Evolution der Brennstäbe

Auch die kontinuierliche Weiterentwicklung einzelner Bauteile kann die Sicherheit von Reaktoren erhöhen. Dies gilt besonders nach den Erfahrungen aus dem Unglück in Fukushima.

Brennstäbe heute

Brennstäbe für Leichtwasserreaktoren haben eine Durchmesser von nur 11 mm bei einer Länge von fast 5 m. Sie sind deshalb so instabil, daß sie zu sog. Brennelementen fest zusammengebaut werden. Dort werden sie durch Abstandshalter und Befestigungsplatten in ihrer Position gehalten. Zusätzlich enthalten die noch Einbauten für Regelstäbe, Messeinrichtungen usw. Wichtig in diesem Zusammenhang ist, daß solche Brennelemente mit sehr engen Toleranzen gefertigt werden müssen, da z. B. die sich ergebenden Abstände sehr entscheidend für die Strömungsverhältnisse (Kühlung) und die Abbremsung der Neutronen sind.

Die Brennstäbe bestehen aus Hüllrohren aus Zirkalloy mit Wandstärken von weniger als einem Millimeter und sind mit Tabletten aus Urandioxid gefüllt. Auf die Konsequenzen aus dieser Materialwahl wird später noch eingegangen werden. Die Tabletten sind gesintert („gebrannt“ wie eine Keramik) und anschließend sehr präzise im Durchmesser geschliffen; an den Stirnflächen konkav gearbeitet, um Ausdehnungen im Betrieb zu kompensieren usw. All dieser Aufwand ist nötig, um die Temperaturverteilung im Griff zu behalten.

Das Temperaturproblem

Brennstäbe dürfen nicht schmelzen, denn dann ändert sich ihre mechanische Festigkeit und ihre Abmessungen (Kühlung und Neutronenspektrum). Keramiken sind zwar chemisch sehr beständig, besitzen aber gegenüber Metallen nur eine sehr schlechte Wärmeleitung. Jeder kennt den Unterschied, der schon mal heißen Kaffee aus einem Metallbecher getrunken hat. Außerdem sind Keramiken sehr spröde.

Die gesamte Wärme kann nur über den Umfang an das Kühlwasser abgegeben werden. Sie entsteht aber ziemlich gleich verteilt innerhalb des Brennstabes, da er für Neutronen ziemlich durchsichtig ist. Dies hat zur Folge, daß es einen sehr starken Temperaturunterschied zwischen Zentrum und Oberfläche gibt. Zusätzlich verschlechtert sich auch noch die Wärmeleitfähigkeit mit zunehmender Temperatur. All das führt dazu, daß der Brennstab in seinem Innern bereits aufschmelzen kann, obwohl er an seiner Oberfläche noch relativ kalt ist. Die Temperaturdifferenz zwischen Oberfläche und Kühlwasser ist aber in dieser Phase die bestimmende Größe für die Wärmeabfuhr.

Steigt die Oberflächentemperatur über die Verdampfungstemperatur des Kühlwassers, fängt das Wasser (an der Oberfläche) an zu verdampfen. Die Dampfblasen kondensieren nach deren Ablösung im umgebenden „kalten“ Wasser. Durch dieses sogenannte „unterkühlte Blasensieden“ kann man sehr große Wärmemengen abführen. Tückisch ist nur, wenn die Wärmeproduktion durch Kernspaltung einen Grenzwert übersteigt, bildet sich eine geschlossenen Dampfschicht auf der Oberfläche die auch noch stark isolierend wirkt. Als Folge steigt die Temperatur in der dünnen Brennstabhülle explosionsartig an. Dampf in Verbindung mit hoher Temperatur führt aber zur Oxidation des Zirkalloy. Die Hülle verliert schnell ihre Festigkeit.

Harrisburg und auch Fukushima

Bricht die Kühlung zusammen, überhitzen die Brennstäbe. Wie Fukushima gezeigt hat, kann das auch noch (kurz) nach dem Abschalten des Reaktors geschehen, da dann die Nachzerfallswärme noch sehr groß ist. Durch die hohen Temperaturen in den Brennstabhüllen in Verbindung mit Wasserdampf oxidieren die Hüllen und setzen dabei große Mengen Wasserstoff frei. Dieser Wasserstoff hat zu den fürchterlichen Explosionen in den Reaktorgebäuden geführt. In Harrisburg waren die Wasserstoffmengen zwar beherrschbar, aber auch damals schon zerfielen Teile des Reaktorkerns. Die Wiederbenetzung konnte zwar schlimmeres verhindern – aber man schrecke mal eine glühende Tasse mit Wasser ab.

Für alle Leichtwasserreaktoren bedeutet das, die zulässigen Temperaturen müssen bei allen Betriebsbedingungen in allen Teilen des Reaktorkerns sicher eingehalten werden. Mit anderen Worten, die Kühlung darf nie versagen. In diesem Sinne ist der Sicherheitsgewinn einer passiven (auf die natürlichen Kräfte, wie z. B. Schwerkraft beruhende) Kühlung zu verstehen.

Oberflächenschutz der Brennstäbe

Insbesondere nach den Ereignissen in Fukushima hat man unterschiedlichste Maßnahmen ergriffen, um die Sicherheit bestehender Kraftwerke weiter zu erhöhen. Außerhalb Deutschlands nach den üblichen Vorgehensweisen wie sie bei Flugzeugabstürzen, Schiffsunglücken etc. üblich sind: Akribische Untersuchung der Schadensabläufe mit dem Zweck Schwachstellen zu ermitteln und Lösungen dafür zu finden. Ein Weg war die Verbesserung der Brennstabhüllen. Zu diesem Zweck hat man z. B. in den USA das Entwicklungsprogramm „Enhanced Accident-tolerant Fuel programme.“ gestartet.

Aus einer internationalen Zusammenarbeit haben sich zwei neue Konzepte – IronClad und ARMOR. – entwickelt, deren Prototypen im Kernkraftwerk Hatch in Georgia, USA seit März 2018 im Normalbetrieb getestet werden. Der Test unter realen Bedingungen in einem laufenden Kernkraftwerk ist ein üblicher Entwicklungsschritt. Nur so kann man Fehlentwicklungen vermeiden.

IronClad sind Hüllrohre, die aus einer Eisen-Chrom-Aluminium-Legierung bestehen. Man glaubt damit einen wesentlich robusteren Werkstoff gefunden zu haben, der nicht so temperaturempfindlich ist, nicht so leicht oxidiert und kein Wasserstoffgas produziert.

ARMOR ist ein eher evolutionärer Ansatz. Man panzert konventionelle Hüllrohre mit einer Schutzschicht auf der Basis von Chrom. Es sind Produkte dreier Hersteller in der Erprobung: Global Nuclear Fuel-Japan Co (GE-Hitachi), Framatom mit zusätzlich mit Chrom geimpften Brennstofftabletten und EnCore Fuel.(Westinghouse) mit Tabletten auf der Basis von Uran-Siliciden.

Ein ganz neues Konzept

Das Unternehmen Lightbridge hat das Bauelement Brennstab noch einmal ganz neu gedacht und bereits prototypenreif entwickelt. Inzwischen ist man eine Kooperation für die Weiterentwicklung und Serienproduktion mit Framatom eingegangen. Entscheidend war die Anforderung des Ersatzes von Brennstäben in konventionellen Leichtwasserreaktoren im Betrieb. Deshalb ist nicht nur ein Ersatz, sondern auch ein gemischter Betrieb mit konventionellen Brennelementen angestrebt worden.

Der Übergang von keramischem Uranoxid auf eine metallische Legierung aus Uran und Zirkon ist für Leichtwasserreaktoren revolutionär. Bisher wurde so etwas nur in schnellen Reaktoren mit Natrium – und nicht Wasser – als Kühlmittel gemacht. Ebenso neu ist die Form: Sie sind nicht mehr zylindrisch, sondern kreuzförmig. Diese Kreuze sind spiralförmig verdreht, sodaß sich vier gewindeähnliche Kanäle für das Kühlwasser bilden.. Außen sind sie mit einer dünnen und fest verbundenen Schicht aus Zirkon versehen um eine übliche Wasserchemie zu gewährleisten. Diese „Gewindestäbe“ liegen in dem Brennelement dicht beieinander, sodaß keine Abstandshalter mehr erforderlich sind.

Metall verfügt über eine bessere Wärmeleitung als Keramik und die Kreuzform ergibt eine größere Oberfläche und dünnere Querschnitte. Beides führt zu geringeren Betriebs- und Spitzentemperaturen (starke und schnelle Lastschwankungen). Der Strömungswiderstand solcher Brennelemente ist kleiner, wodurch sich der Durchfluß durch den Kern bei gleicher Pumpenleistung erhöht. Man geht deshalb von einer möglichen Leistungssteigerung von 10% aus. Ein nicht zu unterschätzender wirtschaftlicher Anreiz, wenn man in einer bestehenden Flotte für „kleines Geld“ ganze Kraftwerke zusätzlich erhält.

Die neuen Lightbridge-Brennelemente vertragen alle Leistungstransienten besser, sind aber vom Prinzip her gegen längerfristige Kühlmittelverluste anfälliger, da Metalle einen geringeren Schmelzpunkt als Keramiken besitzen. Dies war der Hauptgrund für die ursprüngliche Wahl von Uranoxid als Werkstoff.

Bei einer Simulation eines Abrisses einer Hauptkühlmittelleitung bei einem VVER-1000 Druckwasserreaktor ergab sich eine maximale Kerntemperatur von 500 °C. Dieser Wert liegt weit unterhalb von der Temperatur, bei der überhaupt Wasserstoff (900 °C) gebildet wird. Durch die hohe Wärmeleitung stellt sich bereits wieder nach 60 Sekunden nach erfolgter Wiederbenetzung erneut die normale Betriebstemperatur ein. Bei konventionellen Brennelementen steigt die Temperatur auf über 1000 °C und erreicht erst nach acht Minuten wieder den stabilen Zustand. Dies hat einen erheblichen Druckanstieg im Reaktor zur Folge, der ein ansprechen der Sicherheitsventile erforderlich macht. Bei diesem Abblasen gelangen auch geringe Mengen von radioaktivem Jod und Cäsium (zumindest) in das Containment. Der Abriß einer Hauptkühlmittelleitung ist der Auslegungsstörfall, der sicher beherrscht werden muß.. In diesem Sinne führen die Lightbridge-Brennelemente zu einem Sicherheitsgewinn.

Es sind aber noch etliche praktische Erfahrungen zu sammeln. Ein Reaktor ist ein komplexes physikalisches und chemisches System. Dies betrifft z. B. das Rückhaltevermögen für Spaltprodukte unter allen möglichen Betriebs- und Störfallbedingungen. In der Kerntechnik dauert wegen der besonderen Sicherheitsansprüche halt alles länger. Die Maßeinheit für die Einführung von Neuerungen ist eher Jahrzehnte als Jahre.

Ein weiterer vielversprechender Entwicklungsaspekt ist der Zusatz von Thorium als „abbrennbarer Brutstoff“ zur Ausdehnung der erforderlichen Ladezyklen auf vier Jahre. Um solch lange Ladezyklen zu erreichen, muß man den Brennstoff höher anreichern. Um diese Überschußreaktivität zu kompensieren muß man abbrennbare Neutronengifte zumischen. Würde man Thorium verwenden, kann man diese Überschußneutronen zum Erbrüten von Uran-233 verwenden.. Längere Ladezyklen würden die Wirtschaftlichkeit bestehender Reaktoren weiter erhöhen.

Durch die Verwendung von metallischem Brennstoff ergeben sich auch völlig neue Perspektiven der Wiederaufbereitung. Durch den Übergang auf elektrochemische Verfahren – wie man sie bereits beim EBRII – erfolgreich ausprobiert hat, kann man zu kleinen Wiederaufbereitungsanlagen in der Nähe der Kernkraftwerke übergehen. Ein weiterer Lösungsweg für die angebliche Atommüllproblematik. Gerade im Zusammenhang mit der Wiederaufbereitung und Proliferation ist auch der Zusatz von Thorium besonders interessant.

Schlussbemerkung

Man sieht, daß die Leichtwasserreaktoren noch lange nicht am Ende ihrer Entwicklung angekommen sind. Insbesondere der Einsatz von metallischen Brennstäben ergibt nicht nur einen evolutionären Weg für bestehende Reaktoren, sondern auch für Neukonstruktionen. Im Zusammenhang mit passiver Kühlung kann ein erheblicher Sicherheitsgewinn erzielt werden. Irgendwann wird die Frage der Anpassung der Genehmigungsbedingungen gestellt werden müssen. Dann aber, beginnt das Kernenergiezeitalter erst richtig. Billige Energie im Überfluß. Egal, was in Deutschland darüber gemeint wird.

Nukleare Fernwärme

Neuerdings rückt die Kerntechnik wieder in den Zusammenhang mit „Luftverbesserung“. Besonders in China wird über den Ersatz von Kohle nachgedacht.

Der Raumwärmebedarf

Die Heizung bzw. Kühlung von Gebäuden wird oft unterschätzt. Alle reden von Verkehr und Stromerzeugung. In Wirklichkeit werden aber ein Viertel bis ein Drittel des gesamten Energieverbrauches für unsere Gebäude benötigt. Unter dem Gesichtspunkt von Luftschadstoffen (z. B. Stickoxide, Feinstaub etc.) ist besonders problematisch, daß die Energiewandlung unmittelbar in unseren Städten stattfindet und das auch noch in unzähligen Einzelfeuerstätten (hiermit sind auch die „Zentralheizungen“ gemeint). Die einzelnen Heizkessel – oder gar Holzöfen – können keine kontrollierte Verbrennung gewährleisten oder gar eine Rauchgaswäsche benutzen. Zudem werden ihre Abgase in geringer Höhe flächig abgegeben. Eine hohe Luftbelastung gerade in Ballungsgebieten ist die Folge. Eine Erkenntnis, die schon unsere Urgroßväter hatten. Man begann deshalb schon Ende des 19. Jahrhunderts mit dem Bau zentraler Heizwerke.

Das Wärmenetz

Die angestrebte Raumtemperatur liegt bei etwa 20 °C. Es ist also ausgesprochene „Niedertemperaturwärme“. Hinzu kommt noch ein ganzjähriger Brauchwasserbedarf mit etwa 60 °C (Legionellen). Will man auch Kaltwasser für Klimaanlagen damit erzeugen, ist eine Temperatur von 130°C (Absorptions-Kälteanlagen) zu empfehlen. Damit ergeben sich schon die Randbedingungen für ein Rohrleitungsnetz.

Die Strömungsgeschwindigkeit ist begrenzt. Somit hängt die transportierbare Wärmeleistung von dem verwendeten Rohrdurchmesser und der Temperaturspreizung zwischen Vor- und Rücklauf ab. Alles eine Kostenfrage. Hat man sehr hohe Leistungen pro Grundstück (z. B. Hochhäuser in Manhattan) und dazu noch beengte Straßenverhältnisse, bleibt sogar nur Dampf als Transportmedium übrig. Zumindest in Deutschland hat sich eine maximale Vorlauftemperatur im Netz von 130 °C bis 150 °C als optimal erwiesen. Die Vorlauftemperatur im Netz wird proportional zur Außentemperatur geregelt. In manchen Regionen hat man noch ein drittes Rohr als „Konstantleiter“, an dem die Brauchwasserbereiter und die Klimaanlagen angeschlossen sind. Dadurch kann man im Sommer den Heizungsvorlauf komplett abstellen. Alles eine Frage der vorhandenen Bausubstanz.

Heizwerk oder Kraftwärmekopplung

Das Problem ist, daß das gesamte System für die maximale Leistung (kältester Tag in einer Region) ausgelegt sein muß. Diese tritt aber nur an wenigen Tagen auf. Die ohnehin hohen Kapitalkosten führen zu hohen Fixkosten, die wegen der geringen Anzahl von Vollbenutzungsstunden zu vergleichsweise hohen spezifischen Heizkosten führen. Als einzige Stellschraube bleiben die Brennstoffkosten.

Man ist deshalb schon frühzeitig auf die Idee gekommen, Kraftwerke mitten in den Städten zu bauen, um die Leitungskosten (Strom und Wärme) gering zu halten. Die Kraftwerke liefen auch als Kraftwerke und haben das ganze Jahr über elektrische Energie erzeugt. Sie haben ihre Kosten über die Stromproduktion eingespielt. Zusätzlich zu den normalen Kondensatoren hat man noch „Heizkondensatoren“ als Quelle für das Fernwärmenetz eingebaut. In diesen Heizkondensatoren wurde ein Teil des Dampfes (in Abhängigkeit von der Außentemperatur) zur Beheizung niedergeschlagen. Da dieser Dampf nicht mehr vollständig seine Arbeit in der Turbine verrichten konnte, ging die Stromproduktion etwas zurück. Dieser Rückgang wurde dem Kraftwerk vom Fernwärmenetzbetreiber vergütet. Es war quasi dessen „Brennstoffpreis“.

Zusätzlich hatte man auch immer schon reine Heizwerke, die nur Wärme für die Fernwärme erzeugt haben. Die geringen Kapitalkosten eines solchen „Warmwasserkessels“ lohnten sich schon immer als Reserve oder zur Spitzenlasterzeugung an wenigen Tagen eines Jahres.

Die nukleare Heizung

Soweit zur Fernwärme im Allgemeinen. Jetzt zu der Frage, was eine Umstellung auf Kernspaltung bringen kann. Der Brennstoffpreis des Urans ist konkurrenzlos gering. Geringer noch als Kohle. Es gibt fast keine Belastung durch Transporte (Kohle, Asche, Heizöl etc.). Es gibt keine Luftbelastung durch Abgase. Es besteht eine enorm hohe Versorgungssicherheit und Preisstabilität (Heizkosten als „zweite Miete“). Dagegen spricht eigentlich nur „die Angst vor dem Atom“. Diese ist aber zum Glück unterschiedlich ausgeprägt. Man kann sie sogar noch beträchtlich verringern. Um die notwendigen technischen Aspekte wird es im Weiteren gehen.

Kernkraftwerke als Wärmequelle

Technisch gesehen, besteht kein Unterschied zwischen einem Kernkraftwerk und einem fossilen Kraftwerk. Man könnte problemlos z. B. ein Kohlekraftwerke durch ein Kernkraftwerk ersetzen. Es gibt aber ein juristisches Hindernis: Das Genehmigungsverfahren. Bisher muß man immer noch davon ausgehen, daß es schwere Störfälle gibt (z. B. Fukushima), die einen Teil der Radioaktivität austreten läßt und somit die unmittelbare Umgebung belasten könnte. Dafür ist der Nachweis von Evakuierungszonen und Plänen notwendig. Spätestens seit Fukushima weiß man zwar, daß die Annahmen über Freisetzungsraten viel zu konservativ waren, aber das tut der Argumentation der Angstindustrie keinen Abbruch. Die jahrzehntelange Gehirnwäsche „Millionen-Tote, zehntausend-Jahre-unbewohnbar“ hat sich zumindest in den Industrieländern festgesetzt.

Will man Kernkraftwerke in Ballungsgebieten bauen, müssen neue Reaktortypen her, die als „inhärent sicher“ betrachtet werden. Außerdem empfiehlt es sich, kleinere Reaktoren (SMR) zu bauen, um zu lange Rohrleitungen (Kosten und Wärmeverluste) zu vermeiden. Gerade in den letzten Wochen wurde in diesem Sinne ein Durchbruch erzielt: Die US-Genehmigungsbehörde hat dem Reaktor der Firma NuScale bescheinigt, daß er ohne elektrische Hilfsenergie auch bei schwersten Störfällen auskommt. Es handelt sich um einen kleinen (50 MWel) Reaktor, der selbst in einem wassergefüllten Becken steht. Er ist also stets von ausreichend Kühlwasser umgeben. Alle Einbauten (Druckhaltung, Dampferzeuger etc.) befinden sich im Druckgefäß (keine Rohrleitungen), das von einem Containment nach dem Prinzip einer Thermosflasche umgeben ist. Er benötigt keine Pumpen zur „Notkühlung“, da er schon im Normalbetrieb ausschließlich im Naturumlauf (warmes Wasser steigt auf und sinkt nach der Abkühlung wieder in den Reaktorkern zurück) funktioniert. Ein solches Kernkraftwerk bietet ein geringeres Risiko für seine Nachbarn, als jedes Gas- oder Ölkraftwerk. Genau solche Kraftwerke befinden sich aber zahlreich mitten in deutschen Großstädten. Seit Jahrzehnten lebt ihre Nachbarschaft relativ angstfrei damit – Geräusche und Abgase inbegriffen.

Den deutschen „Grün-Wähler“ wird das alles nicht überzeugen. Er ist unerschütterlich in seinem Öko-Glauben. Warum auch nicht? Man diskutiert ja auch nicht mit einem Katholiken über die unbefleckte Empfängnis der Jungfrau Maria oder mit einem Hindu über die Heiligkeit von Kühen. In den Weiten Sibiriens wird die Kernenergie schon heute positiv bewertet. In ähnlichen Regionen Kanadas und den USA wird sie aus gleichen Gründen (Versorgungssicherheit auch bei -40 °C) ernsthaft in Erwägung gezogen. In den bevölkerungsreichen Metropolen Chinas steht die Luftverschmutzung im Vordergrund. Die reale Gefahr von Lungenkrebs und Herz- Kreislauferkrankungen durch Smog wird dort gegen die eingebildete „Strahlengefahr“ abgewogen. Selbst im Großraum Helsinki prüft man den Ersatz der fossilen Fernheizwerke durch Kernenergie. Sonne geht gar nicht und Wind nur sehr eingeschränkt in diesen nördlichen Breiten.

Nukleare Heizwerke

Seit Anbeginn der Kernkraftnutzung gab es die Idee von reinen Heizwerken. Die reine Wärmeproduktion kann einige Vorteile haben: Schließlich verbrennt man ja auch Gas in einem einfachen Heizkessel und setzt nicht alles Gas in „rotierenden Öfen“ (Blockheizkraftwerk) zur gleichzeitigen Stromerzeugung ein. Schon nach den „Ölkrisen“ der 1970er Jahre, setzte sich z. B. der Schweizer Professor Seifritz für ein solches Konzept ein. Er ging damals von der Verwendung erprobter Komponenten aus Kernkraftwerken (Druckbehälter, Brennelemente etc.) zum Bau eines abgespeckten Heizreaktors aus. Durch die „Überdimensionierung“ erhoffte er sich einen zusätzlichen Sicherheitsgewinn, der zu einer Akzeptanz bei der Politik führen würde. Die Grundüberlegung ist noch heute so gültig, wie vor nunmehr 50 Jahren: Ersatz fossiler Brennstoffe durch Uran. Damals wie heute, standen der Ölpreis und die Luftverschmutzung in den Städten im Vordergrund.

Um den Ansatz von Professor Seifritz zu verstehen, ist etwas Physik notwendig. Ein typischer Druckwasserreaktor eines Kernkraftwerks hat eine Wärmeleistung von etwa 4000 MWth. Viel zu viel für ein Fernheizwerk. Geht man aber mit der Leistung um mehr als eine Größenordnung runter – läßt den Reaktor quasi nur im Leerlauf laufen – hat man einen entsprechenden Sicherheitsgewinn in allen Parametern. Bis überhaupt die Betriebszustände eines – zigfach erprobten – Druckwasserreaktors erreicht werden, müßte eine Menge schief gehen. Man hätte genug Zeit den Reaktor abzustellen.

Bei einer so geringen Leistung, könnte man handelsübliche Brennelemente viel länger im Reaktor belassen bis sie „abgebrannt“ wären (Versorgungssicherheit, Preisstabilität etc.).

Ein Druckwasserreaktor in einem Kernkraftwerk arbeitet mit einem Betriebsdruck von etwa 155 bar und einer Wassertemperatur von etwa 325 °C. Beides recht ordentliche Werte. Wie sehe es bei einem Heizreaktor aus? Gehen wir von einer Vorlauftemperatur im Netz von 150 °C aus (Einsatz von Absorptionsanlagen zur Klimatisierung um das Netz auch im Sommer besser auszulasten). Damit das Wasser noch flüssig bleibt und nicht verdampft ist ein Betriebsdruck von mindestens 5 bar nötig. Geben wir noch mal 30 °C als treibende Temperaturdifferenz für die Wärmeübertrager im Heizreaktor drauf, kommen wir auf eine Betriebstemperatur von 180 °C. Dafür ist ein Betriebsdruck von mindestens 10 bar nötig. Ein beträchtlicher Sicherheitsgewinn.. Vor allen Dingen entfallen alle Hochdruck-Sicherheitseinrichtungen: Was man nicht hat, kann auch nicht kaputt gehen.

Noch eleganter erscheint ein Heizreaktor auf der Basis eines Siedewasserreaktors. Man bräuchte – da keine Turbine vorhanden ist – auch keinerlei Einbauten zur Dampftrocknung und keine Umwälzpumpen. Einfacher und sicherer geht nicht.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

Nachbemerkung

Fernheizungsnetze erfordern sehr hohe Investitionen, haben dafür kaum Betriebskosten und halten Jahrzehnte. Sie sind somit anderen Infrastrukturen, wie Trinkwasser- und Abwassernetzen sehr ähnlich. Gleichwohl gibt es schon heute weltweit unzählige Fernwärmenetze, die kontinuierlich erweitert werden. Der Markt für Wärmeerzeuger ist somit gewaltig. Auch die in Deutschland so beliebte „Plastikverpackung“ von Neubauten tut dem keinen Abbruch. Was braucht man also, um eine solche Entwicklung zu fördern?

  • Man benötigt möglichst kleine Heizreaktoren. Die Netzkosten fressen sonst sehr schnell etwaige Kosteneinsparungen bei den Reaktoren auf.
  • Die Reaktoren müssen sehr einfach und robust sein. Sie müssen standardisiert sein und in großen Stückzahlen in Fabriken hergestellt werden.
  • Es sollte weitgehend auf genehmigte Verfahren und Bauteile aus der Kernkraftwerkstechnik zurückgegriffen werden. Nur so kann man die kostspieligen und langwierigen Genehmigungsverfahren in den Griff bekommen.
  • Die Reaktoren müssen inhärent sicher sein und vollautomatisch betrieben werden können.
  • Sie müssen komplett und ständig fernüberwacht werden.
  • Die Anforderungen an Umgebung und Personal müssen vor Beginn des ersten Projekts neu definiert, öffentlich diskutiert und rechtssicher verabschiedet sein.
  • Bei jedem Standort müssen die Anwohner frühzeitig einbezogen werden. Nur durch Aufklärung kann man die einschlägige Angstindustrie und ihre Kumpane aus der Politik abwehren. Skandinavien und Frankreich bieten hierfür zahlreiche Beispiele und erprobte Vorgehensweisen.

Manchem mag das alles phantastisch vorkommen. Nur, ist die Diskussion nicht nur in China losgetreten worden. Sie läuft bereits auch in Osteuropa und Skandinavien. Es mag in Deutschland noch ein paar Jahre dauern, aber dann wird die Mehrheit der Bevölkerung erkennen, wie sie systematisch von Politikern und Schlangenölverkäufern mit der „Energiewende“ betrogen worden ist. Ist dieser Punkt erst erreicht, wird das Pendel ruckartig in seine alte Lage zurückkehren.

Reduktion langlebiger Spaltprodukte

Aktuell wird wieder einmal in der Fachliteratur die Beseitigung von langlebigen Spaltprodukten diskutiert.

Das Problem

Irgendwann ist jedes Brennelement erschöpft und muß erneuert werden. Die „abgebrannten“ Brennelemente werden von „Atomkraftgegnern“ gern als „Atommüll“ verunglimpft, obwohl sie recycelt werden können. Sie bestehen noch zu rund 96% aus Uran und Plutonium, die erneut als Brennstoff genutzt werden könnten. Sicherheitstechnisch betrachtet, stellt ihre ionisierende Strahlung ein – durchaus unterschiedliches – Problem dar. Es sind daher dauerhafte Abschirmungen in der Form von Wasserbädern, Sicherheitsbehältern etc. notwendig.

Der Faktor Zeit

Je länger die Halbwertszeit ist, um so länger dauert es, bis dieser Stoff verschwunden ist. Wenn man von einer Gefahr durch ionisierende Strahlung ausgeht, ist damit der Zeitraum bestimmt, in dem man den Stoff von der Biosphäre fern halten sollte:

  • Es gibt unterschiedliche Arten ionisierender Strahlung, die auch biologisch unterschiedlich wirken. Strahlung, die z. B. von Uran und Plutonium ausgeht, ist nur dann bedrohlich, wenn sie innerhalb des Körpers frei wird. Nimmt man sie nicht in den Körper auf (Nahrung, Atemluft), sind sie genauso harmlos, wie jedweder anderer Stoff auch.
  • Die Dosis macht’s“. Insofern ist die Konzentration eines radioaktiven Stoffes (z. B. im Trinkwasser) entscheidend.
  • Freigesetzte Stoffe können sich (z. B. über die Nahrungskette) anreichern. Dies gilt naturgemäß besonders für langlebige Stoffe. Insofern sollten sie möglichst gar nicht erst freigesetzt werden.

Der Endlager-Standpunkt

Überzeichnet man die Gefahr, die von radioaktiven Stoffen ausgeht, kommt man zu dem Schluß, man müßte sie quasi „für ewig“ sicher einschließen. Der Begriff des „Endlagers“ ist erschaffen. Ein hervorragender politischer Kampfbegriff, weil wie ein Gummiband dehnbar. Man muß nur die Gefährlichkeit – was auch immer darunter zu verstehen sei – ausdehnen und kommt schnell zu Zeiträumen, die nicht mehr als beherrschbar erklärt werden können. Gipfel dieser Gespensterdebatte ist die Erforschung irgendwelcher Piktogramme, die Außerirdischen oder sonst wie verblödeten Erdbewohnern die Lage eines „Endlagers“ in Millionen von Jahren näher bringen sollen. Interessant ist dabei nur, wie locker man beispielsweise den Fallout aus unzähligen Kernwaffenversuchen nicht gekennzeichnet hat. Wären die Stoffe auch nur annähernd so gefährlich, wie sich Ökoaktivisten gern an den Lagerfeuern im Wendland erzählen, müßte die gesamte Menschheit bereits ausgestorben sein. Aber es geht dabei ja auch weniger um Fakten, als um Gesellschaftsveränderung.

Gleichwohl sollte man mit radioaktiven Abfällen verantwortungsvoll umgehen. Es ist das Verdienst der Kerntechnik, der erste Industriezweig zu sein, der sich von Anfang an um seinen Abfall Gedanken gemacht hat: Wiederaufbereitung und geologische Tiefenlager waren erfunden. Letztere aus einem ethischen Anspruch heraus, den Abfall nicht den folgenden Generationen als Problem und Kosten zu hinterlassen. Immer noch revolutionär, wenn man es mit dem sonst voll akzeptierten Umgang mit Abfällen und Deponien vergleicht.

Die Art der Beseitigung

Wenn man gebrauchte Brennelemente aufarbeitet, können sie weiterhin zur Energiegewinnung verwendet werden: In konventionellen Reaktoren als Mischoxid und in schwerwassermoderierten Reaktoren sogar in ihrer ursprünglichen Zusammensetzung. Bedingung ist die Trennung von Uran und Plutonium von den Spaltprodukten.

Verwendet man diesen aufbereiteten Brennstoff in Reaktoren mit schnellem Neutronenspektrum (meist mit Natrium oder Blei als Kühlmittel), kann man damit sogar die minoren Aktinoide „verbrennen“. Sie bilden sich aus Uran- und Plutoniumkernen, die trotz Neutroneneinfang nicht gespalten worden sind. Sie sind besonders langlebig und müssen zusammen mit Plutonium als Argument für eine „sichere Endlagerung über Millionen von Jahren“ her halten.

Bleiben die Spaltprodukte übrig. Sie sind zumeist recht kurzlebig und strahlen deshalb sehr stark. So stark, daß sie sich aufheizen, deshalb gekühlt und sicher abgeschirmt werden müssen. Ein Problem, das sich nach einigen Jahrhunderten von selbst erledigt hat. Es wäre mit der Lagerung in simplen Bunkern technisch leicht beherrschbar, wenn es nicht einige wenige sehr langlebige Spaltprodukte geben würde. Hier setzt wieder die Ethik ein: Ist es zulässig, solche Stoffe unseren Nachfahren zu vererben? Es handelt sich um recht harmlose Stoffe (lange Halbwertszeiten bedeuten wenige Zerfälle pro Sekunde und damit grundsätzlich geringe Dosisleistungen) in sehr kleinen Mengen. Es geht hier um Halbwertszeiten von einigen Hunderttausend (Se79, Tc99) bis zu einigen Millionen (Zr93, Pd107, I129, Cs135) Jahren.

Man kann Atomkerne nur durch Neutronen in ein anderes Element umformen. Man benötigt also eine (möglichst starke) Neutronenquelle. Dieser Vorgang wird Transmutation genannt. Ein Favorit hierfür sind Spallationsquellen, bei denen Atomkerne beschossen werden und förmlich verdampfen. Sie sind sehr aufwendig, produzieren aber dafür auch große Mengen Neutronen. Grundsätzlich bleibt aber ein Problem: Die Stoffe existieren meist in einem Isotopengemisch. Man will aber eigentlich nur ein bestimmtes (besonders langlebiges) Isotop umwandeln. Alle anderen Kernreaktionen sind parasitär und kosten nur die teueren Neutronen. Ein Schlüssel hierfür, sind die energieabhängigen Einfangquerschnitte.

Beseitigung in schnellen Reaktoren

Reaktoren mit schnellen Neutronen sind hervorragend zur „Verbrennung“ von Plutonium und minoren Aktinoiden geeignet. Darüberhinaus benötigen sie nicht einmal Natururan, sondern geben sich sogar mit abgereichertem Uran als Brennstoff zufrieden. Allerdings sind sie nur schlecht zur Beseitigung der langlebigen Spaltprodukte geeignet. Diese besitzen nur sehr kleine Einfangquerschnitte für schnelle Neutronen. Es gibt aber einige Energiebereiche, in denen sie solche Neutronen begierig aufnehmen. Verzichtet man auf einige bei der Spaltung freigewordenen Neutronen – im statistischen Mittel auf 0,3 Neutronen pro Kernspaltung – kann man sie zur Umwandlung abzweigen. Man muß sie allerdings noch auf die ideale Geschwindigkeit abbremsen.

Damit ergibt sich folgendes Reaktorkonzept:

  • Man baut einen zentralen Kern, in dem die eigentliche Energieproduktion aus Uran und Plutonium durch Spaltung mit schnellen Neutronen stattfindet.
  • In einem „schnellen Brüter“ ist diese Zone von einer Schicht aus abgereichertem Uran umgeben. Die Neutronen, die aus dem Kern rausfliegen und nicht zur Aufrechterhaltung einer Kettenreaktion benötigt wurden, reagieren hier mit dem Uran und bilden zusätzliches Plutonium. Bei einem „Brüter“ ist hier die Produktion von Plutonium größer als gleichzeitig davon im Kern verbraucht wird.
  • Verzichtet man nun auf einen Teil der „Brutrate“, hat man Neutronen für eine Umwandlung von Spaltprodukten zur Verfügung. Man muß diese nur noch – möglichst an Ort und Stelle – auf die „richtige“ Geschwindigkeit abbremsen. Man kann in den „Brutmantel“ eine gewisse Anzahl von Brennstäben einfügen, die mit einem Gemisch aus den zu beseitigenden Spaltprodukten und einem geeigneten Moderator gefüllt sind. Ein solcher Moderator könnte z. B. Yttrium Deuterid (YD2) sein. Er erfüllt die Bedingungen, selbst kaum mit Neutronen zu reagieren und die richtige Masse für die notwendige Abbremsung zu besitzen.

Die notwendige Verfahrenstechnik

Die Wiederaufbereitung wird erheblich komplizierter. Bei dem klassischen PUREX-Verfahren – wie es z. B. in Frankreich angewendet wird – gewinnt man möglichst reines Uran und Plutonium. Alles andere ist Abfall, der verglast und später in einem geologischen Tiefenlager „endgelagert“ wird. Um diesen Abfall weiter zu entschärfen, müßte man in weiteren Schritten die Aktinoide und die langlebigen Spaltprodukte abtrennen. Beides ist sehr aufwendig und man sollte darüber nicht vergessen, daß es sich dabei nur um rund 4% des ursprünglichen Brennstoffs eines Leichtwasserreaktors handelt. Die zusätzliche Volumenverkleinerung ist somit äußerst gering.

Die langlebigen Spaltprodukte müssen nun noch in möglichst reiner Form gewonnen werden, um parasitäre Effekte zu vermeiden. Darüberhinaus muß ein eigener Wiederaufbereitungskreislauf eingerichtet werden, da nicht alle Spaltprodukte in einem Schritt beseitigt werden können. Ein gewaltiger Aufwand für so geringe Mengen. Darüberhinaus macht die ganze Sache nur wirklich Sinn, wenn mehr langlebige Spaltprodukte umgeformt werden, wie bei dem Betrieb dieses Reaktors wieder neu entstehen.

Schlußbemerkung

Der Aufwand für eine Transmutation ist sehr hoch. Gleichwohl erscheint der Erfolg durchaus verlockend. Wie Simulationen für den japanischen Monju-Reaktor zeigen, kann über einen Betrieb von 20 Jahren eine Reduktion der effektiven Halbwertszeit langlebiger Spaltprodukte von über 100.000 Jahren auf rund 100 Jahre erzielt werden.

Trotzdem darf die Frage erlaubt sein, ob der gewaltige (wirtschaftliche) Aufwand den (vermeintlichen) Sicherheitsgewinn aufwiegt. Andererseits wird Menschen mit Strahlenphobie auch dieser Aufwand nicht genügen. Es steht zu befürchten, daß das bekannte Rennen zwischen Hase und Igel der „Atomkraftgegner“ lediglich fortgesetzt wird.

TRISO

Tri-Isotropic (TRISO) Brennstoff wird immer im Zusammenhang mit Hochtemperaturreaktoren (HTR) erwähnt. Oft mit schönen Bildern. Es lohnt sich, sich etwas näher damit zu beschäftigen.

Geschichte

Seit etwa 1957 wurde der Gedanke propagiert, sehr kleine Brennstoffpartikel mit geeigneten Mitteln zu ummanteln und als „Mini-Brennelemente“ einzusetzen. Im Vordergrund stand dabei der Gedanke, unterschiedlichste Brennstoffkombinationen zu verwenden: Hoch angereichertes Uran (HEU), schwach angereichertes Uran (LEU), Uran mit Thorium (U, Th), Uran mit Plutonium (U, Pu) und Plutonium (Pu). Es wurden umfangreiche Testreihen in aller Welt durchgeführt. Im Prinzip geht tatsächlich alles. Es gibt aber unterschiedlich Vor- und Nachteile.

So hat man z. B. in Deutschland auf Thorium als Brennstoff gesetzt. Man wollte damit eine zweite Schiene von Brutreaktoren schaffen, die die – wie man damals glaubte – geringen Uranvorräte strecken sollte. Diese Entwicklungsrichtung mündete in den Thorium-Hochtemperaturreaktor (THTR) in Hamm-Uentrop als Demonstrationskraftwerk. Diese Schiene kann man heute nur als Sackgasse bezeichnen. Jedenfalls so lange, wie die heutigen Regeln zur Nichtverbreitung von Kernwaffen bestehen bleiben. Man benötigte dafür nämlich auf 93% hoch angereichertes Uran. Heute lagern aus dieser Demonstration noch etwa 900 kg dieses Materials in der Form von schwach abgebrannten Brennelementen in Deutschland. Ein Thema, über das nicht gern öffentlich geredet wird: Die Grünen klammern sich an jedes Gramm, um ihren Gründungsmythos von der ungeklärten Entsorgungsfrage aufrecht erhalten zu können. Eigentlich müßte das Zeug längst in die USA verbracht sein. Es ist geradezu peinlich, wenn man vergleicht, welchen Aufwand die USA und sogar Rußland betreiben, um wenige Kilogramm aus Forschungsreaktoren weltweit wieder einzusammeln und zurück zu führen. In Deutschland steht das Zeug in mäßig bewachten Zwischenlagern rum. Eine tolle Ausgangsposition für Verhandlungen mit Iran, Nord Korea etc. Manchmal stellt man sich schon die Frage, ob das alles nur mit der Bildungsresistenz deutscher Politiker und ihrer ausgesuchten „Atomexperten“ erklärbar ist.

Aus diesen kleinsten Mini-Brennelementen kann man anschließend technische Brennelemente formen. Dafür haben sich zwei Wege heraus kristallisiert: Etwa tennisballgroße Kugeln oder sechseckige „Bausteine“ aus denen man einen Kern aufbauen kann. Die erste Variante ist besonders einfach zu produzieren und ermöglicht einen Reaktor, den man kontinuierlich beladen kann. Frische Kugeln werden oben eingebracht und gleichzeitig unten gebrauchte Kugeln ausgeschleust. Der eher konventionelle Aufbau aus Brennelementen ist dafür flexibler und auch für große Reaktoren geeignet. Letztendlich beruhen aber beide Prinzipien auf den sandartigen Mini-Brennelementen.

In Deutschland wurde zur Herstellung dieser Mini-Brennelemente das sogenannte Sol-Gel-Verfahren entwickelt. Später entwickelte die deutsche Firma NUKEM ein Verfahren für die freie Erstarrung solcher Kügelchen. Dieses Verfahren wurde von den Chinesen übernommen. Wiederum ein krasses Beispiel für den Ausverkauf deutscher Hochtechnologie. Einzig allein aus ideologischer Verblendung.

Herstellung der Kerne

Uranpulver (U3 O8) wird in Salpetersäure (HNO3) aufgelöst. Es bildet sich eine Uranylnitrat Lösung die noch mit Salmiak neutralisiert werden muß. Ihr werden diverse Alkohole zugesetzt um die Zähigkeit und Oberflächenspannung optimal einzustellen.

Diese eingestellte Lösung wird nun aus Glasröhren vertropft. Um die Tröpfchenbildung zu unterstützen, werden diese Röhrchen in Schwingungen versetzt. Aus jedem Röhrchen tropfen etwa 100 Tröpfchen pro Sekunde. Im freien Fall bilden sich daraus kreisrunde Kügelchen von definiertem Durchmesser. Noch sind es unbeständige Flüssigkeitstropfen. Diese fallen deshalb anschließend durch eine Ammoniak Atmosphäre (NH3), welche mit dem Uranylnitrat chemisch reagiert. Es bildet sich um die Kügelchen eine stabile Haut, die ausreicht, damit sie in dem anschließenden Bad ihre kreisrunde Form behalten. Es haben sich – noch weiche und empfindliche – Kugeln von knapp zwei Millimetern Durchmesser gebildet.

Diese Kugeln werden mit Dampf in rotierenden Trommeln behandelt. Dadurch wachsen in dem Gel Kristalle und sie werden fest. Anschließend werden diese Kugeln in mehreren Schritten mit Wasser und verschiedenen Chemikalien gründlich gewaschen. Dies ist wichtig, damit in den weiteren Verfahrensschritten kein Uran in die Kohlenstoffschichten verschleppt wird. Unter ständiger Rotation werden die Urankügelchen im Vakuum getrocknet. Die Kugeln schrumpfen dadurch auf etwa einen Millimeter Durchmesser. Im nächsten Schritt werden die Kügelchen bei 430 °C kalziniert. Durch diese hohe Temperatur zerlegen sich die organischen Bestandteile und werden ausgetrieben. Es bleiben Kügelchen aus UO3 mit einem Durchmesser von nur noch einem Dreiviertel-Millimeter zurück. Damit sich das UO3 zu UO2reduziert, werden sie in einem weiteren Schritt in einer Wasserstoff-Atmosphäre bei rund 600 °C geröstet. Im letzten Verfahrensschritt werden diese Kügelchen bei 1600 °C gebacken, um eine optimale Dichte und Festigkeit zu erlangen. Das Endprodukt sind Kügelchen mit knapp einem Halben-Millimeter Durchmesser. Sie werden noch fein gesiebt (zu klein = zu wenig Brennstoff und zu groß = zu viel Brennstoff) und die unrunden Partikel aussortiert.

Die Ummantelung

Ganz entscheidend beim TRISO-Konzept ist die Ummantelung der Brennstoffkerne. Sie muß gleichermaßen mehrere Funktionen erfüllen:

  • Mechanischer und chemischer Schutz der Brennstoffkerne vor Einwirkungen von außen. Die Ummantelung ist so stabil, daß sie einerseits für die direkte Endlagerung geeignet ist, andererseits aber eine Wiederaufbereitung erschwert.
  • Zurückhaltung von Spaltprodukten und Brennstoff, damit das Kühlmittel Helium möglichst sauber bleibt.
  • Volumenausgleich. Bei der Kernspaltung entsteht praktisch das gesamte Periodensystem – diese Stoffe können untereinander und mit dem freigewordenen überschüssigen Sauerstoff reagieren. Es ergeben sich auf jeden Fall neue chemische Verbindungen mit unterschiedlichen Dichten. Etwaige Ausdehnungen müssen durch die Ummantelung abgepuffert werden, um ein Aufsprengen der Brennelementen zu vermeiden.

Es werden insgesamt vier Schichten aufgetragen:

  1. Als innerste Schicht (≈ 95 µm), eine Schicht aus porösem Kohlenstoff. Sie soll wie ein Schwamm aus dem Kern austretende Spaltprodukte (z.B. die Edelgase) aufnehmen und auf Volumenänderungen ausgleichend wirken.
  2. Als zweite Schicht (≈ 40 µm), ebenfalls eine Kohlenstoffschicht, aber diesmal von hoher Dichte.
  3. Als dritte Schicht (≈ 35 µm), eine Schicht aus chemisch sehr widerstandsfähigem Siliciumcarbid. Sie hält fast alle Spaltprodukte auch unter extremen Bedingungen (Störfall) nahezu vollständig zurück.
  4. Als äußere Schicht (≈ 40 µm), wird noch eine weitere Schicht aus besonders dichtem Kohlenstoff aufgebracht.

Die Schichten werden aus der Gasphase abgeschieden. Für die porösen Schichten wird Azetylen (C2 H2) und für die dichten Schichten zusätzlich Propylen (C3 H6) verwendet. Zur Erzeugung der Schicht aus Siliciumcarbid wird Methylchlorsilane (CH3 SiCl5) verwendet.

Die Bildung der Schichten erfolgt in einem zylindrischen Reaktor, in dem die Brennstoffkügelchen geschüttet werden und anschließend von unten die Reaktionsgase eingeblasen werden. Dabei werden die Gase in eine so hohe Strömungsgeschwindigkeit versetzt, daß die Kügelchen gerade schweben (Wirbelschicht). Über die Steuerung der Temperatur (1200 bis 1500 °C) wird die Zersetzung der Gase und die Abscheidung auf den Kügelchen gesteuert.

Die Brennelemente

Es wird ein Pulver aus 64% Naturgraphit, 16% Elektrographit und 20% Phenolharz hergestellt. Mit diesem Pulver werden die ummantelten Kerne in einer rotierenden Trommel etwa 200 µm überzogen und bei 80 °C getrocknet. Diese Grünlinge dürfen einen Durchmesser von 1,1 bis 1,5 mm haben. Sie werden bei Raumtemperatur mit einem Druck von 50 bar in Silikonformen zu den brennstoffhaltigen Kernen der Brennelemente gepreßt. Eine zweite Form wird mit Reaktorgraphit ausgekleidet, die grünen Kerne eingelegt und mit einem Druck von 3000 bar zusammengepreßt. Dies ergibt die charakteristischen Kugeln für einen Kugelhaufenreaktor.

Damit sich das Phenolharz in Graphit zersetzt, werden die Kugeln in einer Argonatmosphäre auf 800 °C erhitzt. Zur Härtung werden sie anschließend noch in einem Vakuum bei fast 2000 °C geglüht. Wenn sie alle Qualitätstest bestanden haben, sind sie nun für den Einsatz im Reaktor fertig.

Qualitätskontrolle

Die Verfahrensschritte sind nicht geheimnisvoll. Das eigentliche Wissen liegt in der erforderlichen Qualitätskontrolle. Alle Verfahren müssen bei jedem Zwischenschritt zerstörungsfrei erfolgen. Wird bei einem Fertigungsschritt ein Fehler gemacht, ist das gesamte Fertigprodukt Ausschuss. Es muß also sehr sorgfältig geprüft werden. Hinzu kommt die astronomische Anzahl von Brennstoffkernchen. Es mußten deshalb ganz neue statistische Verfahren entwickelt werden.

Mögliche Fehler im Betrieb

Die Brennelemente sollen im Idealfall alle Spaltprodukte vollständig zurückhalten. Gelangt keine Radioaktivität in das Kühlmittel Helium, kann auch keine Radioaktivität aus dem Kraftwerk austreten. Es lohnt sich also, mögliche Schäden etwas näher zu betrachten. Ganz, lassen sich Schäden in der Technik nie verhindern. Es ist vielmehr entscheidend, wieviel Radioaktivität – auch bei einem schwersten Störfall – das Kraftwerksgelände verlassen kann.

  • Überdruck in den Kernen. Es entstehen gasförmige Spaltprodukte, insbesondere Edelgase. Hinzu kommt ein Sauerstoffüberschuss durch die Kernspaltung, da nicht jedes Sauerstoffatom der chemischen Verbindung UOeinen neuen Partner findet. Es bildet sich Kohlenmonoxid aus der Ummantelung. Diese Gase sollen in der ersten, porösen Schicht zurückgehalten werden. Werden die Qualitätsrichtlinien eingehalten, ergibt sich daraus kein ernsthaftes Problem.
  • Durch die Neutronenstrahlung schrumpft und dehnt sich der Kohlenstoff der Ummantelungen aus. Durch diese Spannungen können Risse auftreten. In Deutschland konnte diese Fehlerquelle fast vollständig ausgeschaltet werden.
  • Durch die Temperaturunterschiede zwischen dem Kern und der Oberfläche können Teile des Kerns in die Umhüllung wandern. Auch dieses Problem kann durch eine konsequente Qualitätskontrolle klein gehalten werden.
  • Edelmetalle greifen die Siliciumcarbid-Schicht chemisch an. Insbesondere Silber kann diese Schichten passieren und bildet unerwünschte Ablagerungen im Reaktor. Generell gilt, daß in die Ummantelung gewanderte Spaltprodukte bei der erhöhten Temperatur eines Störfalls zu unerwarteten Freisetzungen führen können.

Zusammenfasend kann man feststellen, daß hochwertig produzierte Brennelemente der beste Schutz gegen Freisetzungen bei einem Störfall sind. Hinzu kommt eine (aufwendige) Überprüfung jeder ausgeschleusten Kugel auf Schäden und den erfolgten Abbrand. Je weniger Kugeln „am Limit“ sich im Reaktor befinden, je größer sind die Sicherheitsreserven für einen Störfall. Dies war eine Erkenntnis des Versuchsreaktors AVR in Jülich, der als Forschungsreaktor natürlich seine Grenzen erkunden mußte.

Brennstoffkreisläufe

Durch die sehr guten neutronenphysikalischen Eigenschaften und die extreme Temperaturbeständigkeit von Kohlenstoff ist das TRISO-Konzept sehr flexibel. Es ist gering angereichertes Uran verwendbar, aber auch Mischoxide oder sogar reines Plutonium, sowie Kreisläufe auf der Basis von Thorium.

Favorit ist derzeit die Verwendung von leicht angereichertem Uran. Allerdings muß die Anreicherung deutlich höher als bei Leichtwasserreaktoren sein. Ursache ist beim TRISO-Brennstoff die räumliche Verteilung, durch die eine Selbstabschirmung eintritt.

Gemische aus Plutonium und Uran können auch verwendet werden. Diese können als Karbide oder Nitrite eingesetzt werden. Favorit dürfte wegen der Erfahrungen in Leichtwasserreaktoren Mischoxide (MOX) sein.

Es wurden sogar reine Plutonium-Brennstoffe untersucht. Dies geschah aus dem Gedanken, insbesondere Plutonium aus einer Abrüstung zu verbrennen. Vielen Kritikern machen die weltweit ständig steigenden Plutoniumvorräte sorgen. Allerdings ist bis zu einem Prototyp noch sehr viel Forschung und Entwicklung nötig.

Das aus Thorium gebildete U-233 ist mit Abstand das beste Spaltmaterial für thermische Reaktoren. Aus diesem Grunde wurde in USA und Deutschland schon sehr früh das Thorium-Brutreaktor-Konzept favorisiert. Allerdings dürfte die Verwendung von hoch angereichertem Uran heute nicht mehr praktikabel sein. Für eine mittlere Anreicherung bzw. Verwendung von Plutonium als Ersatz, ist noch sehr viel Forschung nötig.

Entsorgung

Ein TRISO-Brennelement besteht aus 94% Graphit. Einerseits ist das für eine (auch sehr lange) Zwischenlagerung eine sehr gute Verpackung, andererseits muß man gewaltige Volumen lagern. Es empfiehlt sich daher eine Wiederaufbereitung um das Volumen zur Endlagerung klein zu halten. Leider gilt aber: Je (mechanisch und chemisch) stabiler ein Brennelement ist, je geringer ist (auch) im Störfall die Freisetzung von Spaltprodukten. Allerdings ist es dann auch um so aufwendiger an diese Spaltprodukte und Wertstoffe heranzukommen. Bei noch nicht bestrahlten Brennelementen ist das Stand der Technik. Der Ausschuss jeder Produktionsstufe wird wieder in die Ursprungsprodukte zerlegt und wiederverwendet.

Im Betrieb wird radioaktives C14 gebildet. Dieser Kohlenstoff bleibt in der Matrix gelöst. Insbesondere bei Feuchtigkeit kann dieses C14 in der Form von CO2 Gas austreten. Ähnliches gilt für radioaktives Tritium H3. Die auftretenden Mengen sind so gering, daß sie bei einer Wiederaufbereitung nach entsprechender Verdünnung in die Umwelt abgegeben werden könnten. Beide Stoffe kommen ohnehin in der Natur vor.

Die Mengen sind nicht sonderlich hoch. Bei einem Hochtemperaturreaktor dürften in seinem Leben von 60 Jahren rund 5000 bis 10000 to abgebrannter Brennelemente anfallen. Diese entwickeln nach etwa drei Jahren etwa 100 W Wärme pro Lagerkanne. Dieser Wert halbiert sich noch einmal nach 50 Jahren. Eine Lagerung ist also kein Problem.

Hat man erstmal die Kerne „zerstört“ – gemeint ist damit, die Kohlenstoffschichten mechanisch und/oder chemisch entfernt – ist die Wiederaufbereitung in leicht modifizierten PUREX-Anlagen möglich.

Die Kugelhaufen sind zurück

Weltweit tauchen Meldungen über Hochtemperaturreaktoren (HTR) mit Kugelhaufen als Kern auf. Es könnte eine Renaissance geben, wenn man es richtig anpackt.

Geschichte

Die Verwendung eines Gases als Kühlmittel geht bis auf die Anfänge der Kerntechnik zurück: 1956 ging in Calder Hall in Großbritannien das erste Magnox-Kraftwerk mit einer elektrischen Leistung von 50 MW ans Netz. Die Bezeichnung Magnox leitete sich aus dem Material für die Brennstabhüllen Magnesium und dem Kühlmittel Kohlendioxid ab. Bei dieser Werkstoffkombination ergab sich nur ein geringer Wirkungsgrad von rund 20%. Später ging man zu Brennstabhüllen aus Stahl, angereichertem Uran, höheren Drücken beim CO2 und höheren Betriebstemperaturen über. Dieser Advanced Gas Reactor (AGR) Typ ist teilweise heute noch in Betrieb, wird aber schon lange nicht mehr neu gebaut.

Das „Helium-Zeitalter“ begann 1965 in Großbritannien mit dem Dragon-Reaktor (20 MWth) und in Deutschland 1966 mit dem AVR Kugelhaufenreaktor in Jülich – eine 21 jährige Erfolgsgeschichte. Der AVR als Versuchskraftwerk ist weltweit die Mutter aller Kugelhaufen-Reaktoren bis zum heutigen Tag geblieben. Man kann mit Fug und Recht sagen, daß in Deutschland dieser mit Helium gekühlte Hochtemperaturreaktor bis zur Anwendungsreife entwickelt worden ist. Analog zu den Leichtwasserreaktoren in den USA. Ganz besonders betrifft dies die Forschung und Entwicklung der TRISO Brennelemente. Nicht auszudenken, wo der Entwicklungsstand heute wäre, wenn nicht die Wahnvorstellungen der Ökosozialisten aus SPD und Grünen über Deutschland hereingebrochen wären. Inhärent sichere Reaktoren, hohe Temperaturen auch zur Prozeßwärme, Trockenkühlung, kalte Fernwärme, Kohleveredelung: Alles deutsche Produkte, die heute weltweit (mühselig) nachvollzogen werden.

Der Unterschied

Bei Leichtwasserreaktoren (LWR) ist das Wasser Kühlmittel, Moderator („Neutronenbremse“) und Arbeitsmedium in einem. Dadurch kann man sehr kleine Kerne – nicht unbedingt Reaktoren – mit sehr hoher Leistungsdichte bauen. Genau diese hohe Leistungsdichte ist aber sicherheitstechnisch ein Problem bzw. Nachteil.

Bei den Hochtemperaturreaktoren ist das Gas ein reines Kühlmittel. Da es keinen Phasenübergang mehr gibt (vom Wasser als Flüssigkeit zum Dampf als Gas) ist der Temperatur- und Druckanstieg kontinuierlich und gemäßigt. Physikalische Explosionen sind damit ausgeschlossen. Verwendet man ein Edelgas wie Helium, sind auch chemische Reaktionen auszuschließen. Anders als bei den Störfällen von Harrisburg und Fukushima: Durch hohe Temperaturen und Trockenfallen der Brennstäbe kam es zur Wasserstoffbildung. Wie die Explosionen in Fukushima zeigten, ein ernsthaftes Sicherheitsrisiko.

Da Helium kaum mit Neutronen reagiert, wird es auch nicht aktiviert. Anders als z. B. die Kühlmittel CO2 und Wasser. Man braucht allerdings einen zusätzlichen Moderator. In diesem Falle das Reaktorgraphit der Brennelemente. Da das Bremsvermögen kleiner ist, benötigt man entsprechend mehr Volumen. Sicherheitstechnisch ist dies wiederum ein Vorteil: Man gewinnt bei einem Störfall wegen der Speicherfähigkeit wertvolle Zeit. Reaktorgraphit verträgt sehr hohe Temperaturen, ohne sich wesentlich zu verändern. Die möglichen hohen Temperaturen sind ein weiterer Sicherheitsgewinn durch passive Kühlung. Die unmittelbar nach einer Schnellabschaltung entstehende große Wärmeleistung durch den Zerfall der kurzlebigen Spaltprodukte, kann im Graphit zwischengespeichert werden. Die hohen – ohne Festigkeitseinbußen, Druckanstiege etc. – möglichen Temperaturen ergeben zur Umwelt eine große treibende Temperaturdifferenz. Die Wärmeabgabe durch Konvektion erfolgt proportional zur Temperaturdifferenz. Die Wärmeabgabe durch Strahlung sogar mit der vierten Potenz. Bei kleinen Reaktoren (Verhältnis von Oberfläche zu Volumen) ist dies ohne zusätzliche Sicherheitseinrichtungen beherrschbar. Können Brennelemente, Einbauten und Kühlmittel eine hohe Temperatur vertragen, kommt man damit automatisch zu einer inhärenten Sicherheit auch nach der Abschaltung. Ein Störfall wie in Fukushima ist – auch ohne Nachkühlung – ausgeschlossen. Es gibt keine – nicht einmal eine theoretische – Kernschmelze.

Das Arbeitsmedium

Grundsätzlich gibt es zwei Wege zur Erzeugung mechanischer Energie aus der Reaktorwärme: Über eine Heliumturbine oder eine Dampfturbine. Auch die Chinesen haben sich wie einst die Deutschen, zu einem konventionellen Dampfkreislauf entschieden. Man verfügt damit ab dem Wärmeübertrager über eine konventionelle und erprobte Kraftwerkstechnik. Wenn man unbedingt will, kann man damit einen Wirkungsgrad von nahezu 50% erzielen, wie es in modernsten Kohlekraftwerken üblich ist. Ein reines Optimierungsproblem, was bei den geringen Brennstoffpreisen eines Kernkraftwerks nicht unbedingt erforderlich ist. Wenn man bewußt auf etwas elektrischen Wirkungsgrad verzichtet, kann man Abwärme mit höherer Temperatur auskoppeln zur Verwendung in Fernwärmenetzen oder einen Trockenkühlturm verwenden. Dies wurde bereits beim THTR in Hamm-Uentrop erfolgreich vorgeführt. Die Stromerzeugung in ariden Gebieten ist ein nicht zu unterschätzender Markt. Aktuell ist z. B. Saudi Arabien und Südafrika brennend an Hochtemperaturreaktoren interessiert.

Südafrika ist bei dem Versuch einer Heliumturbine gescheitert. Zumindest die Lösung einer doppelten Aufgabe: Neuer Reaktor und neues System zur Energiewandlung, war absehbar eine Überforderung. Die unvermeidbare Verunreinigung des Heliums durch Graphitabrieb und Spaltprodukte führt zu dauerhaften Wartungsproblemen. Es sprechen aber auch grundsätzliche thermodynamische Überlegungen gegen eine Heliumturbine. Helium hat eine sehr geringe Dichte bei hoher Schallgeschwindigkeit. Bei der Entspannung in einer Düse ergeben sich sehr hohe Strömungsgeschwindigkeiten bzw. sehr hohe Schaufelgeschwindigkeiten im Verdichter. Beides führt zu notwendig hohen Drehzahlen. Ferner benötigt man bei Helium für ein vorgegebenes Druckverhältnis wesentlich mehr Stufen und Zwischenkühler als z. B. bei Luft. Zusätzlich muß man wegen der geringeren spezifischen Wärmekapazität des Heliums auch noch wesentlich größere Volumenströme umwälzen. (Hinweis für Thermodynamiker: Abschätzung über die Adiabatengleichung unter Berücksichtigung der unterschiedlichen Exponenten vornehmen.) Vermeintliche Vorteile hoher Temperaturen und Einkreissysteme werden so schnell wieder aufgefressen.

Der Brennstoff

Wie schon die Bezeichnung Kugelhaufenreaktor vermuten läßt, besteht der Kern aus Kugeln. Basis dieser Kugeln sind die TRISO (Tri-coated Isotropic) Elemente. Ein winzig kleiner Kern aus Brennstoff ist von mehreren Schichten Reaktorgraphit und einer Schutzschicht aus Siliciumcarbid ummantelt. Dies ist ein sehr flexibles Konzept. Das Brennstoffpartikel hat einen Durchmesser von weniger als einem halben Millimeter und besteht chemisch aus Oxiden oder Karbiden. Es kann aus Uran-, Plutonium- oder Thoriumisotopen im geeigneten Mischungsverhältnis bestehen. Die Kohlenstoffschichten dienen als Moderator und als Puffer für Spaltgase. Die Siliciumcarbid-Schicht dient als „Brennstoffhülle“ zur Zurückhaltung der Spaltprodukte. Das fertige TRISO-Element ist ein Kügelchen von etwa einem Millimeter Durchmesser. Aus diesen Kügelchen preßt man nun Kugeln von 50 mm Durchmesser, die noch mit einer weiteren Schutzschicht aus Graphit überzogen werden. Es ergeben sich – chemisch wie mechanisch – sehr widerstandsfähige, tennisballgroße Brennelemente.

An dieser Stelle sei vermerkt, daß man diese TRISO-Elemente auch zu Brennstäben pressen kann. Diese werden in hexagonale „Bausteine“ aus Graphit eingesetzt, aus denen man einen Kern „aufmauern“ kann. Diese Bausteine enthalten Kanäle in denen das Gas gerichtet strömen kann und auch Kontrollstäbe etc. eingesetzt werden können. Das ist das andere derzeit verfolgte Konzept für gasgekühlte Hochtemperaturreaktoren. Mit ihm lassen sich auch größere Reaktoren bauen.

Ein Haufen ist ein Haufen

Die Idee, einen schlanken Silo zu bauen und den von oben kontinuierlich mit Kugeln zu befüllen, erscheint als eine verblüffend einfache Idee. Die sich ergebenden Hohlräume zwischen den Kugeln dienen dabei dem Kühlmittel Helium zur Durchströmung. Aber wo Licht ist, ist auch Schatten. Jeder Kern eines Reaktors hat unterschiedliche Zonen mit unterschiedlichem Neutronenfluß und damit unterschiedlicher Leistung. Bei ortsfesten Brennelementen kann man z. B. über eine unterschiedliche Anreicherung diese Effekte ausgleichen. Bei einem stetig rutschenden Kugelhaufen geht das nicht.

  • Die Wege und die Durchlaufzeit einer einzelnen Kugel sind nicht vorhersagbar.
  • Man kann in dieser Schüttung praktisch keine Regelstäbe oder Meßsonden einbauen.
  • Die Strömungsverhältnisse des Kühlgases sind unbestimmt.

Dies führt alles zu stark unterschiedlichen Temperaturen, der eine Kugel bei einem Durchlauf ausgesetzt war. Auch wenn die Austrittstemperatur stets im grünen Bereich war, sind einzelne Kugeln sehr stark erwärmt worden. Je höher die gewünschte Austrittstemperatur, um so höher auch die Anzahl überlasteter Kugeln und dadurch in das Kühlmittel freigesetzte Spaltprodukte.

Nur bei kleinen Kernen kann man die unterschiedliche Leistungsverteilung durch Reflektoren an den Behälterwänden ausreichend kompensieren. In diese Reflektorschicht kann man auch Regelstäbe zur sicheren Abschaltung einführen. Zwar braucht ein Kugelhaufen nicht so viele Regelstäbe, da er ja kontinuierlich mit frischen Elementen beschickt wird und nicht den gesamten Brennstoff für den Zyklus schon am Anfang in sich haben muß (Überschußreaktivität), aber ganz kann man nicht darauf verzichten. An dieser Stelle wird klar, daß Kugelhaufenreaktoren nur als Kleinreaktoren (SMR) geeignet sind. Mit zunehmender Größe, kehren sich die Vorteile schnell in Nachteile um. Deshalb auch die andere Entwicklungsschiene, aus TRISO-Kügelchen Brennelemente als Bausteine herzustellen.

Die Sicherheit

Wenn man sich auf kleine Leistungen und moderate Austrittstemperaturen beschränkt, erhält man einen nahezu „unkaputtbaren“ Kernreaktor. Der Versuchsreaktor AVR hatte eine Leistung von 46 MWth und eine elektrische Leistung von 15 MWel. Die in China in Bau befindliche Weiterentwicklung eine thermische Leistung von 250 MWth pro Modul bei noch vernünftigen Austrittstemperaturen von 750 °C. Was spricht eigentlich wirklich gegen diese Bandbreite? Es gibt zwei riesige Märkte für „kleine“ Reaktoren: Alle dünn besiedelten Gebiete von Alaska bis Afrika und den Markt der Kraft-Wärme-Kopplung (einschließlich Fernkälte) in Ballungsgebieten. Hier kommt es auf geringen Personalaufwand für den Betrieb (möglichst automatisch) und Robustheit (Sicherheit, Zuverlässigkeit und geringe Wartung) an. Wer ein Kernkraftwerk, wie einen Schiffsdiesel baut, dem stehen hier alle Türen offen. Es ist kein Zufall, daß sich gerade Saudi Arabien für den chinesischen HTR interessiert: Ein riesiges Land, was konventionelle Stromnetze sehr teuer macht. Lokaler Bedarf nicht nur an elektrischer Energie, sondern immer auch gleichzeitig an Kälte (Klimatisierung) und Trinkwasser, bei gleichzeitigem Mangel an Kühlwasser für konventionelle Kraftwerke. Ähnliches gilt für Südafrika: Es mangelt nicht an Energie (riesige Kohlevorräte), sondern an Kühlwasser für Kraftwerke.

Die Temperaturfrage

Wir verfügen noch mindestens für Jahrhunderte über ausreichend billige fossile Energien. Je weniger man davon für Stromerzeugung und Heizung verfeuert, je länger kann man die Preise stabil halten. Es besteht also für Jahrzehnte gar keine Notwendigkeit für nukleare Prozeßwärme mit hohen Temperaturen und damit auch kein Markt! Schon allein, wenn man das Erdgas, was man heute in Kraftwerken verfeuert, zur (billigen) Wasserstoffproduktion verwendet, kann man damit die Weltmärkte überschwemmen.

Mit der Temperatur steigt der technische Aufwand exponentiell an. Temperatur ist in der Kraftwerkstechnik der Kostentreiber Nummer eins. Die Kerntechnik leidet aber bereits unter den Investitionskosten. Es ist dringend ein umlenken in die andere Richtung notwendig. Keine exotischen Experimente (Heliumturbine), sondern Einsatz erprobter Technik. Dampfturbinen mit unter 600 °C Eintrittstemperaturen um bei handhabbaren Werkstoffen zu bleiben.

Nimmt man dies als Richtwert, kommt man beim Reaktor deutlich unter 800 °C Austrittstemperatur an. Bei TRISO-Elementen ist die im Störfall freigesetzte Menge an Spaltprodukten stark temperaturabhängig. Nicht nur die maximale Temperatur im Störfall, sondern auch durchaus der Temperaturverlauf im Betrieb sind bestimmend. Je weiter man von den Grenzwerten Abstand hält, um so geringer ist die Freisetzung ins Helium. Je sauberer das Helium ist, je kleiner die potentielle Strahlenbelastung der unmittelbaren Umgebung.

Dies muß ja niemanden von der Jagd nach Temperaturrekorden abhalten. Es wird hier nur für einen ingenieurmäßigen, evolutionären Weg plädiert. Kein Ingenieur hat bei der Entwicklung der Verkehrsflugzeuge gleich Schallgeschwindigkeit gefordert. Vielleicht von geträumt, aber realistischer Weise nicht unmittelbar angestrebt.

Zusammenfassung

Wenn man konsequent die (derzeitigen) Grenzen der Technik akzeptiert und sich auf die Vorteile der Kugelhaufenreaktoren besinnt, kann man sehr schnell einen Durchbruch erzielen. Der PC hat seinen Siegeszug nicht angetreten, weil er in Konkurrenz zu Großrechnern angetreten ist, sondern weil er das „persönliche“ in den Vordergrund gestellt hat. Rausgekommen sind heute Rechner, die mehr leisten, als Großrechner in den 1960er Jahren und das zu einem „Mitnahmepreis“.

Für die Kugelhaufenreaktoren heißt das:

  • Konsequente Betonung der Sicherheit. Es ist möglich einen Rektor zu bauen, der so sicher ist, daß man ihn in einem Wohngebiet bedenkenlos aufstellen könnte.
  • Schwerpunkt auf einen automatischen Betrieb mit Fernüberwachung und geringem Wartungsaufwand.
  • Senkung der Investitionskosten durch Besinnung auf handelsübliche Technik.

Für die öffentliche Akzeptanz sind medienwirksame Vorführungen an Demonstrationskraftwerken notwendig: Trennung bei voller Last vom Netz, völliger Verlust des Kühlgases usw. Nachweis ist dabei, daß nicht mehr an Strahlung als aus einem konventionellen Kraftwerk die Grundstücksgrenze übertritt. Nur so, kann der Angstindustrie und ihrer Propaganda wirksam entgegen getreten werden.

Für die Fachwelt der Kunden (Stadtwerke, Industrie, usw.) steht die Bedienbarkeit und die Kosten im Vordergrund. Nichts ist vertrauenserweckender, als eine vertraute Technik (z. B. konventionelle Dampfturbine), mit der man sich auskennt und Erfahrung (Werkstofftechnik, Schweißtechnik etc.) hat. In diesem Sinne, kann man den Kollegen in China nur viel Erfolg auf ihrem eingeschlagenen Weg wünschen.

Das nationale Begleitgremium stellt sich vor

Am Samstag fand im „Tagungswerk Jerusalemkirche in Berlin“ eine Veranstaltung zum „Standortauswahlgesetz“ statt.

Was verbirgt sich dahinter?

Wer bisher noch nicht von dieser Institution gehört hat, sollte vielleicht mal deren Internetauftritt besuchen. Mal ehrlich, wer hat überhaupt von dieser Tagung gewußt oder gar eine Einladung erhalten? Dafür war Funk, Fernsehen und Presse reichlich vertreten. Ist ja bald wieder Wahlkampf. Erstaunlich oder eher erschreckend ist auch hier wieder, das neue deutsche Blockparteiensystem. Alle Parteien vereint – unter Führung der Grünen – im Kampf gegen das „Teufelszeug“ und den zahlenden Bürger. Ein Lehrstück über gelenkte Demokratie. Man bestimmt ein Gremium aus gleichgesinnten Laien und nennt das „Bürgerbeteiligung“. Sachverstand ist ausdrücklich nicht gewünscht, er stört nur die Politik bei ihrer „großen Transformation“.

Was soll das Standortauswahlgesetz bewirken?

Zumindest eine Partei sieht ihre Wurzeln und ihre Kernkompetenz im „Kampf gegen das Atom“. Zieht man dieses Thema ab, verbleibt nur noch ein bischen (austauschbarer) Sozialismus. Die Transsexualität und die vegetarische Zwangsernährung hat sich bereits in den letzten Wahlkämpfen nicht als der Wahlkampfschlager erwiesen. Also zurück zum Geschäft mit der Angst. Nur ist auch das nicht mehr so einfach zu betreiben wie früher. Durch den „Atomausstieg“ und die „Energiewende“ ist „Atomkraft-Nein-Danke“ auch für wohlwollende Linke nicht mehr so der Aufreger. Also schnell vor der Bundestagswahl noch ein paar Kohlen für die eigene Klientel aufgelegt, indem man ein „Standortauswahlgesetz“ im Schweinsgalopp durch die Parlamente treibt. Da alle etablierten Parteien auf den potentiellen Koalitionspartner zum eigenen Machterhalt oder Machterwerb angewiesen scheinen, mit voller Unterstützung der anderen Parteien. Es gibt im Bundestag offensichtlich keine Opposition – und was weit folgenschwerer ist – keinen Sachverstand mehr.

Nachdem wir bereits Milliarden in die Erkundung der Standorte Gorleben und Schacht Konrad investiert haben, soll jetzt noch einmal alles von Neuem gestartet werden. Wohl gemerkt, nicht weil sich diese Standorte als gänzlich ungeeignet erwiesen haben, sondern um die gesamte Republik wieder mit „einem Kampf gegen das Atom“ zu überziehen. Wir gönnen uns ja sonst nichts. In diesem Punkt schweigen sogar die Politiker, die sonst ständig von „Kinderarmut“, drohender „Altersarmut“ etc. reden.

Was ist das eigentliche Problem?

Wir verfügen an zahlreichen Standorten über unterschiedlichste Stoffe, die ionisierende Strahlung aussenden. Sie stammen aus unterschiedlichsten Quellen: Energieerzeugung, Forschung, Medizin, Produktion und Bergbau (Öl, Gas, Kohle usw.). Damit muß verantwortungsvoll umgegangen werden. Das ist die eigentliche politische Frage, die in den Parlamenten diskutiert und beschlossen werden muß:

  • Was ist Wertstoff und was ist Abfall?
  • Was wird als gefährlich angesehen? Dies betrifft nicht nur die Radioaktivität, sondern auch den chemischen Zustand.
  • Wie hoch sollen die Grenzwerte sein?
  • Sollen die Stoffe „vernichtet“ werden und damit dauerhaft aus der Welt geschafft werden oder sollen sie „sicher gelagert“ werden?
  • Was ist eine als sicher angesehene Lagerung: Technische Barrieren oder geologische Barrieren oder eine Mischform?

Erst wenn über diese Fragen Einigung erzielt worden ist, kann sachlich fundiert über Standorte entschieden werden. Dieser Prozeß muß in einer Demokratie über die Parlamente geschehen. Die Politiker – da grundsätzlich Laien – haben vorher den Sachverstand der Wissenschaft zu konsultieren. Die Entscheidung jedoch, kann ihnen keiner abnehmen.

Ganz nebenbei, die „Endlagerfindung“ ist mitnichten die endgültige Lösung. Auch bei einem kompletten Ausstieg aus der Kernenergie und Forschung wird weiterhin mit radioaktiven Stoffen in Medizin und Fertigung umgegangen werden. Radioaktiver Abfall wird weiterhin entstehen.

Die moralische Überhöhung

„Atommüll“ sei Teufelszeug, für das die heutige Generation die Verantwortung tragen müßte, da sie auch den Nutzen davon gehabt hätte. Abgesehen davon, daß dies eine eigenartige Auffassung von der Entwicklung der Menschheit ist, ist diese Aussage auch in höchstem Maße zynisch. Diese Denkweise gipfelt in der Forderung eines generellen Exportverbotes für radioaktive Stoffe. Man will die abgebrannten Brennelemente unwiederbringlich verbuddeln. Deutschland will aus der Kernenergie aussteigen, gut, das ist sein Recht. Aber woher nimmt dieses grün-alternative Milieu eigentlich das Recht, dem Rest der Welt seine Sichtweise aufzuzwingen? Für den überwiegenden Teil der Menschheit sind Brennelemente kein Müll, sondern Rohstoff für die Energiegewinnung. Das Recycling ist erprobte Praxis. Wo bleibt da eigentlich die „Nachhaltigkeit“, die sonst immer, wie eine Monstranz vor sich her getragen wird. Allein China baut alle drei Monate einen neuen Kernreaktor. Der Uranbedarf wird entsprechend steigen. Die Urangewinnung erfordert viele menschliche und materielle Ressourcen, aber wir maßen uns an, Wertstoffe durch vergraben dem Weltmarkt zu entziehen. Am Deutschen Wesen, wird die Welt genesen.

Wie in sich unlogisch die Argumentation ist, zeigt sich daran, daß ein grüner Umweltminister sogar fordert, man müsse für die Endlagerung auch ausdrücklich das tail-end (abgereicherter Teilstrom bei der Urananreicherung) aus deutschen Urananreicherungsanlagen einbeziehen. Was bitte, strahlt denn mehr: Uran-235 oder Uran-238? Das abgereicherte Uran strahlt daher weniger als Natururan. Bisher ist es ein frei handelbares Wirtschaftsgut. Wenn wir die Grenzwerte so tief nach unten schrauben, sollten wir schleunigst Zwischenlager für Kohlenasche (aus der wird gerne Zement und Pflastersteine gemacht), Rückstände aus der heimischen Öl- und Gasförderung usw. anlegen. Außerdem müßten wir schleunigst alle Panzer, panzerbrechende Munition und Ausgleichsgewichte in diversen Flugzeugen mit Aufklebern zur Warnung vor Radioaktivität versehen und das Personal mit Dosimetern ausrüsten. Schöne Grüße aus Absurdistan.

Der Müll geht aus

Der bisherige Gesetzentwurf lautet im Untertitel …ein Endlager für Wärme entwickelnde radioaktive Abfälle…. Wahrscheinlich der kleinste gemeinsame Nenner zwischen den Parteien. Durchaus sinnvoll, denn es gibt ja bereits den Standort Konrad für mittelaktiven Abfall. Wenn man nun aber alle Kernkraftwerke abgeschaltet hat, kommt kein neuer (hochaktiver) Müll mehr hinzu. Der bereits zwischengelagerte Abfall aus der Wiederaufbereitung ist schon recht alt. Bis ein Endlager betriebsbereit ist und die erste Einlagerung möglich wird, werden mindestens noch weitere 50 Jahre vergehen. Je länger der Abfall lagert, um so mehr radioaktive Stoffe sind zerfallen. Es bleiben nur die langlebigen über, die aber gerade wegen ihrer Langlebigkeit wenig Wärmeleistung produzieren. Deshalb ist es z.B. kein Problem, eine Oberflächentemperatur von 90°C (z. B. französische Vorschrift für deren Endlager) bei den Gebinden einzuhalten. Der deutsche Gesetzentwurf schweigt sich bisher dazu aus, was durchaus sinnvoll ist, da ja noch keine konkreten geologischen Verhältnisse vorliegen sollen (Entscheidungsfreiheit).

Damit die „Atommüll-Story“ weiter am Laufen gehalten werden kann, muß man virtuellen Müll erschaffen. Man redet gewaltige Mengen aus der Asse herbei, die angeblich wieder vollständig ausgebaggert werden muß. Hinzu kommen die Mengen an leicht radioaktiven Abfällen aus den Kernkraftwerken und dem Abbruch der kerntechnischen Anlagen. Es wird dabei tunlichst verschwiegen, daß das Volumen von radioaktivem Müll vollkommen beliebig ist. Man kann durch Nachbehandlung (Dekontaminierung, Verbrennung etc.) und Sortierung das Volumen beliebig verringern. Alles nur eine Frage der Kosten. Die jetzt aufgeworfene Forderung der grünen Problemerschaffungs-Partei, auch dieser Müll müßte in dem geologischen Tiefenlager eingelagert werden, setzt dem Ganzen die Krone auf. Müll, der weltweit auf normalen oberirdischen Sondermülldeponien gelagert wird. Dies nur um den Popanz eines nicht vorhandenen Endlagers aufrecht erhalten zu können. Dieses muß natürlich möglichst groß sein, um den Widerstand in der Region anfachen zu können und gleichzeitig möglichst teuer, um das Märchen von der viel zu teuren Kernenergie erfüllen zu können. Als Nebenprodukt kann man noch ein Endlager erschaffen, das sicherheitstechnisch deutlich hinter internationalen Standards zurückbleibt. Nach dem Murks der Energiewende, noch ein Murks mit radioaktiven Stoffen.

Das erschaffene Endlagerproblem

Das größte Bubenstück der Grünen war jedoch das Verbot einer Wiederaufbereitung, das jetzt noch einmal durch das Exportverbot für Kernbrennstoffe verschärft werden soll. Man muß es immer wieder betonen, der verglaste Abfall aus der Wiederaufbereitung in Frankreich und England ist nach maximal 100 000 Jahren auf das Niveau von Natururan abgeklungen. Man kann ihn bereits nach wenigen hundert Jahren in die Hand nehmen, wenn man keine Strahlenphobie hat. Genau das, war der sicherheitstechnische Sinn der Wiederaufbereitung: Verkleinere drastisch das Volumen und entschärfe den Abfall durch die Entfernung des Plutoniums.

Durch die jetzt geplante Endlagerung der unbehandelten Brennstäbe hat man wegen des hohen Plutoniumgehaltes einen wesentlich problematischeren Abfall erschaffen. Man kann nicht einfach die Castoren verbuddeln, sondern die Brennelemente müssen aufwendig neu verpackt werden. Verfahren hierfür, die auch nur ansatzweise die gleiche Sicherheit bieten wie der verglaste Abfall, gibt es nicht. Wer soll die eigentlich entwickeln und wo wird später die Anlage hierfür errichtet?

Zusammenfassung

Es ist der klassische Politikablauf: Erschaffe ein Problem, das du anschließend vorgibst zu lösen. Halte Fachleute fern und laß nach dem Prinzip des Berliner Willi Brand Flughafens Laien vor sich hin wurschteln. Je länger die Sache dauert, je höher sind die Pfründe für alle Günstlinge. Tarne die Angelegenheit über eine „Bürgerbeteiligung“. Gleichzeitig schaffst du dadurch Arbeitsplätze für nicht vom Arbeitsmarkt nachgefragte Akademikergruppen. Diese sind dir deshalb treu ergeben und werden dir den Rücken frei halten. Je besser du die Verantwortungslosigkeit organisiert, je besser ist die Chance wiedergewählt zu werden.

Es wird eine endlose Geschichte inszeniert. Jetzt, wo man sich die Rücklagen für die Entsorgung einverleibt hat, hat man alle Zeit der Welt, das Geld für andere Dinge auszugeben. Politiker als Vermögensverwalter ist genauso, wie gierige Hunde zur Bewachung von Steaks. Ist das Geld weg, wird man die Gesetze ändern. Schacht Konrad und Gorleben laufen ja nicht weg.

Was ist eigentlich Atommüll?

Wenn man sich z.B. mit dem Thema Endlagerung beschäftigen will, ist es sinnvoll zu wissen, was „Atommüll“ eigentlich ist und wie er entsteht.

Alles entsteht im Reaktor

Im Reaktor eines Kernkraftwerks werden Atomkerne gespalten. Dies ist sein Sinn. Um Wärme-Leistungen von mehreren Gigawatt (GWth.) in einem so kleinen Behälter zu erzeugen, sind gewaltige Flüsse von Neutronen notwendig. Die Neutronen entstehen überwiegend bei den Spaltungen und lösen weitere Spaltungen aus. Eine sich selbst erhaltende Kettenreaktion. Sie läuft solange weiter, bis zu viel „Spaltstoff“ verbraucht wurde. Der Brennstoff muß erneuert werden, d. h. die „abgebrannten Brennelemente“ (spent fuel) müssen durch frische ersetzt werden.

Auf ihrem Weg von einer Spaltung zu einem weiteren spaltbaren Kern, treffen die meisten Neutronen auch auf andere Atomkerne. Das sind all die anderen Materialien, aus denen der Reaktor besteht: Brennstabhüllen, Wasser, Regelstäbe, Einbauten im Reaktor, das Reaktorgefäß selbst etc. Nun kann es passieren, daß sie nicht nur mit einem Atomkern zusammenstoßen und wieder abprallen – gestreut werden – sondern von diesem dauerhaft eingefangen werden. Es entsteht ein neues chemischen Element oder ein Isotop. Man nennt das Aktivierung, da diese neu erschaffene Elemente radioaktiv sind.

Bewegen sich solche radioaktiven Stoffe durch das Kernkraftwerk, können sie Bauteile, Werkzeuge etc. kontaminieren. Kontaminierung und Aktivierung werden oft miteinander verwechselt: Kontaminierte Gegenstände bleiben unverändert, sie werden nur mit radioaktiven Stoffen verunreinigt. Sie können auch wieder gereinigt werde. Die Reinigung kann aber so aufwendig und damit kostenintensiv sein, daß es billiger ist, das Teil als „Atommüll“ zu deklarieren und einfach komplett wegzuwerfen.

Unterschiedliche Formen der Strahlung

Man unterscheidet γ-Strahlung, β-Strahlung (Elektronen) und α-Strahlung (Helium-Kern). Die beiden letzten können kaum Materie durchdringen. Für γ-Strahlung gilt: Eine Abschirmung aus möglichst dichtem Material (z. B. Blei) und schlichtweg Abstand einhalten. Jedenfalls reicht in einem Brennelemente-Lagerbecken die Wassertiefe als Abschirmung vollkommen aus. Es wäre gefahrlos möglich, in einem solchen Becken zu schwimmen.

Aus vorgenannten Gründen reicht meist ganz normale Schutzkleidung – bestehend aus Atemschutz, Schutzanzug, Handschuhen und Brille – beim Umgang mit Atommüll aus. Solange man radioaktive Stoffe nicht in seinen Körper aufnimmt, ist Atommüll relativ harmlos. Umgekehrt gilt, wenn man Atommüll sicher einschließt, ist der Umgang ohne Schutzkleidung möglich. Typisches Beispiel ist der Castor-Behälter: Seine dicken Stahlwände, spezielle Neutronenabsorber und sein gasdichter Verschluß machen auch die Handhabung stark strahlender Brennelemente gefahrlos möglich.

Die Dosis macht das Gift

Wie bei allen anderen Stoffen auch, ist die biologische Wirkung von Strahlung immer von der Dosis abhängig. Schon die Erfahrung mit dem Sonnenlicht macht diesen Zusammenhang deutlich: Ein wenig Sonne ist belebend (z. B. Bildung von Vitamin D), zu viel davon, erzeugt einen Sonnenbrand mit der Zerstörung von Hautschichten. Zuviel und häufige Strahlung kann sogar Hautkrebs erzeugen.

Der menschliche Körper verfügt über zahlreiche Reparaturmechanismen. Wäre das nicht so, hätte es überhaupt kein Leben auf der Erde geben können, denn die Strahlung war vor Millionen von Jahren noch wesentlich höher als heute. Jedenfalls ist die Vorstellung, schon ein einziges Plutonium-Atom könnte Krebs auslösen oder gar vererbbare Genveränderungen, ein Hirngespinst, das nur zur Erzeugung von Angst dienen soll. Wäre Radioaktivität tatsächlich so gefährlich, dürften wir nichts essen und trinken. Es gibt Mineralwässer, die enthalten mehr radioaktive Stoffe, als das Wasser in einem Brennelemente-Lagerbecken oder gar das Kondensat in einem Kernkraftwerk. Wir dürften keine Bananen oder Tomatenmark essen, denn die enthalten radioaktives Kalium. Unsere Bauern dürften vor allem keinen mineralischen Dünger aufs Land streuen, denn der enthält beträchtliche Mengen Uran, der ihre Felder im Laufe der Zeit zu „Atommüll-Deponien“ macht.

Es gibt heute umfangreiche Tabellen, die angeben, wieviel man von einem Stoff ohne Krankheitsrisiko zu sich nehmen kann. In diesen Tabellen ist noch ein weiterer Zusammenhang berücksichtigt, die sog. biologische Halbwertszeit. Es ist z. B. ein Unterschied, ob man radioaktives Wasser trinkt, welches ständig aus dem Körper ausgeschieden wird und durch frisches Wasser ersetzt wird oder radioaktives Strontium, welches gern in Knochen eingelagert wird und dort für Jahrzehnte verbleiben kann.

Konzentration oder Verdünnung

Beim Umgang mit „Atommüll“ spielen die Begriffe Verdünnung und Konzentration eine große Rolle. Im Sinne einer biologischen Wirksamkeit ist eine Verdünnung – wie bei jedem anderen Gift auch – eine bedeutende Schutzmaßnahme. Im Prinzip kann man jeden Stoff soweit verdünnen und damit unschädlich machen, daß er Trinkwasser oder Nahrungsmittelqualität besitzt. Deshalb besitzt z. B. jedes Kernkraftwerk einen hohen Abluftkamin. Radioaktive Abgase werden ordentlich verdünnt, bevor sie aus großer Höhe wieder auf den Boden gelangen oder von Menschen eingeatmet werden können.

Das Prinzip der Verdünnung, war bis in die 1960er Jahre der bestimmende Gedanke bei der Abgabe radioaktiver Stoffe ins Meer. Allerdings war von Anfang an klar, daß man durch die beständige Abgabe ins Meer, die Konzentration radioaktiver Stoffe dort erhöhen würde. Man vollzog deshalb eine 180-Grad-Wende: Von nun an war die Aufkonzentrierung das Mittel der Wahl. Bis aktuell in Fukushima. Dort dampft man radioaktives Wasser ein, welches nahezu Trinkwasserqualität hat, um auch geringste Mengen radioaktiver Stoffe vom Meer fern zu halten. Vom naturwissenschaftlichen Standpunkt aus betrachtet, schlicht Irrsinn. Aber zugegeben ein Irrsinn, mit dem sich trefflich Geld verdienen läßt und man am Ende auch noch behaupten kann, Kernenergie sei schlicht zu teuer.

Allerdings muß man an dieser Stelle festhalten, daß die Kerntechnik der erste Industriezweig ist, der versucht, Schadstoffe konsequent aus der Umwelt fern zu halten. Gleiches kann man von der Chemie oder den fossilen Energieverwendern (international) noch lange nicht behaupten.

Spent fuel

Nach einiger Zeit im Reaktor, ist jedes Brennelement „abgebrannt“. Es muß deshalb entfernt werden und durch ein neues ersetzt werden. Die frisch entnommenen Brennelemente strahlen so stark, daß man sie nur unter Wasser handhaben kann. Würde man sie nicht kühlen, könnten sie sogar schmelzen oder zumindest glühen. Dies hat zwei Ursachen:

  • Alle Spaltprodukte sind radioaktiv. Die Strahlung wandelt sich beim Kontakt mit Materie in Wärmeenergie um. Letztendlich wandeln sich die Spaltprodukte in stabile (nicht radioaktive) Kerne um. Dies geschieht jedoch meist nicht in einem Schritt, sondern in mehreren Schritten. Dabei können sogar chemisch unterschiedliche Elemente entstehen. Jede Stufe sendet die ihr eigene Strahlung mit ihrer charakteristischen Energie aus.
  • Der radioaktive Zerfall ist im Einzelfall rein zufällig und durch nichts zu beeinflussen. Betrachtet man aber eine sehr große Anzahl von Atomen eines bestimmten Stoffes, kann man sehr wohl eine sog. Zerfallskonstante ermitteln. Für den praktischen Gebrauch hat sich die sog. Halbwertszeit eingebürgert: Das ist die Zeitdauer, nach der genau die Hälfte der ursprünglichen Menge zerfallen ist. Für den Umgang mit Atommüll ergibt das eine wichtige Konsequenz: Stoffe, die eine geringe Halbwertszeit haben, sind schnell zerfallen. Wegen ihrer hohen Zerfallsrate senden sie aber auch sehr viel Strahlung pro Zeiteinheit aus.

Für abgebrannte Brennelemente ergibt sich daraus der übliche Zyklus: Erst werden sie in ein tiefes Becken mit Wasser gestellt. Das Wasser dient dabei zur Abschirmung der Strahlung und als Kühlmittel. Nach ein paar Jahren ist bereits so viel radioaktives Material zerfallen, daß man die Brennelemente in trockene Behälter (z. B. Castoren) umlagern kann. Es beginnt die beliebig ausdehnbare Phase der „Zwischenlagerung“.

Wiederaufbereitung

Ein abgebranntes – und damit nicht mehr nutzbares – Brennelement eines Leichtwasserreaktors, besteht nur zu rund 4% aus Spaltprodukten – quasi der nuklearen Asche – aber immer noch aus dem Uran und einigem neu gebildeten Plutonium. Uran und Plutonium können weiterhin zur Energieerzeugung genutzt werden.

Vom Standpunkt der Abfallbehandlung ergibt eine Wiederaufbereitung deshalb eine Verringerung des hochaktiven Abfalls (gemeint ist damit das abgebrannte Brennelement) um den Faktor Zwanzig, wenn man die Spaltprodukte abtrennt.

Man dreht aber damit auch gleichzeitig an der Stellschraube „Zeitdauer der Gefahr“. Der radioaktive Zerfall verläuft nach einer e-Funktion. D. h. zu Anfang nimmt die Menge stark ab, schleicht sich aber nur sehr langsam dem Grenzwert „alles-ist-weg“ an. In diesem Sinne tritt die Halbwertszeit wieder hervor. Plutonium-239 z. B., hat eine Halbwertszeit von über 24.000 Jahren. Man muß also mehr als 250.000 Jahre warten, bis nur noch ein Tausendstel der ursprünglichen Menge vorhanden wäre. Geht man von einem Anfangsgehalt von 1% Plutonium in den Brennstäben aus, sind das immer noch 10 Gramm pro Tonne. Nach den berühmten eine Million Jahren, beträgt die Konzentration etwa zwei Nanogramm pro Tonne. Auch nicht die Welt. Gleichwohl senkt das Abscheiden von Uran und Plutonium den Gefährdungszeitraum ganz beträchtlich.

Die Spaltprodukte sind im Wesentlichen nach maximal 300 Jahren zerfallen. Das „radioaktive Glas“ für die Endlagerung strahlt dann nur wenig mehr als ein gehaltvolles Uranerz wie z. B. Pechblende, aus dem Madame Curie einst das Radium chemisch extrahiert hat.

Eine Wiederaufbereitung erzeugt keinen zusätzlichen Atommüll, sondern ist ein rein chemisches Verfahren. Atommüll wird nur in Reaktoren „erzeugt“. Richtig ist allerdings, daß die Anlage und alle verwendeten Hilfsstoffe mit Spaltprodukten etc. verschmutzt werden. Heute wirft man solche kontaminierten Teile nicht mehr einfach weg, sondern reinigt bzw. verbrennt sie.

Die minoren Aktinoide

Heute werden die minoren Aktinoide (Neptunium, Americium, Curium, Berkelium, Californium) ebenfalls noch als Abfall betrachtet und in der Spaltproduktlösung belassen. Sie sind für die Strahlung nach 300 Jahren wesentlich verantwortlich. Dies ist eine Kostenfrage, da sie sich nur sehr aufwendig aus einer Spaltproduktlösung abtrennen lassen.

Sie bilden sich im Reaktor, weil nicht jedes eingefangene Neutron auch zu einer Spaltung führt. Je länger der Brennstoff im Reaktor verbleibt, um so weiter kann der Aufbau fortschreiten: aus Uran-235 wird Uran-236 und daraus Uran-237 gebildet bzw. aus Plutonium-239, Plutonium-240 usw.

Setzt man Uran und Plutonium aus der Wiederaufbereitung erneut in Leichtwasserreaktoren ein, verlängert sich quasi die Verweilzeit und die Menge der minoren Aktinoide im Abfall nimmt entsprechend zu. So geht man heute davon aus, Mischoxide aus Uran und Plutonium nur einmal in Leichtwasserreaktoren zu verwenden.

Grundlegend Abhilfe können hier nur Reaktoren mit schnellem Neutronenspektrum leisten. Will man ganz bewußt Plutonium „verbrennen“, um den ständig wachsenden Bestand auf der Welt zu verringern, bleibt nur der Einsatz solcher Reaktoren (z. B. der Typ PRISM) übrig. Reaktoren mit Wasser als Moderator sind viel zu gute „Brüter“. Handelsübliche Leichtwasserreaktoren haben eine sog. Konversionsrate von 0,6. Mit anderen Worten: Wenn man zehn Kerne spaltet, erzeugt man dabei automatisch sechs neue spaltbare Kerne – hauptsächlich durch Umwandlung von Uran-238 in Plutonium-239. Wenn man also reines Mischoxid einsetzt, hat man immer noch 0,6 x 0,6 = 36% der ursprünglichen Plutonium-Menge. Zum Überdruss auch noch in einer unangenehmeren Isotopenzusammensetzung. Keine besonders wirksame Methode, wenn man die Plutoniumvorräte auf der Welt drastisch verringern will. Völlig absurd in diesem Sinne, ist die Endlagerung kompletter Brennelemente, wie das in Deutschland geschehen soll. Bei dieser Methode sind die Anforderungen an ein Endlager am höchsten.

An dieser Stelle soll Thorium nicht unerwähnt bleiben. Thorium erzeugt den kurzlebigsten Abfall, da der Weg ausgehend von Uran-233 sehr viel länger als von Uran-238 ist und über das gut spaltbare Uran-235 führt. Ein Thorium-Reaktor erzeugt kaum minore Aktinoide, sondern hauptsächlich kurzlebige Spaltprodukte.

Der deutsche Sonderweg

Ursprünglich sind wir in Deutschland auch von einer Wiederaufbereitung der Brennelemente ausgegangen. Wir haben sogar rund 7.000 to in Frankreich und England aufbereiten lassen. Der hochaktive Müll – bestehend aus in Glas gelösten Spaltprodukten und minoren Aktinoiden – wird und wurde bereits nach Deutschland zurückgeliefert. Es werden etwa 3.600 solcher Kokillen in Deutschland in ungefähr 130 Castoren (28 Kokillen pro Castor ) „zwischengelagert“. Bis zum geplanten Ausstieg im Jahre 2022 werden noch etwa 10.000 to Brennelemente hinzugekommen sein.

Die Umstellung von Wiederaufbereitung zu direkter Endlagerung ist ein politischer Geniestreich Rot/Grüner-Ideologen gewesen: Deutschland hat nun das künstlich erschaffene Problem, ein – oder gar zwei – Endlager für zwei verschiedene hochaktive Abfallsorten zu erfinden. Beide von (wirtschaftlich) geringer Menge. Die verglasten Abfälle aus der Wiederaufbereitung sind ziemlich unempfindlich gegenüber Wasser (lediglich Auslaugung) und erfordern einen sicheren Einschluß für lediglich ca. 10.000 Jahre. Direkt eingelagerte Brennelemente müssen wegen ihres Gehalts an Spaltstoff (Uran und Plutonium) sicher vor Wassereinbrüchen geschützt sein, um einen Kritikalitätsunfall zu verhindern. Die schwedische Methode der Kupferbehälter mag ein Hinweis in diese Richtung sein. Teuerer geht nimmer, aber das ist ja auch Programm, damit die Behauptung der „teueren Kernenergie“ erfüllt werden kann. Zu allem Überdruss muß der sichere Einschluß auf diesem Weg für mindestens 200.000 Jahre erfolgen (Faktor 20!), um auf eine gleiche Gefährdung zu kommen. Aber auch das ist ja ausdrücklich gewollt, um die Angstindustrie kräftig anzuheizen.

TRANSATOMIC – schon wieder ein neuer Reaktortyp?

Es tut sich wieder verstärkt etwas bei der Weiterentwicklung der Reaktortechnik in den USA.

Gänzlich anders als in Deutschland, in dem man sich mehr denn je zurück ins Mittelalter träumt, setzt man in USA verstärkt auf die Ausbildung junger Ingenieure und Wissenschaftler und ermutigt sie, eigene Unternehmen zu gründen. Eines der Programme ist das Gateway for Accelerated Innovation in Nuclear (GAIN), des U.S. Department of Energy (DOE). Vereinfacht gesagt, gibt es dort Gutscheine, die die (sonst kostenpflichtige) Nutzung staatlicher Forschungseinrichtungen durch Unternehmensgründungen ermöglichen. Acht solcher „Gutscheine“ im Gesamtwert von zwei Millionen Dollar gingen an sog. startups aus der Kerntechnik.

Eines dieser jungen Unternehmen der Kerntechnik ist Transatomic Power Corporation (TPC). Wie so oft in den USA, ist es eine Gründung von Absolventen des MIT. Glückliches Amerika, in dem noch immer tausende junger Menschen bereit sind, sich den Strapazen eines Kerntechnik-Studienganges aussetzen, während man hierzulande lieber „irgendwas mit Medien“ studiert. Allerdings kennt man in den USA auch keine Zwangsgebühren zur Schaffung von hoch dotierten Nachrichtenvorlesern und Volksbelehrern. Jeder Staat setzt halt seine eigenen Prioritäten.

Noch etwas ist in den USA völlig anders. Das junge Unternehmen hat bereits mehrere Millionen Dollar privates Risikokapital eingesammelt. Es braucht noch mehr Kapital und hat deshalb ein Papier veröffentlicht, in dem das Konzept seines Reaktors näher beschrieben ist. Sicherlich ein erhebliches wirtschaftliches Risiko. Man vertraut offensichtlich darauf, mangelnde „Geldmacht“ durch Schnelligkeit kompensieren zu können. Erklärtes Ziel ist es, möglichst schnell einen kleinen Versuchsreaktor mit 20 MWth zu bauen. Das erste kommerzielle Kraftwerk soll rund 500 MWel (1250 MWth.) Leistung haben und rund zwei Milliarden Dollar kosten.

Abgebrannte Brennelemente als Brennstoff

Der Reaktor ist vom Typ „molten salt“. Der Brennstoff wird in geschmolzenem Salz gelöst, welches gleichzeitig dem Wärmetransport dient. Populär ist dieser Reaktortyp im Zusammenhang mit Thorium gemacht worden. Man beschränkt sich hier bewußt auf Uran als Brennstoff, um auf die dafür vorhandene Infrastruktur zurückgreifen zu können. Thorium wird eher als Option in ferner Zukunft gesehen.

Der besondere Charme dieses Konzeptes liegt in der Verwendung abgebrannter Brennelemente aus Leichtwasserreaktoren als Brennstoff. Solche abgebrannten Brennelemente bestehen zu rund 95% aus Uran-238 und etwa je einem Prozent Uran-235 und Plutonium. Der Rest sind Spaltprodukte als Abfall. Das klassische Modell, wie es z.B. in Frankreich praktiziert wird, ist die Wiederaufbereitung nach dem Purex-Verfahren: Man erhält sehr reines Uran, welches als Ersatz für Natururan wieder in den Kreislauf zurückgeführt wird und reines Plutonium, welches als Mischoxid zu neuen Brennelementen verarbeitet wird. Die Spaltprodukte mit Spuren von Aktinoiden werden verglast und als Atommüll endgelagert. Für diese chemischen Prozeßschritte (Wiederaufbereitungsanlage) geht man von Kosten in Höhe von 1300 bis 3000 US-Dollar pro kg aus. Bei heutigen Preisen für Natururan eine unwirtschaftliche Angelegenheit. Deshalb füllen sich die Lager mit abgebrannten Brennelementen auch weiterhin. Allein in den USA lagern über 70.000 to ausgedienter Brennelemente. Für die „Zwischenlagerung“ in Behältern (ähnlich den Castoren in Deutschland) geht man von etwa 100 Dollar pro kg aus. Für die „Entsorgung“ haben sich bereits über 31 Milliarden US-Dollar Rücklagen angesammelt – was etwa 400 Dollar pro kg entspricht.

Wem es gelingt, einen Reaktor zu bauen, der die abgebrannten Brennelemente „frißt“, ist in der Rolle einer Müllverbrennungsanlage: Er wird für die Beseitigung des Mülls bezahlt und kann sich mit seinem Preis an den anderen Möglichkeiten (z. B. Müllkippe) orientieren. Die entstehende Wärme ist umsonst. Die elektrische Energie aus der „Müllbeseitigung“ ist ein weiteres Zubrot. Es kommt lediglich darauf an, eine besonders günstige „Müllverbrennungsanlage“ zu bauen. Genau an diesem Punkt, setzt TPC an.

Das Transatomic Konzept

Die Angst vor dem „Atommüll“ wird mit seiner Langlebigkeit begründet. Es gibt wahrlich gefährlichere Stoffe, als abgebrannte Brennelemente. Solange man sie nicht aufisst, sind sie recht harmlos. Es ist aber die berechtigte Angst, ob man diese Stoffe für Jahrmillionen sicher von der Biosphäre fern halten kann, die viele Menschen umtreibt. Spaltprodukte sind in diesem Sinne kein Problem, da sie in wenigen hundert Jahren faktisch von selbst verschwunden sind. Jahrhunderte sind aber durch technische Bauwerke (Kathedralen, Pyramiden etc.) oder natürliche Barrieren (einige hundert Meter gewachsene Erdschichten) sicher beherrschbar.

Man kann aber alle langlebigen Aktinoide durch Spaltung in kurzlebige Spaltprodukte umwandeln und dabei noch riesige Mengen Energie erzeugen – am besten in einem Kernkraftwerk. Ein solcher Reaktor muß besonders sparsam mit den bei einer Spaltung freiwerdenden Neutronen umgehen, um möglichst viele andere Kerne umzuwandeln und letztendlich zu spalten.

  • Spaltprodukte haben teilweise sehr große Einfangquerschnitte. Mit anderen Worten, sie wirken parasitär indem sie wertvolle Neutronen „wegfangen“. Die Konsequenz ist eine integrierte Wiederaufbereitung. Dies läßt sich nur über eine Brennstofflösung erreichen.
  • Es dürfen nur möglichst wenig Neutronen das System verlassen. Dazu muß man den Reaktor mit einem Reflektor versehen, der die Neutronen wieder in den Reaktor zurück streut. Idealerweise verwendet man dafür ebenfalls Uran, damit nicht zurück streubare Neutronen bei ihrem Einfang wenigstens neuen Spaltstoff – hier Plutonium – erzeugen.
  • Bei Reaktoren mit festen Brennstoffen, kann man die Spaltstoffe nicht kontinuierlich ersetzen. Man benötigt deshalb zu Anfang eine Überschußreaktivität. So zu sagen, mehr Spaltstoff als eigentlich zuträglich ist. Diese Überschußreaktivität muß durch Regelstäbe und abbrennbare Gifte kompensiert werden: Wertvolle Neutronen werden unnütz weg gefangen.

Will man mit möglichst geringer Anreicherung auskommen – was einem bereits abgebrannten Brennelement entspricht – muß man zwingend auf ein thermisches Neutronenspektrum übergehen. Sogenannte „Schnelle Brüter“ erfordern eine zweistellige Anreicherung. Also wesentlich höher, als sie in einem frischen Brennelement für einen Leichtwasserreaktor vorliegen. Man kann in einem thermischen Reaktor zwar nicht brüten – also mehr Spaltstoff erzeugen als beim Betrieb verbraucht wird – aber fast genau soviel erzeugen, wie verbraucht wird. Man muß es auch gar nicht, da ja der „Atommüll“ noch Spaltstoff enthält.

Wieviel wird nun gespart?

Ein heutiger Leichtwasserreaktor produziert pro 1000 MWel etwa 20 to abgebrannter Brennelemente pro Jahr. Geht man von einer direkten Endlagerung aus, ist dies die Menge „Atommüll“ die in ein Endlager muß. Erzeugt man die gleiche elektrische Energie aus eben solchem „Atommüll“, ist diese Menge schon mal komplett eingespart.

Gleichzeitig wird aber auch der ursprünglich vorhandene „Atommüll“ in der Form abgebrannter Brennelemente weniger. Die Energie wird durch die Spaltung von Atomkernen erzeugt. Sie sind nach der Spaltung unwiederbringlich vernichtet. Wird Uran noch von vielen Menschen als natürlich und damit relativ harmlos angesehen, ist z. B. Plutonium für sie reines Teufelszeug. Genau diese Stoffgruppe dient aber bei diesem Reaktortyp als Brennstoff und wird beständig verbraucht.

Ein solcher Reaktor produziert rund 1 to Spaltprodukte pro 1000 MWel und Jahr. Die Spaltprodukte sind darüberhinaus in einigen Jahrhunderten – gegenüber 100.000den von Jahren bei Plutonium – verschwunden. In Bezug auf die Energieversorgung sind solche Reaktoren eine echte Alternative zu sog. „Schnellen Brütern“. Bereits die vorhandenen abgebrannten Brennelemente und die absehbar hinzukommenden, wären eine schier unerschöpfliche Energiequelle.

Was ist neu bei diesem Reaktortyp?

In den USA hat man über Jahrzehnte Erfahrungen mit Salzschmelzen in Versuchsreaktoren gesammelt. Hier strebt man bewußt die Verwendung von Uran und nicht von Thorium an. Dies hat bezüglich des Salzes Konsequenzen: Lithiumfluorid kann wesentlich höhere Konzentrationen Uran gelöst halten (LiF-(Actinoid)F4) als das bekanntere FLiBe-Salz. Erst dadurch ist der Einsatz abgebrannter Brennelemente (niedrige Anreicherung) möglich. Allerdings liegt die Schmelztemperatur dieses Brennstoffs bei etwa 500 °C. Ein wesentliches Sicherheitskriterium ist daher, Verstopfungen in Kanälen und Rohrleitungen durch Ablagerungen, sicher zu vermeiden.

Als Moderator sollen Stäbe aus Zirconiumhydrid eingesetzt werden. Sie wirken wie „umgekehrte Regelstäbe“: Je tiefer sie in die Schmelze eingetaucht werden, um so mehr Neutronen werden abgebremst und die Spaltungsrate erhöht sich. Die Moderation solcher Stäbe ist gegenüber früher verwendetem Graphit so viel besser, daß fast der doppelte Raum für die Salzschmelze bei einem vorgegebenen Reaktorvolumen zur Verfügung steht. Ein weiterer wichtiger Schritt zu der Verwendung von „Atommüll“ als Brennstoff.

Die integrierte Wiederaufbereitung

Die Spaltprodukte müssen kontinuierlich aus der Salzschmelze entfernt werden. Sie wirken nicht nur parasitär, sondern stellen auch das eigentliche Sicherheitsproblem dar. Je weniger Spaltprodukte gelöst sind, um so weniger Radioaktivität könnte bei einem Störfall freigesetzt werden.

Etwa 20% der Spaltprodukte sind Edelgase. Sie sollen mit Helium aus der Salzschmelze abgeschieden werden und anschließend in Druckgasflaschen gelagert werden.

Rund 40% der Spaltprodukte sind Metalle, die Kolloide in der Schmelze bilden. Sie sollen mit Geweben aus Nickel ausgefiltert werden.

Der Rest – hauptsächlich Lanthanoide – sind sehr gut in der Salzschmelze gelöst. Sie sollen mittels flüssigen Metallen extrahiert werden und anschließend in eine keramische Form zur Lagerung überführt werden.

In der Abscheidung, Behandlung und Lagerung der Spaltprodukte dürfte die größte Hemmschwelle bei der Einführung von Reaktoren mit Salzschmelzen liegen. Welcher Energieversorger will schon gern eine Chemiefabrik betreiben? Vielleicht werden deshalb erste Anwendungen dieses Reaktors gerade in der chemischen Industrie liegen.

Zusammenfassung

Der Gedanke, „Atommüll“ möglichst direkt als Brennstoff einzusetzen, hat Charme. Wirtschaftlich kommt man damit in die Situation einer Müllverbrennungsanlage. Man kann sich an den Aufbereitungs- und Entsorgungspreisen des Marktes orientieren. Diese Einnahmen sind schon mal vorhanden. Die Stromproduktion ist ein Zubrot. Es wird noch sehr viel Entwicklungszeit nötig werden, bis ein genehmigungsfähiger Reaktor vorliegt. Auch die Kostenschätzung über zwei Milliarden Dollar für den ersten kommerziellen Reaktor, ist in diesem Sinne mit der gebotenen Vorsicht zu betrachten. Allerdings handelt es sich bei diesem Reaktor nicht um ein Produkt einer „Erfindermesse“. Man hat sehr sorgfältig den Stand der Technik analysiert und bewegt sich auf allen Ebenen auf dem machbaren und gangbaren Weg. Es ist nur zu hoffen, daß diesem jungen Unternehmen noch etwas Zeit verbleibt, bis es – wie so viele vor ihm – auf und weg gekauft wird.

Weltweit tut sich etwas in der Entsorgungsfrage: Salzbadreaktoren, Entwicklung metallischer Brennstoffe – sogar für Leichtwasserreaktoren – und abgespeckte chemische Wiederaufbereitungsverfahren in Rußland.

Atomkonzerne wollen Ausstiegskosten drücken

Man glaubt es nicht, aber es geht immer noch ein bischen schlimmer. Jetzt sollen wir Stromkunden auch noch über 23 Milliarden für die Mästung eins Staatsfonds aufbringen.

Welchen Müll?

Um gleich mal mit einer provokativen Frage anzufangen. Abgebrannte Brennelemente z. B. sind Abfälle – weil nicht mehr vom Kraftwerk verwendbar – aber deshalb noch lange kein Müll. Kein Mensch kommt heute auf die Idee, eine alte Autobatterie oder eine alte Zeitung als Müll zu verunglimpfen. Bei der „gelben Tonne“ spricht man deshalb heute selbstverständlich von einer „Wertstofftonne“. Von Anfang an, war es vorgesehen die „abgebrannten“ Brennelemente zu recyceln. Aus dem Abfall – aus der Sicht eines Kraftwerks – wurde erst durch grüne Politiker „Atommüll“ gemacht, nachdem man die Wiederaufbereitung in Deutschland verboten hat. Genau der heutige (große) Vorsitzende der „Kommission Lagerung hoch radioaktiver Abfallstoffe“ war maßgeblich an dieser Schandtat beteiligt.

Die Unterscheidung von „Abfall“ und „Müll“ ist alles andere als Haarspalterei. Abfall ist immer ein höchst subjektiver Zustand, der erst zum Müll wird, wenn keine Nachfrage mehr vorhanden ist. Wesentlicher Unterschied ist die Menge vorher und nach der Aufbereitung. Ein typisches Beispiel wohin die Entwicklung geht: Als mit dem „Endlager Konrad“ begonnen wurde, war ein wesentliches Sicherheitskriterium der Absturz eines mehrere hundert Tonnen schweren Dampferzeugers in die Grube. Seit Jahren ist aber die komplette Versendung der Dampferzeuger z. B. nach Schweden Realität. Dort werden sie industriell (maßgeblich durch Roboter) zerlegt und „dekontaminiert“. Zurück kommt ein Würfel, etwa so groß wie ein Kühlschrank, in dem alle Radioaktivität eingeschmolzen ist. Alle anderen Materialien werden an lokale Schrotthändler verkauft und damit dem normalen Materialkreislauf wieder zugeführt. Dies ist bereits heute billiger, als die komplette Einlagerung.

Radioaktiver Zerfall geht immer nur in eine Richtung

Das ist die andere (schöne) Seite der Medaille. Je länger man wartet, um so geringer wird die ausgesendete Strahlung. Dies ist z. B. bei Umweltgiften wie Asbest oder Quecksilber nicht der Fall. Insofern müßte eigentlich von dem „Endlager Herfa-Neurode“ eine unendliche Sicherheit gefordert werden – aber „Chemiemüll“ ist wohl politisch korrekt.

Der radioaktive Zerfall verläuft meist in Ketten (d. h. mehrere Zwischenglieder), endet aber immer mit einem stabilen Endglied (welches nicht mehr radioaktiv ist). Diese Zerfallsketten laufen unbeeinflußbar ab. Am Anfang nimmt die Strahlung sehr stark ab (Elemente mit kleiner Halbwertszeit), später sehr langsam (immer mehr Kerne sind bereits zerfallen, es sind nur noch Elemente mit großer Halbwertszeit vorhanden). Wichtig für das Verständnis eines „Endlagers“ ist die Tatsache, daß der „Atommüll“ in menschlichen Zeiträumen eine Intensität erreicht, die der natürlich vorkommender Erzlagerstätten entspricht. Anders ausgedrückt: Solange man den „Atommüll“ nicht isst, kann man ihn problemlos in die Hand nehmen. Sollte er tatsächlich wieder in den biologischen Kreislauf gelangen (z. B. durch Grundwasser) ist die entscheidende Frage, wieviel Zeit vergangen ist (d. h. wieviele und welche radioaktiven Elemente überhaupt noch vorhanden sind) und welche Konzentration vorliegt.

Die Crux mit der Radioaktivität ist, daß man einerseits noch geringste Mengen nachweisen kann, andererseits diese längst nicht mehr schädlich sind. Typisches Beispiel ist die Banane oder verschiedene Mineralwässer. Für die „Beherrschbarkeit“ und dem Umgang mit abgebrannten Brennelementen könnte man sagen: Je länger abgelagert, je harmloser und technisch einfacher handhabbar. Jeder Laie kann das nachvollziehen. Nach der Entnahme aus dem Reaktor kann man die „frischen Brennelemente“ nur fernbedient handhaben und muß diese zur Kühlung und Abschirmung in metertiefen Wasserbecken lagern. Nach einigen Jahren werden sie in Spezialbehälter umgepackt. Neben solchen „Castoren“ kann man gefahrlos herlaufen oder eine Lagerhalle betreten.

Warum nicht einfach verkaufen?

Abgelagerte Brennelemente sind der ideale Input für Wiederaufbereitungsanlagen. Je geringer die Strahlung ist, desto weniger belasten sie die Anlage und das notwendige Personal. In diesem Sinne, sind z.B. Indien und China ideale Kunden. Beide Länder haben sich zum Bau von Wiederaufbereitungsanlagen entschlossen, da sie arm an eigenen Uranvorkommen sind. Je zügiger sie mit dem Bau beginnen, desto geringer ist die Menge, die sich aus den eigenen Kernkraftwerken ansammelt. Bis solche Anlagen richtig laufen, sind Jahrzehnte Vorlauf (Planung, Bau, Probebetrieb) notwendig. Gerade in den ersten Betriebsjahren sind abgelagerte Brennelemente die ideale Beschickung. In diesem Sinne wären Brennelemente aus Deutschland ein interessantes Handelsgut.

Wäre nicht die zur Zeit vorherrschende ideologische Verblendung bestimmend, könnten wir international – gerade bei einem Totalausstieg – zu vernünftigen und wirtschaftlich optimalen Lösungen gelangen. Schließlich haben wir ja auch bisher schon die „Dienstleistung Wiederaufbereitung“ in England und Frankreich eingekauft. Warum zukünftig nicht auch in Rußland, China oder sonst wo? Entsprechendes gilt für die Konditionierung von Abfällen. Es wurden ganze LKW-Ladungen von brennbaren Abfällen in die USA verschifft und anschließend die „radioaktive Asche“ nach Deutschland zurückgeführt. Bei den geringen Mengen, die bis zum „Totalausstieg“ angefallen sein werden, kann man gleich über die Mit-Einlagerung in deren „Endlager“ verhandeln. Ganz so, wie wir ja auch das „Endlager Herfa-Neurode“ international vermarkten. Falls das nicht politisch gewollt ist, bliebe auf diesem Weg nicht viel mehr als ein zentraler Bunker über, indem der gesamte Restmüll sicher eingelagert werden kann.

Die Finanzierung

Die Kerntechnik ist die erste Sparte überhaupt, die von Anfang an die gesamten Kosten berücksichtigt hat. Dies ist – nach wie vor – ein Alleinstellungsmerkmal. Kein Windmüller muß für seine als Plastikmüll endenden Flügel, kein Sonnensammler für seine giftmüllhaltigen Sonnenzellen Rücklagen bilden. Auch die sog. Ewigkeitskosten der Bergwerke wurden nicht in den Kohlepreis eingerechnet. Heute findet man beispielsweise „Giftmülldeponien“, die Bohrschlämme aus der Gas- und Ölförderung enthalten.

Man kann die Folgekosten grundsätzlich erst tragen, wenn sie tatsächlich anfallen oder bereits zu Anfang versuchen sie einzurechnen. Für beide Vorgehensweisen lassen sich stichhaltige Argumente anführen. Das einzige, was zu völlig falschen Ergebnissen führt, ist die gleichzeitige Anwendung beider gegensätzlichen Prinzipien. Genau das, wurde aber von der „Anti-Atomkraft-Bewegung“ als Kampfmittel entdeckt.

Wenn man schon bei der Nutzung adäquate Rücklagen bildet, bleibt immer noch die Frage wie: Als Umlagesystem (analog zu unserem Rentensystem) mit dem Staat als Garanten, der Vermögensbildung beim Unternehmen oder der Anlage in einem Fonds. In Deutschland hat man sich zur Bildung von Rücklagen im jeweiligen Unternehmen entschlossen. Dies wurde ursprünglich sehr gründlich und kontrovers diskutiert und abgewogen. Allen Möglichkeiten ist die Schwierigkeit der Abschätzung der zukünftigen Kosten und die Sicherheit der Anlage gemeinsam: Staaten können verschwinden, Unternehmen pleite gehen und Anlagen durch Finanzkrisen etc. dahinschmelzen.

Die vermeintliche Anlagesicherheit

In Deutschland mußten die Energieversorgungsunternehmen mit Kernkraftwerken Rücklagen für den Abriß und die Abfallentsorgung bereitstellen. Ein revolutionärer Gedanke, ein Alleinstellungsmerkmal und die „praktizierte Nachhaltigkeit“.

Ein (vorgeschriebener) Anteil an den Unternehmenserlösen wurde für die Entsorgung zurückgestellt. In der Praxis bedeutete das, man hat mit diesen Mitteln neue Kraftwerke, Stromleitungen etc. finanziert. Dies führte zu zusätzlichen Erträgen, da man keine Zinsen für Kredite an die Banken zahlen mußte. Es mußte nur der Barwert, der in der Zukunft anfallenden Kosten, zurückgestellt werden. Die Vorteile kamen indirekt allen zu gute, da jeder elektrische Energie verbraucht. Insofern bestand volkswirtschaftlich kein Unterschied zu einem Umlagesystem. Bei einem Fonds hätte man zusätzliche Kosten für die externe Vermögensverwaltung in Rechnung stellen müssen.

Jetzt zur (vermeintlichen) Sicherheit der Anlage. Das Geld wurde in Vermögenswerte umgewandelt. Nichts anderes kann auch ein Fonds bieten. Er kann jedoch nicht auf dingliche Werte (Kraftwerke, Umspannwerke etc.) zurückgreifen, sondern nur auf Finanzprodukte (Aktien, Anleihen etc.). Ironischerweise sind gerade Anleger mit ähnlich langfristigem Anlagehorizont und ähnlichem Sicherheitsbedürfnis brennend an Sachanlagen aus der Energiewirtschaft mit regelmäßigen Einnahmen interessiert. Versicherungswirtschaft und Pensionsfonds investieren in Pipelines, Stromtrassen usw. Sie erscheinen heute durchaus sicherer und ertragreicher als Staatsanleihen und Aktien. Strom wird halt immer gebraucht. Insofern werden auch die Anlagen zur Erzeugung und Verteilung gebraucht – es sind echte Vermögenswerte.

Von dem Gedanken des Verursacherprinzips ausgehend, ist die Anlage in den Unternehmen ebenfalls logischer: Das Unternehmen haftet mit seiner Substanz. Wenn man einen Fonds zwischen schaltet, kann man die Haftung kaum noch durchleiten. Ist das Geld an der Börse verspekuliert, kann das Unternehmen nicht dafür verantwortlich gemacht werden. Die Anlagen der Energieversorger waren im Zeitalter des Energiemixes auch breit gestreut. Wo bitte, soll der „Entsorgungsfonds“ denn seine Milliarden anlegen? In Windparks, E-Autos oder doch lieber in griechischen Staatsanleihen? Wer verwaltet den Fonds und wer bekommt die Verwaltungskosten? Der Fonds soll doch bestimmt ethisch und politisch korrekt sein und „klimaneutral“, nicht wahr?

Woher soll das Geld kommen?

Die Rücklagen der Energieversorgungsunternehmen sind Vermögen als Sachanlagen im eigenen Unternehmen. Dieses Vermögen ist eine Immobilie. Darin unterscheidet sie sich nicht grundsätzlich von einem Gebäude: Der Bau hat mal eine bestimmte Summe gekostet mit der es in die Bücher eingegangen ist. Vermindert um die gesetzlichen Abschreibungen, erhöht um Modernisierungen etc. Soweit ist es Vermögen. Wenn aber nun diese Werte plötzlich ausgeschüttet werden sollen, ergibt sich schlagartig das Problem der Umwandlung in einen Preis: Es muß ein Käufer – nach den Gesetzen von Angebot und Nachfrage – gefunden werden. Wer bitte, soll aber so blöd sein, in Deutschland ein Kraftwerk zu kaufen? In einem Land, indem gerade die Kernkraftwerke entschädigungslos enteignet worden sind und nun auch die Kohlekraftwerke abgeschafft werden sollen? Jeder seriöse Investor wird eher nach Afrika oder Asien gehen. Übrig bleiben, werden nur Spekulanten, die bereit sind Wetten darauf abzuschließen, wie lange der Wahnsinn in Deutschland noch anhält. Da politische Veränderungen erfahrungsgemäß sehr langsam ablaufen, kann der finanzielle Einsatz nur gering ausfallen. Selbst die DDR konnte sich rund vier Jahrzehnte über Wasser halten. Für technische Entwicklungen ein unendlich langer Zeitraum. Lange Rede, kurzer Sinn: Es werden gewaltige Preisabschläge auf die Buchwerte nötig sein, um 23 Milliarden kurzfristig flüssig zu machen.

Mal angenommen, es gelingt tatsächlich. Mit welchen Produktionsmitteln sollen dann die übrig gebliebenen Skelette noch Ergebnisse erzielen? Das Ganze gleicht doch einem Bauern, der Trecker und Saatgut verkauft. Die von dem Sozialisten Trittin dem Volk vorgegaukelte Sicherheit, ist in Wirklichkeit nichts weiter als die Schlachtung der Kuh, die er melken will. Oder frei nach Maggie Thatcher: Den Sozialisten geht irgendwann immer das Geld der anderen aus. Dieser Fonds wird – nach dem er das Geld für alle möglichen linken Projekte verbrannt hat – möglichst unauffällig dahinsiechen, ohne eine einzige Tonne „Atommüll“ beseitigt zu haben.

Spätestens wenn die Blase „Windparks“ geplatzt ist, wird nur noch ein Heer von Arbeitslosen von den ehemals stolzen Energieversorgern übrig bleiben. Wer nicht jetzt beginnt, sich zu wehren, sollte sich schon mal mit den „Schlecker-Frauen und Karstadt-Verkäufern“ über das Leben danach unterhalten. Die Ex-Minister Trittin, Müller und der grüne Gewerkschaftsfunktionär Bsirske werden sicherlich ihre Pensionen genießen und auch weiter unter Palmen über den „Raubtierkapitalismus“ schwadronieren. Noch nie war Enteignung so schön wie heute.

PRISM das moderne Entsorgungszentrum? Teil 2

Bei jeder öffentlichen Diskussion ist der „Atommüll“ der Aufreger schlecht hin. Spätestens an diesem Punkt, kommt meist die Ablehnung jeglicher Nutzung der Kernenergie in Deutschland. Die Propaganda hat hier ganze Arbeit geleistet. Es macht nicht einmal stutzig, daß dies schon in unseren Nachbarländern anders gesehen wird.

Was ist eigentlich Abbrand?

Dieser Begriff hat sich wegen seiner Anschaulichkeit so durchgesetzt. Einen Kernreaktor kann man nur mit der typischen Konzentration von spaltbarem Material – eine übliche Bezeichnung für U235 oder Pu239 – betreiben. Bei Reaktoren mit schwerem Wasser reicht schon Natururan aus, bei Leichtwasserreaktoren ist eine Anreicherung auf 3 bis 5 Prozent nötig und bei schnellen Reaktoren sogar bis zu 20%. Haben die Brennelemente nun eine gewisse Zeit im Reaktor Wärme produziert, würde irgendwann die Kettenreaktion zusammen brechen, wenn man nicht einige Brennelemente auswechseln würde. Angestrebt wird immer ein möglichst hoher Abbrand, was ein anderer Ausdruck für die Spaltung von Kernen ist. Gebräuchliche Maßeinheit hierfür ist MWd/to SM (Megawatt Tage pro Tonne Schwermetall). Wenn man 1gr Uran bzw. Plutonium spaltet, wird ziemlich genau ein MWd – oder 24000 kWh – Wärme frei. Eine gewaltige Menge, mit der man schon mitten in der „Atommüll-Frage“ steckt. 2014 wurde in Deutschland 55970 GWh elektrische Energie durch Windkraft erzeugt. Hätte man diese Strommenge in den Kernkraftwerken erzeugt, hätten dafür rund 7000 kg Uran gespalten werden müssen. Ein Würfel von 72 cm Kantenlänge. Warum also die ganze Aufregung?

Wieso Recycling?

Für den Windstrom wären ungefähr 7 GW Leichtwasserreaktoren (gegenüber 39 GW Windmühlen) nötig gewesen. Dafür hätte man erst einmal über 1000 to Natururan fördern müssen, die nach der Anreicherung zu rund 186 to Reaktorbrennstoff verarbeitet worden wären – der berüchtigte deutsche Atommüll, mit seiner „ungeklärten Entsorgungsfrage“. An dieser Stelle wird schon mal klar, warum „Atomkraftgegner“ monatelang – oft gewalttätig – gegen die einst geplante Wiederaufbereitungsanlage gekämpft haben: 186 to sind mehr als 25 mal so viel, wie 7 to. Gerne wird auch noch das geförderte Natururan dem „zu entsorgenden“ Müll hinzugerechnet und fälschlicherweise behauptet, eine Wiederaufbereitungsanlage würde zusätzlichen Atommüll erzeugen. Flugs ist man nach dieser Zahlenakrobatik auf der Suche nach einem gigantischen Endlager. Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen.

An dieser Stelle ist es an der Zeit, die drei grundsätzlichen Möglichkeiten kurz zu betrachten:

  1. Man verbuddelt alle benutzten Brennelemente in einem „Endlager“. Schon hier gibt es zwei deutlich unterschiedliche Varianten: Die „Schwedische-Lösung“ eines Langzeitlagers hunderte Meter unter Granit. Die Brennelemente werden in Kupferbehälter eingeschweißt und sollen ausdrücklich rückholbar – eventuell erst in Jahrhunderten – eingelagert werden. Die „Deutsche-Endlager-Lösung“ mit dem Anspruch eines „absolut sicheren“ Einschlusses über „geologische Zeiträume“. Wegen dieses Anspruches hat man auch folgerichtig gleich Fachkräfte für Glaubensfragen und nicht Ingenieure mit der Suche betraut.
  2. Man geht – wie z. B. in Frankreich – den Weg über eine Aufbereitung und Wiederverwendung im vorhandenen System. Ein abgebranntes Brennelement eines Druckwasserreaktors enthält immer noch rund 95% Uran, 1% Transurane und 4% Spaltprodukte. Das Uran wird wieder neu angereichert, das Plutonium zu sog. Mischoxid-Brennelementen verarbeitet und lediglich die Spaltprodukte und minoren Aktinoiden verglast und als „Atommüll endgelagert“. Auch dieser bewußt rückholbar, denn er enthält wertvolle Rohstoffe. Nachteil dieses Weges ist die erforderliche Reinheit von Uran und Plutonium, um sie in vorhandenen Leichtwasserreaktoren wieder einsetzen zu können. Alle minoren Aktinoide werden deshalb den Spaltprodukten zugeschlagen und machen damit diesen Atommüll sehr langlebig.
  3. Man betrachtet die abgebrannten Brennelemente als Brennstoff für schnelle Reaktoren. Die dort verwendeten metallischen Brennstoffe haben keine besonderen Anforderungen an die Reinheit. Man kann deshalb zu Aufbereitungsverfahren übergehen, die Uran zusammen mit allen Transuranen (also auch Plutonium und den minoren Aktinoiden) abscheiden. Hier liegt umgekehrt das Bestreben, möglichst reine Spaltprodukte zu erlangen. Man hat damit einen relativ kurzlebigen (Gefährdungspotential einiger Jahrzehnte bis Jahrhunderte) Abfall, der automatisch ein sehr wertvolles „Erz“ ergibt. Eine „Endlagerung“ wäre nicht nur unnötig, sondern eher Verschwendung. Zumal die relativ geringen Mengen (siehe oben) einfach und sicher zu lagern sind.

Grundsätzlich gibt es auch noch andere Wege. Verwendung des abgebrannten Brennstoffes in Schwer-Wasser-Reaktoren. An diesem Weg wird zielstrebig in Korea gearbeitet oder die „Entschärfung“ des Atommülls in Beschleunigern (Versuchsanlage in Belgien) und Spallationsquellen (USA). Nur die Politik in Deutschland, hat sich in einer „Endlösung“ mit „Atomausstieg“ verrannt.

Warum soll „Atommüll“ eigentlich gefährlich sein?

Spaltprodukte wandeln sich über sog. Zerfallsketten um und senden bis zum Erreichen ihres stabilen Endglieds Strahlung aus. Das ist eigentlich überhaupt kein Problem, denn man kann die Quelle leicht und wirksam abschirmen (z. B. Castor-Behälter). Niemand ist gezwungen, Atommüll zu essen. Das mag sich flapsig anhören, ist aber wörtlich zu nehmen. Erst wenn radioaktive Stoffe unmittelbar in den Körper gelangen, können sie gefährlich werden. Dabei kommt es nicht nur auf die Menge, sondern auch den chemischen Zustand an. Plutonium ist z. B. rein chemisch betrachtet, ein Knochengift. Die biologische Verweildauer (bis es ausgeschieden ist) ist z. B. entscheidend abhängig von der Wertigkeit, in der es vorliegt und damit seiner Löslichkeit im Körper. Jod wird selektiv in der Schilddrüse angereichert. Strontium ist dem Kalzium verwandt und ersetzt dies gern in den Knochen usw.

Radioaktive Stoffe können überhaupt erst gefährlich werden, wenn sie in die Biosphäre gelangen und letztendlich über die Nahrungskette in den Menschen. Aber auch dann ist noch die Frage der Dosis zu stellen. Wir haben sehr genaue Kenntnisse über Wege und Wirkungen. Es gibt für jeden Stoff einen Grenzwert z. B. für Trinkwasser. Diese sind ausnahmslos sehr konservativ festgesetzt. Wer sich einmal mit dieser Materie beschäftigt, wird feststellen, daß selbst eine zigfache Überschreitung der Grenzwerte noch zu keiner akuten Gefährdung einer durchschnittlichen Person führt. Wer anderes behauptet, glaubt auch an die heilende Wirkung irgendwelcher esoterischen Amulette. Möge ihm sein Aberglaube erhalten bleiben, aber versuche er nicht, sein Unwissen als Wissenschaft zu verkaufen und anderen Menschen Angst einzujagen.

Wären radioaktive Stoffe auch nur annähernd so gefährlich, wie „Atomkraftgegner“ gern behaupten, wäre die Menschheit längst ausgestorben. Man denke nur an die Kinder der fünfziger Jahre. Es wurden Tonnen radioaktiver Stoffe bei den Kernwaffentests in die Atmosphäre freigesetzt. Noch heute kann man diese Belastungen weltweit in den Knochen und Zähnen der Betroffenen messen. Wohlgemerkt messen, nicht nur vermuten. Wir haben zwar keine direkten Sinne für Strahlung, aber unsere Meßtechnik ist so verfeinert, daß immer die „Isotopenzusammensetzung“ helfen muß, wenn andere forensische Verfahren längst versagt haben.

Wieso unterirdische Lager?

Für die Gefährlichkeit der radioaktiven Abfälle gibt es zwei wesentliche Einflüsse: Zeit und Konzentration. Je länger es dauern würde, bis die radioaktiven Stoffe wieder in die Biosphäre gelangen, je weniger gibt es überhaupt noch von ihnen. Der Zerfall ist durch nichts aufzuhalten und er geht immer nur in die eine Richtung – Umwandlung in stabile Atome. Ein typisches deutsches Brennelement (Anfangsanreicherung 3,3%, Abbrand 34000 MWd/tU) enthält nach der Entladung 3,62 % Spaltprodukte. Bereits nach einem Jahr sind 3% in einem stabilen – also nicht mehr radioaktiven – Zustand. Zu den 0,62% radioaktiven Spaltprodukten kommen noch 0,9% Plutonium und 0,72% minore Aktinoide. Nur die beiden letzten Gruppen, sind sicherheitstechnisch von langfristigem Interesse.

Man verglast nun die Spaltprodukte und die minoren Aktinoide. Diese „radioaktiven Glasblöcke“ würden in 100 000 Jahren etwa zu 2% aufgelöst, wenn sie im Wasser stehen würden. Das ist die erste Barriere. Wenn sie sich so langsam auflösen, würde dies zu sehr geringen Konzentrationen im Wasser führen. Umgangssprachlich wäre das Wasser nur leicht radioaktiv. Jetzt müßte es aber noch mehrere hundert Meter durch etliche Gesteins- und Bodenschichten aufsteigen. Dies geht nicht nur extrem langsam, noch erfolgt es in einer Rohrleitung, sondern durch einen „riesigen Ionentauscher“. Es kommt nur sehr wenig von dem, was unten ins Wasser überhaupt rein geht, auch oben an. Umgangssprachlich filtert der Boden fast alles raus.

Damit kein Mißverständnis entsteht: Sicherheitstechnisch ist es überhaupt kein Problem, radioaktive Abfälle in einem speziellen Bergwerk gefahrlos und „für ewig“ zu vergraben. Allerdings muß diese Lösung einem Ingenieur widerstreben. Warum soll man Papier und Plastikbecher aussortieren, wenn man Brennelemente einfach am Stück wegwirft?

Wie gefährlich ist gefährlich?

Die Maßeinheiten in der Kerntechnik sind für Menschen, die nicht täglich damit umgehen, wenig verständlich. Dies wird von der Betroffenheitsindustrie weidlich ausgenutzt. Genüsslich wird mit riesigen Zahlen an Becquerel und Sievert nur so um sich geschmissen. Eigentlich ist der psychologische Trick einfach durchschaubar: So schrecklich viel, muß doch einfach gefährlich sein. Es kann also nicht schaden, die Angelegenheit etwas auf die Ebene der Alltagserfahrungen zurück zu holen.

Fangen wir mal mit der guten alten Maßeinheit der Madame Curie an: 1 Curie (Ci) entspricht 3,7 x 1010. Becquerel (Bq) oder anschaulich 1 Gramm Radium. Radium wurde bis in die 1930er Jahre in Medikamenten, Kosmetika und Leuchtstoff für Instrumente und Uhren verkauft. Bis man seine krebserzeugende Wirkung (in hoher Konzentration) erkannte.

Der Abfall aus der Aufbereitung von Brennelementen aus Leichtwasserreaktoren mit allen Spaltprodukten, minoren Aktinoiden und einem Rest von 0,5% Uran und 0,5% Plutonium (alles bezogen auf den ursprünglichen Gehalt im Brennstab vor der Aufbereitung) hat ein Jahr nach der Entladung ziemlich genau eine Radioaktivität von 106 Ci pro Tonne Schwermetall .(im ursprünglichen Brennstab). Die Radioaktivität der Spaltstoff-Lösung (nicht des Glasblockes!) entspricht also ziemlich genau der von Radium. Entscheidend ist, daß die Radioaktivität der Aktinoide zu diesem Zeitpunkt erst 1% ausmacht. Sie sind halt sehr langlebig und tragen damit noch wenig zur Aktivität bei. Nach etwa 500 Jahren ist der Schnittpunkt erreicht: Die Aktivität der Spaltprodukte entspricht der Aktivität der Aktinoide mit deren Zerfallsprodukten. Die Radioaktivität des Atommülls aus der Wiederaufbereitung ist auf rund 0,01% des ursprünglichen Wertes nach der Entladung abgefallen. Wären keine langlebigen Aktinoide im Abfall enthalten, wäre jetzt die Gefahr faktisch vorbei.

Ein anderer Versuch zur Veranschaulichung ist der Vergleich zwischen der Aktivität des Atommülls mit der ursprünglich zur Energieerzeugung geförderten Uranmenge. Uranerz enthält auch immer „Atommüll“, da durch die spontanen Zerfälle auch Spaltprodukte erzeugt worden sind (z. B. Radon). Diese Belastung mit Radionukliden in Gebieten mit Uranlagerstätten (z. B. Sachsen, Tschechien etc.) ist offensichtlich für den Menschen tolerierbar. Wäre das nicht der Fall, müßten überdurchschnittlich viele Sterbefälle in diesen Gebieten nachweisbar sein. Wirft man komplette Brennstäbe weg, wird diese Aktivität erst nach rund 30 000 Jahren erreicht. Solange hat man also zusätzliche Radioaktivität in die Natur eingebracht. Spaltet man das Plutonium in der Form von Mischoxid-Brennelementen in Leichtwasserreaktoren, wird dieser Zeitraum auf rund 1000 Jahre verkürzt. Ein doppelter Ertrag: Das langlebige Plutonium ist weg und für die damit zusätzlich erzeugte Energie braucht kein zusätzliches Uran gefördert werden.

Ein weiterer Vergleichsmaßstab ist Pechblende. Verbuddelt man komplette Brennstäbe, wird die Aktivität von Pechblende für diesen Atommüll auch nach über einer Million Jahren nicht erreicht. Verbuddelt man den verglasten Abfall nach der Wiederaufbereitung, wird der Wert schon nach etwa 80 000 Jahren erreicht. Entfernt man auch noch die Aktinoiden aus diesem Abfall, nach wenigen hundert Jahren (je nach Reinheit). An dieser Stelle dürfte jedem die Bedeutung der „Entsorgungsfrage“ für Pseudo-Umweltschützer klar geworden sein. Als die Grünen die Wiederaufbereitung in Deutschland gekippt hatten, glaubten sie das Totschlagargument gegen die Kernenergie gefunden zu haben: Die selbsterschaffene Gefahr für geologische Zeiträume, die man angeblich den Nachfahren aufbürdet. Politisch besser zu verwenden, als jeder Hexenwahn im Mittelalter.

Zusammenfassend kann an dieser Stelle noch einmal festgehalten werden:

  • „Atommüll“ kann selbst in seiner ursprünglichen Form – als abgebrannte Brennelemente – problemlos und ohne Gefahr für Mensch und Umwelt unterirdisch oder auch oberirdisch in technischen Bauten gelagert werden. Radioaktivität ist natürlich und klingt immer von allein ab (anders als z. B. Asbest oder Quecksilber, die in der Tat „ewig bleiben“). Die Gefahr, die von radioaktiven Stoffen ausgeht, ist somit zeitlich begrenzt. Die „ethische Dimension“ bezieht sich deshalb weniger auf die momentane Gefahr, als auf den Aufwand und die daraus resultierenden Kosten für zukünftige Generationen. Es ist das ewig gleiche Problem, einer jeden Mülldeponie. Kerntechnik ist in diesem Sinne keinesfalls anders, als z. B. Chemie, Landwirtschaft (z. B. Bodenerosion) oder Fischerei (unwiederbringliche Ausrottung ganzer Arten) zu betrachten. Jede Form der Nutzung von „Natur“ verändert diese dauerhaft.
  • Die Kerntechnik ist der einzige Industriezweig, der sich von der ersten Stunde an, Gedanken über seine Umwelteinflüsse gemacht hat. Der Gedanke des „Recycling“ wurde überhaupt erst durch sie populär. Man vergleiche dies mal mit anderen Zweigen der Energietechnik, in denen bis heute, nach wie vor, immer nur auf Umweltschäden reagiert wird. Paradebeispiel ist die Windkraft-Industrie (Vögel, Fledermäuse, Schweinswale, Infraschall usw.) im Verleugnen absehbarer Schäden. Kohle- und Ölindustrie sind dagegen bereits zu aktiven Umweltschützern mutiert.
  • Kernenergie ist unbestritten der sicherste Zweig der Energieerzeugung (Arbeitsschutz = Menschenschutz). Von Anfang an, war man bestrebt, die Nachteile so gering wie möglich zu halten. In welchem anderen Industriezweig gibt es sonst den Grundsatz, die Auswirkungen stets so gering wie möglich zu halten – unabhängig von den Kosten? Im Strahlenschutz und bei der Abgabe von radioaktiven Stoffen bereits mit absurden Auswirkungen.

Der Vorwurf einer angeblich ungelösten Entsorgungsfrage, ist jedenfalls absurd bis böswillig. Je nach Standpunkt und Bildungsgrad.

Das Purex-Verfahren

Wie der Name schon sagt – Plutonium-Uranium Recovery by Extraction – dient der Purex-Prozeß zur Gewinnung von Uran und Plutonium mit möglichst hoher Reinheit. Alles andere (alle Spaltprodukte ob stabil oder radioaktiv und die minoren Aktinoide) ist Abfall. Günstig, wenn man daraus neue Brennelemente für Leichtwasserreaktoren herstellen will, ungünstig für den „Atommüll“, der dadurch besonders langlebig wird.

Es handelt sich um eine Flüssig-Flüssig-Extraktion: Es wird Wasser und Öl gemischt. Diese beiden Flüssigkeiten trennen sich wieder von allein. Findet man nun ein Stoffpaar mit möglichst unterschiedlichem Lösungsvermögen für den gewünschten Stoff, hat man eine einfache Möglichkeit zur Gewinnung gefunden. Es wird aus dem abgenutzten Brennstoff mittels konzentrierter Salpetersäure eine wässrige Lösung hergestellt. Dieses genau eingestellte „Salzwasser“ (Nitrate) wird nun in einer Pulskolonne intensiv mit dem „Öl“ gemischt. Das „Öl“ besteht aus rund 70% Kerosin, in dem rund 30% Tributylphosphat aufgelöst sind. Dieses „Öl“ löst Uran und Plutonium wesentlich besser als andere Salze. Im ersten Schritt gehen etwa 98% davon von der wässrigen in die organische Lösung über.

Für das Verständnis ist wichtig, daß die Löslichkeit relativ ist. Mit anderen Worten, es geht nie alles Uran und Plutonium von der wässrigen Lösung über, dafür aber auch immer einige Spaltprodukte. Man muß das Verfahren also mehrmals wiederholen (Kaskade). Üblich ist eine geforderte Reinheit von 99,9% bei den Endprodukten Uran und Plutonium. Andererseits geht man von bis zu 0,5% Uran und 0,5% Plutonium (beides auf die ursprüngliche Menge im Brennstab bezogen) im Abfallstrom aus. Man hat also nicht nur die ursprünglichen rund 0,07% minoren Aktinoide (Neptunium, Americium, Curium) sondern auch bis zu 0,05% Uran und 0,0005% Plutonium als langlebige α-Strahler im Abfall. Zusammen mit den rund 3,06% Spaltprodukten. Diese Brühe wird nun aufkonzentriert und später verfestigt (kalziniert) und in Glas eingeschmolzen. Das ist das Produkt, welches z. B. aus England und Frankreich zur Endlagerung als „Atommüll“ nach Deutschland zurück geliefert wird. In diesem „Atommüll“ entspricht der Anteil an α-Strahlern also etwa 4%.

Eine Wiederaufbereitungsanlage ist kein Kernkraftwerk, sondern eine reine Chemiefabrik und erzeugt damit auch keinen „Atommüll“. Dies wird immer wieder fälschlich behauptet. In einer Wiederaufbereitungsanlage werden die bereits angelieferten radioaktiven Stoffe lediglich umsortiert und anders konditioniert (z. B. verglast).

Pyrometallurgische Verfahren

Will man den wiedergewonnenen Brennstoff nicht wieder in Leichtwasserreaktoren, sondern in schnellen Reaktoren verwenden, erhält man ein gänzlich anderes Anforderungsprofil. Die Reinheit von Uran und Plutonium spielt – wegen der generell kleineren Einfangquerschnitte – nur noch eine untergeordnete Rolle. Es wird damit möglich, alle Aktinoiden zusammen abzutrennen und als Brennstoff erneut zu verwenden. Es spielt auch keine Rolle, ob einige Spaltprodukte mit durchrutschen. Viele sehen den Vorteil dieses Brennstoffgemisches im Schutz gegen die Weiterverbreitung von Kernwaffen: Es ist ohnehin für den Bau von Kernwaffen völlig ungeeignet. Darüber hinaus, ist der Transport und die Handhabung wegen der erhöhten Strahlung kaum im Verborgenen zu machen.

Die abgenutzten Brennstäbe werden in geschmolzenem Salz aufgelöst. Dabei trennen sich bereits alle leicht flüchtigen Bestandteile (z. B. Edelgase) ab. In das Salzbad tauchen die Elektroden ein. Die Aktinoiden scheiden sich gemeinsam an der Kathode als eine Art „Metallschwamm“ ab. Die Spaltprodukte bleiben im Salzbad gelöst und reichern sich dort an. Aus ihr werden zwei verschiedene „Abfallformen“ zur Lagerung hergestellt: Eine metallische Matrix, in der alle Edelmetalle eingelagert werden und ein keramisches Produkt, in dem die Spaltstoffe in mineralischer Form (Metalle der I. und II. Gruppe und die Halogene) vorliegen. Beides sehr stabile Formen, die direkt einem unterirdischen Lager zugeführt werden könnten. Man könnte sie dort in Bohrlöchern versenken. Vielleicht sollte man hier noch einmal daran erinnern, daß diese Form des Atommülls nach wenigen hundert Jahren nur noch wie gewöhnliches Uranerz strahlt – also einem Stoff, mit dem Bergleute ohne große Schutzmaßnahmen umgehen können.

Der „Metallschwamm“ der Kathode wird nun unter Schutzgas in einem Induktions-Tiegel eingeschmolzen und üblicherweise mehrere Stunden bei bis zu 1400 °C gehalten. Die Schmelze homogenisiert sich. Es können auch weitere Legierungsbestandteile hinzugefügt werden. Schließlich erfordert jeder Brennstab im Reaktor (idealer weise) eine etwas andere Zusammensetzung. Die Legierung kann auch in Formen aus Graphit zu Barren vergossen werden. Üblicherweise werden aber direkt dünne „Stäbe“ zur Herstellung neuer Brennstäbe abgegossen. Ein Verfahren, ist das Gießen in dünne Rohre aus Quarzglas, die während des Abgusses in einer Zentrifuge rotieren. Durch die Zentrifuge bekommt man besonders hochwertige Stäbe. Das Ausformen ist durch Zerschlagen der Glasröhren besonders einfach.

Die Brennstäbe werden aus Stahlrohren (H9) gebildet, in die nun die gegossenen Stücke eingesteckt werden. Der Querschnitt der Gußstücke beträgt nur etwa 75% der Innenfläche der Rohre, da der Brennstoff durch die Bestrahlung sehr stark anschwillt. Damit überhaupt eine gute Wärmeübertragung zwischen Brennstoff und Hülle stattfinden kann, werden die Stäbe mit flüssigem Natrium ausgegossen. Dies geschieht sehr langsam auf Rütteltischen, damit auch kleinste Gasblasen aufsteigen können. Abschließend werden die Rohre gasdicht verschweißt. Die Rohre sind nicht auf ihrer ganzen Länge mit Brennstoff gefüllt, sondern haben oben einen Gasraum als Puffer, in dem sich später Spaltgase ansammeln können. Dieser Gasraum ist mit einer individuellen Gasmischung gefüllt. Wird ein Brennstab im Reaktor undicht, kann man ihn später durch eine Analyse der Isotopenzusammensetzung des „Abgases“ genau identifizieren. Solche Messmethoden sind für den Betrieb sehr wichtig, da flüssiges Natrium nicht durchsichtig ist, was Inspektionen sehr erschwert.

Man muß sich immer vor Augen halten, daß die Abbrände bei schnellen Reaktoren sehr viel höher als bei Leichtwasserreaktoren sind. Man geht dadurch auch mit wesentlich kleineren Brennstoffmengen (bezogen auf die erzeugte elektrische Energie) um. Eine solche Wiederaufbereitung und Brennstoffproduktion hat gegenüber den klassischen industriellen Anlagen eher den Charakter einer Manufaktur. Die Abschirmung ist kein Problem – es genügen übliche heiße Zellen. Die Handhabung ebenfalls nicht, da es sich um recht überschaubare Vorgänge handelt, die sich leicht automatisieren lassen. Es spricht also nichts dagegen, eine solche Anlage direkt auf dem Gelände des Kraftwerks zu errichten. Transport- und Sicherheitsrisiken werden damit erheblich verringert. Den Abfall könnte man ebenfalls in Bunkern auf dem Gelände lagern. Da die Strahlung recht schnell abklingt, könnte man die Entscheidung zwischen verbuddeln oder nutzen bis zum endgültigen Abbruch der gesamten „Energieerzeugungsanlage“ vertagen. Immerhin sind rund 50 % der Spaltprodukte schon mal seltene Erden.