Endlager auf französisch

Im Gegensatz zu Deutschland, geht der Bau eines Endlagers in Frankreich zielstrebig voran: Bei uns, endloses Geschwafel von ausgesuchten Laien, dort konsequente Forschung und Entwicklung.

Die Rolle der Öffentlichkeit

Im Jahr 1991 verabschiedete das französische Parlament den sog. Bataille Act, in dem die Forderung nach einer langfristigen und sicheren Lösung für radioaktive Abfälle festgeschrieben wurde. Dabei sollten zukünftige Generationen nicht durch das heutige Vorgehen belastet werden.

Im ersten Schritt des Verfahrens wurden unterschiedliche Wege untersucht. Für hochaktiven und mittelaktiven Abfall wurde sowohl eine oberirdische Lagerung in Gebäuden als auch eine geologische Tiefenlagerung als machbar ermittelt. Nach Abschluss dieser Phase entschied man sich für eine unterirdische Lagerung, da nur bei ihr kommende Generationen von Lasten befreit sind.

Die nächste Phase erstreckte sich auf die Suche eines geeigneten Standorts in Frankreich. Unter den in Frage kommenden, entschied man sich für eine Einlagerung in die Tonschichten von Bure im Departement Haute-Marne und Meuse. Das Parlament beschloß im Jahr 2006 die Einrichtung eines geologischen Tiefenlabors (Bergwerk) zur endgültigen Abklärung der Eignung. Die endgültige Entscheidung durch das Parlament ob an diesem Standort das Endlager errichtet wird, ist für 2018 vorgesehen.

Wichtig an der Vorgehensweise ist die Aufteilung in Etappen. Für jede Phase gab es einen klar vorgegebenen Auftrag, der im Parlament diskutiert und beschlossen wurde. Voraus gingen öffentliche Anhörungen, Forschungsberichte und Kritik durch Umweltschutzorganisationen etc. Für die Untersuchungen am Standort Bure wurde eine unabhängige Organisation – die CLIS – geschaffen, die für die Vermittlung zwischen Öffentlichkeit und zuständigen Behörden zuständig ist. Sie wird hälftig aus Steuergeldern und durch Umlagen der „Müllerzeuger“ finanziert. Sie hat eigene Räume, feste Mitarbeiter und eine Bibliothek vor Ort, die für jedermann frei zugänglich sind. Mitglieder sind fast hundert Vertreter aus den betroffenen Gemeinden: Bürgermeister, Behörden, Feuerwehr, Gesundheitseinrichtungen, Gewerkschaftsvertreter etc. Zur Zeit knapp 100 Mitglieder. Sie versammeln sich mindestens vier mal pro Jahr, um sich auszutauschen. Darüberhinaus kann jeder Bürger sich an die CLIS wenden. Diese Versammlungen sind öffentlich und von jedem übers Internet mitzuverfolgen. Alle Behörden sind gegenüber der CLIS auskunftspflichtig. Zu den Anhörungen werden regelmäßig externe Fachleute eingeladen. Diese Transparenz hat maßgeblich zu der Gelassenheit in der örtlichen Bevölkerung beigetragen. Demonstrationen und gewalttätige Auseinandersetzungen – wie wir sie aus Wackersdorf und Gorleben kennen – sind bisher völlig ausgeblieben. Hier könnte Deutschland eine Menge von Frankreich lernen. Momentan wird die Quote auf etwa 20% Befürworter, 20% Gegner und einer Mehrheit von noch Unentschlossenen bzw. Gleichgültigen eingeschätzt. Jedenfalls lange nicht so aufgeputscht, wie in Gorleben. Widerstand wird nur von außen in die Gemeinden hereingetragen.

Das unterirdische Versuchsbergwerk und die oberirdischen Labore sind nach Voranmeldung zu besichtigen. Wer will, kann sich also ein eigenes Bild vor Ort machen und die entwickelten Gebinde, Transport-Roboter, Abbaumaschinen etc. im Original besichtigen.

Das Versuchslabor

Es wurden zwei Bergwerksschächte bis in die 500 Meter tiefe und etwa 150 m dicke Tonstein-Schicht abgeteuft. Dort unten, werden verschiedenste Gänge und Einrichtungen erbaut die zur Erforschung der geologischen Verhältnisse und der Einlagerungsverfahren und Gerätschaften dienen. Es wird mit Originalgebinden – allerdings ohne Atommüll – gearbeitet. Zur Simulation werden die Gebinde teilweise sogar beheizt. Für jede Methode werden mindestens zwei Alternativen gleichzeitig untersucht. Ziel ist bei allem, Entscheidungen möglichst lange offen zu halten, um Sackgassen oder notwendige „faule Kompromisse“ zu verhindern. Bis zur endgültigen Entscheidung, ob hier das Endlager errichtet wird, wird man über mehr als zehn Jahre praktische Erfahrungen verfügen.

Ein Tiefenlager ist kein Bergwerk

Zwischen einem Bergwerk (Kohle, Salz etc.) und einem geologischen Tiefenlager besteht ein deutlicher Unterschied: Ein Bergwerk folgt den Kohlenflözen oder Mineraladern. Es orientiert sich nicht an den Erfordernissen von Fahrzeugen und Robotern etc. Nach dem Abbau können die Hohlräume ruhig einstürzen. Ein Endlager für Atommüll ähnelt jedoch eher einem System aus Straßentunneln. In diesem Fall besitzen die Tunnel einen Durchmesser zwischen sechs und acht Metern, bei einer Wandstärke von gut 30 cm Stahlbeton. Sie sollen mindestens 150 Jahre stabil bestehen bleiben. Das Lager ist für stärkste Erdbeben ausgelegt.

Ausgehend von diesen Tunneln, werden beidseitig, horizontal etwa 90 m lange Bohrungen mit rund 75 cm Durchmesser hergestellt, in die später die Gebinde mit hochaktivem Abfall eingeschoben werden. Um auch hier die Rückholbarkeit für mindestens 100 Jahre zu gewährleisten, werden diese Bohrungen sofort mit Stahlrohren ausgekleidet. Man kann sich einen solchen Abschnitt wie ein Stück Pipeline für Gas oder Öl vorstellen. Es gelten hier ganz ähnliche Qualitätsanforderungen. Mit einer „Müllkippe“ für Fässer – wie z. B. in der Asse – hat das alles nichts zu tun. Vielleicht liegt in diesem Missverständnis ein wesentlicher Grund für die breite Ablehnung eines Endlagers in der deutschen Öffentlichkeit?

Für die mittelaktiven Abfälle werden Kammern – oder sollte man vielleicht besser unterirdische Betonbunker sagen – gebaut, in die die Blöcke mit radioaktiven Abfällen gestapelt werden. Auch diese Abfälle müssen für mindestens 100 Jahre rückholbar sein. Das ganze ähnelt den „Zwischenlagern“, wie man sie bereits heute an der Oberfläche betreibt. Nur eben 500 m unter der Erde, in einer über 100 m dicken Tonschicht.

Rückholbarkeit

Die Franzosen gehen Schritt für Schritt vor. Jeder Schritt muß umkehrbar sein. So soll das Endlager z. B. mindestens 5 Jahre im Versuchsbetrieb ohne radioaktive Abfälle laufen. Erst wenn in der Praxis gezeigt wurde, daß alle technischen Einrichtungen so funktionieren, wie auf dem Reißbrett erdacht, kann mit der tatsächlichen Einlagerung von radioaktiven Abfällen begonnen werden. Nach heutigem Kenntnisstand erst in der zweiten Hälfte dieses Jahrhunderts.

In diesem Sinne, ist die geforderte Rückholbarkeit des Atommülls für mindestens 100 Jahre zu verstehen. Sind doch „Rückholbarkeit“ und „Endlager“ zwei gegensätzliche Forderungen. Weiterhin steht die endgültige, sichere und wartungsfreie Lagerung im Vordergrund. Vor der endgültigen Versiegelung führt man eine Beobachtungsphase über 100 Jahre ein, um sicher zu gehen, weder etwas übersehen, noch etwas falsch gemacht zu haben. Läuft die Sache nicht wie geplant, kann man anhalten und sogar einen Schritt zurückgehen, um eine neue Richtung einzuschlagen.

Besonders wichtig bei technischen Projekten, die sich über so lange Zeiträume hinziehen, ist die Flexibilität. Keiner hat vor 100 Jahren den heutigen Stand der Robotertechnik oder das Niveau im Tunnelbau vorhersehen können. Die Kerntechnik gab es noch nicht einmal. Vielleicht will man in 200 Jahren den „Atommüll“ gar nicht mehr verbuddeln, sondern als Rohstoff nutzen? Auch das gehört zur viel bemühten „Nachhaltigkeit“: Zukünftigen Generationen Entscheidungen offen zu lassen und (einfach) möglich zu machen.

Hochaktiver Abfall

Der HLW (High-Level Waste) besteht hauptsächlich aus den Spaltprodukten. Sie werden noch in der Wiederaufbereitungsanlage in geschmolzenem Glas gelöst und in Kannen aus rostfreiem Stahl abgefüllt. Eine solche Kanne ist ein Zylinder mit einem Durchmesser von 43 cm und einer Höhe von 130 cm. In ihm befinden sich ungefähr 400 kg Glas und 70 kg Abfall. Jede volle Kanne wiegt somit etwa eine halbe Tonne. Es sind die gleichen Kannen, die auch im Zwischenlager Gorleben auf ihr Schicksal warten. Ein Kernkraftwerk vom Typ Emsland (geplant noch bis 2022 am Netz) hinterläßt rund 20 solcher Kannen pro Jahr – wenn denn die abgebrannten Brennelemente aufbereitet werden dürften.

In Frankreich lagern diese Kannen in speziellen Bunkern auf dem Gelände der Wiederaufbereitungsanlage. Dort können sie solange abkühlen, bis ihre Oberflächentemperatur auch nach der Endlagerung maximal 90 °C beträgt. Zum Transport werden sie in spezielle Transportbehälter verpackt, die die Strahlung auf maximal 0,1 mSv/h begrenzen. Außerdem schützen sie die Kannen auch bei schwersten Unglücken. Sie sollen mit Sonderzügen zum Endlager nach Bure gefahren werden.

Im Eingangsbereich werden die Kannen ferngesteuert ausgeladen und auf ihren bestimmungsgemäßen Zustand und Inhalt überprüft. Für die Endlagerung werden sie in einen Zylinder verpackt. Dieser Zylinder dient dem Schutz bei der Einführung in die Endlager-Pipelines. Außerdem haben diese Zylinder spezielle Anschlüsse, die es den Beschickungsmaschinen erlauben, sie sicher zu halten und zu manövrieren. Außen sind sie mit Kufen aus Keramik versehen, die auch eine „gewaltsame“ Rückholung aus einem verbogenen Rohr ermöglichen würde. Solche Situationen werden bereits heute mit „kalten“ Kannen ausgiebig getestet.

Für den Transport aus dem oberirdischen Bereich in das Endlager werden diese Einheiten zum Schutz gegen Beschädigung und für den Strahlenschutz noch in einen Transportbehälter verpackt. Erst die Lademaschine entnimmt sie und schiebt sie in eine Lager-Pipeline. Ist die Pipeline voll, wird sie abschließend gegenüber dem Zufahrtstunnel versiegelt. Ab diesem Moment können keine radioaktiven Stoffe mehr aus der Pipeline (25 mm Wandstärke hat das Stahlrohr) austreten, bzw. kein Wasser etc. in sie eindringen. Erst nach einer eventuellen Zerstörung müssen die Barrieren Ton und Deckgebirge wirksam werden.

Mittelaktiver Abfall

Neben dem HLW soll auch der ILW (Intermediate-Level long-lived Waste) endgelagert werden. Typische Vertreter sind die alten Brennstabhüllen oder Filterrückstände aus Kraftwerken und Wiederaufbereitung. Diese Abfälle werden verdichtet und ebenfalls in Kannen aus rostfreiem Stahl eingeschweißt. Da sie keine fühlbare Wärme entwickeln, könnten sie sofort endgelagert und dichter gepackt werden.

Nachdem sie überprüft sind, werden sie in rechteckige Betonblöcke (je vier Kannen) eingesetzt. Diese dienen dem Schutz vor mechanischen Belastungen und dem Strahlenschutz. Diese Betonblöcke werden in den dafür vorgesehenen Kammern dicht gestapelt. Dafür sollen ebenfalls „Straßentunnel aus Beton“ im Ton gebaut werden. Diese werden Abschnittsweise beladen und anschließend versiegelt.

Aufbau des Endlagers

Oberirdisch wird die Anlage in zwei örtlich getrennte Bereiche unterteilt: Den nuklearen und den bergbaulichen Teil. Der „Bergbau“ wird aus fünf Schachtanlagen mit allen notwenigen Einrichtungen und den Abraumhalden bestehen. Der nukleare Teil umfaßt alle Einrichtungen, die zum Verpacken, überwachen und zur Wartung und Weiterentwicklung nötig sind. Dieser Teil ist mit dem unterirdischen Endlager durch eine etwa fünf Kilometer lange Rampe verbunden. Alle radioaktiven Stoffe werden durch eine Schienenbahn in diesem schrägen Tunnel nach unten geschafft. Während des Betriebs sind unterirdisch der nukleare und der bergbauliche Teil voneinander isoliert. Dies dient dem Arbeits- und Umweltschutz. Der nukleare Teil wird einem Kontrollbereich in einem Kernkraftwerk entsprechen.

Wird das Endlager – wahrscheinlich erst in ein paar hundert Jahren – endgültig außer Betrieb genommen, werden alle unterirdischen Gänge sorgfältig wieder verfüllt und die oberirdischen Anlagen abgebrochen. Bis zu diesem Zeitpunkt, bietet die Anlage einige hundert Dauerarbeitsplätze.

Sicherheit

Bei dem französischen Weg, über eine Wiederaufbereitung der abgebrannten Brennstäbe das Uran und Plutonium abzuscheiden und nur die Spaltprodukte und minoren Aktinoide als Abfall zu „endlagern“, reduziert sich der Gefährdungszeitraum auf etwa 100 000 Jahre. Nach Ablauf dieses Zeitraumes sind fast alle radioaktiven Stoffe zerfallen und der „Atommüll“ hat nur noch das Gefährdungspotential von Natururan.

Gesetzlich ist der Nachweis vorgeschrieben, daß die maximale Strahlenbelastung in der Umgebung des Lagers für den gesamten Zeitraum auf 0,01 mSv begrenzt bleibt. Selbst bei allen denkbaren Störfällen muß die Belastung auf 0,25 mSv beschränkt bleiben.

Zum Verständnis eines Endlagers ist das Zusammenspiel von Zeitdauer und Konzentration wichtig. Das Glas müßte z. B. durch Grundwässer aufgelöst werden. Hierdurch findet eine Verdünnung statt. Je geringer die Konzentration der radioaktiven Stoffe in diesem Wasser ist, desto harmloser ist es. Im Normalfall hätte dieses Wasser noch Trinkwasserqualität (Auflösung und Auslaugung von Glas in Wasser geht nur sehr langsam vor sich). Jetzt müßte dieses Wasser und die radioaktiven Stoffe aber noch 500 m Deckgebirge durchwandern, bevor es in die Biosphäre gelangt. Dabei wird es aber nicht einfach befördert, sondern tauscht sich beständig mit den Bodenschichten aus. Auf dieser langen Reise schreitet jedoch der radioaktive Zerfall kontinuierlich fort. Was z. B. in einem Trinkwasserbrunnen ankommen kann, ist – insbesondere bei den ausgesucht idealen Bedingungen am Standort – nur noch verschwindend gering und damit harmlos. Viele Mineralwässer sind höher belastet und werden sogar als gesundheitsfördernd eingestuft.

Zusammenfassung

Frankreich verfolgt zielstrebig seine „Endlagerpolitik“. Sie ist durch folgende Punkte charakterisiert:

  • Abgebrannte Brennelemente werden wieder aufbereitet. Durch die Abtrennung von Uran und Plutonium verringert sich die Menge an hochaktivem Abfall beträchtlich. Das Endlager kann kleiner werden. Der erforderliche Zeitraum für einen sicheren Einschluß reduziert sich deutlich auf rund 100.000 Jahre
  • Die übrig bleibenden Spaltprodukte und minoren Aktinoide werden verglast und in der Wiederaufbereitungsanlage zwischengelagert. Wegen des relativ kleinen Volumens kann die Zwischenlagerung beliebig lange erfolgen. Die abnehmende Radioaktivität vereinfacht den notwendigen Strahlenschutz bei Transport und Handhabung.
  • Von der Entstehung des ersten Mülls bis zur Inbetriebnahme des Endlagers sind (wahrscheinlich) 100 Jahre vergangen. Der Müll ist damit soweit abgeklungen, daß problemlos Temperaturen von 90 °C auch im Endlager eingehalten werden können.. Dies entschärft die Anforderungen an das Wirtsgestein ganz beträchtlich. Auch hier gilt die Politik der kleinen Schritte: Ab 2025 soll maximal 5% eingelagert werden und mindestens für 50 Jahre beobachtet werden, bis die Freigabe für die restlichen 95% erfolgt.
  • Die Entwicklung der Technologie ist weit fortgeschritten. Dies ist auf das konsequente Vorgehen in kleinen, gut überschaubaren und klar definierten Schritten zurückzuführen. In jeder Phase wurden mehrere Alternativen untersucht.
  • Im Gegensatz zu Deutschland, wurde großer Wert auf Transparenz und Öffentlichkeitsarbeit gelegt. Alle wesentlichen Schritte werden im Parlament behandelt und entschieden. Dabei beschränkt sich die Politik auf Grundsatzfragen, wie z. B. die Entscheidung zwischen oberirdischen technischen Lagern oder geologischem Tiefenlager. Dies ist eine rein ethische Entscheidung nach dem Muster: Traut man mehr der Gesellschaft oder der Geologie und sie ist deshalb vom Parlament zu fällen.
  • Die Durchführung der Beschlüsse wird ausschließlich durch ausgewiesene Fachleute ausgeführt und beurteilt.. Selbsternannte „Atomexperten“ können, wie alle anderen Laien auch, ihre Einwände über die Anhörungen einbringen.
  • Alle Forschungsergebnisse werden veröffentlicht und bewußt auch den internationalen Fachgremien zur Beurteilung zur Verfügung gestellt.
  • Frankreich hat sich ein enormes Fachwissen zur geologischen Endlagerung erarbeitet. Es hat sich damit bedeutende Exportchancen erschlossen,. denn „Endlagerung“ ist eine weltweite Aufgabe.

Ausblick

Im nächsten Teil wird noch näher auf die Entstehung von Atommüll und die unterschiedlichen Behandlungsweisen und Klassifizierungen eingegangen.

TRANSATOMIC – schon wieder ein neuer Reaktortyp?

Es tut sich wieder verstärkt etwas bei der Weiterentwicklung der Reaktortechnik in den USA.

Gänzlich anders als in Deutschland, in dem man sich mehr denn je zurück ins Mittelalter träumt, setzt man in USA verstärkt auf die Ausbildung junger Ingenieure und Wissenschaftler und ermutigt sie, eigene Unternehmen zu gründen. Eines der Programme ist das Gateway for Accelerated Innovation in Nuclear (GAIN), des U.S. Department of Energy (DOE). Vereinfacht gesagt, gibt es dort Gutscheine, die die (sonst kostenpflichtige) Nutzung staatlicher Forschungseinrichtungen durch Unternehmensgründungen ermöglichen. Acht solcher „Gutscheine“ im Gesamtwert von zwei Millionen Dollar gingen an sog. startups aus der Kerntechnik.

Eines dieser jungen Unternehmen der Kerntechnik ist Transatomic Power Corporation (TPC). Wie so oft in den USA, ist es eine Gründung von Absolventen des MIT. Glückliches Amerika, in dem noch immer tausende junger Menschen bereit sind, sich den Strapazen eines Kerntechnik-Studienganges aussetzen, während man hierzulande lieber „irgendwas mit Medien“ studiert. Allerdings kennt man in den USA auch keine Zwangsgebühren zur Schaffung von hoch dotierten Nachrichtenvorlesern und Volksbelehrern. Jeder Staat setzt halt seine eigenen Prioritäten.

Noch etwas ist in den USA völlig anders. Das junge Unternehmen hat bereits mehrere Millionen Dollar privates Risikokapital eingesammelt. Es braucht noch mehr Kapital und hat deshalb ein Papier veröffentlicht, in dem das Konzept seines Reaktors näher beschrieben ist. Sicherlich ein erhebliches wirtschaftliches Risiko. Man vertraut offensichtlich darauf, mangelnde „Geldmacht“ durch Schnelligkeit kompensieren zu können. Erklärtes Ziel ist es, möglichst schnell einen kleinen Versuchsreaktor mit 20 MWth zu bauen. Das erste kommerzielle Kraftwerk soll rund 500 MWel (1250 MWth.) Leistung haben und rund zwei Milliarden Dollar kosten.

Abgebrannte Brennelemente als Brennstoff

Der Reaktor ist vom Typ „molten salt“. Der Brennstoff wird in geschmolzenem Salz gelöst, welches gleichzeitig dem Wärmetransport dient. Populär ist dieser Reaktortyp im Zusammenhang mit Thorium gemacht worden. Man beschränkt sich hier bewußt auf Uran als Brennstoff, um auf die dafür vorhandene Infrastruktur zurückgreifen zu können. Thorium wird eher als Option in ferner Zukunft gesehen.

Der besondere Charme dieses Konzeptes liegt in der Verwendung abgebrannter Brennelemente aus Leichtwasserreaktoren als Brennstoff. Solche abgebrannten Brennelemente bestehen zu rund 95% aus Uran-238 und etwa je einem Prozent Uran-235 und Plutonium. Der Rest sind Spaltprodukte als Abfall. Das klassische Modell, wie es z.B. in Frankreich praktiziert wird, ist die Wiederaufbereitung nach dem Purex-Verfahren: Man erhält sehr reines Uran, welches als Ersatz für Natururan wieder in den Kreislauf zurückgeführt wird und reines Plutonium, welches als Mischoxid zu neuen Brennelementen verarbeitet wird. Die Spaltprodukte mit Spuren von Aktinoiden werden verglast und als Atommüll endgelagert. Für diese chemischen Prozeßschritte (Wiederaufbereitungsanlage) geht man von Kosten in Höhe von 1300 bis 3000 US-Dollar pro kg aus. Bei heutigen Preisen für Natururan eine unwirtschaftliche Angelegenheit. Deshalb füllen sich die Lager mit abgebrannten Brennelementen auch weiterhin. Allein in den USA lagern über 70.000 to ausgedienter Brennelemente. Für die „Zwischenlagerung“ in Behältern (ähnlich den Castoren in Deutschland) geht man von etwa 100 Dollar pro kg aus. Für die „Entsorgung“ haben sich bereits über 31 Milliarden US-Dollar Rücklagen angesammelt – was etwa 400 Dollar pro kg entspricht.

Wem es gelingt, einen Reaktor zu bauen, der die abgebrannten Brennelemente „frißt“, ist in der Rolle einer Müllverbrennungsanlage: Er wird für die Beseitigung des Mülls bezahlt und kann sich mit seinem Preis an den anderen Möglichkeiten (z. B. Müllkippe) orientieren. Die entstehende Wärme ist umsonst. Die elektrische Energie aus der „Müllbeseitigung“ ist ein weiteres Zubrot. Es kommt lediglich darauf an, eine besonders günstige „Müllverbrennungsanlage“ zu bauen. Genau an diesem Punkt, setzt TPC an.

Das Transatomic Konzept

Die Angst vor dem „Atommüll“ wird mit seiner Langlebigkeit begründet. Es gibt wahrlich gefährlichere Stoffe, als abgebrannte Brennelemente. Solange man sie nicht aufisst, sind sie recht harmlos. Es ist aber die berechtigte Angst, ob man diese Stoffe für Jahrmillionen sicher von der Biosphäre fern halten kann, die viele Menschen umtreibt. Spaltprodukte sind in diesem Sinne kein Problem, da sie in wenigen hundert Jahren faktisch von selbst verschwunden sind. Jahrhunderte sind aber durch technische Bauwerke (Kathedralen, Pyramiden etc.) oder natürliche Barrieren (einige hundert Meter gewachsene Erdschichten) sicher beherrschbar.

Man kann aber alle langlebigen Aktinoide durch Spaltung in kurzlebige Spaltprodukte umwandeln und dabei noch riesige Mengen Energie erzeugen – am besten in einem Kernkraftwerk. Ein solcher Reaktor muß besonders sparsam mit den bei einer Spaltung freiwerdenden Neutronen umgehen, um möglichst viele andere Kerne umzuwandeln und letztendlich zu spalten.

  • Spaltprodukte haben teilweise sehr große Einfangquerschnitte. Mit anderen Worten, sie wirken parasitär indem sie wertvolle Neutronen „wegfangen“. Die Konsequenz ist eine integrierte Wiederaufbereitung. Dies läßt sich nur über eine Brennstofflösung erreichen.
  • Es dürfen nur möglichst wenig Neutronen das System verlassen. Dazu muß man den Reaktor mit einem Reflektor versehen, der die Neutronen wieder in den Reaktor zurück streut. Idealerweise verwendet man dafür ebenfalls Uran, damit nicht zurück streubare Neutronen bei ihrem Einfang wenigstens neuen Spaltstoff – hier Plutonium – erzeugen.
  • Bei Reaktoren mit festen Brennstoffen, kann man die Spaltstoffe nicht kontinuierlich ersetzen. Man benötigt deshalb zu Anfang eine Überschußreaktivität. So zu sagen, mehr Spaltstoff als eigentlich zuträglich ist. Diese Überschußreaktivität muß durch Regelstäbe und abbrennbare Gifte kompensiert werden: Wertvolle Neutronen werden unnütz weg gefangen.

Will man mit möglichst geringer Anreicherung auskommen – was einem bereits abgebrannten Brennelement entspricht – muß man zwingend auf ein thermisches Neutronenspektrum übergehen. Sogenannte „Schnelle Brüter“ erfordern eine zweistellige Anreicherung. Also wesentlich höher, als sie in einem frischen Brennelement für einen Leichtwasserreaktor vorliegen. Man kann in einem thermischen Reaktor zwar nicht brüten – also mehr Spaltstoff erzeugen als beim Betrieb verbraucht wird – aber fast genau soviel erzeugen, wie verbraucht wird. Man muß es auch gar nicht, da ja der „Atommüll“ noch Spaltstoff enthält.

Wieviel wird nun gespart?

Ein heutiger Leichtwasserreaktor produziert pro 1000 MWel etwa 20 to abgebrannter Brennelemente pro Jahr. Geht man von einer direkten Endlagerung aus, ist dies die Menge „Atommüll“ die in ein Endlager muß. Erzeugt man die gleiche elektrische Energie aus eben solchem „Atommüll“, ist diese Menge schon mal komplett eingespart.

Gleichzeitig wird aber auch der ursprünglich vorhandene „Atommüll“ in der Form abgebrannter Brennelemente weniger. Die Energie wird durch die Spaltung von Atomkernen erzeugt. Sie sind nach der Spaltung unwiederbringlich vernichtet. Wird Uran noch von vielen Menschen als natürlich und damit relativ harmlos angesehen, ist z. B. Plutonium für sie reines Teufelszeug. Genau diese Stoffgruppe dient aber bei diesem Reaktortyp als Brennstoff und wird beständig verbraucht.

Ein solcher Reaktor produziert rund 1 to Spaltprodukte pro 1000 MWel und Jahr. Die Spaltprodukte sind darüberhinaus in einigen Jahrhunderten – gegenüber 100.000den von Jahren bei Plutonium – verschwunden. In Bezug auf die Energieversorgung sind solche Reaktoren eine echte Alternative zu sog. „Schnellen Brütern“. Bereits die vorhandenen abgebrannten Brennelemente und die absehbar hinzukommenden, wären eine schier unerschöpfliche Energiequelle.

Was ist neu bei diesem Reaktortyp?

In den USA hat man über Jahrzehnte Erfahrungen mit Salzschmelzen in Versuchsreaktoren gesammelt. Hier strebt man bewußt die Verwendung von Uran und nicht von Thorium an. Dies hat bezüglich des Salzes Konsequenzen: Lithiumfluorid kann wesentlich höhere Konzentrationen Uran gelöst halten (LiF-(Actinoid)F4) als das bekanntere FLiBe-Salz. Erst dadurch ist der Einsatz abgebrannter Brennelemente (niedrige Anreicherung) möglich. Allerdings liegt die Schmelztemperatur dieses Brennstoffs bei etwa 500 °C. Ein wesentliches Sicherheitskriterium ist daher, Verstopfungen in Kanälen und Rohrleitungen durch Ablagerungen, sicher zu vermeiden.

Als Moderator sollen Stäbe aus Zirconiumhydrid eingesetzt werden. Sie wirken wie „umgekehrte Regelstäbe“: Je tiefer sie in die Schmelze eingetaucht werden, um so mehr Neutronen werden abgebremst und die Spaltungsrate erhöht sich. Die Moderation solcher Stäbe ist gegenüber früher verwendetem Graphit so viel besser, daß fast der doppelte Raum für die Salzschmelze bei einem vorgegebenen Reaktorvolumen zur Verfügung steht. Ein weiterer wichtiger Schritt zu der Verwendung von „Atommüll“ als Brennstoff.

Die integrierte Wiederaufbereitung

Die Spaltprodukte müssen kontinuierlich aus der Salzschmelze entfernt werden. Sie wirken nicht nur parasitär, sondern stellen auch das eigentliche Sicherheitsproblem dar. Je weniger Spaltprodukte gelöst sind, um so weniger Radioaktivität könnte bei einem Störfall freigesetzt werden.

Etwa 20% der Spaltprodukte sind Edelgase. Sie sollen mit Helium aus der Salzschmelze abgeschieden werden und anschließend in Druckgasflaschen gelagert werden.

Rund 40% der Spaltprodukte sind Metalle, die Kolloide in der Schmelze bilden. Sie sollen mit Geweben aus Nickel ausgefiltert werden.

Der Rest – hauptsächlich Lanthanoide – sind sehr gut in der Salzschmelze gelöst. Sie sollen mittels flüssigen Metallen extrahiert werden und anschließend in eine keramische Form zur Lagerung überführt werden.

In der Abscheidung, Behandlung und Lagerung der Spaltprodukte dürfte die größte Hemmschwelle bei der Einführung von Reaktoren mit Salzschmelzen liegen. Welcher Energieversorger will schon gern eine Chemiefabrik betreiben? Vielleicht werden deshalb erste Anwendungen dieses Reaktors gerade in der chemischen Industrie liegen.

Zusammenfassung

Der Gedanke, „Atommüll“ möglichst direkt als Brennstoff einzusetzen, hat Charme. Wirtschaftlich kommt man damit in die Situation einer Müllverbrennungsanlage. Man kann sich an den Aufbereitungs- und Entsorgungspreisen des Marktes orientieren. Diese Einnahmen sind schon mal vorhanden. Die Stromproduktion ist ein Zubrot. Es wird noch sehr viel Entwicklungszeit nötig werden, bis ein genehmigungsfähiger Reaktor vorliegt. Auch die Kostenschätzung über zwei Milliarden Dollar für den ersten kommerziellen Reaktor, ist in diesem Sinne mit der gebotenen Vorsicht zu betrachten. Allerdings handelt es sich bei diesem Reaktor nicht um ein Produkt einer „Erfindermesse“. Man hat sehr sorgfältig den Stand der Technik analysiert und bewegt sich auf allen Ebenen auf dem machbaren und gangbaren Weg. Es ist nur zu hoffen, daß diesem jungen Unternehmen noch etwas Zeit verbleibt, bis es – wie so viele vor ihm – auf und weg gekauft wird.

Weltweit tut sich etwas in der Entsorgungsfrage: Salzbadreaktoren, Entwicklung metallischer Brennstoffe – sogar für Leichtwasserreaktoren – und abgespeckte chemische Wiederaufbereitungsverfahren in Rußland.

Atomkonzerne wollen Ausstiegskosten drücken

Man glaubt es nicht, aber es geht immer noch ein bischen schlimmer. Jetzt sollen wir Stromkunden auch noch über 23 Milliarden für die Mästung eins Staatsfonds aufbringen.

Welchen Müll?

Um gleich mal mit einer provokativen Frage anzufangen. Abgebrannte Brennelemente z. B. sind Abfälle – weil nicht mehr vom Kraftwerk verwendbar – aber deshalb noch lange kein Müll. Kein Mensch kommt heute auf die Idee, eine alte Autobatterie oder eine alte Zeitung als Müll zu verunglimpfen. Bei der „gelben Tonne“ spricht man deshalb heute selbstverständlich von einer „Wertstofftonne“. Von Anfang an, war es vorgesehen die „abgebrannten“ Brennelemente zu recyceln. Aus dem Abfall – aus der Sicht eines Kraftwerks – wurde erst durch grüne Politiker „Atommüll“ gemacht, nachdem man die Wiederaufbereitung in Deutschland verboten hat. Genau der heutige (große) Vorsitzende der „Kommission Lagerung hoch radioaktiver Abfallstoffe“ war maßgeblich an dieser Schandtat beteiligt.

Die Unterscheidung von „Abfall“ und „Müll“ ist alles andere als Haarspalterei. Abfall ist immer ein höchst subjektiver Zustand, der erst zum Müll wird, wenn keine Nachfrage mehr vorhanden ist. Wesentlicher Unterschied ist die Menge vorher und nach der Aufbereitung. Ein typisches Beispiel wohin die Entwicklung geht: Als mit dem „Endlager Konrad“ begonnen wurde, war ein wesentliches Sicherheitskriterium der Absturz eines mehrere hundert Tonnen schweren Dampferzeugers in die Grube. Seit Jahren ist aber die komplette Versendung der Dampferzeuger z. B. nach Schweden Realität. Dort werden sie industriell (maßgeblich durch Roboter) zerlegt und „dekontaminiert“. Zurück kommt ein Würfel, etwa so groß wie ein Kühlschrank, in dem alle Radioaktivität eingeschmolzen ist. Alle anderen Materialien werden an lokale Schrotthändler verkauft und damit dem normalen Materialkreislauf wieder zugeführt. Dies ist bereits heute billiger, als die komplette Einlagerung.

Radioaktiver Zerfall geht immer nur in eine Richtung

Das ist die andere (schöne) Seite der Medaille. Je länger man wartet, um so geringer wird die ausgesendete Strahlung. Dies ist z. B. bei Umweltgiften wie Asbest oder Quecksilber nicht der Fall. Insofern müßte eigentlich von dem „Endlager Herfa-Neurode“ eine unendliche Sicherheit gefordert werden – aber „Chemiemüll“ ist wohl politisch korrekt.

Der radioaktive Zerfall verläuft meist in Ketten (d. h. mehrere Zwischenglieder), endet aber immer mit einem stabilen Endglied (welches nicht mehr radioaktiv ist). Diese Zerfallsketten laufen unbeeinflußbar ab. Am Anfang nimmt die Strahlung sehr stark ab (Elemente mit kleiner Halbwertszeit), später sehr langsam (immer mehr Kerne sind bereits zerfallen, es sind nur noch Elemente mit großer Halbwertszeit vorhanden). Wichtig für das Verständnis eines „Endlagers“ ist die Tatsache, daß der „Atommüll“ in menschlichen Zeiträumen eine Intensität erreicht, die der natürlich vorkommender Erzlagerstätten entspricht. Anders ausgedrückt: Solange man den „Atommüll“ nicht isst, kann man ihn problemlos in die Hand nehmen. Sollte er tatsächlich wieder in den biologischen Kreislauf gelangen (z. B. durch Grundwasser) ist die entscheidende Frage, wieviel Zeit vergangen ist (d. h. wieviele und welche radioaktiven Elemente überhaupt noch vorhanden sind) und welche Konzentration vorliegt.

Die Crux mit der Radioaktivität ist, daß man einerseits noch geringste Mengen nachweisen kann, andererseits diese längst nicht mehr schädlich sind. Typisches Beispiel ist die Banane oder verschiedene Mineralwässer. Für die „Beherrschbarkeit“ und dem Umgang mit abgebrannten Brennelementen könnte man sagen: Je länger abgelagert, je harmloser und technisch einfacher handhabbar. Jeder Laie kann das nachvollziehen. Nach der Entnahme aus dem Reaktor kann man die „frischen Brennelemente“ nur fernbedient handhaben und muß diese zur Kühlung und Abschirmung in metertiefen Wasserbecken lagern. Nach einigen Jahren werden sie in Spezialbehälter umgepackt. Neben solchen „Castoren“ kann man gefahrlos herlaufen oder eine Lagerhalle betreten.

Warum nicht einfach verkaufen?

Abgelagerte Brennelemente sind der ideale Input für Wiederaufbereitungsanlagen. Je geringer die Strahlung ist, desto weniger belasten sie die Anlage und das notwendige Personal. In diesem Sinne, sind z.B. Indien und China ideale Kunden. Beide Länder haben sich zum Bau von Wiederaufbereitungsanlagen entschlossen, da sie arm an eigenen Uranvorkommen sind. Je zügiger sie mit dem Bau beginnen, desto geringer ist die Menge, die sich aus den eigenen Kernkraftwerken ansammelt. Bis solche Anlagen richtig laufen, sind Jahrzehnte Vorlauf (Planung, Bau, Probebetrieb) notwendig. Gerade in den ersten Betriebsjahren sind abgelagerte Brennelemente die ideale Beschickung. In diesem Sinne wären Brennelemente aus Deutschland ein interessantes Handelsgut.

Wäre nicht die zur Zeit vorherrschende ideologische Verblendung bestimmend, könnten wir international – gerade bei einem Totalausstieg – zu vernünftigen und wirtschaftlich optimalen Lösungen gelangen. Schließlich haben wir ja auch bisher schon die „Dienstleistung Wiederaufbereitung“ in England und Frankreich eingekauft. Warum zukünftig nicht auch in Rußland, China oder sonst wo? Entsprechendes gilt für die Konditionierung von Abfällen. Es wurden ganze LKW-Ladungen von brennbaren Abfällen in die USA verschifft und anschließend die „radioaktive Asche“ nach Deutschland zurückgeführt. Bei den geringen Mengen, die bis zum „Totalausstieg“ angefallen sein werden, kann man gleich über die Mit-Einlagerung in deren „Endlager“ verhandeln. Ganz so, wie wir ja auch das „Endlager Herfa-Neurode“ international vermarkten. Falls das nicht politisch gewollt ist, bliebe auf diesem Weg nicht viel mehr als ein zentraler Bunker über, indem der gesamte Restmüll sicher eingelagert werden kann.

Die Finanzierung

Die Kerntechnik ist die erste Sparte überhaupt, die von Anfang an die gesamten Kosten berücksichtigt hat. Dies ist – nach wie vor – ein Alleinstellungsmerkmal. Kein Windmüller muß für seine als Plastikmüll endenden Flügel, kein Sonnensammler für seine giftmüllhaltigen Sonnenzellen Rücklagen bilden. Auch die sog. Ewigkeitskosten der Bergwerke wurden nicht in den Kohlepreis eingerechnet. Heute findet man beispielsweise „Giftmülldeponien“, die Bohrschlämme aus der Gas- und Ölförderung enthalten.

Man kann die Folgekosten grundsätzlich erst tragen, wenn sie tatsächlich anfallen oder bereits zu Anfang versuchen sie einzurechnen. Für beide Vorgehensweisen lassen sich stichhaltige Argumente anführen. Das einzige, was zu völlig falschen Ergebnissen führt, ist die gleichzeitige Anwendung beider gegensätzlichen Prinzipien. Genau das, wurde aber von der „Anti-Atomkraft-Bewegung“ als Kampfmittel entdeckt.

Wenn man schon bei der Nutzung adäquate Rücklagen bildet, bleibt immer noch die Frage wie: Als Umlagesystem (analog zu unserem Rentensystem) mit dem Staat als Garanten, der Vermögensbildung beim Unternehmen oder der Anlage in einem Fonds. In Deutschland hat man sich zur Bildung von Rücklagen im jeweiligen Unternehmen entschlossen. Dies wurde ursprünglich sehr gründlich und kontrovers diskutiert und abgewogen. Allen Möglichkeiten ist die Schwierigkeit der Abschätzung der zukünftigen Kosten und die Sicherheit der Anlage gemeinsam: Staaten können verschwinden, Unternehmen pleite gehen und Anlagen durch Finanzkrisen etc. dahinschmelzen.

Die vermeintliche Anlagesicherheit

In Deutschland mußten die Energieversorgungsunternehmen mit Kernkraftwerken Rücklagen für den Abriß und die Abfallentsorgung bereitstellen. Ein revolutionärer Gedanke, ein Alleinstellungsmerkmal und die „praktizierte Nachhaltigkeit“.

Ein (vorgeschriebener) Anteil an den Unternehmenserlösen wurde für die Entsorgung zurückgestellt. In der Praxis bedeutete das, man hat mit diesen Mitteln neue Kraftwerke, Stromleitungen etc. finanziert. Dies führte zu zusätzlichen Erträgen, da man keine Zinsen für Kredite an die Banken zahlen mußte. Es mußte nur der Barwert, der in der Zukunft anfallenden Kosten, zurückgestellt werden. Die Vorteile kamen indirekt allen zu gute, da jeder elektrische Energie verbraucht. Insofern bestand volkswirtschaftlich kein Unterschied zu einem Umlagesystem. Bei einem Fonds hätte man zusätzliche Kosten für die externe Vermögensverwaltung in Rechnung stellen müssen.

Jetzt zur (vermeintlichen) Sicherheit der Anlage. Das Geld wurde in Vermögenswerte umgewandelt. Nichts anderes kann auch ein Fonds bieten. Er kann jedoch nicht auf dingliche Werte (Kraftwerke, Umspannwerke etc.) zurückgreifen, sondern nur auf Finanzprodukte (Aktien, Anleihen etc.). Ironischerweise sind gerade Anleger mit ähnlich langfristigem Anlagehorizont und ähnlichem Sicherheitsbedürfnis brennend an Sachanlagen aus der Energiewirtschaft mit regelmäßigen Einnahmen interessiert. Versicherungswirtschaft und Pensionsfonds investieren in Pipelines, Stromtrassen usw. Sie erscheinen heute durchaus sicherer und ertragreicher als Staatsanleihen und Aktien. Strom wird halt immer gebraucht. Insofern werden auch die Anlagen zur Erzeugung und Verteilung gebraucht – es sind echte Vermögenswerte.

Von dem Gedanken des Verursacherprinzips ausgehend, ist die Anlage in den Unternehmen ebenfalls logischer: Das Unternehmen haftet mit seiner Substanz. Wenn man einen Fonds zwischen schaltet, kann man die Haftung kaum noch durchleiten. Ist das Geld an der Börse verspekuliert, kann das Unternehmen nicht dafür verantwortlich gemacht werden. Die Anlagen der Energieversorger waren im Zeitalter des Energiemixes auch breit gestreut. Wo bitte, soll der „Entsorgungsfonds“ denn seine Milliarden anlegen? In Windparks, E-Autos oder doch lieber in griechischen Staatsanleihen? Wer verwaltet den Fonds und wer bekommt die Verwaltungskosten? Der Fonds soll doch bestimmt ethisch und politisch korrekt sein und „klimaneutral“, nicht wahr?

Woher soll das Geld kommen?

Die Rücklagen der Energieversorgungsunternehmen sind Vermögen als Sachanlagen im eigenen Unternehmen. Dieses Vermögen ist eine Immobilie. Darin unterscheidet sie sich nicht grundsätzlich von einem Gebäude: Der Bau hat mal eine bestimmte Summe gekostet mit der es in die Bücher eingegangen ist. Vermindert um die gesetzlichen Abschreibungen, erhöht um Modernisierungen etc. Soweit ist es Vermögen. Wenn aber nun diese Werte plötzlich ausgeschüttet werden sollen, ergibt sich schlagartig das Problem der Umwandlung in einen Preis: Es muß ein Käufer – nach den Gesetzen von Angebot und Nachfrage – gefunden werden. Wer bitte, soll aber so blöd sein, in Deutschland ein Kraftwerk zu kaufen? In einem Land, indem gerade die Kernkraftwerke entschädigungslos enteignet worden sind und nun auch die Kohlekraftwerke abgeschafft werden sollen? Jeder seriöse Investor wird eher nach Afrika oder Asien gehen. Übrig bleiben, werden nur Spekulanten, die bereit sind Wetten darauf abzuschließen, wie lange der Wahnsinn in Deutschland noch anhält. Da politische Veränderungen erfahrungsgemäß sehr langsam ablaufen, kann der finanzielle Einsatz nur gering ausfallen. Selbst die DDR konnte sich rund vier Jahrzehnte über Wasser halten. Für technische Entwicklungen ein unendlich langer Zeitraum. Lange Rede, kurzer Sinn: Es werden gewaltige Preisabschläge auf die Buchwerte nötig sein, um 23 Milliarden kurzfristig flüssig zu machen.

Mal angenommen, es gelingt tatsächlich. Mit welchen Produktionsmitteln sollen dann die übrig gebliebenen Skelette noch Ergebnisse erzielen? Das Ganze gleicht doch einem Bauern, der Trecker und Saatgut verkauft. Die von dem Sozialisten Trittin dem Volk vorgegaukelte Sicherheit, ist in Wirklichkeit nichts weiter als die Schlachtung der Kuh, die er melken will. Oder frei nach Maggie Thatcher: Den Sozialisten geht irgendwann immer das Geld der anderen aus. Dieser Fonds wird – nach dem er das Geld für alle möglichen linken Projekte verbrannt hat – möglichst unauffällig dahinsiechen, ohne eine einzige Tonne „Atommüll“ beseitigt zu haben.

Spätestens wenn die Blase „Windparks“ geplatzt ist, wird nur noch ein Heer von Arbeitslosen von den ehemals stolzen Energieversorgern übrig bleiben. Wer nicht jetzt beginnt, sich zu wehren, sollte sich schon mal mit den „Schlecker-Frauen und Karstadt-Verkäufern“ über das Leben danach unterhalten. Die Ex-Minister Trittin, Müller und der grüne Gewerkschaftsfunktionär Bsirske werden sicherlich ihre Pensionen genießen und auch weiter unter Palmen über den „Raubtierkapitalismus“ schwadronieren. Noch nie war Enteignung so schön wie heute.

Tschernobyl – 30 Jahre danach

Es ist schon so eine Sache, mit den runden Jubiläen. Zu solchen Anlässen schwappen Wellen der Erinnerung durchs Land. Eigentlich wollte der Autor dieses „Pflichtereignis“einfach übergehen, aber schon im Vorfeld wurde auch er von der Welle erfaßt.

Was macht Tschernobyl so besonders?

Diese Katastrophe – Unfall wäre diesem Ereignis nicht angemessen – brach auch über die Fachwelt wie ein Tsunami herein. Man kann es nur verstehen, wenn man sich die Begriffe „Sowjetunion“ (damals offiziell als das „Reich des Bösen“ betitelt) – und „eiserner Vorhang“ wieder vor Augen führt. Es gab kaum Informationen über Kernkraftwerke im „Ostblock“. Wenn überhaupt, wurden sie privat mit äußerster Zurückhaltung auf internationalen Kongressen etc. ausgetauscht. Für mich gibt es bis heute zwei Schlüsselerlebnisse für den damaligen Zustand: Das – auch im Westen sehr beliebte – Standardlehrbuch der DDR über Kernenergie (Tereza Khristoforovna Margulova, zahlreiche Bücher und über 300 Fachaufsätze), enthielt nur Zeichnungen und Bilder von westlichen Reaktoren. Es war also mehr ein „Wunschbuch“ als ein Lehrbuch. Noch viel bewegender war für mich der offene Streit zwischen Edward Teller und der Reagan-Administration über die Geheimhaltungspolitik der USA: Edward Teller trat vehement für die Freigabe aller vorhandenen Informationen über die Sowjetunion ein, weil er der Meinung war, dies würde den Menschen die Augen öffnen über dieses System und zum unmittelbaren Zusammenbruch dieser „Weltmacht“ führen.

In diese Stimmungslage platzte die Nachricht von Tschernobyl. Nicht etwa aus der Sowjetunion selbst, sondern aus Skandinavien und Frankreich. Man hatte in beiden Ländern die radioaktiven Wolken mit den Überwachungssystemen der Kernkraftwerke erfaßt. Die Nachricht war nicht mehr geheim zu halten. Jedem Fachmann war klar, da mußte etwas unvorstellbares in der Ukraine passiert sein. Besonders kafkaesk mutete die Lage in der DDR an. Das „Westfernsehen“ berichtete stündlich, die „Aktuelle Kamera “ machte noch tagelang weiter, als sei nichts geschehen. Ähnlichkeiten zu heutigem Regierungsverhalten sind keinesfalls zufällig, sondern eher von Kindheit an anerzogen. Was nicht in das eigene Weltbild zu passen scheint, wird lieber ignoriert und das eigene Nichthandeln läßt man regierungsamtlich als Besonnenheit verklären.

Die Reaktion in „West-Deutschland“

Die Wahrheit ist, das Land war überhaupt nicht vorbereitet. Kernkraftwerke sind sicher. Punkt. Nach dem Störfall von Harrisburg (TMI) galt das um so mehr: Reaktor Totalschaden, aber keine Verletzten und (praktisch) keine Freisetzung von Radioaktivität in die Umgebung – also alles richtig gemacht. Wer sich mit „schweren Unglücken“ und Gegenmaßnahmen beschäftigte, arbeitete angeblich nur den „AKW-Gegnern“ in die Hände. Ein schwerer Irrtum. Schon damals war Deutschland keine Insel der Glückseligen, umgeben von einem Meer ohne Kernenergie. Noch heute hält man eisern an dieser Ideologie fest. Man verklagt lieber Länder auf die Stilllegung ihrer Kraftwerke, als das man sich mit der Realität auseinandersetzt.

Durch die mangelnde Vorbereitung haben auch die Kernenergiebefürworter eine Chance verpasst. Man hätte die Ausbreitung, Kontaminierung von Boden und Lebensmitteln viel genauer dokumentieren können. Ein unschätzbarer Schatz gegen Kollektivdosen, LNT etc. Stattdessen waren die Messkampagnen höchst selten und unvollständig. Meist unorganisiertes Ergebnis privater Initiative.

Gleichwohl packte die „Angstindustrie“ die Gelegenheit beim Schopfe. Tschernobyl sollte Greenpeace und Co Millionen an Spendengelder einbringen. Allerdings kann man auch das nur im geschichtlichen Zusammenhang sehen. In der zweiten Hälfte der Siebzigerjahre begann der rapide Niedergang der sog. K-Gruppen an deutschen Universitäten. Die Genossen Trittin, Kretschmann etc. mußten sich umorientieren, wenn sie ihre Vorstellungen von Gesellschaftsveränderung und Sozialismus noch umsetzen wollten. Die Hunderttausende gegen Nato-Doppelbeschluss, Kernkraftwerk Brokdorf, Wiederaufbereitungsanlage Wackersdorf und Endlager Gorleben waren einfach zu verlockend. Erst 1980 gegründet, stellten die Grünen 1985 in Hessen die erste Koalition mit dem Umweltminister Joschka Fischer. Dies war noch keiner Partei „links von der SPD“ gelungen.

Interessant, aber bis heute nicht aufgearbeitet, ist die selektive Wahrnehmung unter den Linken gewesen. Irgendwie waren ja russische „AKW“ eigentlich gute „AKW“, weil sozialistische „AKW“. Bitte keine Fragen zum Sinn und Konstruktionsprinzip der RBMK stellen, denn für jeden gläubigen Linken gehört(e) es zu den Glaubensgrundsätzen, daß Ronald Reagan der Kriegstreiber gegen den friedliebenden Kreml war. Wenn man auch sonst keine Gelegenheit ausließ, auf die Verknüpfung von „AKW“ und „Atombombe“ hinzuweisen, war das im Zusammenhang mit Tschernobyl tabu. In dieser Zeit wurde der Mythos von der „Unbeherrschbarkeit“ erschaffen, der bis heute in der „ungelösten Endlagerfrage“ religiöses Dogma ist. Wenn es nicht einmal in der friedliebenden und nicht profitorientierten Sowjetunion möglich war, Kernkraftwerke „sicher“ zu betreiben, dann mußte die Kerntechnik prinzipiell nicht beherrschbar sein. Heute mag das fast lächerlich anmuten, aber 1986 konnte sich kein westdeutscher Linker vorstellen, was real existierender Sozialismus darstellte oder gar, daß dieses System in wenigen Jahren kollabieren würde. In Deutschland geht halt Ideologie vor Fakten: War doch die Begründung der Bundeskanzlerin für ihre 180°-Wende nach Fukushima, ihr angeblich enttäuschter Glaube an die Unfehlbarkeit der japanischen Technik.

Besonders zynisch ist es, wenn in deutschen Qualitätsmedien die Aufräumarbeiten von Fukushima immer in einem Atemzug mit Tschernobyl genannt werden. Kein Wort über die ahnungslosen und schlecht ausgerüsteten Feuerwehrleute, die brutal in den Tod geschickt worden sind. Kein Wort über die (fast unmittelbar) neben der Ruine spielenden Kinder, die aus ideologischen Gründen nicht unverzüglich in Sicherheit gebracht wurden. Kein Wort über die „heldenhaften“ Bauarbeiter, die direkt von den Gerüsten im Baltikum verhaftet wurden, um unter höchster Strahlenbelastung Dienst zu tun. Ganz ohne Meßgeräte, aber dafür mit jeder Menge Falschinformationen. Manch ein „Putinversteher“, der immer noch nicht begreift, warum man im Baltikum so gerne Nato-Panzer sieht, könnte hier eine Antwort (von vielen) finden. Tschernobyl war der letzte Sargnagel, den sich das Sowjetsystem höchstselbst eingeschlagen hat. Dies könnte auch eine Erklärung für „Grüne“ sein, warum Tschernobyl nicht zu einer „Anti-AKW-Bewegung“ in der Ukraine, Polen und dem Baltikum geführt hat. Anders als in Deutschland, vermag man dort zwischen Physik und Politik zu differenzieren.

Die Lehren aus Tschernobyl

Es gibt zahlreiche Lehren und Konsequenzen die international aus dieser Katastrophe gezogen worden sind. Allein die technischen Berichte und Auswertungen füllen ganze Regale. Die Kerntechniker – aber leider nur die Techniker – haben ihre Lektion gelernt. Insofern ist Tschernobyl für die Kerntechnik, was die Titanic für den Schiffbau war. Ein unüberhörbarer Weckruf, der sicherheitstechnische Grundsätze erschaffen hat, die weltweit anerkannt und praktiziert werden: Baue keinen Reaktor mit positivem Reaktivitätskoeffizienten, baue immer ein Containment usw. usw.

Seefahrt tut not, wußte man schon im Altertum, obwohl sie bis zum heutigen Tage immer wieder Opfer fordert. Energieversorgung ist für eine Gesellschaft ohne Sklaverei mindestens genauso lebensnotwendig. Aus diesem Grunde hat man in rationaleren Gesellschaften die Kernenergie auch nicht als Teufelswerk verdammt. Es gilt Risiko und Nutzen abzuwägen und die Technik beständig zu verbessern. Ganz genauso, wie es die Menschheit in ihrer Entwicklungsgeschichte immer getan hat. Ohne diese Verfahrensweise, wäre ein Fortschritt im Seetransport, der Luftfahrt usw. nicht vorstellbar gewesen. Ganz nebenbei gesagt, hat die Kerntechnik in diesem Sinne vorbildliches geleistet. Nicht ohne Grund, ist sie zu der Energieform mit der geringsten Opferzahl geworden. Gleichwohl gibt es eine „opferfreie“ Energieerzeugung nur im Märchen. Schon im Kindergarten weiß man, daß man mit einem Fahrrad schnell von A nach B gelangen kann, aber auch übel stürzen kann. Kaum ein Kind verzichtet deshalb aufs Fahrradfahren. Wer „voran gehen will“, kann das gerne tun, muß sich nur nicht wundern, wenn er irgendwann feststellt, daß die anderen viel schneller waren und schon längst beim Essen sind.

Tschernobyl hat die Angst-vorm-schwarzen-Mann genommen

Von Anfang an, hat die Angstindustrie daran gefeilt, ein Alleinstellungsmerkmal für die Kerntechnik zu konstruieren: Wenn ein „AKW explodiert“, gibt es Millionen Tote und die betroffene Gegend ist für zehntausende von Jahren unbewohnbar. Aus moralischen Gründen sei es deshalb nicht zulässig eine solche Technik zu erlauben. Das war das Totschlagargument in jeder deutschen Talkshow. Sofort standen sich der idealistische und hoch moralische Gutmensch und der profitgierige, unterbelichtete Vasall der „Atomindustrie“ gegenüber. In diesen Momenten, konnte sich selbst eine Theaterwissenschaftlerin wie eine Greenpeace-Amazone im Schlauchboot vor einem Walfänger fühlen – selbstverständlich ohne Risiko auch nur die Frisur zu gefährden.

Nun hat in Tschernobyl tatsächlich der Super-Gau stattgefunden und das Kraftwerk ist explodiert, abgebrannt und hat den größten Teil seiner radioaktiven Stoffe wie ein Vulkan ausgeworfen. Schlimmer geht nicht. Nur, wo blieb der Weltuntergang? Eine Zeit lang, konnte man die Sache noch am köcheln halten in dem man irgendwelche Geschichten über irgendwelche Mutanten in der Zone erfand. Heute ist die „Sperrzone“ längst zu einer Touristenattraktion mutiert. In den Tagen nach der Katastrophe, schwelgte noch die gesamte Presse in apokalyptischen „Krebs-Epidemien“, die in einigen Jahren folgen würden. Nun, 30-Jahre später ist davon nichts eingetreten. Lediglich die staatstragenden Medien, wie z. B. der Deutschlandfunk, machen unbeirrbar weiter:

„Kinder, die erst nach dem Reaktorunglück geboren wurden, leiden unter Erbgutschäden und Missbildungen“ (Deutschlandfunk, 30 Jahre nach der Atomkatastrophe von Tschernobyl).

Solch einen Schwachsinn trauen sich nur noch Medienbeamte mit garantierter Vollversorgung aus Zwangsbeiträgen. Das ist nicht mal mehr „Lügenpresse“, sondern einfach nur ganz schlechte Propaganda.

Es soll sogar Abtreibungen in Deutschland gegeben haben, weil Frauen fürchteten, irgendwelche Mutanten zur Welt zu bringen. In welcher Statistik werden eigentlich diese Opfer verbucht?

Die DPA teilt noch Anfang des Monats in ein und derselben Verlautbarung mit, daß 2015 bereits 15.000 Menschen die 30 km Todeszone (dieses Wort wird tatsächlich verwendet) als Touristen besucht hätten. Experten würden von Zehntausend Todesfällen infolge des Unglücks ausgehen. Sind solche Texte nun „Lügenpresse“ oder schlichte Blödheit oder beides?

Interessant ist auch, welche Hektik bei jeder Diskussion zur Endlagerung, die Erwähnung von Tschernobyl auslöst. Es fällt sogar den Kirchenvertretern sichtlich schwer zu glauben, warum das, was in Tschernobyl ziemlich offen rumliegt, nach aufwendiger Verpackung und Lagerung in hunderten Metern Tiefe, sich in eine die Menschheit gefährdende Angelegenheit verwandeln soll. Dafür ist mindestens so viel Glauben notwenig, wie für die Verwandlung von Wasser in Wein. In diesem Sinne, setzt die Feststellung von Greenpeace (Bergungskonzept für Tschernobyl-Ruine fehlt; vom 14.4.16) allem die Krönung auf: 440.000 Kubikmeter langlebiger Atomabfälle lägen unter dem alten „Sarkophag“. Das entspräche dem fünfzehnfachen Volumen aller hochradioaktiven Abfälle deutscher Atomkraftwerke. Danke Greenpeace, manchmal hab ich euch richtig lieb. So lieb, wie nach eurer Kampagne gegen die Versenkung einer alten Bohrinsel in der Nordsee.

Nun sind aber die PR-Abteilungen der Angstindustrie flexibel. Man rückte deshalb – bis Fukushima – immer weiter von der Angstmache ab. Es wurde eine angebliche Unwirtschaftlichkeit von Kernkraftwerken und die „ungelöste Endlagerfrage“ in den Vordergrund gestellt. Das erste Argument ist trefflich geeignet für Menschen, die immer noch Planwirtschaft für eine überlegene Wirtschaftsordnung halten. Wer nicht rechnen kann, glaubt halt jeden Zahlensalat. Das zweite Argument trieft vor moralischer Überlegenheit. Wer will schon seinen Nachfahren ein Problem vererben? Jedenfalls wenn es um „Atommüll“ geht. Durch Windparks zerstörte Landschaften und Vogelpopulationen, Berge von Sondermüll-Sonnenkollektoren oder mit Rückständen aus der Biogas-Produktion verseuchte Bäche und Seen sind natürlich etwas ganz anderes. Der Glaube versetzt Berge, sagt man. Um es klar zu sagen, es gibt keine Energieversorgung ohne Abfälle und Schadstoffe. Wer das Gegenteil behauptet, ist ein Schlangenölverkäufer, der sein Gegenüber für ziemlich dämlich hält.

Was uns Tschernobyl wirklich lehrt

Große Katastrophen sind immer Eckpunkte in der Technikgeschichte. Man kann meist klare Lehrsätze aus ihnen ableiten. So auch aus der Katastrophe von Tschernobyl. Dies macht die Opfer zwar nicht wieder lebendig, aber spendet vielleicht ein wenig Trost, daß ihr Tod nicht so sinnlos war, wie es manchem erscheint.

  • Die militärische und die zivile Nutzung der Kerntechnik sind strikt auseinander zu halten. Dringt das Militär mit seiner Geheimhaltung in die „doppelt genutzten“ Bereiche ein, sind die „Missverständnisse“ vorprogrammiert.
  • Fukushima und Tschernobyl haben eines gemeinsam: Die Ignoranz gegenüber ausgewiesenen Fachleuten (Fachleute sind nicht zu verwechseln mit „Atomexperten“, die von Interessengruppen ernannt werden). In Tschernobyl war es das Reaktivitätsverhalten, in Fukushima die bekannte Fluthöhe von Tsunamis. Probleme müssen offen diskutiert und erforderlichenfalls gelöst werden. Ein wird-schon-gut-gehen darf es in der Kerntechnik nicht geben.
  • Kerntechnik kann man nur richtig betreiben oder man läßt es besser bleiben. Unabdingbare Voraussetzung ist Transparenz, Verantwortung und Qualifikation aller Beteiligten. Wenn Halbwissende anfangen mit einem Reaktor zu spielen, ist alles verloren. Dies sei allen gesagt, die den Zubau von Kernkraftwerken in Diktaturen vorbehaltlos bejubeln.
  • Es gibt keine absolut sichere Technik. Deshalb sollte man auch gar nicht den Anschein erwecken. Es werden immer Schiffe untergehen, Flugzeuge abstürzen, Windmühlen umfallen, Dächer durch Sonnenkollektoren abbrennen. Nach Tschernobyl – völlige Zerstörung und Freisetzung – ist aber die Obergrenze durch ein trauriges Experiment vorgeführt worden. Lassen wir nun auch bitte den Blödsinn, von Millionen „virtuellen Toten“ zu schwafeln. 30 Jahre sind eine verdammt lange Latenzzeit. An welchem Tag soll denn das Massensterben einsetzen?
  • Wir kannten und kennen das Risiko (Schaden mal Eintrittswahrscheinlichkeit) sehr gut. Noch wichtiger: Es hat sich weder in Harrisburg, Tschernobyl oder Fukushima unvorhersehbares oder unbekanntes ereignet. Eher im Gegenteil! Es liegt nicht an der Technik als solches – wie immer gern von Grünen behauptet – sondern viel mehr an Handhabung und Aufsicht. Den Umgang gerade mit dieser Technik, kann man aber sehr wohl in den Griff bekommen, wie z. B. die US-Navy eindrucksvoll unter Beweis gestellt hat. Man muß nur den festen Willen dazu haben.
  • Man muß offensiv mit dem vorhandenen Risiko umgehen. Es darf kein Tabu geben. Schon bei der laufenden Ausbildung sollten Ereignisse durchgespielt werden, die über die „Auslegungsstörfälle“ hinausgehen. Die Einrichtung von überregionalen „Katastrophenzentren“ geht in die richtige Richtung. Schließlich ist die Antwort auf (unvermeidbare) Brände – trotz vorbeugendem Brandschutz – auch die Einrichtung von Feuerwachen.
  • Die Bevölkerung in der Nähe von Kernkraftwerken muß aufgeklärt werden und aktiv in den Katastrophenschutz einbezogen werden. Nur wer die Gefahren versteht und Schutzmaßnahmen kennt, kann im Ernstfall auch vernünftig handeln. Ganz besonders Fukushima hat gezeigt, daß (irrationale) Angst tötet.
  • Nur Übung macht den Meister. Dies gilt auch beim Katastrophenschutz. Die guten, alten ABC-Schutzübungen sind aktueller denn je. Deutschland kann sich nicht durch ein paar Windmühlen und Sonnenkollektoren aus der realen Welt wegzaubern. Wir sind von Kernkraftwerken und bald auch von Endlagern umgeben. Entweder sind die Gefahren durch Fessenheim, Bure etc. real, dann helfen keine Klagen dagegen, sondern nur Schutzmaßnahmen oder es geht einfach nur um politisches Theater. Terrorismus findet bereits vor der Tür statt. Deutschland zieht mit seiner anerzogenen „Atomangst“ und seiner Weltabgewandtheit „Nuklearterroristen“ geradezu magisch an.

Der LFTR – ein Reaktor mit Salzbad

Immer massiver wird für ein völlig neuartiges Reaktorkonzept geworben, den Liquid-Fluorid Thorium Reactor (LFTR). Dieses Konzept bricht radikal mit den Prinzipien der heutigen Leichtwasserreaktoren: Thorium in der Form als Salz für Brennstoff und Kühlmittel und integrierte Wiederaufbereitung.

Warum Thorium?

Thorium und Uran sind die einzigen in der Natur vorkommenden Elemente zur Gewinnung von Energie durch Kernspaltung. Thorium kommt etwa vier mal häufiger vor und ist wesentlich gleichmäßiger verteilt. Es gibt bereits große Mengen als Abfall aus der Gewinnung seltener Erden. In Indien und Brasilien gibt es ganze Strände, die aus thoriumhaltigem Sand bestehen. Eine verlockende zusätzliche und nahezu unerschöpfliche Energiequelle. Uran und Thorium zusammen, könnten den gesamten Energieverbrauch der Menschheit mindestens für Jahrtausende decken.

Aus Thorium läßt sich – anders als aus natürlichem Uran – kein Reaktor mit einer sich selbst erhaltenden Kettenreaktion bauen. Man muß das Thorium zuerst in Uran umwandeln. Dieser „Brutprozess“ soll in in dem LFTR-Reaktor integriert werden. Um eine optimale Ausbeute zu erhalten, soll es jeweils einen „Brutkreislauf“ (in dem Thorium in Uran umgewandelt wird) und einen „Spaltkreislauf“ (in dem die gewünschte Energieerzeugung stattfindet) in dem Reaktor geben. Wenn ein Thorium-232-Kern ein Neutron einfängt, bildet sich Thorium-233. Dieses zerfällt mit einer Halbwertszeit von knapp 22 Minuten in Protactinium-233 und anschließend erst mit einer Halbwertszeit von 27 Tagen in Uran-233. Mit anderen Worten, erst nach rund einem Jahr ist die (nahezu vollständige) Umwandlung von Thorium in ein brauchbares Spaltmaterial erfolgt. In dieser Zeit, sollten die Zwischenprodukte keinen weiteren Neutronen ausgesetzt sein, da sich sonst unerwünschte Elemente bilden könnten.

Thorium hat im Gegensatz zu Uran nur etwa 232 anstelle von 238 Protonen und Neutronen in seinem Kern. Da immer nur ein Neutron eingefangen werden kann, dauert es bei Thorium wesentlich länger und ist wesentlich unwahrscheinlicher, bis sich „überschwere“ Kerne gebildet haben. Genau diese Kerne (z. B. Plutonium, Americium, Curium usw.) sind aber für die Langlebigkeit von „Atommüll“ verantwortlich. Entstehen sie erst gar nicht, ist der „Atommüll“ relativ harmlos und seine technische Lagerung bis zum (nahezu) vollständigen Zerfall reduziert sich auf Jahrzehnte bis Jahrhunderte.

Warum Salzschmelze als Betriebsmittel?

Man kann Thorium auch in anderen Reaktorkonzepten (Kugelhaufen-, Schwerwasserreaktoren etc.) nutzen. Umgekehrt kann man auch bei Salzschmelzen Uran oder Plutonium einsetzen. Es muß also noch andere Gründe geben.

Ein Alleinstellungsmerkmal des LFTR ist die integrierte Wiederaufbereitung. Nur bei der ersten Beladung muß Spaltstoff aus anderen Quellen hinzugefügt werden. Ist der Reaktor erst einmal im Gleichgewicht, wird nur noch Thorium dem Brutkreislauf hinzugefügt und Spaltstoffe aus dem Spaltungskreislauf abgezogen. Wegen der geringen Mengen wird eine Lagerung auf dem Gelände des Kraftwerks vorgeschlagen. Später kann dann über eine etwaige Endlagerung entschieden werden. Da die Spaltstoffe recht kurzlebig sind und (langlebige) Aktinoide praktisch nicht im Abfall vorhanden sind, erscheint eine industrielle Nutzung (Abklingzeit je nach Verwendungszweck) eher wahrscheinlich.

Grundsätzlich kann man den Brennstoff in fester Form in Brennelemente einschließen oder in einer Flüssigkeit auflösen. Im ersten Fall müssen die Brennelemente durch eine Flüssigkeit oder ein Gas gekühlt werden. Im zweiten Fall erhitzt sich die Flüssigkeit infolge der Kernspaltung und kann durch einen Wärmeübertrager gepumpt werden, in dem sie ihre Energie an ein Arbeitsmedium bzw. ein Kühlmittel abgibt. So gesehen, besteht kein großer Unterschied zwischen beiden Systemen. Bei Brennelementen muß der gesamte Spaltstoff für die gesamte Betriebszeit des Brennelementes schon am Anfang in dieses eingebracht werden (Überschußreaktivität) und umgekehrt enthalten sie beim Ausladen alle Spaltprodukte der vollständigen Betriebsdauer. Bei flüssigem Brennstoff kann dieser kontinuierlich gereinigt werden. Bei einem schweren Störfall (z. B. Fukushima) braucht man auch nur von der Freisetzung einer kleinen Menge auszugehen. Das kann einen entscheidenden Sicherheitsgewinn bedeuten.

Mit Salzschmelzen kann man hohe Temperaturen erreichen und bleibt trotzdem auch bei geringem Druck noch weit vom Siedepunkt entfernt. Die oft als Argument angegebene „Drucklosigkeit“ ist aber etwas übertrieben. Schließlich muß das Salz beständig durch die (engen) Kanäle des Kerns hindurch gepumpt werden. Der Druckverlust ist erheblich, sodaß man beim LFTR von einem erforderlichen Druck hinter der Pumpe von 11 bar ausgeht.

Fluoride als Salz für Brennstoff und Brutstoff

Als besonders geeignet hat sich ein Salz der Zusammensetzung 2*LiF2 – BeF2 – XF4 herausgestellt. Lithium (Li) und Beryllium (Be) bilden das Grundgerüst, in dem Uran-233 (X) bzw. Thorium-232 (X) in der erforderlichen Menge gelöst sind. Diese Stoffe sind nicht ganz unproblematisch:

  • Lithium kommt in der Natur in den Isotopen Li-6 (7,4%) und Li-7 (92,6%) vor. Li-6 ist ein starkes Neutronengift. Wenn es ein Neutron einfängt, bildet sich radioaktives Tritium. Es kann als Wasserstoff explosive Gase bilden, die nach der Reaktion mit Sauerstoff zu „radioaktivem“ Wasser führen. Alles unerfreuliche Nebeneffekte. Man verwendet daher abgereichertes Lithium, das aber recht teuer ist.
  • Beryllium und auch Berylliumfluorid sind sehr giftig und werden als krebserregend eingestuft. Wenn es ein Neutron einfängt, bildet es Helium und setzt dabei zwei Neutronen frei. Es wirkt dabei sowohl als Moderator, wie auch als Neutronenvervielfacher.
  • Fluor und Fluorwasserstoff sind gasförmig und sehr giftig. Fluor ist äußerst reaktionsfreudig und geht mit fast allen Elementen stabile chemische Verbindungen ein. Mit Wasserstoff reagiert es letztendlich zu Flußsäure, die sogar Glas ätzt.

Die Lithium-Beryllium-Salze sind zwar chemisch sehr beständig, haben einen hohen Verdampfungspunkt und man hat vielfache praktische Erfahrungen mit ihnen in der chemischen Industrie. In einem Kernreaktor ist aber besonders, daß mit jeder Kernspaltung auch die chemische Verbindung zerstört wird und neue chemische Elemente in Form der Spaltprodukte entstehen. Man hat es deshalb stets auch mit elementarem Fluor zu tun, der auch gern mit dem Strukturmaterial reagieren kann. Ferner muß man für die Wiederaufbereitung ständig mit Fluor und Beryllium umgehen, um neues „Brennstoff- und Brutsalz“ zu bilden. Ähnliches gilt am anderen Ende des Prozesses bei der Abscheidung der Spaltprodukte. Hier muß noch eine Menge Entwicklungsarbeit geleistet werden und unbedingt Erfahrungen bei einer großtechnischen Anwendung im Alltagsbetrieb gewonnen werden.

Da Fluoride sehr reaktionsfreudig sind, reagieren sie auch mit dem größten Teil der Spaltprodukte und binden diese sicher ein. Es gibt aber zwei Ausnahmen: Edelmetalle und Edelgase. Die Edelmetalle lagern sich innerhalb der Anlage ab und führen zu „Verschmutzungen“, die man regelmäßig und aufwendig wird entfernen müssen. Die Edelgase müssen durch Helium ständig aus dem Salz herausgespült werden.

Der Aufbau des LFTR-Kraftwerks

Aus Thorium läßt sich sehr gut Uran-233 mit thermischen Neutronen erbrüten. Für die Spaltung sind thermische Neutronen ohnehin besser geeignet. Da selbst das enthaltene Beryllium nicht zur entsprechenden Abbremsung ausreicht, ist Kohlenstoff als Moderator vorgesehen. Damit kommt man zu der bekannten Struktur aus Graphitblöcken, die von Kanälen für die Salze und Einbauten durchzogen sind. Ein Bauprinzip, das schon bei den englischen Gasreaktoren und den russischen Reaktoren vom „Typ Tschernobyl“ nicht unbedingt überzeugt hat. Das Graphit wird von der Salzschmelze lediglich benetzt. Nach kurzer Zeit werden die Poren des Graphits vom Salz so verstopft, daß keine Spaltprodukte in das Graphit einziehen. Graphit verändert jedoch durch den Neutronenbeschuß seine Geometrie. Infolge der jahrzehntelangen Erfahrungen mit gasgekühlten Reaktoren in GB kann man dieses Phänomen inzwischen gut vorausberechnen und beherrschen.

Wegen der bereits beschriebenen Reaktionskette: Thorium über Protactinium zu Uran-233, hält man Brutstoff (sog. blanket salt) und Brennstoff (sog. fuel salt) fein säuberlich in zwei Flüssigkeitskreisläufen getrennt. Man will aus dem Thorium möglichst reines Uran-233 erbrüten. Insofern macht es keinen Sinn, das Protactinium oder das Uran-233 weiterem Neutronenbeschuß auszusetzen. Der Brutkreislauf soll keine Wärme produzieren, die Spaltung soll erst im Brennstoffkreislauf stattfinden. Gleichwohl setzt der Zerfall des Th-233 (geringe Halbwertszeit von 22 Minuten) beträchtliche Energie frei und es läßt sich nicht chemisch abtrennen. Der Brutkreislauf muß deshalb über eine geeignete Notkühlung verfügen.

Wegen der Trennung zwischen Brut- und Spaltkreislauf ergibt sich eine recht komplexe Reaktivitätssteuerung. Man kann die Reaktivität erhöhen, indem man die Urankonzentration im Spaltkreislauf erhöht. Dies kann zwar nur langsam, aber kontinuierlich geschehen. Der Brutkreislauf „verschluckt“ laufend Neutronen, wodurch er wie ein großer Regelstab wirkt. Deshalb ist bei diesem Reaktorkonzept der Verlust der Salzschmelze im Brutbereich, ein wichtiger Auslegungsstörfall. Zur Feinregulierung und Schnellabschaltung sind zusätzliche Regelstäbe notwendig. Diese sollen auf den Salzschmelzen schwimmen, sodaß sie bei einem Leck automatisch in den Reaktor einsinken. Weiterhin sind auch mit Gas gefüllte Kanäle zur Regelung vorgesehen. Über den Gasdruck kann damit das Salzvolumen und damit die Reaktivität gesteuert werden.

Der gesamte Kern, mit all seinen Einbauten befindet sich in einem Tank aus Hastelloy N. Einer Legierung die zu 94% aus Nickel, Chrom und Molybdän besteht. Diese Legierung wurde an den Oak Ridge National Laboratories für den Einsatz bei Fluorsalzen entwickelt. Dies dürfte der Werkstoff der Wahl für solche Reaktoren sein, da heiße Fluorsalze sehr korrosiv wirken können.

Die Salzschmelze wird permanent durch den Reaktor und einen Wärmeübertrager gepumpt. Im Kern werden die Neutronen im Graphit abgebremst. Nur hier, in diesem Bereich, kann eine selbsterhaltende Kettenreaktion stattfinden. Durch die Kernspaltungen erwärmt sich das Salz entsprechend. Diese Wärme wird in dem Wärmeübertrager an das Salz des Sekundärkreislaufes übertragen. Der Primärkreislauf ist durch einen gefrorenen Pfropfen in der Leitung zu dem Sicherheits-Lagertank getrennt. Dieser Pfropfen wird im Betrieb ständig gekühlt. Tritt eine Überhitzung im Reaktor ein, schmilzt er und gibt dadurch den Weg in den Tank frei. Im Tank bricht die Kettenreaktion sofort zusammen. Hier entsteht nur noch die Nachzerfallswärme, die wegen der permanenten Aufbereitung viel geringer als in herkömmlichen Leichtwasserreaktoren ist. Sie kann leicht über (z. B.) die Oberfläche des Tanks an die Umgebung abgegeben werden. Umgekehrt muß eine Heizung vorhanden sein, die das Salz aufschmelzen kann.

Das Arbeitsmedium

Zwischen dem Primärkreislauf des Reaktors und dem Arbeitsmedium befindet sich ein Sekundärkreislauf aus Salzschmelze. Dieser hat zwei entscheidende Sicherheitsfunktionen:

  • Das Arbeitsmedium CO2 steht unter einem Druck von etwa 200 bar. Bei einer Leckage im Wärmeübertrager steigt der Druck zwar im Sekundärkreislauf stark an, aber nicht im Reaktor. Er ist durch Sicherheitseinrichtungen abgesichert. Das austretende Salz ist kaum radioaktiv.
  • Die Wärmeübertragung zwischen zwei Salzströmen ist sehr gut. Der reaktorseitige Wärmeübertrager kann damit klein ausfallen und damit auch das Volumen an Spaltstoff und Spaltprodukten im Reaktor.

Bisher hat man bei allen Kernkraftwerken (und konventionellen Kraftwerken) einen Dampfkreislauf mit Dampfturbine und Kondensator zur Umwandlung von Wärme in mechanische Energie verwendet. Beim LFTR ist das anders: Hier will man einen geschlossenen Gasturbinenkreislauf (Turbineneintritt: 550 °C, 198 bar; Turbinenaustritt: 440 °C, 79 bar) mit überkritischem CO2 verwenden. Die Turbine treibt neben dem Generator zur Stromerzeugung zwei Verdichter zur Druckerzeugung an. Das Abgas der Turbine wird benutzt um den Gasstrom vor dem Eintritt in den Salz/Gas-Wärmeübertrager vorzuwärmen. Durch diese sog. „regenerative Vorwärmung“ verbessert sich der Wirkungsgrad ganz erheblich. Der Wirkungsgrad des LFTR soll auch bei trockener Luftkühlung über 40% betragen. Ein Vorteil für trockene Landstriche.

Als Hauptgrund für die Abkehr von Wasser als Arbeitsmedium, wird die relativ hohe Produktion von Tritium bei diesem Reaktorkonzept genannt. Reagiert es mit Sauerstoff, ergibt sich „radioaktives Wasser“, welches sich praktisch immer mehr im Wasserkreislauf (Halbwertszeit 12,3 Jahre) anreichern würde. Hingegen ist es relativ einfach, dieses Wasser aus dem CO2. zu entfernen.

Die Chemiefabrik im Kraftwerk

Der LFTR ist ein Brutreaktor mit integrierter Aufbereitung. Es ist nicht einfach ein Kernkraftwerk, das mit Thorium betrieben wird. Das Konzept des flüssigen Brennstoffs (Salzschmelze) erfordert eine kontinuierliche Entfernung der Spaltprodukte und eine kontinuierliche Zuführung von frischem Brutmaterial (Thorium) und Spaltstoff (erbrütetes Uran-233).

Aus dem Brutkreislauf wird kontinuierlich das Protactinium und das Uran-233 abgeschieden. Zu diesem Zweck wird flüssiges Wismut, in dem metallisches Thorium und Lithium gelöst sind, mit einem Teilstrom des Brutmaterials vermischt. Chemisch betrachtet (reductive extraction), „tauschen“ Thorium und Lithium mit dem Protactinium und Uran die Plätze. Das nun gereinigte Salz, wird mit Thorium und Lithium ergänzt dem Reaktor wieder zugeführt.

Das Wismut wir in einem weiteren Schritt wieder „gereinigt“, in dem alle in ihm gelösten Metalle elektrolytisch oxidiert werden. Sie werden einem Lagertank zugeführt, in dem weiterhin Protactinium (Halbwertszeit 27 Tage) zu Uran zerfallen kann. Das so gereinigte Wismut wird in einer weiteren Zelle elektrolytisch reduziert und der Waschkolonne für das Brutmaterial erneut zugeführt.

Der Strom aus dem Lagertank, wird in einem weiteren Verfahrensschritt mit gasförmigem Fluor in Kontakt gebracht. Hierdurch bildet sich gasförmiges Uranhexafluorid, das so leicht abgezogen werden kann. Die Restflüssigkeit wird an geeigneter Stelle dem vorher beschriebenen Kreislauf wieder zugeführt.

Das Uranhexafluorid wir in einem weiteren Verfahrensschritt mit Wasserstoff reduziert, damit es anschließend dem Brennstoffkreislauf des Reaktors zugeführt werden kann.

Ähnlich muß auch das Brennstoffsalz behandelt werden. Ein Teilstrom wird abgezogen und einem Tank zugeführt, in dem die besonders kurzlebigen Spaltprodukte schon mal vorab zerfallen können. Dies senkt die radioaktive Strahlung in der „Chemiefabrik“ ganz beträchtlich. Anschließend wird mit gasförmigem Fluor Uranhexafluorid gebildet, welches relativ einfach abgeschieden werden kann. Es wird mit dem vorher beschriebenem Strom aus der Aufbereitung des Brutmaterials zusammengeführt.

Das so behandelte Brennstoffsalz wird mit in Wismut gelöstem Lithium reduziert und so von den Spaltprodukten befreit. Die Spaltprodukte haben die Plätze des Lithium in der Metallschmelze eingenommen und das Lithium ist in der Form von Lithiumfluorid an das Brennstoffsalz übergegangen. Die Spaltprodukte müssen wieder aus dem Wismut abgeschieden werden und in eine sicher lagerfähige Form überführt werden.

Die chemischen Prozesse sind hier nur sehr grob beschrieben worden. Sie sind recht komplex und bedürfen noch einer umfangreichen Entwicklungsarbeit bis sie großtechnisch und im Alltagsbetrieb zuverlässig anwendbar sind. Sie sind keinesfalls einfacher als das Purex-Verfahren – nur eben ganz neu. Unter den speziellen Randbedingungen der Kerntechnik, wird man realistisch von Jahrzehnten ausgehen müssen.

Die Abgasstrecke

Bei der Kernspaltung entstehen zahlreiche Gase und Edelgase. Bisher ging man davon aus, diese möglichst lange und sicher in den Brennstäben einzuschließen. Sie sollten erst nach vielen Jahren in der Wiederaufbereitungsanlage kontrolliert austreten. Bei einer Salzschmelze ist dies gar nicht möglich. Die Edelgase gehen auch keine chemische Verbindung ein, sondern verlassen an irgendeiner ungewünschten Stelle das Salz.

Es ist daher geplant, einen Teilstrom der Salzschmelze mit Helium zu durchspülen. Die radioaktiven Gase gehen dabei in das Helium über. Dieser Abgasstrom soll in einer Absorptionsstrecke (gekühlte Aktivkohle) 47 Stunden gehalten werden, bevor er erneut zur Spülung eingesetzt wird. Ein Teilstrom wird für 90 Tage gelagert, damit das radioaktive Xenon und Krypton – mit Ausnahme von Kr-85 mit einer Halbwertszeit von 10,7 Jahren – zerfallen kann. Anschließend wird das Gas durch Abkühlung verflüssigt und in Xenon (Handelsprodukt), Krypton (zur weiteren Lagerung) und Helium (zur Wiederverwendung) getrennt.

Schlusswort

Die „Molten-Salt“-Reaktoren stellen ein weiteres vielversprechendes Reaktorkonzept dar. Ihre Vorteile liegen in der hohen Betriebstemperatur bei geringem Druck und der eleganten Erschließung einer weiteren Energiequelle, in der Form von Thorium. Allerdings sind beide Punkte keine „Killerapplikation“: Hohe Temperaturen werden nur in der industriellen Anwendung benötigt. Zur Stromproduktion – und das ist bis auf weiteres die Domäne der Kerntechnik – sind sie nicht zwingend erforderlich. Thorium läßt sich auch in anderen, bereits erprobten Reaktoren (THTR, Candu) nutzen.

Unter den politischen Bedingungen der Kerntechnik, dürfte die Entwicklung bis zur Serienreife, noch mehrere Jahrzehnte dauern. Es ist fraglich, ob sich ein Energieversorger finden dürfte, der das damit verbundene Risiko auf sich nehmen wollte. Auch die „Chemiefabrik“ in der eigenen Regie, dürfte eher abstoßend wirken. Gleichwohl, wird die Entwicklung in USA und China im Moment eher beschleunigt vorangetrieben.

PRISM das moderne Entsorgungszentrum? Teil 2

Bei jeder öffentlichen Diskussion ist der „Atommüll“ der Aufreger schlecht hin. Spätestens an diesem Punkt, kommt meist die Ablehnung jeglicher Nutzung der Kernenergie in Deutschland. Die Propaganda hat hier ganze Arbeit geleistet. Es macht nicht einmal stutzig, daß dies schon in unseren Nachbarländern anders gesehen wird.

Was ist eigentlich Abbrand?

Dieser Begriff hat sich wegen seiner Anschaulichkeit so durchgesetzt. Einen Kernreaktor kann man nur mit der typischen Konzentration von spaltbarem Material – eine übliche Bezeichnung für U235 oder Pu239 – betreiben. Bei Reaktoren mit schwerem Wasser reicht schon Natururan aus, bei Leichtwasserreaktoren ist eine Anreicherung auf 3 bis 5 Prozent nötig und bei schnellen Reaktoren sogar bis zu 20%. Haben die Brennelemente nun eine gewisse Zeit im Reaktor Wärme produziert, würde irgendwann die Kettenreaktion zusammen brechen, wenn man nicht einige Brennelemente auswechseln würde. Angestrebt wird immer ein möglichst hoher Abbrand, was ein anderer Ausdruck für die Spaltung von Kernen ist. Gebräuchliche Maßeinheit hierfür ist MWd/to SM (Megawatt Tage pro Tonne Schwermetall). Wenn man 1gr Uran bzw. Plutonium spaltet, wird ziemlich genau ein MWd – oder 24000 kWh – Wärme frei. Eine gewaltige Menge, mit der man schon mitten in der „Atommüll-Frage“ steckt. 2014 wurde in Deutschland 55970 GWh elektrische Energie durch Windkraft erzeugt. Hätte man diese Strommenge in den Kernkraftwerken erzeugt, hätten dafür rund 7000 kg Uran gespalten werden müssen. Ein Würfel von 72 cm Kantenlänge. Warum also die ganze Aufregung?

Wieso Recycling?

Für den Windstrom wären ungefähr 7 GW Leichtwasserreaktoren (gegenüber 39 GW Windmühlen) nötig gewesen. Dafür hätte man erst einmal über 1000 to Natururan fördern müssen, die nach der Anreicherung zu rund 186 to Reaktorbrennstoff verarbeitet worden wären – der berüchtigte deutsche Atommüll, mit seiner „ungeklärten Entsorgungsfrage“. An dieser Stelle wird schon mal klar, warum „Atomkraftgegner“ monatelang – oft gewalttätig – gegen die einst geplante Wiederaufbereitungsanlage gekämpft haben: 186 to sind mehr als 25 mal so viel, wie 7 to. Gerne wird auch noch das geförderte Natururan dem „zu entsorgenden“ Müll hinzugerechnet und fälschlicherweise behauptet, eine Wiederaufbereitungsanlage würde zusätzlichen Atommüll erzeugen. Flugs ist man nach dieser Zahlenakrobatik auf der Suche nach einem gigantischen Endlager. Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen.

An dieser Stelle ist es an der Zeit, die drei grundsätzlichen Möglichkeiten kurz zu betrachten:

  1. Man verbuddelt alle benutzten Brennelemente in einem „Endlager“. Schon hier gibt es zwei deutlich unterschiedliche Varianten: Die „Schwedische-Lösung“ eines Langzeitlagers hunderte Meter unter Granit. Die Brennelemente werden in Kupferbehälter eingeschweißt und sollen ausdrücklich rückholbar – eventuell erst in Jahrhunderten – eingelagert werden. Die „Deutsche-Endlager-Lösung“ mit dem Anspruch eines „absolut sicheren“ Einschlusses über „geologische Zeiträume“. Wegen dieses Anspruches hat man auch folgerichtig gleich Fachkräfte für Glaubensfragen und nicht Ingenieure mit der Suche betraut.
  2. Man geht – wie z. B. in Frankreich – den Weg über eine Aufbereitung und Wiederverwendung im vorhandenen System. Ein abgebranntes Brennelement eines Druckwasserreaktors enthält immer noch rund 95% Uran, 1% Transurane und 4% Spaltprodukte. Das Uran wird wieder neu angereichert, das Plutonium zu sog. Mischoxid-Brennelementen verarbeitet und lediglich die Spaltprodukte und minoren Aktinoiden verglast und als „Atommüll endgelagert“. Auch dieser bewußt rückholbar, denn er enthält wertvolle Rohstoffe. Nachteil dieses Weges ist die erforderliche Reinheit von Uran und Plutonium, um sie in vorhandenen Leichtwasserreaktoren wieder einsetzen zu können. Alle minoren Aktinoide werden deshalb den Spaltprodukten zugeschlagen und machen damit diesen Atommüll sehr langlebig.
  3. Man betrachtet die abgebrannten Brennelemente als Brennstoff für schnelle Reaktoren. Die dort verwendeten metallischen Brennstoffe haben keine besonderen Anforderungen an die Reinheit. Man kann deshalb zu Aufbereitungsverfahren übergehen, die Uran zusammen mit allen Transuranen (also auch Plutonium und den minoren Aktinoiden) abscheiden. Hier liegt umgekehrt das Bestreben, möglichst reine Spaltprodukte zu erlangen. Man hat damit einen relativ kurzlebigen (Gefährdungspotential einiger Jahrzehnte bis Jahrhunderte) Abfall, der automatisch ein sehr wertvolles „Erz“ ergibt. Eine „Endlagerung“ wäre nicht nur unnötig, sondern eher Verschwendung. Zumal die relativ geringen Mengen (siehe oben) einfach und sicher zu lagern sind.

Grundsätzlich gibt es auch noch andere Wege. Verwendung des abgebrannten Brennstoffes in Schwer-Wasser-Reaktoren. An diesem Weg wird zielstrebig in Korea gearbeitet oder die „Entschärfung“ des Atommülls in Beschleunigern (Versuchsanlage in Belgien) und Spallationsquellen (USA). Nur die Politik in Deutschland, hat sich in einer „Endlösung“ mit „Atomausstieg“ verrannt.

Warum soll „Atommüll“ eigentlich gefährlich sein?

Spaltprodukte wandeln sich über sog. Zerfallsketten um und senden bis zum Erreichen ihres stabilen Endglieds Strahlung aus. Das ist eigentlich überhaupt kein Problem, denn man kann die Quelle leicht und wirksam abschirmen (z. B. Castor-Behälter). Niemand ist gezwungen, Atommüll zu essen. Das mag sich flapsig anhören, ist aber wörtlich zu nehmen. Erst wenn radioaktive Stoffe unmittelbar in den Körper gelangen, können sie gefährlich werden. Dabei kommt es nicht nur auf die Menge, sondern auch den chemischen Zustand an. Plutonium ist z. B. rein chemisch betrachtet, ein Knochengift. Die biologische Verweildauer (bis es ausgeschieden ist) ist z. B. entscheidend abhängig von der Wertigkeit, in der es vorliegt und damit seiner Löslichkeit im Körper. Jod wird selektiv in der Schilddrüse angereichert. Strontium ist dem Kalzium verwandt und ersetzt dies gern in den Knochen usw.

Radioaktive Stoffe können überhaupt erst gefährlich werden, wenn sie in die Biosphäre gelangen und letztendlich über die Nahrungskette in den Menschen. Aber auch dann ist noch die Frage der Dosis zu stellen. Wir haben sehr genaue Kenntnisse über Wege und Wirkungen. Es gibt für jeden Stoff einen Grenzwert z. B. für Trinkwasser. Diese sind ausnahmslos sehr konservativ festgesetzt. Wer sich einmal mit dieser Materie beschäftigt, wird feststellen, daß selbst eine zigfache Überschreitung der Grenzwerte noch zu keiner akuten Gefährdung einer durchschnittlichen Person führt. Wer anderes behauptet, glaubt auch an die heilende Wirkung irgendwelcher esoterischen Amulette. Möge ihm sein Aberglaube erhalten bleiben, aber versuche er nicht, sein Unwissen als Wissenschaft zu verkaufen und anderen Menschen Angst einzujagen.

Wären radioaktive Stoffe auch nur annähernd so gefährlich, wie „Atomkraftgegner“ gern behaupten, wäre die Menschheit längst ausgestorben. Man denke nur an die Kinder der fünfziger Jahre. Es wurden Tonnen radioaktiver Stoffe bei den Kernwaffentests in die Atmosphäre freigesetzt. Noch heute kann man diese Belastungen weltweit in den Knochen und Zähnen der Betroffenen messen. Wohlgemerkt messen, nicht nur vermuten. Wir haben zwar keine direkten Sinne für Strahlung, aber unsere Meßtechnik ist so verfeinert, daß immer die „Isotopenzusammensetzung“ helfen muß, wenn andere forensische Verfahren längst versagt haben.

Wieso unterirdische Lager?

Für die Gefährlichkeit der radioaktiven Abfälle gibt es zwei wesentliche Einflüsse: Zeit und Konzentration. Je länger es dauern würde, bis die radioaktiven Stoffe wieder in die Biosphäre gelangen, je weniger gibt es überhaupt noch von ihnen. Der Zerfall ist durch nichts aufzuhalten und er geht immer nur in die eine Richtung – Umwandlung in stabile Atome. Ein typisches deutsches Brennelement (Anfangsanreicherung 3,3%, Abbrand 34000 MWd/tU) enthält nach der Entladung 3,62 % Spaltprodukte. Bereits nach einem Jahr sind 3% in einem stabilen – also nicht mehr radioaktiven – Zustand. Zu den 0,62% radioaktiven Spaltprodukten kommen noch 0,9% Plutonium und 0,72% minore Aktinoide. Nur die beiden letzten Gruppen, sind sicherheitstechnisch von langfristigem Interesse.

Man verglast nun die Spaltprodukte und die minoren Aktinoide. Diese „radioaktiven Glasblöcke“ würden in 100 000 Jahren etwa zu 2% aufgelöst, wenn sie im Wasser stehen würden. Das ist die erste Barriere. Wenn sie sich so langsam auflösen, würde dies zu sehr geringen Konzentrationen im Wasser führen. Umgangssprachlich wäre das Wasser nur leicht radioaktiv. Jetzt müßte es aber noch mehrere hundert Meter durch etliche Gesteins- und Bodenschichten aufsteigen. Dies geht nicht nur extrem langsam, noch erfolgt es in einer Rohrleitung, sondern durch einen „riesigen Ionentauscher“. Es kommt nur sehr wenig von dem, was unten ins Wasser überhaupt rein geht, auch oben an. Umgangssprachlich filtert der Boden fast alles raus.

Damit kein Mißverständnis entsteht: Sicherheitstechnisch ist es überhaupt kein Problem, radioaktive Abfälle in einem speziellen Bergwerk gefahrlos und „für ewig“ zu vergraben. Allerdings muß diese Lösung einem Ingenieur widerstreben. Warum soll man Papier und Plastikbecher aussortieren, wenn man Brennelemente einfach am Stück wegwirft?

Wie gefährlich ist gefährlich?

Die Maßeinheiten in der Kerntechnik sind für Menschen, die nicht täglich damit umgehen, wenig verständlich. Dies wird von der Betroffenheitsindustrie weidlich ausgenutzt. Genüsslich wird mit riesigen Zahlen an Becquerel und Sievert nur so um sich geschmissen. Eigentlich ist der psychologische Trick einfach durchschaubar: So schrecklich viel, muß doch einfach gefährlich sein. Es kann also nicht schaden, die Angelegenheit etwas auf die Ebene der Alltagserfahrungen zurück zu holen.

Fangen wir mal mit der guten alten Maßeinheit der Madame Curie an: 1 Curie (Ci) entspricht 3,7 x 1010. Becquerel (Bq) oder anschaulich 1 Gramm Radium. Radium wurde bis in die 1930er Jahre in Medikamenten, Kosmetika und Leuchtstoff für Instrumente und Uhren verkauft. Bis man seine krebserzeugende Wirkung (in hoher Konzentration) erkannte.

Der Abfall aus der Aufbereitung von Brennelementen aus Leichtwasserreaktoren mit allen Spaltprodukten, minoren Aktinoiden und einem Rest von 0,5% Uran und 0,5% Plutonium (alles bezogen auf den ursprünglichen Gehalt im Brennstab vor der Aufbereitung) hat ein Jahr nach der Entladung ziemlich genau eine Radioaktivität von 106 Ci pro Tonne Schwermetall .(im ursprünglichen Brennstab). Die Radioaktivität der Spaltstoff-Lösung (nicht des Glasblockes!) entspricht also ziemlich genau der von Radium. Entscheidend ist, daß die Radioaktivität der Aktinoide zu diesem Zeitpunkt erst 1% ausmacht. Sie sind halt sehr langlebig und tragen damit noch wenig zur Aktivität bei. Nach etwa 500 Jahren ist der Schnittpunkt erreicht: Die Aktivität der Spaltprodukte entspricht der Aktivität der Aktinoide mit deren Zerfallsprodukten. Die Radioaktivität des Atommülls aus der Wiederaufbereitung ist auf rund 0,01% des ursprünglichen Wertes nach der Entladung abgefallen. Wären keine langlebigen Aktinoide im Abfall enthalten, wäre jetzt die Gefahr faktisch vorbei.

Ein anderer Versuch zur Veranschaulichung ist der Vergleich zwischen der Aktivität des Atommülls mit der ursprünglich zur Energieerzeugung geförderten Uranmenge. Uranerz enthält auch immer „Atommüll“, da durch die spontanen Zerfälle auch Spaltprodukte erzeugt worden sind (z. B. Radon). Diese Belastung mit Radionukliden in Gebieten mit Uranlagerstätten (z. B. Sachsen, Tschechien etc.) ist offensichtlich für den Menschen tolerierbar. Wäre das nicht der Fall, müßten überdurchschnittlich viele Sterbefälle in diesen Gebieten nachweisbar sein. Wirft man komplette Brennstäbe weg, wird diese Aktivität erst nach rund 30 000 Jahren erreicht. Solange hat man also zusätzliche Radioaktivität in die Natur eingebracht. Spaltet man das Plutonium in der Form von Mischoxid-Brennelementen in Leichtwasserreaktoren, wird dieser Zeitraum auf rund 1000 Jahre verkürzt. Ein doppelter Ertrag: Das langlebige Plutonium ist weg und für die damit zusätzlich erzeugte Energie braucht kein zusätzliches Uran gefördert werden.

Ein weiterer Vergleichsmaßstab ist Pechblende. Verbuddelt man komplette Brennstäbe, wird die Aktivität von Pechblende für diesen Atommüll auch nach über einer Million Jahren nicht erreicht. Verbuddelt man den verglasten Abfall nach der Wiederaufbereitung, wird der Wert schon nach etwa 80 000 Jahren erreicht. Entfernt man auch noch die Aktinoiden aus diesem Abfall, nach wenigen hundert Jahren (je nach Reinheit). An dieser Stelle dürfte jedem die Bedeutung der „Entsorgungsfrage“ für Pseudo-Umweltschützer klar geworden sein. Als die Grünen die Wiederaufbereitung in Deutschland gekippt hatten, glaubten sie das Totschlagargument gegen die Kernenergie gefunden zu haben: Die selbsterschaffene Gefahr für geologische Zeiträume, die man angeblich den Nachfahren aufbürdet. Politisch besser zu verwenden, als jeder Hexenwahn im Mittelalter.

Zusammenfassend kann an dieser Stelle noch einmal festgehalten werden:

  • „Atommüll“ kann selbst in seiner ursprünglichen Form – als abgebrannte Brennelemente – problemlos und ohne Gefahr für Mensch und Umwelt unterirdisch oder auch oberirdisch in technischen Bauten gelagert werden. Radioaktivität ist natürlich und klingt immer von allein ab (anders als z. B. Asbest oder Quecksilber, die in der Tat „ewig bleiben“). Die Gefahr, die von radioaktiven Stoffen ausgeht, ist somit zeitlich begrenzt. Die „ethische Dimension“ bezieht sich deshalb weniger auf die momentane Gefahr, als auf den Aufwand und die daraus resultierenden Kosten für zukünftige Generationen. Es ist das ewig gleiche Problem, einer jeden Mülldeponie. Kerntechnik ist in diesem Sinne keinesfalls anders, als z. B. Chemie, Landwirtschaft (z. B. Bodenerosion) oder Fischerei (unwiederbringliche Ausrottung ganzer Arten) zu betrachten. Jede Form der Nutzung von „Natur“ verändert diese dauerhaft.
  • Die Kerntechnik ist der einzige Industriezweig, der sich von der ersten Stunde an, Gedanken über seine Umwelteinflüsse gemacht hat. Der Gedanke des „Recycling“ wurde überhaupt erst durch sie populär. Man vergleiche dies mal mit anderen Zweigen der Energietechnik, in denen bis heute, nach wie vor, immer nur auf Umweltschäden reagiert wird. Paradebeispiel ist die Windkraft-Industrie (Vögel, Fledermäuse, Schweinswale, Infraschall usw.) im Verleugnen absehbarer Schäden. Kohle- und Ölindustrie sind dagegen bereits zu aktiven Umweltschützern mutiert.
  • Kernenergie ist unbestritten der sicherste Zweig der Energieerzeugung (Arbeitsschutz = Menschenschutz). Von Anfang an, war man bestrebt, die Nachteile so gering wie möglich zu halten. In welchem anderen Industriezweig gibt es sonst den Grundsatz, die Auswirkungen stets so gering wie möglich zu halten – unabhängig von den Kosten? Im Strahlenschutz und bei der Abgabe von radioaktiven Stoffen bereits mit absurden Auswirkungen.

Der Vorwurf einer angeblich ungelösten Entsorgungsfrage, ist jedenfalls absurd bis böswillig. Je nach Standpunkt und Bildungsgrad.

Das Purex-Verfahren

Wie der Name schon sagt – Plutonium-Uranium Recovery by Extraction – dient der Purex-Prozeß zur Gewinnung von Uran und Plutonium mit möglichst hoher Reinheit. Alles andere (alle Spaltprodukte ob stabil oder radioaktiv und die minoren Aktinoide) ist Abfall. Günstig, wenn man daraus neue Brennelemente für Leichtwasserreaktoren herstellen will, ungünstig für den „Atommüll“, der dadurch besonders langlebig wird.

Es handelt sich um eine Flüssig-Flüssig-Extraktion: Es wird Wasser und Öl gemischt. Diese beiden Flüssigkeiten trennen sich wieder von allein. Findet man nun ein Stoffpaar mit möglichst unterschiedlichem Lösungsvermögen für den gewünschten Stoff, hat man eine einfache Möglichkeit zur Gewinnung gefunden. Es wird aus dem abgenutzten Brennstoff mittels konzentrierter Salpetersäure eine wässrige Lösung hergestellt. Dieses genau eingestellte „Salzwasser“ (Nitrate) wird nun in einer Pulskolonne intensiv mit dem „Öl“ gemischt. Das „Öl“ besteht aus rund 70% Kerosin, in dem rund 30% Tributylphosphat aufgelöst sind. Dieses „Öl“ löst Uran und Plutonium wesentlich besser als andere Salze. Im ersten Schritt gehen etwa 98% davon von der wässrigen in die organische Lösung über.

Für das Verständnis ist wichtig, daß die Löslichkeit relativ ist. Mit anderen Worten, es geht nie alles Uran und Plutonium von der wässrigen Lösung über, dafür aber auch immer einige Spaltprodukte. Man muß das Verfahren also mehrmals wiederholen (Kaskade). Üblich ist eine geforderte Reinheit von 99,9% bei den Endprodukten Uran und Plutonium. Andererseits geht man von bis zu 0,5% Uran und 0,5% Plutonium (beides auf die ursprüngliche Menge im Brennstab bezogen) im Abfallstrom aus. Man hat also nicht nur die ursprünglichen rund 0,07% minoren Aktinoide (Neptunium, Americium, Curium) sondern auch bis zu 0,05% Uran und 0,0005% Plutonium als langlebige α-Strahler im Abfall. Zusammen mit den rund 3,06% Spaltprodukten. Diese Brühe wird nun aufkonzentriert und später verfestigt (kalziniert) und in Glas eingeschmolzen. Das ist das Produkt, welches z. B. aus England und Frankreich zur Endlagerung als „Atommüll“ nach Deutschland zurück geliefert wird. In diesem „Atommüll“ entspricht der Anteil an α-Strahlern also etwa 4%.

Eine Wiederaufbereitungsanlage ist kein Kernkraftwerk, sondern eine reine Chemiefabrik und erzeugt damit auch keinen „Atommüll“. Dies wird immer wieder fälschlich behauptet. In einer Wiederaufbereitungsanlage werden die bereits angelieferten radioaktiven Stoffe lediglich umsortiert und anders konditioniert (z. B. verglast).

Pyrometallurgische Verfahren

Will man den wiedergewonnenen Brennstoff nicht wieder in Leichtwasserreaktoren, sondern in schnellen Reaktoren verwenden, erhält man ein gänzlich anderes Anforderungsprofil. Die Reinheit von Uran und Plutonium spielt – wegen der generell kleineren Einfangquerschnitte – nur noch eine untergeordnete Rolle. Es wird damit möglich, alle Aktinoiden zusammen abzutrennen und als Brennstoff erneut zu verwenden. Es spielt auch keine Rolle, ob einige Spaltprodukte mit durchrutschen. Viele sehen den Vorteil dieses Brennstoffgemisches im Schutz gegen die Weiterverbreitung von Kernwaffen: Es ist ohnehin für den Bau von Kernwaffen völlig ungeeignet. Darüber hinaus, ist der Transport und die Handhabung wegen der erhöhten Strahlung kaum im Verborgenen zu machen.

Die abgenutzten Brennstäbe werden in geschmolzenem Salz aufgelöst. Dabei trennen sich bereits alle leicht flüchtigen Bestandteile (z. B. Edelgase) ab. In das Salzbad tauchen die Elektroden ein. Die Aktinoiden scheiden sich gemeinsam an der Kathode als eine Art „Metallschwamm“ ab. Die Spaltprodukte bleiben im Salzbad gelöst und reichern sich dort an. Aus ihr werden zwei verschiedene „Abfallformen“ zur Lagerung hergestellt: Eine metallische Matrix, in der alle Edelmetalle eingelagert werden und ein keramisches Produkt, in dem die Spaltstoffe in mineralischer Form (Metalle der I. und II. Gruppe und die Halogene) vorliegen. Beides sehr stabile Formen, die direkt einem unterirdischen Lager zugeführt werden könnten. Man könnte sie dort in Bohrlöchern versenken. Vielleicht sollte man hier noch einmal daran erinnern, daß diese Form des Atommülls nach wenigen hundert Jahren nur noch wie gewöhnliches Uranerz strahlt – also einem Stoff, mit dem Bergleute ohne große Schutzmaßnahmen umgehen können.

Der „Metallschwamm“ der Kathode wird nun unter Schutzgas in einem Induktions-Tiegel eingeschmolzen und üblicherweise mehrere Stunden bei bis zu 1400 °C gehalten. Die Schmelze homogenisiert sich. Es können auch weitere Legierungsbestandteile hinzugefügt werden. Schließlich erfordert jeder Brennstab im Reaktor (idealer weise) eine etwas andere Zusammensetzung. Die Legierung kann auch in Formen aus Graphit zu Barren vergossen werden. Üblicherweise werden aber direkt dünne „Stäbe“ zur Herstellung neuer Brennstäbe abgegossen. Ein Verfahren, ist das Gießen in dünne Rohre aus Quarzglas, die während des Abgusses in einer Zentrifuge rotieren. Durch die Zentrifuge bekommt man besonders hochwertige Stäbe. Das Ausformen ist durch Zerschlagen der Glasröhren besonders einfach.

Die Brennstäbe werden aus Stahlrohren (H9) gebildet, in die nun die gegossenen Stücke eingesteckt werden. Der Querschnitt der Gußstücke beträgt nur etwa 75% der Innenfläche der Rohre, da der Brennstoff durch die Bestrahlung sehr stark anschwillt. Damit überhaupt eine gute Wärmeübertragung zwischen Brennstoff und Hülle stattfinden kann, werden die Stäbe mit flüssigem Natrium ausgegossen. Dies geschieht sehr langsam auf Rütteltischen, damit auch kleinste Gasblasen aufsteigen können. Abschließend werden die Rohre gasdicht verschweißt. Die Rohre sind nicht auf ihrer ganzen Länge mit Brennstoff gefüllt, sondern haben oben einen Gasraum als Puffer, in dem sich später Spaltgase ansammeln können. Dieser Gasraum ist mit einer individuellen Gasmischung gefüllt. Wird ein Brennstab im Reaktor undicht, kann man ihn später durch eine Analyse der Isotopenzusammensetzung des „Abgases“ genau identifizieren. Solche Messmethoden sind für den Betrieb sehr wichtig, da flüssiges Natrium nicht durchsichtig ist, was Inspektionen sehr erschwert.

Man muß sich immer vor Augen halten, daß die Abbrände bei schnellen Reaktoren sehr viel höher als bei Leichtwasserreaktoren sind. Man geht dadurch auch mit wesentlich kleineren Brennstoffmengen (bezogen auf die erzeugte elektrische Energie) um. Eine solche Wiederaufbereitung und Brennstoffproduktion hat gegenüber den klassischen industriellen Anlagen eher den Charakter einer Manufaktur. Die Abschirmung ist kein Problem – es genügen übliche heiße Zellen. Die Handhabung ebenfalls nicht, da es sich um recht überschaubare Vorgänge handelt, die sich leicht automatisieren lassen. Es spricht also nichts dagegen, eine solche Anlage direkt auf dem Gelände des Kraftwerks zu errichten. Transport- und Sicherheitsrisiken werden damit erheblich verringert. Den Abfall könnte man ebenfalls in Bunkern auf dem Gelände lagern. Da die Strahlung recht schnell abklingt, könnte man die Entscheidung zwischen verbuddeln oder nutzen bis zum endgültigen Abbruch der gesamten „Energieerzeugungsanlage“ vertagen. Immerhin sind rund 50 % der Spaltprodukte schon mal seltene Erden.

PRISM das moderne Entsorgungszentrum? Teil 1

Von den populistischen „Argumenten“ gegen die Kernenergie, ist praktisch nur noch eines öffentlichkeitswirksam: Die „ungelöste Entsorgungsfrage“. Aus diesem Grunde, wird in den Medien – zumindest in Deutschland – nur äußerst zurückhaltend über Entwicklungen berichtet, die über das bloße Vergraben hinausgehen.

In England wird seit einigen Jahren ernsthaft über den Bau des sogenannten Power Reactor Innovative Small Module (PRISM) von GE-Hitachi diskutiert. Hintergrund ist der stetig wachsende Plutoniumberg aus der Wiederaufbereitungsanlage. Inzwischen lagern zwischen 100 und 150 Tonnen auf der Insel. Es geht dabei um die sinnvollste Verwendung. Ein „verbuddeln und vergessen“ nach deutschen Vorstellungen, scheidet für GB ohnehin aus. Vielmehr ist man bestrebt, das Gefahrenpotential des „Atommülls“ auf einige hundert Jahre zu begrenzen. Ein Zeitraum, den man unstrittig durch technische Bauten sicher beherrschen kann. Man holt dadurch das Problem von der wenig fassbaren moralischen Ebene – irgendwelcher „Ethikkommissionen“ – auf die berechenbare Ebene der Ingenieurwissenschaften zurück.

Ein Weg – und beileibe nicht der einzige – ist die Nutzung und Beseitigung abgebrannter Brennelemente durch einen mit Natrium gekühlten Reaktor mit schnellem Neutronenspektrum und metallischem Brennstoff: Dem PRISM. Nichts von der Erfindermesse, sondern ein Stück erprobter Technik. Sein unmittelbarer Vorläufer, der EBR II, war 30 Jahre erfolgreich in Betrieb (bis 1994). Ein PRISM-Kraftwerk mit 1866 MWel würde rund zwei Tonnen abgebrannter Brennelemente pro Jahr verbrauchen und damit die gleiche Menge Strom erzeugen, wie Kohlekraftwerke durch die Verbrennung von sechs Millionen Tonnen Steinkohle.

Warum schnelle Neutronen?

Mit hinreichend schnellen Neutronen kann man alle schweren Kerne spalten. Ausdrücklich auch U238, alle Plutoniumisotope und die minoren Aktinoiden (Americium, Curium, Neptunium usw.). Letztere sind für die Langlebigkeit des Atommülls verantwortlich. Gelingt es sie zu spalten, bleiben nur noch Spaltprodukte mit einer Halbwertszeit von unter 30 Jahren übrig. Allerdings hat die Sache einen entscheidenen Harken: Die Reaktionsquerschnitte sind nicht nur stoffabhängig, sondern auch sehr stark energieabhängig. Mit anderen Worten, nimmt die Wahrscheinlichkeit für eine Spaltung mit schnellen Neutronen stark ab.

Eine selbsterhaltende Kettenreaktion läßt sich nur mit U235 (in der Natur vorkommend) und U233. (aus Thorium erbrütet), sowie Pu239 (aus Uran erbrütet) aufrecht erhalten. Auch deren Spaltquerschnitte sind für langsame thermische Neutronen um Größenordnungen geeigneter. Will man also einen schnellen Reaktor bauen, braucht man wesentlich höhere Anteile an Spaltmaterial. Allerdings steigt auch die Anzahl der freigesetzten Neutronen mit der Energie der spaltenden Neutronen an.

An dieser Stelle ergeben sich die drei Varianten des PRISM-Reaktors, die sich nur durch die Zusammensetzung des Kerns unterscheiden:

  1. Der Brenner. Er verbraucht – wie ein Leichtwasserreaktor – mehr Spaltstoff als beständig neu entsteht. Man muß diese Verluste stetig aus abgebrannten Brennelementen ersetzen. Dies wäre eine reine „Abfallverbrennungsanlage“.
  2. Der Selbsterhalter. Er stellt ziemlich genau so viel Pu239 beim Betrieb gleichzeitig her, wie er auch verbraucht. Die Spaltungen müssen nur durch U238– z. B. aus dem Abfall der Anreicherungsanlagen – ergänzt werden.
  3. Der Brüter. Dies ist die wohl bekannteste Variante. Ein solcher Kern erzeugt mehr Pu239., als er selbst verbraucht. Entscheidendes Maß ist bei diesem Typ die sogenannte Verdoppelungszeit. Damit ist die Zeitdauer gemeint, in der ein Reaktor so viel Überschussplutonium produziert hat, wie man braucht, um damit einen zweiten Reaktor in Betrieb nehmen zu können. Diese Variante wird erst attraktiv, wenn die Preise für Natururan explodiert sind. Also erst in sehr ferner Zukunft.

Es ist bei allen drei Varianten sinnvoll, die Spaltprodukte von Zeit zu Zeit abzutrennen. Allerdings haben sie nicht die Bedeutung, die sie bei Leichtwasserreaktoren haben, da ihre Einfangquerschnitte (und dadurch verursachte Neutronenverluste) für hohe Energien recht klein sind. Der Abbrand kann bei schnellen Reaktoren rund fünfmal so hoch sein, wodurch sich eine Wiederaufbereitung wesentlich vereinfacht und nicht so oft geschehen muß (Kosten).

Warum Natrium als Kühlmittel?

Wenn man einen schnellen Reaktor bauen will, muß man ein Kühlmittel verwenden, das Neutronen praktisch nicht abbremst. In diesem Sinne, kommen praktisch nur drei Stoffe in Frage: Natrium, Blei und Helium. Natrium besitzt in allen relevanten Eigenschaften klare Vorteile, sodaß es nicht verwunderlich ist, daß praktisch alle schnellen Reaktoren (über 20 in 8 Ländern) mit Natrium gekühlt wurden. Einzige Ausnahme bilden die sieben Blei-Wismut-Reaktoren der U-Boote der Alpha-Klasse in der Sowjetunion. Sie sind gerade an den Eigenschaften des Blei gescheitert (hohe Schmelztemperatur, die eine ständige Beheizung erfordert; große Korrosionsprobleme; hohe Pumpleistung; starke Aktivierung durch die Bildung von Po210. Je eingehender man sich mit Kühlmitteln beschäftigt, gibt es für ein Kernkraftwerk (zur reinen Stromerzeugung) lediglich zwei optimale Kühlmittel: Wasser für thermische und Natrium für schnelle Reaktoren.

Natrium ist wegen seines elektrischen Widerstandes hervorragend für den Bau von elektromagnetischen Pumpen ohne bewegliche Teile und damit ohne Dichtungsprobleme geeignet.

Bei Natrium braucht man immer einen zusätzlichen Zwischenkreislauf. Der Neutronenfluß bildet Na24, welches ein harter γ.-Strahler ist. Das primäre Natrium muß deshalb gut abgeschirmt werden. Außerdem besteht bei Leckagen im Dampferzeuger die Gefahr der Wasserstofferzeugung und der Bildung von NaOH. Wasserstoff ist ein guter Moderator, der zu einer Beschädigung des Kerns durch einen Reaktivitätssprung führen könnte.

Die Gefahr von Natriumbränden wird meist überschätzt. Natrium hat eine hohe Verdampfungswärme bei hoher Verdampfungstemperatur. Dies führt zu einer geringen Verdampfungsrate während der Verbrennung – dem Feuer mangelt es an Nahrung. Die Verbrennung von Natrium in Luft setzt nur etwa ein Viertel der Energie, wie Benzin frei. Bei dem klassischen Brandversuch in einer offenen Wanne, bilden sich nur wenige Zentimeter hohe Flammen und in einem Meter über den Flammen herrscht nur eine Temperatur von rund 100 °C. Die bei der Verbrennung entstehenden Na2 O und Na O – Aerosole reagieren in Luft unter Anwesenheit von Wasserdampf und Kohlendioxid weiter zu Na OH und Na2 CO3. Diese Aerosole erfordern anschließend gründliche Reinigungsarbeiten, da sie elektrische Anlagen zerstören können und giftig sind.

Natrium besitzt sehr gute Korrosionsschutzeigenschaften, da es leicht mit Sauerstoff reagiert. Erst oberhalb von 50 ppm besteht für gewisse Stähle eine Korrosionsgefahr im flüssigen Natrium. Dieser Wert ist problemlos über eine Kältefalle (Im Prinzip ein Topf, durch den ein Teilstrom von weniger als 5% des Kreislaufes sehr langsam hindurch strömt) auf 10 bis 25 ppm zu halten. In der Kältefalle kristallisiert das Na2Oa bei unter 200 °C aus.

Warum metallischer Brennstoff?

Metallische Brennstoffe ermöglichen die höchsten Brutraten, da sie vollständig aus spaltbarem und brutfähigen Material bestehen könnten. Sie liefern das härteste Neutronenspektrum, da sie nur aus den schwersten Kernen bestehen. Die Folge ist, daß rund 25% der erzeugten Energie aus der direkten Spaltung von U238. stammen können.

Metalle sind ausgezeichnete Wärmeleiter und vertragen sehr schnelle Temperaturänderungen. Im Gegensatz dazu sind Uranoxide – wie sie in allen Leichtwasserreaktoren verwendet werden – Keramiken, mit bekannt schlechter Wärmeleitung und Sprödigkeit. Sie können im Inneren bereits aufschmelzen, wenn sich ihre Randtemperatur noch kaum geändert hat und können bei schockartiger Abkühlung wie eine Teetasse zerspringen.

Metallische Brennstoffe vertragen sich ausgezeichnet mit dem flüssigen Natrium. Chemische Reaktionen, wie zwischen den Brennstabhüllen aus Zr bei Leichtwasserreaktoren und Wasserdampf gibt es nicht (Wasserstoffexplosionen in Fukushima).

Metallischer Brennstoff schwillt durch die Strahlenbelastung um bis zu 30% an. Die Brennstäbe müssen deshalb sehr viel Raum für Spaltgase besitzen. Der notwendige Anfangsspalt zwischen Hüllrohr und Brennstoff wird mit Natrium als Wärmebrücke ausgefüllt.

Man kann bei Metallen die Eigenschaften durch Legierung gezielt verändern. Plutonium hat eine zu geringe Schmelztemperatur. Der Brennstoff kann mit den Legierungsbestandteilen der Stahlhülle schädliche Eutektika bilden usw. Dies alles, hat in den USA Jahrzehnte Forschung und Entwicklung und den Test von hunderttausenden von Brennstäben erfordert. Als Optimal hat sich eine Brennstofflegierung aus Uran und Plutonium mit etwa 10% Zr in einer Hülle aus austenitischem Stahl herausgestellt.

S wie small

Von Anfang an, stand bei der Entwicklung die geometrische Größe des Reaktors im Vordergrund: Man wollte den kompletten nuklearen Teil in einer Fabrik fertigen und testen und anschließend (möglichst) mit der Eisenbahn zum Standort transportieren. Alle Einbauten, der Kern, die Pumpen, die Zwischen-Wärmeübertrager, die Lademaschine mit dem Zwischenlager und die Regelstäbe werden in einen Topf aus Edelstahl eingebaut und mit dem Deckel gasdicht verschweißt. Diesen Reaktorbehälter umschließt noch ein zweiter Sicherheitsbehälter und die Luftkühlung. All das, wird in einer Fabrik zusammengebaut und getestet und anschließend zur Baustelle transportiert und dort in das örtlich gefertigte Betonsilo eingesetzt. Damit ist die geplante Leistung auf etwa 840 MWth. begrenzt. Durch die Serienfertigung in einer spezialisierten Fabrik verspricht man sich einen bedeutenden Kostenvorteil.

M wie modular

Die Modularität bezieht sich sowohl auf einen Block selbst, wie auch auf ein Kraftwerk:

  • Jeder Block besteht aus dem nuklearen Teil in einem unterirdischen Betonsilo, der oberirdischen Dampferzeuger-Anlage und den konventionellen Stromerzeugungsanlagen.
  • Ein komplettes Kernkraftwerk könnte z. B. eine elektrische Leistung von 1866 MWel haben und müßte dann aus sechs Reaktoren (je 840 MWth) bestehen, die jeweils paarweise auf eine Turbine (je 622 MWel.) wirken und insgesamt drei Turbinen haben. Alle sonstigen Einrichtungen (Werkstatt, Sozialgebäude usw.) würden gemeinsam genutzt. Ein solches Kraftwerk könnte auch eine integrierte Wiederaufbereitungsanlage beinhalten.

Die interne Unterteilung zielt auf eine potentielle Kosteneinsparung ab: Lediglich der Reaktor in seinem Betonsilo müßte dem Sicherheitsstandard „nuclear grade“ entsprechen. Bereits die Dampferzeugungsanlage in ihrem separaten Gebäude sollte – nach Meinung von GE – nur einen „gehobenen Industriestandard“ haben. In wie weit die Genehmigungsbehörden dieser Argumentation folgen werden, ist noch nicht ganz eindeutig zu beantworten.

Die Zusammenfassung von zwei Reaktoren mit Dampferzeuger und einer Turbine zu jeweils einer Einheit, zielt auf eine hohe Verfügbarkeit und einen kostengünstigen Ausbau eines Standortes ab. Sobald eine Einheit fertig ist, kann diese bereits Geld verdienen, während der Ausbau des Kraftwerkes weiter läuft. Die heute übliche Vorfinanzierung der gesamten Summe entfällt. Später, hat das Kraftwerk eine sehr hohe Verfügbarkeit bei guten Wirkungsgraden. Letztendlich muß die Praxis zeigen, welcher Weg der günstigere ist. Rußland beispielsweise, versucht es über möglichst große Blöcke.

Das Sicherheitskonzept

PRISM setzt konsequent auf eine passive oder inhärente Sicherheitstechnik. Der völlige Stromausfall (Station-Blackout) ist kein Problem mehr. Es wird lediglich eine elektrische Leistung von weniger als 200 kW für Instrumentierung, Notbeleuchtung, Rechner und Bildschirme usw. benötigt. Diese kann problemlos über Batterien bereitgestellt werden. Notstromdiesel (als Sicherheitstechnik) sind nicht mehr nötig. Die Nachzerfallswärme wird ausschließlich über eine Luftkühlung mit Naturzug abgeführt. Dazu wird die Wärme über das Reaktorgefäß und den Sicherheitsbehälter an einen umgebenden Luftspalt abgegeben. Die erwärmte Luft steigt über vier Kamine auf. Das System ist so bemessen, daß auch bei erheblichen Verstopfungen (z. B. durch Erdbeben oder Anschläge) oder dem kompletten Ausfall von zwei Kaminen oder einem völligen Verschluß der Zuluftöffnungen die Kühlung stets gewährleistet ist. Selbst bei einem völligen Ausfall von 36 Stunden tritt noch keine Kernschmelze auf. Ein Unfall wie in Fukushima, wäre damit ausgeschlossen.

Der gesamte Reaktor ist elastisch auf Federn und Dämpfern gelagert. Da sich alle Rohrleitungen und Pumpen etc. in dem Reaktorgefäß befinden, ergibt sich ein optimaler Erdbebenschutz. Dies gilt auch für Flugzeugabstürze und sonstige Einwirkungen von außen, da sich der Reaktor in einem unterirdischen Betonsilo befindet. Die Verbindung zum Dampferzeuger besteht aus Vor- und Rücklauf des Natrium-Zwischen-Kreislaufes, die ebenfalls in einem Betongraben verlegt sind. Diese Leitungen sind als Rohr in Rohr Konstruktion ausgeführt, um Natrium-Leckagen zu verhindern.

Der Dampferzeuger ist ebenfalls mit einem Mantel zur Luftführung umgeben. Wenn die eigentliche Kühlung des Kraftwerks ausfällt, kann die Wärme auch darüber abgeführt werden. Dies ist jedoch kein nukleares Sicherheitssystem im engeren Sinne, sondern dient dem Anlagenschutz.

Die Lagerung der Brennelemente

Die Handhabung der Brennelemente verläuft bei diesem Reaktor gänzlich anders als bei Leichtwasserreaktoren. Der Reaktor kann wegen des flüssigen Natriums mit seiner hohen Temperatur und Brandgefahr nicht einfach geöffnet werden. Zuerst wird das Helium als Schutzgas und Ausgleichsraum abgesaugt und durch frisches Gas ersetzt. Damit soll die Gefahr der Freisetzung radioaktiver Gase in den Sicherheitsbehälter vermieden werden. Die fest im Reaktor installierte Lademaschine entnimmt abgebrannte Brennelemente und lagert sie oberhalb des Kerns in ein Lagergestell ein. Anders als bei Leichtwasserreaktoren, verbleiben sie für mindestens 20 weitere Monate zur Abkühlung im Reaktor. Ihre Wärmeentwicklung durch den radioaktiven Zerfall ist dann soweit abgeklungen, daß sie auch ohne spezielle Kühlung keine Temperatur von 400 °C mehr überschreiten können. Dies ist für ihren metallischen Kern und die Hüllrohre aus Stahl kein Problem. Ein Brennelemente-Lagerbecken ist nicht nötig.

Ein vollautomatisches Transportfahrzeug dockt an den Reaktordeckel an, entnimmt die zu entladenden Brennelemente und fährt sie anschließend zum zentralen Lagergebäude.

All das, geschieht vollautomatisch und unter Schutzgas. Trotzdem ist ein Auslegungsstörfall der Brand des Natriums im Reaktor. Der Sicherheitsbehälter oberhalb des Reaktors ist so bemessen, daß er die freigesetzte Energie und die Temperaturen aushält. Automatische Löschanlagen mit Schutzgasen sind vorhanden.

Die Auslegungsstörfälle

Schnelle Reaktoren (SR) und Leichtwasserreaktoren (LWR) unterscheiden sich stark in ihrem Unfallverhalten. LWR stehen unter hohem Druck und werden nahe dem Verdampfungspunkt betrieben. Schon bei einem relativ kleinem Leck baut sich der Druck stark ab und das „Kühlwasser“ verdampft. Die Temperatur im Kern steigt damit steil an und nähert sich schnell den Grenzwerten. Gelingt es nicht, das Kühlwasser schnell zu ersetzen, wird der Kern zerstört (Unfall in Harrisburg). Auch nach erfolgreicher Abschaltung, kann die Nachzerfallswärme noch zur Kernschmelze führen (Unfall in Fukushima). Es kommt im weiteren Verlauf dann zur Reaktion zwischen Wasserdampf und den Brennstabhüllen mit starker Wasserstoffproduktion (zerstörende Explosionen in Fukushima).

Bei einem SR sieht der Ablauf gänzlich anders aus. Die Kombination aus metallischem Brennstoff, Brennstabhüllen aus Edelstahl und Natrium als Kühlmittel ergibt eine sehr gute Wärmeübertragung mit hoher Temperaturbeständigkeit. Chemische Reaktionen zwischen den Unfallbeteiligten sind praktisch nicht vorhanden. Mit anderen Worten: Es wird recht schnell und gleichmäßig heißer im Reaktor. Wegen der hohen Verdampfungstemperatur kann es deutlich heißer werden, ohne daß sich wesentliches ändert. Bei einem LWR reicht selbst die Nachzerfallswärme aus, den Kern zum Schmelzen zu bringen, wenn er nicht mehr mit flüssigem Wasser bedeckt ist. Bei einem SR führt die starke Temperaturerhöhung lediglich zu einem neuen Gleichgewicht zwischen „Notkühlluft“ und Reaktorgefäß. Die neue Gleichgewichtstemperatur ist so bemessen, daß sie sich noch weit von Materialgrenzwerten entfernt einstellt. Der Reaktor ist „inhärent sicher“.

Bei jedem Reaktor führen gewisse Grenzwerte zur sofortigen und automatischen Abschaltung. Beim PRISM fallen zu diesem Zweck sechs Regelstäbe in den Kern ein. Die Kettenreaktion wird dadurch in Sekundenbruchteilen unterbrochen. Zur dauerhaften Abschaltung gibt es noch ein zweites System, das Kugeln aus Borkarbid in den Kern einführt. Insofern unterscheiden sich LWR und SR kaum.

Man geht aber beim PRISM-Reaktor noch einen Schritt weiter, in dem man sich den starken Temperaturanstieg nutzbar macht. Dieser führt zu einer Reihe von Auswirkungen, die neutronenphysikalisch wirken (Dopplereffekt, Dichteänderung des Natrium, Axiale und radiale Ausdehnungen des Brennstoffs, usw.). Wichtig ist die konstruktive Gestaltung, damit der Temperaturkoeffizient der Reaktivität immer negativ bleibt (In Tschernobyl war er positiv!). In Alltagssprache: Je heißer der Reaktor wird, um so schneller bricht die Kettenreaktion von selbst zusammen. Wird die Kühlung – aus welchen Gründen auch immer – unterbrochen, schaltet sich der Reaktor von selbst ab. Er ist also auch im Betrieb „inhärent sicher“.

Der Ausfall der Umwälzpumpen im Reaktor (vier Stück) kann zu einer lokalen Überhitzung führen, die örtlich sogar zu einem Verdampfen des Natriums führen könnte. Dadurch könnte der Neutronenfluß lokal weiter ansteigen und Teile des Kerns beschädigen. Ursache sind die elektromagnetischen Pumpen, die keine rotierenden Massen haben und somit sofort ausfallen, wenn der Strom weg ist (Station-Blackout). Sie werden deshalb mit Synchronmotoren, mit extra großen Schwungmassen, parallel betrieben. Die Synchronmaschinen erzeugen im Normalbetrieb Blindleistung und schalten bei Stromausfall automatisch in den Generatorbetrieb um. So entsteht ein mehrere Minuten dauernder Auslauf der Pumpen, der lokale Überhitzungen verhindert und sanft in einen Naturumlauf überführt.

Versagt auch dieses System, werden die Gasraum-Ausdehner wirksam. Sie funktionieren nach dem Prinzip eines umgedrehten Glas im Spülbecken: Je weiter man es eintaucht, um so kleiner wird das Luftpolster infolge des steigenden Wasserdrucks. Im PRISM spielt nun der Pumpendruck auf das Natrium mit einem Gaspolster aus Argon zusammen. So wie der durch die Pumpen erzeugte Druckanstieg kleiner wird, dehnt sich das Argonpolster aus. Da das Gas eine wesentlich geringere Dichte als das flüssige Natrium hat, kann es auch weniger Neutronen in den Kern zurück streuen. Der Ausfluß erhöht sich und die Kettenreaktion bricht zusammen. Ein weiteres, völlig passives, Sicherheitssystem.

Natriumbrand im Dampferzeuger

Ein spezielles Sicherheitsproblem ist die Reaktion zwischen Wasser und Natrium. Bei ihr wird neben Energie auch Wasserstoff frei bzw. es entstehen Reaktionsprodukte, die Wasserstoff enthalten. Daraus ergeben sich folgende Ansprüche:

  • Der Dampferzeuger sollte in einem separaten Gebäude – streng getrennt vom Reaktor – stehen. Da es nur hier eine Schnittstelle zwischen Wasser und Natrium gibt, können alle Auswirkungen besser beherrscht und lokal begrenzt werden.
  • Es sollte eine Isolierung zwischen Dampferzeuger und Reaktorteil geben, um Rückwirkungen auf die Wärmetauscher im Reaktor zu verhindern.
  • Es müssen ausreichend große Abblasetanks vorhanden sein, um Natrium und Wasser möglichst schnell voneinander zu trennen, damit die Brandlasten klein bleiben. Entstandener Wasserstoff muß rekombiniert bzw. sicher abgeleitet werden, um Explosionen zu verhindern (nicht wie in Fukushima, auch noch benachbarte Gebäude zerstören.)

Der Dampferzeuger des PRISM ist ein schlanker, aufrecht stehender Behälter. Er ist nicht vollständig mit Natrium gefüllt, sondern besitzt oben einen mit Argon gefüllten Raum. Dieses Gaspolster, kann bei Störfällen etwaige Druckwellen bereits erheblich mindern. In dieses Natriumbad tauchen, zu einer Spirale gewickelte Rohre ein. In diesen strömt das Wasser und verdampft. Würde ein Rohr undicht werden, strömt Wasser bzw. Dampf unter hohem Druck in das Natrium ein und reagiert dort sofort. Die zusätzliche Energieproduktion kann zu einem Temperaturanstieg im Dampferzeuger führen. Wichtigste Gegenmaßnahme ist nun die Absperrung sowohl der Wasser- und Dampfleitungen wie auch der Natriumleitungen. Dabei sind kleine Leckagen kein Problem, da sie ein langsames Abfahren der Anlage ermöglichen.

Kommt es hingegen zu massiven Wassereinbrüchen, kann es zu einer stärkeren Temperaturerhöhung und einem steilen Druckanstieg führen. Wichtigstes Ziel ist nun, die Druckspitze zu begrenzen und die Druckwelle möglichst von den Zwischenwärmetauschern im Reaktor fern zu halten. Zur Dämpfung dient bereits das Gaspolster im Dampferzeuger. Wird der vorgesehene Druck überschritten, bersten zwei Scheiben in der Verbindungsleitung zum Abblasetank. Der Abblasetank trennt die Gase (insbesondere den entstandenen Wasserdampf) vom flüssigen Natrium. Das Natrium strömt dann weiter in Reservetanks. Bereits gebildeter Wasserstoff wird rekombiniert, um etwaige Explosionen zu vermeiden. Die Restwärme wird über die Außenluft abgeführt.

Unmittelbar hinter dem Sicherheitsbehälter des Reaktorgebäudes befinden sich Isolierventile, die sofort und automatisch schließen. Dadurch wird verhindert, daß überhaupt Reaktionsprodukte zum Reaktor gelangen können.

Schlußbetrachtung

Es gibt international viel Erfahrung aus einigen hundert Betriebsjahren mit natriumgekühlten schnellen Reaktoren. Allein in den USA ist der EBR II über 30 Jahre erfolgreich gelaufen. Man hat in ihm über 100000 Brennelemente getestet und umfangreiche Experimente der Sicherheitssysteme durchgeführt. Mehrfach wurde bei voller Leistung die Wärmesenke einfach abgestellt, um beispielsweise die Richtigkeit der Rechenprogramme zu überprüfen. Die Entwicklung ist seit dem – wenn auch stark reduziert – kontinuierlich weitergeführt worden. Bereits 1994 wurde das eingereichte Konzept von der NRC in einem 400seitigen Abschlussbericht positiv beurteilt. Seit dem, könnte eigentlich ein Kraftwerk als Demonstrationsanlge gebaut werden – wenn der politische Wille vorhanden wäre. Ob auch hier wieder China voranschreiten wird oder kann Europa (GB) noch den Anschluß halten?

Ausblick

Der zweite Teil wird sich mit der Wiederaufbereitung und der Herstellung der metallischen Brennelemente beschäftigen.

Reaktortypen in Europa – Teil6, CANDU

Der CANDU (Canada Deuterium Uranium) Reaktor ist der einzige Schwerwasserreaktor, der sich weltweit durchgesetzt hat. Er ist in seiner neuesten Ausführung ein echter Gen III+ Reaktor mit passiver Sicherheit. Für manche mutet er vielleicht etwas exotisch an, besitzt aber sehr viel Potential für die Nutzung von Thorium und die Weiterverwendung ausgedienter Brennelemente von Leichtwasserreaktoren – gerne auch als „Atommüll“ verunglimpft.

Geschichte

SNC-Lavalin und China Nuclear Power Engineering Company wollen zusammen zwei weitere Reaktoren dieses Typs in Rumänien errichten. Bereits seit 1997 und 2007 laufen dort sehr erfolgreich zwei solche Reaktoren. Wie in zahlreichen anderen Ländern auch: Indien, Südkorea, Rumänien, Pakistan, Argentinien und China. Insgesamt wurden 47 CANDU-Reaktoren gebaut, davon bilden 22 Reaktoren das Rückgrat der kanadischen Stromversorgung. Keine schlechte Bilanz, wenn man bedenkt, wie viele Totgeburten es seit den 1940er Jahren gegeben hat.

In Kanada begann die Entwicklung von Schwerwasserreaktoren bereits während des zweiten Weltkrieges. Es war ein etwas ungeliebter Seitenarm des Manhattan-Projekts unter maßgeblichem Einfluß des französischen Wissenschaftlers Joliot, der wegen seiner politischen Ansichten in den USA als potentielles Sicherheitsrisiko eingestuft war. In den 1960er Jahren wurde die kommerzielle Entwicklung von der kanadischen Regierung forciert: Kanada verfügte über keine Anreicherung und keine Schwerindustrie, die in der Lage war, Reaktordruckgefäße zu schmieden. Beide Argumente besitzen heute noch für viele Entwicklungs- und Schwellenländer Gültigkeit. Man kann sich nahezu aus allen Ecken der Welt mit Natururan versorgen, während man bei der Anreicherung nach wie vor, maßgeblich auf die „Atommächte“ angewiesen ist. Wegen des einfachen Aufbaues ist ein Übergang auf nationale Fertigung in relativ kurzer Zeit und kleinen Stückzahlen möglich.

Allerdings besitzt der CANDU einen entscheidenden (politischen) Nachteil: Mit ihm läßt sich hervorragend waffengrädiges Plutonium und Tritium herstellen. Diesen Weg hat Indien mit seiner ersten Bombe „Smiling Buddha“ vorgemacht, dessen Plutonium aus dem Schwerwasser-Forschungsreaktor „CIRUS“ stammte.

Aufbau

Bei den CANDU-Reaktoren handelt es sich um Druckwasserreaktoren mit schwerem Wasser (D2 O.) als Moderator und Kühlmittel. Das schwere Wasser wird durch Pumpen zwischen dem Kern und den Dampferzeugern umgewälzt. In den Dampferzeugern wird der Dampf für die Turbine erzeugt. Man könnte also sagen, ab dem Reaktorgefäß handelt es sich um einen „ganz normalen Druckwasserreaktor“.

Er besitzt jedoch kein Druckgefäß, sondern zahlreiche Druckröhren. Bei einem EC6 sind es 380 horizontale Röhren, in denen sich jeweils 12 Brennelemente befinden. Die Brennelemente sind rund und nicht rechteckig (wie bei Leichtwasserreaktoren), sodaß sie die Druckröhren optimal ausfüllen. Sie sind auch wesentlich kleiner (etwa 50 cm lang und 10 cm im Durchmesser) und bestehen aus nur 37 Brennstäben. Durch die Abmessungen und ihr geringes Gewicht (rund 25 kg) sind sie optimal für eine vollautomatische Handhabung geeignet. Durch die hohe Anzahl (37 Stück x 12 Brennelemente x 380 Brennstoffkanäle) ergibt sich eine sehr flexible Anordnung und Materialausstattung, auf die später noch eingegangen wird. Durch die vollautomatischen Lademaschinen, die unter voller Last eingesetzt werden können, ergibt sich stets eine optimale Durchmischung und Anordnung. Es ist kaum Überschußreaktivität nötig, die bei Leichtwasserreaktoren am Anfang des Ladezyklus durchVergiftung (z. B. Borsäure, Gadolinium etc.) abgebaut werden muß.

Die Brennstoffkanäle sind schachbrettartig, horizontal in einem Wassertank – der sog. Calandria – angeordnet. Dieser Tank ist vollständig mit schwerem Wasser gefüllt und bildet den eigentlichen Moderator und Reflektor. Die Calandria befindet sich in einem weiteren Wassertank zur Abschirmung, der mit normalem Wasser gefüllt ist. Dieses System ist von einem Tresor aus Stahlbeton umgeben. Oberhalb befinden sich die vier Umwälzpumpen und die vier Dampferzeuger. Zusätzlich ist der gesamte Reaktor von einer Stahlbetonhülle (Containment) umgeben. Äußerlich ist deshalb ein EC6-CANDU kaum von einem üblichen Druckwasserreaktor zu unterscheiden.

Sicherheitskonzept

Jeder Brennstoffkanal ist von einem zweiten Rohr umgeben. Der sich ergebende Spalt dient zur Wärmeisolierung. Das schwere Wasser der Calandria ist kalt und wird auch ständig über eigene Wärmeübertrager kalt gehalten. Zusammen mit dem Wasser der Abschirmung ergibt sich ein großer Wärmespeicher für die Abfuhr der Nachzerfallswärme. Geht Kühlwasser durch Leckagen verloren, kann dieses aus einem großen Wassertank auf dem Dach des Sicherheitsbehälters ersetzt werden. Dafür sind keine Pumpen, sondern nur die Schwerkraft nötig.

Als einziger Reaktortyp verfügt der CANDU über zwei vollständig voneinander unabhängige Schnellabschaltungssysteme: Oberhalb der Calandria befinden sich von Elektromagneten gehaltene Regelstäbe. Bei einer Schnellabschaltung fallen sie durch die Schwerkraft getrieben in die Calandria ein. Seitlich befinden sich Druckbehälter mit Gadoliniumnitrat, die durch das Gaspolster aus Helium angetrieben, ihre Flüssigkeit zur Vergiftung in die Calandria einspritzen.

Warum überhaupt schweres Wasser?

Deuterium ist Wasserstoff, dessen Kern nicht nur aus einem Proton besteht, sondern zusätzlich noch ein Neutron enthält. Es verbindet sich mit Sauerstoff zu schwerem Wasser. Es kommt daher überall auf der Erde in unerschöpflicher Menge vor. Allerdings in nur sehr geringer Konzentration von 0,000018%. Die Anreicherung ist wegen des relativ großen Massenunterschieds zwar relativ einfach, erfordert gleichwohl viel Energie und Apparatur. Mit anderen Worten, es ist recht teuer. Die hohen Investitionskosten sind deshalb der Hauptnachteil beim CANDU. Enthält doch ein EC6 über 472 to davon, bei nur etwa 700 MWel. Leistung. Der laufende Verbrauch ist nur sehr gering. Ein weiterer Nachteil ist die erhöhte Produktion von Tritium. Da Deuterium bereits ein Neutron enthält, ist die Aufnahme eines weiteren sehr viel wahrscheinlicher, als bei normalem Wasser.

Ausschlaggebend sind die überragenden neutronenphysikalischen Eigenschaften. Die Wahrscheinlichkeit für eine Spaltung steigt umgekehrt proportional mit der Geschwindigkeit der Neutronen. Abgebremst werden die Neutronen durch Zusammenstöße mit dem Moderator. Je kleiner die Kerne sind, je mehr Energie geht bei einem einzelnen Stoß verloren – dies spricht für Wasserstoff als Moderator. Leider gibt ein Kern nicht jedes Neutron wieder her. Jedes absorbierte Neutron ist aber für eine weitere Spaltung verloren. Je größer die Wahrscheinlichkeit für eine Streuung ist und um so kleiner die Wahrscheinlichkeit für eine Absorption, desto besser ist das Material als Moderator geeignet. Man mißt dies mit der „Moderating Ratio“ MR. Sie beträgt bei H2 O nur 62. Im Gegensatz dazu, ist sie bei D2O. mit 4830 fast 78 mal so gut. Zusätzlich kann man den Bremseffekt noch verbessern, wenn man den Moderator möglichst kühl hält. Dies ist der Grund für die kalte Calandria.

Alles zusammen, führt dazu, daß man bei einem CANDU mit Natururan auskommt und trotzdem mittlere Abbrände von 7500 MWd/toU erzielt. Dies ergibt nicht nur die beste Ausnutzung von Natururan, sondern eröffnet noch ganz andere Brennstoffkreisläufe.

CANDU und Leichtwasserreaktoren im Verbund

In jedem Reaktor werden nicht nur Kerne gespalten, sondern auch immer neue Kerne durch das Einfangen von Neutronen gebildet. Allerdings ist die Nutzungsdauer der Beladung immer zeitlich begrenzt – egal in welcher Form der Brennstoff vorliegt. Es verhält sich mit dem Brennelement wie mit einer Weinflasche: Nach dem Gebrauch ist sie für den Nutzer Abfall, aber deshalb noch kein Müll. Man kann auch die leere Flasche vielfältig weiter nutzen oder sie recyceln.

Auch wenn die Brennstäbe in den Leichtwasserreaktoren nicht mehr nutzbar sind, enthalten sie doch noch unzählige Wertstoffe. In diesem Zusammenhang sind Uran und Plutonium von Interesse. Man kann diese beiden auf verschiedene Art und Weise nutzen:

  • Zuerst sollte man sie so lange – wie wirtschaftlich vertretbar – lagern. Genau das, geschieht im Moment weltweit. Radioaktive Stoffe besitzen die angenehme Eigenschaft, daß sie nur zerfallen können, also stetig weniger werden. Je mehr Spaltprodukte aber zerfallen sind, desto geringer ist die Strahlungsleistung geworden. Ein enormer Vorteil bei der weiteren Verarbeitung.
  • Man kann diese Brennelemente z. B. nach dem Purex-Verfahren wieder aufbereiten. Man erhält als Produkt hochreines Uran und Plutonium. Das Uran ist aber ohne eine weitere Anreicherung nicht wieder in einem Leichtwasserreaktor verwendbar. Hier kommen die CANDU’s ins Spiel:
  • Das Uran aus der Wiederaufbereitung hat einen etwas höheren Gehalt an U235 (ungefähr 0,9% plus 0,6% Pu) als Natururan. Man kann nun dieses Uran mit abgereichertem Uran aus Anreicherungsanlagen zu synthetischem Natururan verschneiden. Man spart also den Aufwand für eine weitere Anreicherung.
  • Viel sinnvoller ist es, das Uran aus der Wiederaufbereitung im ursprünglichen Zustand zu verwenden. Man muß es nicht verschneiden, sondern kann es durch die unzählige Kombination von Brennstäben aus unterschiedlichen Materialien als sehr viel effektivere Neutronenquelle einsetzen.
  • Es ist sogar möglich, die abgebrannten Brennelemente aus Leichtwasserreaktoren in CANDU-Reaktoren ein weiteres mal zu nutzen: Man müßte sie lediglich auf Länge schneiden und erneut in eine Hülle einschweißen. Allerdings bräuchte man hierfür wegen der hohen Strahlenbelastung eine fernbediente Herstellung und Handhabung. China führt bereits in seinen laufenden Reaktoren Versuche aus. Es wurde in Zusammenarbeit mit den Kanadiern ein umfangreiches Entwicklungsprogramm gestartet.
  • Man kann aber auch die abgebrannten Brennstäbe vorher pulverisieren und erhitzen. Da der größte Teil der Spaltprodukte (z. B. die Edelgase und Jod) schon bei relativ geringen Temperaturen ausgasen, können sie einfach abgeschieden werden. Man erhält nach dem Sintern „neue“ Brennelemente, mit wesentlich geringerer Strahlenbelastung (als die unbehandelten Brennelemente) und weniger parasitärem (bezüglich der Neutronen) Inhalt. Diese Schiene – mit teilweiser Wiederaufbereitung – wird in Korea verfolgt und als DUPIC-Verfahren (Direct Use of spent PWR fuel In Candu) bezeichnet.

Es gibt also zahlreiche Wege, aus Leichtwasser- und Schwerwasserreaktoren einen Energieverbund herzustellen. Man kann in etwa sagen, daß vier Leichtwasserreaktoren mit ihren abgebrannten Brennelementen einen Schwerwasserreaktor versorgen können. Dies könnte das evolutionäre Glied zur Nutzung – und damit Beseitigung – von „Atommüll“ sein: Man ersetzt das kostspielige PUREX-Verfahren durch „Neuverpackung“ oder „Teilreinigung“. Diese Verfahrensschritte sind sicherlich wesentlich eher mit der Gewinnung von Natururan wirtschaftlich konkurrenzfähig.

Thorium

Neben Uran, kann man auch mit Thorium Reaktoren betreiben. Thorium ist in manchen Ländern (z. B. Indien) leicht zu fördern oder fällt sogar als Abfall an (z. B. Produktion seltener Erden in China). Allerdings kann man mit Thorium keine selbsterhaltende Kettenreaktion erzeugen. Vorher muß man daraus U233 erbrüten. Anders als bei Uran, funktioniert das Brüten bei Thorium auch sehr gut mit thermischen Neutronen. Es war daher schon frühzeitig ein Gedanke, Thorium als Brennstoff in Schwerwasserreaktoren einzusetzen.

Aus der Konstruktion von Brennstoffkanälen, die mit Brennelementen gefüllt sind, die sich wiederum aus Brennstäben zusammensetzen, ergeben sich beim CANDU zwei grundsätzliche Varianten: Der gemischte Kern (mixed-core) und das gemischte Brennelement (mixed-fuel-bundle).

Bei einem gemischten Kern, verwendet man Brennelemente aus reinem Thorium, die zum Erbrüten von U233 dienen. Die hier verschluckten Neutronen müssen an anderer Stelle im Reaktor erzeugt werden. Dafür verwendet man Brennelemente mit leicht angereichertem Uran oder aus Mischoxid. Hierfür bietet sich – wie weiter oben schon beschrieben – idealerweise der „Abfall“ aus Leichtwasserreaktoren an. Diese Strategie erfordert – wegen der wechselnden Orte und der unterschiedlichen Verweilzeiten in den Kanälen – eine komplexe Steuerung der Lademaschinen. Wenn man nur reines Thorium in einem Brennelement einsetzt, kommt man zu einer besonders eleganten „Einfach-Nutzung“. Aus Thorium bilden sich durch das Einfangen von Neutronen weit weniger langlebige Aktinoiden, als aus Uran. Da man es im wesentlichen nur mit (kurzlebigen) Spaltprodukten zu tun hat, ergibt sich ein „Atommüll“, der besonders gut für eine „Endlagerung“ geeignet ist. Diese Beschränkung auf eine technische Zwischenlagerung – ohne Wiederaufbereitung und/oder geologisches „Endlager“ – ist ein weiterer Anreiz für Länder mit großen Thoriumvorkommen (z. B. Norwegen).

Der andere Weg sind die gemischten Brennelemente. Dort wird bevorzugt der mittlere Brennstab aus reinem Thorium hergestellt und die ihn konzentrisch umgebenden Stäbe aus leicht angereichertem Uran. Dies vereinfacht das Umsetzen, hat aber eine schlechtere Ausnutzung der Neutronen zur Folge. Wenn man bereits gebrütete Brennelemente verwendet, um deren Stäbe in gemischten Brennelementen weiterzuverwenden, benötigt man keinerlei Wiederaufbereitung. Dieser Brennstoffkreislauf bietet sich besonders für Länder an, die unbedingt und nachweisbar auf Kernwaffen verzichten wollen.

Man kann mit Schwerwasserreaktoren Konversionsraten von nahezu eins erreichen. Wenn man über mehrere CANDU-Reaktoren verfügt, kann man einige davon vollkommen mit Thorium betreiben. Lediglich einige müssen zusätzlich leicht angereichertes Uran bzw. Mischoxid verwenden um den Fehlbedarf an U233abzudecken. Ein Land wie z. B. Indien, mit großen Mengen eigenem Thorium, aber kaum eigenem (wirtschaftlichem) Uran, kann so einen beträchtlichen Anteil aus heimischen Energieträgern abdecken.

Neben der Streckung von Uranvorräten bietet die Verwendung von Thoriumoxid noch eine Reihe anderer Vorteile: Bessere Wärmeleitung, höherer Schmelzpunkt, sehr gute chemische Stabilität und weniger Bildung von Aktinoiden.

Schlußwort

Mit diesem Beitrag, soll die Serie über die Reaktortypen in Europa vorläufig abgeschlossen werden. Eigentlich fehlen hier noch die russischen Druckwasserreaktoren wie sie in Finnland und der Türkei gebaut werden sollen. Bisher mangelt es aber nach wie vor an frei zugänglichen Informationen.

Sinn dieser Serie sollte es sein, interessierten Menschen einen Überblick darüber zu verschaffen, was geht, was man morgen bestellen und bauen könnte, was genehmigt und erprobt ist. Forschung und Entwicklung stehen auf einem anderen Blatt. Man kann – wenn man politisch will – sofort mit dem Ausbau der Kernenergie beginnen bzw. fortschreiten. China macht es eindrucksvoll vor: Den Einstieg in das Zeitalter der Kerntechnik auf breiter Front durch Nutzung von allem, was der Weltmarkt hergibt. Ein gigantischer Vergleich unter gleichen Rahmenbedingungen. Bisher gab es das nur in den USA – und man erinnert sich kaum, in Deutschland. Vielleicht muß man wirklich schon daran erinnern. Es gab einmal deutsche Siedewasser-, Druckwasser-, Schwerwasser-, Thorium-Hochtemperaturreaktoren und natriumgekühlte schnelle Reaktoren. Alle gebaut und mit besten Betriebserfahrungen und ganz ohne schwere Unfälle. Wenn es dem Esel zu gut geht, geht er aufs Eis tanzen, sagt ein altes Sprichwort. Jedenfalls reist heute eine ehemalige Pionierleiterin nach Japan, um der dortigen Regierung deutsche Wind- und Sonnentechnik schmackhaft zu machen. Selbstverständlich bei ausdrücklicher Verweigerung eines Besuchs in Fukushima. Zu viel Realität, konnte man im Politbüro noch nie ertragen. Das Ergebnis ist bekannt.

Reaktortypen in Europa – Teil1, Einleitung

In Europa werden bereits einige Kernkraftwerke neu errichtet bzw. stehen kurz vor einer Auftragsvergabe. Es scheint daher angebracht, sich ein bischen näher mit den unterschiedlichen Typen zu befassen und deren (technische) Unterschiede zu erläutern.

Warum überwiegend Leichtwasserreaktoren?

Es dreht sich um größere Kraftwerke. Oberhalb von etlichen hundert Megawatt ist für Wärmekraftwerke nur ein Dampfkreislauf möglich – egal, ob mit Kohle, Gas oder Kernspaltung als Wärmequelle. Dieselmotoren (bis max. 70 MW) oder Gasturbinen (bis max. 350 MW) sind für solche Blockgrößen ungeeignet. Selbst bei gasgekühlten oder mit Flüssigmetallen gekühlten Reaktoren, besteht der eigentliche Arbeitsprozess aus einem Wasserdampfkreisprozeß: Wasser wird unter hohem Druck verdampft und treibt anschließend eine Turbine mit Generator an. Wenn man also ohnehin Dampf braucht, warum nicht gleich damit im Reaktor anfangen?

Es muß allerdings eine Voraussetzung erfüllt sein: Man muß über Uran mit einem Anteil von etwa 2 bis 5% Uran-235 bzw. Plutonium (MOX) verfügen. Beides kommt in der Natur nicht vor. Will man Natururan verwenden, ist man auf schweres Wasser (Deuterium) oder Kohlenstoff (Reaktorgraphit) angewiesen, um überhaupt eine selbsterhaltende Kettenreaktion zu erhalten. Will man andererseits die schwereren Urankerne bzw. Minoren Aktinoide direkt spalten, darf man die bei der Spaltung freigesetzten Neutronen möglichst gar nicht abbremsen und muß deshalb zu Helium oder flüssigen Metallen als Kühlmittel übergehen. Noch ist dieser Schritt nicht nötig, da es genug billiges Natururan gibt und andererseits (noch nicht) die Notwendigkeit zur Beseitigung der langlebigen Bestandteile des sog. „Atommülls“ besteht. Das zweite ist ohnehin eine rein politische Frage. Die sog. Leichtwasserreaktoren werden deshalb auch in den kommenden Jahrhunderten der bestimmende Reaktortyp bleiben.

Die Temperaturfrage

Je höher die Betriebstemperaturen sind, um so höher die Kosten und Probleme. Dieser Grundsatz gilt ganz allgemein. Bis man auf Kernenergie in der chemischen Industrie z. B. zur „Wasserstoffgewinnung“ angewiesen sein wird, wird noch eine sehr lange Zeit vergehen. Solche Anwendungen lassen sich einfacher und kostengünstiger mit fossilen Brennstoffen realisieren. Abgesehen davon, daß die Vorräte an Kohle, Gas und Öl noch für Jahrhunderte reichen werden, kann man beträchtliche Mengen davon frei setzen, wenn man bei der Stromerzeugung auf Kernenergie übergeht. Diesen Weg hat China bereits angefangen.

Ein oft gehörtes Argument ist der angeblich geringe Wirkungsgrad von Leichtwasserreaktoren. Richtig ist, daß der thermodynamische Wirkungsgrad um so besser ist, je höher die Betriebstemperatur ist. Er liegt bei den heute modernsten Steinkohlekraftwerken bei etwa 46% und bei Braunkohlekraftwerken bei 43%. Demgegenüber erscheint der Wirkungsgrad eines modernen Druckwasserreaktors mit 37% als gering. Es gibt jedoch zwei wichtige Aspekte zu berücksichtigen:

  • Die hohen Wirkungsgrade der Kohlekraftwerke erfordern solche Drücke und Temperaturen, daß die (derzeitigen) technologischen Grenzen erreicht, wenn nicht sogar überschritten sind. Der noch vor wenigen Jahren propagierte Wirkungsgrad von 50% ist in weite Ferne gerückt. Die Werkstoff- und Fertigungsprobleme – und damit die Kosten – nehmen mit jedem weiteren Grad überproportional zu. Kombiprozesse (z. B. Gasturbine mit Abhitzekessel) erfordern hochwertige Brennstoffe, wie Erdgas oder Mineralöle. Will man solche erst aus Kohle gewinnen (Kohlevergasung), sackt der Gesamtwirkungsgrad wieder auf die alten Werte ab.
  • Der thermodynamische Wirkungsgrad ist ohnehin nur für Ingenieure interessant. Entscheidend sind im wirklichen Leben nur die Herstellungskosten des Produktes. Hier gilt es verschiedene Kraftwerke bezüglich ihrer Bau- und Betriebskosten zu vergleichen. Es lohnt sich nur eine Verringerung des Brennstoffverbrauches, wenn die dadurch eingesparten Kosten höher als die hierfür nötigen Investitionen sind. Bei den geringen Uranpreisen ein müßiges Unterfangen. Gleiches gilt für die ohnehin geringen Mengen an Spaltprodukten („Atommüll“) als Abfall, der langfristig (nicht Millionen Jahre!) gelagert werden muß.

Der Betriebsstoff Wasser

Wasser erfüllt in einem Kernkraftwerk drei Aufgaben gleichzeitig: Moderator, Kühlmittel und Arbeitsmedium. Es bremst die bei der Kernspaltung frei werdenden Neutronen auf die erforderliche Geschwindigkeit ab, führt in nahezu idealer Weise die entstehende Wärme ab und leistet als Dampf in der Turbine die Arbeit. Vergleicht man die Abmessungen gasgekühlter Reaktoren mit Leichtwasserreaktoren, erkennt man sofort die überragenden Eigenschaften von Wasser. Es ist kein Zufall, daß heute z. B. alle Reaktoren in Atom-U-Booten ausnahmslos Druckwasserreaktoren sind. Je kompakter ein Reaktor ist, um so kleiner ist das notwendige Bauvolumen. Je kleiner ein Gebäude sein muß, desto geringer können die Baukosten sein.

Der Reaktorkern

Der Kern (Core) ist der eigentliche nukleare Bereich in einem Kernkraftwerk, in dem die Kernspaltung statt findet. Er sollte möglichst kompakt sein. Er besteht aus hunderten von Brennelementen, die wiederum aus jeweils hunderten von Brennstäben zusammengesetzt sind. Ein Brennstab ist ein mit Uranoxid gefülltes, bis zu fünf Meter langes, dabei aber nur etwa einen Zentimeter dickes Rohr. Ein solcher Spagetti besitzt natürlich kaum mechanische Stabilität (z. B. bei einem Erdbeben) und wird deshalb durch diverse Stützelemente zu einem Brennelement zusammengebaut. Erst das Brennelement ist durch die genaue Dimensionierung und Anordnung von Brennstäben und wassergefüllten Zwischenräumen das eigentliche Bauelement zur Kernspaltung. Die einzuhaltenden Fertigungstoleranzen stehen bei einem solchen Brennelement einer mechanischen „Schweizer Uhr“ in nichts nach.

Der Brennstab ist das zentrale Sicherheitselement – gern auch als erste von drei Barrieren bezeichnet – eines Kernreaktors. Der Brennstoff (angereichertes Uran oder Mischoxid) liegt in einer keramischen Form als Uranoxid vor. Dies ist eine chemisch und mechanisch äußerst stabile Form. Der Brennstab soll alle „gefährlichen“ Stoffe von der ersten bis zur letzten Stunde seiner Existenz möglichst vollständig zurückhalten. Er ist chemisch so stabil, daß er in der Wiederaufarbeitungsanlage nur in heißer Salpetersäure aufzulösen ist. Grundsätzlich gilt: Je besser er die Spaltprodukte und den Brennstoff zurückhält, um so geringer ist bei einem Störfall die Freisetzung. Wohl gemerkt, Freisetzung innerhalb des Druckgefäßes, noch lange nicht in die Umwelt! Deshalb bezeichnet man den Brennstab auch als erste Barriere, die Schadstoffe auf ihrem langen Weg in die Umwelt überwinden müßten.

In dem Brennstab findet die eigentliche Kernspaltung statt. Fast die gesamte Energie wird genau an diesem Ort frei. Die bei der Spaltung frei werdenden Neutronen müssen nun (fast) alle aus dem Brennstab raus, rein in den genau definierten Wasserspalt zwischen den Brennstäben um dort abgebremst zu werden und wieder zurück in einen Brennstab, um dort die nächste Spaltung auszulösen. Es geht für die Neutronen (fast) immer mehrere Male durch die Brennstabhülle. Sie darf deshalb möglichst keine Neutronen wegfangen. Zirkalloy hat sich zu diesem Zweck als idealer Werkstoff für die Hüllrohre erwiesen. Diese Rohre haben jedoch bei einem schweren Störfall (TMI und Fukushima) eine fatale Eigenschaft: Sie bilden bei sehr hohen Temperaturen im Kontakt mit Wasserdampf Wasserstoffgas, der zu schweren Explosionen führen kann. Wohl jedem, sind die Explosionen der Kraftwerke in Fukushima noch in Erinnerung.

Bei einem Reaktorkern hat die Geometrie entscheidende Auswirkungen auf die Kernspaltung. Bei einer Spaltung im Zentrum des Kerns haben die frei werdenden Neutronen einen sehr langen Weg im Kern und damit eine hohe Wahrscheinlichkeit, eine weitere Spaltung auszulösen. Neutronen, die am Rand entstehen, haben demgegenüber eine hohe Wahrscheinlichkeit einfach aus dem Kern heraus zu fliegen, ohne überhaupt auf einen weiteren spaltbaren Kern zu treffen. Sie sind nicht nur für den Reaktor verloren, sondern können auch schädlich sein (z. B. Versprödung des Reaktordruckgefäßes oder zusätzlicher Strahlenschutz). Es gibt hierfür zahlreiche Strategien, dem entgegen zu wirken: Unterschiedliche Anreicherung, Umsetzung im Reaktor, abbrennbare Neutronengifte, Reflektoren etc. Verschiedene Hersteller bevorzugen unterschiedliche Strategien.

Brennstäbe

Die Brennstäbe müssen einige sich widersprechende Anforderungen erfüllen:

  • Je dünnwandiger die Hüllrohre sind, desto weniger Neutronen können dort eingefangen werden und je kleiner muß die treibende Temperaturdifferenz innen zu außen sein, damit die enormen Wärmemengen an das Kühlwasser übertragen werden können. Je dünner aber, je geringer die Festigkeit und die Dickenreserve gegen Korrosion.
  • Der Brennstoff selbst soll möglichst stabil sein. Uranoxid erfüllt diesen Anspruch, hat aber eine sehr schlechte Wärmeleitfähigkeit. Die Brennstäbe müssen deshalb sehr dünn sein, was nachteilig für ihre mechanische Stabilität ist. Es kann bei Leistungssprüngen sehr schnell zum Aufschmelzen im Innern des Brennstoffes kommen, obwohl es am Rand noch recht kalt ist. Dadurch kommt es zu entsprechenden Verformungen und Ausgasungen, die sicher beherrscht werden müssen.
  • Das umgebende Wasser ist nicht nur Moderator, sondern auch Kühlung für den Brennstab. Eine ausreichende Kühlung ist nur durch eine Verdampfung auf der Oberfläche möglich. Kernreaktoren sind die „Maschinen“ mit der höchsten Leistungsdichte pro Volumen überhaupt. Das macht sie so schön klein, verringert aber auch die Sicherheitsreserve bei einem Störfall. Fallen sie auch nur einen Augenblick trocken, reicht selbst bei einer Schnellabschaltung die Nachzerfallswärme aus, um sie zum Glühen oder gar Schmelzen zu bringen. In dieser Hitze führt die Reaktion der Brennstoffhülle mit dem vorhandenen Dampf zur sofortigen Zersetzung unter Wasserstoffbildung. Beides geschah in den Reaktoren von Harrisburg und Fukushima.
  • Der Zwischenraum mit seiner Wasserfüllung als Moderator erfüllt eine wichtige Selbstregelfunktion. Damit überhaupt ausreichend Kerne gespalten werden können, müssen die Neutronen im Mittel die „richtige“ Geschwindigkeit haben. Diese wird durch den Zusammenstoß mit einem Wasserstoffatom erreicht. Damit dies geschehen kann, müssen sie eine gewisse Anzahl von Wassermolekülen auf ihrem Weg passiert haben. Da die Spalte geometrisch festgeschrieben sind, hängt die Anzahl wesentlich von der Dichte ab. Mit anderen Worten: Vom Verhältnis zwischen Dampf und Wasser im Kanal. Macht die Leistung einen Sprung, verdampft mehr Wasser und die Dichte nimmt ab. Dadurch werden weniger Neutronen abgebremst und die Anzahl der Spaltungen – die der momentanen Leistung entspricht – nimmt wieder ab.
  • Der Brennstoff wird bei Leichtwasserreaktoren nur in der Form kompletter Brennelemente gewechselt. Da aber kontinuierlich Spaltstoff verbraucht wird, muß am Anfang eine sog. Überschußreaktivität vorhanden sein. Wenn am Ende des Ladezyklus noch so viel Spaltstoff vorhanden ist, daß eine selbsterhaltende Kettenreaktion möglich ist, muß am Anfang zu viel davon vorhanden gewesen sein. Dieses zu viel an Spaltstoff, muß über sog. Neutronengifte kompensiert werden. Das sind Stoffe, die besonders gierig Neutronen einfangen und sie somit einer weiteren Spaltung entziehen. Je nach Reaktortyp kann das durch Zusätze im Brennstoff oder Kühlwasser geschehen.
  • Die Leistungsregelung eines Reaktors geschieht hingegen über Regelstäbe, die in Leerrohre in den Brennelementen eingefahren werden können. Die Regelstäbe bestehen ebenfalls aus Materialien, die sehr stark Neutronen einfangen. Fährt man sie tiefer ein, fangen sie mehr Neutronen weg und die Anzahl der Spaltungen und damit die Leistung, wird geringer. Zieht man sie heraus, können mehr Neutronen ungestört passieren und die Leistung steigt. Bei einer Schnellabschaltung werden sie alle – möglichst schnell – voll eingefahren.

Die eigentliche Stromerzeugung

In einem Kernkraftwerk wird – wie in jedem anderen Kraftwerk auch – die elektrische Energie durch einen Generator erzeugt. Dieser Generator wird in einem Kernkraftwerk durch eine sogenannte Nassdampfturbine angetrieben. Das ist ein wesentlicher Unterschied zu einem fossil befeuerten Kraftwerk. Bei denen wird möglichst heißer Dampf (bis 580 °C) auf die Turbine geschickt. Dieser wird nach einer gewissen Arbeitsleistung sogar wieder entnommen und noch einmal im Kessel neu erhitzt (z. B. Zwischenüberhitzung bei 620 °C). Prinzipiell erhöhen diese Maßnahmen den Wirkungsgrad und machen vor allem die Turbine kleiner und preiswerter.

Das Hauptproblem einer Nassdampfmaschine sind die großen Dampfvolumina und der Wassergehalt des Dampfes. Turbinen von Leichtwasserreaktoren haben üblicherweise einen Hochdruck und drei doppelflutige Niederdruckstufen auf einer gemeinsamen Welle. Trotzdem sind die Endstufen damit über 2 m lang und drehen sich mit Überschallgeschwindigkeit. Dadurch wirken auf jedes Blatt Fliehkräfte von über 500 to. In den Kondensatoren herrscht Hochvakuum, wodurch der Dampf mit der zugehörigen Schallgeschwindigkeit strömt. Die sich bereits gebildeten Wassertröpfchen wirken wie ein Sandstrahlgebläse auf die Turbinenschaufeln. Grundsätzlich gilt, je „kälter“ man mit dem Dampf in die Turbinenstufe rein geht, desto höher wird der Wasseranteil bei vorgegebenem Enddruck.

Die Entwässerung ist bei einer Nassdampfmaschine sehr aufwendig und damit teuer. Man versucht möglichst viel Wasser aus den Leitstufen abzusaugen und verwendet auch noch zusätzliche Tröpfchenabscheider außerhalb der Turbine. Vor den Niederdruckstufen überhitzt man den Dampf noch durch Frischdampf. All diese Maßnahmen verursachen aber Druckverluste und kosten nutzbares Gefälle.

Instrumentierung

Es ist von entscheidender Bedeutung, daß das Bedienungspersonal in jedem Augenblick einen möglichst genauen und detaillierten Überblick über die Zustände im Kraftwerk hat. Nur bei genauer Kenntnis der tatsächlichen Lage, können die richtigen Schlüsse gezogen werden und wirksame Gegenmaßnahmen eingeleitet werden. Dies ist die leidige Erfahrung aus allen Störfällen. Der Meßtechnik kommt deshalb große Bedeutung zu. Sie muß in ausreichender Auflösung (Stückzahl) vorhanden sein und zuverlässige Informationen in allen Betriebszuständen liefern.

In diesem Sinne spielen die Begriffe „Redundanz“ und „Diversität“ eine zentrale Rolle:

  • Alle wichtigen Betriebsgrößen werden mehrfach gemessen. Dies gibt Sicherheit gegen Ausfälle. Zusätzlich kann man bei einer mehrfachen – üblicherweise 4-fachen – Messung, Vertrauen zu den Meßwerten herstellen. Bei sicherheitsrelevanten Meßwerten (z. B Druck und Temperatur im Reaktordruckgefäß), die über eine Schnellabschaltung entscheiden, gilt das 3 von 4 Prinzip: Jede Größe wird gleichzeitig 4-fach gemessen. Anschließend werden die Meßwerte verglichen und es werden nur die drei ähnlichsten als Grundlage weiterer Auswertungen verwendet. Man erkennt damit augenblicklich, welche Meßstelle gestört ist und an Hand der Abweichungen untereinander, wie glaubwürdig die Messung ist.
  • Jedes Meßverfahren liefert nur in bestimmten Bereichen Ergebnisse mit hinreichender Genauigkeit. Dies ist eine besondere Herausforderung in einer Umgebung, die sich ständig verändert. So sind z. B. bestimmte Meßverfahren für den Neutronenfluß stark temperaturabhängig. Es ist deshalb üblich, unterschiedliche physikalische Methoden gleichzeitig für dieselbe Messgröße anzuwenden. Damit sind einfache Plausibilitätskontrollen möglich. Dies ist besonders bei Störfällen wichtig, bei denen die üblichen Bereiche schnell verlassen werden.

Digitalisierung und Sicherheit

Es gibt bei einem Kernkraftwerk alle möglichen Grenzwerte, die nicht überschritten werden dürfen. Wird ein solcher Grenzwert erreicht, wird vollautomatisch eine Schnellabschaltung ausgelöst. Jede Schnellabschaltung ergibt nicht nur einen Umsatzausfall, sondern ist auch eine außergewöhnliche Belastung mit erhöhtem Verschleiß. Das Problem ist nur, daß die Vorgänge in einem solch komplexen System extrem nichtlinear sind. Gemeint ist damit, daß „ein bischen Drehen“ an einer Stellschraube, einen nicht erwarteten Ausschlag an anderer Stelle hervorrufen kann.

Die moderne Rechentechnik kann hier helfen. Wenn man entsprechend genaue mathematische Modelle des gesamten Kraftwerks besitzt und entsprechend leistungsfähige Rechner, kann man jede Veränderung in ihren Auswirkungen voraussagen und damit anpassen bzw. gegensteuern. Nun haben aber auch Computerprogramme Fehler und sind schwer durchschaubar. Es tobt deshalb immer noch ein Glaubenskrieg zwischen „analog“ und „digital“. Dies betrifft insbesondere die geforderte Unabhängigkeit zwischen der Regelung und dem Sicherheitssystem.

Seit Anbeginn der Reaktortechnik ist die Aufmerksamkeit und Übung des Betriebspersonals ein dauerhaftes Diskussionsthema. Insbesondere im Grundlastbetrieb ist die Leitwarte eines Kernkraftwerks der langweiligste Ort der Welt: Alle Zeiger stehen still. Passiert etwas, verwandelt sich dieser Ort augenblicklich in einen Hexenkessel. Die Frage ist, wie schnell können die Menschen geistig und emotional Folgen? Wie kann man sie trainieren und „aufmerksam halten“? Die allgemeine Antwort lautet heute: Ständiges Üben aller möglichen Betriebszustände und Störfälle im hauseigenen Simulator. Das Schichtpersonal eines Kernkraftwerks verbringt heute wesentlich mehr Stunden im Simulator, als jeder Verkehrspilot. Die zweite „Hilfestellung“ ist im Ernstfall erst einmal Zeit zu geben, in der sich das Personal sammeln kann und sich einen Überblick über die Lage verschafft. Dies sind die Erfahrungen aus den Unglücken in Harrisburg und Tschernobyl. Dort haben Fehlentscheidungen in den ersten Minuten die Lage erst verschlimmert. Eine ganz ähnliche Fragestellung, wie bei Flugzeugen: Wer hat das sagen, der Pilot oder die Automatik? Eine Frage, die nicht eindeutig beantwortet werden kann, sondern immer zu Kompromissen führen muß.

Ausblick

Wer bis hier durchgehalten hat, hat nicht vergebens gelesen. Ganz im Gegenteil. In den folgenden Beiträgen werden die Reaktoren jeweils einzeln vorgestellt. Um die Unterschiede klarer zu machen, wurden hier vorab einige grundlegende Eigenschaften behandelt. Zuerst werden die Druckwasserreaktoren EPR von Areva und AP-1000 von Westinghouse behandelt und dann die Siedewasserreaktoren ABWR und der ESBWR von GE-Hitachi. Das entspricht in etwa dem derzeitigen Ausbauprogramm in Großbritannien. Soweit Zeit und Lust des Verfassers reichen, werden noch die russischen (Türkei, Finnland, Ungarn) und die chinesisch/kanadischen Schwerwasserreaktoren (Rumänien) folgen.

Hinkley Point C

Der Aufreger der Woche, ist der geplante Neubau zweier Reaktoren als Ersatz für das Kernkraftwerk Hinkley Point. Für die einen ist es der lang ersehnte Neubeginn, für andere ein Sündenfall der europäischen Subventionswirtschaft. Vor allem ist es jedoch ein hoch komplexer Vorgang, für den man etwas mehr Zeit benötigt als in den „Qualitätsmedien“ zur Verfügung steht.

Die Geschichte

Großbritannien (GB) ist die Mutter der sog. „Strom-Markt-Liberalisierung“ in Europa. Traditionell gab es Gebietsmonopole, in denen „Energieversorger“ tätig waren. Als Ausgleich für ihr Monopol, mußten sie ihre Tarife durch eine staatliche Aufsicht kontrollieren und genehmigen lassen. Nach der „Liberalisierung“ sollte elektrische Energie – wie andere Wirtschaftsgüter auch – zwischen Erzeugern und Verbrauchern gehandelt werden. Eine „Strombörse“ sollte hierfür der zentrale Marktplatz sein. So weit, so schlecht. Märkte kann man nicht verordnen, sondern Märkte ergeben sich und müssen sich frei organisieren können. Heute steht man in GB vor einem Scherbenhaufen. Böse Zungen behaupten, daß das heutige Theater um Hinkley Point nur das zwangsläufige Ergebnis für eine seit 30 Jahren nicht vorhandene Energiepolitik sei. Eine sicherlich nicht ganz falsche Feststellung. Noch treffender könnte man sagen, ein bischen Planwirtschaft geht genauso wenig, wie ein bischen schwanger. Um auch weiterhin seinen politischen Einfluß geltend machen zu können, hat man ganz schnell ein prinzipielles „Marktversagen“ in der Form einer von Menschen verursachen „Klimakatastrophe“ konstruiert. Früher gab es eine „Aufsichtsbehörde“ mit klar definierter Verantwortung und Aufgabenstellung. Heute ist die Elektrizitätswirtschaft zu einem Tummelplatz für Laiendarsteller und skrupellose Geschäftemacher verkommen. Im Ergebnis haben sich immer mehr seriöse Investoren aus diesem Sektor zurückgezogen. Dafür wurden immer mehr Kräfte aus dem dunklen Reich der „Gesellschaftsveränderer“ magisch angezogen. Wie konnte es dazu kommen?

Am Anfang und am Ende steht das Atom

In GB gab es zwar nie eine der deutschen „Anti-Atomkraft-Bewegung“ vergleichbare Strömung in der Bevölkerung, gleichwohl erkannten auch dort Politiker das Potential für eine „Gesellschaftsveränderung“. Man versuchte deshalb den Sektor Kernenergie möglichst lange aus der „Strom-Markt-Liberalisierung“ heraus zu halten. Letztendlich wurde auch er „privatisiert“. Die Kernkraftwerke wurden komplett an die staatliche französische EDF verkauft. Von einem Staatskonzern Unternehmertum zu erwarten, dürfte ungefähr genauso erfolgreich sein, wie die Übertragung eines Schnapsgeschäftes an einen Alkoholiker. Parallel wurden die „Alternativenergien“ massiv bevorzugt. Mit dem Ergebnis, daß man auch bald keinen Dummen mehr finden konnte, der gewillt war, in fossile Kraftwerke zu investieren. Nun steht man vor einem Scherbenhaufen: Rund ein Drittel aller Kraftwerke müssen in den nächsten Jahren aus Altersschwäche vom Netz gehen. Dies führt zu einer Versorgungslücke von wahrscheinlich 60 GW. Eine volkswirtschaftliche Herausforderung, wie in einem Schwellenland. Die Zeit wird knapp. Längst hat man gemerkt, daß Windenergie ohne konventionelle Kraftwerke gar nicht funktionieren kann. Da helfen auch noch so hohe Investitionen nicht weiter. Den Weg über den Neubau von Kohlekraftwerken traut man sich nicht zu gehen, hat man doch erst mit großem politischen Aufwand die „Klimakatastrophe“ erschaffen. Der einst erträumte Weg über „flexible und umweltfreundliche Gaskraftwerke“ ist bei der benötigten Stückzahl auch nicht realistisch. Zumindest das Handelsdefizit würde explodieren und das Pfund ruinieren. Man kann es drehen und wenden wie man will, aber zum Schluß landet man wieder bei der (ungeliebten) Kernenergie.

Weisse Salbe oder Reform

Solange man an dem „Einspeisevorrang“ für Windenergie fest hält, wird man keinen Investor für konventionelle Kraftwerke finden. Jedes zusätzliche Windrad drückt die Preise für Strom an der Börse weiter in den Keller und senkt zusätzlich die Auslastung der konventionellen Kraftwerke. Würde man die Einspeisung begrenzen – wenn der Wind einmal zufällig kräftig weht – wären die Windmüller aber über Nacht pleite. Dies wäre zwar die volkswirtschaftlich sinnvollste Lösung, ist aber (zur Zeit noch nicht) politisch durchsetzbar. Deshalb handelt man lieber nach dem alten Grundsatz: Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen: In Deutschland nennt man das „Kapazitätsmärkte“, in GB „Contracts for Difference CfD“. Zwar ist beides durchaus nicht das Selbe, dient aber dem gleichen Zweck. Es dient dazu, die Kosten für ein zusätzliches System für die Zeiten der Dunkel-Flaute nicht dem Verursacher (Windmüller), sondern dem Verbraucher aufs Auge zu drücken. Noch einmal in aller Deutlichkeit: Würde man den „Erneuerbaren“ abverlangen, zu jedem Zeitpunkt den erforderlichen Anteil an der Netzleistung bereitzustellen, wäre der Traum von der „Energiewende“ über Nacht beendet. Es würden sich nämlich die wahren Kosten für jeden ersichtlich zeigen. Jeder Windmüller müßte entweder auf eigene Kosten Speicher bauen oder Notstromaggregate errichten oder Ersatzleistung bei anderen Kraftwerken zu kaufen. Wenn er keinen Strom liefern kann, weil das Netz voll ist (Starkwind) bekommt er auch kein Geld. Alles Selbstverständlichkeiten, die für jedes konventionelle Kraftwerk gültig sind. Ein „Kapazitätsmarkt“ wäre nicht notwendig oder würde sich von selbst ergeben – ganz nach Standort des Betrachters.

Windenergie ist nicht gleichwertig zu Kernenergie

Der Strom aus der Steckdose ist ein homogenes Gut im wirtschaftlichen Sinne. Es ist physikalisch in engen Grenzen (Frequenz, Spannung) immer gleich. Egal ob heute oder morgen oder in Berlin oder am Bodensee. Genauso wie Dieselkraftstoff, bei dem es auch egal ist, wo man tankt. Zu diesem homogenen Wirtschaftsgut wird die elektrische Energie aber noch nicht durch die Erzeugung, sondern erst durch das Netz (Netz nicht nur im Sinne von Drähten, sondern einschließlich Schaltanlagen, Transformatoren, Frequenzregler etc.). Ganz anders als beim Dieselkraftstoff. Der bleibt immer gleich, egal ob er frisch aus der Raffinerie kommt oder aus einem Lagertank. Damit ergibt sich wirtschaftlich ein grundlegender Unterschied: Diesel kann man lagern, bis die Preise günstiger sind (Arbitrage). Elektrische Energie muß man in dem Moment verkaufen, wo sie entsteht (z. B. Windbö). Andersherum gilt genauso: Der aktuelle Strompreis kann noch so hoch sein, wenn Flaute ist hat man nichts davon. Genauso wenig nutzt es, wenn der Sturm in der Nordsee tobt, man aber mangels Leitungen den Strom nicht nach Bayern transportieren kann.

Letztendlich muß der Verbraucher immer alle Kosten tragen. Für einen Vergleich unterschiedlicher Erzeuger ist aber eine richtige Zuordnung der Kosten sehr wohl nötig, will man nicht Äpfel und Birnen gleich setzen. Ein einfaches Beispiel mag das verdeutlichen: Bei einem Kernkraftwerk werden die Schaltanlagen und Anschlußleitungen bis zum „relevanten Anschlußpunkt“ den Baukosten des Kraftwerks zugeschlagen, weil sie als sicherheitsrelevant gelten. Bei Windkraftanlagen ist das genau andersherum, um die Windenergie künstlich günstig zu rechnen. Hier schmarotzt der Anlagenbetreiber von der Allgemeinheit. Insofern sind Investitionskosten ohne genaue Kenntnisse der Verhältnisse nicht unmittelbar gegenüber zu stellen. Begriffe wie „Netzparität“, sind nichts weiter als Irreführung der Verbraucher.

Entspricht 16 nun 34 oder nicht?

Die Baukosten für zwei EPR-Blöcke mit zusammen 3200 MW werden mit 16 Milliarden Pfund angegeben. Dies ist für sich schon ein stolzer Preis. Verwundern kann das jedoch nicht, da die Vergabe ohne Konkurrenz erfolgt. Dies ist nur politisch zu erklären: Der Segen aus Brüssel war sicherlich nur mit massiver Unterstützung von Frankreich möglich. Dürfte dieser Preis Realität werden, dürfte sich der EPR und Areva als sein Hersteller auf dem Weltmarkt erledigt haben. Er wäre schlichtweg nicht konkurrenzfähig. Wie eigenartig das Vergabeverfahren verlaufen ist, erkennt man schon daran, daß der Angebotspreis kurz vor Abgabe noch einmal um zwei Milliarden erhöht worden ist. Dies wurde mit einem zusätzlichen Erwerb eines Grundstückes und den Ausbildungskosten für die Betriebsmannschaft begründet. Vielleicht platzt das ganze Geschäft noch, weil Areva vorher die Luft ausgeht. Vielleicht ist Hinkley Point auch der Einstieg der Chinesen in das europäische Geschäft mit Kernkraftwerken. EDF hat ohnehin nur eine Beteiligung zwischen 45 bis 50% geplant. China General Nuclear und China National Nuclear Corporation sind schon lange als Partner vorgesehen.

Welche Kosten nun die wirklichen Kosten sind, ist so alt wie die Kerntechnik. Die Baukosten werden mit rund 16 Milliarden Pfund angegeben. Genauer gesagt sind dies die „Über-Nacht-Kosten“. Nun beträgt aber die geplante Zeit bis zur Inbetriebnahme etwa 10 Jahre. In dieser Zeit müssen alle Ausgaben über Kredite finanziert werden. Einschließlich der Finanzierungskosten soll das hier etwa 34 Milliarden Pfund ergeben. Weitere rund 10 Milliarden Pfund sollen auf die Rückstellungen für „Atommüll“ und die Abbruchkosten für das Kraftwerk entfallen. So ergibt sich die Zahl von 43 Milliarden Euro, die durch die Presselandschaft geistert. Man sollte dabei nicht vergessen, daß dies alles nur kalkulatorische Kosten zur Rechtfertigung des vertraglich vereinbarten „strike price“ von 92,50 Pfund pro MWh sind.

Es ging hier um ein „Beihilfeverfahren“, in dem die Kosten möglichst hoch angesetzt werden müssen, um das gewollte Ergebnis zu erhalten. Deutlich wird das an der erfolgreichen „Subventionskürzung“ bei der Finanzierung um über eine Milliarde Pfund, die Almunia stolz verkündet hat. Um was geht es genau dabei? Die Finanzierung eines Kernkraftwerks ist mit erheblichen, nicht kalkulierbaren – weil staatlich verursachten – Risiken verbunden. Man kann erst die Kredite zurückbezahlen, wenn man Strom liefern kann. Der Zeitpunkt ist aber unbestimmt, da laufend die Anforderungen der Behörden verändert werden können. Dieses (unkalkulierbare) Risiko, lassen sich die Banken mit erheblichen Zinsaufschlägen vergüten. Aus diesem Gedanken wurde die staatliche Bürgschaft (bis zur Inbetriebnahme) erschaffen. Durch diese Bürgschaft ist der Kredit einer Staatsanleihe gleichwertig. Allerdings kostet eine Bürgschaft immer Gebühren. Der Staat subventioniert hier nicht, sondern kassiert im Gegenteil ab! Zahlen muß – wie immer – der Verbraucher. Für Hinkley Point ist eine Bürgschaft über 10 Milliarden Pfund bzw. 65% der auflaufenden Kosten vorgesehen. Man setzt nun einen fiktiven Zinssatz mit Bürgschaft in Relation zu einem durchschnittlichen Zinssatz für Kredite und hat flugs eine – freilich rein theoretische – Subvention.

Es ging hier auch mehr um die grundsätzliche Absegnung eines Verfahrens. Eine solche Anleihe kann sehr langfristig angelegt werden und dürfte sich zu einem Renner für die Versicherungswirtschaft, Pensionskassen usw. im Zeitalter der niedrigen Zinsen erweisen. Dies war übrigens der Gedanke, der hinter der Erschaffung von Desertec, dem Projekt Strom aus der Sahara, stand. Nur hatten die energiewirtschaftlichen Laien der Münchener Rück auf das falsche Produkt gesetzt. Trotzdem ist die Idee Geld wert. Hier schlummert ein europaweites, gigantisches Infrastrukturprogramm. In diesem Sinne ist auch das chinesische Interesse kein Zufall. Man sucht auch dort händeringend langfristige, sichere und lukrative Anlagemöglichkeiten für die gigantischen Devisenreserven. Kapital gibt es genug, man muß nur die ideologischen Bedenken über Bord werfen.

Ist CfD gleich EEG oder doch nicht?

Um die Antwort vorweg zu nehmen: Das Hinkley Point Modell ist eher eine Abkehr vom deutschen EEG-Modell und eine Rückwärtsbesinnung auf die gute alte Zeit der Energieversorger mit genehmigungspflichtigen Preisen. Insofern hinkt auch hier der Vergleich mit der Förderung von Windenergie.

Nach dem EEG-Modell wird ein einmal beschlossener Energiepreis für die gesamte Laufzeit gewährt. Egal, wie hoch die erzielbaren Preise sind. Selbst wenn eine Entsorgungsgebühr für den erzeugten Strom an der Börse entrichtet werden muß (negative Energiepreise). Die Subvention wird jährlich als Zuschlag auf alle verbrauchten Kilowattstunden umgelegt. Das System ist rein an der Erzeugung orientiert. Je mehr Windstrom erzeugt wird, um so mehr drückt das auf die Börsenpreise und um so höher werden die Subventionen. Langfristig müssen sich die konventionellen Kraftwerke nicht nur ihre eigenen Kosten, sondern auch die Entsorgungsgebühren für Wind und Sonne in den Zeiten der Dunkel-Flaute zurückholen. Dies wird zu extremen Preisschwankungen an der Börse führen. Nicht einmal „Kapazitätsmärkte“ können dagegen etwas ausrichten.

Beim „strike price“ wird ebenfalls ein Preis festgelegt (hier die 92,50 Pfund/MWh auf der Basis 2012), der langfristig gezahlt wird. Immer wenn die an der Börse erzielbaren Preise geringer sind, wird die Differenz draufgelegt. Sind die erzielten Preise jedoch höher, muß diese Differenz zurückbezahlt werden. In der reinen Lehre, sollte es hierfür ein Bankkonto mit Zinsen geben, dessen Kredite durch den Staat (wegen der dann niedrigen Zinsen) verbürgt werden sollten. Dies war angeblich nicht „beihilfekonform“ und soll jetzt über kontinuierliche Umlagen bzw. Vergütungen bei den Stromrechnungen erfolgen. Hier liegt der entscheidende Unterschied zum EEG-Modell: Ein Kernkraftwerk kann immer Strom liefern, wenn es der Betreiber will – eine Windmühle nur, wenn die Natur es will. Kernkraftwerke können die hohen Börsenpreise bei „Spitzenlast“ in der Dunkel-Flaute voll mitnehmen. „Kapazitätsmärkte“ lassen sich so mit dem CfD-Modell elegant umschiffen. Die Kostentransparenz ist größer.

Die Preisaufsicht ist wieder zurück

In der Zeit der Gebietsmonopole, mußten sich die Energieversorger die Preise für die Endverbraucher genehmigen lassen. Ein Modell, welches noch in vielen Teilen der Welt praktiziert wird. Später glaubte man dies durch den freien Handel einer Börse ersetzen zu können. Leider ist dieser „freie Handel“ nie wirklich frei gewesen. Insofern hat es auch nie eine transparente und marktkonforme Preisfindung gegeben. Es war nur ein Alibi für eine Planwirtschaft.

Der von Brüssel genehmigte Preis ist nicht mehr auf ewig festgeschrieben, sondern plötzlich anerkannt veränderlich und bedarf somit einer Kontrolle. Er ist – klassisch, wie eine Preisgleitklausel – mit der allgemeinen Inflationsrate indexiert. Es ist ausdrücklich festgehalten, daß bei geringeren Baukosten als angesetzt, der „strike price“ angepaßt werden muß. Das gleiche gilt, wenn der Gewinn höher als vorgesehen ausfällt. Beides wohl eher fromme Wünsche, handelt es sich doch beim Bauherrn und Betreiber um staatliche Unternehmen. Zumindest die „hauseigene Gewerkschaft der EDF“ wird eher für das 15. und 16. Monatsgehalt streiken, bevor es dem Kunden auch nur einen Cent Preissenkung zugesteht. Man darf gespannt sein, mit welchen Befugnissen die Preisaufsicht ausgestattet werden wird.

Brüssel hat das ursprünglich auf 35 Jahre begrenzte Modell auf die voraussichtlich Lebensdauer von 60 Jahren ausgedehnt. Man will damit verhindern, daß das dann weitestgehend abgeschriebene Kraftwerk zu einer Gewinnexplosion bei dem Betreiber führt. Auch in dem erweiterten Zeitraum, müssen zusätzliche Gewinne zwischen Betreiber und Kunden aufgeteilt werden. Allerdings kehrt man mit diesem Ansatz nahezu vollständig zu dem Modell regulierter Märkte zurück. Eigentlich sollten an einer Börse die Preise durch Angebot und Nachfrage gefunden werden. Der Gewinn sollte dabei der Lohn für das eingegangene unternehmerische Risiko sein. Was unterscheidet das CfD-Modell eigentlich noch von einer rein öffentlichen Energieversorgung?

Nachwort

Man mag ja zur Kernenergie stehen wie man will. Nur was sind die Alternativen? Wenn man die gleiche elektrische Energie (3,2 GW, Arbeitsausnutzung ca. 90%) z. B. mit Sonnenenergie erzeugen wollte, müßte man rund 30 GW (Arbeitsausnutzung ca. 10%) Photovoltaik installieren. Trotzdem bleibt es in der Nacht dunkel – und die Nächte sind im Winterhalbjahr in GB verdammt lang. Im Gegensatz würden 30 GW an einem sonnigen Sonntag das Netz in GB förmlich explodieren lassen. Wollte man diese Leistung auf dem Festland entsorgen, müßte man erst gigantische Netzkupplungen durch den Ärmelkanal bauen.

Windkraftanlagen auf dem Festland erscheinen manchen als die kostengünstigste Lösung. Bei den Windverhältnissen in GB müßte man für die gleiche Energiemenge ungefähr 10 GW bauen und zusätzlich Gaskraftwerke mit etwa 3 GW für die Zeiten mit schwachem Wind. Das ergibt eine Kette von fast 1000 km Windkraftanlagen an der Küste. Wohlgemerkt, nur als Ersatz für dieses eine Kernkraftwerk Hinkley Point!

Oder auch gern einmal anders herum: Der Offshore-Windpark London Array – Paradebeispiel deutscher Energieversorger – hat eine Grundfläche von etwa 100 km2 bei einer Leistung von 0,63 GW. Weil ja der Wind auf dem Meer immer so schön weht (denkt die Landratte) geht man dort von einer Arbeitsausnutzung von 40% aus. Mit anderen Worten, dieses Wunderwerk grüner Baukunst, produziert weniger als 1/10 der elektrischen Energie eines Kernkraftwerkes.