„Atommüll“ im Bohrloch

Für ein Tiefenlager als Endlager für hochaktiven Abfall gibt es zwei Möglichkeiten: Anlage eines kompletten Bergwerks oder Tief-Bohrungen. Bisher wurden Bergwerke (Finnland, Frankreich, Schweden, USA etc.) favorisiert. Im letzten Jahrzehnt hat aber die Bohrtechnik durch die Förderung von shale-oil und gas („fracking“) rasante Fortschritte gemacht. Man kann heute nicht nur einige tausend Meter senkrecht in die Tiefe bohren, sondern auch noch bis zu 5 km waagerecht. Dabei ist entscheidend, daß man die waagerechten Bohrungen bis auf etwa einen Meter zielgenau innerhalb einer Schicht ausführen kann. Damit ergeben sich völlig neue Aspekte für den Bau eines Endlagers.

Bergwerk oder Bohrfeld

Der klassische Weg ist die Anlage eines Bergwerkes. Bis man mit der Einlagerung beginnen kann, muß man tatsächlich ein komplettes Bergwerk mit allen zugehörigen Einbauten errichten. Entscheidender Faktor ist hierbei der Mensch: Bergleute müssen von der ersten Stunde bis zum endgültigen Verschluß – ein Zeitraum von rund 100 Jahren – in diesem Bergwerk arbeiten. Das erfordert einen enormen Aufwand für die Sicherheit und begrenzt die Tiefe: Es muß nicht nur eine mehrere Kilometer lange Rampe für den Transport der Abfallbehälter aufgefahren werden, sondern zusätzlich noch Schachtanlagen für die Belüftung und den Personentransport. Für all die aufwendige Technik müssen im Berg komplette Werkstätten, Sozialräume etc. eingerichtet und betrieben werden. Ein enormer Kostenfaktor. Abschließend müssen alle Einbauten und Installationen (Kabel, Rohrleitungen usw.) wieder zurückgebaut werden und alle Hohlräume sorgfältig verfüllt und abgedichtet werden. Bei einem konventionellen Bergwerk holt man nur die wertvollen Dinge raus und läßt das Bergwerk absaufen und langsam in sich zusammenfallen. Genau das geht bei einem Endlager nicht. Hier muß der ursprüngliche Zustand des Gebirges möglichst gleichwertig wieder hergestellt werden – ist doch das Gestein die entscheidende Barriere eines Endlagers. Durch all diese bergmännischen Tätigkeiten wird die ursprüngliche Einlagerungsstätte erheblich verletzt. Dabei sind nicht nur die Hohlräume wieder zu verschließen, sondern auch die durch den Abbau gestörten Randzonen entsprechend abzudichten.

Legt man ein Bohrfeld an, muß zu keinem Zeitpunkt irgendein Mensch unter Tage arbeiten. Alle Bau-, Einlagerungs- und Verfüllarbeiten werden ausschließlich von der Oberfläche aus ausgeführt. Die Arbeiten gehen abschnittsweise vor sich. Sobald eine Bohrung fertiggestellt ist, kann sie befüllt werden und (wunschgemäß sofort) wieder fachgerecht verschlossen werden. Für jede Bohrung sind nur einige Monate erforderlich und anschließend ist sofort der Endlagerzustand erreicht. Dies bedeutet eine enorme Flexibilität. Man muß nicht mehr ein zentrales Endlager betreiben, in dem alle radioaktiven Abfälle eingelagert werden, sondern kann mehrere spezielle Lagerstätten einrichten. Dies könnte auch eine bessere Akzeptanz bei der Bevölkerung bedeuten. Es gibt nicht mehr eine Region, die sich als „Atomklo“ der Nation verstehen muß, sondern viele Endlager sind möglich. Der Nutzen von einem Kernkraftwerk kann besser mit den (vermeintlichen) Nachteilen eines Endlagers ausgeglichen werden. Insbesondere durch horizontale Bohrungen werden ganz neue Gebiete für die Endlagerung gewonnen. Für ein Bergwerk braucht man eine möglichst dicke Schicht (z. B. Salzstock). Für horizontale Bohrungen reichen sehr dünne Schichten (Abweichungen von weniger als einem Meter bei der Bohrung) aus. Ein stark geschichteter Untergrund kann sogar von Vorteil sein, wie man von den Gaslagerstätten weiß. Einzelne Schichten im Untergrund sind oft so dicht, daß sie nicht einmal unter Druck stehendes Erdgas durchlassen. Ein gewaltiger Vorteil für ein Endlager.

Senkrecht oder horizontal?

Die Idee „Atommüll“ in tiefe Bohrungen zu versenken ist nicht neu. So hat man in den USA versuchsweise Bohrungen bis 5000 m Tiefe ausgeführt. In den unteren 1 bis 2 km sollten dann Kanister mit „Atommüll“ endgelagert werden. Hier galt das Prinzip: Je tiefer, je sicherer, denn Tiefe schützt vor durchgehenden Rissen und es verbleibt nur noch die (langsame) Diffusion zum Transport. Der „Atommüll“ sollte also mindestens drei Kilometer unter der Erdoberfläche gelagert sein. Bei dieser Bauart stehen die Kanister übereinander, was zu einer entsprechenden Belastung für den untersten Kanister führt. Gemildert kann dies werden, indem man mehrere Pfropfen in die Bohrung einbaut, auf denen jeweils ein separater Turm steht. Dies verkürzt aber die nutzbare Länge entsprechend und erhöht die Baukosten. Nachteilig ist auch bei einem Wassereintritt, daß die radioaktiven Stoffe – angetrieben durch den Auftrieb durch die Wärmeentwicklung – bevorzugt in der Bohrung und ihrer Störzone nach oben steigen wollen. Es ist also eine besonders sorgfältige Wiederverfüllung nötig, damit auch langfristig keine radioaktiven Stoffe in Grundwasser führende Schichten gelangen.

Bei einer horizontalen Lagerung ist der Auftrieb naturbedingt wesentlich kleiner, da die Wärmeentwicklung eher flächig auftritt. Technisch arbeitet man dem Auftrieb entgegen, indem man den horizontalen Teil leicht ansteigend ausführt. Flüssigkeiten und Gase haben dadurch die Tendenz sich entgegen der Hauptbohrung zu bewegen. Bei einer solchen Anlage spielt Wasser in der Einlagerungszone eine geringe Rolle. Anders als bei einem Bergwerk muß es gar nicht abgepumpt werden und es werden somit nicht die Strukturen gestört. Es muß lediglich gewährleistet sein, daß es oberhalb ausreichende Sperrschichten gibt, die einen Austausch mit oberflächennahen Grundwasserschichten verhindern. Wie lange dieses Wasser schon keinen Kontakt mehr mit der Oberfläche hatte, kann man leicht über eine Isotopenanalyse ermitteln. So stammen beispielsweise die Wässer in den Ölfeldern von Texas (permian) überwiegend aus dem gleichen Meer, in dem auch die öl- und gasbildenden Organismen gelebt haben – sie sind Millionen Jahre alt. Genau die Schichten, die auch das Öl und Gas gefangen gehalten haben, haben auch sie von der Oberfläche fern gehalten. Ein weiterer Vorteil dieser alten Wässer ist, daß sie längst mit Mineralien gesättigt sind und keinen Sauerstoff mehr enthalten – sie können deshalb nur sehr schlecht den „Atommüll“ auflösen bzw. die Behälter korrodieren.

Die Konstruktion eines horizontalen Lagers

Der Bau eines solchen Endlagers vollzieht sich in drei Schritten: Im ersten Schritt wird eine ganz konventionelle Bohrung bis in die gewünschte Tiefe (mindestens so tief wie die geplanten Bergwerke) niedergebracht. Ist sie fertig gebohrt, wird sie komplett mit einem Stahlrohr ausgekleidet, welches einzementiert wird. Der Spezialzement verbindet das Rohr fest mit dem umgebenden Gestein und festigt die durch das Bohrgerät beschädigte Randzone (jeweils ungefähr einen halben Bohrungsdurchmesser um das Loch). Ab diesem Moment hat man also eine stabile senkrechte Rohrleitung nach unten. Im zweiten Schritt wird der Bogen als Übergang von der Senkrechten in die Horizontale gebohrt. Dies geschieht mit einem Winkel von etwa 0,25° pro Meter (300 bis 600 Höhenmeter zwischen Senkrecht und Waagerecht). Wie stark die Krümmung sein darf, hängt wesentlich von der Länge der „Müllbehälter“ ab. Schließlich sollen diese Behälter später ohne Belastung – wie ein Sattelzug auf einer Straße – um die Ecke gefahren werden. Will man z. B. komplette Brennelemente (in Deutschland z. B. ist eine Wiederaufbereitung politisch ausgeschlossen) einlagern, hat ein solcher Kanister eine Länge von knapp 5 m und wiegt rund 500 kg. Ist auch dieser Teil fertig gebohrt, wird er ebenfalls durchgehend bis zur Erdoberfläche verrohrt. Im senkrechten Teil besteht die Konstruktion nun aus zwei zentrischen Rohren, deren Zwischenraum ebenfalls zementiert wird. Im dritten Schritt wird die horizontale Bohrung ausgeführt. Man realisiert heute im Ölgeschäft bis zu 5 km lange Strecken. Wie lang eine Bohrung sein kann hängt maßgeblich von der Beschaffenheit der Schicht ab, in die die Endlagerung erfolgen soll. Dieser Teil wird nun ebenfalls verrohrt, was zur Folge hat, daß im senkrechten Teil nun drei Rohre ineinander gesteckt sind.

Die „Abfallbehälter“ bestehen aus Rohren mit einer Wandstärke von etwa 1 cm aus „Alloy 625“ (einem rostfreien Edelstahl, aus dem z. B. auch Rohre in Kernkraftwerken gefertigt werden). Hohlräume in den Behältern werden ausgefüllt und diese anschließend gasdicht verschweißt. Solche „Stangen“ – typische Durchmesser 23 bis 33 cm – sind außerordentlich stabil. Bis diese Behälter „durchgerostet“ sind, vergehen mindestens 50 000 Jahre. Ein Zeitraum, in dem fast alle Spaltprodukte bereits zerfallen sind. Erst dann müßte das Gestein seine Aufgabe als weitere Barriere erfüllen. Die Rohre zur Auskleidung der Bohrlöcher haben eine Lebensdauer von mehreren hundert Jahren.

Aus der Ölindustrie kennt man zahlreiche Verfahren, wie man solche Bohrungen befahren kann. Das Ein- und Ausbringen von Messgeräten, Kameras, Werkzeugen usw. ist Routine. Es gibt sogar Spezialfirmen, die abgebrochene oder verklemmte Bohrgestänge wieder aus einem Bohrloch fischen können. Die „Abfallbehälter“ werden wahrscheinlich mit einem elektrisch angetriebenen Traktor, an einem Stahlseil hängend, in die Rohre gedrückt bzw. wieder herausgezogen. Die Lagerung ist also für (mindestens) Jahrzehnte rückholbar. Auch dies eine politische Forderung, die eigentlich im Widerspruch zu einem Endlager steht.

Alle Arbeiten werden also von der Erdoberfläche aus ausgeführt. Einzige Besonderheit ist eine Abschirmung gegen die Strahlung während der Versenkung des „Atommülls“. In der Ölförderung ist es üblich, von einer kleinen Baustelle aus, mehrere Löcher zu bohren. Teilweise sogar mehrere Schichten übereinander zu erschließen. So könnte man auch ein recht großes Lagerfeld für viele Tonnen Abfall anlegen. Auch der oberirdische Platzbedarf wäre somit sehr viel kleiner als für ein vergleichbares Bergwerk.

Was könnte man einlagern?

Wie oben schon erwähnt, könnte man ganze Brennelemente ohne weitere Bearbeitung einlagern. Dies dürfte – wegen der enormen Rohstoffverschwendung – die Ausnahme sein. Viel eher wird man die verglasten Spaltprodukte mit den minoren Aktinoiden nach einer Wiederaufbereitung (französischer Weg) in solche Behälter gießen. Es sind aber auch andere Wege darstellbar. So fällt man in den USA in den militärischen Aufbereitungsanlagen Strontium und Cäsium (Halbwertszeit etwa 30 Jahre) aus der Spaltproduktlösung aus. So erhält man eine relativ große Menge kurzlebigen Abfall und eine relativ geringe Menge langlebigere Spaltprodukte. Diese Cäsium- und Strontium-Kapseln werden getrennt gelagert. Man kann hierfür einen besonders geeigneten Lagerort finden. Dampferzeuger aus Kernkraftwerken werden heute schon in Spezialfabriken zerlegt und dekontaminiert. Übrig bleibt eine große Menge handelsüblicher Schrott zu Wiederverwendung und ein kleiner Block eingeschmolzenen radioaktiven Materials. Diesen Abfall könnte man auch in die „Abfallbehälter“ gießen und endlagern. Heute wird es immer mehr üblich, kontaminierte Stoffe (Schutzkleidung etc.) vorher einzuäschern und nur noch das kleine Volumen der Asche zu lagern. Genauso könnte man belastete Filterharze in „Abfallbehälter“ umfüllen. Alles nur eine Frage der Kosten und des politischen Willens.

Terrestrial Energy aus Kanada

Kanada gehört zu den führenden Ländern auf dem Gebiet der friedlichen Nutzung der Kernenergie: Sie entwickeln (Terrestrial etc.), bauen eigene Kernkraftwerke (Candu Baureihe von Schwerwasserreaktoren) und betreiben sie seit Jahrzehnten sehr erfolgreich (Anteil ≈15% an der Stromproduktion). Damit widerlegen sie gleich zwei Argumentationsketten der „Atomkraftgegner“:

  • Kanada zeigt, daß es keinen Zusammenhang zwischen der friedlichen Nutzung der Kernenergie und dem Streben nach Kernwaffen gibt. Man kann sehr wohl erfolgreich Kerntechnik ohne einschlägige Rüstungsindustrie betreiben. In der vollen Bandbreite von Grundlagen-Forschung, über Entwicklung, bis hin zur Produktion – wie einst auch in Deutschland.
  • Kanada ist nicht nur mit schier unerschöpflichen Vorkommen an fossilen Energien (Erdgas, Kohle und Öl), sondern auch mit sog. „Alternativenergien“ (Wasserkraft, Wind und Holz) reichlich gesegnet. Es wäre damit nahezu frei in seiner Entscheidung, welche Energieformen genutzt werden sollen. Diese Entscheidungsfreiheit haben Länder, wie Frankreich, Deutschland, Süd Korea oder Japan wegen ihrer eingeschränkten Ressourcen leider nicht. Kanada teilt aber mit vergleichbaren Ländern, wie Rußland oder Brasilien, den Nachteil schierer Ausdehnung. Beispielsweise befinden sich geeignete Flüsse nicht unbedingt in der Nähe der großen Städte, bzw. der Industriezentren.

Groß braucht klein

In Kanada zeigt sich diese Problematik sehr deutlich: In der Provinz Ontario wird mit 15 Candu-Reaktoren mehr als die Hälfte der dort verbrauchten elektrischen Energie erzeugt. Andererseits gibt es in vielen Städten im hohen Norden praktisch keine Alternative zu Diesel-Generatoren. Der Dieselkraftstoff muß überdies noch zu extremen Kosten dort hin transportiert werden. Kanada ist und bleibt aber auch ein „Rohstoffland“ mit zahlreichen abgelegenen Förderstätten für die eine Alternative gefunden werden muß. Eine Analyse ergab folgendes:

  • Ölsände: In 96 Anlagen wurde ein Bedarf an Heizdampf und elektrischer Energie für „Steam-Assisted Gravity Drainage“ festgestellt. Im Durchschnitt mit einer Leistung von 210 MWel pro Anlage plus Dampf.
  • Dampf für die Schwerindustrie: 85 Standorte der Chemieindustrie und Raffinerien mit einer Leistung von 25 bis 50 MWel plus Dampf.
  • Abgelegene Gemeinden und Bergwerke: 79 Standorte mit einem Leistungsbedarf von über 1 MWel plus erheblichem Wärmebedarf für die Nahwärmenetze. 24 Bergwerke ohne Netzanschluss.
  • Alte Kohlekraftwerke: 29 Blöcke an 17 Standorten mit einer durchschnittlichen Leistung von 343 MWel. Hier könnten (nur die) Kesselanlagen durch kleine Reaktoren ersetzt werden, wenn die sonstigen Anlagen noch in einem brauchbaren Zustand sind. Dies ergibt besonders kostengünstige Lösungen.

Es verwundert deshalb nicht, daß gegenwärtig 10 verschiedene Kleinreaktoren mit Leistungen zwischen 3 und 200 MWel zur Genehmigung bei den kanadischen Behörden eingereicht wurden. Es wird von der kanadischen Regierung angestrebt, etwa vier verschiedene Konzepte als Prototypen im nächsten Jahrzehnt zu errichten. Alle Reaktoren stammen aus privaten Unternehmen und sind überwiegend durch Risikokapital finanziert. Dies zeigt deutlich, welche Veränderungen die kerntechnische Industrie momentan durchläuft. Private Investoren wollen ihr Geld zurück und möglichst einen Gewinn oben drauf. Man kann also von der nötigen Ernsthaftigkeit und einem beschleunigten Arbeiten ausgehen – Zeit ist immer auch Geld. Es geht zur Zeit zu, wie in der Software-Branche. Allerdings darf man nicht aus den Augen verlieren, daß hier immer der Staat in Form der Genehmigungsbehörden ein ausschlaggebendes Wort mit zu reden hat!

Beschreibung des Reaktors

Bei dem Reaktor des kanadischen Unternehmens Terrestrial Energy handelt es sich um einen SMR (Small Modular Reactor) von der Bauart „Integral Molten Salt Reactor“, mit einer Wärmeleistung von 400 MWth (≈190 MWel).

Der gesamte Reaktor befindet sich in einem etwa 7 m hohen Stahlbehälter mit einem Durchmesser von etwa 3,5 m und einem Transportgewicht von 170 to. Das sind – verglichen mit den heutigen Komponenten von Druckwasserreaktoren – einfach zu transportierende und handhabbare Abmessungen. Solch ein Reaktor kann deshalb komplett in einer Fabrik (in Serie) angefertigt werden und erst anschließend zur Baustelle transportiert werden. Dort sind nur wenige Wochen bis Monate nötig, um die erforderlichen Anschlussarbeiten und die Inbetriebsetzung durchzuführen. Ein Vorteil gegenüber konventionellen Kernkraftwerken, der gar nicht zu überschätzen ist. Das wirtschaftliche Risiko (Baukosten, Finanzierungskosten und das Risiko eines Fremdstrombezuges) bewegt sich plötzlich in einer üblichen und allgemein akzeptierten (Lieferant ⟺ Kunde) Größenordnung.

Vorgeschichte

Vielen mag die angestrebte Inbetriebnahme des ersten Kraftwerks in der ersten Hälfte der 2020er-Jahren sehr unwahrscheinlich erscheinen. Es handelt sich hierbei aber keinesfalls um einen „Erfinder-Reaktor“, sondern eher um eine konsequente Weiterentwicklung. Man kann auf ein umfangreiches Forschungs- und Entwicklungsprogramm zu Salzschmelze-Reaktoren in den Jahrzehnten 1950 bis 1970 am Oak Ridge National Laboratory (ORNL) in den USA zurückgreifen. Es gipfelte im erfolgreichen Bau und Betrieb des Molten Salt Reactor Experiment (MSRE) und der Konstruktion des Small modular Advanced High Temperature Reactor (SmAHTR), der zur Produktion von Wasserstoff gedacht war. Allerdings sollte man auch nicht die notwendigen Arbeiten unterschätzen, die für die von der Genehmigungsbehörde geforderten Nachweise erforderlich sind. Weltweit sind diese Arbeiten bereits im Gange: Von Bestrahlungsexperimenten in den Niederlanden bis – man lese und staune – zur Forschung an Salzen in Karlsruhe (European Commission’s Joint Research Center).

Brennstoff und Kühlmittel

Salzbadreaktoren unterscheiden sich grundsätzlich von anderen Reaktortypen: Bei ihnen ist der Brennstoff auch gleichzeitig das Kühlmittel. Störfälle durch den Verlust des Kühlmittels – Fukushima und Harrisburg – sind ausgeschlossen. Es gibt auch keine Begrenzung durch den Wärmetransport innerhalb der Brennstäbe und durch die Brennstabhülle an das Kühlmittel. Der Brennstoff ist bereits während des Betriebs geschmolzen und im „Kühlmittel“ gelöst. Man verwendet hier die chemische Verbindung Uranfluorid. Dieses Salz wird in geringer Menge anderen Salzen, wie Natriumflourid, Berylliumfluorid bzw. Lithiumfluorid zugesetzt. Die genaue Zusammensetzung ist bisher nicht veröffentlicht. Sie richtet sich wesentlich nach der angestrebten Betriebstemperatur von 625 bis 700 °C. Die Salzmischung soll bei möglichst geringer Temperatur bereits schmelzen, aber andererseits muß sie auch langfristig im Betrieb möglichst chemisch stabil sein und bleiben. Das Salz ist bei diesem Reaktor sicherheitstechnisch das wesentliche (z. B. Korrosion) und kritische Bauteil.

Da das Salz im Laufe der Zeit durch die Spaltprodukte hoch radioaktiv wird, ist ein sekundärer Kreislauf mit dem gleichen Salz ohne Brennstoff vorgesehen. Die Wärmeübertragung findet durch Wärmetauscher innerhalb des eigentlichen Reaktorbehälters statt (Integrierte Bauweise). Die Druckverluste (ca. 5 bar) im Moderator und den Wärmeübertragern wird durch Pumpen innerhalb des Gefäßes überwunden. Die Wärmeübertrager sind redundant vorhanden, sodaß bei etwaigen Leckagen einzelne Übertrager einfach stillgelegt werden können.

Beladungsrhythmus

Man beschränkt sich bewußt auf die Verwendung von sehr gering angereichertem Uran für die Erstbeladung und auf Uran mit einer Anreicherung von etwa 4,75 % U235 als Ergänzung während des Betriebs. Damit verwendet man (erst einmal) handelsübliches Material. Prinzipiell ist auch Thorium und Plutonium einsetzbar. Bei solch geringer Anreicherung benötigt man zwingend einen Moderator. Es wird ein Block aus Reaktorgraphit im unteren Teil des Reaktorgefäßes verwendet, durch dessen Kanäle das Salz von unten nach oben strömt. Nur in diesen Kanälen findet die Kernspaltung statt.

Die ganze Einheit bleibt nur etwa sieben Jahre in Betrieb. Dann vollzieht sich ein „Brennstoffwechsel“ durch die Inbetriebnahme einer neuen Einheit in einem zweiten Silo. Die alte Anlage verbleibt in ihrem Silo, bis der wesentliche Teil ihrer Strahlung abgeklungen ist. Dieser Vorgang entspricht der Lagerung der Brennelemente im Lagerbecken eines Leichtwasserreaktors. Nach angemessener Zeit wird das Salz in spezielle Lagerbehälter umgepumpt und die restliche Einheit aus dem Silo herausgehoben und ebenfalls in das Zwischenlager auf dem Kraftwerksgelände gebracht:

  • Ziel ist ein Betrieb des Kraftwerks (theoretisch) ohne Unterbrechung.
  • Möglichst geringer Personalaufwand vor Ort, da (fast) keine Wartung und Inspektion nötig wird. Die Anlage wird zwar auf eine Lebensdauer von 60 Jahren ausgelegt, aber der „Reaktor“ nur sieben Jahre betrieben. Alle Arbeiten können wieder in einer Fabrik durchgeführt werden. Dort kann entschieden werden, was Schrott ist (Vorbereitung zur Endlagerung) oder wieder verwendet werden kann. Das Vorgehen erinnert an den guten, alten „Austauschmotor“ bei Kraftfahrzeugen.
  • Die alten Salze können in einer Wiederaufbereitungsanlage behandelt werden und die Spaltprodukte zur Endlagerung verarbeitet werden.

Salzschmelzen haben eine recht geringe Viskosität und lassen sich somit auch über längere Strecken gut pumpen. Wichtig ist hierbei, daß bereits den Reaktor ein „garantiert nicht strahlendes“ Salz verläßt (innen liegende Wärmeübertrager). Die Grenze des nuklearen Teils liegt somit am Rand des Silos. Der Charme eines solchen Reaktors liegt in seiner hohen Betriebstemperatur und seinem sehr geringen Betriebsdruck. Man kann mit relativ kleinem Aufwand noch einen einen dritten Kreislauf aus sogenanntem „Solarsalz“ anschließen. Damit gelangt man zu zwei völlig neuen Möglichkeiten:

  1. Man kann die Hochtemperaturwärme relativ einfach und kostengünstig über eine längere Leitung transportieren. Eine industrielle Nutzung wird damit möglich. Wohl kaum eine Industrie- oder Chemieanlage wird sich nach einem „Atomkraftwerk“ auf ihrem Gelände sehnen. Völlig anders dürfte sich die Situation darstellen, wenn die kerntechnische Anlage „deutlich“ neben dem eigenen Gelände steht und man nur Nutzwärme kauft.
  2. Durch die Verwendung von „Solarsalz“ – wie es heute beispielsweise bei Solarturmkraftwerken (manchen auch als Grill für Vögel bekannt) zur Stromproduktion in der Nacht eingesetzt wird. Eine vollständige zeitliche Entkopplung von Strom- und Wärmeproduktion wäre damit möglich. Der Reaktor könnte ständig mit voller Leistung gefahren werden und beim Einsatz einer Turbine mit „Übergröße“ hätte man ein perfektes Spitzenkraftwerk für die Regelung von „Flatterstrom“. Speicher mit geschmolzenem Salz haben nicht nur eine große Speicherkapazität (Phasenumwandlung), sondern weisen auch durch ihre Selbst-Isolierung (zuerst erstarrt eine Schicht an der Oberfläche), geringe Wärmeverluste über längere Zeiträume aus.

Notkühlung

Wenn tatsächlich eine Überhitzung eintritt, wirkt das passive Kühlungssystem. Der Reaktorbehälter steckt in einem weiteren Schutzbehälter. Dieser Schutzmantel entspricht dem Containment eines konventionellen Reaktors. Beide Behälter sind nicht isoliert. Steigt die Temperatur im inneren Behälter an, nimmt die Abstrahlung an den Schutzbehälter zu. Die Wärme wird durch Naturkonvektion über den Luftspalt zwischen Schutzbehälter und Silo abgeführt.

Reaktivitätskontrolle

Der Reaktor hat einen so starken negativen Temperaturkoeffizienten, daß er ohne Regelstäbe auskommt. Je höher die Temperatur der Salzschmelze wird – aus welchem Grund auch immer – um so weniger Kerne werden gespalten. Umgekehrt nimmt die Kernspaltung wieder automatisch zu, wenn mehr Wärme abgenommen wird. Es sind lediglich Abschaltstäbe für eine dauerhafte Abschaltung vorgesehen. Als weiteres passives Sicherheitssystem gibt es noch Kapseln die schmelzen und starke Neutronenabsorber frei setzen.

Konstruktionsvorgabe ist ein inhärent sicheres, walk-away sicheres Kernkraftwerk zu bauen. Alle treibenden Kräfte, die in einem Störfall radioaktive Materialien frei setzen können (Tschernobyl), werden vermieden. Deshalb werden alle unter hohem Druck stehende Komponenten (Wasser-Dampf-Kreislauf) vom Reaktor fern gehalten. Es muß für keine Druckentlastung gesorgt werden und kein Kühlwasser zum Reaktor gebracht werden.

Der Reaktor braucht überhaupt kein Notabschalt- oder Notstromsystem. Somit vereinfacht sich das Genehmigungsverfahren und die wiederkehrenden Sicherheitsprüfungen enorm. Alle Instrumentierungen und Steuerungselemente können konventionelle Produkte (Kostenreduktion) sein.

Schlussbemerkung

Das kanadische Genehmigungsverfahren ist vierstufig. Stufe 1 wurde bereits erfolgreich abgeschlossen. Man befindet sich nun in der zweiten Stufe. Der Zeitrahmen von etwa fünf Jahren bis zur Inbetriebnahme einer ersten Demonstrationsanlage scheint sehr ehrgeizig, wenn auch nicht unmöglich. Inzwischen sind alle namhaften kanadischen Ingenieurgesellschaften und die kerntechnische Industrie in das Projekt eingestiegen. Aus dem innovativen Startup mit rund 50 Beschäftigten ist eine schlagkräftige Armee mit zehntausenden Ingenieuren geworden. Es gibt praktisch kein Problem, für das keine erfahrenen Mitarbeiter zur Verfügung stehen. Wer schon mal mit kanadischen Unternehmen gearbeitet hat, kennt deren grundsätzlich optimistische und entschlossenen Rangehensweise. Wo deutsche Ingenieurzirkel in endlosen Sitzungen immer wieder neue Probleme erschaffen, probieren Kanadier einfach mal aus.

TRANSATOMIC – schon wieder ein neuer Reaktortyp?

Es tut sich wieder verstärkt etwas bei der Weiterentwicklung der Reaktortechnik in den USA.

Gänzlich anders als in Deutschland, in dem man sich mehr denn je zurück ins Mittelalter träumt, setzt man in USA verstärkt auf die Ausbildung junger Ingenieure und Wissenschaftler und ermutigt sie, eigene Unternehmen zu gründen. Eines der Programme ist das Gateway for Accelerated Innovation in Nuclear (GAIN), des U.S. Department of Energy (DOE). Vereinfacht gesagt, gibt es dort Gutscheine, die die (sonst kostenpflichtige) Nutzung staatlicher Forschungseinrichtungen durch Unternehmensgründungen ermöglichen. Acht solcher „Gutscheine“ im Gesamtwert von zwei Millionen Dollar gingen an sog. startups aus der Kerntechnik.

Eines dieser jungen Unternehmen der Kerntechnik ist Transatomic Power Corporation (TPC). Wie so oft in den USA, ist es eine Gründung von Absolventen des MIT. Glückliches Amerika, in dem noch immer tausende junger Menschen bereit sind, sich den Strapazen eines Kerntechnik-Studienganges aussetzen, während man hierzulande lieber „irgendwas mit Medien“ studiert. Allerdings kennt man in den USA auch keine Zwangsgebühren zur Schaffung von hoch dotierten Nachrichtenvorlesern und Volksbelehrern. Jeder Staat setzt halt seine eigenen Prioritäten.

Noch etwas ist in den USA völlig anders. Das junge Unternehmen hat bereits mehrere Millionen Dollar privates Risikokapital eingesammelt. Es braucht noch mehr Kapital und hat deshalb ein Papier veröffentlicht, in dem das Konzept seines Reaktors näher beschrieben ist. Sicherlich ein erhebliches wirtschaftliches Risiko. Man vertraut offensichtlich darauf, mangelnde „Geldmacht“ durch Schnelligkeit kompensieren zu können. Erklärtes Ziel ist es, möglichst schnell einen kleinen Versuchsreaktor mit 20 MWth zu bauen. Das erste kommerzielle Kraftwerk soll rund 500 MWel (1250 MWth.) Leistung haben und rund zwei Milliarden Dollar kosten.

Abgebrannte Brennelemente als Brennstoff

Der Reaktor ist vom Typ „molten salt“. Der Brennstoff wird in geschmolzenem Salz gelöst, welches gleichzeitig dem Wärmetransport dient. Populär ist dieser Reaktortyp im Zusammenhang mit Thorium gemacht worden. Man beschränkt sich hier bewußt auf Uran als Brennstoff, um auf die dafür vorhandene Infrastruktur zurückgreifen zu können. Thorium wird eher als Option in ferner Zukunft gesehen.

Der besondere Charme dieses Konzeptes liegt in der Verwendung abgebrannter Brennelemente aus Leichtwasserreaktoren als Brennstoff. Solche abgebrannten Brennelemente bestehen zu rund 95% aus Uran-238 und etwa je einem Prozent Uran-235 und Plutonium. Der Rest sind Spaltprodukte als Abfall. Das klassische Modell, wie es z.B. in Frankreich praktiziert wird, ist die Wiederaufbereitung nach dem Purex-Verfahren: Man erhält sehr reines Uran, welches als Ersatz für Natururan wieder in den Kreislauf zurückgeführt wird und reines Plutonium, welches als Mischoxid zu neuen Brennelementen verarbeitet wird. Die Spaltprodukte mit Spuren von Aktinoiden werden verglast und als Atommüll endgelagert. Für diese chemischen Prozeßschritte (Wiederaufbereitungsanlage) geht man von Kosten in Höhe von 1300 bis 3000 US-Dollar pro kg aus. Bei heutigen Preisen für Natururan eine unwirtschaftliche Angelegenheit. Deshalb füllen sich die Lager mit abgebrannten Brennelementen auch weiterhin. Allein in den USA lagern über 70.000 to ausgedienter Brennelemente. Für die „Zwischenlagerung“ in Behältern (ähnlich den Castoren in Deutschland) geht man von etwa 100 Dollar pro kg aus. Für die „Entsorgung“ haben sich bereits über 31 Milliarden US-Dollar Rücklagen angesammelt – was etwa 400 Dollar pro kg entspricht.

Wem es gelingt, einen Reaktor zu bauen, der die abgebrannten Brennelemente „frißt“, ist in der Rolle einer Müllverbrennungsanlage: Er wird für die Beseitigung des Mülls bezahlt und kann sich mit seinem Preis an den anderen Möglichkeiten (z. B. Müllkippe) orientieren. Die entstehende Wärme ist umsonst. Die elektrische Energie aus der „Müllbeseitigung“ ist ein weiteres Zubrot. Es kommt lediglich darauf an, eine besonders günstige „Müllverbrennungsanlage“ zu bauen. Genau an diesem Punkt, setzt TPC an.

Das Transatomic Konzept

Die Angst vor dem „Atommüll“ wird mit seiner Langlebigkeit begründet. Es gibt wahrlich gefährlichere Stoffe, als abgebrannte Brennelemente. Solange man sie nicht aufisst, sind sie recht harmlos. Es ist aber die berechtigte Angst, ob man diese Stoffe für Jahrmillionen sicher von der Biosphäre fern halten kann, die viele Menschen umtreibt. Spaltprodukte sind in diesem Sinne kein Problem, da sie in wenigen hundert Jahren faktisch von selbst verschwunden sind. Jahrhunderte sind aber durch technische Bauwerke (Kathedralen, Pyramiden etc.) oder natürliche Barrieren (einige hundert Meter gewachsene Erdschichten) sicher beherrschbar.

Man kann aber alle langlebigen Aktinoide durch Spaltung in kurzlebige Spaltprodukte umwandeln und dabei noch riesige Mengen Energie erzeugen – am besten in einem Kernkraftwerk. Ein solcher Reaktor muß besonders sparsam mit den bei einer Spaltung freiwerdenden Neutronen umgehen, um möglichst viele andere Kerne umzuwandeln und letztendlich zu spalten.

  • Spaltprodukte haben teilweise sehr große Einfangquerschnitte. Mit anderen Worten, sie wirken parasitär indem sie wertvolle Neutronen „wegfangen“. Die Konsequenz ist eine integrierte Wiederaufbereitung. Dies läßt sich nur über eine Brennstofflösung erreichen.
  • Es dürfen nur möglichst wenig Neutronen das System verlassen. Dazu muß man den Reaktor mit einem Reflektor versehen, der die Neutronen wieder in den Reaktor zurück streut. Idealerweise verwendet man dafür ebenfalls Uran, damit nicht zurück streubare Neutronen bei ihrem Einfang wenigstens neuen Spaltstoff – hier Plutonium – erzeugen.
  • Bei Reaktoren mit festen Brennstoffen, kann man die Spaltstoffe nicht kontinuierlich ersetzen. Man benötigt deshalb zu Anfang eine Überschußreaktivität. So zu sagen, mehr Spaltstoff als eigentlich zuträglich ist. Diese Überschußreaktivität muß durch Regelstäbe und abbrennbare Gifte kompensiert werden: Wertvolle Neutronen werden unnütz weg gefangen.

Will man mit möglichst geringer Anreicherung auskommen – was einem bereits abgebrannten Brennelement entspricht – muß man zwingend auf ein thermisches Neutronenspektrum übergehen. Sogenannte „Schnelle Brüter“ erfordern eine zweistellige Anreicherung. Also wesentlich höher, als sie in einem frischen Brennelement für einen Leichtwasserreaktor vorliegen. Man kann in einem thermischen Reaktor zwar nicht brüten – also mehr Spaltstoff erzeugen als beim Betrieb verbraucht wird – aber fast genau soviel erzeugen, wie verbraucht wird. Man muß es auch gar nicht, da ja der „Atommüll“ noch Spaltstoff enthält.

Wieviel wird nun gespart?

Ein heutiger Leichtwasserreaktor produziert pro 1000 MWel etwa 20 to abgebrannter Brennelemente pro Jahr. Geht man von einer direkten Endlagerung aus, ist dies die Menge „Atommüll“ die in ein Endlager muß. Erzeugt man die gleiche elektrische Energie aus eben solchem „Atommüll“, ist diese Menge schon mal komplett eingespart.

Gleichzeitig wird aber auch der ursprünglich vorhandene „Atommüll“ in der Form abgebrannter Brennelemente weniger. Die Energie wird durch die Spaltung von Atomkernen erzeugt. Sie sind nach der Spaltung unwiederbringlich vernichtet. Wird Uran noch von vielen Menschen als natürlich und damit relativ harmlos angesehen, ist z. B. Plutonium für sie reines Teufelszeug. Genau diese Stoffgruppe dient aber bei diesem Reaktortyp als Brennstoff und wird beständig verbraucht.

Ein solcher Reaktor produziert rund 1 to Spaltprodukte pro 1000 MWel und Jahr. Die Spaltprodukte sind darüberhinaus in einigen Jahrhunderten – gegenüber 100.000den von Jahren bei Plutonium – verschwunden. In Bezug auf die Energieversorgung sind solche Reaktoren eine echte Alternative zu sog. „Schnellen Brütern“. Bereits die vorhandenen abgebrannten Brennelemente und die absehbar hinzukommenden, wären eine schier unerschöpfliche Energiequelle.

Was ist neu bei diesem Reaktortyp?

In den USA hat man über Jahrzehnte Erfahrungen mit Salzschmelzen in Versuchsreaktoren gesammelt. Hier strebt man bewußt die Verwendung von Uran und nicht von Thorium an. Dies hat bezüglich des Salzes Konsequenzen: Lithiumfluorid kann wesentlich höhere Konzentrationen Uran gelöst halten (LiF-(Actinoid)F4) als das bekanntere FLiBe-Salz. Erst dadurch ist der Einsatz abgebrannter Brennelemente (niedrige Anreicherung) möglich. Allerdings liegt die Schmelztemperatur dieses Brennstoffs bei etwa 500 °C. Ein wesentliches Sicherheitskriterium ist daher, Verstopfungen in Kanälen und Rohrleitungen durch Ablagerungen, sicher zu vermeiden.

Als Moderator sollen Stäbe aus Zirconiumhydrid eingesetzt werden. Sie wirken wie „umgekehrte Regelstäbe“: Je tiefer sie in die Schmelze eingetaucht werden, um so mehr Neutronen werden abgebremst und die Spaltungsrate erhöht sich. Die Moderation solcher Stäbe ist gegenüber früher verwendetem Graphit so viel besser, daß fast der doppelte Raum für die Salzschmelze bei einem vorgegebenen Reaktorvolumen zur Verfügung steht. Ein weiterer wichtiger Schritt zu der Verwendung von „Atommüll“ als Brennstoff.

Die integrierte Wiederaufbereitung

Die Spaltprodukte müssen kontinuierlich aus der Salzschmelze entfernt werden. Sie wirken nicht nur parasitär, sondern stellen auch das eigentliche Sicherheitsproblem dar. Je weniger Spaltprodukte gelöst sind, um so weniger Radioaktivität könnte bei einem Störfall freigesetzt werden.

Etwa 20% der Spaltprodukte sind Edelgase. Sie sollen mit Helium aus der Salzschmelze abgeschieden werden und anschließend in Druckgasflaschen gelagert werden.

Rund 40% der Spaltprodukte sind Metalle, die Kolloide in der Schmelze bilden. Sie sollen mit Geweben aus Nickel ausgefiltert werden.

Der Rest – hauptsächlich Lanthanoide – sind sehr gut in der Salzschmelze gelöst. Sie sollen mittels flüssigen Metallen extrahiert werden und anschließend in eine keramische Form zur Lagerung überführt werden.

In der Abscheidung, Behandlung und Lagerung der Spaltprodukte dürfte die größte Hemmschwelle bei der Einführung von Reaktoren mit Salzschmelzen liegen. Welcher Energieversorger will schon gern eine Chemiefabrik betreiben? Vielleicht werden deshalb erste Anwendungen dieses Reaktors gerade in der chemischen Industrie liegen.

Zusammenfassung

Der Gedanke, „Atommüll“ möglichst direkt als Brennstoff einzusetzen, hat Charme. Wirtschaftlich kommt man damit in die Situation einer Müllverbrennungsanlage. Man kann sich an den Aufbereitungs- und Entsorgungspreisen des Marktes orientieren. Diese Einnahmen sind schon mal vorhanden. Die Stromproduktion ist ein Zubrot. Es wird noch sehr viel Entwicklungszeit nötig werden, bis ein genehmigungsfähiger Reaktor vorliegt. Auch die Kostenschätzung über zwei Milliarden Dollar für den ersten kommerziellen Reaktor, ist in diesem Sinne mit der gebotenen Vorsicht zu betrachten. Allerdings handelt es sich bei diesem Reaktor nicht um ein Produkt einer „Erfindermesse“. Man hat sehr sorgfältig den Stand der Technik analysiert und bewegt sich auf allen Ebenen auf dem machbaren und gangbaren Weg. Es ist nur zu hoffen, daß diesem jungen Unternehmen noch etwas Zeit verbleibt, bis es – wie so viele vor ihm – auf und weg gekauft wird.

Weltweit tut sich etwas in der Entsorgungsfrage: Salzbadreaktoren, Entwicklung metallischer Brennstoffe – sogar für Leichtwasserreaktoren – und abgespeckte chemische Wiederaufbereitungsverfahren in Rußland.

Kohle, Gas, Öl, Kernenergie? – Teil 2

Neben den fossilen Energieträgern wird auch in der Zukunft weltweit die Kernenergie einen steigenden Anteil übernehmen. Wem das als eine gewagte Aussage erscheint, sollte dringend weiterlesen, damit er nicht eines Tages überrascht wird.

Das Mengenproblem

Zumindest solange die Weltbevölkerung noch weiter wächst, wird der Energieverbrauch weiter steigen müssen. Er wird sogar überproportional steigen, da Wohlstand und Energieverbrauch untrennbar miteinander verknüpft sind. All das Geschwafel von „Energieeffizienz“ ist nur ein anderes Wort für Wohlstandsverzicht und schlimmer noch, für eine neue Form des Kolonialismus. Woher nimmt z. B. ein „Gutmensch“ in Deutschland das Recht, Milliarden von Menschen das Leben vor enthalten zu wollen, das er für sich selbst beansprucht? Das wird nicht funktionieren. Nicht nur China, läßt sich das nicht mehr gefallen.

Wenn aber der Energieeinsatz mit steigendem (weltweiten) Wohlstand immer weiter steigen muß, welche Energieträger kommen in Frage? Die additiven Energien Wind, Sonne etc. werden immer solche bleiben. Dies liegt an ihrer geringen Energiedichte und den daraus resultierenden Kosten und ihrer Zufälligkeit. Die fossilen Energieträger Kohle, Öl und Erdgas reichen zwar für (mindestens) Jahrhunderte, führen aber zu weiter steigenden Kosten. Will man z. B. noch größere Mengen Kohle umweltverträglich fördern, transportieren und verbrennen, explodieren die Stromerzeugungskosten weltweit. Dies ist aber nichts anderes als Wohlstandsverlust. Man kann nun mal jeden Dollar, Euro oder Renminbi nur einmal ausgeben!

Um es noch einmal deutlich zu sagen, das Problem ist nicht ein baldiges Versiegen der fossilen Energieträger, sondern die überproportional steigenden Kosten. Je mehr verbraucht werden, um so mehr steigt z. B. die Belastung der Umwelt. Dem kann aber nur durch einen immer weiter steigenden Kapitaleinsatz entgegen gewirkt werden. Ab einer gewissen Luftverschmutzung war einfach der Übergang vom einfachen Kohleofen auf die geregelte Zentralheizung, vom einfachen „VW-Käfer“ auf den Motor mit Katalysator, vom „hohen Schornstein“ auf die Rauchgaswäsche nötig… Jedes mal verbunden mit einem Sprung bei den Investitionskosten.

Der Übergang zur Kernspaltung

Bei jeder Kernspaltung – egal ob Uran, Thorium oder sonstige Aktinoide – wird eine unvergleichbar größere Energiemenge als bei der Verbrennung frei: Durch die Spaltung von einem einzigen Gramm Uran werden 22.800 kWh Energie erzeugt. Die gleiche Menge, wie bei der Verbrennung von drei Tonnen Steinkohle,13 barrel Öl oder rund 2200 Kubikmeter Erdgas.

Man kann gar nicht nicht oft genug auf dieses Verhältnis hinweisen. Auch jedem technischen Laien erschließt sich damit sofort der qualitative Sprung für den Umweltschutz. Jeder, der schon mal mit Kohle geheizt hat, weiß wieviel Asche 60 Zentner Kohle hinterlassen oder wie lange es dauert, bis 2000 Liter Heizöl durch den Schornstein gerauscht sind und welche Abgasfahne sie dabei hinterlassen haben. Wer nun gleich wieder an „Strahlengefahr“ denkt, möge mal einen Augenblick nachdenken, wie viele Menschen wohl momentan in Atom-U-Booten in den Weltmeeren unterwegs sind. So schlimm kann die Sache wohl nicht sein, wenn man monatelang unmittelbar neben einem Reaktor arbeiten, schlafen und essen kann, ohne einen Schaden zu erleiden. Der größte Teil der „Atomstromverbraucher“ wird in seinem ganzen Leben nie einem Reaktor so nahe kommen.

Die nahezu unerschöpflichen Uranvorräte

Allein in den Weltmeeren – also prinzipiell für alle frei zugänglich – sind über 4 Milliarden to Uran gelöst. Jedes Jahr werden etwa 32.000 to durch die Flüsse ins Meer getragen. Dies ist ein nahezu unerschöpflicher Vorrat, da es sich um einen Gleichgewichtszustand handelt: Kommt neues Uran hinzu, wird es irgendwo ausgefällt. Würde man Uran entnehmen, löst es sich wieder auf.

Bis man sich diesen kostspieligeren – weil in geringer Konzentration vorliegenden – Vorräten zuwenden muß, ist es noch sehr lange hin. Alle zwei Jahre erscheint von der OECD das sog. „Red book“, in dem die Uranvorräte nach ihren Förderkosten sortiert aufgelistet sind. Die Vorräte mit aktuell geringeren Förderkosten als 130 USD pro kg Uranmetall, werden mit 5.902.900 Tonnen angegeben. Allein dieser Vorrat reicht für 100 Jahre, wenn man von der weltweiten Förderung des Jahres 2013 ausgeht.

Der Uranverbrauch

Die Frage, wieviel Uran man fördern muß, ist gar nicht so einfach zu beantworten. Sie hängt wesentlich von folgenden Faktoren ab:

  • Wieviel Kernkraftwerke sind in Betrieb,
  • welche Reaktortypen werden eingesetzt,
  • welche Anreicherungsverfahren zu welchen Betriebskosten und
  • wieviel wird wieder aufbereitet?

Im Jahre 2012 waren weltweit 437 kommerzielle Kernreaktoren mit 372 GWel in Betrieb, die rund 61.980 to Natururan nachgefragt haben. Die Frage wieviel Reaktoren in der Zukunft in Betrieb sind, ist schon weitaus schwieriger zu beantworten. Im „Red book“ geht man von 400 bis 680 GWel im Jahre 2035 aus, für die man den Bedarf mit 72.000 bis 122.000 to Natururan jährlich abschätzt. Hier ist auch eine Menge Politik im Spiel: Wann fährt Japan wieder seine Reaktoren hoch, wie schnell geht der Ausbau in China voran, wie entwickelt sich die Weltkonjunktur?

Der Bedarf an Natururan hängt stark von den eingesetzten Reaktortypen ab. Eine selbsterhaltende Kettenreaktion kann man nur über U235 einleiten. Dies ist aber nur zu 0,7211% im Natururan enthalten. Je nach Reaktortyp, Betriebszustand usw. ist ein weit höherer Anteil nötig. Bei Schwerwasserreaktoren kommt man fast mit Natururan aus, bei den überwiegenden Leichtwasserreaktoren mit Anreicherungen um 3 bis 4 %. Über die gesamte Flotte und Lebensdauer gemittelt, geht man von einem Verbrauch von rechnerisch 163 to Natururan für jedes GWel. pro Kalenderjahr aus.

Das Geheimnis der Anreicherung

Diese Zahl ist aber durchaus nicht in Stein gemeißelt. Isotopentrennung ist ein aufwendiges Verfahren. Standardverfahren ist heute die Zentrifuge: Ein gasförmiger Uranstrom wird durch eine sehr schnell drehende Zentrifuge geleitet. Durch den – wenn auch sehr geringen – Dichteunterschied zwischen U235 und U238 wird die Konzentration von U235 im Zentrum etwas höher. Um Konzentrationen, wie sie für Leichtwasserreaktoren benötigt werden zu erhalten, muß man diesen Schritt viele male in Kaskaden wiederholen. So, wie sich in dem Produktstrom der Anteil von U235erhöht hat, hat er sich natürlich im „Abfallstrom“ entsprechend verringert. Das „tails assay“, das ist das abgereicherte Uran, das die Anlage verläßt, hat heute üblicherweise einen Restgehalt von 0,25% U235.. Leider steigt der Aufwand mit abnehmendem Restgehalt überproportional an. Verringert man die Abreicherung von 0,3% auf 0,25%, so sinkt der notwendige Einsatz an Natururan um 9,5%, aber der Aufwand steigt um 11%. Eine Anreicherungsanlage ist somit flexibel einsetzbar: Ist der aktuelle Preis für Natururan gering, wird weniger abgereichert; ist die Nachfrage nach Brennstoff gering, wie z. B. im Jahr nach Fukushima, kann auch die Abreicherung erhöht werden (ohnehin hohe Fixkosten der Anlage).

Hier tut sich eine weitere Quelle für Natururan auf. Inzwischen gibt es einen Berg von über 1,6 Millionen to abgereicherten Urans mit einem jährlichen Wachstum von etwa 60.000 to. Durch eine „Wiederanreicherung“ könnte man fast 500.000 to „Natururan“ erzeugen. Beispielsweise ergeben 1,6 Millionen to mit einem Restgehalt von 0,3% U235 etwa 420.000 to künstlich hergestelltes „Natururan“ und einen neuen „Abfallstrom“ von 1.080.000 to tails assay mit 0,14% U235.. Man sieht also, der Begriff „Abfall“ ist in der Kerntechnik mit Vorsicht zu gebrauchen. Die Wieder-Anreicherung ist jedenfalls kein Gedankenspiel. In USA ist bereits ein Projekt (DOE und Bonneville Power Administration) angelaufen und es gibt eine Kooperation zwischen Frankreich und Rußland. Besonders vielversprechend erscheint auch die Planung einer Silex-Anlage (Laser Verfahren, entwickelt von GE und Hitachi) zu diesem Zweck auf dem Gelände der stillgelegten Paducah Gasdiffusion. Die Genehmigung ist vom DOE erteilt. Letztendlich wird – wie immer – der Preis für Natururan entscheidend sein.

Wann geht es mit der Wiederaufbereitung los?

Wenn ein Brennelement „abgebrannt“ ist, ist das darin enthaltene Material noch lange nicht vollständig gespalten. Das Brennelement ist lediglich – aus einer Reihe von verschiedenen Gründen – nicht mehr für den Reaktorbetrieb geeignet. Ein anschauliches Maß ist der sogenannte Abbrand, angegeben in MWd/to Schwermetall. Typischer Wert für Leichtwasserreaktoren ist ein Abbrand von 50.000 bis 60.000 MWd/to. Da ziemlich genau ein Gramm Uran gespalten werden muß, um 24 Stunden lang eine Leistung von einem Megawatt zu erzeugen, kann man diese Angabe auch mit 50 bis 60 kg pro Tonne Uran übersetzen. Oder anders ausgedrückt, von jeder ursprünglich im Reaktor eingesetzten Tonne Uran sind noch 940 bis 950 kg Schwermetall übrig.

Hier setzt die Wiederaufbereitung an: In dem klassischen Purex-Verfahren löst man den Brennstoff in Salpetersäure auf und scheidet das enthaltene Uran und Plutonium in möglichst reiner Form ab. Alles andere ist bei diesem Verfahren Abfall, der in Deutschland in einem geologischen „Endlager“ (z. B. Gorleben) für ewig eingelagert werden sollte. Interessanterweise wird während des Reaktorbetriebs nicht nur Uran gespalten, sondern auch kontinuierlich Plutonium erzeugt. Heutige Leichtwasserreaktoren haben einen Konversionsfaktor von etwa 0,6. Das bedeutet, bei der Spaltung von 10 Kernen werden gleichzeitig 6 Kerne Plutonium „erbrütet“. Da ein Reaktor nicht sonderlich zwischen Uran und Plutonium unterscheidet, hat das „abgebrannte Uran“ immer noch einen etwas höheren Gehalt (rund 0,9%) an U235.als Natururan. Könnte also sogar unmittelbar in mit schwerem Wasser moderierten Reaktoren eingesetzt werden (DUPIC-Konzept der Koreaner). Das rund eine Prozent des erbrüteten Plutonium kann man entweder sammeln für später zu bauende Reaktoren mit schnellem Neutronenspektrum oder zu sogenannten Mischoxid-Brennelementen (MOX-Brennelement) verarbeiten. Im Jahr 2012 wurden in Europa 10.334 kg Plutonium zu MOX-Brennelementen verarbeitet. Dies hat rund 897 to Natururan eingespart.

Man kann also grob sagen, durch 1 kg Plutonium lassen sich rund 90 kg Natururan einsparen. Setzt man den Preis für Natururan mit 100 USD (entspricht ungefähr dem derzeitigen Euratom-Preis) an, so ergibt diese einfache Abschätzung Kosten von höchstens 9.000 USD pro kg Plutonium bzw. 900 USD für eine Tonne abgebrannter Brennelemente. Dies ist – zugegebenermaßen mit einem dicken Daumen gerechnet – doch eine brauchbare Einschätzung der Situation. Es wird noch eine ganze Zeit dauern, bis die Wiederaufbereitung in großem Stil wirtschaftlich wird.

Wegen der hohen Energiedichte sind die Lagerkosten in einem Trockenlager sehr gering. Außerdem hat „Atommüll“ – im Gegensatz z. B. zu Quecksilber oder Asbest – die nette Eigenschaft, beständig „weniger gefährlich“ zu werden. Die Strahlung ist aber der Kostentreiber beim Betrieb einer Wiederaufbereitungsanlage (Abschirmung, Arbeitsschutz, Zersetzung der Lösungsmittel etc.). Je länger die Brennelemente abgelagert sind, desto kostengünstiger wird die Wiederaufbereitung.

Erdgas- oder Kernkraftwerke?

Kraftwerke mit Gasturbinen und Abhitzekesseln erfordern die geringsten Investitionskosten. Sie sind deshalb der Liebling aller kurzfristigen Investoren. Ihre guten Wirkungsgrade in der Grundlast (!!) von über 60% werden gern als Umweltschutz ausgegeben, sind jedoch wegen der hohen Erdgaspreise (in Deutschland) eher zwingend notwendig.

Auch hier, kann eine einfache Abschätzung weiterhelfen: Geht man von den 163 to Natururan pro GWael. aus (siehe oben), die ein Leichtwasserreaktor „statistisch“ verbraucht und einem Preis von 130 USD pro kg Natururan (siehe oben), so dürfte das Erdgas für das gleichwertige Kombikraftwerk nur 0,51 USD pro MMBtu kosten! Im letzten Jahr schwankte der Börsenpreis aber zwischen 3,38 und 6,48 USD/MMBtu. Dies ist die Antwort, warum sowohl in den USA, wie auch in den Vereinigten Emiraten Kernkraftwerke im Bau sind und Großbritannien wieder verstärkt auf Kernenergie setzt. Ganz nebenbei: Die Emirate haben 4 Blöcke mit je 1400 MWel für 20 Milliarden USD von Korea gekauft. Bisher ist von Kosten- oder Terminüberschreitungen nichts bekannt.

Vorläufiges Schlusswort

Das alles bezog sich ausdrücklich nicht auf Thorium, „Schnelle Brüter“ etc., sondern auf das, was man auf den internationalen Märkten sofort kaufen könnte. Wenn man denn wollte: Frankreich hat es schon vor Jahrzehnten vorgemacht, wie man innerhalb einer Dekade, eine preiswerte und zukunftsträchtige Stromversorgung aufbauen kann. China scheint diesem Vorbild zu folgen.

Natürlich ist es schön, auf jedem Autosalon die Prototypen zu bestaunen. Man darf nur nicht vergessen, daß diese durch die Erträge des Autohändlers um die Ecke finanziert werden. Die ewige Forderung, mit dem Kauf eines Autos zu warten, bis die „besseren Modelle“ auf dem Markt sind, macht einen notgedrungen zum Fußgänger.

Seltene Filmschätze

Das Internet vergisst nie, sagt man. Leider gilt das für Filmschätze aus der Welt davor, nicht unbedingt. Es gibt aber eine Reihe von Leuten, die alte Photos und Schmalfilme digitalisieren und der Allgemeinheit über das Internet wieder zugänglich machen. Ein solches Beispiel ist der Mitschnitt von Vorträgen von Galen Winsor aus den 1980er Jahren. Leider sind scheinbar nur diese drei noch vorhanden:

The Nuclear Scare Scam | Galen Winsor

Wer Englisch kann, sollte sich dieses Dokument nicht entgehen lassen. Er bekommt in 90 Minuten den Einblick in eine Welt, die völlig anders ist, als die in deutschen Medien dargestellte.

Der Zeitzeuge Galen Winsor

Galen Winsor wurde 1926 geboren und verstarb 2008. Er war 32 Berufsjahre mit der Wiederaufbereitung und Gewinnung von Plutonium beschäftigt. Erst im militärischen Komplex von Hanford und später in der Entwicklung für General Electric (GE). Als Pensionär zog er durch Amerika und hielt Vorträge gegen die herrschende „Atompolitik“, die er für gänzlich falsch hielt. Er wurde zum Wanderprediger für die Nutzung abgebrannter Brennstäbe. Für alle, die erst nach der Erfindung des Internet geboren wurden oder sich nicht mehr an die Urzeit erinnern mögen: Es gab nur Zeitungen, Radio und Fernsehen als Massenmedien. Wer eine andere Meinung, als die der Verleger und Intendanten vertrat, dem blieben nur Flugblätter und Vorträge. Schon ein Buch zu drucken und zu vertreiben, war nicht ganz einfach. Vielleicht war dies ein (wesentlicher) Grund, warum es gelang, eine (damals noch relativ neue) Technologie so zu verteufeln und zu diskreditieren.

Galen Winsor ist eine gewisse Verbitterung anzumerken. Eine sarkastische Bemerkung jagt die nächste. Er kann und will nicht verstehen, warum – was er für den Fortschritt schlecht hin hält – so bekämpft und abgelehnt wird. Ein bischen Verschwörungstheorie hilft dabei den Frust erträglicher zu machen: „Big Oil“ und „Big Coal“ stecken dahinter. Sie sind die wahren Gegner der Kerntechnik, die um ihre Monopolstellung fürchten. „Atomkraftgegner“ sind nur unwissende und willfährige Hilfstruppen in diesem Milliardenspiel. Ein Standpunkt, der sich heute eher verstärkt.

Galen Winsor verkörpert den Urtypus des freiheitlichen Amerikaners: Voller Misstrauen gegenüber Washington. Er geht voller Begeisterung nach Hanford in die Plutoniumproduktion. 1945 (mit 19!) auf einem Zerstörer im Pazifik unterwegs, bedeutet für ihn der Einsatz als Beobachter bei einem Atombombentest nichts weiter, als ein „Erst mal weg von der Front“. Überwältigt von der Explosion, erkennt er sofort, daß dies die „fehlende Rückfahrkarte“ in die Heimat bedeutet. Von nun an, will er alles wissen und verstehen über Kerntechnik. Er studiert Chemie und fängt schon in der Wiederaufbereitungsanlage in Hanford an, bevor er noch sein Studium abgeschlossen hat. Dort arbeitet er mit „blossen Händen“ mehrere Jahre mit Plutonium. Er ist noch in hohem Alter stolz darauf, daß alle genau wussten, was sie taten und deshalb kaum Unfälle zu verzeichnen waren. An dieser Stelle sei nur daran erinnert, daß der Mann 82 geworden ist und nicht etwa an Krebs gestorben. Alle, die immer noch an das Märchen von „Millionen Toten in Tschernobyl und Fukushima als Spätfolgen“ glauben, sollten nicht versäumen, sich das Video anzuschauen.

Er fängt an mit dem System zu brechen, als immer mehr Bürokraten ihm vorschreiben wollen, welche Dosis er einzuhalten habe und ihm bei Kritik unverhohlen mit Rausschmiss drohen. Irgendwann läßt er sich von GE abwerben, um eine zivile Wiederaufbereitungsanlage zu bauen. Es gelingt ihm, wesentliche Prozeßschritte zu automatisieren. Ein wesentlicher Fortschritt im Strahlenschutz gegenüber der Anlage in Hanford. Als man ihn zwingt, die Dosisleistung noch einmal um den Faktor zehn zu verringern, wird er rebellisch und schwimmt durch das Brennelementebecken.

Galen Winsor ein Irrer oder ein moderner Eulenspiegel?

Ist es nicht ein totaler Irrsinn, durch ein Brennelementebecken mit 170 to abgebrannter Brennstäbe zu schwimmen? Arbeitsrechtlich ja, physikalisch nein. Solch ein Abklingbecken gleicht in der Tat einem Schwimmbecken. Es ist nur tiefer. Das Wasser dient der Kühlung der Brennelemente und der Abschirmung der Strahlung. Die Wassertiefe ist so groß bemessen, daß die Strahlung am Beckenrand auch längere Arbeitsaufenthalte erlaubt. Ob man da nun rein steigt und los schwimmt, ist ziemlich unerheblich. Man sollte nur nicht zu den Brennelementen runter tauchen. Zu allem Überdruss hat sich Wilson auch noch zwei Liter Wasser abgefüllt und getrunken. Auch das keine Hexerei: Brennstäbe sind sicher eingeschweißt. Das Wasser im Becken wird ständig überwacht. Also weit aus weniger Risiko, als wenn jemand von der „Generation Gesamtschule“ mit Fahrradhelm auf dem Kopf, über eine rote Ampel fährt. Interessant die Reaktion seines Arbeitgebers GE: Verbot der Nutzung als (beheiztes) Schwimmbecken, da sonst die Gefahr bestünde, daß Brennelemente gestohlen werden könnten. Strahlung als eine Art Voodoo-Schutz-Zauber?

Besonders gefürchtet waren die Demonstrationen von „Radioaktivität“ in Winsor’s Vorträgen. Unvergesslich die Szene, in der er die Reste von Uranoxid von seiner Handfläche leckt. Ebenso die Nutzung eines Stücks abgereicherten Urans als „Feuerstahl“. Besser konnte er keine „Atomexperten“ vorführen. Die Staatsmacht reagierte prompt: Eine Spezialeinheit durchsuchte sein Haus und beschlagnahmte alle radioaktiven Proben um ihn angeblich vor sich selbst zu schützen. Einen Mann, der jahrzehntelang im Staatsdienst mit Plutonium umgegangen war und sich offensichtlich bester Gesundheit erfreute. Die Staatsmacht toleriert manches, aber wenn man sie der Lächerlichkeit preisgibt, hört sofort jeder Spaß auf – egal ob in Moskau oder Washington.