lastbereich mit hoher Änderungsgeschwindigkeit um Inselbetrieb zu gewährleisten.
  • Langzeit-Dauerbetrieb mit Brennstoff Wechselintervallen von mindestens 10 Jahren („Batterie“). Dies macht eine höhere Anreicherung von nahezu 20% (HALEU) nötig.
  • Weitestgehend vollautomatischer Betrieb durch Soldaten — nach kurzer Schulung und Einarbeitung.
  • Möglichst eine zivile Zulassung durch die NRC um die potentiellen Stückzahlen zu erhöhen und eine Einspeisung ins öffentliche Netz zu ermöglichen.

Das Genehmigungsverfahren

Heutzutage eine Genehmigung für einen neuen Reaktortyp zu erlangen, gleicht einem einzigen Hindernislauf mit ungewissem Ausgang. Von einer Behörde, die ein Monopol hat und überwiegend im Stundenlohn (rund 280$/h) arbeitet, kann man keine Sprünge erwarten. Sie wird sich noch grundlegend umorganisieren müssen um sich den neuen — teilweise noch in Arbeit befindlichen — Randbedingungen anzupassen: Bei Reaktoren so kleiner Leistung ist die Menge radioaktiver Stoffe (Spaltprodukte) so klein, daß auch im ungünstigsten Fall eine Gefährdung von Personen außerhalb des Betriebsgeländes ausgeschlossen werden muß. Eine schlimme Kröte für alle „Atomkraftgegner“! Eine inhärente Sicherheit, d. h. keine nukleare Explosion und auch keine Notkühlung ist erforderlich. Ein vollautomatischer Betrieb, der keine Fehlbedienung erlaubt. In diesem Zusammenhang ist interessant, daß die gesetzlichen Bestimmungen über die Nuklearversicherung bald routinemäßig auslaufen und zwangsläufig überarbeitet werden müssen. Es bietet sich an, für solche Reaktoren die Haftpflicht nur noch rein kommerziell auszugestalten. Eine (spezielle) Industrieversicherung mit kalkulierbar geringeren Kosten. Auch das wird für „Atomkraftgegner“ nur schwer verdaulich sein, da es doch zu deren Grundüberzeugungen zählt, daß Kernkraftwerke gar nicht zu versichern seien!

Wer an dieser Stelle glaubt, das seien alles nur Wunschträume, der täuscht sich gewaltig. Die NRC steht unter Druck. Sie hat schon lange den Bogen überspannt. Ganz entscheidend ist aber, daß sich mit der Wahl von Präsident Trump der Wind von gegen, in pro Kernenergie gedreht hat. Der Präsident ist nämlich in dieser Frage sehr mächtig: Nach dem Atomic Energy Act of 1954 kann er das Verteidigungsministerium (DoD) anweisen, einen solchen Reaktor für militärische Zwecke zu bauen und zu betreiben (siehe 42 U.S.C. §2121(b)). Es bedarf dazu ausdrücklich keiner Genehmigung durch die NRC (siehe 42 U.S.C. §2140(b)).

Allerdings ist der Eigenbau gar nicht gewollt. Es geht um die Wiederbelebung der kerntechnischen Industrie. Dafür ist aber eine Genehmigung und Überwachung durch die NRC nötig. Im Gespräch sind private Investoren und Betreiber. Das Militär würde nur für 40 Jahre den Strom zu einem festgelegten Preis kaufen. Das Kraftwerk könnte in unmittelbarer Nähe des Stützpunktes errichtet werden und von dieser wirtschaftlichen Basis aus, sein Geschäft erweitern. Ein Vorbild ist auch die NASA, die eng mit privaten Raketenherstellern zusammenarbeitet und von diesen Nutzlast kauft.

Der Zeitplan

Aktuell geht man von einer Realisierung innerhalb von 5 bis 10 Jahren für den „Neuen Reaktor“ einschließlich Brennstoffkreislauf, Genehmigungen und Bau aus. Für einen Kerntechniker hört sich das wie Science Fiction oder einer Geschichte aus vergangenen Zeiten (erstes Atom-U-Boot Nautilus etc.) an. Vielleicht knüpft Präsident Trump aber bewußt an diese Traditionen an. Ein solches Projekt ist weniger eine Frage der Ingenieurleistungen sondern viel mehr des politischen Willens. Gelingt es ihm, hat er wahrlich „America Great Again“ gemacht. Wenn Amerika wirklich wollte, hat es immer das Unmögliche geschafft: Manhattan Project, Nautilus, Apollo usw.

Nun ist es auch nicht so, als wenn man bei Stunde Null mit diesem Projekt anfängt. Technisch gibt es kaum Unwägbarkeiten. Politisch sind auch bereits die entscheidenden Gesetze durchgebracht. Es ist halt der unvergleichliche Donald Trump Regierungsstil: Immer viel Kasperletheater als Futter für die Medien und sonstige schlichte Gemüter, bei gleichzeitig harter Sacharbeit im Hintergrund.

Atomwaffen als Preis für Klimaschutz?

Michael Shellenberger bezeichnet sich selbst als „Umweltaktivist“ der sich für „CO2 freie Energie“ zur „Klimarettung“ einsetzt. Er sagt von sich selbst, daß er ursprünglich ein Anhänger von „Atomkraft-Nein-Danke“ war und heute aktiv für die Erhaltung von Kernkraftwerken kämpft — vom Saulus zum Paulus sozusagen. Gerade deswegen genießt er hohes Ansehen unter Aktivisten für die Kernenergienutzung.

Nun hat er sich mit dem Artikel Wer sind wir, daß wir schwachen Nationen Kernwaffen vorenthalten, die sie für ihre Selbstverteidigung benötigen? und einer noch dolleren Fortsetzung Für Nationen die Kernenergie anstreben ist der Bau von Kernwaffen eine Fähigkeit und kein Fehler im Forbes-Magazin auf sehr abschüssiges Gelände begeben. In Anbetracht der großen Auflage und dem Bekanntheitsgrad des Autors kann man seine Thesen nicht unkommentiert lassen. Dafür wird einfach zu viel durcheinander gerührt. Der geübte Erzähler beginnt seinen Artikel mit der Schilderung einer Szene aus einem Hollywoodfilm, in der die SS brutal eine jüdische Familie im besetzten Frankreich abschlachtet. Er läßt seine Schilderung mit der selbst beantworteten Frage enden, warum sich die französische Familie überhaupt im Keller verstecken mußte: Sie hatten keine Abschreckung. Er spannt den erzählerischen Bogen weiter über den July 1942, in dem die kollaborierende französische Polizei fast 13000 Juden in einem Stadion zusammenpferchte und anschließend nach Deutschland deportieren ließ. Es folgt die Feststellung, daß von den fast 76000 französischen Juden die Gaskammern von Ausschwitz nur 2000 überlebt haben. Dramaturgisch geschickt, aber äußerst geschmacklos — wenn man erst einmal die spätere Gleichsetzung von Israel und Iran gelesen hat — kommt er zu seiner ersten These:

Die Atombombe als Waffe der Schwachen.

Wie hätte ein schwacher Staat wie Frankreich der 1930er Jahre die Ungleichheit gegenüber dem nationalsozialistischen Deutschland aufheben können? Durch den Besitz einer Waffe, mit der er ihre größten Städte hätte ausradieren können. Wow! Mal abgesehen, daß solche historischen Betrachtungen genauso sinnvoll sind, wie die Fragestellung, was wäre aus der Welt geworden, wenn die Saurier schon Konserven gehabt hätten, ist dies schon der erste Widerspruch in seiner gesamten Argumentation. Shellenberger hat die Nukleare-Abschreckung, wie sie z. B. im Kalten-Krieg vorlag, gar nicht verstanden: Sie funktioniert nur, wenn jeder genug Waffen hat, den Gegner auch dann sicher auszulöschen, wenn dieser bereits sein ganzes Arsenal abgefeuert hat (Zweitschlagfähigkeit). Nur in der Märchenwelt verfügt ausschließlich der Edle und Schwache über Schwert und Rüstung — was ihn automatisch nicht mehr schwach sein läßt. Solange also nicht jeder Staat über das Potential verfügt, die ganze Welt zu vernichten, gibt es keine funktionierende Abschreckung. Wer ist ernsthaft für solch einen Irrsinn?

Das ganze Vorspiel mit Frankreich bekommt plötzlich Sinn, wenn man die Überleitung mit Charles de Gaulle über die nukleare Bewaffnung von Frankreich liest. Shellenberger sieht sie als logische Konsequenz des Überfalls von Frankreich durch Deutschland. Aus dieser Position leitet er die vermeintlich unmoralische Haltung der USA 1962 ab: Das französische Ansinnen sei „töricht oder teuflisch — oder beides“ (frei nach Kennedy). Warum konnten die USA Frankreich den Wunsch absprechen, sich selbst zu verteidigen? Eine moralisch triefende rhetorische Frage, die er für seine weitere Argumentation braucht. Er blendet einfach die historischen Tatsachen aus: Die Panzer der Sowjetunion standen an der Elbe — also unmittelbar vor den Toren Frankreichs. Charles de Gaulle sprach in diesem Zusammenhang bewußt von Lyon und Hamburg. Er wollte das Europa der Vaterländer — zusammen mit dem „Erbfeind“ Deutschland — als Bollwerk gegen weitere innereuropäische Kriege und die äußere Bedrohung durch den Kommunismus. Demgegenüber stand die nordatlantische Wertegemeinschaft mit dem atomaren Schutzschirm der USA als Alternative.

Der nukleare Schutzschirm

Damit kommen wir zu seiner zweiten These, mit der er Kernwaffen für jeden Staat begründet: Kein Staat würde einen „Atomkrieg“ riskieren, wenn einer seiner Verbündeten durch einen anderen Staat mit Atomwaffen angegriffen würde. Ausgerechnet den deutschen Professor Christian Hacke führt er hierfür als Zeuge an. Ein Typ, die schon mal gerne Donald Trump in einem Interview mit dem Deutschlandfunk (Wo auch sonst, als im GEZ-Funk?) als „Kotzbrocken, der für die Unterseite der amerikanischen Zivilisation steht“ bezeichnet. Schlimmer noch, diese Lichtgestalt eines deutschen Politologen verbreitet seine kruschen Thesen auch noch international:

Germany is, for the first time since 1949, without nuclear protection provided by the United States, and thus defenseless in an extreme crisis. As such, Germany has no alternative but to rely on itself. A nuclear-armed Germany would be for deterrence only. A nuclear Germany would stabilize NATO and the security of the Western World, but if we cannot persuade our allies then Germany should go it alone.

Kurz und knapp: Wegen der neuerdings unzuverlässigen USA — die staatliche Propaganda des GEZ-Rundfunks zeigt zumindest bei diesem Herrn Früchte — braucht Deutschland eigene Kernwaffen!

Die Politik der USA hat sich bisher nicht verändert: Es sind zahlreiche US-Truppen in Deutschland stationiert. Zusätzlich wurde der Schutzschirm noch bis in die baltischen Staaten ausgedehnt. Dies ist der „Pearl-Harbor-Knopf“ der USA! Putin-Versteher bezeichnen das als Bedrohung Russlands durch die „Nato-Ost-Erweiterung“. Zum Glück ist Putin als KGB-Offizier in der dritten Generation nicht ein solcher Einfaltspinsel. Gleichwohl ist das Säen von Zwietracht ein ewiges Bemühen dieser Organisation und ihrer Helfer im Westen. Wer sich dafür interessiert, dem sei z. B. ein Studium des „NATO-Doppelbeschlusses“ empfohlen. Noch heute kämpft die SED-Nachfolgepartei gegen die Lagerung von US-Atombomben auf deutschem Grund. Sie sollten nach Freigabe durch die USA von Bundeswehrflugzeugen gegen die Sowjetarmee eingesetzt werden können. Nichts weiter, als ein deutliches Argument, daß das Spiel „New York gegen Berlin“ nicht funktioniert. Nukleare Abschreckung ist halt etwas komplexer als mancher Politologe glaubt zu wissen.

Alle Staaten sollen gleich sein

Staaten sind nicht gleich gefährlich. Es ist wie mit Messern, Schusswaffen und allem anderen auch: Es ist z. B. ein Unterschied, ob ein Pfadfinder ein Messer bei sich hat oder ein „männlicher unbegleiteter Migrant“ auf einem Volksfest. Insofern ist es bestenfalls naiv, alle Staaten in einen Topf zu werfen.

Man mag ja noch verstehen, daß in Nord Korea die Kernwaffen letztendlich nur zur Ausbeutung und Unterdrückung des eigenen Volkes durch seinen Diktator dienen sollen: Wenn ihr mir mein Volk wegnehmen wollt, beschmeiß ich euch mit Atombomben. Aber Iran und Israel in einen Topf zu schmeißen, ist schon nicht mehr unverständlich: Israel ist eine Demokratie — Iran ein antisemitisches Mullah-Regime, das immer wieder mit der Auslöschung Israels droht; Israel hat bisher ausschließlich unter großen Opfern lokale Verteidigungskriege führen müssen — Iran führt aus religiösem Antrieb Krieg in Jemen, Irak und Syrien und unterstützt aktiv Terroristen. Man hätte wirklich kein dämlicheres Beispiel für die Befriedung durch frei verfügbare Kernwaffen finden können. Iran ist erst durch sein Streben nach Kernwaffen zum Problem geworden. Mit Rationalität im Zusammenhang mit gläubigen Schiiten sollte man auch nicht zu erwartungsvoll sein: Was soll ein Gleichgewicht des Schreckens jemandem sagen, der davon überzeugt ist, 72 Jungfrauen zu bekommen, wenn er sich selbst in die Luft sprengt?

Libyen, Irak und die Ukraine sind ebenfalls schlechte Beispiele zur Untermauerung der These von „Frieden schaffen durch Kernwaffen“. Libyen und Irak hätten es aus eigener Kraft gar nicht geschafft Kernwaffenstaat zu werden. Dafür haben ihre technischen und finanziellen Möglichkeiten nicht ausgereicht. Die Ukraine hat lediglich die sowjetischen Kernwaffen, die auf ihrem Territorium stationiert waren, an den Nachfolgestaat Rußland zurück gegeben. Der Unterhalt hätte sie nur finanziell aufgefressen. Putin hätte sich von einer Destabilisierung auch durch ein paar olle Raketen nicht abhalten lassen. Auf Grund seiner praktischen Erfahrung als KGB-Offizier in der DDR, kann er einfach kein freies und wirtschaftlich erfolgreiches Land als Leuchtfeuer in seiner Nähe dulden.

Warum uns Kernwaffen friedlich machen sollen

Atomwaffen dienen nicht zur Verteidigung sondern als Strafe“. Wieder so ein markanter Irrtum. „Friedensbewegte“ würden lieber von der drohenden atomaren Apokalypse sprechen. Wieso eigentlich? Hiroshima und Nagasaki sind schon lange wieder belebte Städte. Einzig und allein die Fähigkeit einen Gegner mit Sicherheit auch im Zweitschlag zu vernichten, kann eine Abschreckung auslösen. Aber kann Korea die USA auslöschen oder China Indien? Für eine nukleare Strafaktion wäre es wohl viel zu spät. China und Pakistan haben daher ständig Grenzscharmützel, nur wird hier darüber kaum berichtet. Frieden jedenfalls, sieht anders aus.

Ferner sind Kernwaffen nicht alles. Da ist z. B. eine funktionierende Raketenabwehr, über die im Moment praktisch nur die USA und Israel verfügen. Glaubt jemand ernsthaft daran, daß es (zumindest heute und in naher Zukunft) Korea gelingen würde, eine Interkontinentalrakete zum amerikanischen Festland durchzubringen?

Selbst eine so simple Eigenschaft wie die Fläche eine Landes spielt eine Rolle: Für Breschnew war Deutschland stets ein Problem von drei Wasserstoffbomben. Israel könnte wohl kaum eine aushalten. Dem großen Führer von Nord Korea wäre es wohl egal, ob sein Land in einen Parkplatz umgewandelt würde, solange er in irgendeinem Bunker überleben könnte. Iran ist zwar ziemlich groß, aber seine Führungsclique erstrebt ohnehin einen Platz im eingebildeten Paradies.

Kernkraftwerke und die Bombe

Die abgedroschene Behauptung der Verknüpfung von Kernkraftwerken und nuklearer Aufrüstung ist schlicht weg Unsinn. Der einzige Fall einer Verknüpfung (über die Nutzung von Schwerwasserreaktoren zur Produktion von waffengrädigem Plutonium) war und ist Indien. Die Welt hat daraus gelernt (z. B. „123-Abkommen“ mit den Vereinigten Emiraten). Selbst Korea, Iran und vormals Süd-Afrika haben ein eigenes Waffenprogramm unterhalten. Eher das Gegenteil ist der Fall: Ein paralleles Programm zum Aufbau von friedlicher und militärischer Nutzung ist für die meisten Länder der Welt schlicht zu kostspielig. Auch Saddam Hussein, Muammar al-Gaddafi und Assad konnten nur an der Bombe basteln. Wie wichtig Geld ist, zeigt das Beispiel Vietnam, dort mußte man von dem geplanten Bau von Kernkraftwerken auf Kohlekraftwerke umschwenken. Wären die Theorien von Shellenberger zutreffend, hätte Vietnam alles daran setzen müssen Kernkraftwerke zu bauen, befindet es sich doch in einem latenten Kriegszustand mit China.

Der Brennstoffkreislauf

In der Tat ist der Aufbau eines Brennstoffkreislaufes wesentlich sensibler. Dies betrifft sowohl die Anreicherung von Uran auf Waffenfähigkeit (Pakistan) wie auch die Wiederaufbereitung (Indien). Sowohl die USA (Vereinigte Emirate), wie auch Rußland (Türkei, Ägypten) achten beim Verkauf von Kernkraftwerken durch die Lieferung und Rücknahme des benötigten Brennstoffs auf eine Einschränkung des Kreises.

Umgekehrt kann man nicht den Schluß ziehen, daß jedes Land mit einem Brennstoffkreislauf auch Kernwaffen anstrebt. Paradebeispiel dafür war gerade Deutschland. Wie unverantwortlich und dämlich daher beispielsweise das Politologengeschwafel eines Christian Hacke ist, zeigt bereits Shellenbergers Artikel: Er listet nur drei Staaten (Polen, Ungarn und Finnland) auf, denen er kein Streben nach Kernwaffen unterstellt.

Ebenso sollte man eigentlich denken, daß die Gleichsetzung von Plutonium und Kernwaffen langsam aus der Welt ist. Sehr ungerecht ist in diesem Zusammenhang gerade die Erwähnung von Japan. Japan hat sich für einen geschlossenen Brennstoffkreislauf entschieden. Hat aber bisher seine abgebrannten Brennelemente in Frankreich und GB aufarbeiten lassen. Diese beiden Länder sind die Garanten, daß es sich bei den zitierten 6000 to ausschließlich um Reaktorplutonium und keinesfalls um waffengrädiges Plutonium handelt.

Nachwort

Kernwaffen sind Massenvernichtungswaffen, deren militärischer Nutzen ohnehin eingeschränkt ist — Friedensstifter sind sie keineswegs. Sie gehören genauso geächtet wie Chemiewaffen. Da aber die reale Welt ist wie sie ist, können nur beharrliche Abrüstungsverhandlungen zum Ziel führen. Bis dahin ist konsequent die Weiterverbreitung zu verhindern oder wenigstens zu behindern. Es ist zumindest ein Zeitgewinn.

Was Michael Shellenberger anbetrifft: Man kann ja gerne glauben, daß CO2 zur „Klimakatastrophe“ führt. Es ist auch ein lobenswerter Entwicklungsschritt, wenn man zur Erkenntnis gekommen ist, daß man nicht mit Wind und Sonne die Welt mit ausreichend Energie versorgen kann. Insofern sei sein jahrelanger Einsatz für die Nutzung der Kernenergie keinen Millimeter geschmälert. Es ist aber schlichtweg nicht zulässig, wenn man zur „Klimarettung“ Kernwaffen als Friedensstifter glorifiziert.

Neutronen als Spürhund

Neutronen sind schon seltsame Geschöpfe. Sie haben eine recht große Masse und keine elektrische Ladung. Sie sind deshalb in der Lage, viele Materialien nahezu ungehindert zu durchdringen. Ganz im Gegenteil zu den Protonen — ihren Gegenstücken im Kern — die eine positive Ladung besitzen. Sie haben zwar fast die gleiche Masse, werden aber wegen ihrer elektrischen Ladung stark beim Durchtritt durch Materie beeinflußt. Elektronen sind nur leicht und sind elektrisch negativ geladen. Wegen ihrer Ladung sind sie gut zu beschleunigen und auszurichten, dringen aber wegen ihrer geringen Masse nur wenig in Materialien ein. Sie werden deshalb z. B. zum Schweißen verwendet. Ein Partikelstrahl aus Neutronen würde den Stahl einfach durchdringen, ihn aber nicht zum Schmelzen bringen.

Da Neutronen keine Ladung besitzen, lassen sie sich nicht beschleunigen und in ihrer Flugrichtung beeinflussen. Sie lassen sich nur „mechanisch“ durch Zusammenstöße abbremsen. Sinnigerweise nur leicht, wenn sie mit schweren Kernen zusammenstoßen und sehr stark, wenn sie mit möglichst leichten Kernen zusammentreffen. Ihre „Reaktionsfreude“ hängt wiederum von ihrer Energie, d. h. ihrer Geschwindigkeit ab. Aufgrund dieses Zusammenhanges entsann der Mensch die Neutronenwaffe: Schnelle Neutronen sollten nahezu ungehindert Panzer durchdringen und erst mit den darin sitzenden Menschen (tödlich) reagieren.

Neutronen zur Analyse

Wenn Neutronen mit Atomkernen reagieren, entstehen immer irgendwelche charakteristischen γ-Quanten. Diese kann man recht einfach und sehr genau messen. Sprengstoffe bestehen wesentlich aus Wasserstoff, Stickstoff, Sauerstoff und Kohlenstoff in bestimmten chemischen Verbindungen. Wird ein solcher Stoff mit Neutronen beschossen, ergibt sich ein eindeutiger „Fingerabdruck“ in der Form des gemessenen γ-Spektrums. Sehr genau und sehr zuverlässig. Man kann nicht nur sagen, daß es Sprengstoff ist, sondern genau die Sorte angeben. Fehlalarme sind nahezu ausgeschlossen — wenn man genug Neutronen hat und über die erforderliche Meßtechnik verfügt.

In der Forschung — und teilweise der Forensik — ein seit Jahrzehnten erfolgreich angewendetes Verfahren. Man kann z. B. noch Gifte in Konzentrationen finden, bei denen chemische Analyseverfahren längst versagen. Solche Untersuchungen finden meist in kerntechnischen Einrichtungen statt, denn man benötigt neben der Meßtechnik Zeit und viele geeignete Neutronen — üblicherweise aus einem Forschungsreaktor.

Während des Irak-Krieges erlitten die Truppen die meisten Verluste durch „Eigenbau-Sprengfallen“ die unmittelbar neben den Straßen gelegt wurden. Wenn eine LKW-Kolonne vorbeifuhr, wurden sie (meist über Funk) ausgelöst. Schutz gegen solche Sprengfallen bieten nur gepanzerte Fahrzeuge. Die größten Verluste hatten deshalb nicht die kämpfenden Truppen an der Front, sondern die Versorgungseinheiten, die in Kolonnen durch endloses Feindesland fahren mußten. Nach amerikanischem Muster wurde deshalb richtig Geld in die Hand genommen, um dieses Problem zu lösen. Eine Lösung ist heute die Neutronenaktivierungsanalyse: Sie wirkt auch gegen versteckte und eingegrabene Sprengkörper aus schwer detektierbaren Materialien wie z. B. Kunststoff und Holz in einer vermüllten Umwelt. Für eine praktische Anwendung ist die sichere und schnelle Erkennung aus einem (langsam) fahrenden Fahrzeug und sicherer Entfernung von etlichen Metern erforderlich. In der Messdauer und der Entfernung liegt aber die Herausforderung.

Die „Neutronenkanone“

Will man größere Mengen Neutronen in einer möglichst kleinen Anlage erzeugen, bleibt praktisch nur die Kernfusion. Man schießt in einem Beschleuniger z. B. H2 – Kerne auf H3 – Kerne, wodurch ein Neutron mit hoher Energie freigesetzt wird. Das Problem solch einer Kernreaktion ist aber, daß die entstandenen Neutronen sich in einer beliebigen Richtung davonmachen. Ganz ähnlich wie die Lichtquanten einer Glühbirne. Es ist gleichmäßig hell im gesamten Raum um die Glühbirne. Diese großräumige Verteilung hat zur Folge, daß die Helligkeit sehr schnell mit dem Quadrat der Entfernung abnimmt. Will man eine bestimmte Stelle „ausleuchten“, muß man den Lichtstrahl darauf konzentrieren. Genau dies ist aber bei Neutronen nicht so einfach. Ein Spiegel funktioniert — anders als bei Licht — praktisch nicht. Eine Ablenkung durch Magnetfelder funktioniert wegen der nicht vorhandenen Ladung — anders als bei dem Elektronenstrahl einer Röhre — auch nicht. Eine solch einfache Neutronenquelle hätte nur eine sehr geringe Reichweite und wäre damit unbrauchbar.

Wenn es aber trotzdem gelänge den größten Teil der Neutronen gezielt auf ein Objekt zu lenken anstatt sie sinnlos im Raum zu verteilen, sehe die Sache anders aus. Je mehr Neutronen den Sprengkörper treffen, um so stärker sendet dieser seine charakteristischen γ-Quanten aus und die erforderliche Messdauer verkürzt sich, was dem Suchfahrzeug eine höhere Geschwindigkeit erlaubt. Neutronen sind zwar schwer auf Kurs zu bringen, dafür halten sie aber um so sturer ihren Kurs (große Masse und keine Ladung) und fliegen mit einer Geschwindigkeit von über 40 000 km/s davon.

Neutronen kann man praktisch nicht mehr beeinflussen. Dies ist ein Vorteil und Nachteil zugleich: Positiv ist, daß sie gegenüber allen anderen Partikeln eine außergewöhnliche Reichweite besitzen, da sie durch die Luftmoleküle nahezu unbeeinflußt hindurch fliegen. Neutronen sind gegenüber Atomen winzig klein, sodaß die Atmosphäre für sie ein nahezu leerer Raum ist. Die vielen Elektronen die um die Kerne schwirren, sind für sie kein Hindernis, da sie selbst keine elektrische Ladung besitzen und ihre Masse (Zusammenstoß) gegenüber den Elektronen riesig anmutet. Man muß sie nur einheitlich ausrichten um einen wirksamen Partikelstrahl zu erhalten.

Dies geht jedoch über einen Trick aus der Quantenphysik. Neutronen besitzen einen sog. Spin: Anschaulich gesagt, rotieren sie wie ein Kreisel um ihre Achse. Ein solcher Spin ist eine Erhaltungsgröße, d. h. der Spin eines Atomkerns überträgt sich nach dem Aussenden des Neutrons aus dem fusionierten Kern auf dieses Neutron. Normalerweise sind die Spins der Atomkerne nicht einheitlich. Deshalb schwirren die Neutronen normalerweise in alle Richtungen des Raumes davon. Wenn man jedoch vor der Fusion allen Atomkernen den gleichen Spin aufzwingt und sie wie eine Perlenkette ausrichtet, fliegen auch alle Neutronen wie ein Strahl von der Neutronenquelle davon. Dies alles gelingt inzwischen in so kleinen Gerätschaften, daß man sie einschließlich der nötigen Energieversorgung etc. auf einem Klein-LKW unterbringen kann. Diese „Neutronenkanonen“ erzeugen einen mehr als tausendfachen Neutronenfluß in eine Richtung.

Die Teilchenstrahlungswaffe

Momentan ist die „Neutronenkanone“ so klein und einsatzbereit, daß sie mit allem notwendigen Zubehör auf einen Kleinlastwagen zum Auffinden von Sprengfallen am Straßenrand in den Einsatz geht. Die Entwicklung wird aber massiv in die Richtungen: Kleiner, leistungsfähiger und billiger vorangetrieben. Der nächste Schritt ist ein Gerät, welches sich in ein Flugzeug einbauen läßt.

Vordringlich ist aber ein weiteres Einsatzfeld: Die Analyse von Kernwaffensprengköpfen. Eine einfache Maßnahme gegen die immer erfolgreichere Raketenabwehr ist das Ausstoßen von zusätzlichen Attrappen. Bei den bisherigen Raketenabwehrsystemen muß man sich noch auf das Erreichen des Scheitelpunktes einer ballistischen Rakete beschränken. Erst dann kann man erst sicher die Flugbahn berechnen und das Ziel voraussagen. Eine einfache Abwehrmaßnahme ist der gleichzeitige Ausstoß von mehreren Attrappen. Heute kann man noch nicht Sprengkopf und Attrappen unterscheiden. Man müßte also alle Objekte sicher abschießen, was schnell eine Raketenabwehr — zumindest wirtschaftlich — überfordern würde. Hier kommt wieder die „Neutronenkanone“ ins Spiel. Genau wie eine Sprengfalle könnte man den Sprengkopf sicher identifizieren.

An dieser Stelle drängt sich eine weitere Lösung auf. Ein Sprengkopf ist nicht einfach ein Klumpen aus Plutonium, sondern ist vollgestopft mit Elektronik (Zünder), Sprengstoff und sonstigen Hilfsmitteln. Wenn der Neutronenstrahl stark genug wäre, könnte er den Sprengkopf nicht nur identifizieren sondern sogar unbrauchbar machen.

Neutronen können gerade auf Halbleiter eine verheerende Wirkung haben. In moderne Phasenradargeräten (Raketen- und Flugabwehr) werden Halbleiter aus Galliumnitrid (GaN) verwendet. Ein Beschuß mit Neutronen kann diese Halbleiter schnell zerstören. Dies bezieht sich nicht nur auf das Rausschlagen von Elektronen, sondern Gallium hat auch recht große Einfangquerschnitte, was bedeutet, daß durch Kernumwandlung und Strahlung der Halbleiter dauerhaft zerstört wird.

Immobilisierung von Pu & Co

Alle radioaktiven Stoffe sind erst richtig gefährlich, wenn sie in den Körper aufgenommen werden. Solange sie sich außerhalb befinden, ist eine Abschirmung recht einfach möglich. Für eine „Inkorporation“ sind drei Wege ausschlaggebend: Über die Atemluft, Trinkwasser und Nahrung. Solange sie also gar nicht in die „Biosphäre“ gelangen, können sie auch keinen Menschen schädigen oder sich dort anreichern. Andersherum war dies der Grund, warum man sich recht früh auf ein „Teststoppabkommen“ in der Atmosphäre geeinigt hat. Es wurden über 2000 Kernwaffentests international durchgeführt. Durch die Zündung von Kernwaffen in der Atmosphäre wurden zig Tonnen Uran, Plutonium und Spaltprodukte über die gesamte Erde verteilt. Auch das wieder als Hinweis, wie schamlos die Propaganda von Greenpeace und Konsorten bezüglich „Atommüll“ ist, von denen ja wenige Gramm ausreichen sollen, die ganze Menschheit auszurotten.

Eine vorübergehende Lagerung

Plutonium wird z. B. in den USA in Fässern aus Edelstahl gelagert. Diese Fässer sind etwa 90 cm hoch und haben einen Durchmesser von 50 cm und beinhalten eine Portion von jeweils etwa 4,4 kg Plutonium. Wegen dessen hoher Dichte eine sehr „luftige“ Verpackung. Dies geschieht aus Sicherheitsgründen, damit auf jeden Fall eine Kettenreaktion verhindert wird. Diese Fässer stehen in ständig überwachten Bunkern. Selbst die kleinste Undichtigkeit würde sofort erkannt werden.

Alle Transurane sind nur schlecht wasserlöslich. Eine Verbreitung über große Strecken ist schon deshalb ausgeschlossen. Dies ist nicht nur eine theoretische Überlegung, sondern auch in unfreiwilligen Großversuchen betätigt: In den Anfangsjahren der Kernwaffenproduktion hat man die gesamte Brühe (Spaltprodukte, Minore Aktinoide usw.) einfach in unterirdischen Tanks (Abschirmung) gelagert. Teilweise sind diese undicht geworden und ein Teil der Ladung ist im Boden versickert. Man verfügt deshalb über jahrzehntelange Messreihen zur Ausbreitung aller Spaltprodukte und von Plutonium im Erdboden. Im Laufe der Jahrzehnte hat sich in diesen Tanks eine Schlammschicht aus „Atommüll“ abgelagert. Diese wird nun kostspielig beseitigt und für eine Endlagerung im WIPP umgeformt. Vor dem Transport zum WIPP werden sie verglast und in endlagerfähige Behälter aus Edelstahl abgegossen.

Die Verglasung

Glas ist ein sehr haltbarer Werkstoff. Wir finden heute noch Glasscherben aus der Antike, die aussehen, als wären sie erst gestern hergestellt worden. In der Fischerei werden deshalb z. B. Glaskugeln als Schwimmkörper eingesetzt. Sie halten Salzwasser und hohen Drücken über Jahrzehnte stand. Zudem ist Glas auch noch billig und einfach (Automatisierung) herstellbar. Jahrzehntelang hat man weltweit Spezialgläser entwickelt, die ein besonders hohes Rückhaltevermögen für Spaltprodukte und Transurane besitzen.

Der plutoniumhaltige Abfall wird kalziniert (bei hohen Temperaturen gebrannt um alle chemischen Verbindungen aufzubrechen und das Kristallwasser auszutreiben) und gemahlen. Parallel wird in einem Schmelzofen eine Glasfritte erzeugt, in die der Abfall eingestreut wird. Der Abfall löst sich wie Zucker im heißen Tee gleichmäßig im flüssigen Glas auf. Je nach Abfallzusammensetzung kann man etwa 20 bis 30% Abfall auflösen. Ist die Mischung homogen, wird sie in Edelstahlbehälter abgegossen. Da Glas eine „unterkühlte Flüssigkeit“ ist, erhält man auch im erkalteten Zustand einen homogenen „Abfallblock“.

Die Abfallmenge, die bisher verglast und bis 2009 in der WIPP eingelagert wurde, enthielt etwa 4,5 to Plutonium. Weitere 17 to stark verunreinigtes Plutonium sind ebenfalls zur direkten Endlagerung in der WIPP vorgesehen.

Bildung von synthetischem Gestein

Eine weitere Methode — die besonders für Plutonium — geeignet erscheint, geht genau einen anderen Weg: Man stellt einen synthetischen Stein her (SynRoc) in dessen Kristallgitter das Plutonium fest eingebaut ist. Diese künstlichen Steine sollen noch einmal um den Faktor eine Million weniger löslich sein als Glas. Man hat in verschiedenen Einrichtungen in den USA und in der Wiederaufbereitungsanlage in Sellafield (GB) mehrere to Plutonium mit dieser Methode eingeschlossen. Es handelt sich dabei um jeweils kleine Mengen Plutonium aus verschiedenen Forschungsprogrammen. Es lohnt nicht, diese „geringen Mengen“ aufwendig mit Spezialverfahren aufzubereiten. Es ist zumindest wirtschaftlicher, diese Mengen mit ins Endlager zu geben.

Bei dem SynRoc-Verfahren wird ein Gestein auf der Basis von ausgewählten Titanaten hergestellt. Diese werden in der richtigen Mischung mit Wasser vermahlen und das Plutonium (bis 30%Gew) zugesetzt. Dieser Schlamm wird getrocknet und bei 750°C kalziniert um ein feines Pulver zu erhalten. Dieses Pulver wird auf einer automatischen Abfüllanlage in kleine, hantelförmige Edelstahldosen abgefüllt, die sofort verschweißt werden. Der entscheidende Verfahrensschritt ist nun ein heißisostatisches Pressen: Die „Hanteln“ werden acht Stunden lang bei 1300°C und einem Druck von 1000 bar gesintert. Heraus kommen schwarze, gesteinsartige Zylinder.

Zurück zur Abrüstung

Wie schon ausgeführt, ist die Lagerung von Plutonium kein großartiges Problem. Das Problem bei reinem Pu239 ist vielmehr, daß man es jederzeit wieder zum Bau neuer Kernwaffen verwenden kann. Das Sicherheitsproblem ist also nicht der Strahlenschutz, sondern der „Diebstahlschutz“. Die National Academy of Sciences erschuf den „Selbstschutz-Standard durch γ-Strahlung“ auf der Basis von „abgebrannten Brennelementen“. Fast das gesamte Strahlungsfeld wurde auf den Zerfall von Cesium-137 mit einer Halbwertszeit von 30 Jahren bezogen.

Nachdem man langsam zu der Erkenntnis gelangte, daß das Mischoxid-Programm völlig aus dem Ruder lief, hat die Obama-Administration 2014 folgende Alternativen vorgeschlagen:

  1. Verdünnung des Plutoniums mit noch vorhandenem Restmüll und anschließende Einlagerung im WIPP.
  2. Der „can in canister“ Ansatz zur Einlagerung in hochaktivem Glas.
  3. Entsorgung in 5000 m tiefen Bohrlöchern, und
  4. Bestrahlung in einem natriumgekühlten Reaktor mit schnellem Neutronenspektrum.

Die Verdünnung

Die Verdünnung des Plutoniums durch die Auflösung in noch vorhandenem Restmüll aus der Wiederaufbereitung kann man wohl nur als Schnapsidee bezeichnen. Man erzeugt damit wieder besonders langlebigen „Atommüll“. Zum Glück hat man nur noch kleine Mengen unverglasten Restmüll in den Labors übrig, die nicht ausreichen werden um das „Überschuss Plutonium“ auf diese Art zu beseitigen. Allenfalls geringe Mengen — die auf irgendeine Art besonders schwer zu behandeln sind — sind so gegen Diebstahl zu schützen.

Eine Abwandlung dieses Weges hat das Energieministerium (DOE) schon 2011 beschritten: Über 580 kg Plutoniumoxid Pulver aus den Labors der Savannah River Site wurden mit einem geheimgehaltenen Stoff gemischt, der angeblich besonders schwer wieder zu trennen ist. Diese Mischung — mit einem Anteil von 10% Plutonium — wurde in Rohre von 15 cm Durchmesser abgefüllt, die wiederum einzeln in 200 l Fässern eingeschlossen wurden (“pipe-overpack containers”). Der Gehalt an Plutonium pro Faß wurde auf höchstens 175 gr begrenzt.

Würde man den Gehalt pro Faß auf 340 gr Plutonium erhöhen, wären für 50 to Plutonium rund 150 000 Fässer nötig. Eine — von derzeit sieben Kammern im WIPP Endlager— könnte 90 000 Fässer aufnehmen. Ursprünglich betrug das genehmigte Einlagerungsvolumen für das WIPP 176 000 m3 für Abfall mit Transuranen. Eine Genehmigung für eine Erweiterung ist in Arbeit.

Die Kritik von Sicherheitsexperten über diese Methode zur Einlagerung von waffengrädigem Plutonium ist nicht ganz von der Hand zu weisen: Für den Bau einer „Nagaski Bombe“ wären etwa 20 solcher „Rohre“ mit den Abmessungen von 15 cm Durchmesser und 60 cm Länge nötig. Bei einer Stückzahl von 150 000 Stück, mit diversen verteilten Produktions- und Lagerstätten eine extrem geringe Anzahl. Die bewegt sich schon in in der Größenordnung vorgekommener Buchung- und Bilanzierungsprobleme. Selbst ein reiner Papierverlust wäre eine Katastrophe in der öffentlichen Wahrnehmung.

Das Dose in Kanister Verfahren

Aus dem „Selbstschutz-Gedanken“ wurde das „can in canister“ Verfahren entwickelt. Man mischt etwa 10% Plutonium mit speziellen Stoffen, die besonders schwer trennbare chemische Verbindungen mit ihm eingehen, presst dieses Pulver in Scheiben und sintert diese zu Keramik. Das ergibt die „Immobilisierung“. Diese Scheiben werden in Dosen von etwa 6 cm Durchmesser und 25 cm Höhe gefüllt. Jede dieser Dosen enthält etwa 1 kg Plutonium. Jeweils 28 Dosen kommen in einen Kanister von etwa 3 m Kantenlänge und werden mit flüssigem, strahlenden Glas aus der Beseitigung von hochaktivem „Atommüll“ umgossen. Für die geplant 50 to „Überschussplutonium“ werden also 1800 solcher Kisten benötigt. Genau das ist aber das Problem: Die USA haben gar nicht mehr solche Mengen unbehandelten hochaktiven Müll zur Verfügung.

Das Energieministerium (DOE) hat als Standard für eine „Selbstsicherung“ bei solchen Kanistern eine Strahlendosis von 1 Sv pro Stunde in einem Abstand von einem Meter in 30 Jahren nach der Befüllung definiert. Man würde deshalb für die Kanister über 1,221×1018 Bq Cäsium-137 (rund 225 kg) benötigen. Zur Orientierung: Bei der Tschernobyl-Katastrophe soll eine Aktivität von etwa 8,5×1016 Bq Cs137 freigesetzt worden sein.

Bohrlöcher

Seit Jahrzehnten gibt es den Vorschlag „Atommüll“ in tiefen Bohrlöchern (ca. 3000 bis 5000 m tief) einzulagern. Dahinter steckt der Grundgedanke: Tiefe = langer Weg bis zur Oberfläche = lange Zeitdauer. Die angepeilte Tiefe ist etwa die zehnfache Tiefe von bergmännischen Endlagern. Diese große Tiefe stellt eine zusätzliche Sicherheit vor der „Wiedergewinnung“ des „Waffen-Plutoniums“ dar.

Es wurden bereits Demonstrations-Bohrungen durchgeführt und über 110 Standorte in den USA bewertet. Kriterien waren unter anderem: Entfernung zu Siedlungsgebieten, das Vorhandensein von kristallinem Grundgestein ab 2000 m Tiefe, flacher Verlauf der Schicht, geringer geothermischer Wärmestrom und geringer Vulkanismus.

Diese Form der Endlagerung geht davon aus, daß es mindestens drei Gründe gibt, warum ein natürlicher Transport durch Wasser bis an die Oberfläche nahezu ausgeschlossen ist — selbst wenn das Plutonium sich aufgelöst hat:

  1. Der gewaltige Gebirgsdruck in solchen Tiefen schließt etwaige Risse und Spalten sehr schnell, sodaß es nur zu sehr geringen Strömungen von Wasser kommt.
  2. Plutonium hat nur eine äußerst geringe Löslichkeit in solch sauerstoffarmen Tiefenwasser.
  3. Tiefenwasser ist meist mit Mineralien und Salzen gesättigt, was eine hohe Dichte zur Folge hat. Es gibt deshalb wenig Auftrieb, der es überhaupt mit eher oberflächennahem „Trinkwasser“ in Kontakt bringen könnte.

Die Bohrungen sollen auf die Mindesttiefe plus einem zusätzlichen Stück zur Einlagerung abgeteuft werden. Studien haben ergeben, daß so ein „Lagerraum“ von etwa 40 m3 pro Bohrung (Enddurchmesser ca. 16 cm) geschaffen werden kann. Nach Einlagerung wird die Bohrung wieder sorgfältig verfüllt. Ein erprobter Vorgang bei zig Tausend Bohrungen in der Öl- und Gasindustrie.

Bisher ist diese Methode an zu hohen Kosten gescheitert. Allerdings hat die Bohrtechnik in den letzten Jahren einen sehr rasanten Fortschritt erlebt. Inzwischen gibt es sogar schon Studien über horizontale Bohrungen in geeigneten Schichten. Man geht von einem dramatischen Verfall der Kosten aus. In Verbindung mit der ebenfalls rasanten Entwicklung von Robotern, ein durchaus vielversprechender Ansatz auch für die Endlagerung von besonders hochaktivem „Restmüll“.

Beseitigung in Reaktoren .

In diesem Blog ist schon vieles über Reaktoren mit schnellem Neutronenspektrum geschrieben worden. Man kann nur hoffen, daß auch die USA den Mut haben, diesen Weg einzuschlagen. Ein guter Start wäre der Bau z. B. eines PRISM als Demonstrationsreaktor für die Beseitigung von überschüssigem Waffen-Plutonium in der Hand des Energieministeriums. Vieles könnte unter den militärischen Bedingungen der Kernwaffenproduktion schnell und problemlos durchgeführt werden. Milliarden Dollar sind durch die ohnehin bereitzustellenden Beseitigungskosten unter dem politischen Druck der Abrüstungsverträge vorhanden. Der Demonstrationsreaktor wäre — ähnlich der Geschichte des Druckwasserreaktors als Antrieb für U-Boote — sehr schnell und kostengünstig in eine zivile Anwendung überführbar. Ist dies vielleicht der wahre Grund, warum „Atomkraftgegner“ so verbissen an der direkten Endlagerung fest halten?

Wie soll Plutonium beseitigt werden?

Durch den Baustopp der Mischoxid-Anlage zur Vernichtung von überschüssigem „Waffenplutonium“ in den USA, ist dort wieder eine Grundsatzdebatte losgetreten worden. Nach den Zahlen des International Panel on Fissile Materials (IPFM) gibt es zur Zeit etwa 216 to „Waffenplutonium“ (in Kernwaffen verbaut und als Reserve) und etwa 271 to „ziviles Plutonium“ aus der Wiederaufbereitung von Kernbrennstoffen weltweit. Das Ganze ist also beileibe kein rein akademisches Problem.

Die Kernwaffen-Frage

Wenn man wirkliche Abrüstung will und nicht nur das Einlegen einer Pause, dann muß man nicht nur Trägersysteme und Kernwaffen verschrotten, sondern auch das „Bombenmaterial“ vernichten. Gerade dessen Herstellung — ob Plutonium oder höchst angereichertes Uran — ist der zeit- und kostenaufwendigste Teil bei einer „atomaren Aufrüstung“. Insofern war der Vertrag zwischen den USA und Rußland ihr Überschussplutonium zu vernichten, der einzig richtige Weg. Die Russen gehen nun den Weg — mit vollerZustimmung der USA — ihren Anteil an Überschüssen in ihren schnellen, natriumgekühlten Reaktoren als Brennstoff zu verwenden. Ganz so einfach und schnell geht das aber auch nicht. Selbst der größte „Brüter“ mit 800 MWel braucht überschlägig weniger als 5 to Plutonium für seine Erstbeladung. Es wird deshalb auch dort noch einige Jahre bis Jahrzehnte dauern, bis zumindest der Überschuß soweit „denaturiert“ ist, daß man ihn nie mehr zur Produktion von Kernwaffen einsetzen kann.

Die zivile Herkunft

Für die zivile Produktion von Plutonium aus abgebrannten Brennstäben gab es drei Beweggründe:

  1. Als Erstbeladung für schnelle Brüter
  2. Zur Streckung des Uranverbrauchs über MOX-Elemente
  3. Um das Volumen des „Atommülls“ zu verringern und die „Endlager-Anforderungen“ drastisch zu senken.

Brüter

Noch in den 1960er Jahren ging man von sehr begrenzten Vorräten an förderbarem Natururan aus. Man befürchtete eine baldige Preisexplosion. Gerade „Atomkraftgegner“ haben immer wieder dieses Argument für ihre Propaganda mißbraucht. In Wirklichkeit hängen die förderbaren Vorräte — wie beim Öl — immer vom Uranpreis selbst und von der technologischen Entwicklung ab. Nach heutigen Erfahrungen sind die Natururanvorräte nahezu unendlich. Sehr viel wichtiger ist das Verhältnis zwischen „Strompreis“ und „Brennstoffpreis“. Je 100 $US pro kg Natururan schlägt es mit 0,002 $US pro kWh (!) auf die Stromerzeugungskosten nieder. Wenn schon die Sonne keine Rechnung schickt, tut es die Uranader auch nicht.

Jedenfalls haben wir schon heute mit über 271 to Plutonium aus der Wiederaufbereitung abgebrannter Brennelemente weltweit einen beachtlichen Vorrat für den Start in die Technologie mit schnellen Reaktoren. Wir könnten damit auf einen Schlag 30.000 MWel Schnelle-Brüter bauen.

MOX-Elemente

Die Verwendung von einer Mischung aus Uranoxid und Plutoniumoxid (MOX) in Leichtwasserreaktoren (LWR) kann nur eine Übergangslösung sein. Zwar kann man dadurch Natururan ersetzen, aber der Aufwand steht in keinem wirtschaftlichen Verhältnis zum Nutzen. Zur Verringerung der Plutonium Vorräte trägt es auch nur wenig bei, da in einem LWR etwa für 10 Kerne die gespalten werden, gleichzeitig 6 neue Plutoniumkerne gebildet werden.

Außerdem verschlechtert sich die Isotopenzusammensetzung: Es bilden sich immer mehr Minore Aktinoide, was sowohl die Verarbeitung erschwert, als auch den „Restmüll“ aus der Wiederaufbereitung immer langlebiger macht.

Schon bei der Herstellung von MOX-Brennstäben bleiben etwa 10 bis 15% nach der erforderlichen Reinigung des Eingangsmaterials übrig. Diese gehen meist direkt in den Abfallstrom zur Endlagerung. Es lohnt einfach nicht, aus diesem Abfall noch das Rest-Plutonium zu extrahieren.

Hier sieht man auch den Vorteil metallischen Brennstoffs als Uran-Plutonium-Zirconium-Legierung, wie sie z. B. in PRISM-Reaktoren verwendet werden soll: In ihr kann aller „Dreck“ mit verarbeitet werden und erneut dem Reaktor zur Behandlung zugeführt werden.

Wiederaufbereitung

Abgebrannte Brennelemente enthalten immer noch rund 95% Uran und etwa 1% Plutonium. Anders herum, sind im Sinne der Energieerzeugung nur etwa 4% Abfall. Dies ist die Asche der Kernenergie, die sicher deponiert werden muß. Durch das Recycling ergibt sich eine erhebliche Reduzierung des Abfalls. Man vergleiche dies einmal mit z. B. Altpapier oder gar Plastik.

Eine Wiederaufbereitung ist ein rein chemischer Prozeß. Es wird — anders als im Reaktor — keine Radioaktivität erzeugt, sondern schlimmstenfalls bereits vorhandene radioaktive Stoffe verschleppt. Dies kann aber durch Dekontamination wieder beseitigt werden. Wenn man früher alle Rohre, Schutzkleidung, Werkzeuge, Chemikalien etc. einfach weggeworfen hat, geschah dies aus Kostengründen.

„Atomkraftgegner“ versuchen diese Tatsachen immer noch zu leugnen. Ist doch die „angeblich ungelöste Atommüll-Frage“ ziemlich das letzte Argument, was ihnen gegen die friedliche Nutzung der Kernenergie geblieben ist. Wird dieser Schwindel auch in breiten Bevölkerungskreisen erkannt, ist es aus mit der Angstindustrie. Sie braucht dann dringend neue Phantome um ihre Einnahmen zu sichern.

Nachhaltigkeitsproblematik

In der Szene der „Atomkraftgegner“ ist das Neusprechwort „Nachhaltigkeit“ eine Grundvokabel der Propaganda. Zwar ist diese Försterweisheit [Wenn du mehr Bäume abholzt, als gerade nachwachsen, ist der Wald irgendwann futsch. Nur, gäbe es heute gar kein Deutschland, wenn die alten Germanen schon dem statischen Denken der Melonen-Partei verfallen gewesen wären] schon immer fragwürdig gewesen, hört sich aber gut an.

Wenn man 1 gr Plutonium spaltet, ist es nicht nur unwiederbringlich weg, sondern hat auch noch etwa 22800 kWh Energie geliefert. Wenn man also 70 to überflüssig gewordenes „Waffen-Plutonium“ in Kernreaktoren spaltet, entspricht das dem Energiegehalt von 210 Millionen to Kohle oder 910 Millionen barrel Öl. Damit ließen sich rund 630 TWh elektrische Energie erzeugen (mehr als ein Jahresverbrauch von Deutschland). Eine hübsche Friedensdividende, wenn nicht die verdammte „Grüne Ideologie“ davor stehen würde.

Geht nun Gefahr von Plutonium aus oder doch nicht?

Was „Waffen-Plutonium“ betrifft, ist die Frage eindeutig zu beantworten: Die Sicherheit — im Sinne von Diebstahl etc. — ist zwingend einzuhalten. Es ist ähnlich, wie mit Sprengstoffen: Sie sind an und für sich harmlos — wenn man damit nicht Menschen in die Luft sprengen könnte.

Wie verhält es sich aber mit Plutonium an sich? An den Lagerfeuern von Gorleben erzählt man sich die schaurigsten Geschichten von „wenigen Gramm, die die ganze Menschheit töten können“. Dies ist absoluter Blödsinn! Reines Plutonium ist ein α-Strahler, man kann es deshalb gefahrlos in die Hand nehmen. Dies geschah und geschieht in zahlreichen Labors und in der Waffenproduktion täglich. Schäden sind nicht bekannt. Solange man es nicht als Feinstaub einatmet oder mit der Nahrung zu sich nimmt, passiert rein gar nichts. Selbst bei einer Aufnahme in den Körper, spielt die chemische Verbindung eine große Rolle, in der es vorliegt. Seine (chemische) Wirkung als ein Schwermetall übertrifft meist sogar seine Strahlungswirkung.

Damit ergibt sich für „Atomkraftgegner“ ein schwierig zu lösendes Dilemma: Ist Plutonium ganz, ganz gefährlich, müßte man es zwingend aus der Welt schaffen. Dummerweise erzeugt aber Kernspaltung große Mengen an Energie. Ist es aber nicht so gefährlich, könnte man es problemlos lagern. Die „weltweit ungelöste Endlagerfrage“ — das zentrale Argument der Angstindustrie in Deutschland — platzt wie eine Seifenblase. Es bleibt daher nur der erprobte und erfolgreiche Weg, die Kosten in die Höhe zu treiben, um anschließend sagen zu können, die friedliche Nutzung der Kernenergie sei leider total unwirtschaftlich. Eigentlich ganz leicht zu durchschauen.

WIPP, das Gorleben der USA

In den USA gibt es überall große Mengen von „Atommüll“ aus den staatlichen Forschungslabors und der Kernwaffenproduktion. Manchmal sind ganze Landstriche noch Sperrgebiet. Es stand außer Frage, daß diese Gebiete nach und nach saniert werden müssen. Aber wohin mit dem Abfall? Ein Endlager mußte her, wollte man das Problem nicht den nachfolgenden Generationen aufbürden. Es entstand das Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. Ein Endlager, in dem der gesamte hochaktive Müll aus Forschung und (militärischer) Wiederaufbereitung verschwinden soll. Ausdrücklich auch Plutonium. Dies ist nicht ganz unwichtig, denn wir haben es damit mit wesentlich langlebigerem „Atommüll“ zu tun, als dem aus z. B. der französischen Wiederaufbereitung von Kernbrennstoffen. Auch dies wird in Deutschland gern verschwiegen. Ist doch hier aus ideologischen Gründen der „Ausstieg aus der Atomenergie“ gefordert. Diesem Diktat haben sich selbstverständlich Sicherheit und Kosten unter zu ordnen. Die Stützung einer kleinen Partei — als potentiellem Koalitionspartner zum Erhalt des Machtgefüges — hat absoluten Vorrang.

Die Ironie an der Geschichte ist, daß das WIPP ein Abbild des Endlagers in Gorleben ist. Man hat es in einem Salzstock in 655 m Tiefe als Kavernenfeld von 1,6 x 1,4 km angelegt. Es werden dort Kammern bergmännisch aus dem Salz aufgefahren, in denen die „Müllbehälter“ gestapelt werden. Wichtig ist, es handelt sich hier nicht um ein altes Salzbergwerk wie bei den Schachtanlagen Asse und Morsleben, sondern eine ausschließlich für die Endlagerung geplante und neu gebaute Anlage. Es ist aber auch kein Zufall, daß man einst in USA und Deutschland einen Salzstock als das ideale Wirtsgestein für ein Endlager angesehen hat. Salz ist plastisch und umschließt langfristig „selbstabdichtend“ den Atommüll. Außerdem ist es ein Rohstoff, der im Überfluß vorhanden ist, was eine etwaige spätere Nutzung ausschließt. Die Baukosten betrugen in den 1980er Jahren rund 700 Millionen $US. Ein geradezu lächerlicher Betrag, wenn man ihn mit der „Geldvernichtungsmaschine“ Gorleben vergleicht.

In Deutschland fängt man gerade an, „ergebnisoffen“ einen neuen Standort zu suchen: Alles außer Gorleben, den Wallfahrtsort der Öko-Sozialistischen Bewegung. Wie putzig dieses neue Suchverfahren abläuft, sieht man schon an dem geforderten „strikten Bohrverbot“ für Gebiete, die von der „Endlagerkommission“ für potentiell würdig erachtet werden. Fährt man auf der kilometerlangen Zufahrtsstraße zum WIPP, hat man tunlichst auf zwei Dinge zu achten: Die halbwilden Rinder, die links und rechts grasen und die LKW und Tanklaster, die in unendlichem Strom zu den Bohrstellen rasen. Der Salzstock liegt mitten in einem Ölfördergebiet — was für Geologen nicht weiter verwunderlich ist. In Sichtweite rund um das WIPP sieht man zahlreiche Bohrtürme. Kein Mensch stört sich daran. Auch nicht die Rancher, deren überlebenswichtige Wasservorräte (Wüstengebiet) durchbohrt oder mit Atommüll unterfüttert werden.

Ausblick

Die letzte Folge dieser kleinen Serie wird sich mit den verschiedenen „Immobilisierungen“ für Plutonium beschäftigen.

Notbremse gezogen?

Anfang Mai schrieb der „Energieminister“ (US Energy Secretary Rick Perry) der USA eine Mitteilung an sein Parlament (Congress), daß er im Grunde den Bau der Anlage zur Produktion von Mischoxid-Brennelementen (MOX) in Savannah River Site in South Carolina abgebrochen habe. Die Anlage ist bereits zu 70% fertiggestellt und sollte aus 34 to waffengrädigem Plutonium Brennstoff für Leichtwasserreaktoren herstellen.

Die Vorgeschichte

Bereits vor dem Zusammenbruch der Sowjetunion setzte ein gewaltiges Abrüstungsprogramm zwischen den USA und Russland ein. Letztendlich wurden im Rahmen des ersten Vertrages zur Verringerung strategischer Waffen (START I) tausende Raketen und Sprengköpfe auf beiden Seiten vernichtet. Damit saß jeder der beiden Vertragspartner auf zig Tonnen waffengrädigem Materials, aus dem man zehntausende von neuen Sprengköpfen hätte bauen können. Im Zeitalter des aufkeimenden Terrorismus eine äußerst unbehagliche Situation, zumal die Sowjetunion in Auflösung begriffen war.

Die Mengen an hochangereichertem Uran stellten nur ein kleines Problem dar: Sie wurden mit abgereichertem Uran auf die Gehalte für Brennstoff verschnitten und nach und nach in Kernkraftwerken zur Stromerzeugung verbraucht. Gleichwohl waren die Mengen so gewaltig, daß für Jahre der Markt für Natururan nahezu zusammenbrach. Für sich genommen schon ein gewaltiger Schaden für die Uranbergwerke.

Ganz anders verhielt es sich mit dem Plutonium. Jeder der beiden Vertragspartner verfügte nun über einen Überschuß von 34 to waffengrädigem Plutoniums, der irgendwie aus der Welt geschafft werden mußte. Um zu verstehen, warum das gar nicht so einfach ist, muß man sich etwas näher mit Plutonium beschäftigen.

Das besondere Plutonium

Plutonium ist ein chemisches Element mit der Ordnungszahl 94 (94 Protonen im Kern), welches faktisch nicht in der Natur vorkommt. Es kann zwar in verschiedene chemische Verbindungen mit verschiedenen chemischen Eigenschaften überführt werden, nicht aber auf chemischen Wegen wieder aus der Welt geschafft werden. Es kommt in zahlreichen Isotopen (unterschiedliche Anzahl von Neutronen im Kern) — von Pu236 bis Pu244 — mit jeweils eigener Halbwertszeit und eigenem Einfangquerschnitt für Neutronen vor. Die einzige Möglichkeit es wieder aus der Welt zu schaffen, ist es mittels Neutronen zu spalten oder wenigstens in andere Isotopen um zu formen.

Schon in den Anfängen der Entwicklung von Kernwaffen hat man erkannt, daß Pu239ein idealer Kandidat für den Bau von Kernwaffen ist. Es ist recht einfach und preiswert in „speziellen Reaktoren“ in beliebigen Mengen aus Natururan herstellbar und es besitzt ein Optimum aus „Lebensdauer“ und Einfangquerschnitt im auftretenden Energiespektrum einer Kernexplosion.

Jede Kernwaffe altert durch spontane Zerfälle. Je kürzer die Halbwertszeit des Materials ist, desto schneller ist die Kernwaffe unbrauchbar. Jeder Kern, der schon zerfallen ist, steht für die Kettenreaktion im Ernstfall nicht mehr zur Verfügung. Dies ist leicht einsichtig. Jeder Spontanzerfall löst aber eine ganze Kette weiterer radioaktiver Produkte aus. Jedes Glied hat eigene, energieabhängige Einfangquerschnitte. Vereinfachend gesagt, viele verbrauchen nur Neutronen, die für eine Kettenreaktion nicht mehr zur Verfügung stehen können. Im Extremfall bricht die „Explosion“ sehr schnell in sich zusammen.

Der Zweck einer Kernwaffe ist Zerstörung (Druckwelle, Feuerball und Strahlung). Dafür braucht man eine hohe Leistung (Energie pro Zeiteinheit). Mit einfachen Worten: Man muß möglichst viele Kerne (ungefähr 200 MeV pro Spaltung) in nahezu „Null Sekunden“ spalten. Das Geheimnis des Bombenbaues liegt nun in der Beherrschung der Kettenreaktion: Mit jeder Spaltung werden weitere Neutronen frei, die von Generation zu Generation (jeweils etwa Verdoppelung) immer noch mehr Kerne spalten könnten — wenn sie nicht parasitär weggefangen werden oder den Ort des Geschehens einfach mit hoher Geschwindigkeit verlassen würden ohne überhaupt jemals einem spaltbaren Kern begegnet zu sein. Insbesondere für diesen „Verlust von Neutronen durch Austritt“ ist die schnelle Ausdehnung des Spaltmaterials durch die entstehende Hitze verantwortlich.

Waffengrädiges- oder Reaktorplutonium?

Von „Atomkraftgegnern“ wird immer wieder behauptet, man könne auch aus Reaktorplutonium „Bomben bauen“. Man möchte damit Plutonium aus der Wiederaufbereitung von Brennelementen aus Leichtwasserreaktoren gefährlicher erscheinen lassen, als es in Wirklichkeit ist. Bestenfalls steckt dahinter Wortklauberei. Natürlich kann man mit großem Aufwand unter Laborbedingungen auch mit Reaktorplutonium eine Kettenreaktion auslösen — bloß bringt man damit keine Fensterscheibe zum wackeln. Deshalb ist auch noch keiner so bescheuert gewesen, mit gewaltigem Aufwand eine „Atombombe“ aus Reaktorplutonium zu bauen, die trotzdem nur einem Knallfrosch gleicht, wenn er mit geringstem Aufwand aus Natururan waffengrädiges Plutonium erzeugen kann.

Damit ist auch ein Weg aufgezeigt, wie man „altes Bombenplutonium“ dauerhaft und sicher beseitigen kann. Setzt man es als Brennstoff in Leistungsreaktoren ein, wird dadurch ein erheblicher Teil der Ursprungsmenge „verbrannt“ und gleichzeitig der Rest durch die Bildung von anderen Isotopen verdorben. Denn nicht jeder Kern Pu239 wird durch das Einfangen eines Neutrons gespalten, sondern wird teilweise bloß in ein anderes Isotop (Pu240, Pu241 usw.) umgewandelt. Man kann das mit dem vergällen von trinkbarem Alkohol vergleichen: Der Zusatz von geringen Mengen ähnlicher Stoffe macht aus einer großen Menge Genussmittel einen für Menschen giftigen Industriealkohol. Der Trick ist der Gleiche: Der Aufwand zur Trennung wäre um ein vielfaches höher, als die erneute Herstellung von Trinkalkohol.

Grundsätzlich kann man „überschüssiges Bombenplutonium“ in schnellen Reaktoren oder in konventionellen Leichtwasserreaktoren einsetzen. Effektiver ist der von Rußland eingeschlagene Weg der Herstellung von Brennstoff für einen natriumgekühlten Reaktor mit schnellen Neutronen: Man kann größere Anteile (schnelle Reaktoren über 20%, LW bis rund 8%) verwenden. Dies vereinfacht schon mal die notwendige Überwachung bei der Produktion. Durch eine angepaßte Fahrweise (nicht die Energieerzeugung steht im Vordergrund, sondern die Erzeugung ungeeigneter Isotope) kann man recht schnell große Mengen Plutonium für eine Waffenproduktion dauerhaft unbrauchbar machen. So gibt es beispielsweise ein Konzept — bestehend aus zwei PRISM-Reaktoren — innerhalb von nur zwei Jahren alle Überschussbestände in Großbritannien für eine Waffenproduktion unbrauchbar zu machen. Elektrische Energie könnten diese Reaktoren mit diesem Plutonium dann trotzdem noch viele Jahrzehnte weiter produzieren.

Der Weg über MOX

Üblicherweise setzt man in Kernkraftwerken einen Brennstoff aus (nur) angereichertem Uran ein. Man kann aber auch einen Brennstoff aus einer Mischung aus Uranoxid und Plutoniumoxid verwenden. Keine neue Erfindung. Bereits 1972 wurde in Deutschland (!) erfolgreich ein Mischoxid in einem Reaktor verwendet. Heute sind rund 5% aller verwendeten Brennelemente weltweit vom Typ MOX. Führend in dieser Technologie ist mit großem Abstand Frankreich. Ursprünglich wollte man damit den Verbrauch von Natururan strecken. Es war daher nicht abwegig, über diese Schiene auch das „Überschuß-Plutonium“ aus der Rüstung vernichten zu wollen. Nur mußte aus politischen Gründen (Proliferation und Verträge mit Rußland) in USA erst einmal eine neue Anlage gebaut werden. Und damit nahm das Verhängnis seinen Lauf…

Wenn man eine verfahrenstechnische Großanlage in Auftrag gibt, sollte man vorher wissen, welches Produkt man eigentlich herstellen will, welche Vorschriften im eigenen Land gelten und welchen Rohstoff man genau einsetzen muß. Ganz offensichtlich für Politiker (per Eigendefinition Alleskönner) und öffentliche Verwaltungsapparate (zumindest, wenn sie sich auf einem neuen Gebiet bewegen sollen) eine unlösbare Aufgabe. Wie immer, wurde erst einmal — im Bewußtsein kein eigenes Geld, sondern das Geld der Steuerzahler zu verschwenden — eine Anlage für den Durchsatz von 3,5 to Plutonium pro Jahr bei Areva für 2,7 Milliarden Dollar in Auftrag gegeben. Baubeginn war 2007 mit einer geplanten Fertigstellung im Jahr 2016.

Nachdem der Baubeginn bereits erfolgt war, stellte man fest, daß der spezielle Eingangsstoff — besagtes Waffenplutonium zur Vernichtung in Leichtwasserreaktoren — anders, als das übliche Plutonium — Plutonium aus französischer Wiederaufbereitung von Kernbrennstoff— war. Flugs mußte noch ein kompletter zusätzlicher Verfahrensschritt zur Entfernung von Verunreinigungen eingeführt werden. Die Anlage — fast genau so groß, wie die bereits im Bau befindliche — wurde verniedlichend „Aqueous Polishing“ genannt. Die geplante Fertigstellung verschob sich auf 2019 und die geplanten Kosten schossen auf 4,9 Milliarden Dollar hoch.

Im Jahre 2012 führte man eine Untersuchung durch und aktualisierte die Kostenschätzung auf 7,7 Milliarden. Eine weitere Untersuchung im Jahre 2016 ergab eine Kostenschätzung von 17,2 Milliarden und eine Inbetriebnahme nicht vor 2025. Wie bei öffentlichen Projekten üblich — wir kennen das vom Flughafen BER in Berlin — wurschtelt man weiter vor sich hin. Jährlich versickerten zwischen 350 und 500 Millionen Dollar aus diversen Haushaltstiteln in diesem Sumpf. Ein schönes Auftragsvolumen, für das man schon etwas für die Politik tun kann.

Die Programmkosten

Mit dem Bau der Anlage ist es aber noch nicht getan. In einer Marktwirtschaft muß man auch noch Kunden für das Produkt finden. In diesem Fall, wegen der geltenden Abrüstungsverträge, ausschließlich in den USA. Die Kernkraftwerke in den USA müssen aber Genehmigungen für den Betrieb mit MOX-Brennelementen besitzen. Sie müssen geprüft und umgebaut werden. Mit anderen Worten, im Moment würden die Betreiber die Brennelemente nicht einmal geschenkt nehmen. Lange Rede, kurzer Sinn, das Energieministerium schätzt die Gesamtkosten für das Programm auf 50 Milliarden Dollar. Das entspricht einem Preis von über 1,4 Millionen Dollar für jedes Kilogramm Waffenplutonium. Selbst wenn man die Anlagen noch für andere Zwecke nutzen kann, ist das ein Irrsinn.

Dieser Vorgang zeigt sehr schön, was geschieht, wenn man Politikern solche komplexen technischen Herausforderungen überläßt. Man muß nur so ein verrücktes Programm starten und erschließt sich damit eine sprudelnde Geldquelle: In diesem Fall mit ursprünglich „etwa 1 Milliarde für ein tolles Abrüstungsprogramm“ oder einer „Eiskugel für eine Energiewende“ bei uns. Sind erstmal genug Laiendarsteller auf den Zug aufgesprungen, kann man sie beliebig ausquetschen. Der Politiker steht vor der Alternative: Ich verbrenne weiterhin das Geld fremder Leute (sprich unsere Steuern) oder gebe zu, gar nicht allwissend zu sein, was das Ende der eigenen Karriere bedeutet. Solche „Steuergelder-Verbrennungsanlagen“ werden erst gestoppt, wenn Kräfte an die Regierung kommen, die bisher nicht im etablierten Machtapparat tätig waren. Dies geschah mit der Wahl von Donald Trump zum 45. Präsidenten der USA, der schon in seinem Wahlkampf lieber vom „Sumpf“ sprach und ungern das etablierte Synonym „Washington“ benutzte.

Wie geht’s weiter

Allerdings ist mit dem Baustopp der Anlage noch lange nicht das Problem beseitigt. Dabei ist das Plutonium selbst das geringste Problem: Es schlummert weiterhin in den Tresoren vor sich hin. Was drückt, sind die Abrüstungsverträge mit Russland. Im Moment herrscht ein seltsames gegenseitiges „Wegsehen“: Die USA kommen nicht mit der Vernichtung ihres „Überschussplutonium“ voran, dafür regt man sich nicht sonderlich über den Bruch des Abrüstungsabkommens über Mittelstreckenwaffen (Landgestützte Cruise missile mit „Atomsprengköpfen“) durch Putin auf.

Es muß also eine Lösung her. Zumindest über einen weiteren Ansatz, wird hier demnächst berichtet…

Trump kündigt das „Iranabkommen“

Für manche in Deutschland ist es wie eine Bombe eingeschlagen: Trump hat den „Joint Comprehensive Plan of Action“ nicht mehr verlängert. Dies ist schon die erste wichtige Feststellung: Es hat sich nie um einen völkerrechtlichen Vertrag – wie z. B. die zahlreichen Abrüstungsabkommen mit Rußland – gehandelt, sondern viel mehr um eine „Bekundung“ des vorhergehenden Präsidenten Obama. Für eine Ratifizierung des US-Parlaments hat es nie gereicht, denn es hat schon immer zahlreiche Kritiker gegeben. Dies sei schon einmal vorab allen gesagt, die reflexartig auf den Präsidenten Trump einprügeln – sei es aus Unkenntnis oder tiefer linker Gesinnung. Deshalb mußte dieses seltsame Abkommen vom jeweiligen Präsidenten turnusgemäß verlängert werden. Auf jeden Fall eine Gewissensentscheidung, wie sie einsamer nicht zu treffen ist. Präsident Trump hat sich die Entscheidung wahrlich nicht leicht gemacht, hat er doch bisher jedesmal verlängert. Er hat aber auch bei jeder Verlängerung eindringlich auf seine Bedenken aufmerksam gemacht und damit dem Mullah-Regime die Hand für Verhandlungen gereicht. Was kam, war jedesmal eine schroffe Ablehnung. Die Mullahs haben sich gründlich verzockt. Präsident Trump ist kein Jimmy Carter und auch kein Obama. Man mag es nicht glauben, wenn man ausschließlich GEZ-Verlautbarungen hört: Präsident Trump ist ein Mann mit klaren Überzeugungen – egal ob man sie mag oder nicht. Auch in dieser Frage ist er seit seinen Wahlkampfbekundungen keinen Millimeter von seinen Aussagen abgewichen. Es wäre gerade unserer selbsternannten „Führungselite“ dringend angeraten, endlich einmal aufmerksam zu zu hören. Nicht Präsident Trump ist unberechenbar, sondern die „Politikerkaste“, deren oberster Karrieregrundsatz „was kümmert mich mein Geschwätz von gestern“ ist. Präsident Trump macht das, von dem er überzeugt ist und nicht das, was unsere Realitätsverweigerer glauben was er machen sollte.

Was ist so schlecht an diesem Abkommen?

In diesem Blog ist bereits schon bei der Verabschiedung dieses Abkommens ein kritischer Artikel erschienen. Eine alte Geschäftsweisheit lautet: Ein gutes Geschäft ist nur eines, was für beide Seiten ein gutes Geschäft ist. Übertragen auf dieses Abkommen kann man sagen, daß es ausschließlich für Iran ein gutes – um nicht zu sagen Bombengeschäft war. Für den gesamten Nahen Osten eine einzige Katastrophe und für Israel eine existenzielle Bedrohung. Warum eine so eindeutige Feststellung: Iran hat den Bau von Kernwaffen nur um wenige Jahre verschoben. Bei Lichte besehen, nicht einmal das. Betrachtet man das System aus Kernwaffe und Rakete, hätte Iran ohne das Abkommen keinesfalls schneller zum Ziel kommen können. Eher im Gegenteil. Für dieses Stück Papier hat es jedoch irgendwo zwischen 100 und 200 Milliarden US-Dollar kassiert: Freigabe von gesperrten Konten, Ölverkäufe etc. Überraschung, es hat dieses Geld nicht zum Nutzen der eigenen Bevölkerung eingesetzt, sondern für eine beispiellose Aufrüstung und zur Finanzierung des Terrorismus. Mullahs ticken halt sehr viel anders, als idealistische europäische Friedensengel. Wie groß wäre wohl die Bedrohung von Israel und Saudi Arabien durch iranische Raketen und die Anzahl der Opfer in Jemen und Syrien ohne diesen „Geldsegen“ gewesen? Wer glaubte, die Welt hätte aus der Erfahrung des „Münchener Abkommens“ gelernt, ist bitter enttäuscht worden. Diktatoren mit Sendungsbewusstsein lassen sich nicht durch gut gemeinte Gesten von ihrem Kurs abbringen. Getrieben durch religiöse Wahnvorstellungen sind sie in der Lage, ganze Völker auszurotten. Im Zusammenhang mit Israel alles andere als eine Übertreibung. Gerade als Deutsche haben wir die Pflicht, solche Diktatoren und ihre .– ständig wiederholten – Aussagen ernst zu nehmen. Wir haben es uns schon einmal vorgemacht, daß ein gewisser Adolf Hitler alles nicht so ernst meint. Am Ende dieser Selbsttäuschung stand dann Auschwitz.

Der Zusammenhang mit Nord-Korea

Es gibt einen wesentlichen Unterschied zwischen der Diktatur in Nord-Korea und Iran. Kim und seine Clique ist eine gewöhnliche Mafia-Truppe: Sie beutet das eigene Volk bis aufs Blut aus, macht auch gern ein paar illegale Geschäfte, ist sich aber darüber im Klaren, wenn der Sheriff mit der Kavallerie kommt ist Schluß mit Lustig. Soll heißen: Die Bedrohung seiner Nachbarn oder der USA mit Kernwaffen ist letztendliche Selbstmord. Mit Teheran verhält es sich anders. Wer überzeugt ist, er wird mit 72 Jungfrauen belohnt, wenn er sich selbst in die Luft sprengt, ist ein anderes Kaliber. Da helfen Verträge nur sehr bedingt.

Wenn man solchen Regimen Kernwaffen zubilligt, wem will man sie dann noch verwehren? Wie lange sollen Nachbarländer (Saudi Arabien, Vereinigte Emirate, Irak usw.), die sich bereits heute faktisch im Kriegszustand mit Iran befinden auf Kernwaffen verzichten? Will man in Europa die Raketenabwehr weiter ausbauen? Wie will man die daraus resultierenden Verwicklungen mit Rußland meistern (Schon heute behauptet Putin, daß die Abwehrsysteme in Rumänien in Wirklichkeit gegen ihn gerichtet sind)?

Die Konsequenzen

Manchmal gibt es nur eindeutige Entscheidungen. Wenn man einem Psychopaten, der ständig gewalttätig gegen seine Nachbarn ist, auch noch eine Schusswaffe zugesteht, macht man sich an dem absehbaren Blutbad mitschuldig. Wenn man ein Land wie Israel, dem ständig die Ausrottung angedroht wird, ohne Unterstützung läßt, muß man nicht erstaunt sein, wenn dieses Land irgendwann zu einem Präventivschlag ausholt. Wer Krieg und unschuldige Opfer verhindern will, muß jetzt handeln. Ein verschieben des Problems um wenige Jahre – und nichts weiter ist das Abkommen gewesen – ist lediglich weiße Salbe. Jetzt kann man die Mullahs noch mit Wirtschaftssanktionen bändigen, sind sie erstmal Atomwaffenmacht, wird es mit Sicherheit nicht einfacher. Gleichzeitig zeigt man allen Potentaten deutlich die Konsequenzen von Kernwaffen auf.

Wenn Leute von den eingehaltenen Bedingungen faseln, stellen sie damit nur unter Beweis, daß sie nie den Text gelesen haben. Allein der Passus über Anmeldefristen und zur Inspektion freigegebener Orte ist ein einziger Witz. Selbst die Abkommen in den schlimmsten Zeiten des „Kalten Kriegs“ haben mehr Überwachungen erlaubt und damit Vertrauen geschaffen. Allerdings kommt man hiermit zum entscheidenden Unterschied: Es waren Abrüstungsverträge. Man hat die Verschrottung und deren Überwachung vereinbart. Vor allen Dingen aber, hat man die Trägersysteme mit einbezogen. Iran hingegen, hat sich lediglich bereit erklärt, die Entwicklung von Sprengköpfen um etwa eine Dekade zu verschieben. Dafür haben sie alle Mittel in die Entwicklung von Raketen gesteckt. Gerade das Beispiel Nord-Korea zeigt aber, wie problematisch der umgekehrte Weg ist. Nord-Korea hat bereits funktionierende Sprengköpfe vorgeführt, hat aber Schwierigkeiten mit den Trägersystemen. Erst als diese medienwirksam gestartet wurden hat die Weltöffentlichkeit reagiert.

Politischer Schaden

Unsere großartigen Fachkräfte der Außenpolitik haben bereits einen Scherbenhaufen angerichtet, ohne sich dessen überhaupt bewußt zu sein. Erst haben sie sich ein katastrophales Abkommen abhandeln lassen. Getreu dem Grundsatz „die Partei hat immer recht“ klammern sie sich nun daran. Obwohl sie hätten erkennen müssen, daß irgendwann jemand neues kommt, der sich nicht an dieses Machwerk gebunden fühlt.

Als wenn der Schaden nicht schon genug wäre, lassen sie sich jetzt auch noch von den Mullahs vorführen. Ganz offen gehen sie auf Konfrontationskurs mit den USA. Kann diesen Größen nicht einmal jemand einen Globus schenken, damit sie mal kapieren, wer zuerst betroffen ist? Es sind die gleichen Strategen, die schon nicht adäquat auf Erdogan reagieren konnten. Gegen die Mullahs ist Erdogan jedoch ein lupenreiner Demokrat und ein lediglich islamistisch angehauchter Politiker.

Als nächstes werden noch die Trittbrettfahrer China und Russland auf den Zug gegen Amerika aufspringen. China wird versuchen sich das Öl und Erdgas Irans billig zu sichern. Putin muß den Mullahs ohnehin aus der Hand fressen, da sie für seine Interessen im Mittelmeer das Kanonenfutter liefern. Deutschland ist dabei, seinen fetten Hintern gleich zwischen alle Stühle zu setzen. Langfristig, könnte die „Flüchtlingspolitik“ dagegen noch ein harmloses Abenteuer gewesen sein.

Nukleare Drohnen – ein neuer Albtraum?

Wenn man dem amerikanischen Geheimdienst glauben schenken mag, hat Rußland am 27. November eine neue Büchse der Pandora geöffnet: Von einem U-Boot der Sarov-Klasse wurde eine Drohne gestartet, die mit Nuklear-Raketen ausgerüstet werden kann.

Der klassische Boomer

Um die neue Qualität zu verstehen, muß man sich kurz mit der bisherigen Strategie und den daraus resultierenden U-Booten beschäftigen. Bisher waren mit Kernwaffen bestückte U-Boote die ultimative „Zweitschlagwaffe“: Selbst wenn das eigene Territorium komplett durch den Gegner zerstört worden wäre, sollte noch ein ebenfalls zerstörender Gegenschlag ausgeführt werden – das war die Doktrin vom „Gleichgewicht des Schreckens“. Zu diesem Zweck baute man Interkontinentalraketen in U-Boote mit Kernreaktor-Antrieb ein. Diese U-Boote konnten sich in den Weiten der Weltmeere verstecken. Ihre Einsatzzeit ist nur durch die Vorräte und die Belastbarkeit der Mannschaft begrenzt.

Das Konzept der gesicherten Zweitschlagfähigkeit erfordert Interkontinentalraketen, denn nur durch deren Reichweite ist das Verstecken in den Weltmeeren möglich. Solche Interkontinentalraketen sind aber wegen ihres notwendigen Treibstoffvorrats sehr groß. Stellt man zehn und mehr solcher Raketen senkrecht nebeneinander, ist die erforderliche Größe des U-Bootes vorgegeben. Man erhält einen „Unterwasser-Kreuzer“. Ein solch großes Boot braucht ein entsprechendes Kernkraftwerk als Antrieb und hinterläßt damit eine Menge Geräusche, Abwärme, Bugwellen etc. Alles Erscheinungen, die eher auffällig sind und einem erfolgreichen Verstecken entgegen stehen.

Die Nukleardrohne

Verzichtet man nun auf Reichweite, kann man entsprechend kleine Raketen verwenden. Das ist das wohlbekannte Prinzip der „Mittelstrecken- oder Kurzstreckenrakete“. Wegen der kurzen Strecke, ist die Vorwarnzeit entsprechend gering. Allerdings entsteht das Problem der Stationierung in unmittelbarer Nähe des Feindesgebiets. Mit diesem Konzept ist bereits die Sowjetunion gescheitert: Kubakrise und Nato-Nachrüstungsbeschluß. Wenn es nun aber gelingt, eine solche Kernwaffe auf einer Unterwasser-Drohne mit Nuklearantrieb zu stationieren, werden die alten Träume vom möglichen Erstschlag Realität: Man kann die Drohne wegen ihres Nuklearantriebs monatelang unerkannt in Stellung bringen und halten.

Baut man klein und hat vor allem keine Menschen an Bord, kann man mit wesentlich höheren Drücken umgehen, d. h. viel tiefer tauchen. Je tiefer man taucht, je besser kann man sich verstecken. Man braucht nur noch einen Nuklearantrieb, damit man praktisch beliebig lange tauchen kann und jeden Ort der Erde erreichen kann. Ist die Drohne klein genug, kann sie von einem konventionellen U-Boot ausgesetzt und wieder aufgenommen werden. Alles relativ unbeobachtet. Oder mit anderen Worten: Man treibt den Aufwand zur U-Boot-Jagd in unermeßliche Höhen.

Bei einem solchen „Tochterboot-Konzept“ ergibt sich noch ein weiterer Vorteil: Man kommt mit einem sehr kleinen Antrieb aus. Schon die heutigen Boomer fahren in ihrem Aufenthaltsgebiet möglichst langsam, um möglichst unauffällig zu bleiben. Eine nukleare Drohne könnte einen Kombiantrieb aus Batterie und Nuklearantrieb haben. Die Batterie würde wie bei einem Torpedo den kurzfristigen Antrieb übernehmen. Damit lassen sich sehr hohe Geschwindigkeiten – zur Flucht – erzielen. Diese Batterie kann durch einen nuklearen Stromerzeuger wieder aufgeladen werden. Da die Leistungen gegenüber einem konventionellen U-Boot klein wären, wäre dazu nicht einmal ein Reaktor mehr nötig. Es böte sich hierfür eine sog. „Nuklearbatterie“ an. Dabei handelt es sich um eine nukleare Wärmequelle, die über ein Thermoelement elektrischen Strom erzeugt. Die Russen besitzen jahrzehntelange Erfahrungen auf diesem Gebiet. Mit solchen „Nuklearbatterien“ wurden z. B. Leuchttürme und Bojen im Eismeer betrieben.

Da die nuklearen Drohnen ohne Personal betrieben werden, kann die Abschirmung gegen Strahlung nur sehr schwach ausfallen. Darin verbirgt sich aber eine weitere Gefahr für die Weltmeere bereits in Friedenszeiten: Geht nämlich eine solche Drohne verloren, gelangt unkontrolliert eine Menge Atommüll in die Umwelt. Verlockend an einer solchen nuklearen Batterie ist, daß sie keine beweglichen Teile enthält und somit geräuschlos arbeitet. Sie wäre damit praktisch (passiv) nicht zu entdecken.

Die strategische Bedeutung

Besonders menschenverachtend ist, daß in diesem Zusammenhang wieder die „Kobaltbombe“ aus Sowjetzeiten auftaucht. Bei dieser Kernwaffe erzeugt man bewußt langlebige radioaktive Elemente. Mit diesem Fallout wollte man größere Gebiete des Klassenfeindes für Jahrzehnte unbewohnbar machen. Bei dem neuen Konzept, will man damit Marinebasen des Feindes verseuchen. Höchst beunruhigende Gedankengänge, besonders wenn sie aus den Reihen des Schlächters von Grosny und Aleppo laut gedacht werden. Wer als erstes systematisch Krankenhäuser bombardiert, um die angestammte Bevölkerung aus dem von ihm beanspruchten Gebiet zu vertreiben, dem sollte man solche perversen Gedanken durchaus abkaufen.

Die nuklearen Drohnen könnte man einfach als Hirngespinst abtuen, wenn nicht seit geraumer Zeit eine Verlagerung von konventioneller zu nuklearer Rüstung Russlands zu verzeichnen wäre. Wie gefährlich diese Strategie ist, zeigt gerade der Syrienkrieg. Wie lange glaubt Russland seinen Vasallen Iran unter Kontrolle halten zu können? Der Schlag der IDF gegen den Transport von Giftgas in der Nähe von Damaskus sollte Warnung genug sein. Israel ist nicht die Ukraine. Sollten irgendwelche „Grünen Männchen“ versuchen, ein israelisches Flugzeug abzuschießen, wird sich innerhalb von Stunden das russische Expeditionskorps (endgültig) in einen Haufen Schrott verwandeln. Will Russland dann atomar antworten? In einer Gegend mit hunderten Kernwaffen? Allein auf Incirlik Air Base lagern noch mindestens 50 Kernwaffen der NATO. Israel selbst verfügt über ein beträchtliches Arsenal. Hinzu kommen vor Ort die Flotten von USA, Frankreich und Großbritannien.