Wie wird eigentlich Strahlung gemessen?

Der Mensch hat keine Sinne für Strahlung, wir sind deshalb auf Meßgeräte angewiesen die uns warnen können.

Verfahren

Es gibt zwei Arten von Instrumenten: Zählende und Dosimeter. Die Zählenden bestimmen die spezifischen atomaren Zerfälle in Bq/kg für Feststoffe, Bq/l für Flüssigkeiten, Bq/m3 für Gase und Bq/m2 für Oberflächen. Die Dosimeter ermitteln die Energie der absorbierten Strahlung in Gray.

Beide Meßgeräte bestehen aus einem Volumen und einer Messwerterfassung, die die durch die Strahlung verursachte Veränderung im Volumen erkennt und in ein Signal umwandelt. Das Volumen muß dabei die Photonen oder Partikel überhaupt erfassen können. Dies setzt ein Mindestvolumen und besonders empfindliche Materialien voraus. Wenn entsprechend viele Teilchen und Photonen das Volumen passieren können ohne eine Reaktion zu verursachen, spricht man von geringer Empfindlichkeit (low efficiency).

Methoden

Man unterscheidet technische Verfahren und biologische Methoden. So kann man z.B die durch Strahlung ausgelöste Veränderung von Chromosomen benutzen, um verabreichte Dosen bei Lebewesen nachträglich zu ermitteln. Technische Verfahren geben idealerweise einen linearen Verlauf zwischen Dosis und Wirkung wieder. Bei den biologischen Verfahren liegt eher ein linear-quadratischer Verlauf (chromosome aberrations) vor.

Filmdosimeter sind sehr verbreitet. Das Maß für die empfangene Strahlung ist die Schwärzung des Films. Die Filme werden lichtdicht in Gehäuse eingeklebt. Durch unterschiedliche Materialien kann man sogar unterschiedliche Strahlungen oder (thermische) Neutronen unterscheiden und durch unterschiedliche Empfindlichkeit die Genauigkeit steigern. Sie sind billig in der Herstellung und wirken integrierend über den gesamten Zeitraum, in dem sie getragen werden. Typische Anwendung ist daher der Arbeitsschutz.

Thermolumineszenzdosimeter (TLD) senden nach Erhitzung einen der Dosis proportionalen Lichtschein aus. Sie sind so stabil, daß sie sogar in der Archäologie zur Altersbestimmung genutzt werden. Gerne werden sie auch in der Strahlentherapie eingesetzt. Für den Arbeitsschutz werden meist Kristalle aus Lithiumfluorid verwendet, da ihre Absorption der von Gewebe sehr ähnlich ist. Die Strahlung verursacht Fehlstellen in der Kristallstruktur. Werden sie auf ca. 200 °C erhitzt, bilden sich die Fehlstellen zurück und es wird dabei Licht ausgesendet. Die Menge ist dabei proportional zur empfangenen Strahlung. Über die Lithium-6 Isotope kann man auch empfangene Neutronen erfassen.

Ionisation, bekanntester Vertreter ist das Geiger-Müller Zählrohr. Ionisierende Strahlung erzeugt positive und negative Ionen. Jeder Zerfall löst einen Impuls aus, der verstärkt und z. B. hörbar gemacht werden kann. Das bekannte „Geknatter“ ist ein typisches Maß für die Strahlung. Der Geiger-Müller Zähler zeigt unmittelbar die momentane Strahlung an. Er ist deshalb ein gutes Hilfsmittel, um vor gefährlichen Bereichen zu warnen. Für die Überwachung ist er jedoch ungeeignet, da er nicht die gesamte Dosis die während der (z.B.) Arbeitszeit aufgenommen wurde, registrieren kann. Er liefert keine Information über die Art der Strahlung oder deren Energie.

Scintillation nutz den physikalischen Effekt, daß manche Stoffe auf Strahlung durch das Aussenden von Licht reagieren. Die Intensität des ausgesendeten Lichts ist mit einem Lichtverstärker (photomultiplier) leicht sichtbar zu machen, wobei die „Helligkeit“ für die Energie der γ-Strahlung steht. In Kliniken verwendet man aus Einkristallen aus Natrium-Jod hergestellte Detektoren mit einem Halben Meter Kantenlänge als „Bildschirme“.

Halbleiter erzeugen beim Auftreffen von Strahlung eine elektrische Spannung. Sie ermitteln die Energie sehr genau, sind jedoch nicht besonders empfindlich. Halbleiter auf der Basis von Germanium werden deshalb meist auf -196°C mit flüssigem Stickstoff gekühlt. Sie werden in Labors zur qualitativen und quantitativen Bestimmung von „Isotopen Cocktails“ verwendet.

Freie Radikale werden durch Strahlung erzeugt. Sie reagieren in Flüssigkeiten sehr schnell, sind aber in Feststoffen erstaunlich stabil. Die Anzahl der erzeugten Radikale ist ein Maß für die empfangene Dosis. Eine Methode mit der man z.B. in Zähnen auch noch nach sehr langer Zeit die empfangene Dosis nachweisen kann.

Redox Produkte. Strahlung reduziert durch Aufnahme von Elektronen bzw. oxidiert durch Verlust von Elektronen Moleküle. Damit können gezielt chemische Reaktionen ausgelöst werden, die zu stabilen chemischen Verbindungen führen können. Diese sind dann ein (dauerhaftes) Maß für die empfangene Dosis.

Die Nachweisgrenze

Ein Klassiker in der kerntechnischen Ausbildung ist die Frage, ob man ein einzelnes Gramm Jod-131 noch nachweisen könnte, wenn man dieses gleichmäßig über die gesamte Erdoberfläche verteilen würde. Jod-131 hat eine Halbwertszeit von 8,04 Tagen. Es zerfällt recht schnell und hat damit eine hohe Aktivität. Es ist ein Leitisotop für Reaktorunfälle, da es gasförmig ist und sich besonders in der Schilddrüse anreichert.

Jod-131 ist ein β-Strahler mit einer maximalen Teilchenenergie von 0,606 MeV und sendet gleichzeitig noch γ-Photonen mit einer Energie von 0,364 MeV aus. Letztere kann man gut mit einem Halbleiterdetektor messen und sie wirkt wie ein „Fingerabdruck“ zur eindeutigen Identifizierung auch in beliebigen Isotopengemischen.

Ein einzelnes Gramm Jod-131 besteht aus 4,6 x 1021 Atomen. Das Gesetz über den radioaktiven Zerfall und seine Halbwertszeit ergeben somit eine Aktivität von 4,59 x 1015 Bq. Die Erdoberfläche beträgt ungefähr 5,1 x 1014 m2. Die sich ergebende Aktivität von rund 10 Bq/m2 ist einfach nachweisbar.

Im Februar geisterte eine Meldung durch die Medien, zahlreiche automatische Überwachungsstationen zwischen Norwegen und Spanien hätten Aktivitäten zwischen 0,1 und 5,9 microBq/m3 in der Luft gemessen. Was war geschehen? Tatsächlich hatte es im Forschungsreaktor Halden in Norwegen einen Unfall beim Hantieren mit einem Brennelement gegeben. Wie dieser Vorfall zeigt, entgeht der Fachwelt nichts: Kein illegaler Kernwaffentest und kein noch so kleiner Unfall in einem Reaktor. Gemessen an den Nachweisgrenzen der Chemie, sind die Messmethoden der Kerntechnik geradezu atemberaubend empfindlich. Hinzu kommt, daß man beliebige Isotopenzusammensetzungen messen kann. Bei einer Probe ergibt sich daraus – auch bei kleinsten Mengen – ein „Fingerabdruck“ des Täters.

Dosismessung

Die Aktivität (in Bq) und die Energie (in eV) sind physikalische Größen, die gemessen werden können. Die Dosis ist hingegen die Energie, die im Medium aufgenommen wird. Wir betrachten meist den Menschen. In diesem Sinne ist die Dosis die vom menschlichen Körper aufgenommene Energie der ionisierenden Strahlung. Sie hängt von zahlreichen (biologischen) Faktoren ab. Es ist schwierig, die Absorption von Strahlung im Gewebe zu beobachten. Wie gesagt, es ist nicht das Problem Teilchen oder Photonen zu messen, sondern es ist schwierig, die Energie, die im menschlichen Gewebe absorbiert wurde zu erfassen:

  • Man kann die Energie von Röntgen oder γ-Strahlung recht einfach in einer mit Gas gefüllten Ionisationskammer (z.B. Geiger-Müller Zählrohr) messen. Die Maßeinheit Röntgen (1R) ist auf Luft bezogen. Wieviel von der Strahlung absorbiert wird, hängt aber von der Elektronendichte ab. So wird z. B. in Knochen (schwere Atome mit vielen Elektronen in ihren Hüllen) sehr viel mehr Energie, als im Gewebe (besteht hauptsächlich aus Wasser) absorbiert. Das erklärt das Bild einer „Röntgenaufnahme“. Die Dosis für Knochen und Gewebe ist deshalb völlig verschieden, auch wenn die Strahlung exakt gleich war.
  • Die Dosis hängt bei menschlichem Gewebe stark von der Eindringtiefe ab. Trägt man die absorbierte Energie über die Wegstrecke auf, ergeben sich konvexe Kurven: Auf den ersten Millimetern ist die absorbierte Energie klein, dann steigt sie steil bis zu einem Maximum an und nimmt dann mit größerer Entfernung wieder ab. Die Dosis ist ortsabhängig. Besonders extrem ist dies bei Teilchenstrahlung. Abhängig von der Art der Ionen, durchdringen diese zig Zentimeter mit sehr geringer Energieabgabe. Wird ein charakteristischer Wert erreicht, wird an diesem Ort (Bragg-peak) fast die gesamte Energie umgesetzt. Die Dosis ist örtlich eng begrenzt sehr hoch.
  • Was im Sinne des Arbeitsschutzes nachteilig ist, ist für die Medizin von großem Vorteil. Man will gezielt die Krebszellen belasten und nicht das umliegende gesunde Gewebe. Kennt man die Kurven für die absorbierten Energien in Abhängigkeit von der Strahlungsenergie, kann man über die gewählte Energie der Strahlung die Wirksamkeit (Dosis) sehr genau steuern. Für Tumore, die z. B. in einer Tiefe von etwa 6 cm im menschlichen Gewebe sitzen, muß man eine Röntgenstrahlung von mindestens 20 MeV wählen um optimale Ergebnisse (Kleine Dosis für das durchdrungene gesunde Gewebe, aber eine hohe Dosis im Tumor) zu erzielen.

Wir Eigenstrahler

Kalium ist überall vorhanden: Im Boden, im Wasser, in Pflanzen, in Tieren und am Ende der Nahrungskette in uns selbst. Kalium entspricht 2,4 Gewichtsprozenten aller Elemente der Erde. Die Häufigkeit des radioaktiven Isotops Ka-40 beträgt 0,0118%. Ka-40 hat eine Halbwertszeit von fast 1,3 Milliarden Jahren. Nur deshalb ist es noch überall auf der Erde vorhanden. Beim Zerfall sendet es β- und γ-Strahlung aus. Mit der Nahrung nehmen wir durchschnittlich 2,5 Gramm Kalium pro Tag auf. Dies ergibt rund 75 Bq Ka-40 pro Tag. Kalium ist in allen Zellen unseres Körpers eingebaut. Die Menge unterscheidet sich nach Geschlecht und Alter. Sie schwankt etwa zwischen 75 Bq pro kg Körpergewicht bei jungen Männern und 40 Bq/kg bei einer älteren Frau. Mit anderen Worten: Ein Fußballstadion, voll mit überwiegend jungen Menschen, ist eine ganz schöne „Atommülldeponie“. Jedenfalls verglichen mit den aus den Medien bekannten Wassertanks in Fukushima.

Eine einfache Abschätzung ergibt folgende Daten: Aus dem Zerfallsschema entnimmt man, daß 89,3 % der beim Zerfall entfallenden Energie auf die β-Teilchen entfallen. Da β-Strahlung nur eine sehr kurze Reichweite hat, verbleiben damit im Mittel 429.200 eV im Körper. Bei der γ-Strahlung sieht es etwas anders aus: Man nimmt an, daß nur 50% im Körper verbleiben, die andere Hälfte aber den Körper verläßt. Damit ergibt sich eine Energie von 78.100 eV. für die γ-Photonen. Somit kann man eine vom Körper absorbierte Energie von ungefähr 510.000 eV unterstellen. Pro Becquerel und kg und Jahr ergibt sich eine Energie von 2,6 μGy. Bei 70 Bq/kg ergibt sich somit eine Belastung von 182 μGy pro kg Körpergewicht jährlich. Diese Abschätzung deckt sich gut mit den von UNSCEAR angegebenen 0,165 – 0,185 mSv per year. Da es sich um die aufgenommene Dosis handelt, kann man auch die Einheit mSv verwenden.

Hinzu kommt noch Kohlenstoff-14. Er wird ständig in der Atmosphäre durch die kosmische Strahlung aus Stickstoff gebildet. Pflanzen lagern diesen Kohlenstoff über die Photosynthese ein. Wir wiederum nehmen dieses C-14 direkt über pflanzliche Nahrung oder indirekt über Fleisch auf. Durchschnittlich tragen wir alle etwa 35 Bq pro kg Körpergewicht in uns. C-14 sendet β-Strahlung mit (im Mittel) einer Energie von 52 keV bei jedem Zerfall aus. Das ergibt eine Strahlenbelastung von weiteren 0.01 mGy bzw. 0.01 mSv pro Jahr, die wir uns – ganz natürlich – selbst zufügen.

Hinzu kommen noch – je nach Bodenverhältnissen – die kompletten Zerfallsreihen von Uran und Thorium. Je nach Ernährungsgewohnheiten, Geschlecht und Lebensalter ergeben sich unterschiedliche Mengen die wir vornehmlich in unseren Knochen einlagern. Man setzt nach umfangreichen Analysen und Berechnungen als durchschnittliche Belastung hierfür eine effektive jährliche Dosis von 0,12 mSv an.

Somit setzt man eine durchschnittliche effektive Dosis für diese drei Wege von 310 μSv an. Wichtig dabei ist, nie den langen Weg vom Isotop bis zur Strahlenbelastung des Menschen zu vergessen. Die Energien beim Zerfall eines radioaktiven Elements sind leicht zu messen. Wieviel von diesem Stoff in den Körper gelangt, wie lange es dort verbleibt und wo und wie genau es im Körper wirkt, ist von unzähligen Einflüssen abhängig. Jede Angabe von irgendwelchen μSv (d h. dem millionsten Teil eines Sv) ist daher mindestens mit Gelassenheit zu betrachten.

Braucht das Leben Strahlung?

Die Erkenntnisse über die Wirkung niedriger Strahlungsdosen schreiten immer weiter voran. Die radikalste Fragestellung dabei ist die Frage nach dem Verhalten von Zellen bei Abwesenheit von ionisierender Strahlung. Die Ergebnisse sind verblüffend – aber der Reihe nach…

Das LNT-Modell

In den 1950er-Jahren einigte man sich weltweit auf einen linearen Zusammenhang, ohne einen Schwellwert (linear no-threshold model; LNT), für den Strahlenschutz. Es ist simpel und damit leicht anwendbar: Man unterstellte, daß die biologischen Schäden (gemeint ist Krebs), die durch ionisierende Strahlung (umgangssprachlich durch Radioaktivität) ausgelöst werden, direkt proportional zur Dosis sind: Die mathematische Funktion ist eine einfache Gerade mit der Steigung 0,05/Sv. Etwas anschaulicher ausgedrückt, wenn man 100 Menschen einer Dosis von 1 SV (Sievert) aussetzt, erkranken davon fünf Menschen (zusätzlich) an Krebs. Mehr steckt nicht dahinter und damit fangen schon die Schwierigkeiten an.

Wie ist man zu dieser einfachen Zahl gekommen? Hauptsächlich durch die Auswertung der Opfer der Bomben auf Hiroshima und Nagasaki. Man hat zehntausende Menschen über Jahre beobachtet und ihre Erkrankungen dokumentiert. Das war der einfache Teil der Aufgabe. Wesentlich schwieriger war schon die Ermittlung der individuellen Strahlendosis, da diese Menschen natürlich keine Meßgeräte getragen haben. Hinzu kamen noch jeweils verschiedene Lebensumstände, Vorerkrankungen etc. Wenn man nun jeden einzelnen Fall in einem Diagramm (Krebserkrankungen über Dosis) aufträgt, kann man streng genommen keinen Punkt eintragen, sondern muß eher einen Klecks verwenden: Weder ist die genaue Dosis zu ermitteln, noch sind die Krebsarten alle gleich, noch kann man sonstige Belastungen (z. B. krebserregende Chemikalien, Umwelteinflüsse, genetische Prägungen etc.) genau erfassen.

In solchen Fällen helfen nur die Methoden der Statistik. Vereinfachend gesagt braucht man eine Wolke aus möglichst vielen Fällen, die möglichst eng zusammenliegen. Sieht das sich ergebende Band nach einer Geraden aus, kann man in guter Näherung eine solche hindurch legen und deren Steigung bestimmen.

Hier ergibt sich aber das Problem, welches seit über 80 Jahren zu heftigsten Diskussionen auch in der Fachwelt führt: Im unteren Teil (kleine Dosen und damit eine geringe Anzahl von Krebsfällen) gibt es kaum Punkte und die streuen auch noch sehr stark. Es ist damit äußerst fragwürdig, den gesamten Bereich – von keiner meßbaren Wirkung, bis zum garantiert kurzfristig eintretendem Strahlentod – durch ein und dieselbe Gerade nachbilden zu wollen. Schon die geringe zusätzliche Anzahl von den ohnehin auftretenden Krebsfällen trennen zu wollen, ist eine schier unlösbare Aufgabe. Hier rächt sich die Statistik: Sie arbeitet stets nur mit Wahrscheinlichkeiten. In dem vorherigen Zahlenbeispiel kann man weder voraussagen, welche fünf Personen von den betrachteten 100 Personen Krebs bekommen, noch ob es exakt fünf Fälle sind. Lediglich, wenn man sehr, sehr viele Menschen mit einem Sievert bestrahlen würde, würde sich die Anzahl der zusätzlichen Krebsfälle (bei diesem Modell!) der Zahl von fünf Prozent annähern.

Schwellwert oder nicht?

Man bezeichnet einen Wert als Schwellwert, wenn sich der Zusammenhang bei einem Modell wesentlich ändert. Für einen Ingenieur ist es nichts ungewöhnliches, Messreihen z. B. abschnittsweise durch unterschiedliche Geraden anzunähern.

Im Arbeitsschutz ist es üblich, für Giftstoffe Schwellwerte zu definieren. Üblicherweise sind dies Dosen, bei denen man auch über ein ganzes Arbeitsleben keine Schädigung feststellen kann. Dahinter steckt eine Alltagserfahrung: Nicht jeder Umgang mit einem Stoff führt sogleich zu einem Schaden. Andrerseits führt ein zu viel – bei jedem Stoff – irgendwann, zu irgendwelchen Schäden.

Bis zur Politisierung der Strahlung durch die „Atombomben“, ist man auch mit ionisierender Strahlung sehr erfolgreich so pragmatisch umgegangen. Man hatte schon wenige Jahre nach der segensreichen Erfindung der Röntgenstrahlung festgestellt, daß diese zu Erkrankungen bei dem medizinischen Personal führen konnte. Man analysierte die Fälle und definierte einen (zulässigen) Schwellwert für den Arbeitsschutz.

Energie und Leistung

Schon jedem Schüler sollte der Zusammenhang von Energie und Leistung vertraut sein. Es macht einen gewaltigen Unterschied, ob ich eine Leistung (W oder J/s) für Bruchteile einer Sekunde aufbringe oder über Stunden verteilt. Eindrucksvolles Beispiel hierfür, ist ein Laser-Strahl: Eine relativ geringe Energie reicht aus, um zwei Stahlplatten miteinander zu verschweißen. Der „Trick“ ist, die Energie in einem sehr kurzzeitigen Blitz zu senden. Über Stunden angewendet, würde sie den Stahl nicht einmal zum glühen bringen.

Warum glaubte man nun, diese Erfahrungstatsachen bei der ionisierenden Strahlung außer Kraft setzen zu können? Es war schlicht ein unvollständiges und damit leider falsches Verständnis der biologischen Zusammenhänge. Man hatte erkannt, daß bei der Zellteilung die DNA kopiert und damit die Erbinformationen weitergegeben würden. Man wußte, daß bereits ein Partikel einen DNA-Strang zerschlagen konnte. Man glaubte, wenn nun der Fehler beim kopieren an die Tochterzelle weitergegeben würde, müßten die Fehler irgendwann so häufig sein, daß eine „Krebszelle“ entstanden wäre. Eine übervorsichtige oder abstruse Vorstellung – ganz nach Standpunkt des Betrachters. Der gesunde Menschenverstand sagt einem schon, daß es einen gewaltigen Unterschied macht, ob man täglich nur einen Schnaps trinkt oder gleich die Flasche „auf ex“ leert. Die ganze Pharmakologie müßte neu geschrieben werden, wenn es keinen Unterschied machte, ob man seine Tabletten nach Anwendungsvorschrift einnimmt oder gleich die ganze Schachtel auf einmal in der Apotheke schluckt. Ausgerechnet bei der ionisierenden Strahlung sollte der seit Jahrhunderten bekannte Grundsatz: Die Dosis macht das Gift, nicht gelten.

Die Kollektivdosis ist schlichtweg Unsinn. Nach dem Motto, wenn wir einer Million Menschen je einen Aspirin geben, haben wir X Tote, weil wir ja wissen und nachweisen können, daß die Einnahme von y Schachteln Aspirin zum Tode führt. Ganz im Gegenteil nehmen Millionen Menschen weltweit täglich eine Tablette Aspirin ein, um z. B. das Risiko von Herzinfarkten drastisch zu senken.

Hormesis

Damit kommen wir zur Hormesis. Darunter wird verstanden, daß ein und derselbe Stoff, in geringen Mengen verabreicht, eine genau gegenteilige Wirkung haben kann. Seit Anbeginn zeigte sich bei „Niedrigstrahlung“ das Phänomen deutlich geringerer Krebsfälle, als nach dem LNT-Modell zu erwarten waren. Fast alle Studien mit Arbeitern aus der kerntechnischen Industrie, Opfern von „Atombomben“ und nicht zuletzt den Reaktorunglücken von Tschernobyl und Fukushima zeigten sogar unter dem Erwartungswert für die entsprechende Bevölkerungsgruppe liegende Werte. Jahrzehntelang versuchte man sich besonders bei Bergleuten mit der besonderen medizinischen Fürsorge und der Vorauswahl („Survival of the Fittest“) aus der Affäre zu stehlen. Bis man sich die Frage stellte, ob nicht ionisierende Strahlung in bestimmten geringen Dosen sogar eine den Krebs verhindernde Wirkung zeigte. Plötzlich war auch die „Radontherapie“ keine Esoterik mehr.

Seit man in der Molekularbiologie große Fortschritte erzielt hat und Gene und die DNA praktisch beobachten kann, kann man diese Phänomene sogar naturwissenschaftlich erklären. Es passieren ständig, in jeder Zelle, zehntausende DNA-Fehler. Hauptsächlich sind dafür Radikale verantwortlich. Es gibt daher einen Reperaturmechanismus, der die DNA größtenteils wieder repariert. Darüberhinaus existiert noch eine weitere Ebene, die Zerstörung entarteter Zellen. Erst wenn alle Reparatur- und Schutzmechanismen versagen, kann sich „Krebs“ ausbilden. Hieraus ergibt sich auch der Zusammenhang von (permanenten) kleinen und kurzzeitig hohen Dosen: Mit einer geringen Anzahl von Fehlern wird das Reparatursystem leicht fertig. Ab einer gewissen Dosis entsteht ein „Sättigungsangriff“, der die Abwehr schlicht weg überfordert.

Ohne diese „Selbstheilungskräfte“ wäre überhaupt kein Leben möglich. Man kann nun in Versuchen zeigen, daß diese Kräfte durch ionisierende Strahlung (in der richtigen Dosis!) motiviert und unterstützt werden. Ein Umstand, der bereits in der Strahlentherapie Anwendung findet. Um Krebszellen zu zerstören, braucht man punktuell sehr hohe Dosen, die natürlich das umliegende gesunde Gewebe stark belasten. Deshalb trainiert man in bestimmten Fällen vor der eigentlichen Behandlung das gesunde Gewebe durch mehrere Bestrahlungen mit niedrigen Dosen.

Der Ultimative Test

Wenn es eine Hormesis gibt, was passiert eigentlich, wenn man von Zellen die Strahlung fern hält? Eine einfache Fragestellung, aber ein schwer durchführbares Experiment. Es gibt nämlich überall ionisierende Strahlung: Aus dem All und aus der Erde – die sogenannte Hintergrundstrahlung. Dieser Strahlung war und ist jedes Leben seit Milliarden Jahren ausgesetzt. Leben hätte sich gar nicht entwickeln können, wäre es nicht gegen ionisierende Strahlung überlebensfähig gewesen. Gott sei es gedankt, ist die Natur etwas einfallsreicher, als die Anhänger des LNT-Modells meinen.

Schon in den 1990er Jahren wurde in Italien ein Experiment mit Hefezellen durchgeführt. Hefezellen sind ein Standardobjekt der Molekularbiologen. Sie wurden in ein Labor 1300 m tief unter einem Bergmassiv gezüchtet. Hier unten war die Strahlung tausendfach kleiner, als in dem oberirdischen Vergleichslabor. Anschließend wurden beide Versuchsgruppen Chemikalien ausgesetzt, die starke genetische Veränderungen auslösen können. Es zeigte sich, daß die Fehlerrate bei den „vor Strahlung geschützten“ Zellen höher war.

Inzwischen werden solche Experimente ausgeweitet. In den USA hat man z . B. in einem Salzstock in Carlsbad ein Labor in 650m Tiefe eingerichtet. Die dortige Salzschicht besteht aus sehr reinem Kochsalz und enthält damit nur sehr wenig „radioaktive Stoffe“. Die Deckschicht schirmt die kosmische Strahlung entsprechend ab. Die „Bakterienzucht“ wird in einem Tresor mit 15 cm dicken Stahlwänden aus Stahl vor dem II. Weltkrieg durchgeführt. Solch alter Schrott wird inzwischen hoch gehandelt, da er noch nicht mit Fallout aus „Atombombenversuchen“ etc. belastet ist. Durch diese Maßnahmen gelang es, eine Strahlung von 0,17 mSv pro Jahr innerhalb des Tresors zu erreichen. Dies ist der geringste Wert, der bisher auf der Erde erzeugt werden konnte.

In der Versuchsanordnung wurden nun als besonders strahlenempfindlich bekannte Bakterien Shewanella oneidensis und als besonders strahlungsresistente Bakterien Deinococcus radioduruans gezüchtet. In regelmäßigen Abständen wurde die DNA der Versuchsgruppen auf Schäden untersucht. Um andere Einflüsse ausschließen zu können, wurden die Bakterien mehrfach zwischen den Orten mit verringerter Strahlung und normaler Strahlung hin und her getauscht.

An dieser Stelle müssen wir uns noch einmal die zentrale Aussage des LNT-Modells verdeutlichen:

  • Jedes „Strahlungsereignis“ schädigt die DNA. Deshalb gilt: Je weniger Strahlung, um so weniger Schäden. Nach dem LNT-Modell gibt es einen Nullpunkt, an dem es infolge der nicht vorhandenen Strahlung auch keine Schäden geben dürfte.
  • Die aufgetretenen Schäden addieren sich. Je länger man eine Probe bestrahlt, um so mehr Schäden treten auf.

Demgegenüber stehen die Messergebnisse des Versuches: Beide Bakterienarten weisen „ohne Strahlung“ mehr Schäden auf als „mit Strahlung“. Besonders verblüffend ist, daß sich die Schäden innerhalb von 24h normalisieren, wenn man die Proben wieder der Hintergrundstrahlung aussetzt. Schützt man die Probe wieder vor Strahlung, nehmen die Schäden auch wieder zu. Dies scheint in beliebigem Wechsel möglich.

Sollten sich diese Erkenntnisse weiter verdichten, würde es bedeuten, daß das LNT-Modell schlicht weg, falsch ist. Benutzt man den gesunden Menschenverstand, ist dies auch nicht besonders überraschend: Es hat immer schon Strahlung auf der Erde gegeben. Früher sogar mehr als heute (Halbwertszeit z. B. von Uran, Kalium etc., Sonnenaktivitäten und unterschiedliche Atmosphäre). Vielleicht wäre ohne Strahlung gar kein Leben möglich?

ALARA

Bei diesen Forschungsergebnissen handelt es sich nicht einfach um irgendwelche Trivialitäten, sondern sie sind hoch brisant. Bisher galt weltweit das Prinzip beim Strahlenschutz, die Strahlenbelastung so gering wie möglich zu halten (As Low As Reasonably Archievable; ALARA). Eine ganze Industrie mit Milliardenumsätzen lebt davon. Geld, das man nutzbringender hätte einsetzen können. Konnte man bisher noch mit Fürsorglichkeit und Vorsicht argumentieren, ist es spätestens nach dem Unglück von Fukushima endgültig damit vorbei. Dort hat man eindeutig das Kind mit dem Bade ausgeschüttet. Es sind viel mehr Menschen seelisch und körperlich durch ALARA zu Schaden gekommen, als durch die vorhandene Strahlung. Es wäre besser gewesen, die Menschen hätten in ihrer Umgebung verbleiben können. Evakuierungen wären nur in ganz wenigen Fällen und auf freiwilliger Basis nötig gewesen. Gut gemeint, war auch hier nicht, gut gemacht. Ideologie kann töten. Die Aufklärung der Bevölkerung ist daher dringend notwendig.

Reaktortypen in Europa – Teil4, ABWR

Der ABWR (Advanced Boiling Water Reactor) ist eine Entwicklung von Hitachi und Toshiba in Zusammenarbeit mit General Electric. Er ist der einzige Reaktor der Generation III, der bereits über mehr als zehn Jahre Betriebserfahrung verfügt.

Geschichte

Es befinden sich bereits vier Reaktoren in Japan in Betrieb (Kashiwazaki-Koriwa 5+6, Hamaoka 5 und Shika 2), und drei weitere in Bau (Shimane und Langmen 1+2 in Taiwan). Die beiden ersten Reaktoren Kashiwazaki gingen 1996 und 1997 nach nur 36 Monaten Bauzeit (vom ersten Beton bis zur Beladung) ans Netz. Es ist in Anbetracht der vertrackten Situation in Grossbritannien daher nicht verwunderlich, daß man sich für den Bau von je drei Reaktoren in Wylfa Newyd und Oldbury-on-Severn durch das Horizon-Konsortium stark macht. Allerdings ist das Genehmigungsverfahren noch nicht abgeschlossen, sodaß man erst von einer Inbetriebnahme in der ersten Hälfte des nächsten Jahrzehntes ausgehen kann. Gleichwohl ist der Zeitdruck für erforderliche Neubauten scheinbar so groß geworden, daß man noch dieses Jahr mit der Baustellenvorbereitung beginnen will, damit man nach Erhalt aller Genehmigungen (erwartet 2018/2019) unverzüglich mit dem nuklearen Teil beginnen kann. Grundsätzliche Schwierigkeiten werden nicht gesehen, da die Genehmigungen für die USA, Japan und Taiwan bereits vollständig vorliegen und auf praktische Betriebserfahrungen seit 1996 in Japan verwiesen werden kann. Es sind lediglich die besonderen Erfordernisse der EU (insbesondere Flugzeugabsturz) einzuarbeiten und die „Post-Fukushima-Erfordernisse“ nachzuweisen. Es könnte durchaus sein, daß dieser Reaktortyp (UK-ABWR) noch in ganz Europa auf die Überholspur geht.

Warum Siedewasserreaktoren?

Wenn man ein großes Kraftwerk bauen will, bleibt praktisch nur der Dampfkreislauf. Wasser wird unter hohem Druck verdampft und verrichtet in einer Turbine Arbeit, durch die ein Generator angetrieben wird. Wenn man ohnehin Wasser als Arbeitsmittel für die Turbine braucht, warum nicht auch gleich als Arbeitsmittel (Kühlung und Moderator) im Reaktor einsetzen? Wenn man nun noch den Dampf in einem „einfachen Kessel“ durch Kernspaltung erzeugt, hat man einen Siedewasserreaktor. Einfacher geht nicht. Allerdings ist eine solche Konstruktion wegen der großen freien Flächen als Schiffsantrieb gänzlich ungeeignet. Bei einem stampfenden und rollenden Schiff im Seegang, hätte man bereits Probleme überhaupt eine vernünftige Regelung zu konzipieren. Zuerst war aber der Drang nach einem U-Boot, für das man den Druckwasserreaktor erschaffen mußte. Einmal fertig entwickelt – staatliche Förderung oder der Krieg ist der Vater aller Dinge – konnte man ihn schnell zu einem konventionellen Kraftwerk umstricken.

Bei der Diskussion von Vor- und Nachteilen beider Konzepte, wird von Laien oft der „nicht radioaktive Sekundärkreislauf“ als zusätzlicher Sicherheitsvorteil des Druckwasserreaktors angeführt. Beide Kreisläufe sind durch die Rohre in den Dampferzeugern physikalisch voneinander getrennt. Wasser – als H2 O – wird durch die Neutronen im Reaktor angegriffen: Teilweise zerschlagen sie die Moleküle in Wasserstoff und Sauerstoff (Wasserchemie und Korrosion) und teilweise fangen die Atome mit den ihnen charakteristischen Wahrscheinlichkeiten auch Neutronen ein und wandeln sich dadurch um. Unter den Gesichtspunkten des Strahlenschutzes ist hierbei die Umwandlung von Sauerstoff in radioaktiven Stickstoff die übelste Variante. Die gebildeten N16 – Atome zerfallen mit einer Halbwertszeit von 7,13 s wieder in Sauerstoff und senden dabei eine γ.-Strahlung von 10,4 MeV aus. Für den Arbeitsschutz ist das jedoch kein besonderes Problem, wenn man die Dampfleitungen und die Turbine mit einer entsprechenden Abschirmung versieht. Selbst bei einem Schaden an den Brennelementen können nur gasförmige Spaltprodukte in den Dampf gelangen – ist doch gerade die Verdampfung ein probates Mittel zur Reinigung von Flüssigkeiten. Aus den Jahrzehnten Betriebserfahrung weltweit, hat man genug Erfahrungen gesammelt und Gegenmaßnahmen entwickelt. So ist beispielsweise das Spülen der Kondensatoren mit Frischluft vor Wartungsarbeiten ein Mittel, die Belastung der Arbeiter z. B. durch radioaktives Jod drastisch zu senken. Heute liegen Siedewasserreaktoren auf den untersten Plätzen bei der gemessenen Strahlenbelastung. Schließlich gilt auch hier wieder der Grundsatz: Je weniger vorhanden ist, desto weniger muß repariert und gewartet werden.

Der ABWR ist der Porsche unter den Kraftwerken

Die momentane Leistung eines Leichtwasserreaktors hängt im Betrieb von der Dichte des Wassers ab. Je höher die Dichte ist, um so mehr nimmt die Wahrscheinlichkeit für einen Zusammenstoß der Neutronen mit einem Wasserstoffatom zu. Die sich dadurch ergebende Abbremsung ist aber die entscheidende Voraussetzung für eine weitere Spaltung (sog. Moderation). Bei dem Sättigungszustand im ABWR (70,7 bar) beträgt der Dichteunterschied zwischen Wasser und Dampf rund 0,05. Mit anderen Worten: Sind ungefähr erst 5% der Wassermasse in einem Kanal verdampft, ist dieser praktisch schon vollständig mit Dampf gefüllt. Damit man überhaupt eine ausreichende Moderation erzielen kann – gemeint ist, genug flüssiges Wasser im Kanal vorhanden ist – sind nahezu 20 Umläufe erforderlich. Hier kommen die internen Umwälzpumpen ins Spiel: Der ABWR hat davon 10 Stück mit je 8300 m3/h Förderleistung. Sie können die Dampfblasen förmlich aus den Kanälen herausspülen und sind somit das „Gaspedal“ des Siedewasserreaktors. Im Bereich von ca. 65% bis 100% übernehmen nur sie die Leistungsregelung. Die Leistung des Reaktors hängt quasi an der Pumpendrehzahl. Der ABWR ist für Leistungsänderungen von 1% pro Sekunde zugelassen. Ein Gas und Dampf Kombikraftwerk wirkt dagegen wie ein alter Trabant. Es ist lustig zu beobachten, wie manche „Umweltschützer“ schon die Zukunft ihrer „CO2-freien Stromwirtschaft“ in der Kombination aus Kernkraftwerken und Windmühlen auf dem Meer sehen. Die Propaganda von den notwendigen „flexiblen Gaskraftwerken“ wird jedenfalls nur noch von bildungsfernen Kreisen nachgeplappert. In GB sieht umgekehrt die Wind-auf-dem-Meer-Lobby in neuen Kernkraftwerken bereits die einzige Überlebenschance. Deutschland demonstriert ja gerade eindrucksvoll, wie hoch die Folgekosten (Regelung, Netzausbau, Speicher usw.) sind, wenn man sich als „Windpark in der Nordsee“ nicht schmarotzend an ein Kernkraftwerk anhängen kann. Bleibt nur abzuwarten, bis die Kapitalgeber erkannt haben, wieviel Uranbrennstoff man für die Baukosten eines Windparks kaufen könnte…

Der Reaktordruckbehälter

Der ABWR ist das vorläufige Endstadium einer jahrzehntelangen Evolution der Siedewasserreaktoren: Es ist gelungen, alle zur Dampferzeugung notwendigen Baugruppen in einen Behälter mit einem Durchmesser von 7,4 m und einer Höhe von 21 m unter zu bringen. Dies erlaubt nicht nur die Fertigung in einer Fabrik, sondern ist auch ein wesentlicher Grund für den enormen Sicherheitsgewinn. Mußte man bei der „Fukushima-Generation“ noch von etwa einer Kernschmelze in 20.000 Betriebsjahren ausgehen, beträgt die Häufigkeit beim ABWR nur noch eine Kernschmelze in über sechs Millionen Betriebsjahren. Damit kein Mißverständnis entsteht: Wahrscheinlichkeit heißt nichts anderes als, es kann – wie beim Lotto – schon morgen oder auch nie passieren. Lediglich bei sehr großen Stückzahlen (Betriebsjahre, nicht Kalenderjahre) ergibt sich der Durchschnittswert. Gleichwohl bilden solche Berechnungen den Sicherheitsgewinn zwischen zwei Anlagen sehr genau ab. Außerdem ist eine Kernschmelze – wie Harrisburg und Fukushima gezeigt haben – zwar eine sehr teure, aber relativ harmlose (keine Todesopfer!) Angelegenheit.

Je weniger Bauteile (Pumpen, Rohrleitungen, Ventile, Dampferzeuger etc.) man hat, je weniger kann kaputt gehen. Je weniger dieser Bauteile räumlich verteilt sind, je geringer ist außerdem die Strahlenbelastung für das Personal.

Der Reaktordruckbehälter ist für alle Einbauten ein sehr sicherer Aufbewahrungsort. Um die Sicherheit zu steigern, ist das Mittelteil, in dem sich der Reaktorkern befindet, aus einem Stück geschmiedet (keine Schweißnähte). Alle Anschlüsse (Speisewasser, Dampf, Notkühlung) befinden sich oberhalb des Reaktorkerns, damit der Kern immer unter Wasser bleibt, auch wenn schwere Leckagen in anderen Baugruppen auftreten.

Der Reaktorkern

Der Reaktorkern bei einem ABWR mit einer Leistung von 1350 MWel besteht aus 872 Brennelementen in einer 10 x 10 Anordnung der Brennstäbe. Jedes Brennelement ist ein viereckiges Rohr von 4,2 m Länge. Das Wasser kann nur von unten nach oben strömen und jedes Brennelement ist für sich wärmetechnisch ein abgeschlossenes System. Der Kasten aus Zircaloy ist allerdings für Neutronen nahezu vollkommen durchlässig. Dadurch ergibt sich neutronenphysikalisch die Verknüpfung mit allen Nachbarelementen.

Jedes Brennelement in 10 x 10 = 100 Anordnung besitzt 78 Brennstäbe von ganzer Länge, 14 teilgefüllte Brennstäbe und 2 dicke Wasserstäbe. Berücksichtigt man noch eine unterschiedliche Anreicherung bzw. Vergiftung der einzelnen Brennstofftabletten aus denen die Brennstäbe zusammengefügt werden, sowie den unterschiedlichen Abbrand im Betrieb, ergibt sich eine schier unendliche Kombinationsmöglichkeit. Sinn und Zweck ist eine möglichst gleichmäßige radiale und axiale Belastung über die gesamte Betriebszeit. Durch geschickte Ausnutzung des Neutronenspektrums während des Betriebs, kann man heute in einem Siedewasserreaktor gegenüber einem Druckwasserreaktor mit rund 15% weniger Verbrauch an Natururan auskommen. Lastfolgebetrieb ist mit beliebigen Tagesprofilen möglich. Die Ladezyklen der Brennelemente können flexibel zwischen 18 und 24 Monaten auf die Bedürfnisse des jeweiligen Energieversorgers abgestimmt werden. Es kann sowohl Plutonium als Mischoxid eingesetzt werden, wie auch die Konversionsrate („brüten“ von Plutonium aus Uran) auf Werte von nahezu 1 (Druckwasserreaktor rund 0,6) getrieben werden.

Die Steuerstäbe

Die Brennelemente sind nicht dicht nebeneinander gestapelt, sondern zwischen ihnen befindet sich ein genau definierter Wasserspalt. In diesen Spalten fahren die Steuerstäbe nach oben. Die 205 Steuerstäbe sind kreuzförmig, sodaß jeweils vier Brennelemente mit ihnen eine Einheit bilden. Sie bestehen aus Edelstahl. In ihnen sind mit Borkarbid oder Hafnium (Neutronengifte) gefüllte und gasdicht verschweißte Röhren eingelassen.

Die Steuerstäbe können vollständig ausgefahren werden. Sie ziehen sich dann in den Raum unterhalb des Kerns, aber innerhalb des Reaktordruckgefässes zurück. Jeder Steuerstab wird durch einen elektrischen Schrittmotor unterhalb des Reaktordruckbehälters angetrieben. Jeder Steuerstab kann damit einzeln und zentimetergenau verfahren werden. Steuerungstechnisch sind die einzelnen Stäbe zusätzlich in Gruppen zusammengefaßt. Ihre Stellung kann damit allen Betriebszuständen und den momentanen Neutronenflüssen angepaßt werden. Hierfür sind 52 feste Messeinrichtungen im Reaktorkern vorhanden. Zusätzlich wird der Abbrand noch auf einem Computer mitgerechnet.

Wird eine Schnellabschaltung ausgelöst, werden alle Steuerstäbe in höchstens 1,7 Sekunden vollständig von unten in den Kern eingeschossen. Zu diesem Zweck werden die elektrischen Antriebe durch hydraulische überbrückt. Die Energie wird aus ständig geladenen Wasser/Stickstoff-Druckspeichern bezogen.

Die Dampftrocknung

Aus den Brennelementen tritt oben ein Gemisch aus Wasser und Dampf im Sättigungszustand aus. Bei diesem Druck ist zwar weniger als 15% der Masse des unten in die Brennelemente eingetretenen Wassers verdampft, dies führt aber zu einem Volumenanteil des Dampfes von über 40%. Dieser Dampf muß abgeschieden werden und das Wasser über den Ringraum des Kerns wieder zum Eintritt zurückgeleitet werden. Zusätzlich wird der entzogene Dampf noch durch „kaltes“ Speisewasser ersetzt.

Die Wasserabscheider bestehen aus dreifach hintereinander geschalteten Elementen. In ihnen wird das Wasser rausgeschleudert und fällt durch sein Gewicht nach unten zurück. Der Dampf strömt weiter nach oben.

Ganz oben im Druckbehälter, befinden sich die Dampftrockner. In ihnen wird der Sattdampf durch Blechpakete umgeleitet. Hier werden nicht nur feinste Tröpfchen aufgehalten, sondern durch die Reibung entsteht zusätzliche Wärme, die den Dampf geringfügig überhitzt. Als Nebeneffekt verlängert sich die Verweilzeit des Dampfes im Reaktordruckgefäß durch die langen Wege. Ein beträchtlicher Teil des gebildeten radioaktiven Stickstoffs (N16. mit t ½ = 7,13 s) kann bereits dort zerfallen.

Die Notkühlung

Der ABWR verfügt über drei redundante und räumlich voneinander getrennte Notkühlsysteme. Dadurch steigt nicht nur die Sicherheit, sondern auch die Verfügbarkeit: Wenn während des Betriebs ein Notkühlsystem gewartet wird, stehen immer noch zwei zur Verfügung.

Ein Siedewasserreaktor ist eine robuste Konstruktion:

  • Der Wasserinhalt im Reaktordruckgefäß ist größer als bei einem Druckwasserreaktor. Dies verschafft Reaktionszeit.
  • Die Brennelemente sind für einen dauerhaften Siedezustand geschaffen. Die Gefahr in den Zustand des Filmsiedens – dabei entsteht eine isolierende Dampfchicht auf dem Brennstab – zu gelangen, ist wesentlich geringer und damit eine Überhitzung (z. B. Teilschmelze von Brennstäben) unwahrscheinlicher.
  • Da die Dampferzeugung bereits im Reaktor stattfindet, entfallen eine Menge potentieller Leckstellen. Die Gefahr eines größeren Kühlmittelverlustes reduziert sich auf die Frischdampf- und Speisewasserleitungen.

Die Notkühlung vollzieht sich in der Nachspeisung von ausreichend Kühlwasser. Der Wasserstand muß stets oberhalb des Reaktorkerns liegen. Ist ein auftretendes Leck nur klein, bleibt der Druck im Reaktordruckgefäß noch relativ hoch. Jede Notkühlung verfügt deshalb über eine Hochdruck-Einspeisung. Sollte diese Versagen, kann eine Druckabsenkung auch bewußt über die Abblaseventile herbeigeführt werden. Ist der Druck – aus welchen Gründen auch immer – weit genug abgefallen, erfolgt die Nachspeisung aus dem Niederdrucksystem. Damit der Druck im Containment nicht unnötig ansteigt, wird der Dampf in Kondensationskammern niedergeschlagen. Das sind große, mit kaltem Wasser gefüllte Kammern. Die Wasserfüllung wird durch eine Wasseraufbereitung stets auf Speisewasserqualität gehalten, sodaß das Kühlwasser gleichzeitig zur Nachspeisung dienen kann. Da sich diese Kammern innerhalb des Containment befinden, ist diese Wasserreserve sehr gut geschützt. Das Wasser wird beständig über die Kühlkreisläufe des Kraftwerks auf einer niedrigen Temperatur gehalten.

Die Eigenversorgung

Solange alles normal läuft, wird die gesamte vom Kraftwerk benötigte elektrische Energie von der eigenen Produktion abgezweigt. Wenn das Netz kurzfristig zusammenbricht – Blitzschlag, Sturmschaden, Schaltfehler etc. – kann die Regelung dies ohne Schnellabschaltung beherrschen: Der Dampf wird an der Turbine vorbei, direkt in die Kondensatoren geleitet. Gleichzeitig nimmt die Regelung die Leistung des Reaktors über die Umwälzpumpen und die Steuerstäbe sanft zurück. Das Kraftwerk läuft nun im Leerlauf und erzeugt nur noch Strom für den Eigenbedarf. Kann das Netz schnell wieder hergestellt werden, kann der Betrieb ohne große Verzögerung wieder aufgenommen werden.

Liegt der Schaden beispielsweise im Generator, kann die Stromversorgung aus dem Netz aufrecht erhalten werden. Ist das Netz ebenfalls zusammengebrochen (Fukushima) müssen die Notstromdiesel übernehmen. Hierfür gibt es drei Notstromdiesel in drei voneinander hermetisch getrennten (Feuerschutz und wasserdicht gegen Wasser von außen und innen) Bereichen innerhalb des Reaktorgebäudes (Schutz gegen z. B. Flugzeugabsturz, Erdbeben etc.). Versagen auch diese, gibt es noch eine Gasturbine im separaten „Notstandsgebäude“ (Post-Fukushima). Für alle Gleichstromverbraucher (z. B. Regelung, Computer etc.) gibt es eine überdimensionierte (Post-Fukushima) Batterieanlage zur unterbrechungsfreien Stromversorgung.

Sollten alle Sicherheitssysteme versagen, gibt es noch eine weitere Ebene für alle nicht vorhersehbaren Ereignisse. Unterhalb des Reaktordruckbehälters gibt es einen sog. „Core-Catcher“ auf dem sich ein eventuell austretendes Corium ausbreiten könnte (UK-ABWR). Der gesamte Raum unterhalb des Reaktors könnte durch das Wasser aus den Kondensationskammern zusätzlich geflutet werden. Sollte der Druck im Sicherheitsbehälter unzulässige Werte erreichen, kann das Gas kontrolliert und gefiltert über den Schornstein abgelassen werden. Dies ist für alle Menschen, die von einem nicht kalkulierbaren „Restrisiko“ ausgehen. Allerdings darf nicht erwartet werden, daß dadurch rechtgläubige „Atomkraftgegner“ von ihrem Kampf abgehalten werden. Schließlich hat in Fukushima eine der schwersten Naturkatastrophen in der Menschheitsgeschichte nur zum Totalschaden von vier Reaktoren aus den Anfängen der Kerntechnik geführt – ohne ein einziges zusätzliches Todesopfer zu verursachen. Genau die ABWR hingegen, haben durch dieses außergewöhnlich schwere Erdbeben keinen Schaden genommen. Ein schlimmer, aber bestens bestandener Praxistest. Wer also immer noch glaubt, in Deutschland ginge es bei Fragen der Kerntechnik nicht um vorgeschobene politische Interessen, dem ist nicht zu helfen.

Ausblick

Im nächsten Teil wird der ESBWR als bisher sicherheitstechnisches „High Light“ der Leichtwasserreaktoren behandelt. Er ist in Europa noch nicht in der Diskussion, weil er gerade erst den „Goldstandard der Genehmigungsverfahren“ – eine Zulassung durch die US-Behörden – erlangt. Dies kann sich aber sehr schnell ändern, wie die neusten Entwicklungen z. B. in Indien zeigen.