Halbzeit bei GenIV

Nach zehn Jahren der internationalen Zusammenarbeit bei der Entwicklung von Reaktoren der sogenannten „vierten Generation“ erschien eine Überarbeitung der Ursprünglichen Fahrplanes aus dem Jahre 2002 erforderlich.  In der letzten Dekade ist viel geschehen: Dies betrifft die Zusammensetzung und Forschungsintensität der Mitglieder, die bereits gewonnenen Erkenntnisse und nicht zuletzt die Veränderung der äußeren Randbedingungen (Shale Gas Boom, Fukushima, etc.).

Es ist bei den ursprünglich ausgewählten sechs Konzepten geblieben. Neue sind nicht hinzugekommen. Mehrere teilnehmende Länder haben bedeutende Mittel in die Entwicklung natriumgekühlter Reaktoren mit einem schnellen Neutronenspektrum (sodium-cooled fast reactor, SFR) und gasgekühlten Reaktoren mit möglichst hoher Betriebstemperatur (very-high-temperature reactor, VHTR) investiert.

Die restlichen vier Konzepte: Mit Wasser im überkritischen Zustand gekühlte Reaktoren (SCWR), bleigekühlte Reaktoren mit schnellem Neutronenspektrum (LFR), gasgekühlte Reaktoren mit schnellem Neutronenspektrum (GFR) und mit Salzschmelzen gekühlte Reaktoren wurden – mehr oder weniger – auf Sparflamme entwickelt.

Ziele

Weiterhin gelten als zentrale Anforderungen an die sogenannte vierte Generation folgende vier Bereiche:

  • Nachhaltigkeit
  • Sicherheit und Verfügbarkeit
  • Wirtschaftliche Wettbewerbsfähigkeit
  • nicht zur Produktion von Waffen geeignete Technologien und ein physikalischer Schutz gegen jedwede Einwirkungen von Außen (Naturkatastrophen, Terrorismus etc.).

Interessant ist in diesem Zusammenhang die Definition der vier Generationen: Die ersten Reaktoren der Baujahre 1950–1960 (z. B. Shippingport, Dresden, MAGNOX usw.) werden als Demonstrationskraftwerke verstanden und sind bereits stillgelegt. Die zweite Generation umfaßt die Baujahre 1970–1990 und stellt die überwiegend heute im Betrieb befindlichen Leichtwasser- und Schwerwasserreaktoren dar. Die dritte Generation wird als die Leichtwasserreaktoren der Baujahre 1990–2000 definiert, wobei die Reaktoren nach dem Jahr 2000 als Generation III+ bezeichnet werden. Sie stellen eine evolutionäre Weiterentwicklung der Druck- und Siedewassertechnologie dar. Die Vielzahl unterschiedlichster Reaktortypen der Anfangsjahre hat sich also auf lediglich zwei Bauarten verengt. Die Weiterentwicklungen der schwerwassermoderierten, der gasgekühlten und der metallgekühlten Reaktoren ist – zumindest, was die Stückzahlen anbetrifft – auf das Niveau von Demonstrationsanlagen zurückgefallen. Erst ab dem Jahr 2030 wird von der Einführung einer vierten Generation ausgegangen.

Als die zentralen Ziele für die vierte Generation wird dabei die Verringerung der Gesamtkosten über den Lebenszyklus eines Kraftwerks, eine nochmals verbesserte Sicherheit, ein möglichst großer Schutz vor missbräuchlicher Nutzung (Waffen, Terrorismus) und eine erhebliche Verringerung des (Atom)mülls gesehen.

Abgebrannte Brennelemente

Nach einer gewissen Zeit ist jedes Brennelement in einem Reaktor nicht mehr nutzbar und muß ausgetauscht werden. Im Sprachgebrauch der „Atomkraftgegner“ ist es dann „Atommüll“ der zudem auch noch für Jahrtausende tödlich sein soll. In Wirklichkeit sind in einem „abgebrannten“ Brennelement eines Leichtwasserreaktors noch über 95% Brennstoff enthalten. Dieser Brennstoff muß und kann recycled werden. Aber selbst die übrig bleibenden Spaltprodukte sind keinesfalls wertlos. Aus wirtschaftlichen Gründen lohnt meist keine sofortige Aufbereitung. Es empfiehlt sich daher, diesen Atommüll (Müll in Bezug auf eine energetische Verwertung) für längere Zeit sicher zu lagern um ein Abklingen der Radioaktivität abzuwarten. Durch eine Nachbehandlung des Abfalls in geeigneten Reaktoren (mit schnellem Neutronenspektrum oder sog. Transmutation) kann diese notwendige Lagerzeit auf wenige hundert Jahre beschränkt werden. Eine „Endlagerung“ ist weder nötig noch sinnvoll. Das übrig bleibende „Erz“ – mit hohem Gehalt wertvollster Materialien – kann anschließend dem normalen Wirtschaftskreislauf zugeführt werden.

Die Aufgabe der nahen und mittleren Zukunft liegt in der Entwicklung und Realisierung solcher Kreisläufe mit möglichst geringen Kosten. Das bisher vorliegende „Henne-Ei-Problem“ beginnt sich gerade von selbst zu lösen: Es gibt inzwischen weltweit große Mengen abgebrannter Brennelemente, die eine Aufbereitung mit unterschiedlichsten Verfahren im industriellen Maßstab möglich machen. Viele dieser Brennelemente sind bereits soweit abgelagert (die Strahlung nimmt in den ersten Jahren besonders stark ab), daß sich ihre Handhabung stark vereinfacht hat.

Ein „Endlager“ – besser ein Lager mit sicherem Einschluß über geologische Zeiträume – ist nur für die Abfälle nötig, deren Aufbereitung zu kostspielig wäre. Dieser Weg wird bereits für Abfälle aus der Kernwaffenproduktion beschritten. Dafür reicht aber maximal ein „Endlager“ pro Kernwaffenstaat aus.

In naher Zukunft wird sich ein weltweiter Austausch ergeben: Es wird unterschiedliche Wiederaufbereitungsanlagen in verschiedenen Ländern geben. Die Kraftwerksbetreiber können diese als Dienstleistung nutzen. Die dabei wiedergewonnen Wertstoffe werden auf speziellen Märkten gehandelt werden. Wer zukünftig beispielsweise einen „Brutreaktor“ bauen möchte, kann sich das für die Erstbeladung notwendige Plutonium auf diesem Markt zusammenkaufen. Wem die Mengen langlebiger Aktinoiden zu groß werden (Lagerkosten) kann diese an Betreiber von schnellen Reaktoren oder Transmutationsanlagen zur „Verbrennung“ abgeben. Es wird sich genau so ein Markt für „nukleare Müllverbrennungsanlagen“ etablieren, wie er heute für Industrie- und Hausmüll selbstverständlich ist.

Ebenso wird es kommerzielle „Endlager“ geben, die gegen (teure) Gebühren Restmengen aufnehmen, die sich anderweitig nicht mehr wirtschaftlich verwenden lassen. Gerade Deutschland ist weltweit führend in Erwerb und Endlagerung von hoch toxischen Abfällen in ehemaligen Salzbergwerken. Hier ist es auch sprachlich gerechtfertigt, von Endlagern zu sprechen, da die dort eingelagerten Stoffe – anders als radioaktive Stoffe – nie verschwinden werden. „Gefährlich“ ist (zumindest in Deutschland) halt nur eine Frage des ideologischen Standpunktes.

Die sechs Systeme

Im Jahre 2002 wurden aus über 100 Vorschlägen sechs Konzepte ausgewählt. Leitgedanke dabei war, aus verschiedenen Reaktortypen symbiotische Systeme zu bilden. Beispielsweise durch die Verknüpfung von Leichtwasserreaktoren mit Reaktoren mit schnellem Neutronenspektrum, sodaß der „Abfall“ des einen Reaktortyps als Brennstoff für den anderen dienen kann. In diesem Sinne, konzentrierte man sich nicht auf die Entwicklung eines einzelnen neuen Reaktors, sondern wählte sechs Konzepte aus, aus denen ein weltweites Netz aufgebaut werden könnte. Jeder einzelne dieser sechs ausgewählten Konzepte hat ganz spezielle Vor- und Nachteile, die es jedem Land ermöglichen sollte, für seinen speziellen Bedarf, das geeignete Modell auswählen zu können. Es geht also eher darum, Möglichkeiten zu eröffnen, als Konzepte fest zu schreiben. Dies ist ein sehr flexibler und (theoretisch) Kosten sparender Ansatz, da jedes Land seine besonderen Stärken (Werkstofftechnik, Fertigungstechnik, Datenverarbeitung etc.) in die gemeinsame Forschung und Entwicklung einbringen kann, ohne sich ein komplettes Entwicklungsprogramm für einen einzelnen Reaktor aufbürden zu müssen. Insbesondere auch kleinen Ländern, mit beschränkten Ressourcen steht es offen, sich zu beteiligen.

Die ursprünglich ausgewählten Konzepte sind alle in den letzten zehn Jahren verfolgt worden und sollen auch weiter entwickelt werden. Allerdings haben sich durch neue Erkenntnisse und einem unterschiedlichen finanziellen Einsatz in den beteiligten Ländern, der ursprünglich geplante Zeitplan etwas verschoben. Die Entwicklung wurde in jeweils drei Phasen unterteilt.

Zeitplan

Für alle sechs Reaktortypen sollten die Machbarkeitsstudien als erste Phase bereits abgeschlossen sein. Bei der Machbarkeitsstudie sollten alle relevanten Probleme geklärt worden sein und insbesondere für kritische Eigenschaften, die später sogar eine Aufgabe erforderlich machen könnten, zumindest Lösungswege aufgezeigt werden. Für Salzbadreaktoren glaubt man diese Phase nicht vor 2025 und für gasgekühlte Reaktoren mit schnellem Neutronenspektrum, nicht vor 2022 abschließen zu können.

In der Durchführungsphase sollten alle Materialeigenschaften, Berechnungsverfahren etc. entwickelt und als Prototypen getestet und optimiert sein. Diese Phase wurde bisher bei keinem Konzept abgeschlossen. Am weitesten vorn im Zeitplan, liegen der mit Natrium gekühlte schnelle Reaktor (erwartet 2022) und der mit Blei gekühlte schnelle Reaktor (erwartet 2021).

Aus heutiger Sicht wird deshalb kein Reaktor die Demonstrationsphase bis zum Jahr 2030 abschließen können. Bevor eine kommerzielle Anlage in Angriff genommen werden kann, muß wenigstens ein Demonstrationskraftwerk (einschließlich dem erforderlichen Genehmigungsverfahren!) errichtet worden sein und einige Jahre Betriebserfahrung gesammelt haben. Selbst in Ländern mit durchweg positiver Einstellung zur Nutzung der Kernenergie und einem gewissen Pioniergeist (ähnlich der 1950er Jahre) dürfte dies ein ehrgeiziges Ziel sein. Zumal kein wirklicher Zeitdruck vorliegt: Es gibt genug Natururan zu günstigen Preisen, die Mengen abgebrannter Brennelemente sind immer noch so gering, daß kein Kostendruck zur Beseitigung von „Atommüll“ existiert und der Bedarf an Prozeßwärme mit hoher Temperatur kann problemlos durch kostengünstiges Erdgas gedeckt werden. Es bleibt die Erzeugung elektrischer Energie: Die kann aber problemlos und kostengünstig (im Vergleich zu Kohlekraftwerken mit Abgaswäsche) durch konventionelle Leichtwasserreaktoren erzeugt werden. China stellt dies eindrucksvoll unter Beweis.

Fukushimas Auswirkungen

Fukushima hat die Bedeutung für eine nach den Regeln der Technik entsprechende Auslegung und Bauweise gezeigt. Die Lehren aus dem Unglück beeinflussen nicht nur die in Betrieb befindlichen Kraftwerke, sondern auch zukünftige der vierten Generation. Schädigende Einflüsse von außen müssen bauartbedingt von den Reaktoren fern gehalten werden (z. B. Baugrund oberhalb von möglichen Flutwellen) und die Nachzerfallswärme muß auch über längere Zeit und in jedem Falle sicher abgeführt werden (z. B. passive Wasserkühlung aus oberen Tanks ausreichender Dimension).

Für die Reaktoren der vierten Generation sind umfangreiche Forschungsarbeiten zur Beantwortung dieser Fragen notwendig. Dies betrifft insbesondere das Verhalten der andersartigen Kühlmittel (Helium, Natrium, Blei etc.) und die teilweise wesentlich höheren Temperaturen (Werkstoffe, Temperaturschocks etc.). Hinzu kommt die höhere Energiedichte in den Kernen und etwaige Brennstoffkreisläufe in unmittelbarer Nähe.

Gasgekühlter schneller Reaktor (GFR)

Bei dem GFR (Gas-cooled Fast Reactor) handelt es sich um einen mit Helium gekühlten Reaktor mit schnellem Neutronenspektrum. Durch schnelle Neutronen lassen sich alle Aktinoiden – also alle radioaktiven Elemente mit langen Halbwertszeiten – spalten. Dies ist heute der Hauptgrund, warum man diese Entwicklung verfolgt. Man könnte mit solchen Reaktoren die „Endlagerfrage“ eindeutig beantworten: Man braucht faktisch kein Endlager mehr, weil sich das Problem der potentiellen „Gefahr durch strahlenden Atommüll“ auf technische Zeiträume von weniger als 300 Jahren reduziert. Damit ist auch klar, warum sich die „Anti-Atomkraftbewegung“ mit besonderer Vehemenz – und auch Gewalttätigkeit – gegen den Bau solcher Reaktoren gewandt hat. Würden solche Reaktoren mit Wiederaufbereitung abgebrannter Brennelemente eingesetzt, wäre ihnen ihr Totschlagargument von angeblich über Millionen Jahre zu sichernden Endlagern entzogen. Die (deutsche) Scharade einer „Standortsuche“ wäre schlagartig zu Ende.

Ein mit Helium gekühlter Reaktor mit schnellem Neutronenspektrum hat jedoch einen systembedingten Nachteil: Wegen des angestrebten Neutronenspektrums darf ein solcher Reaktor nur geringe Mengen an Materialien enthalten, die Neutronen abbremsen. Idealerweise würde er nur aus Brennstoff und Kühlmittel bestehen. Seine Fähigkeit „Wärme“ zu speichern, ist sehr gering. Jede Leistungsänderung führt somit zu starken und schnellen Temperaturänderungen. Ein ernster Nachteil bei einem Verlust des Kühlmittels. Allein die Nachzerfallswärme könnte zu schwersten Schäden führen. Ebenso ist eine passive Nachkühlung kaum realisierbar. Helium ändert – anders als Wasser – nur geringfügig seine Dichte bei Temperaturänderungen. Man wird daher immer auf aktive Nachkühlung angewiesen sein. Die Ereignisse von Fukushima haben die Genehmigungsfähigkeit dieses Reaktorprinzips nicht unbedingt erhöht.

In nächster Zukunft müssen Gebläse bzw. Turbinen entwickelt werden, die Helium mit hoher Temperatur (Betriebstemperatur 850 °C) und unterschiedlichen Drücken (zwischen 1 und 70 bar) zuverlässig befördern können. Für die Kreisläufe zur Abführung der Nachzerfallswärme sind sicherheitsrelevante Ventile zu entwickeln und zu testen. Es sind zuverlässige Antriebskonzepte für die Notkühl-Gebläse zu entwickeln. Nach den Erfahrungen in Fukushima keine ganz einfache Aufgabe.

Die infrage kommenden Legierungen und Keramiken für die Brennelemente sind ausgiebig zu testen. Gleiches gilt für die Hüllrohre. Es müssen im Störfall Temperaturen von etwa 2000 °C sicher beherrscht werden.

Mit der bisherigen Entwicklung sind die Probleme eher größer geworden. Es wird deshalb nicht mit einem Abschluss der Machbarkeitsstudien in den nächsten zehn Jahren gerechnet. Wegen der Langfristigkeit ist der Einsatz der Mittel eher verringert worden.

Bleigekühlter schneller Reaktor (LFR)

Bei dem Lead-cooled Fast Reactor (LFR) handelt es sich um einen Reaktor, der flüssiges Blei als Kühlmittel verwendet. Blei besitzt einen sehr hohen Siedepunkt (1743 °C), sodaß man mit diesem Reaktortyp sehr hohe Temperaturen ohne nennenswerten Druckanstieg erzeugen kann. Allerdings ist Blei bei Umgebungsbedingungen fest, weshalb man den gesamten Kreislauf stets auf über 328 °C halten muß. Es gibt also zusätzlich den neuen Störfall „Ausfall der Heizung“. Blei ist chemisch recht beständig und reagiert – wenn überhaupt – ohne große Wärmefreisetzung mit Luft oder Wasser. Es schirmt Gammastrahlung sehr gut ab und besitzt ein gutes Lösungsvermögen (bis 600 °C) für Jod und Cäsium. Ferner trägt die hohe Dichte von Blei eher zu einer Rückhaltung als einer Verteilung von radioaktiven Stoffen bei einem schweren Störfall bei. Allerdings stellt die Undurchsichtigkeit und der hohe Schmelzpunkt bei allen Wartungsarbeiten und Sicherheitsinspektionen eine echte Herausforderung dar. Die hohe Dichte von Blei erschwert den Erdbebenschutz und erfordert neue (zugelassene) Berechnungsverfahren. Nach wie vor, ist die Korrosion von Stahl in heißem Blei mit Sauerstoff ein großes Problem. Hier ist noch sehr viel Forschung und Entwicklung nötig, bis ein dem heutigen Niveau von Leichtwasserreaktoren entsprechender Zustand erreicht wird.

In sowjetischen U-Booten wurden Reaktoren mit einem Blei-Wismut-Eutektikum (niedrigerer Schmelzpunkt) verwendet. Die dort (meist schlechten) gesammelten Erfahrungen sind nicht direkt auf das LFR-Konzept übertragbar. Die Reaktoren sind wesentlich kleiner, haben eine geringere Energiedichte und Betriebstemperatur und eine geringere Verfügbarkeit. Außerdem arbeiteten sie mit einem epithermischen und nicht mit einem schnellen Neutronenspektrum. Der Vorteil des geringeren Schmelzpunktes einer Blei-Wismut-Legierung ist nicht ohne weiteres auf eine zivile Nutzung übertragbar, da durch den Neutronenbeschuß Polonium-210 gebildet wird. Es handelt sich dabei um einen starken Alphastrahler (Halbwertszeit 138 Tage), der den gesamten Kühlkreislauf kontaminiert.

Im Moment werden im Projekt drei verschiedene Konzepte verfolgt: Ein Kleinreaktor mit 10 bis 100 MWel in den USA (Small Secure Transportable Autonomous Reactor or SSTAR), ein Reaktor mit 300 MWel in Russland (BREST) und ein Reaktor mit mehr als 600 MWel in Europa (European Lead Fast Reactor or ELFR – Euratom).

Wenn man einen solchen Reaktor als Brüter betreiben will, benötigt man eine Mindestleistung. Je größer, je effektiver. Ein kleiner Reaktor, wie z. B. der SSTAR, ist nur als reiner „Aktinoidenbrenner“ geeignet. Allerdings kann er sehr lange ohne einen Brennstoffwechsel betrieben werden. Will man Spaltmaterial erbrüten, ist ein häufiger Brennstoffwechsel unvermeidlich. Es empfiehlt sich deshalb, einen entsprechenden Brennstoffzyklus zu entwickeln. Es wird auf den Bau mehrere Reaktoren mit einer gemeinsamen Wiederaufbereitungsanlage hinauslaufen. Das Verfahren zur Wiederaufbereitung hängt wiederum von dem Brennstoffkonzept des Reaktors ab.

Ein besonderes Konzept, im Zusammenhang mit Blei, ist die Entwicklung einer Spallationsquelle (Japan, MYRRHA in Belgien usw.). In einem Beschleuniger wird ein Strahl von Protonen auf über 1 GeV beschleunigt und auf flüssiges Blei geschossen. Beim Auftreffen auf ein Bleiatom „verdampft“ dieses seine Kernelemente. Es wird eine große Anzahl von Neutronen frei. Diese Neutronen werden von einem Mantel aus Aktinoiden absorbiert. Diese eingefangenen Neutronen führen teilweise zu einer Spaltung oder einer Umwandlung. Durch die Spaltungen wird – wie in jedem Kernreaktor – Wärme frei, die anschließend konventionell genutzt werden kann. Es entsteht aber keine selbsterhaltende Kettenreaktion. Wird der Beschleuniger abgeschaltet, brechen auch sofort die Kernreaktionen in sich zusammen. Es handelt sich hierbei also um eine Maschine, die primär der Stoffumwandlung und nicht der Energieerzeugung dient. Durch die Verwendung von Blei als „Neutronenquelle“ und Kühlmittel sind aber alle Erfahrungen und Probleme unmittelbar übertragbar.

Am weitesten scheint die Entwicklung in Russland vorangeschritten zu sein. Man entwickelt einen bleigekühlten Reaktor mit 300 MWel (BREST-300) und betreibt die Weiterentwicklung der U-Boot-Reaktoren mit Blei-Wismut-Eutektikum als Kühlmittel (SVBR-100). Beide Reaktoren sollen bis zum Ende des Jahrzehnts erstmalig kritisch werden. In Europa plant man eine Demonstrationsanlage mit 300 MWth (Advanced Lead Fast Reactor European Demonstrator, ALFRED).

Salzbadreaktoren (MSR)

Salzbadreaktoren (Molten Salt Reaktor, MSR) werden in zwei Gruppen eingeteilt: Reaktoren, bei denen der Spaltstoff im Salz selbst gelöst ist und Reaktoren, bei denen das flüssige Salz nur als Kühlmittel dient (Fluoride salt-cooled High-temperature Reactor, FHR).

Zwischen 1950 und 1976 gab es in den USA ein umfangreiches Entwicklungsprogramm, aus dem zwei Prototypen erfolgreich hervorgingen (Aircraft Reactor Experiment, ARE und Molten Salt Reactor Experiment, MSRE). Anfangs konzentrierte man sich in der Entwicklung auf Salzbadreaktoren mit thermischem Neutronenspektrum.

Ab 2005 entwickelte sich eine Linie, die von in Salz gelöstem Brennstoff und Spaltprodukten ausging. Als Kühlmittel soll ebenfalls Salz dienen. Das Neutronenspektrum soll schnell sein. Von dieser Kombination verspricht man sich einerseits das Erbrüten von Spaltstoff (z. B. Uran-233 aus Thorium-232) und andererseits das kontinuierliche „Verbrennen“ von Minoren-Aktinoiden mit dem Ziel eines relativ kurzlebigen „Atommülls“, der nur noch aus Spaltstoffen besteht. Durch das Salzbad möchte man hohe Betriebstemperaturen bei nahezu Umgebungsdruck erreichen. Bis zum Bau eines Reaktors, ist jedoch noch ein langer Weg zurück zu legen: Es müssen die chemischen (Korrosion) und thermodynamischen Zustandsdaten für solche n-Stoff-Salze bestimmt werden. Es müssen Verfahren zur kontinuierlichen Entgasung der Salzschmelze entwickelt werden, da ein großer Teil der Spaltprodukte (zumindest bei der Betriebstemperatur) gasförmig ist. Für das flüssige Salzgemisch müssen gekoppelte neutronenphysikalische und thermohydraulische Berechnungsverfahren geschaffen werden. Für die radioaktiven Salzgemische sind zahlreiche Sicherheitsversuche zur Datensammlung und Absicherung der Simulationsmodelle nötig. Die Chemie und Verfahrenstechnik der Aufbereitung während des Reaktorbetriebs muß praktisch noch vollständig getestet werden.

Natriumgekühlter schneller Reaktor (SFR)

Der Sodium-cooled Fast Reactor (SFR) verwendet flüssiges Natrium als Kühlmittel. Natrium hat nahezu ideale Eigenschaften: Relativ geringer Schmelzpunkt (98 °C), aber hoher Siedepunkt (890 °C), sehr gute Wärmeleitfähigkeit (140 W/mK) bei annehmbarer Wärmekapazität (1,2 KJ/kgK). Es hat keine korrosiven Eigenschaften, reagiert aber heftig unter Wärmefreisetzung mit Luft und Wasser. Bisher wurden bereits 17 Reaktoren gebaut und drei weitere befinden sich in Russland, Indien und China im Bau.

Ursprüngliches Ziel war die Erschaffung eines „schnellen Brüters“. Mit ihm sollte mehr (thermisch) spaltbares Plutonium erzeugt werden, als dieser Reaktortyp zu seinem Betrieb benötigte. Dieses zusätzlich gewonnene Plutonium sollte dann zum Start weiterer Reaktoren verwendet werden. Inzwischen gibt es aus dem Betrieb von Leichtwasserreaktoren und der Rüstungsindustrie mehr als genug Plutonium auf der Erde. Darüber hinaus sind die Natururanvorräte nahezu unerschöpflich. Deshalb hat sich die Zielrichtung in den letzten Jahren verschoben. Die benutzten Brennelemente aus Leichtwasserreaktoren werden von „Atomkraftgegnern“ abfällig als „Atommüll“ bezeichnet. In Wirklichkeit sind aber das gesamte enthaltene Uran und Plutonium (weit über 95 %) vollständig zur Energiegewinnung nutzbar. Gerade aus dem wertvollsten Material – dem Plutonium – wird wegen dessen langer Halbwertszeit der Bedarf eines Endlagers und dessen „sicherer Einschluß über Millionen von Jahre“ konstruiert. Selbst die Spaltprodukte – als tatsächlicher Abfall der Energieerzeugung durch Kernspaltung – sind (wirtschaftlich) nutzbar.

Man geht heute von einer Erstbeladung eines schnellen natriumgekühlten Reaktors mit einem Gemisch aus Uran und knapp 20% Plutonium aus. Das Plutonium gewinnt man aus den abgebrannten Brennelementen der Leichtwasserreaktoren. Die abgebrannten Brennelemente eines solchen schnellen Reaktors werden nach angemessener Zwischenlagerung in einem elektrochemischen Prozeß (wie z. B. bei der Kupfer- und Aluminiumproduktion) wieder aufbereitet. Bei diesem Wiederaufbereitungsverfahren liegt der Schwerpunkt in der Gewinnung möglichst reiner (kurzlebiger) Spaltprodukte. Alle langlebigen Aktinoiden werden wieder in den neuen Brennelementen weiter verwendet. Das „verbrauchte“ Uran und Plutonium wird dabei durch „Atommüll“ aus Leichtwasserreaktoren ergänzt. Ein solcher Reaktor gleicht also einer „Müllverbrennungsanlage“, in der ja auch „gefährliche Stoffe“ unter gleichzeitiger Stromerzeugung beseitigt werden.

Natriumgekühlte Reaktoren können in beliebiger Größe gebaut werden. Lediglich wenn man Brennstoff erbrüten will (d. h. mehr Plutonium produzieren als man verbraucht) muß der Reaktor geometrisch groß sein, um Neutronenverluste zu vermeiden. Gerade „Aktinoidenbrenner“ können sehr klein und kurzfristig gebaut werden. Die Entwicklung bezieht sich auf die Kombination aus Brennstoff (oxidisch, metallisch, karbidisch und Nitride möglich) und die Wiederaufbereitung (naßchemisch, pyrotechnisch). Es gilt die optimale Kombination aus Werkstoffen und Verfahren zu finden. Ferner sind homogene Brennstoffe und spezielle heterogene Anordnungen zur Verbrennung von Minoren-Aktinoiden denkbar. Diese Anordnungen koppeln wieder auf die Neutronenphysik, die Regelung und damit letztendlich auf die Sicherheit zurück.

Reaktor mit überkritischem Wasser (SCWR)

Wird Wasser oberhalb des kritischen Punktes (374,12 °C bei 221,2 bar) verwendet, ändert es radikal seine chemischen und physikalischen Eigenschaften. Entscheidend ist die kontinuierliche Änderung der Dichte. Es gibt nicht mehr das gleichzeitige Auftreten von Dampf und Flüssigkeit (z. B. Blasen) in einem Behälter.

Ziel von „überkritischen Kesseln“ ist die Steigerung des Wirkungsgrades. So sind heute in modernen Kohlekraftwerken Wirkungsgrade von 46 % möglich. Für den Supercritical-water-cooled reactor (SCWR) ist ein Wirkungsgrad von 44 % angestrebt. Die leidvolle Entwicklungsgeschichte bei konventionellen Kraftwerken hat jedoch gezeigt, daß die Steigerung von Druck und Temperatur mit erheblichen Werkstoffproblemen und damit Kosten verbunden ist. Solange Kernbrennstoffe so billig wie heute sind, scheint dieser Weg bei Reaktoren zumindest wirtschaftlich nicht sinnvoll.

Die gesamte Sicherheitstechnik muß neu durchdacht und experimentell bestätigt werden. Es gibt keine lokale Selbstregelung durch Dampfblasenbildung mehr. Die Gefahr von überhitzten Stellen im Kern muß schon im Normalbetrieb sicher beherrscht werden. Die Notkühlsysteme müssen bei einem Druckabfall sowohl im überkritischen Zustand, als auch im Zwei-Phasenbereich voll wirksam sein. Man kann sich nicht mehr auf den Wasserstand als Stellgröße verlassen, sondern muß auf den Durchfluß übergehen, was wesentlich schwerer zu realisieren ist. Die Wasserchemie ist im überkritischen Zustand wesentlich anders und schwerer zu beherrschen.

Bisher wurden nur Tests mit Komponenten ausgeführt. Man hofft auf dieser Basis in den nächsten fünf Jahren eine Entscheidung für den Bau eines Prototyps fällen zu können. Bis zu einem kommerziell nutzbaren Reaktor dürften noch weit über 20 Jahre vergehen.

Hösttemperaturreaktor (VHTR)

Der Very-High-Temperature Reactor (VHTR) ist eine Weiterentwicklung eines mit Helium gekühlten Reaktors mit thermischem Neutronenspektrum. Es gibt die – ursprünglich in Deutschland entwickelte – Anordnung der Brennelemente als Kugelhaufen oder eine prismatischer Anordnung. Ziel war immer das Erreichen von Betriebstemperaturen von nahezu 1000 °C. Dieser Reaktortyp sollte primär als Wärmequelle in der Verfahrenstechnik (Kohleveredlung etc.) dienen. In diesem Sinne war ein Meilenstein immer das Erreichen einer Temperatur von 950 °C, bei der eine rein thermische Zerlegung von Wasser über einen Schwefel-Jod-Prozeß möglich ist. Dies war als Fundament einer „Wasserstoffwirtschaft“ gedacht. In Deutschland wurde das Konzept einer „kalten Fernwärme“ entwickelt, in dem Methan im Kreislauf läuft und beim Verbraucher lediglich chemisch zerlegt wird und die Bestandteile anschließend wieder mit der Hilfe der Wärme des Kernreaktors wieder zusammengesetzt werden. Der Charme dieses Konzepts liegt in der Fähigkeit, Energie über große Entfernungen mit geringen Verlusten (wie ein Erdgasnetz) transportieren und auch speichern zu können. Stellt man das „Erdgas“ synthetisch aus Kohle her, kann man dieses Gas in das vorhandene Erdgasnetz einspeisen. Interessanterweise wird dieser Gedanke in China aus den gleichen Gründen, wie damals in Deutschland, wieder aufgegriffen: Luftverschmutzung durch Kohle, bei (noch) geringen eigenen Erdgasvorkommen.

Die Entwicklung von Höchsttemperaturreaktoren ist im wesentlichen ein Werkstoffproblem. Wobei nicht übersehen werden darf, daß mit steigender Temperatur der Aufwand und die Kosten exponentiell ansteigen. Allerdings kann diese Entwicklung evolutionär durchgeführt werden. China scheint offensichtlich diesen Weg eingeschlagen zu haben. Ausgehend vom (Nachbau) des deutschen Kugelhaufenreaktors begibt man sich schrittweise vorwärts.

SMR Teil 3 – Innovative Reaktoren

Es gibt inzwischen unzählige Reaktorentwürfe. Es gehört praktisch zum guten Ton einer jeden Forschungsstätte sich mit einer neuen Studie zu schmücken. Je nach Mitteln und Background, reichen (meist) auch Variationen bekannter Prinzipien aus.

Es ist daher sinnvoll, auch bei der Betrachtung „kleiner“ Reaktoren (SMR) den potentiellen Markt nicht außer acht zu lassen. Die Domäne der Kernenergie ist und bleibt die Erzeugung elektrischer Energie. Dies liegt einerseits an der universellen Verwendbarkeit von „Strom“ und andererseits an Gewicht und Volumen eines Kernreaktors. Die Untergrenze für den technisch/wirtschaftlichen Einsatz ist ein Schiff.

Zwar ist die Wärmeerzeugung immer noch mit großem Abstand die überragende Energieanwendung, aber nur ein geringer Bedarf entfällt davon auf Hochtemperatur-Wärme (chemische Prozesse). Die „Endlichkeit“ von Kohle, Öl, Erdgas und Uran hat sich längst als Wunschtraum unbelehrbarer Anhänger der Planwirtschaft erwiesen. Längst ist man daher in diesen Kreisen auf eine indirekte Verknappung (Klimaschutz – wir dürfen gar nicht so viel fossile Brennstoffe nutzen, wie wir zur Verfügung haben) umgestiegen. Es lohnt sich nicht, sich damit weiter auseinander zu setzen. Für diese Betrachtungen reicht folgender Zusammenhang vollständig aus:

  • Energieverbrauch und Wohlstand sind die zwei Seiten ein und derselben Medaille. Wer das Recht aller Menschen auf ein Mindestmaß an Wohlstand anerkennt, muß von einem weiter steigenden Energiebedarf ausgehen. Oder andersherum ausgedrückt: Wer eine Senkung des Energieverbrauches fordert – wie es scheinbar immer populärer wird – will die Armut für den größten Teil der Menschheit weiter festschreiben.
  • Mit fortschreitender Entwicklung steigt der Verbrauch elektrischer Energie überproportional an. Der für eine zuverlässige und kostengünstige Stromversorgung einzusetzende Primärenergieaufwand steigt damit weiter an. Ersetzt man die hierfür notwendigen Mengen an Kohle und Erdgas durch Kernenergie, bekommt man mehr als genug dieser Energieträger frei um damit Industrie und Transportsektor zu versorgen. Die USA führen diesen Weg mit der Erschließung unkonventioneller Öl- und Gasvorkommen – bei gleichzeitigem Ausbau der Kernkraftwerke – eindrucksvoll vor.

Hat man diesen Zusammenhang verstanden, wird auch die Entwicklung der „kleinen“ Reaktoren in den nächsten Jahrzehnten vorhersagbar. Das Streben nach „hohen Temperaturen“ hat durch die Entwicklung des Erdgasmarktes (außerhalb Deutschlands!) an Bedeutung eingebüßt. Erdgas – egal aus welchen Vorkommen – ist der sauberste und kostengünstigste Brennstoff zur Erzeugung hoher Temperaturen und zur Gewinnung von Wasserstoff. Zur Stromerzeugung eigentlich viel zu schade!

Das Argument des geringeren Uranverbrauches durch Reaktoren mit höherer Temperatur ist ebenfalls nicht stichhaltig: Die Uranvorräte sind nach menschlichen Maßstäben unerschöpflich und der Minderverbrauch durch höhere Wirkungsgrade wiegt den wirtschaftlichen Mehraufwand bei weitem nicht auf. Ein Anhaltspunkt hierfür, bietet die Entwicklung bei Kohlekraftwerken: Sie liegt heute noch in Regionen mit „billiger“ Kohle eher in der Größenordnung von Leichtwasserreaktoren (ungefähr 33 %) als bei deutschen und japanischen Steinkohlekraftwerken (fast 46 %). Bis Uran so teuer wird, daß sich eine Wirkungsgradsteigerung um 40 % wirtschaftlich lohnt, dürften eher Jahrhunderte, als Jahrzehnte vergehen. Damit dürften alle Hochtemperaturreaktoren eher Nischenprodukte bleiben, was aber gerade dem Gedanken einer Serienproduktion widerspricht. Gleiches gilt auch für sog. „Schnelle Brüter“.

Gleichwohl sind einige gasgekühlte Reaktoren und Reaktoren mit schnellen Neutronen in der Entwicklung. Diese Prototypen sollen im Folgenden etwas näher vorgestellt werden.

NPMC-Reaktor

National Project Management Corporation (NPMC) hat zusammen mit dem Staat New York , der City of Oswego und der Empire State Development einen Antrag auf Förderung für einen heliumgekühlten Kugelhaufen-Reaktor mit 165 MWel.eingereicht. Dem Konsortium hat sich National Grid UK, die New York State Energy Research Development und die Pebble Bed Modular Reactor (PBMR) of South Africa angeschlossen.

Eingereicht wurde ein Gas Turbine Modular High-Temperature Reactor (GT-MHR). Die Entwicklung beruht auf dem in Deutschland entwickelten THTR-Reaktor. Sie wurde in Südafrika fortgesetzt. Anders als in Deutschland und China wollte man aber nicht einen konventionellen Dampfkreislauf sekundärseitig verwenden, sondern wollte zur Stromerzeugung eine Gasturbine einsetzen. Die Entwicklung eines solchen geschlossenen Gasturbinen-Kreisprozesses mit Helium als Arbeitsmittel überstieg aber bei weitem die wirtschaftlichen Möglichkeiten Südafrikas, was letztendlich zur Aufgabe führte.

Eine Gasturbine hat so hohe Austrittstemperaturen, daß problemlos eine trockene Kühlung mit Außenluft möglich wird. Die Schwierigkeit in den Verbrauchsschwerpunkten in Südafrika ist die Bereitstellung von ausreichend Kühlwasser. Unter dem Wassermangel leiden dort alle konventionellen Kraftwerksprojekte (hauptsächlich Kohle). In New York gibt es zwar genug Wasser, aber die (angebliche) Umweltbelastung durch Kühlwasser ist der Hauptansatz gegen die vorhandenen und geplanten Kernkraftwerke. Nichts desto trotz könnten SMR mit geschlossenen Gasturbinen ein Modell für die dezentrale Versorgung in zahlreichen ariden Gebieten auf der Welt sein.

China verfolgt ebenfalls konsequent den Kugelhaufen-Hochtemperatur-Reaktoren weiter. Allerdings sind alle in Bau und Planung befindlichen Kraftwerke mit konventionellen Dampfkreisläufen ausgerüstet.

Energy Multiplier Module (EM2)

Auch General Atomics (GA) hat ein Gas-Turbine Modular Helium Reactor (GT-MHR) Konzept mit 265 MWel eingereicht. Man geht aber nicht von einem Kugelhaufen (siehe oben), sondern von hexagonalen Prismen als Brennelementen aus. Basis ist ein eigenes Modell aus den 1980er Jahren. Das Modul soll bei einer thermischen Leistung von 500 MWth. komplett und fertig mit Brennstoff beladen auf einem LKW zur Baustelle transportiert werden. Die Austrittstemperatur des Heliums soll (extrem hohe) 850 °C betragen. Damit wäre der Einsatz als Wärmequelle in der Verfahrenstechnik, bis hin zur thermischen Wasserstoffproduktion, denkbar. Ein Turbosatz mit hoher Drehzahl wird auf einem zweiten LKW angeliefert. Die Gasturbine und der angeschlossenen Generator laufen mit mehreren 10.000 Umdrehungen pro Minute. Die Umwandlung der elektrischen Energie in „netzfähigen Strom“ erfolgt über elektronische Umformer. Bei der eingereichten Variante handelt es sich um ein reines Kraftwerk zur Stromerzeugung. Im Begleittext wird betont, daß dieser Reaktor lediglich die Abmessungen eines „Schulbusses“ hätte. Hinzu käme ein etwa gleich großes Modul für den Turbosatz. Insofern wäre die Leistungsdichte (umbauter Raum) konkurrenzlos gering. Wegen der hohen Austrittstemperatur hätte dieses Kraftwerk einen elektrischen Wirkungsgrad von 53 %. Das Kraftwerk käme mit Luftkühlung aus und wäre damit äußerst flexibel einsetzbar. Durch den hohen Wirkungsgrad und seine neutronenphysikalischen Eigenschaften wäre selbst ohne Wiederaufbereitung, der „Atommüll“ um 80% geringer als bei üblichen Reaktoren.

Noch innovativer als der Turbosatz, ist das Brennstoffkonzept: Der Reaktor wird in der Fabrik mit Brennstoff beladen und komplett nach 30 Jahren Laufzeit wieder in die Fabrik zurückgeliefert. Das ganze ähnelt also eher einer Batterie, als einem klassischen Kraftwerk. Dieses Konzept würde die gesamte Stromversorgung revolutionieren. Ein „Energieversorger“ mietet sich quasi für 30 Jahre eine „Stromerzeugungseinheit“ und gibt diese nach Gebrauch komplett wieder zurück. Durch die speziellen Sicherheits- und Betriebsanforderungen löst sich auch das Problem der Personalkosten: Verkleinert man einfach heutige Reaktorkonzepte, steigt der spezifische Personalaufwand stark an. Das ist leider die Umkehrung der Betriebskostendegression mit zunehmender Kraftwerksgröße. Die Kombination aus geringen Investitionskosten, kaum Betriebskosten, kaum Netzkosten, keine „Atommüllprobleme“…, könnte einen ähnlichen Quantensprung, wie die Einführung des PC in der Datenverarbeitung auslösen. Davon dürften sicherlich nicht alle begeistert sein!

Die Brennelemente besitzen eine Umhüllung aus einem Siliziumcarbid-Faser-Verbundwerkstoff. Das Material verträgt Temperaturen von weit über 2000 °C und reagiert wegen seiner keramischen Eigenschaften praktisch nicht mit Luft und Wasser. Der Brennstoff ist inhärent sicher und selbstregelnd: Steigt die Temperatur zu stark an, bricht die Kettenreaktion in sich zusammen (Dopplereffekt). Auch die Nachzerfallswärme kann dem Brennstoff praktisch nichts anhaben, da er sich gefahrlos so weit aufheizen kann, daß schon die Wärmeabgabe durch Strahlung (Kühlmittelverluststörfall) dauerhaft ausreicht. Dieses Verhalten ist unzählige male experimentell bestätigt worden.

Jeder Reaktor wird erstmalig mit etwa 20 to abgebranntem Brennstoff aus Leichtwasserreaktoren oder abgereichertem Uran beladen. Hinzu kommt als „Starter“ rund 22 to auf 12% angereichertes Uran. Nach 30 Jahren Betriebszeit werden in einem speziellen Aufbereitungsprozess die entstandenen etwa 4 to Spaltprodukte entfernt und durch 4 to abgebrannten Brennstoff aus Leichtwasserreaktoren ergänzt.

General Atomic ist eines der führenden Unternehmen (nicht nur) der Kerntechnik. Am bekanntesten dürften die weltweit gelieferten 66 TRIGA-Reaktoren (Training, Research, Isotopes, General Atomic) sein. Zusätzlich gehören zu dem Bewerbungskonsortium noch zwei der weltweit führenden Anlagenbauer: CB&I und Mitsubishi Heavy Industries und die Mutter der schnellen Reaktoren und der Wiederaufbereitung: Das Idaho National Laboratory (INL). Es fehlt also nicht an Kapital und Sachverstand. Größte Hürde dürfte das NRC mit seinem „unendlichen“ Genehmigungsverfahren sein. Aber auch auf dem Sektor des Bürokratismus bewegt sich in den USA etwas: Nicht nur, wegen der Drohkulisse, die China am Horizont aufbaut.

PRISM

Ein weiterer „schneller“ Reaktor, aber mit Flüssigmetallkühlung, ist der von General Electric und Hitachi Nuclear Energy (GEH) propagierte Power Reactor Innovative Small Module (PRISM). Es handelt sich ebenfalls um einen vollständig vorgefertigten und transportierbaren Reaktor mit einer thermischen Leistung von 840 MWth und 311 MWel. Es ist geplant, je zwei solcher Einheiten auf einen konventionellen Turbosatz (typisches Kohlekraftwerk) mit 622 MWel. zusammenzuschalten.

Das PRISM-Konzept bricht ziemlich radikal mit der heutigen Nutzung der Kernenergie und ihrem Brennstoffkreislauf. Es senkt konsequent den Einsatz von Natururan und entlässt als Abfall wesentlich geringere Mengen mit deutlich kürzerem Gefährdungszeitraum. Um dieses Ziel zu erreichen, ist nicht nur der Übergang auf „schnelle“ Neutronen nötig, sondern auch auf einen völlig neuen Brennstoffkreislauf. Durch die Verwendung von Neutronen mit hoher Energie (hoher Geschwindigkeit) kann man praktisch alle Aktinoide spalten – allerdings um den Preis einer geringeren Wahrscheinlichkeit. Man braucht deshalb eine wesentlich höhere Konzentration von U235 bzw. Pu239 um überhaupt eine Kettenreaktion in Gang setzen zu können. Außerdem muß man auf Wasser als Kühlmittel verzichten. Ein in diesem Sinne ideales Kühlmittel, ist das Metall Natrium. Geht man auf ein flüssiges Metall als Kühlmittel über, macht es Sinn, auch den Brennstoff in metallischer Form zu verwenden. Eine Legierung aus Uran, Zirconium und – gegebenenfalls allen möglichen – Transuranen, hat sich als besonders geeignet erwiesen. Wenn man aber schon einen Brennstoff in metallischer Form vorliegen hat – und keinerlei Ambitionen hegt, Kernwaffen zu bauen – bieten sich die erprobten Verfahren der Elektrometallurgie (Aluminium-, Kupferproduktion etc.) an. Vereinfacht gesagt, löst man den zerstückelten „abgebrannten“ Brennstoff in geschmolzenem Lithiumchlorid auf und legt eine Spannung von 1,34V an. Nun wandert das Uran und alle sonstigen Aktinoide zur Kathode und scheiden sich dort ab. Die Spaltprodukte bleiben im Lithiumchlorid zurück. Die Kathode wird eingeschmolzen und daraus neue Pellets hergestellt. Diese werden in Stahlrohre (H9) gesteckt, mit flüssigem Natrium zur besseren Wärmeleitung ausgegossen und mit einem Gaspolster aus Helium versehen, zu einem neuen Brennstab verschweißt. Im Prinzip ist diese Technik so simpel und automatisierter, daß sie in ein (größeres) Kraftwerk integriert werden könnte. Die übrig geblieben Spaltprodukte – etwa 1 kg für jedes 1 MWel. produziert über ein ganzes Jahr – kann man „irgendwo“ lagern, da sie nach wenigen hundert Jahren auf die Intensität des ursprünglichen Uranerzes abgeklungen sind – also die Gefahr, wieder voll und ganz, natürlich ist.

Sicherheitstechnisch betrachtet, hat sich dieser Reaktortyp als äußerst gutmütig erwiesen. Selbst, wenn man alle Regelstäbe voll gezogen hatte, regelte er sich selbst herunter, da durch den starken Temperaturanstieg die nukleare Kettenreaktion unverzüglich zusammenbricht. Für die Leistungsregelung gibt es Regelstäbe aus Borkarbid (B~4 C). Zusätzliche Regelstäbe hängen an Magneten. Fällt der Strom aus oder geht der Magnetismus infolge zu hoher Temperaturen verloren, fallen sie in den Reaktor und stellen ihn dauerhaft ab.

Allerdings hat Natrium einen entscheidenden Nachteil: Es reagiert sowohl mit Luft als auch mit Wasser sehr heftig. Deshalb sind der Reaktorkern, die zwei Wärmeübertrager und die vier elektromagnetischen Pumpen (ohne rotierende Teile) alle zusammen in einem mit Natrium gefüllten Topf eingebettet. Dieses Gefäß ist zusammen mit dem Sicherheitsbehälter am Deckel fest verschweißt. Sowohl das Reaktorgefäß, wie auch der Sicherheitsbehälter haben keine Durchbrüche. Die etwa 20 cm Zwischenraum und der Arbeitsraum über dem Deckel sind mit Argon – unter leichtem Überdruck zur Kontrolle auf etwaige Leckagen – befüllt. Da Natrium durch Neutronenbeschuß strahlend wird (Halbwertszeit etwa 1 Minute), wird die Wärme durch die Wärmeübertrager im Reaktorgefäß an einen zweiten Kreislauf mit Natrium übertragen. Dieses Natrium ist nicht radioaktiv und wird ständig überwacht. Das Natrium gelangt durch Rohr in Rohr Leitungen zum überirdischen Dampferzeuger. Der Dampferzeuger ist ein hoher, zylindrischer Behälter, der vollständig mit Natrium gefüllt ist. In diesem Behälter verlaufen schraubenförmige Rohrleitungen, in denen das Wasser zum Antrieb der Turbine verdampft wird. Im Normalbetrieb sorgen zwei elektromagnetische Pumpen für die Umwälzung des Natriums. Zur Abführung der Nachzerfallswärme nach Abschaltung des Reaktors, würde der sich einstellende Naturumlauf ausreichen. Wegen der vorliegenden Temperaturspreizungen (Kerneintritt: 360 °C, Kernaustritt: 499 °C, Dampferzeuger Eintritt: 477 °C, Austritt 326 °C) besteht ein ausreichend großes Sicherheitsgefälle.

Der Reaktor benötigt keinerlei elektrische Energie nach einer Schnellabschaltung. Ein Unglück wie in Fukushima ist daher ausgeschlossen. Die Nachzerfallswärme kann auf drei Wegen abgeführt werden:

  1. Über einen Bypass der Turbine durch den normalen Dampfkreislauf des Kraftwerks.
  2. Zwischen dem Dampferzeuger und seiner Isolierung befindet sich ein Luftspalt. Ist der Weg 1 nicht möglich (z. B. Bruch einer Dampfleitung), kann über den Naturzug die Wärme an die Umgebung abgegeben werden.
  3. Zwischen Sicherheitsbehälter und Betongrube befindet sich ebenfalls ein Luftspalt. Dieser ist mit Abluftkaminen oberhalb der Erde verbunden. Die durch die Nachzerfallswärme des Reaktors aufgeheizte Luft kann in diesen aufsteigen und wird durch nachströmende kühle Umgebungsluft ersetzt (Reactor Vessel Auxiliary Cooling System RVACS).

Anders, als bei Leichtwasserreaktoren, werden die abgebrannten Brennelemente nicht in einem separaten Brennelementelagerbecken gelagert, sondern verbleiben mindestens für einen weiteren Zyklus (Ladezyklus 12 bis 24 Monate, je nach Betriebsweise) im Reaktorbehälter. Dazu entfernt die automatische Lademaschine das gewünschte Brennelement, ersetzt es durch ein neues und stellt das alte zur Zwischenlagerung in das „obere Stockwerk“ des Reaktorbehälters. Erst, wenn die Brennelemente zur Wiederaufbereitung sollen, werden sie von der Lademaschine aus dem Reaktor gezogen, gereinigt und übergeben. Sie sind dann bereits soweit abgekühlt, daß sie problemlos „an die Luft können“, da die Brennstäbe aus Stahlrohren gefertigt sind.

Neu, ist die ganze Technik überhaupt nicht. Allein der Experimental Breeder Reactor EBR-II hat 30 Jahre erfolgreich gelaufen. Wenn sich jetzt mancher fragt, warum solche Reaktoren nicht längst gebaut werden, ist die Antwort einfach: Wir haben einfach noch nicht genug von dem, was „Atomkraftgegner“ als „Atommüll“ bezeichnen! Eine Serienproduktion macht wirtschaftlich nur Sinn, wenn die Stückzahl ausreichend groß ist. Dieser Reaktor braucht zur Inbetriebnahme 11% bis 17% spaltbares Plutonium und kann 18% bis 23% Transurane vertragen. Um 100 Reaktoren erstmalig zu befüllen, benötigt man daher geschätzt 56.000 bis 70.000 Tonnen Schwermetall in der Form abgebrannter Brennelemente aus Leichtwasserreaktoren. Es ist jetzt der richtige Zeitpunkt, mit Planung und Bau eines Prototypen zu beginnen. Diesen kann man gut mit „Bomben-Plutonium“ aus der Abrüstung oder bereits vorhandenem Plutonium aus Wiederaufbereitungsanlagen bauen. Die Zeit läuft nicht weg: Natururan ist noch billig und je länger die abgebrannten Brennelemente lagern, um so einfacher lassen sie sich aufbereiten. Geht man von kostenlos erhältlichem „Atommüll“ aus – manche meinen ja sogar, man benötige ein Milliarden teueres Endlager für abgebrannte Brennelemente – liegen die kompletten Brennstoffkosten (einschließlich geologischem Lager für die Spaltprodukte) für diesen Reaktortyp weit unter 1/2 Cent pro kWh elektrischer Energie. Spätestens jetzt sollte jedem klar sein, warum man die abgebrannten Brennelemente so sorgfältig in so aufwendigen Behältern verpackt „zwischenlagert“. Sehen so Mülltonnen aus? Die Lagerhalle von Gorleben beispielsweise, ist eher ein Goldschatz.

ALFRED

Das einzige europäische Projekt ist der Advanced Lead Fast Reactor European Demonstrator (ALFRED). Er wird zur Zeit von dem Konsortium aus ENEA und Ansaldo Nuclear aus Italien und der rumänischen ICN verfolgt. Es wird auch Fostering Alfred Construction FALCON genannt. Die über 1 Milliarde Euro Kosten sollen wesentlich von der EU, aus verschiedenen Töpfen aufgebracht werden. Der Standort soll in Mioveni in der Nähe von Pitesti in Rumänien sein. Baubeginn ist für 2017 und eine Fertigstellung bis 2025 gedacht. Er soll eine Leistung von 125 MWel bei 300 MWth. haben. Es ist wohl eine reine Demonstrationsanlage. An eine Serienfertigung ist eher nicht gedacht.

Die Verwendung von Blei als Kühlmittel ist ein Abfallprodukt der europäischen Entwicklung eines, durch einen Beschleuniger angetriebenen, unterkritischen Reaktors. Zum Betrieb eines „schnellen“ Reaktors ist Blei ein eher exotisches Kühlmittel. Alle anderen Nationen verwenden ein Eutektikum aus Blei-Bismut als Kühlmittel. Die längste – und negativste Erfahrung – mit Blei und Blei-Bismut hat Rußland. Dort wurden sie zum Antrieb von Atom-U-Booten der sog. Alpha-Klasse in den 1950er Jahren entwickelt. Wegen ständiger Schäden – bis hin zum Totalverlust – verwendet auch die russische Marine inzwischen Leichtwasserreaktoren.

Als Vorteil von Blei bzw. Blei-Bismut werden immer wieder gerne, folgende Vorteile plakativ in den Vordergrund gestellt:

  • Blei reagiert nicht mit Wasser (gemeint ist, im Gegensatz zu Natrium) und es könnten daher die Dampferzeuger angeblich gefahrlos im Reaktorgefäß integriert werden.
  • Sehr hohe Siedetemperatur (1745 °C) bei sehr geringem Dampfdruck. Daraus wird ein günstiger Blasenkoeffizient der Reaktivität abgeleitet, der einen angeblichen Sicherheitsvorteil ergibt.
  • Blei wäre ein besonders schlechter Moderator und besässe besonders kleine Absorptionsquerschnitte.

Ansonsten fallen einem leider nur Nachteile ein:

  • Blei wird überhaupt erst bei 327 °C flüssig. Darum haben die Russen von Anfang an mit einem Eutektikum aus Blei und Bismut (Schmelzpunkt 124 °C) gearbeitet. Wartungs- und Inspektionsarbeiten bei so hohen Temperaturen sind Neuland. Der Reaktor muß ständig beheizt werden. Es gibt den neuen Störfall „(lokale) Unterkühlung“ mit entsprechenden Konsequenzen für das Genehmigungsverfahren.
  • Flüssiges Blei ist korrosiv. Die Russen haben dieses Problem nie so richtig in den Griff bekommen. Die Wege über den Sauerstoffgehalt und Beschichtungen waren nicht zielführend – ein überhöhter Verschleiß (Lebensdauer) ist die Folge. Darüber hinaus, ist flüssiges Blei auch noch abtragend. Die Strömungsgeschwindigkeit muß deshalb klein gehalten werden.
  • Durch die grosse Masse des Bleis im Reaktor, sind besondere Schutzmaßnahmen gegen Erdbeben notwendig.
  • Durch die hohe Dichte des Bleis werden die Regelstäbe von unten eingeschwommen (völlig neues Prinzip, Genehmigungsverfahren) oder von oben pneumatisch eingeschossen (nicht passiv).
  • Als Brennstoff sind Uranoxid oder Urannitrid vorgesehen. Wegen der gegenüber metallischen Brennstoffen schlechten Wärmeleitung, besteht (wieder) die Gefahr der (lokalen) Kernschmelze. Der Effekt einer inhärenten Sicherheit scheint nur schwer nachweisbar. Eine Kühlung über unterkühltes Blasensieden (wie auch in jedem Druckwasserreaktor) scheidet durch den hohen Siedepunkt (der ja immer als Vorteil bezeichnet wird) aus.
  • Bisher gibt es bei ALFRED kein echtes Notkühlsystem. Die Nachzerfallswärme müßte immer über die innenliegenden Dampferzeuger abgeführt werden. Der Nachweis – auch nach einer physikalischen Dampfexplosion oder eines abschnittsweisen Verstopfens durch Einfrieren –. dürfte sich schwierig gestalten.

Bis ein mit flüssigem Blei gekühlter Reaktor in einem westlichen Land genehmigungsfähig ist, dürften noch Jahrzehnte Forschungs- und Entwicklungsarbeit nötig sein. Insofern dürften sie außerhalb der Konkurrenz mit anderen SMR-Entwürfen stehen. Manchmal fragt man sich wirklich, warum sich manche Kerntechniker immer selbst im Wege stehen müssen. Man könnte fast sagen: Gott schütze uns vor diesen Forschern, mit den „Atomkraftgegnern“ werden wir schon selber fertig.

Vorläufiges Ende

Hier ist das vorläufige Ende des Drei-Teilers erreicht. Es wurden die im derzeitigen Rennen um Förderung für SMR vorne liegenden Typen vorgestellt. Was noch fehlt, wären z. B. der Super-Safe, Small and Simple, 4S von Toshiba; die Encapsulated Nuclear Heat Source ENHS; der Flibe Energy Salzbadreaktor; der International Reactor Innovative & Secure IRIS Druckwasserreaktor; der Purdue Novel Modular Reactor PNMR Siedewasserreaktor; der Travelling Wave Reactor TWR; der ANTARES von Areva, der Advanced Reactor Concept ARC-100 und wer weiß noch, welche sonst alle….