PRISM das moderne Entsorgungszentrum? Teil 1

Von den populistischen „Argumenten“ gegen die Kernenergie, ist praktisch nur noch eines öffentlichkeitswirksam: Die „ungelöste Entsorgungsfrage“. Aus diesem Grunde, wird in den Medien – zumindest in Deutschland – nur äußerst zurückhaltend über Entwicklungen berichtet, die über das bloße Vergraben hinausgehen.

In England wird seit einigen Jahren ernsthaft über den Bau des sogenannten Power Reactor Innovative Small Module (PRISM) von GE-Hitachi diskutiert. Hintergrund ist der stetig wachsende Plutoniumberg aus der Wiederaufbereitungsanlage. Inzwischen lagern zwischen 100 und 150 Tonnen auf der Insel. Es geht dabei um die sinnvollste Verwendung. Ein „verbuddeln und vergessen“ nach deutschen Vorstellungen, scheidet für GB ohnehin aus. Vielmehr ist man bestrebt, das Gefahrenpotential des „Atommülls“ auf einige hundert Jahre zu begrenzen. Ein Zeitraum, den man unstrittig durch technische Bauten sicher beherrschen kann. Man holt dadurch das Problem von der wenig fassbaren moralischen Ebene – irgendwelcher „Ethikkommissionen“ – auf die berechenbare Ebene der Ingenieurwissenschaften zurück.

Ein Weg – und beileibe nicht der einzige – ist die Nutzung und Beseitigung abgebrannter Brennelemente durch einen mit Natrium gekühlten Reaktor mit schnellem Neutronenspektrum und metallischem Brennstoff: Dem PRISM. Nichts von der Erfindermesse, sondern ein Stück erprobter Technik. Sein unmittelbarer Vorläufer, der EBR II, war 30 Jahre erfolgreich in Betrieb (bis 1994). Ein PRISM-Kraftwerk mit 1866 MWel würde rund zwei Tonnen abgebrannter Brennelemente pro Jahr verbrauchen und damit die gleiche Menge Strom erzeugen, wie Kohlekraftwerke durch die Verbrennung von sechs Millionen Tonnen Steinkohle.

Warum schnelle Neutronen?

Mit hinreichend schnellen Neutronen kann man alle schweren Kerne spalten. Ausdrücklich auch U238, alle Plutoniumisotope und die minoren Aktinoiden (Americium, Curium, Neptunium usw.). Letztere sind für die Langlebigkeit des Atommülls verantwortlich. Gelingt es sie zu spalten, bleiben nur noch Spaltprodukte mit einer Halbwertszeit von unter 30 Jahren übrig. Allerdings hat die Sache einen entscheidenen Harken: Die Reaktionsquerschnitte sind nicht nur stoffabhängig, sondern auch sehr stark energieabhängig. Mit anderen Worten, nimmt die Wahrscheinlichkeit für eine Spaltung mit schnellen Neutronen stark ab.

Eine selbsterhaltende Kettenreaktion läßt sich nur mit U235 (in der Natur vorkommend) und U233. (aus Thorium erbrütet), sowie Pu239 (aus Uran erbrütet) aufrecht erhalten. Auch deren Spaltquerschnitte sind für langsame thermische Neutronen um Größenordnungen geeigneter. Will man also einen schnellen Reaktor bauen, braucht man wesentlich höhere Anteile an Spaltmaterial. Allerdings steigt auch die Anzahl der freigesetzten Neutronen mit der Energie der spaltenden Neutronen an.

An dieser Stelle ergeben sich die drei Varianten des PRISM-Reaktors, die sich nur durch die Zusammensetzung des Kerns unterscheiden:

  1. Der Brenner. Er verbraucht – wie ein Leichtwasserreaktor – mehr Spaltstoff als beständig neu entsteht. Man muß diese Verluste stetig aus abgebrannten Brennelementen ersetzen. Dies wäre eine reine „Abfallverbrennungsanlage“.
  2. Der Selbsterhalter. Er stellt ziemlich genau so viel Pu239 beim Betrieb gleichzeitig her, wie er auch verbraucht. Die Spaltungen müssen nur durch U238– z. B. aus dem Abfall der Anreicherungsanlagen – ergänzt werden.
  3. Der Brüter. Dies ist die wohl bekannteste Variante. Ein solcher Kern erzeugt mehr Pu239., als er selbst verbraucht. Entscheidendes Maß ist bei diesem Typ die sogenannte Verdoppelungszeit. Damit ist die Zeitdauer gemeint, in der ein Reaktor so viel Überschussplutonium produziert hat, wie man braucht, um damit einen zweiten Reaktor in Betrieb nehmen zu können. Diese Variante wird erst attraktiv, wenn die Preise für Natururan explodiert sind. Also erst in sehr ferner Zukunft.

Es ist bei allen drei Varianten sinnvoll, die Spaltprodukte von Zeit zu Zeit abzutrennen. Allerdings haben sie nicht die Bedeutung, die sie bei Leichtwasserreaktoren haben, da ihre Einfangquerschnitte (und dadurch verursachte Neutronenverluste) für hohe Energien recht klein sind. Der Abbrand kann bei schnellen Reaktoren rund fünfmal so hoch sein, wodurch sich eine Wiederaufbereitung wesentlich vereinfacht und nicht so oft geschehen muß (Kosten).

Warum Natrium als Kühlmittel?

Wenn man einen schnellen Reaktor bauen will, muß man ein Kühlmittel verwenden, das Neutronen praktisch nicht abbremst. In diesem Sinne, kommen praktisch nur drei Stoffe in Frage: Natrium, Blei und Helium. Natrium besitzt in allen relevanten Eigenschaften klare Vorteile, sodaß es nicht verwunderlich ist, daß praktisch alle schnellen Reaktoren (über 20 in 8 Ländern) mit Natrium gekühlt wurden. Einzige Ausnahme bilden die sieben Blei-Wismut-Reaktoren der U-Boote der Alpha-Klasse in der Sowjetunion. Sie sind gerade an den Eigenschaften des Blei gescheitert (hohe Schmelztemperatur, die eine ständige Beheizung erfordert; große Korrosionsprobleme; hohe Pumpleistung; starke Aktivierung durch die Bildung von Po210. Je eingehender man sich mit Kühlmitteln beschäftigt, gibt es für ein Kernkraftwerk (zur reinen Stromerzeugung) lediglich zwei optimale Kühlmittel: Wasser für thermische und Natrium für schnelle Reaktoren.

Natrium ist wegen seines elektrischen Widerstandes hervorragend für den Bau von elektromagnetischen Pumpen ohne bewegliche Teile und damit ohne Dichtungsprobleme geeignet.

Bei Natrium braucht man immer einen zusätzlichen Zwischenkreislauf. Der Neutronenfluß bildet Na24, welches ein harter γ.-Strahler ist. Das primäre Natrium muß deshalb gut abgeschirmt werden. Außerdem besteht bei Leckagen im Dampferzeuger die Gefahr der Wasserstofferzeugung und der Bildung von NaOH. Wasserstoff ist ein guter Moderator, der zu einer Beschädigung des Kerns durch einen Reaktivitätssprung führen könnte.

Die Gefahr von Natriumbränden wird meist überschätzt. Natrium hat eine hohe Verdampfungswärme bei hoher Verdampfungstemperatur. Dies führt zu einer geringen Verdampfungsrate während der Verbrennung – dem Feuer mangelt es an Nahrung. Die Verbrennung von Natrium in Luft setzt nur etwa ein Viertel der Energie, wie Benzin frei. Bei dem klassischen Brandversuch in einer offenen Wanne, bilden sich nur wenige Zentimeter hohe Flammen und in einem Meter über den Flammen herrscht nur eine Temperatur von rund 100 °C. Die bei der Verbrennung entstehenden Na2 O und Na O – Aerosole reagieren in Luft unter Anwesenheit von Wasserdampf und Kohlendioxid weiter zu Na OH und Na2 CO3. Diese Aerosole erfordern anschließend gründliche Reinigungsarbeiten, da sie elektrische Anlagen zerstören können und giftig sind.

Natrium besitzt sehr gute Korrosionsschutzeigenschaften, da es leicht mit Sauerstoff reagiert. Erst oberhalb von 50 ppm besteht für gewisse Stähle eine Korrosionsgefahr im flüssigen Natrium. Dieser Wert ist problemlos über eine Kältefalle (Im Prinzip ein Topf, durch den ein Teilstrom von weniger als 5% des Kreislaufes sehr langsam hindurch strömt) auf 10 bis 25 ppm zu halten. In der Kältefalle kristallisiert das Na2Oa bei unter 200 °C aus.

Warum metallischer Brennstoff?

Metallische Brennstoffe ermöglichen die höchsten Brutraten, da sie vollständig aus spaltbarem und brutfähigen Material bestehen könnten. Sie liefern das härteste Neutronenspektrum, da sie nur aus den schwersten Kernen bestehen. Die Folge ist, daß rund 25% der erzeugten Energie aus der direkten Spaltung von U238. stammen können.

Metalle sind ausgezeichnete Wärmeleiter und vertragen sehr schnelle Temperaturänderungen. Im Gegensatz dazu sind Uranoxide – wie sie in allen Leichtwasserreaktoren verwendet werden – Keramiken, mit bekannt schlechter Wärmeleitung und Sprödigkeit. Sie können im Inneren bereits aufschmelzen, wenn sich ihre Randtemperatur noch kaum geändert hat und können bei schockartiger Abkühlung wie eine Teetasse zerspringen.

Metallische Brennstoffe vertragen sich ausgezeichnet mit dem flüssigen Natrium. Chemische Reaktionen, wie zwischen den Brennstabhüllen aus Zr bei Leichtwasserreaktoren und Wasserdampf gibt es nicht (Wasserstoffexplosionen in Fukushima).

Metallischer Brennstoff schwillt durch die Strahlenbelastung um bis zu 30% an. Die Brennstäbe müssen deshalb sehr viel Raum für Spaltgase besitzen. Der notwendige Anfangsspalt zwischen Hüllrohr und Brennstoff wird mit Natrium als Wärmebrücke ausgefüllt.

Man kann bei Metallen die Eigenschaften durch Legierung gezielt verändern. Plutonium hat eine zu geringe Schmelztemperatur. Der Brennstoff kann mit den Legierungsbestandteilen der Stahlhülle schädliche Eutektika bilden usw. Dies alles, hat in den USA Jahrzehnte Forschung und Entwicklung und den Test von hunderttausenden von Brennstäben erfordert. Als Optimal hat sich eine Brennstofflegierung aus Uran und Plutonium mit etwa 10% Zr in einer Hülle aus austenitischem Stahl herausgestellt.

S wie small

Von Anfang an, stand bei der Entwicklung die geometrische Größe des Reaktors im Vordergrund: Man wollte den kompletten nuklearen Teil in einer Fabrik fertigen und testen und anschließend (möglichst) mit der Eisenbahn zum Standort transportieren. Alle Einbauten, der Kern, die Pumpen, die Zwischen-Wärmeübertrager, die Lademaschine mit dem Zwischenlager und die Regelstäbe werden in einen Topf aus Edelstahl eingebaut und mit dem Deckel gasdicht verschweißt. Diesen Reaktorbehälter umschließt noch ein zweiter Sicherheitsbehälter und die Luftkühlung. All das, wird in einer Fabrik zusammengebaut und getestet und anschließend zur Baustelle transportiert und dort in das örtlich gefertigte Betonsilo eingesetzt. Damit ist die geplante Leistung auf etwa 840 MWth. begrenzt. Durch die Serienfertigung in einer spezialisierten Fabrik verspricht man sich einen bedeutenden Kostenvorteil.

M wie modular

Die Modularität bezieht sich sowohl auf einen Block selbst, wie auch auf ein Kraftwerk:

  • Jeder Block besteht aus dem nuklearen Teil in einem unterirdischen Betonsilo, der oberirdischen Dampferzeuger-Anlage und den konventionellen Stromerzeugungsanlagen.
  • Ein komplettes Kernkraftwerk könnte z. B. eine elektrische Leistung von 1866 MWel haben und müßte dann aus sechs Reaktoren (je 840 MWth) bestehen, die jeweils paarweise auf eine Turbine (je 622 MWel.) wirken und insgesamt drei Turbinen haben. Alle sonstigen Einrichtungen (Werkstatt, Sozialgebäude usw.) würden gemeinsam genutzt. Ein solches Kraftwerk könnte auch eine integrierte Wiederaufbereitungsanlage beinhalten.

Die interne Unterteilung zielt auf eine potentielle Kosteneinsparung ab: Lediglich der Reaktor in seinem Betonsilo müßte dem Sicherheitsstandard „nuclear grade“ entsprechen. Bereits die Dampferzeugungsanlage in ihrem separaten Gebäude sollte – nach Meinung von GE – nur einen „gehobenen Industriestandard“ haben. In wie weit die Genehmigungsbehörden dieser Argumentation folgen werden, ist noch nicht ganz eindeutig zu beantworten.

Die Zusammenfassung von zwei Reaktoren mit Dampferzeuger und einer Turbine zu jeweils einer Einheit, zielt auf eine hohe Verfügbarkeit und einen kostengünstigen Ausbau eines Standortes ab. Sobald eine Einheit fertig ist, kann diese bereits Geld verdienen, während der Ausbau des Kraftwerkes weiter läuft. Die heute übliche Vorfinanzierung der gesamten Summe entfällt. Später, hat das Kraftwerk eine sehr hohe Verfügbarkeit bei guten Wirkungsgraden. Letztendlich muß die Praxis zeigen, welcher Weg der günstigere ist. Rußland beispielsweise, versucht es über möglichst große Blöcke.

Das Sicherheitskonzept

PRISM setzt konsequent auf eine passive oder inhärente Sicherheitstechnik. Der völlige Stromausfall (Station-Blackout) ist kein Problem mehr. Es wird lediglich eine elektrische Leistung von weniger als 200 kW für Instrumentierung, Notbeleuchtung, Rechner und Bildschirme usw. benötigt. Diese kann problemlos über Batterien bereitgestellt werden. Notstromdiesel (als Sicherheitstechnik) sind nicht mehr nötig. Die Nachzerfallswärme wird ausschließlich über eine Luftkühlung mit Naturzug abgeführt. Dazu wird die Wärme über das Reaktorgefäß und den Sicherheitsbehälter an einen umgebenden Luftspalt abgegeben. Die erwärmte Luft steigt über vier Kamine auf. Das System ist so bemessen, daß auch bei erheblichen Verstopfungen (z. B. durch Erdbeben oder Anschläge) oder dem kompletten Ausfall von zwei Kaminen oder einem völligen Verschluß der Zuluftöffnungen die Kühlung stets gewährleistet ist. Selbst bei einem völligen Ausfall von 36 Stunden tritt noch keine Kernschmelze auf. Ein Unfall wie in Fukushima, wäre damit ausgeschlossen.

Der gesamte Reaktor ist elastisch auf Federn und Dämpfern gelagert. Da sich alle Rohrleitungen und Pumpen etc. in dem Reaktorgefäß befinden, ergibt sich ein optimaler Erdbebenschutz. Dies gilt auch für Flugzeugabstürze und sonstige Einwirkungen von außen, da sich der Reaktor in einem unterirdischen Betonsilo befindet. Die Verbindung zum Dampferzeuger besteht aus Vor- und Rücklauf des Natrium-Zwischen-Kreislaufes, die ebenfalls in einem Betongraben verlegt sind. Diese Leitungen sind als Rohr in Rohr Konstruktion ausgeführt, um Natrium-Leckagen zu verhindern.

Der Dampferzeuger ist ebenfalls mit einem Mantel zur Luftführung umgeben. Wenn die eigentliche Kühlung des Kraftwerks ausfällt, kann die Wärme auch darüber abgeführt werden. Dies ist jedoch kein nukleares Sicherheitssystem im engeren Sinne, sondern dient dem Anlagenschutz.

Die Lagerung der Brennelemente

Die Handhabung der Brennelemente verläuft bei diesem Reaktor gänzlich anders als bei Leichtwasserreaktoren. Der Reaktor kann wegen des flüssigen Natriums mit seiner hohen Temperatur und Brandgefahr nicht einfach geöffnet werden. Zuerst wird das Helium als Schutzgas und Ausgleichsraum abgesaugt und durch frisches Gas ersetzt. Damit soll die Gefahr der Freisetzung radioaktiver Gase in den Sicherheitsbehälter vermieden werden. Die fest im Reaktor installierte Lademaschine entnimmt abgebrannte Brennelemente und lagert sie oberhalb des Kerns in ein Lagergestell ein. Anders als bei Leichtwasserreaktoren, verbleiben sie für mindestens 20 weitere Monate zur Abkühlung im Reaktor. Ihre Wärmeentwicklung durch den radioaktiven Zerfall ist dann soweit abgeklungen, daß sie auch ohne spezielle Kühlung keine Temperatur von 400 °C mehr überschreiten können. Dies ist für ihren metallischen Kern und die Hüllrohre aus Stahl kein Problem. Ein Brennelemente-Lagerbecken ist nicht nötig.

Ein vollautomatisches Transportfahrzeug dockt an den Reaktordeckel an, entnimmt die zu entladenden Brennelemente und fährt sie anschließend zum zentralen Lagergebäude.

All das, geschieht vollautomatisch und unter Schutzgas. Trotzdem ist ein Auslegungsstörfall der Brand des Natriums im Reaktor. Der Sicherheitsbehälter oberhalb des Reaktors ist so bemessen, daß er die freigesetzte Energie und die Temperaturen aushält. Automatische Löschanlagen mit Schutzgasen sind vorhanden.

Die Auslegungsstörfälle

Schnelle Reaktoren (SR) und Leichtwasserreaktoren (LWR) unterscheiden sich stark in ihrem Unfallverhalten. LWR stehen unter hohem Druck und werden nahe dem Verdampfungspunkt betrieben. Schon bei einem relativ kleinem Leck baut sich der Druck stark ab und das „Kühlwasser“ verdampft. Die Temperatur im Kern steigt damit steil an und nähert sich schnell den Grenzwerten. Gelingt es nicht, das Kühlwasser schnell zu ersetzen, wird der Kern zerstört (Unfall in Harrisburg). Auch nach erfolgreicher Abschaltung, kann die Nachzerfallswärme noch zur Kernschmelze führen (Unfall in Fukushima). Es kommt im weiteren Verlauf dann zur Reaktion zwischen Wasserdampf und den Brennstabhüllen mit starker Wasserstoffproduktion (zerstörende Explosionen in Fukushima).

Bei einem SR sieht der Ablauf gänzlich anders aus. Die Kombination aus metallischem Brennstoff, Brennstabhüllen aus Edelstahl und Natrium als Kühlmittel ergibt eine sehr gute Wärmeübertragung mit hoher Temperaturbeständigkeit. Chemische Reaktionen zwischen den Unfallbeteiligten sind praktisch nicht vorhanden. Mit anderen Worten: Es wird recht schnell und gleichmäßig heißer im Reaktor. Wegen der hohen Verdampfungstemperatur kann es deutlich heißer werden, ohne daß sich wesentliches ändert. Bei einem LWR reicht selbst die Nachzerfallswärme aus, den Kern zum Schmelzen zu bringen, wenn er nicht mehr mit flüssigem Wasser bedeckt ist. Bei einem SR führt die starke Temperaturerhöhung lediglich zu einem neuen Gleichgewicht zwischen „Notkühlluft“ und Reaktorgefäß. Die neue Gleichgewichtstemperatur ist so bemessen, daß sie sich noch weit von Materialgrenzwerten entfernt einstellt. Der Reaktor ist „inhärent sicher“.

Bei jedem Reaktor führen gewisse Grenzwerte zur sofortigen und automatischen Abschaltung. Beim PRISM fallen zu diesem Zweck sechs Regelstäbe in den Kern ein. Die Kettenreaktion wird dadurch in Sekundenbruchteilen unterbrochen. Zur dauerhaften Abschaltung gibt es noch ein zweites System, das Kugeln aus Borkarbid in den Kern einführt. Insofern unterscheiden sich LWR und SR kaum.

Man geht aber beim PRISM-Reaktor noch einen Schritt weiter, in dem man sich den starken Temperaturanstieg nutzbar macht. Dieser führt zu einer Reihe von Auswirkungen, die neutronenphysikalisch wirken (Dopplereffekt, Dichteänderung des Natrium, Axiale und radiale Ausdehnungen des Brennstoffs, usw.). Wichtig ist die konstruktive Gestaltung, damit der Temperaturkoeffizient der Reaktivität immer negativ bleibt (In Tschernobyl war er positiv!). In Alltagssprache: Je heißer der Reaktor wird, um so schneller bricht die Kettenreaktion von selbst zusammen. Wird die Kühlung – aus welchen Gründen auch immer – unterbrochen, schaltet sich der Reaktor von selbst ab. Er ist also auch im Betrieb „inhärent sicher“.

Der Ausfall der Umwälzpumpen im Reaktor (vier Stück) kann zu einer lokalen Überhitzung führen, die örtlich sogar zu einem Verdampfen des Natriums führen könnte. Dadurch könnte der Neutronenfluß lokal weiter ansteigen und Teile des Kerns beschädigen. Ursache sind die elektromagnetischen Pumpen, die keine rotierenden Massen haben und somit sofort ausfallen, wenn der Strom weg ist (Station-Blackout). Sie werden deshalb mit Synchronmotoren, mit extra großen Schwungmassen, parallel betrieben. Die Synchronmaschinen erzeugen im Normalbetrieb Blindleistung und schalten bei Stromausfall automatisch in den Generatorbetrieb um. So entsteht ein mehrere Minuten dauernder Auslauf der Pumpen, der lokale Überhitzungen verhindert und sanft in einen Naturumlauf überführt.

Versagt auch dieses System, werden die Gasraum-Ausdehner wirksam. Sie funktionieren nach dem Prinzip eines umgedrehten Glas im Spülbecken: Je weiter man es eintaucht, um so kleiner wird das Luftpolster infolge des steigenden Wasserdrucks. Im PRISM spielt nun der Pumpendruck auf das Natrium mit einem Gaspolster aus Argon zusammen. So wie der durch die Pumpen erzeugte Druckanstieg kleiner wird, dehnt sich das Argonpolster aus. Da das Gas eine wesentlich geringere Dichte als das flüssige Natrium hat, kann es auch weniger Neutronen in den Kern zurück streuen. Der Ausfluß erhöht sich und die Kettenreaktion bricht zusammen. Ein weiteres, völlig passives, Sicherheitssystem.

Natriumbrand im Dampferzeuger

Ein spezielles Sicherheitsproblem ist die Reaktion zwischen Wasser und Natrium. Bei ihr wird neben Energie auch Wasserstoff frei bzw. es entstehen Reaktionsprodukte, die Wasserstoff enthalten. Daraus ergeben sich folgende Ansprüche:

  • Der Dampferzeuger sollte in einem separaten Gebäude – streng getrennt vom Reaktor – stehen. Da es nur hier eine Schnittstelle zwischen Wasser und Natrium gibt, können alle Auswirkungen besser beherrscht und lokal begrenzt werden.
  • Es sollte eine Isolierung zwischen Dampferzeuger und Reaktorteil geben, um Rückwirkungen auf die Wärmetauscher im Reaktor zu verhindern.
  • Es müssen ausreichend große Abblasetanks vorhanden sein, um Natrium und Wasser möglichst schnell voneinander zu trennen, damit die Brandlasten klein bleiben. Entstandener Wasserstoff muß rekombiniert bzw. sicher abgeleitet werden, um Explosionen zu verhindern (nicht wie in Fukushima, auch noch benachbarte Gebäude zerstören.)

Der Dampferzeuger des PRISM ist ein schlanker, aufrecht stehender Behälter. Er ist nicht vollständig mit Natrium gefüllt, sondern besitzt oben einen mit Argon gefüllten Raum. Dieses Gaspolster, kann bei Störfällen etwaige Druckwellen bereits erheblich mindern. In dieses Natriumbad tauchen, zu einer Spirale gewickelte Rohre ein. In diesen strömt das Wasser und verdampft. Würde ein Rohr undicht werden, strömt Wasser bzw. Dampf unter hohem Druck in das Natrium ein und reagiert dort sofort. Die zusätzliche Energieproduktion kann zu einem Temperaturanstieg im Dampferzeuger führen. Wichtigste Gegenmaßnahme ist nun die Absperrung sowohl der Wasser- und Dampfleitungen wie auch der Natriumleitungen. Dabei sind kleine Leckagen kein Problem, da sie ein langsames Abfahren der Anlage ermöglichen.

Kommt es hingegen zu massiven Wassereinbrüchen, kann es zu einer stärkeren Temperaturerhöhung und einem steilen Druckanstieg führen. Wichtigstes Ziel ist nun, die Druckspitze zu begrenzen und die Druckwelle möglichst von den Zwischenwärmetauschern im Reaktor fern zu halten. Zur Dämpfung dient bereits das Gaspolster im Dampferzeuger. Wird der vorgesehene Druck überschritten, bersten zwei Scheiben in der Verbindungsleitung zum Abblasetank. Der Abblasetank trennt die Gase (insbesondere den entstandenen Wasserdampf) vom flüssigen Natrium. Das Natrium strömt dann weiter in Reservetanks. Bereits gebildeter Wasserstoff wird rekombiniert, um etwaige Explosionen zu vermeiden. Die Restwärme wird über die Außenluft abgeführt.

Unmittelbar hinter dem Sicherheitsbehälter des Reaktorgebäudes befinden sich Isolierventile, die sofort und automatisch schließen. Dadurch wird verhindert, daß überhaupt Reaktionsprodukte zum Reaktor gelangen können.

Schlußbetrachtung

Es gibt international viel Erfahrung aus einigen hundert Betriebsjahren mit natriumgekühlten schnellen Reaktoren. Allein in den USA ist der EBR II über 30 Jahre erfolgreich gelaufen. Man hat in ihm über 100000 Brennelemente getestet und umfangreiche Experimente der Sicherheitssysteme durchgeführt. Mehrfach wurde bei voller Leistung die Wärmesenke einfach abgestellt, um beispielsweise die Richtigkeit der Rechenprogramme zu überprüfen. Die Entwicklung ist seit dem – wenn auch stark reduziert – kontinuierlich weitergeführt worden. Bereits 1994 wurde das eingereichte Konzept von der NRC in einem 400seitigen Abschlussbericht positiv beurteilt. Seit dem, könnte eigentlich ein Kraftwerk als Demonstrationsanlge gebaut werden – wenn der politische Wille vorhanden wäre. Ob auch hier wieder China voranschreiten wird oder kann Europa (GB) noch den Anschluß halten?

Ausblick

Der zweite Teil wird sich mit der Wiederaufbereitung und der Herstellung der metallischen Brennelemente beschäftigen.

Fukushima Block IV

Die Geschichte

Das Kernkraftwerk Fukushima gehörte einst zu den größten Kernkraftwerken weltweit. Es besteht aus zehn Blöcken in zwei Gruppen (Fukushima Dai-ichi mit den Blöcken I1 bis I4 und I5 bis I6 und Fukushima Daini mit den Blöcken II1 bis II4). Beide Einheiten wurden von den selben Erdbeben und dem selben Tsunami im März 2011 getroffen. Warum aber, mit völlig unterschiedlichem Ausgang? Dai-ichi ist Totalschaden, Daini könnte man morgen wieder in Betrieb nehmen – sofern man wollte. Der Hauptgrund ist simpel: Fukushima II ist einige Meter höher gelegen, als Fukushima I. Die gleiche Flutwelle konnte damit nicht so verheerend wirken, wie auf dem Gelände I. Damit ist bereits die erste und wichtigste Erkenntnis gewonnen: Ein Standort muß gegen die – auch hier – bekannten Naturkatastrophen gesichert sein. Ein Verdrängen kann zur Katastrophe führen. Die Statistik ist gnadenlos: Ein Jahrtausendereignis kann schon morgen eintreten. Andererseits ist es wenig hilfreich, einen Tsunami auch in Bayern als potentielle Gefahr zu sehen.

Die zweite wichtige Erkenntnis ergibt sich aus der Anordnung der Blöcke im Kraftwerk Daichi. Dort sind die Blöcke 1 bis 4 praktisch „Wand an Wand“ mit vielen gemeinsamen Gängen und Leitungen gebaut. Die Blöcke 5 und 6 stehen einige hundert Meter weiter entfernt. Auch hier ist die Erkenntnis geradezu trivial: Wenn man Reaktorblöcke unmittelbar nebeneinander baut und sogar miteinander verbindet, besteht die Gefahr, daß sich Ereignisse (Feuer, explosive Gase etc.) wie bei Dominosteinen weiter ausbreiten. Ja, die Problematik geht sogar über das eigentlichen Ereignis hinaus. Die Intervention durch Menschen wird auf lange Zeit durch großräumige Kontamination verhindert. Deutlicher, als im Falle des Reaktors 4, kann man das gar nicht aufzeigen: Der Reaktor 4 war zum Zeitpunkt des Ereignisses gar nicht in Betrieb und vollständig entladen. Es wäre also gar nichts passiert, weder durch die starken Erdstöße noch durch die Flutwelle! Erst das in den anderen Reaktoren entstandene Knallgas wurde ihm zum Verhängnis. Es hat sich über das gemeinsame Lüftungssystem ausgebreitet. Die Explosion brachte das obere Geschoß des Reaktorgebäudes zum Einsturz.

Die Sonderrolle der Blöcke 5 und 6

Die Blöcke 5 und 6 befinden sich einige hundert Meter nördlich von den Blöcken 1 bis 4 auf dem gleichen Gelände. Der Block 5 entspricht den Blöcken 2 bis 4 (Siede­wasser­reaktor BWR/4 (Mark I) mit 760 MWe) und ging zwei Jahre später als Block 3 (ebenfalls von Toshiba) in Betrieb. Bei Block 6 handelt es sich um eine modernere Version (BWR/5 (Mark II) mit 1069 MWe) ebenfalls von Toshiba errichtet und 1979 in Betrieb gegangen.

Im Zusammenhang mit dem Tsunami ist festzustellen, daß diese beiden Reaktoren praktisch nicht beschädigt wurden. Sie befanden sich zum Zeitpunkt des Unglücks gar nicht in Betrieb, sondern waren planmäßig für Wartungsarbeiten abgeschaltet. Beide Reaktoren waren frisch nachgeladen und bereits wieder vollständig verschlossen und zur Wiederinbetriebnahme bereit. Im Block 5 fand während des Unglücks gerade eine Druckprobe statt. Bei Wartungsarbeiten am Aufzug des Schornsteins kam ein Arbeiter durch das Erdbeben zu Tode. Der einzige Tote infolge des schweren Erdbebens und des Tsunami im Kraftwerk; obwohl sich während des Unglücks über 500 Arbeiter auf der Schicht befanden.

Die Flutwelle richtete nicht so schweren Schaden, wie bei den benachbarten vier Reaktoren an. Hauptgrund dürfte gewesen sein, daß das Gelände rund drei Meter höher gelegen ist. Da die Reaktoren während der Naturkatastrophe abgeschaltet waren, war der Eigenstrombedarf kleiner: Es mußte nur die sehr viel geringe Nachzerfallswärme abgeführt werden. Ein Reaktor nach einem Brennelementewechsel, setzt aber nur wenig Wärme frei, da die sehr kurzlebigen (und damit sehr viel Zerfallswärme produzierenden) Elemente bereits während der Zwischenlagerung im Abklingbecken zerfallen sind. Entsprechend gering ist auch die benötigte elektrische Leistung für die Kühlmittelpumpen. Ein entscheidender Unterschied zu der Situation in den Reaktoren 1 bis 3.

Technisch gesehen, könnten die Blöcke 5 und 6 wieder den Betrieb aufnehmen. Derzeit erscheint das aber politisch nicht gewünscht. Eine endgültige Stilllegung erscheint wahrscheinlicher. Es gibt bereits den Vorschlag, diese Reaktoren als „Übungsgelände“ für den komplizierteren Abriss der Ruinen 1 bis 4 zu nutzen.

Der Wert gemeinsamer Baugruppen

Fukushima Daiichi hatte eine elektrische Nettoleistung von 4546 MW. Entsprechend stark und vielfältig waren die Verbindungen mit dem Netz. Trotzdem wurden praktisch alle Leitungen und Schaltanlagen großräumig zerstört: Das Kraftwerk war auf seine Eigenversorgung angewiesen. Da wegen der schweren Erdstöße eine vollautomatische Schnellabschaltung ausgelöst wurde, war auch keine Eigenstromerzeugung mehr möglich. Als einzige Quelle blieben die Notstromdiesel. Die Blöcke 2, 4 und 6 verfügten jeweils über luftgekühlte Notstromdiesel. Allerdings wurden durch die Flutwelle alle Schaltanlagen der Blöcke 1 bis 4 zerstört, sodaß nur noch der Diesel von Block 6 einsatzbereit war. Ihm ist es zu verdanken, daß die Blöcke 5 und 6 planmäßig in einen sicheren Zustand überführt werden konnten. Wären die Diesel und ihre Schaltanlagen gegen Hochwasser gesichert gewesen (hochgestellt oder wasserdichte Gebäude), wäre praktisch nichts passiert!

Da bei diesen älteren Reaktoren, keine passiven Notkühlsysteme vorhanden sind, führt ein (längerer) Ausfall der Stromversorgung zwangsläufig zu einer teilweisen Schmelze von Brennelementen und damit zum Totalschaden. Genau diese passiven Kühleinrichtungen, die kein Eingreifen in den ersten 72 Stunden erforderlich machen, sind der entscheidende Sicherheitsgewinn der sogenannten Generation III+. Auch bei dem Tsunami hätte diese Zeitspanne ausgereicht, um Notstromaggregate von weit entfernt „einzufliegen“. Als Konsequenz der Naturkatastrophe von Fukushima, richtet man nun überall überregionale Zentren mit zusätzlicher Sicherheitstechnik (Pumpen, Notstromaggregate, Werkzeuge etc.) ein. Sie übernehmen die (zusätzliche) Rolle von Feuerwehr-Wachen. Auch bei schweren lokalen Zerstörungen infolge Naturkatastrophen etc. kann dadurch sehr schnell eine Unterstützung mit Material und Fachpersonal erfolgen.

Als besonders gefährlich hat sich die Bauweise „Wand an Wand“ erwiesen. In Deutschland waren solche Entwürfe von Anfang an ausgeschlossen. In Japan – und insbesondere im Ostblock – hat man die Sache offensichtlich etwas anders gesehen. Der Gewinn durch geringere Investitionskosten wurde durch die angebliche, gegenseitige Nutzungsmöglichkeit von Sicherheitseinrichtungen meist noch verklärt. Imposant oder gruselig – je nach Standpunkt des Betrachters – sind die gigantischen Turbinenhallen sowjetischer Kraftwerke. Nach Tschernobyl und Fukushima sind solche Konstruktionen international Geschichte. Ganz nebenbei, ist dies ein Beispiel dafür, daß man die technische Lebensdauer von Kernkraftwerken nicht beliebig ausdehnen sollte. Es gibt durchaus Kraftwerke, die so grundsätzliche Schwachstellen haben, daß man sie besser außer Betrieb nimmt und durch neue (sicherheitstechnisch überlegene) Konstruktionen ersetzt.

Besonders fatal ist es, wenn gemeinsame Lüftungssysteme und Kanäle vorhanden sind. Der Block 4 war zum Zeitpunkt des Unglücks abgeschaltet und vollständig entladen. Ein Unglück wäre praktisch ausgeschlossen gewesen, wenn nicht Wasserstoffgas von außen über das Lüftungssystem in das Gebäude hätte eindringen können. Ein eher klassisches Unglücks-Szenario einer Raffinerie oder einer chemischen Anlage. Block 4 würde heute noch genauso unversehrt dastehen, wie die Blöcke 5 und 6, wenn er nicht über das Lüftungssystem mit seinem „verunglückten Nachbarn“ verbunden gewesen wäre!

Damit wären wir beim zweiten grundsätzlichen Konstruktionsfehler dieses Reaktors. Das Gebäude war vertikal zweigeteilt. Im unteren Teil befand sich der Reaktor mit seinem Sicherheitsbehälter. Dieser Teil war durch dicke Betonwände geschützt. Diese Betonwände dienten primär der Abschirmung von Strahlung. Der obere Teil hingegen, war eine einfache Stahlträger-Konstruktion, die gegen Wind und Wetter mit Blech verkleidet war. Diese „Stahlbau-Halle“ ist durch die (chemische) Wasserstoffexplosion eingestürzt und hat auch alle Krananlagen mit sich gerissen. Ein solches Unglück ist bei Kraftwerken, die gegen Flugzeugabstürze gesichert sind (also bei allen deutschen Reaktoren!) ausgeschlossen, da der erforderliche „Betonpanzer“ natürlich auch gegen inneren Explosionen wirkt. Um es noch mal deutlich zu sagen: Alle modernen Reaktoren (auch heutige russische Anlagen) befinden sich in einem Betonbunker mit meterdicken Stahlbetonwänden, um sie gegen Einwirkungen von Außen („EVA“, Flugzeugabsturz, Terrorismus etc.) zu schützen. Eine solche Konstruktion kann (praktisch) nicht zum Einsturz gebracht werden.

Abbruch von Block 4

Die Beseitigung von Block 4 ist die einfachste Aufgabe der Aufräumarbeiten. Alle Brennelemente haben sich zum Zeitpunkt des Unglücks außerhalb des Reaktors im Brennelementebecken befunden. Räumt man das Brennelementebecken aus, befindet man sich kurz vor dem sog. „gesicherten Einschluß“. Darunter versteht man die Entfernung aller Flüssigkeiten und möglichst aller brennbaren Materialien. Anschließend „mauert“ man die restlichen (strahlenden) Teile ein und läßt die Strahlung erst einmal abklingen. Ein in den USA und Großbritannien vielfach erprobtes und in großem Maßstab angewendetes Verfahren. Das schöne am radioaktiven Zerfall ist ja, daß er immer nur abnimmt. Ganz im Gegenteil z. B. zu Quecksilber oder Asbest, die nie von allein weniger werden. Man muß nur lange genug warten (einige Jahrzehnte), bis die Radioaktivität so weit abgeklungen ist, daß man den restlichen Abriss ohne große Schutzmaßnahmen vornehmen kann. Allerdings wäre es bei der derzeitigen „Gemütslage“ in Japan auch nicht überraschend, wenn man den Abriss unter großem Kostenaufwand „in einem Rutsch“ durchführen würde.

Ein Lagerbecken für Brennelemente ist nichts weiter, als ein großes Schwimmbecken. In Großbritannien gibt es immer noch solche Becken – seit den frühen fünfziger Jahren – als „Freibäder“. Bisher ist nichts passiert. Allerdings ist das starke Algenwachstum und der Staubeintrag ein ständiges Problem: Die Becken verschlammen mit der Zeit immer mehr und die Wartung wird immer aufwendiger. Man ist deshalb von dieser Methode abgekommen. Insofern ist die „Leichtbauhalle“ oberhalb der Reaktoren von Fukushima eher dem damaligen Zeitgeist entsprechend gewesen.

Das Geheimnis solcher Lagerbecken ist ihre Tiefe. Das Wasser dient weniger der Kühlung, als der Abschirmung gegen Strahlung. Man braucht oberhalb der abgestellten Brennelemente noch einen Arbeitsraum und darüber muß noch so viel Wasser vorhanden sein, daß die erforderliche Abschirmung gewährleistet ist. Andererseits ist diese Wassertiefe die ideale „Schutzschicht“ für die am Boden stehenden Brennelemente. Sie hat den Schwung der rein gekrachten Teile (komplette Kranbahn mit Stahlträgern) so weit abgebremst, daß sie letztendlich „sanft“ auf die Brennelemente herabgesunken sind. Die Brennelemente eines Siedewasserreaktors sind auch nicht gerade zerbrechlich, sodaß es wenig Schäden gegeben hat. Diese sind seit Monaten durch Unterwasserkameras genau dokumentiert.

Das Lagerbecken ist eine sehr stabile Konstruktion. Es besteht aus 140 bis 185 cm dicken massiven (ohne Durchbrüche für Rohrleitungen etc.) Stahlbetonwänden und ist komplett mit 6 cm Edelstahl ausgekleidet. Trotzdem hat man es nach der Explosion unterhalb durch eine zusätzliche Stahlkonstruktion verstärkt. Man wollte sicher sein, daß die Statik auch nach dem zusätzlichen Gewicht der Trümmer ausreichend ist. Inzwischen haben Neuberechnungen und umfangreiche Simulationen ergeben, daß es auch ohne Verstärkung schwersten Erdbeben standgehalten hätte. Eine ständige Vermessung zeigt, daß es sich auch durch alle Nachbeben und Taifune nicht bewegt hat.

Der schwierigste und gefährlichste Teil der Arbeit ist bereits erledigt: Das Abräumen des Trümmerhaufens auf dem Reaktor. Um das komplette Reaktorgebäude herum, hat man – weitestgehend ferngesteuert – eine gewaltige Stahlkonstruktion aufgebaut. Diese mußte so stabil sein, daß sie gleichzeitig als Kranbahn für einen Deckenkran und eine komplette Lademaschine dient und eine Schutzhülle für die „Baustelle“ darstellt. Die gesamte Konstruktion steht auf eigenen Fundamenten neben dem ursprünglichen Reaktorgebäude und kragt freitragend über dieses hinweg, um zusätzliche Lasten für die Ruine zu vermeiden. Alles sicher, auch gegen schwerste Erdbeben und Wirbelstürme versteht sich. Eigentlich erstaunlich, daß ausgerechnet aus dem Land der Juristen, Sozialwirte und Lehrer, in dem man nicht einmal mehr einen Flughafen bauen kann, immer so getan wird, als sei Japan mit dem Ereignis von Fukushima total überfordert. Wieviel Jahre und Arbeitskreise es in Deutschland wohl gedauert hätte, bis man sich überhaupt auf eine Vorgehensweise geeinigt hätte? Wahrscheinlich würden die Arbeiten immer noch ruhen, weil wir nicht genug Bischöfe für die unzähligen Ethikkommissionen etc. bereitstellen könnten. Völlig zu recht, hat man mit gewissem Stolz bereits Journalisten an das Lagerbecken gelassen. So viel auch zum Thema Transparenz. Wer je versucht hat, an ein Brennelementebecken eines deutschen Kernkraftwerkes zu treten, weiß wovon ich rede. Strahlenphobie hat viele Ursachen, auch hausgemachte!

Parallel zu den Arbeiten, hat man bereits Transportbehälter angefertigt. Sie ähneln unseren Castoren. Diese werden mit dem Kran aufs Dach gehoben und in das Brennelementebecken zum Umpacken abgesenkt. Nach der Beladung werden sie zur genauen Untersuchung in das vorhandene Zentrallager auf dem Gelände gebracht. Alle Arbeiten finden bei Unterdruck statt, um etwaige Austritte von radioaktiven Gasen und Aerosolen zu verhindern. Dafür hat man in der Ruine eine gigantische „Lüftungs- und Filteranlage“ errichtet. Das Entladen ist nun fast schon eine Routinearbeit, wie in jedem anderen Kernkraftwerk unzählige male ausgeführt.

Sind die Brennelemente wirklich keine Gefahr?

Kurz nach dem Unglück, haben sich „Deutsche Qualitätsmedien“, angefeuert von „Atomexperten“, gegenseitig versucht zu überbieten. Es wurden die wildesten Geschichten von schmelzenden Lagerbecken und einem größeren Schaden als durch die Atombombe von Hiroshima zusammengefaselt. Angst verkauft sich halt gut und war schon immer ein probates Mittel einschlägiger politischer Kreise. Kurz vor der Räumung des Lagerbeckens 4 drehen noch einmal alle Propagandaabteilungen voll auf: Es werden gekonnt Halbwahrheiten miteinander gemischt, bis man die „gefährlichste Situation in der Geschichte der Menschheit“ konstruiert hat. Erstaunlich ist immer wieder, für wie dämlich die ihr Publikum halten.

Ein Brennelementelagerbecken enthält notgedrungen sehr viel Wasser, da die Wasserschicht über den Elementen als Abschirmung der Strahlung dient. Eine Kettenreaktion in einem solchen Becken ist schon aus geometrischen Gründen ausgeschlossen. Es muß daher nur die Nachzerfallswärme abgeführt werden. Diese nimmt aber innerhalb der ersten Stunden nach dem Abschalten sehr stark ab. Sie ist so gering, daß ein Sieden des Wassers in solch einem Becken ausgeschlossen ist. Das Wasser wird lediglich erwärmt (deutlich unter 100 °C) und kann nur verdunsten, aber nicht „leer kochen“, wie ein Kochtopf auf der Herdplatte. Der vorhandene Kühlwasserkreislauf dient nur dazu, daß im Reaktorgebäude keine unnötig hohe Luftfeuchtigkeit entsteht. Jedenfalls war das viel belächelte Besprühen aus Betonpumpen eher ein Gürtel zum Hosenträger. Es hätte auch gewirkt, wenn das Lagerbecken (Erdbeben, Explosion, reingestürzte Trümmer) undicht geworden wäre. Insofern eine richtige Maßnahme.

Es ist also keine Überraschung, daß die ersten geborgenen Brennelemente „wie neu“ aussehen. Wenn einige der 1533 (1331 benutzte, 202 neue) vorhandnen Elemente undicht oder beschädigt sind, ist auch das kein Beinbruch. Man wird sie zusätzlich in Kassetten verpacken. Auch das ist zig mal geschehen. Anschließend beginnt das große Umpacken auf dem Gelände. Jeder Reaktor hat sein eigenes Abklingbecken. Zusätzlich befindet sich auf dem Kraftwerksgelände ein zentrales Lagerbecken in einem eigenen Gebäude. Dies dient auch bisher schon zur Zwischenlagerung bis zur Wiederaufbereitung. Um dort Platz zu schaffen, baut man nun ein Trockenlager. In diesem werden die „abgekühltesten“ Brennelemente zukünftig gelagert. Wir kennen das in Deutschland aus dem Zwischenlager Gorleben.

Irgendwelche schwerwiegenden Unfälle während der Räumung sind äußerst unwahrscheinlich. Es handelt sich nicht um einen Haufen Mikado-Stäbchen, wie immer wieder von „Atomexperten“ behauptet. Ein Brennelement besteht zwar aus vielen, fingerdicken Stäben, die aber durch Abstandshalter miteinander verbunden sind. Bei einem Siedewasserreaktor ist das Element auch noch von einem stabilen „Blechkasten“ umgeben, um unerwünschte Querströmungen im Reaktor zu verhindern. Da die Fragestellung neuartig war, hat man in Japan inzwischen mit „unbenutzten“ Brennelementen Versuche durchgeführt: Man hat aus einer Höhe von 5 m (!) 100 kg (!) schwere Stahlgewichte auf die Brennelemente fallen lassen. Dies hat zwar zu schweren Verformungen geführt, aber die Brennstäbe haben sich trotzdem nicht einmal geöffnet. Außerdem liegen die Brennelemente nicht einfach im Becken herum. Es gilt die „Bierkastenmethode“: Die Brennelemente werden vorsichtig von oben in stabile Lagergestelle (jeweils 10 Elemente in 3 Reihen) gestellt. Oben guckt nur noch der Henkel des Brennelementes heraus. Der Spalt zwischen Brennelement und Kasten beträgt weniger als 15 mm. Umfallen kann da gar nichts. Ferner sind die Brennelemente durch die Gestelle vor herabfallenden Dingen geschützt. Es gibt nur zwei potentielle Gefahren: Die „Henkel“ sind zu stark beschädigt oder kleinste Trümmerstücke sind in die Spalte zwischen Brennelement und Lagergestell gefallen. Vor jedem Zug werden deshalb die „Henkel“ mit einer extra entwickelten Meßtechnik vermessen. Erscheinen sie nicht mehr sicher genug, müssen andere „Greiftechniken“ angewendet werden. Das Rausziehen geschieht nur sehr langsam (etwa 10 Minuten pro Element) um ein Klemmen oder Verkanten zu verhindern. Werden die Zugkräfte zu groß, wird sofort angehalten.

Das Kapitel der Reaktoren 4, 5 und 6 wird in wenigen Jahren abgeschlossen sein. Schon jetzt geht von diesen „Atomruinen“ kaum noch eine Gefahr aus. Anders verhält es sich mit den Reaktoren 1 bis 3. Wie man aus dem Störfall in Harrisburg weiß, wird noch einige Zeit und viel Arbeit vergehen, bis auch diese drei Ruinen beseitigt sind. Es kann durchaus noch vier Jahrzehnte dauern, wenn die Japaner ihre extrem hohen Anforderungen aufrecht erhalten wollen. Dann allerdings, dürfte aus dem Kraftwerksgelände ein Erholungspark geworden sein. Sehr zum Bedauern aller „Atomkraftgegner“.