Baubeginn von Hinkley Point C

In Deutschland weitgehend unbeachtet, startete kurz vor Weihnachten die Betonierung der Grundplatte des Reaktors. Abschnitt eins umfasste 2000 m3 Nuklearbeton. Es sind vier weitere Abschnitte nötig um die 3,2 m dicke Grundplatte herzustellen. Beim Bau eines Kernkraftwerks ist dies nach internationaler Definition der offizielle Baubeginn. Ab jetzt tickt die Uhr. Das Kraftwerk soll 2025 in Betrieb gehen. Es wäre dann der erste Neubau seit 30 Jahren in Großbritannien. Das ist fast ein gesamtes Berufsleben. Genau darin steckt eine Schwierigkeit dieses Projektes: Für die meisten am Bau Mitwirkenden ist es das erste Kernkraftwerk überhaupt. Aber auch das ist eine ganz bewußte Entscheidung der Regierung. Völlig anders als in Deutschland, hat man längst die Bedeutung einer kerntechnischen Industrie für eine moderne Volkswirtschaft erkannt und hat deshalb richtig Geld in die Hand genommen, um neue Ausbildungsplätze vom Facharbeiter bis zum Ingenieur zu schaffen. Es ist übrigens längst die Überzeugung beider britischen Parteien – Labour und Conservative Party – daß eine ganze Volkswirtschaft nicht von Dienstleistung (Finanzzentrum London) leben kann. Nur so war es möglich – gegen alle Widerstände aus dem In- und Ausland – über mehrere Wahlperioden hinweg, den Neueinstieg zu schaffen. In Hinkley Point sollen zwei Reaktoren des französischen Typs EPR in seiner „britischen Version“ mit zusammen 3200 MWel gebaut werden.

Die Eigentümer

Von Anfang an war klar, daß ein umfangreiches Neubauprogramm von vielleicht 16 Reaktoren nicht aus der Staatskasse bezahlt werden könnte. Es mußte also privates Eigenkapital und andere Staatsunternehmen mobilisiert werden. Sir John Armitt von der Olympic Delivery Authority (ODA), die die Sportstadien der Olympiade in London errichtet hatte, hat schon 2013 den Bau von Kernkraftwerken nach diesem Modell vorgeschlagen. Bau durch eine staatliche Zweckgesellschaft und erst die Privatisierung nach Fertigstellung. Damit wollte man das Risiko hoher und unkalkulierbarer Baukosten bei Kernkraftwerken umschiffen. Demgegenüber stehen recht geringe Betriebs- und Brennstoffkosten bei einem stetigen Umsatz. Ein gefragtes Investment z. B. für Pensionsfonds. Genau nach diesem Modell verkauft Rußland seine Reaktoren an Finnland (Hanhikivi 1), die Türkei (Akkuyu 1–4) und Ägypten (El Dabaa 1–4). Die durch ein russisches Staatsunternehmen gebauten Reaktoren werden (fast) vollständig durch den russischen Staat finanziert und zeitweilig sogar betrieben. Dies sichert Rußland über Jahrzehnte feste Devisenströme.

Aus politischen Gründen kam Rußland als Investor für Großbritannien nicht in Frage. Man entschied sich für den staatlichen französischen Konzern EDF. Politisch unbestritten, da EDF schon jetzt die vorhandenen Kernkraftwerke mit zusammen 11 GW Leistung in GB erfolgreich betreibt. Allerdings war der finanzielle Brocken für die kapitalschwache EDF viel zu groß. Es mußte also ein Partner gefunden werden. Schon 2013 verkündete Chancellor George Osborne bei einem Besuch in China die mögliche Partnerschaft. Technisch betrachtet, die ideale Partnerschaft, da schon die Chinesen und EDF Partner beim Bau von Taishan sind. Hierbei handelt es sich ebenfalls um zwei Reaktoren vom Typ EPR. Baubeginn war 2009 und kommerzielle Inbetriebnahme 2018. Man verfügt also über ausreichend gemeinsame Erfahrungen. Allerdings sind jetzt die Rollen vertauscht. Bei Taishan waren die Mehrheitseigentümer Chinesen mit 70% und EDF mit 30%, bei Hinkley Point ist EDF der Mehrheitseigentümer mit 66,5% und China General Nuclear International (CGN) mit 33,5% in der Minderheit. Auch die wirtschaftliche Dimension ist eine andere: Bei Taishan ging es um 8 Milliarden Euro und bei Hinkley Point um 18 Milliarden Pfund. Für China ist das der politisch angestrebte massive Einstieg in Energieprojekte in Europa. Parallel wird der Bau zweier weiterer EPR in Sizewell bis zur endgültigen Investitionsentscheidung vorangetrieben. Das eigentliche Bonbon für die Chinesen ist aber die Unterstützung von EDF beim eingeleiteten Genehmigungsverfahren für die chinesische Eigenentwicklung HPR-1000UK. Man schreitet dort sehr ehrgeizig voran und plant die Inbetriebnahme eines solchen Reaktors für 2030 in Bradwell. Gelänge dies, wäre das ein nicht zu überschätzender Exportschlager, der China endgültig die Vormachtstellung sichern würde. Frankreich tut gut daran, wenigstens den Juniorpartner in diesem internationalen Spiel zu geben. Spätestens nach dem Brexit, wird diese eigenartige EU den Anschluß an dem Weltmarkt der Kerntechnik verloren haben. Einst war EPR als Abkürzung für European Pressurized Reactor entstanden, ein Gemeinschaftsprojekt von Siemens und Areva. Bis Siemens dem Ruf der Kanzlerin folgte, aus der Kerntechnik ausstieg und bei den Alternativen mit „voran gehen“ wollte. Man könnte auch sagen, wenn es dem Esel zu wohl geht, geht er aufs Eis tanzen.

Auftragsvergabe

Wie brutal schnell die globalisierte Industrie über Aussteiger hinweg walzt, zeigt sich deutlich am EPR. Der erste Reaktor – die ewige Baustelle Olkiluoto – hatte noch eine Turbine und einen Generator von Siemens. Nach dem Ausstieg kein weiterer mehr. Der Auftrag für die konventionellen Teile von Hinkley Point C (HPC) ging an General Electric Steam Power Systems (GE). HPC wird die größten Generatorsätze der Welt mit je 1770 MWel erhalten. Wie lohnend der Einstieg in diesen Bereich ist, zeigt sich auch daran, daß GE die Aufträge für die russischen Kraftwerke in Akkuyu, Türkei und El Dabaa in Ägypten erhalten hat. Kann sich noch einer an die hochtrabenden Pläne von Siemens über eine Produktion von Turbinen für den russischen Markt erinnern? Hier ist Siemens nicht „voran gegangen“, sondern schlicht „weg gegangen“ worden.

Kerntechnik bietet aber auch Chancen für Länder, von denen man das vielleicht nicht so ohne weiteres erwartet. Die Aufträge für die Reaktorgefäßeinbauten und den Neutronenreflektor – alles Schwermaschinenbau in höchster Präzision – ist, wie schon bei Olkiluoto und Taishan, wieder an Skoda vergeben worden. Die spanische Company Equipos Nucleares (Ensa) hat den Auftrag für die beiden Druckhaltesysteme und weitere 14 Komponenten erhalten.

Wie schon öfters erwähnt, ist die Kerntechnik einer der führenden Innovatoren für die gesamte Industrie. So wurde im November der größte Baustellen-Kran der Welt mit einer Tragfähigkeit von 5000 to, einer Auslegerhöhe von bis zu 250 m bei einem Arbeitsradius von 275 m für Hinkley Point C von Sarens in Belgien fertiggestellt.

Für GB ist HPC ein gewaltiges Konjunkturprogramm. Man geht davon aus, daß 60% der Bauleistungen in GB erbracht werden. Während der Bauphase ergibt das etwa 25 000 Arbeitsplätze, mit einer Spitze von ca. 5600 Beschäftigten auf der Baustelle und 900 Dauerarbeitsplätzen im fertiggestellten Kraftwerk. Dies soll die erste Stufe einer international konkurrenzfähigen kerntechnischen Industrie sein. Im Rahmen der durch den Brexit notwendig gewordenen Neuverhandlungen internationaler Abkommen, baut man konsequent seine Bindungen außerhalb der EU aus. Möge Europa doch in Windrädern und Sonnenkollektoren versinken.

Schon jetzt geht der Nutzen für die britische Industrie über HPC hinaus. Der architect-engineer (Generalplaner für das gesamte Kraftwerk) ist EDF, und für die Lieferung der Reaktorsysteme, des Brennstoffs und für I&C (Steuerung und Regelung) verantwortlich. Neu gegründet wurde das Joint Venture MEH aus Altrad, Balfour Beatty Bailey, Cavendish Nuclear and Doosan Babcock. Ein Ingenieur-Unternehmen mit insgesamt über 20 000 Spezialisten auf den unterschiedlichsten Fachgebieten. Kurzfristiges Ziel ist ein gegenseitiges Schieben der Verantwortlichkeiten beim Projekt HPC zu verhindern. Darüberhinaus verbirgt sich dahinter ein gewaltiges Stück Industriepolitik: Die Arbeitsweise und Datenverarbeitung der beteiligten Planungsbüros soll harmonisiert werden, eine enge Kooperation mit Forschungsinstituten und Universitäten gepflegt werden. Darüberhinaus wird die Kooperation mit den chinesischen Unternehmen, die Taishan erfolgreich errichtet haben, weiter vertieft. Auch hier das Ziel, enger auf dem außereuropäischen Markt zu kooperieren. Ob wirklich nur GB der Verlierer beim Brexit ist?

Die Kosten

Man einigte sich abschließend auf einen „strike price“ von £92,50 pro MWh bzw. £89,50 (Preisbasis 2012, indexiert mit dem Verbraucherpreisindex von GB) – wenn das Kraftwerk Sizewell auch noch gebaut wird. Das besagt, wenn der aktuelle Großhandelspreis an der Strombörse in GB unter diesen Wert sinkt, bekommt der Betreiber – ähnlich dem EEG in Deutschland – trotzdem diesen Betrag vergütet. Diese Regelung gilt für 35 Jahre ab dem Jahr 2023 (also keine Verlängerung bei etwaigen Bauzeitverzögerungen). Umgekehrt gelten die Grenzwerte auch als Obergrenze – anders als in Deutschland – für 60 Jahre nach Fertigstellung. Sind die (sehr wahrscheinlich) erzielten Strompreise höher, sind die Überzahlungen an die Verbraucher weiterzugeben. Diese Regelung stellt also eine umfangreiche Absicherung der zukünftigen Energiepreise in GB dar – egal wieviel konventionelle Kraftwerke man aus welchen Gründen auch immer abschaltet.

Gegen den „strike price“ von £92,50 pro MWh hat die gesamte Wind- und Sonnenindustrie verzweifelt aus allen Rohren geschossen. Parallel sind aber inzwischen von der Regierung 34 Programme für „alternative Energien“ von gleicher Größenordnung (jeweils 7% des Stromverbrauchs in GB) abgeschlossen worden. Die Bandbreite bewegt sich bei £120 – £130 je MWh. Hinzu kommen noch ca. £10 – £15 pro MWh für den notwendigen Netzausbau (weit weniger als in Deutschland, wegen der günstigeren Geographie). Wobei der „Strom aus Wind und Sonne“ wetterabhängige Zufallsproduktion, ohne jeden Bezug zum realen Bedarf ist. Sie kann daher lediglich eine Ergänzung, niemals aber eine vollständige Energieversorgung sein. Es müssen deshalb trotzdem konventionelle Kraftwerke für die Dunkelflaute und zur Netzstabilisierung betrieben werden. Wer glaubt eigentlich noch immer, daß „Strom aus Wind und Sonne“ eine Zukunftstechnologie ist?

Es gibt aber noch einen gewaltigen Unterschied: Im Preis für Hinkley Point C sind die erforderlichen Rücklagen für den vollständigen Rückbau zur grünen Wiese und das „waste management“ enthalten. Wer wird die Windmühlen und die Sonnenkollektoren zurück bauen und deren Sondermüll beseitigen?

Der Preis beruht auf folgender Kalkulation: 14 Milliarden Baukosten plus 2 Milliarden für Nebenkosten (Grundstücke, Lagerung der verbrauchten Brennelemente, Ausbildung und Gehälter für die Betriebsmannschaft usw.) auf der Preisbasis von 2012. Dies ist als Festpreis zu verstehen, es gibt ausdrücklich keine Nachträge bei Verzögerung des Projekts und die Verbraucher zahlen erst bei Energielieferung. Umgekehrt garantiert die britische Regierung keine zusätzlichen Steuern etc. und garantiert die Entschädigung bei Veränderung staatlicher Randbedingungen. Für die Gesamtkosten werden gebührenpflichtige Staatsbürgschaften in Höhe von 65% bis zur Fertigstellung gewährt (aus heutiger Sicht wahrscheinlich 34 Milliarden Pfund inklusive Kapitalkosten). Dem Betreiber wird auf dieser Basis ein kalkulatorischer Gewinn von 10% zugestanden. Kostensteigerungen gehen also zu Lasten des Betreibers. Stromexporte (nach Öko-Deutschland?) sind in Abstimmung mit dem Netzbetreiber gestattet. Höhere, über dem „Strike Price“ erzielte Vergütungen, gehen vollständig zum Vorteil der britischen Verbraucher und Steuerzahler.

Inzwischen sind 450 Verträge mit über 200 000 Seiten unterschrieben, die £12 Milliarden durch EDF und die £6 Milliarden durch die chinesischen Partner bereitgestellt und die ersten Mittel bereits an die Auftragnehmer abgeflossen.

Die Rolle der EU

Wer sich immer noch fragt, warum GB den Brexit durchzieht, kann hier neben der Merkelschen Flüchtlingspolitik einen weiteren wesentlichen Grund registrieren. Die bekannten links-grünen Politiker haben mit allen Mittel versucht ihre Energiepolitik GB aufzuzwingen. Es wurde wirklich jedes Propagandaregister der „Anti-Atomkraft-Bewegung“ gezogen. Zu guter letzt auch noch vor dem Europäischen Gerichtshof geklagt. Es half alles nichts, man konnte die eingereichten Zahlen und Argumente nicht widerlegen. Zum Schluß mußte in einem 70 Seiten Papier das o. k. gegeben werden. Das hält aber die deutschen Qualitätsmedien nicht davon ab, unbeirrt weiter mit fake news gegen das Projekt zu hetzen.

Dabei ist es eher umgekehrt: Gäbe es nicht die – maßgeblich von Deutschland beeinflußte – völlig verquaste Energiepolitik der EU, mit Einspeisevorrang für wetterabhängige Energieformen, Wahnvorstellungen über CO2 in Verbindung mit profitgierigen Schlangenölverkäufern, hätte man die benötigte Kraftwerkskapazität weltweit und öffentlich ausschreiben können. Bei der nächsten „Europawahl“ bietet sich die Gelegenheit, den Bürokraten und Politikern in Brüssel mal kräftig die Meinung zu sagen. Eine Demokratie lebt davon, unfähige Politiker einfach abzuwählen.

Der Kampf gegen unsere Gesellschaft nimmt Fahrt auf

Pünktlich zum Klimazirkus in Kattowitz macht auch Brüssel wieder von sich reden: Ab 2030 (also in nur 12 Jahren!) soll für neue PKW und Kleintransporter (Handwerker aufgepaßt!) nur noch eine maximale Freisetzung von kapp 60 Gramm CO2 pro Kilometer erlaubt sein. Sie können gar nichts mit diesem Wert anfangen? Das genau, ist die Absicht. Je alltagsferner die Maßeinheit, um so besser für die Propaganda geeignet. Dies wußten schon die „Atomkraft-Gegner“. Übersetzen wir deshalb mal schleunigst diesen geplanten Grenzwert in Maßeinheiten, die jedem Autofahrer nur zu vertraut sind: 60 gr CO2 / km entspricht etwa einem Verbrauch von rund 2,5 Liter Benzin bzw. 2,3 Liter Diesel pro 100 km. Dämmert es jetzt, wohin die Reise gehen soll?

Damit sind Kraftfahrzeuge – wie wir sie heute kennen – gestorben! Nehmen wir mal als stellvertretendes Beispiel einen Golf-Diesel. Der Verbrauch bewegt sich seit dem ersten Modell bis bis zum heutigen Tage um die 6,5 Liter. Dies mag für Annalena und Svenja nur an den Konzernen liegen, aber weit gefehlt Mädels: Es gibt da etwas, was ihr besser nicht abgewählt hättet, das nennt sich Physik! In der Natur verläuft Aufwand und Nutzen immer in der Form von Exponentialfunktionen, die sich einem Grenzwert annähern. Der Volksmund sagte früher: Gott läßt keine Bäume in den Himmel wachsen! In diesem Fall ist der Grenzwert die Leistung (kW!), die man benötigt um ein Auto zu beschleunigen bzw. gegen die Widerstände in Bewegung zu halten. Jetzt kommt auch noch die Zeit (h) mit ins Spiel, die man benötigt um 100 km zurückzulegen. Mal relativ schnell (Autobahn) und mal im „Stop and Go“ (Stadtverkehr) mit ständiger „Kraftstoffvernichtung“ durchs Bremsen. Simsalabim haben wir die benötigte Bewegungs-Energie (kWh!). Nun ist aber Energie, nicht gleich Energie! Die benötigte Antriebsenergie muß erst noch im Fahrzeug (!) erzeugt werden. Diese liegt stets in chemischer Form vor. Gleichgültig ob als Benzin, Diesel, Akku, Wasserstoff oder sonst etwas. Für die Umwandlung setzt die Thermodynamik eindeutige und nicht überwindbare Grenzen. Heutige Verbrennungsmotoren sind nahezu ausgereizt.

Die Energiedichte

Jedes Kraftfahrzeug muß neben seinem Antrieb (Motor, Getriebe und notwendiges Zubehör) auch noch seinen ganzen Energievorrat mitführen. Dieses notwendige Eigengewicht treibt wiederum den Verbrauch selbst in die Höhe. Lange Rede, kurze Aussage: Ein Kraftfahrzeug mit etwa 2 Liter Verbrauch könnte nur ein moderner Trabant sein: Ein Auto mit nur vier Sitzen, aus Plastik und einer Höchstgeschwindigkeit von ca. 100 km/h. Immerhin ein Zugeständnis an die Handwerker, für die bisher ein Lastenfahrrad vorgesehen ist (Kein Witz! Der Rot-Rot-Grüne Berliner Senat fördert bereits Lastenfahrräder für Handwerker und Paketdienste). Wer noch die alte DDR kennt, weiß was alles möglich ist, wenn man nicht anders kann.

Genau das ist der Grund, warum Elektrofahrzeuge ein Flop waren, sind und immer sein werden. Man kann nicht oft genug daran erinnern, daß der erste Porsche einen Elektroantrieb (mit Nabenmotor!) hatte, weil es damals noch keine brauchbaren Verbrennungsmotoren gab. Als es diese gab, war das Konzept schlagartig mausetot. Im Krieg hatte man LKW mit Batterien und Oberleitungsbusse, weil der Treibstoff an der Front gebraucht wurde. Nach dem Krieg war der Spuk wieder vorbei. Die Sache ist eigentlich ganz einfach: Entweder man hat ein Fahrzeug mit geringer Reichweite (kleine Batterie) oder geringer Nutzlast.

Alle Schlaumeier, die nun einfach öfters laden wollen, tappen sofort in die nächste Falle: Die Betankung mit Benzin und Dieselkraftstoff dauert wegen deren hoher Energiedichte (rund 10 kWh/l) nur wenige Minuten. Wollte man gleiches mit elektrischer Energie machen, bräuchte man gewaltige Anschlussleistungen. Hochspannung am Straßenrand, in öffentlich zugänglichen Zapfsäulen?

Ähnliche Überlegungen gelten auch für alle Gase. Hier bleibt nur der Weg über Verflüssigung (LNG). Will man über verdichtete Gase gehen, braucht man große Verdichter (mehrere MW Antriebsleistung bei einer üblichen Autobahntankstelle) und senkt trotzdem die Reichweite auch noch weiter deutlich ab (zwangsläufige Erwärmung im Tank durch die Verdichtung). Wenn es Benzin und Diesel nicht geben würde, müßte man sie halt erfinden. Das das kein Scherz ist, kann man schon an den Kohlehydrieranlagen im Kriegsdeutschland und in Südafrika erkennen.

Mit Wind fahren?

Der größte Witz der Windindustrie ist, man könne doch mit ihrem Abfallstrom CO2 -frei fahren. Scheinbar überschreitet es die geistigen Fähigkeiten von „Ökos“ nachhaltig, den Unterschied zwischen Leistung und Energie zu begreifen. Es ist völlig unbedeutend, wie viel elektrische Energie mit Wind und Sonne erzeugt wird, vielmehr entscheidend ist, welche Leistung wann erzeugt wird. Am anschaulichsten ist es noch bei der Photovoltaik: Nachts ist es dunkel, also Stromproduktion gleich Null. Folglich könnte man damit kein einziges Fahrzeug nachts aufladen – mag die installierte Leistung (dank Subventionen) auch unendlich groß werden.

Ähnlich verhält es sich mit dem Wind. Bläst er tatsächlich mal und die Produktion übersteigt die verwertbare Leistung, hilft nur Abschalten. Man kann doch nicht wirklich glauben, daß sich jemand ein teures Elektroauto kauft um darauf zu warten, daß mal der Wind stark genug bläst. Noch abwegiger ist, die Autobatterien als Netzspeicher zu verwenden. Man stelle sich vor, man muß zur Arbeit, aber die Autobatterie ist leer – gleichgültig ob nicht genug Energie zum Laden vorhanden war oder das Netz mangels Wind noch zusätzlich gezapft hat.

Noch abwegiger ist die Schnapsidee, mit Wind und Sonne Gase herstellen zu wollen. Alle Verfahren sind sehr kapitalintensiv. Die Auslastung einer solchen Anlage ist aber noch deutlich geringer, als die des Windrades selbst. Es soll ja nur dessen „Überschuss-Strom“ eingelagert werden.

Die Stromversorgung

Wenn tatsächlich mehr als 2/3 aller Autos Elektroautos wären, müßten dafür gewaltige Mengen elektrischer Energie zusätzlich produziert werden und noch mehr Leistung (d. h. mehr Kraftwerke) bereitgestellt werden. Praktisch müßte für jedes Auto in der Nähe der eigenen Wohnung oder des Arbeitsplatzes eine Ladestation vorhanden sein. Dafür ist aber das vorhandene Stromnetz gar nicht ausgelegt. Es müßten gewaltige Investitionen in das Nieder- und Mittelspannungsnetz getätigt werden. Überwiegend in den bereits völlig dichten Städten (Erd- und Straßenbauarbeiten). Bei dem heutigen Zustand unseres Landes, eine Aufgabe für Jahrzehnte. Wer trägt dafür die Kosten? Doch wohl letztendlich der Autofahrer selbst.

An dieser Stelle erkennt man auch, wie durchtrieben der Begriff „Flottenverbrauch“ ist. Ein Hersteller der Golf-Klasse müßte für jedes produzierte Auto ein bis zwei Elektromobile verkaufen um den Flottenverbrauch (Elektroautos werden per Definition mit 0,0 COangesetzt, selbst wenn der Strom aus einem Kohlekraftwerk stammt. Alles klar???) zu erreichen. Woher sollen diese Käufer kommen? Für die meisten Familien, die sich höchstens ein Auto finanziell leisten können, dürfte ein Elektromobil völlig ungeeignet sein. Als Zweitwagen mit eigener Garage (Aufladung) oder Arbeitgeberparkplatz mag es ja noch gehen, aber für die Fahrt mit der Familie in den Urlaub?

Da hilft auch keine Mischkalkulation oder Strafzahlungen nach Brüssel. Elektroautos lassen sich nicht verkaufen, wahrscheinlich nicht einmal verschenken.

Gesellschaftliche Konsequenzen

Das Auto soll dem Bürger endgültig mies gemacht werden. Es steckt die allen Sozialisten gemeine Angst vor dem sich frei bewegenden Bürgern dahinter. Michel wird schon noch zu spüren bekommen, wie wahr der alte Slogan „Freie Fahrt für Freie Bürger“ einst war. Man stelle sich mal vor, nur die Hälfte der heutigen Autofahrer müssen auf das nicht vorhandene – bis völlig marode – öffentliche Verkehrssystem umsteigen. Was würden die Konsequenzen für die Vorstädte und ländlichen Räume sein? Nur noch Rentner und Transferleistungsempfänger oder Slums am Rande der Großstädte für die noch arbeitenden?

Der angepeilte Zeitraum von zwölf Jahren ist der ideale Zeitraum für eine „Verschleißstrategie a la DDR“. Man tätigt keine Neuinvestitionen mehr und reduziert Wartung und Instandhaltung um möglichst wenig Wertverlust am Ende zu haben. Parallel investiert man außerhalb dieser seltsamen EU. Die USA – und bald auch GB – stehen schon bereit. Die Europäer können sich dann ausländische Fahrzeuge kaufen oder es bleiben lassen. Wer der Politik auf dem Leim geht – wie einst die Energieversorger mit Energiewende und „Atomausstieg“ – wird untergehen. Jeder in Elektroautos investierte Euro ist zum Fenster rausgeschmissen. Jeder, der jünger als ca. 55 Jahre ist und in der Automobilindustrie oder bei den einschlägigen Zulieferern arbeitet, sollte seine persönliche Lebensplanung dringend überdenken – entweder rechtzeitig den Beruf wechseln oder mit der Industrie ins Ausland gehen. Mit „sozialverträglich“ – wie bei Stahlarbeitern und Steinkohlebergbau, die übrigens hart dafür kämpfen mußten – ist nicht mehr. Dafür ist die Dimension viel zu groß. Rezession ist, wenn dein Nachbar arbeitslos wird, Depression ist, wenn du selbst deinen Arbeitsplatz verlierst.

Umweltschutz auf den Meeren

In weniger als einem Jahr tritt die letzte Stufe der Begrenzung des Schwefelgehaltes für Schiffstreibstoffe in Kraft. Auf den ersten Blick ein energietechnischer Nebenschauplatz. Zumindest aber ein gutes Beispiel dafür, wie Umweltschutznormen entstehen, sich beständig verschärfen und weltweite Folgen für die Wirtschaft haben – weit über das gedachte Anwendungsgebiet hinaus. In diesem Fall bis hin zur Stromerzeugung.

Der Schadstoff Schwefel

Wenn Schwefel verbrannt wird, entsteht Schwefeldioxid (SO2) und Schwefeltrioxid (SO3). In Verbindung mit Wasser bildet sich daraus Schwefelsäure (H2 SO4). Im grünen Deutschland einst – unter dem Kampfbegriff „Waldsterben“ – sehr populär. Im Zusammenhang mit Dieselmotoren soll besonders SO3 eine herausragende Rolle spielen: Es gilt als ein wesentlicher Verursacher des Dieselrußes. Der Vorläufer des aktuellen Aufregers Stickoxide im Kampf gegen den Verbrennungsmotor.

Wenn Abgase den Schornstein verlassen, beginnen sie sich unmittelbar zu verdünnen. Eine nicht zu vernachlässigende Tatsache, insbesondere auf Hoher See. Dort werden sie vom Regen ausgewaschen und stellen kein Problem für die Meeres Flora und Fauna dar. Anders verhält es sich in Küstennähe und auf Flüssen oder in Hafenstädten. Dort können die Abgase zumindest für einige Menschen lästig sein.

Die Entwicklung der Grenzwerte

Besonders in der Bucht von Tokio, in den Häfen der Westküste der USA und in Nord- und Ostsee begann man deshalb Emission Control Areas (ECA) zu definieren. In solchen Gebieten durfte ab July 2010 nur noch Treibstoff mit einem maximalen Gehalt von 1% Schwefel verwendet werden. Dieser Grenzwert wurde ab Januar 2015 weiter auf 0,1% verschärft. Hat man erst einmal einen Schadstoff gefunden, kann man die Grenzwerte immer weiter verschärfen. Wer will schon auf Gremien, Kongresse und Dienstreisen verzichten?

Der nächste Schritt ist dann, die gesamte Erde zu beglücken. So hat die International Maritime Organization (IMO) – müßig zu erwähnen, eine Sonderorganisation der Vereinten Nationen (UN) – schon im Januar 2012 den Schwefelgehalt weltweit auf 3,5% (ehemals 4,5%) begrenzt. Vorsichtshalber hat man gleich beschlossen, daß ab Januar 2020 nur noch ein Grenzwert von 0,5% Schwefel für Schiffstreibstoffe zulässig ist. Ein echter Kostentreiber: Bisher war es üblich, einerseits HSFO (high-sulfur fuel oil mit 3,5% Schwefel) für das offene Meer zu tanken und andererseits schwefelarmen Treibstoff für die ECA-Zonen. Nach dem Verlassen der Küstengewässer wurde umgeschaltet. Zumindest im Sinne von Menschenschutz ein sinnvolles Vorgehen zu optimalen Kosten.

Wohin die Reise geht, kann man schon an den Grenzwerten für Benzin und Dieselkraftstoff nach DIN EN 590 erkennen. Hier sind nur noch 0,001% Schwefel zulässig. Bei den Kraftfahrzeugen mit Abgaskatalysator (nächster Schritt im Schiffsbetrieb?) eine technische Notwendigkeit. Für unser Heizöl Extra Leicht schwefelarm (HEL) sind noch 0,005% Schwefelgehalt zulässig. Hier ist es das Kondensat aus den Brennwertkesseln und die Kanalisation. Lediglich die Luftfahrt scheint noch ein wenig widerspenstig. Für deren Triebwerke gilt ein Grenzwert von 0,03% Schwefel für Jet A1.

Das Rohöl und seine Verarbeitung

Erdöl ist ein Naturprodukt und unterliegt damit großen Schwankungen in seiner Zusammensetzung. Im Handel unterscheidet man leichte (light crude oil) und schwere Rohöle (heavy crude oil), sowie den Schwefelgehalt (sweet oder sour crude oil). Raffinerien müssen sich entsprechend ihrer Verfahrenstechnik und ihrer Kundenwünsche das geeignete Rohöl zusammenkaufen. Der Preis stellt sich am Weltmarkt nach Angebot und Nachfrage ein. Von der Tendenz her, sind dünnflüssige und schwefelarme Rohöle teurer.

Der erste – und in vielen Ländern auch der einzige – Verfahrensschritt ist die Destillation. Das Rohöl wird auf etwa 400 °C erhitzt und in eine Kolonne eingespeist. Dort verdampft es teilweise und kondensiert bei unterschiedlichen Temperaturen in verschiedenen Stufen. Die leicht flüchtigen Anteile (Benzin, Kerosin, leichtes Heizöl etc.) werden so abgetrennt. Es verbleibt ein zähflüssiges Rückstandsöl (residual fuel oil oder resid) mit fast dem gesamten Schwefel. Täglich fallen davon etwa 8 Millionen barrel weltweit an. Bisher wurden davon rund die Hälfte als Schiffstreibstoff verwendet. Die andere Hälfte wird weiter verarbeitet (z. B. Asphalt), mit großem Aufwand weiter zerlegt oder in Kraftwerken verfeuert.

Schon an dieser Stelle erkennt man, daß der derzeitige Verbrauch von etwa 3,2 Millionen barrel HSB (high-sulfur bunker mit 3,5% Schwefel) pro Tag, kein Nischenprodukt ist. Jegliche Veränderung der Spezifikationen wirkt sich unmittelbar auf die Verarbeitung (Investitions- und Betriebskosten) und die Rohölpreise aus. Ob dies die UNO-Beamten überhaupt durchschaut haben oder gar für ihre politischen Interessen ausgenutzt haben, muß der geneigte Leser selbst entscheiden.

Klar ist, daß schon immer die edleren Produkte, wie z. B. Benzin und Kerosin das Geld bei einer Raffinerie bringen mußten. Das Rückstandsöl mußte meist unter dem Einstandspreis für Rohöl verkauft werden. Für alle ein gutes Geschäft: Benzin und Heizöl wurden nicht noch teurer und die Reeder konnten wegen geringer Treibstoffpreise niedrige Frachtraten anbieten.

Die Möglichkeiten

Auf die veränderten Grenzwerte zeichnen sich folgende Reaktionen ab:

  • Erwirken von Ausnahmegenehmigungen. Kann ein Schiff nicht genug schwefelarmen Treibstoff bekommen, kann es eine Sondergenehmigung für die Fahrt oder den Fahrtabschnitt erhalten.
  • Einbau von Rauchgaswäschen (Scrubber)
  • Umrüstung auf alternative Kraftstoffe (LNG, Methanol)
  • Blending (Mischung von Produkten mit unterschiedlichem Schwefelgehalt)
  • Nachrüstung von Raffinerien mit Cokern und Crackern, wodurch ein neues „Abfallprodukt“, der Petrolkoks, entsteht. Entsorgung nur zum Preis von Kesselkohle in Kohlekraftwerken möglich. Einbau zusätzlicher Entschwefelungsanlagen (Hydrodesulfurierung).
  • Veränderung des Rohöleinsatzes wodurch sich die weltweiten Handelsströme verschieben.
  • Erhöhung des Rohöleinsatzes, Steigerung des Eigenverbrauches der Raffinerien.

Ausnahmegenehmigung

Noch ist die Abwicklung von Ausnahmen noch nicht genau geregelt. Man geht aber davon aus, daß sie ähnlich der Gepflogenheiten in der 200-Meilenzone um die USA gehandhabt werden. Dort muß die Anzeige elektronisch vor Einlaufen über einen FONAR (electronic Fuel Oil Non-Availability Report or FONAR) angezeigt werden.

In Deutschland wird das sicherlich streng überwacht und mit drastischen Bußgeldern geahndet werden. Was allerdings in Rußland und Afrika passieren wird, kann man sich leicht vorstellen.

Rauchgaswäschen

Man kann die Abgase eines Schiffsdiesels – wie in einem modernen (schornsteinlosen) Kohlekraftwerk – waschen, bevor sie in den Auspuff geleitet werden. Allerdings mit gewissen Einschränkungen. Auf einem Schiff ist der Platz begrenzt. Man kann daher nicht eine so aufwendige Verfahrenstechnik, wie in einem Kraftwerk an Land einbauen. Die nächste Frage betrifft das Waschmittel. Man kann einfach Meerwasser verwenden, was aber bedeutet, man gibt nun die Schadstoffe konzentriert ab. Ob das eine Verbesserung gegenüber der Verdünnung im Fahrtwind ist, sei dahingestellt. Mit Sicherheit kann man die Abgase deshalb nicht in Häfen und Flüssen waschen. Will man auch dort waschen, braucht man einen geschlossenen Kreislauf wie in einem Kraftwerk. Bleibt dann aber die Frage der Entsorgung des Sondermülls.

Solch eine Rauchgasreinigung kostet je nach Schiff ca. 2 bis 5 Millionen US$ und erfordert einen zusätzlichen Betriebsaufwand. Bisher werden sie hauptsächlich in Kreuzfahrtschiffen eingebaut. Dort können sie den Passagieren ein besonders gutes Gefühl geben.

Alternative Kraftstoffe

Es gibt praktisch zwei Alternativen: Flüssiges Erdgas (LNG) und Methanol. Beide enthalten keinen Schwefel. In sog. Gas-Diesel-Motoren können sie problemlos verbrannt werden. Bei ihnen ist ein kleiner Anteil Diesel nur noch zur Zündung (1,5 bis 6%) erforderlich (d. h. der Diesel-Kreisprozess mit seinem guten Wirkungsgrad bleibt erhalten). Gleichwohl können sie auch stufenlos nur mit Diesel betrieben werden. Derzeit ist LNG der absolute Favorit (bei Neubauten) gegenüber Bunkeröl. Hinzu kommt eine „Zukunftssicherheit“. Auch die IMO bastelt bereits an CO2 Vorschriften und Abgaben. Erdgas setzt gegenüber Öl nur rund 75% CO2 frei. Allerdings ist das Volumen von LNG größer und es ist eine aufwendigere Technik mit Isoliertanks nötig (Lagertemperatur < -160°C). Der Platzbedarf ist rund doppelt so groß.

Inzwischen gibt es einen Weltmarkt und ganze Tankerflotten für LNG. Gleichwohl muß erst eine Infrastruktur aus dezentralen Lagern, Tankstellen in den Häfen, Bunkerbooten, Tanklastern usw. aufgebaut werden. An der Nordseeküste und im Ostseeraum (ECA-Zonen) ist man damit bereits weit vorangekommen. Hinzu kommt, daß LNG billig ist, jedenfalls weitaus billiger als entschwefelter Kraftstoff.

Blending

Zumindest in den ersten Jahren wird das Mischen von unterschiedlichen Ölen zu LSB ( low-sulfur bunker bis 0,5% S) gängige Praxis sein. Es gibt etliche Raffinerien, die für dünnflüssige und süße Rohöle gebaut sind. Diese liefern ein Rückstandsöl mit rund 1% Schwefelgehalt. Will man daraus LSB herstellen, benötigt man rund die gleiche Menge an Dieselkraftstoff bzw. Kerosin etc. Diese Nachfrage wird die Preise für Kraftstoffe und Flugzeugtreibstoff in die Höhe treiben.

Nachrüstung von Raffinerien

Rückstandsöle sind ein Abfallprodukt. Ihr Wert liegt deshalb meist deutlich unter dem Einstandspreis für Rohöl. Es gab deshalb schon immer Bestrebungen, Rückstandsöle in höherwertige Produkte umzuwandeln. Grundsätzlich gilt, je mehr Wasserstoff ein Öl enthält, um so geringer ist sein Siedepunkt. Man muß also dem Rückstandsöl Wasserstoff hinzufügen. Dies geschieht z. B. in einem Coker. Dort wird Rückstandsöl bei Temperaturen von über 500°C in wasserstoffreiche Leichtöle und Petrolkoks zerlegt. Der Wasserstoff wird also hierbei nur intern umgelagert. Schwefel und Schwermetalle verbleiben im Koks.

Man kann aber auch Wasserstoff von außen hinzuführen. Mit Wasserstoff gelingt auch eine Entschwefelung. Bei der Hydrodesulfurierung wird der im Öl enthaltene Schwefel erst in Schwefelwasserstoff und anschließend in elementaren Schwefel umgewandelt. Ein sehr energieintensives Verfahren. Zudem ist Wasserstoff recht teuer.

Es handelt sich um komplexe verfahrenstechnische Anlagen. Eine Nachrüstung einer Raffinerie dauert mehrere Jahre und kostet zig Milliarden. Es ist klar, daß sich diese Kosten in den Produkten widerspiegeln müssen.

Rohöleinsatz

Raffinerien sind meist für die Verarbeitung bestimmter Rohöle gebaut. Es ist aber schon immer üblich, Mischungen verschiedener Rohöle herzustellen, um ein synthetisches Rohöl zu erhalten. Dies ist ein Weg für einfachere Raffinerien sich den Gegebenheiten ab 2020 anzupassen. Man kann z. B. das Rückstandsöl einer Raffinerie, die Arab Light verarbeitet etwa hälftig mit Bakken Rohöl vermischen und erhält daraus ein Öl ähnlich Maya Crude. Dies ist ein typischer Weg für Raffinerien am Golf von Mexiko. Man kauft das Rückstandsöl billig am Weltmarkt ein, mischt es mit besonders leichtem Rohöl aus Dakota usw. (Fracking) und kann es in den entsprechenden Raffinerien verarbeiten.

Das Henne-Ei Problem

Die Verschärfung der Grenzwerte in einem Schritt, an einem Stichtag, hat eine enorme wirtschaftliche Herausforderung heraufbeschworen. Die Reeder können nur Wetten abschließen. Keiner kennt die zukünftige Preisdifferenz zwischen HFO (higher-sulfur heavy fuel oil) und (MGO) (low-sulfur marine distillates—marine gas oil) bzw. MDO (marine diesel oil). Genau dieser Wert entscheidet aber über die Amortisation für die Millionen-Investition pro Schiff und Wäscher. Ganz ähnliches gilt für die Preisdifferenz zu LNG. Der Einsatz von LNG dürfte sich nur für Schiffe rechnen, die überwiegend in den ECA-Zonen (nur 0,1% S) fahren. Es verwundert daher nicht, daß bis heute weniger als 1% der Handelsflotte mit über 50 000 Schiffen umgestellt ist.

Bei den Raffinerien sieht es nicht besser aus. Man geht davon aus, daß die Preise für HFO weiter fallen werden (auf ca. 60% der Rohöleinstandspreise). Gewinner sind im Moment Raffinerien, die bereits über Coker und Hydrodesulfurierung verfügen. Sie können doppelt von den fallenden Preisen für HFO und den steigenden Preisen für schwefelarme Öle profitieren. Gerade für kleine Raffinerien ist das Investitionsrisiko in Milliardenprojekte viel zu groß. Außerdem werden die Preisdifferenzen um so kleiner, je mehr Raffinerien umstellen.

Wie gewaltig die Verschiebungen sein werden, zeigen die Bilanzen aus 2012: Es wurden weltweit insgesamt 260 Millionen to Schiffstreibstoffe verbraucht. Davon waren 223 Millionen to HFO und lediglich 37 Millionen to MGO/MDO. Für 2020 schätzt man den Verbrauch auf 352 Millionen to. Die Verteilung ist noch unabsehbar. Man muß deshalb mindestens von Mitte 2019 bis 2020 von stark schwankenden Preisen für Mineralölprodukte ausgehen. Wie die Weltwirtschaft darauf reagiert, weiß keiner.

Konsequenzen

Dies ist wieder mal ein Beispiel für die Festlegung von Grenzwerten – die der Mehrheit der Bevölkerung gar nichts sagen – durch ferne und abgehobene Gremien. Ähnlich der Stickoxide durch die EU. Die Bombe ist erst geplatzt, als der Normalbürger von Fahrverboten betroffen war. Aktuell hat man gerade die Diskussion über „unverbindliche Empfehlungen“ der UNO auf einem ganz anderen Gebiet. Auch die IMO-Grenzwerte waren einst nicht bindend. Hier setzt die Kritik an den einschlägigen Industrieverbänden ein. In der Phantasiewelt der Linken, schreiben die Lobby-Verbände die Gesetze. In der Realität ist das mitnichten so. Sie stehen einer Mauer von – überwiegend ungebildeten, aber ideologisch gefestigten – Politikern, Bürokraten und Nicht-Regierungsorganisationen gegenüber. Allesamt Personen, die für die wirtschaftlichen Konsequenzen ihres Handelns in keiner Weise verantwortlich sind. Die meisten sind nicht einmal demokratisch legitimiert. Das Vehikel Umweltschutz hat sich inzwischen als eine Gefahr für alle Gesellschaften herausgebildet. Auf keinem Sektor sind so viele Scharlatane und Ideologen unterwegs. Mit der zunehmenden Abnahme naturwissenschaftlicher Kenntnisse in Deutschland wird eine notwendige Aufklärung über technisch-wirtschaftliche Abhängigkeiten immer schwieriger.

 

Micro-Reactor, die Renaissance made in USA?

Langsam zeichnet sich ab, welchen Weg die Trump-Administration für die Kernenergie vor hat. Nachdem die Fesseln des Obama-Zeitalters für die fossilen Energien erfolgreich durchschnitten wurden, wird der Umbau der Energieerzeugung nun auch konsequent auf die Kernenergie ausgedehnt. Die Reihenfolge war folgerichtig: Die meisten Arbeitsplätze und das schnellste Wirtschaftswachstum konnte kurzfristig nur über die Öl- und Gasindustrie geschaffen werden. Hier traf alles zusammen: Hohe Nachfrage zu akzeptablen Preisen auf dem Weltmarkt mit vorhandenem Wissen und Kapital im eigenen Land. Nebenbei wurde noch die Kohleindustrie stabilisiert und die überbordende Förderung für „alternative Energien“ zurechtgestutzt. Ein einziger Albtraum für jeden gläubigen „Klimaschützer“. Nachdem der Präsident nun das sichere Fundament für seine Wiederwahl gelegt hat, kehrt etwas Ruhe ein und man kann sich langfristigen Projekten wie der Kernenergie widmen.

Die Lage der Kerntechnik in den USA

Der Schock kam mit dem Desaster der Neubauprojekte Vogtle und Summers. Die USA sind nicht mehr in der Lage, einen in den USA entwickelten Reaktortyp fristgerecht und zu den vereinbarten Preisen fertigzustellen. Zu aller Schande wurden die gleichen Reaktoren in Lizenz in China errichtet und sind inzwischen am Netz. Es gibt in den USA — wie in Deutschland und Frankreich — keine leistungsfähige Industrie mehr, die solch komplexe Projekte unter den speziellen Randbedingungen der Kerntechnik durchziehen kann. Der Faden ist durch die jahrzehntelange Zwangspause beim Neubau einfach abgerissen. Man lernt in Vogtle und Olkiluoto genauso wieder von vorn, wie in den fünfziger und sechziger Jahren. Da sich auch in den USA keine weiteren Kernkraftwerke als Anschlussaufträge abzeichnen, droht eine Abwärtsspirale.

Wie immer, wenn man in einer Sackgasse steckt, muß man die Situation analysieren und neu denken. Es ist etwas von dem „Apple-Geist“ nötig, der mitten in der Krise der Computerindustrie das Smartphone erfunden hat. Heutige Kernkraftwerke erfordern riesigen Kapitaleinsatz, lange Bauzeiten (vom ersten Genehmigungsantrag bis zur Fertigstellung), große Stäbe von erfahrenen Fachkräften. Solche Randbedingungen sind heute nur noch in Staatswirtschaften zu realisieren. Will man verhindern, daß China und Rußland das weltweite Monopol für Kernkraftwerke erhalten, muß man deshalb genau hier ansetzen. Der eingeschlagene Weg läuft über eine Serienproduktion anstelle einer Kosteneinsparung über einen „Größenvorteil“. Ein revolutionärer Ansatz, wie einst der Umstieg vom „Handy“ auf das Smartphone. Ganz wichtig ist hierbei die Schaffung eines Zusatznutzens, der für sich allein einen Kaufanreiz darstellt — zumindest für eine vorhandene kaufkräftige Konsumentengruppe als Starter.

Tot geschriebene, leben länger

Die kerntechnische Industrie in den USA ist noch lange nicht tot. Jedenfalls so lange, wie sie über einschlägige Forschungszentren mit zehntausenden (der besten) Fachleute weltweit verfügt und eine — etwas im Verborgenen blühende — Reaktorindustrie vorhanden ist. Wenig beachtet, existiert das „Büro für Schiffsreaktoren“, welches 82 Kriegsschiffe mit Kernreaktoren unterhält, über sechs Werften, vier Übungsreaktoren an denen jährlich 3500 Studenten ausgebildet werden, zwei eigenen Forschungszentren (Bettis/Knolls), hunderten von klassifizierten Zulieferern und einem eigenen, kompletten Brennstoffkreislauf, verfügt. Dort weht immer noch der Geist von Admiral Rickover. Völlig geräuschlos — und vor allem ohne spektakuläre Unfälle — wird dort Reaktortechnik auf höchstem und sonst weltweit unerreichtem Niveau betrieben. Allein diese Organisation kann (wieder) als Keimzelle einer neuen Industrie dienen. Außerdem hat sich offensichtlich der öffentliche Wind gedreht: Es gibt mehr als 70 neugegründete Unternehmen, die sich mit den unterschiedlichsten Reaktortypen beschäftigen. Universitäten brauchen sich keine Sorgen mehr über den Nachwuchs zu machen.

In diesem Umfeld fehlt es nur noch an politischem Willen. Dieser scheint nun endlich in der Gestalt von Präsident Trump gekommen zu sein. Er hat das Zeug zu einem Kennedy der Kerntechnik zu werden. So, wie einst die Mondlandung zu einer Explosion der Raumfahrt geführt hat, könnte heute der „Micro-Reactor“ eine Initialzündung für einen neuen Industriezweig auslösen.

Was macht dieses Konzept so anders?

Grundgedanke ist die Serienfertigung. Die heutigen (unvorhersehbaren) Bauzeiten für Kernkraftwerke in westlichen Ländern sind für jeden Investor völlig indiskutabel. Zwar bekommt man nicht einmal ein Gaskraftwerk beim Kaufmann um die Ecke, aber zumindest Termingerecht in einem überschaubaren Zeitraum. Die unvorhersehbaren Zeiträume sind die Hauptursache für die hohen Kosten. Dies zeigen die Preise für baugleiche Kraftwerke in China überdeutlich — z. B. gegenüber den ewigen Baustellen in USA (Vogtel), Frankreich (Flamanville) und Finnland (Olkiluoto).

Die notwendige Erstinvestition für eine kleine Leistung ist entsprechend gering gegenüber einem großen konventionellen Kernkraftwerk. Das wirtschaftliche Risiko ist dadurch leichter handhabbar. In wie weit die Serienfertigung hierbei mit einer Kostendegression durch Größe mithalten kann, wird die Zukunft zeigen. Viel wichtiger ist jedoch, daß sich durch die geringen Leistungen völlig neue Märkte für die Kerntechnik erschließen. Auch die Großraumflugzeuge haben in der Luftfahrt nicht die Neuentwicklung kleiner Jets verhindert. Im Gegenteil, haben die kleinen Flugzeuge völlig neue Märkte erschlossen und damit die Luftfahrt insgesamt belebt.

Die Brennstoffkosten sind bei Kernkraftwerken vernachlässigbar — ausdrücklich auch unter Einschluß der notwendigen Entsorgungskosten! Man sollte deshalb nicht den Wirkungsgrad, sondern die Investitionskosten und die Robustheit in den Vordergrund stellen. Lange Betriebszeiten (geplant mindestens 10 Jahre) zwischen den Brennstoffwechseln ergeben schnell geringere Stromkosten zu festen Preisen (Leistung in kW x Betriebsstunden = produzierte Kilowattstunden) gegenüber Windmühlen und Sonnenkollektoren. Aber das absolute Killerargument gegenüber allen wetterabhängigen Verfahren ist: Immer wenn der Schalter umgelegt wird, ist die benötigte elektrische Leistung vorhanden. Ganz ohne Speicher und sonstigen teuren Ballast und auch noch ohne Luftbelastung.

Der ungesehene Markt

Alle Kleinreaktoren leiden unter dem „Henne-Ei-Problem“: Größere Stückzahlen sollen über eine Serienfertigung die Preise drastisch senken. Es fehlt aber der Kunde, der für einen ersten Reaktor bereit ist, das volle Risiko und den notwendigerweise erhöhten Preis zu tragen. Ein Problem, das der Flugzeugindustrie wohl bekannt ist. Es gibt jedoch einen Kunden, der mit diesem Phänomen gewohnt ist umzugehen und überdies noch durch den Steuerzahler gedeckt ist: Das Militär.

Für das US-Militär ist die Versorgung mit Energie stets ein strategisches Problem gewesen. Jeder Versorger muß im Ernstfall durch Kampftruppen (z. B. Begleitung von Konvois) geschützt werden — bindet also Kampfkraft. Außerdem schreitet mit stark zunehmender Geschwindigkeit die Elektrifizierung des Militärs voran (Kommunikation, Radargeräte usw., bis hin zu Waffensystemen selbst). Gleichzeitig werden die vorhandenen Stromnetze auch in USA durch den vermehrten Einsatz von „Erneuerbaren“ immer störungsanfälliger und die Stromkosten steigen immer weiter. Der Scheidepunkt zwischen immer mehr zusätzlicher Notstromversorgung zur Absicherung und Eigenversorgung rückt immer näher. Das US-Verteidigungsministerium ist für über 500 Liegenschaften mit mehr als einem Megawatt Anschlussleistung allein auf dem eigenen Staatsgebiet Auftraggeber und somit einer der größten Stromkunden überhaupt (ca. 21% des gesamten öffentlichen Verbrauchs). 90% dieser Objekte kann mit 4 x 10 MWel voll versorgt werden. Hinzu kommen noch langfristig Heizwärme und Trinkwasser (Meerwasserentsalzung). Im ersten Schritt wird aber eine reine Stromversorgung angestrebt. Da die Spitzenlast nur im Ernstfall benötigt wird, kann sich Zukünftig eine Umkehrung anbieten: Das militärische Kraftwerk speist Überschußstrom ins Netz und senkt damit die eigenen Kosten. Somit ergeben sich folgende Anforderungen:

  • Kleine Abmessungen und geringes Gewicht, damit die „Kleinkraftwerke“ später auch im Feld folgen können.
  • Um möglichst viele Anwendungsfälle zu erschließen, nur eine kleine Leistung — bis 10 MWel derzeit angestrebt.
  • Inhärente („walk away“) Sicherheit.
  • Möglicher Betrieb über den vollen Lastbereich mit hoher Änderungsgeschwindigkeit um Inselbetrieb zu gewährleisten.
  • Langzeit-Dauerbetrieb mit Brennstoff Wechselintervallen von mindestens 10 Jahren („Batterie“). Dies macht eine höhere Anreicherung von nahezu 20% (HALEU) nötig.
  • Weitestgehend vollautomatischer Betrieb durch Soldaten — nach kurzer Schulung und Einarbeitung.
  • Möglichst eine zivile Zulassung durch die NRC um die potentiellen Stückzahlen zu erhöhen und eine Einspeisung ins öffentliche Netz zu ermöglichen.

Das Genehmigungsverfahren

Heutzutage eine Genehmigung für einen neuen Reaktortyp zu erlangen, gleicht einem einzigen Hindernislauf mit ungewissem Ausgang. Von einer Behörde, die ein Monopol hat und überwiegend im Stundenlohn (rund 280$/h) arbeitet, kann man keine Sprünge erwarten. Sie wird sich noch grundlegend umorganisieren müssen um sich den neuen — teilweise noch in Arbeit befindlichen — Randbedingungen anzupassen: Bei Reaktoren so kleiner Leistung ist die Menge radioaktiver Stoffe (Spaltprodukte) so klein, daß auch im ungünstigsten Fall eine Gefährdung von Personen außerhalb des Betriebsgeländes ausgeschlossen werden muß. Eine schlimme Kröte für alle „Atomkraftgegner“! Eine inhärente Sicherheit, d. h. keine nukleare Explosion und auch keine Notkühlung ist erforderlich. Ein vollautomatischer Betrieb, der keine Fehlbedienung erlaubt. In diesem Zusammenhang ist interessant, daß die gesetzlichen Bestimmungen über die Nuklearversicherung bald routinemäßig auslaufen und zwangsläufig überarbeitet werden müssen. Es bietet sich an, für solche Reaktoren die Haftpflicht nur noch rein kommerziell auszugestalten. Eine (spezielle) Industrieversicherung mit kalkulierbar geringeren Kosten. Auch das wird für „Atomkraftgegner“ nur schwer verdaulich sein, da es doch zu deren Grundüberzeugungen zählt, daß Kernkraftwerke gar nicht zu versichern seien!

Wer an dieser Stelle glaubt, das seien alles nur Wunschträume, der täuscht sich gewaltig. Die NRC steht unter Druck. Sie hat schon lange den Bogen überspannt. Ganz entscheidend ist aber, daß sich mit der Wahl von Präsident Trump der Wind von gegen, in pro Kernenergie gedreht hat. Der Präsident ist nämlich in dieser Frage sehr mächtig: Nach dem Atomic Energy Act of 1954 kann er das Verteidigungsministerium (DoD) anweisen, einen solchen Reaktor für militärische Zwecke zu bauen und zu betreiben (siehe 42 U.S.C. §2121(b)). Es bedarf dazu ausdrücklich keiner Genehmigung durch die NRC (siehe 42 U.S.C. §2140(b)).

Allerdings ist der Eigenbau gar nicht gewollt. Es geht um die Wiederbelebung der kerntechnischen Industrie. Dafür ist aber eine Genehmigung und Überwachung durch die NRC nötig. Im Gespräch sind private Investoren und Betreiber. Das Militär würde nur für 40 Jahre den Strom zu einem festgelegten Preis kaufen. Das Kraftwerk könnte in unmittelbarer Nähe des Stützpunktes errichtet werden und von dieser wirtschaftlichen Basis aus, sein Geschäft erweitern. Ein Vorbild ist auch die NASA, die eng mit privaten Raketenherstellern zusammenarbeitet und von diesen Nutzlast kauft.

Der Zeitplan

Aktuell geht man von einer Realisierung innerhalb von 5 bis 10 Jahren für den „Neuen Reaktor“ einschließlich Brennstoffkreislauf, Genehmigungen und Bau aus. Für einen Kerntechniker hört sich das wie Science Fiction oder einer Geschichte aus vergangenen Zeiten (erstes Atom-U-Boot Nautilus etc.) an. Vielleicht knüpft Präsident Trump aber bewußt an diese Traditionen an. Ein solches Projekt ist weniger eine Frage der Ingenieurleistungen sondern viel mehr des politischen Willens. Gelingt es ihm, hat er wahrlich „America Great Again“ gemacht. Wenn Amerika wirklich wollte, hat es immer das Unmögliche geschafft: Manhattan Project, Nautilus, Apollo usw.

Nun ist es auch nicht so, als wenn man bei Stunde Null mit diesem Projekt anfängt. Technisch gibt es kaum Unwägbarkeiten. Politisch sind auch bereits die entscheidenden Gesetze durchgebracht. Es ist halt der unvergleichliche Donald Trump Regierungsstil: Immer viel Kasperletheater als Futter für die Medien und sonstige schlichte Gemüter, bei gleichzeitig harter Sacharbeit im Hintergrund.

Grundgesetz und Kernenergie

Vor einigen Tagen hat mir ein Leser eine Unterrichtung durch die Bundesregierung mit der Bitte um eine Stellungnahme zum Kapitel Kernenergie zugeschickt. Hierbei handelt es sich um ein Sondergutachten des Sachverständigenrates für Umweltfragen: Wege zur 100 % erneuerbaren Stromversorgung vom 18. Februar 2011. Warum nun eine so olle Kammelle aus der Zeit der Koalition von CDU/CSU und FDP? Geschichtlich von Bedeutung ist die Tatsache, daß das Unglück von Fukushima erst am 11. März 2011 stattfand. Also erst einen Monat nach dem Druck dieses Gutachtens. Ganz offensichtlich ein willkommener Anlaß für den schon lange geplanten und gewünschten Ausstieg aus der Kernenergie. Wohlgemerkt, maßgeblich mit geplant und umgesetzt durch die FDP (17. Wahlperiode vom 27.10.09 – 22.10.13).

Es gibt aber noch einen aktuelleren Grund: Immer mehr Bürger fragen sich, ob die Energiewende überhaupt mit dem Artikel 20a unseres Grundgesetzes vereinbar ist:

„Der Staat schützt auch in Verantwortung für die künftigen Generationen die natürlichen Lebensgrundlagen und die Tiere im Rahmen der verfassungsmäßigen Ordnung durch die Gesetzgebung und nach Maßgabe von Gesetz und Recht durch die vollziehende Gewalt und die Rechtsprechung„.

Genau darum geht es nämlich in dem Sondergutachten. Es soll die Energiewende als zwingend durch das Grundgesetz vorgeschriebenes Staatsziel legitimieren. Es ist sicherlich kein Zufall, da gerade die FDP eine Partei mit überdurchschnittlich hohem Anteil an Juristen ist. Man hat dieses „Gutachten“ — nach der immer noch bewährten Methode — bei besonders linientreuen Scharlatanen in Auftrag gegeben. Das Verzeichnis der Personen spricht Bände: Ausgesucht keine einschlägige Berufsausbildung oder fachliche Qualifikation auf dem Gebiet der „Stromversorgung“, dafür aber ideologisch um so gefestigter. Fachkenntnisse — oder gar andere Ansichten — hätten die Auftragsarbeit sicherlich nur behindert und das schon im Titel geforderte Ergebnis vielleicht sogar gefährdet. Politik in Deutschland des 21. Jahrhunderts. Ähnlichkeiten mit Staat und Papsttum des Mittelalters sind sicherlich rein zufällig.

Kurzfassung für Entscheidungsträger

Früher nannte man einen solch zeitsparenden Überblick noch „Minister-Seite“. Heute braucht Politiker*in über fünf Seiten „Fakten“ und bunte Bilder um in einer Talkshow sitzen zu können oder gar den Qualitätsmedien Fachkunde vorspielen zu können. Für das Durchwinken eines Gesetzes ist nicht einmal das nötig, denn da folgt man immer schön dem Beschluss der eigenen Fraktion — damit kann man sicher nichts verkehrt machen. Um die Sache noch einmal für den letzen Hinterbänkler zu verdichten, lautet gleich der erste Satz:

„Die Klimapolitik steht vor der Herausforderung, dass die Treibhausgasemissionen der Industrieländer um 80 bis 95 % reduziert werden müssen, um eine als gefährlich angesehene globale Temperaturerhöhung von über 2°Celsius gegenüber dem vorindustriellen Niveau zu vermeiden“.

Alles klar? Es geht also um die Weltrettung. Dass dieser Satz gleich mehrfach Blödsinn ist — selbst in dieser Studie — erfährt man erst beim vollständigen lesen der fast 400 Seiten. Aber welcher Parlamentarier hat schon so viel Zeit. Da ist es doch besser, man zeigt ihm gleich wo die Mehrheiten sitzen:

„In Deutschland besteht ein weitgehender Konsens, dass eine nachhaltige Entwicklung des Energiebereichs langfristig eine möglichst vollständig auf regenerativen Energieträgern basierende Elektrizitätsversorgung erfordert.“

Das versteht er. Ist zwar auch bloß eine Sprechblase — die zudem auch noch mehr als diskussionswürdig ist — aber Mainstream ist immer gut für die Wiederwahl. Was aber, wenn Volksvertreter*in gerade keine Lesebrille auf hat? Deshalb die alles entscheidende und beruhigende Aussage noch einmal im Fettdruck:

„100 % Vollversorgung mit Strom aus erneuerbaren Energien ist möglich, sicher und bezahlbar.

Basta! Wie ein anderer Bundeskanzler und heutiger Vertreter für Russengas immer zu meckernden Parteimitgliedern zu sagen pflegte. Gleichnamigem Kanzler und seinem „Kellner“, dem Diplom-Sozialwirt Jürgen Trittin, ist übrigens die Besetzung des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit mit solch großen Denkern und Forschern zu verdanken. Vorgänger dieses Ministers war übrigens eine gewisse Angela Merkel. Sage keiner, es gäbe keine Kontinuität in diesem Sachgebiet. Man ist aber fair genug, selbst in dieser Kurzfassung, noch eine Duftmarke seiner politischen Gesinnung zu hinterlassen:

„Die Einsparung von Strom kann als die wichtigste Brückentechnologie auf dem Weg zur regenerativen Vollversorgung betrachtet werden. Die Bundesregierung sollte daher ein absolutes Verbrauchsziel für den Stromverbrauch setzen. Ein geeignetes Instrument zur deutlichen Stärkung der Marktanreize für ein solches Ziel könnte die Einführung von Stromkundenkonten sein.“

Nur zur Erinnerung: Koalitionspartner war die FDP. Der Austausch der Sprache im Orwellschen Sinne findet nicht erst seit heute statt: Hier wird aus „planwirtschaftlichem Bezugssytem der staatlichen Mangelwirtschaft“ flugs „Marktanreize durch Stromkundenkonten“ gemacht. Frau Claudia Kemfert — die unvergleichliche Denkerin des DIW — hätte es nicht besser sagen können. Freilich hätte sie als ausgewiesene Artistin des Denglish lieber vom „Smart Grid“ und „Smart Meter“ geschwärmt.

Nachhaltigkeitsbewertung verschiedener Optionen der Energieerzeugung: Kernenergie

Jetzt ist eine kunstvolle Pirouette gefragt. Sie erinnern sich noch an den ersten Satz der Kurzfassung? Vielleicht sollten sie noch mal das Zitat weiter oben genau lesen, damit sie auch in den vollen Genuß der geistigen Verrenkungen kommen. Es geht um nichts weniger als die Errettung vor dem bösen CO2. Oh Schreck, jetzt taucht auf Seite 46 des Gutachtens eine Tabelle über „Gesamte durchschnittliche Treibhausgas-Emissionen von Stromerzeugungsoptionen“ auf. Ihre Einheit ist „Emissionen in g/kWhel CO2 Äquivalente“. Spitzenreiter sind die bösen Braunkohle-Kraftwerke, die auch noch die Stromnetze verstopfen, mit sagenhaften 1153. Aber selbst die „AKW mit Uran aus Russland“ geben nur 63 her. Nur dreimal so viel wie die ideologisch guten Windparks mit 23 und nur gut die Hälfte von den ebenfalls ideologisch einwandfreien „Solarzelle (multikristallin)“ mit 101. Wohlgemerkt, diese Tabelle ist nicht von der bösen „Atomlobby“ erschaffen, sondern vom Öko-Institut errechnet, der Glaubenskongregation aller „Umweltschützer und Atomkraftgegner“. Auch deshalb muß man an dieser Stelle zu dem glasklaren Schluß kommen:

„Stromerzeugung aus Kernenergie ist weniger schädlich für das globale Klima als die Kohleverstromung; die im Lebenszyklus auftretenden Treibhausgasemissionen pro erzeugter Kilowattstunde liegen in der Größenordnung von denen erneuerbarer Energien. Dennoch ist die Kernenergie aus mehreren Gründen, insbesondere aufgrund der Entsorgungsproblematik und der Risiken beim Betrieb, als nicht nachhaltig einzustufen.“

Wow! So geht also Wissenschaft heute. Wenn die selbst errechneten Zahlen nicht zum eigenen Weltbild passen, werden sie einfach durch „Argumente“ ersetzt. Der Auftritt der Tochter des „Solarpapstes“ Hermann-Scheer (SPD) Dr. Nina Scheer (SPD) im Bundestag war also doch kein Ausreißer.

Es gibt also zwei „Argumente“: „Entsorgungsproblematik“ und „Risiken beim Betrieb“, die die Kernenergie aus dem Kreis der „CO2 armen“ Technologien ausschließen. Dabei muß wieder einmal die Förster-Weisheit von der „Nachhaltigkeit“ herhalten. Dieses Wort besitzt für jeden Gutdenker die gleiche Zauberkraft wie „Neo-Liberal, Kasino-Kapitalismus etc.“. Man weiß sofort, auf welcher Seite man zu stehen hat.

Der geneigte Leser wird jetzt vielleicht ein paar Argumente erwarten, aber weit gefehlt.

Endlagerung

Dieses Unterkapitel nimmt in diesem „Sondergutachten“ weniger als eine halbe Seite ein. Der einzige Inhalt zur Begründung besteht aus dem Satz:

„Starke Radioaktivität, hohe chemische Toxizität, lang anhaltende Wärmeproduktion und die durch Korrosion und mikrobielle Vorgänge hervorgerufene Gasbildung stellen hohe Anforderungen an das Rückhaltevermögen der Barriereelemente.“

Raten sie mal, was als Quelle für den „weltweiten“ Stand der Forschung zu diesem Komplex angegeben wird? Der Sachverständigenrat für Umweltfragen (SRU 2000). Das ist die Steigerung des Echoraumes, das selbstverliebte Eigenzitat. Von unfreiwilliger Komik ist der sich direkt anschließende Satz:

„Eine Bewertung der langfristigen Sicherheit von Endlagerstandorten muss sich notwendigerweise auf Annahmen und Modellrechnungen stützen. Die Ergebnisse solcher Untersuchungen sind mit umso größeren Unsicherheiten behaftet, je weiter die betrachteten Zeitpunkte in der Zukunft liegen.“

Hoppla! Wie hieß es noch im ersten Satz der Kurzfassung für Entscheidungsträgerglobale Temperaturerhöhung von über 2°Celsius“. Was auch immer eine „globale Temperaturerhöhung“ sein soll, jedenfalls wird diese ebenfalls durch mit Annahmen gefütterte Modellrechnungen bestimmt. Allerdings mit einem kleinen, aber gewichtigen Unterschied: Kein einziges „Klimamodell“ ist in der Lage, die „Klimaverläufe“ der Vergangenheit auch nur annähernd nachzubilden. Demgegenüber stellen die Rechenprogramme der Geologen ihre Brauchbarkeit nahezu täglich unter Beweis: Sonst hätten wir längst kein Öl und kein Erdgas mehr zur Verfügung.

Die letzten zwei Sätze dieses Kapitels geben in einem Zirkelschluss noch einmal den Auftrag wieder:

„Somit ist nicht auszuschließen, dass die Lebensgrundlagen kommender Generationen durch heute eingelagerten radioaktiven Abfall in katastrophalem Ausmaß beschädigt werden. Die Kernenergie ist damit im Sinne der Generationengerechtigkeit und der Risikovorsorge als nicht nachhaltig einzustufen.“

Wenn man — ich bin ausdrücklich kein Jurist — die vorhergehenden Kapitel über den Artikel 20a GG in diesem Sondergutachten gelesen hat, soll damit wohl suggeriert werden, daß die Kernenergie gegen das Grundgesetz verstößt.

Störfallrisiko

Es ist ja nicht so, daß die Kerntechnik keine Erfahrungen mit Störfällen und Unglücken hätte. Sie ist der am stärksten überwachte und durch Vorschriften reglementierte Industriezweig weltweit. Spätestens nach der Katastrophe von Tschernobyl wissen wir, daß die Propaganda der Angstindustrie „Millionen-Tote, für-zehntausende-Jahre-unbewohnbar“ einfach nur ein Märchen ist. Was bitte, ist denn noch denkbar, als ein Reaktor der explodiert, brennt und fast seine ganze Radioaktivität wie ein Vulkan ausspeit? Selbst mehrere Reaktoren wie in Fukushima stellen kein Sicherheitsrisiko für die Bevölkerung dar. Auch an unseren Gutachtern sind diese Tatsachen sicherlich nicht ganz spurlos vorbeigegangen. Sie beschließen dieses Kapitel deshalb lieber etwas schwammig:

„Die Charakterisierung des Risikos mit einer bestimmbaren und niedrigen Eintrittswahrscheinlichkeit sowie einem bestimmbaren und großen Schadensausmaß ist daher nicht mehr zeitgemäß. Vielmehr sind weder die Eintrittswahrscheinlichkeiten noch die möglichen Schadenswirkungen genau bestimmbar. Das Kernenergierisiko ist außerdem gekennzeichnet durch hohe Persistenz, Ubiquität und Irreversibilität“.

Wieder ist die Quelle dieser Aussage der eigene Echoraum: Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU 1998). Aber der Bildungshorizont unserer Gutachter geht natürlich noch viel weiter — man Beachte auch die Quellenangaben in diesem wörtlichen Zitat:

„Das Prinzip der Nachhaltigkeit erfordert Priorität für die Vermeidung solcher Risiken. Wenn die Möglichkeit katastrophaler Auswirkungen existiert, stößt die wissenschaftliche Bewertung der Risiken und Kosten an Grenzen – formale Kosten-Nutzen-Rechnungen sind in einem solchen Fall keine adäquate Grundlage für Abwägungsentscheidungen (vgl. Paul Krugman im New York Times Magazin vom 7. April 2010). Stattdessen muss die Vermeidung von Großrisiken auch bei sehr geringen Eintrittswahrscheinlichkeiten als Nachhaltigkeitskriterium Vorrang haben (Tz. 27). Für die Stromerzeugung sind demnach Technologien vorzuziehen, die technisch realisierbar, wirtschaftlich vertretbar, aber mit deutlich geringeren Sicherheitsrisiken verbunden sind.“

Welche Technologien wohl damit gemeint sind? Etwa die wetterabhängigen Umweltenergien Wind und Sonne? Wo sind die technisch realisierten Speicher gebaut worden? Wie hoch die Kosten für diesen Unsinn sind, kann jeder selbst aus seiner eigenen Stromrechnung nachvollziehen.

Umwelt- und Gesundheitsbelastungen durch den Uranabbau

Allseits bekannt ist ja, daß Deutschland sich immer sehr um fremde Länder sorgt. Neuerdings wollen wir ja sogar Fluchtursachen beseitigen:

„Viele Uranabbaugebiete liegen in Entwicklungsländern und auf dem Gebiet indigener Völker. Die Einhaltung sozialer und Umweltstandards, etwa ein angemessener Schutz der Minenarbeiter, kann für importierte Uranbrennstoffe nur schwer kontrolliert werden.“

Die Generatoren der Windmühlen und die Photovoltaik benötigen große Mengen exotischer Materialien. Wie hoch war doch noch mal der Mindestlohn im Kongo? Wie sah noch mal der Umweltschutz bei der Gewinnung seltener Erden in China aus? Wo wird der Abfall aus der Produktion beseitigt? Auch Windmühlen und Sonnenkollektoren haben nur eine endliche Lebensdauer. Fragen über Fragen…

Verbrauch nicht-erneuerbarer Ressourcen

Man scheut aber auch in dieser Unterrichtung durch die Bundesregierung nicht vor dreisten und dummen Lügen zurück:

„Kernenergie kann aufgrund der Endlichkeit der Ressourcen für Kernbrennstoffe bestenfalls als Übergangstechnologie genutzt werden. Die gängigen Schätzungen gehen davon aus, dass die bekannten Uranreserven die weltweite Versorgung noch für einige Jahrzehnte sicherstellen können…. Insgesamt ist angesichts der begrenzten Uranvorkommen auch der Verbrauch dieser nicht-erneuerbaren Ressource ein Kriterium, das bei der Nachhaltigkeitsbewertung dieser Option berücksichtigt werden muss.“

Kernbrennstoffe werden aus Uran, Plutonium und Thorium hergestellt. Auf der Basis der heutigen weltweiten Energienachfrage ist Uran und Thorium in der Erdkruste und den Weltmeeren für mindestens Zehntausende von Jahren vorhanden. Bestenfalls liegt hier der ewige „Peak-Irrtum“ vor. Die gewinnbaren Rohstoffvorkommen hängen immer von den erzielbaren Preisen und der sich ständig weiter entwickelnden Technik ab. Wegen der außerordentlich hohen Energiefreisetzung bei der Kernspaltung ist die Grenze fast beliebig nach oben ausweitbar.

Abgesehen davon, gilt die Försterweisheit von der Nachhaltigkeit nur dann, wenn man auch tatsächlich den Wald erhalten will. Hätten unsere Vorfahren so gehandelt, müßten wir heute noch auf den Bäumen leben. Niemand kann aber die Zukunft vorhersagen. Deshalb ist das Schonen von Ressourcen bestenfalls anmaßend und zeugt von eindimensionalem Denken oder wie weiland ein Ölminister bemerkte: Die Steinzeit ist nicht aus Mangel an Steinen zu ihrem Ende gekommen.

Kosten

Der Schlußsatz des etwa dreiseitigen Kapitels zur Bewertung der Kernenergie lautet:

„Insgesamt besteht bei der Kernenergie große Unsicherheit hinsichtlich der Kostenentwicklung sowie eine große potenzielle Diskrepanz zwischen den gesellschaftlichen Kosten und den Kosten für die Betreiber. Dass die Kosten langfristig sinken werden, kann als unwahrscheinlich betrachtet werden.“

Kosten sind Kosten. Immer wenn von „externen Kosten“ oder „gesellschaftlichen Kosten“ die Rede ist, versuchen irgendwelche Vulgärmarxisten ein „Marktversagen“ zu konstruieren um ihre unpopulären gesellschaftlichen Vorstellungen durchzudrücken.

Abschließende Betrachtung

Es ist schon so eine Sache mit unserem Grundgesetz: Es wächst und wächst. Teilweise hat es einen bemerkenswerten Detaillierungsgrad erreicht. So hat sich sogar der Tierschutz mit einem eigenen Paragraphen eingeschlichen. Es war sicherlich einfach, für die „niedlichen Welpen“ eine erforderliche Mehrheit zu finden. Wer möchte schon in seinem Wahlkreis als Tierquäler verdächtigt werden. Die meisten Parlamentarier haben wahrscheinlich gar nicht gemerkt, daß es sich dabei um ein Trojanisches Pferd gehandelt hat. Denn viel bedeutender ist die erste Hälfte des Satzes über die Lebensgrundlagen. Der Duden sagt zur Bedeutung des Wortes: Materielle Grundlage, Voraussetzung des Lebens.

Das Gutachten spricht von „abiotischen Elementen wie Luft, Wasser, Böden und auch das Klima“. Was ist mit Flora und Fauna oder mit etwas eher ästhetischem wie Landschaft oder gar den Menschen und ihrem Naturrecht nach Glück zu streben? Das Gutachten geht noch weiter, man schwadroniert von der Lebensgrundlage kommender Generationen, von Generationengerechtigkeit und Risikovorsorge. Am besten gefällt mir die Generationengerechtigkeit als Staatsziel. Ich dachte bisher, die Parlamentarier hätten sich im Zusammenhang mit der Rentenfrage bereits daran abgearbeitet. Man verzeih mir als einfachem Ingenieur, daß ich mir wenig unter einer „generationengerechten Stromversorgung“ vorstellen kann.

Je länger ich mich mit diesem Machwerk beschäftigt habe, komme ich zu dem Schluß, daß es hier nur um die Durchsetzung einer ganz bestimmten — allenfalls laienhaften — Vorstellung über eine Energieversorgung geht. Wenn nicht sogar um schlimmeres. Vordergründig geht es um den „Atomausstieg“, längerfristig um die „große Transformation“. Wohin eigentlich genau: Bloß in Maos „Großen Sprung“ oder gleich in die steinzeitkommunistischen Utopien des „Bruder Nummer Eins“?

Könnte Deutschland die große Schweiz werden?

Die Bürger der Schweiz haben sich gegen eine vorzeitige Abschaltung ihrer Kernkraftwerke entschieden. Ein Anlass, einmal über die Verhältnisse in Deutschland (neu) nachzudenken.

Der Istzustand

Vielen Menschen in Deutschland ist gar nicht bewußt, daß immer noch acht Blöcke am Netz sind (Isar 2, Brokdorf, Philippsburg 2, Grohnde, Emsland, Neckarwestheim 2, Gundremmingen B und C) und in aller Stille reichlich zur Energieversorgung in Deutschland beitragen. Sie haben immerhin zusammen die stolze Leistung von 10.799 MWel. und produzieren damit durchschnittlich 86.595.052.800 kWh elektrische Energie jährlich. Wohl gemerkt, jedes Jahr, unabhängig davon, wie stark der Wind bläst oder die Sonne scheint. Halt Energie nach den Bedürfnissen der Menschen und nicht „auf Bezugsschein“ irgendwelcher Schlangenölverkäufer mit (meist) öko-sozialistischer Gesinnung. Ganz neben bei, tragen sie durch ihre gewaltigen Generatoren auch noch zur Netzstabilität bei. Wie wichtig und kostenträchtig allein dieser Aspekt ist, werden unsere Laiendarsteller erst merken, wenn diese Kraftwerke endgültig abgeschaltet sind.

Wieviel Volksvermögen vernichtet werden soll

Fangen wir mal mit dem letzten Aspekt an: Die Standorte zukünftiger Windparks und Photovoltaikanlagen können – wegen der geringen Energiedichte von Wind und Sonne – gar nicht den Kernkraftwerken entsprechen. Das vorhandene Stromnetz muß daher komplett umgebaut bzw. erweitert werden. In der Öffentlichkeit wird wohlweislich nur von den neuen „Stromautobahnen“ gesprochen, die den „Windstrom“ von Norddeutschland nach Süddeutschland transportieren sollen. Freilich sind bereits dafür Milliarden erforderlich. Kaum ein Wort über die Frequenzregelung und die Niedervolt Netze zum Einsammeln des flächigen Angebots (z. B. Sonnenkollektoren auf den Dächern).

Wir reden hier nicht von irgendwelchen „Schrottreaktoren“, sondern ausnahmslos von Kernkraftwerken, die erst zwischen 1984 und 1989 ans Netz gegangen sind. Für solche Kraftwerke geht man heute international von einer Betriebszeit von 60 bis 80 Jahren aus. Sie hätten also eine „Restlaufzeit“ bis in die zweite Hälfte dieses Jahrhunderts vor sich – wenn sie nicht in Deutschland, sondern bei unseren Nachbarn stehen würden! Warum nur, fällt mir an dieser Stelle, der alte Witz-über-die-Geisterfahrer ein?

Um es klar und deutlich zu sagen, sie verfügen über Sicherheitseinrichtungen, die heute noch international Spitze sind. Teilweise werden japanische und osteuropäische Kernkraftwerke gerade erst auf dieses Niveau nachgerüstet. Selbst noch im Bau befindliche Reaktoren in China und den Emiraten, sind keinesfalls sicherer. Das alles, obwohl es in Deutschland weder schwere Erdbeben noch Tsunamis gibt.

Wenn man als Wiederbeschaffungswert die Baukosten der koreanischen Reaktoren in den Vereinigten Emiraten ansetzt (4 x 1400 MW für 20 Milliarden US-Dollar), werden hier mal eben rund 35 Milliarden Euro verbrannt. Zugegeben eine grobe Abschätzung, aber wie war das noch mal mit dem Rentenniveau für die kommende Generation? Es ist ja offensichtlich nicht so, als wäre in diesem Land überhaupt kein Kapital mehr vorhanden oder anders: Der Kleinrentner soll auch noch durch überteuerten „Ökostrom“ zusätzlich bluten.

Der energetische Ersatz

Ein beliebter Vergleich der Schlangenölverkäufer ist immer die produzierte Energie. Lassen wir die Zahlen für sich sprechen: Im Jahr 2015 wurden insgesamt 86 TWh Windenergie erzeugt. Dazu waren 27.147 Windmühlen mit einer Gesamtleistung von 44,95 GW notwendig gewesen. Wollte man die acht verbliebenen Kernkraftwerke durch Windmühlen ersetzen, müßte man also noch einmal die gleiche Anzahl zusätzlich bauen. Besser kann man den Irrsinn nicht verdeutlichen. Schon allein unsere Vogelwelt könnte 20.000 zusätzliche Schredderanlagen nicht verkraften. Welche Wälder sollen noch gerodet werden?

Wollte man die gleiche Energie mit Photovoltaik erzeugen, müßte man über 82 GW zusätzlich installieren. Trotzdem wäre es weiterhin des Nachts dunkel.

Die Speicherfrage erübrigt sich, denn allen ökologischen Sturmgeschützen zum Trotz: Es gibt sie wirklich, die Dunkel-Flaute. Jawohl, besonders bei Hochdruck-Wetterlage im Winter weht tagelang kein Wind – auch großflächig nicht.

Andererseits wird es den berühmten Muttertag (8.5.2016) auch immer wieder geben: Sonnenschein mit Starkwind an einem verbrauchsarmen Sonntag, der die Entsorgungskosten an der Strombörse auf -130 EUR/MWh hochgetrieben hat. Wie hoch dürfte die Entsorgungsgebühr wohl sein, wenn der Ausbau noch einmal verdoppelt wird? Sind dann unsere Nachbarn überhaupt noch bereit, unseren „Strommüll“ für uns zu entsorgen? Ich glaube nicht. Zwangsweise Abschaltungen wären die Folge: Die Abwärtsspirale immer schlechter werdender Auslastung für die „Erneuerbaren“ wird immer steiler werden. Das Rennen nach der Fabel von Hase und Igel hat ja bereits längst begonnen. Dies sei allen Traumtänzern gesagt, die von einer Vollversorgung durch Wind und Sonne schwadronieren.

Der notwendige Ersatz

Wie gesagt, es gibt sie wirklich, die Dunkel-Flaute. Speicher in der erforderlichen Größe sind nicht vorhanden. Das seit Jahren erklingende Geraune von der „Wunderwaffe-der-Großspeicher“ wabert konsequenzlos durch die deutschen „Qualitätsmedien“. Physik läßt sich halt nicht durch den richtigen Klassenstandpunkt ersetzen. Es müssen deshalb neue Grundlastkraftwerke gebaut werden. Kurzfristig kann man elektrische Energie aus dem Ausland hinzukaufen – „Atomstrom“ und „Dreckstrom“ aus den östlichen Nachbarländern – bzw. vorhandene Mittellastkraftwerke im Dauerbetrieb verschleißen.

Will man 11 GWel durch Kombikraftwerke mit Erdgas als Brennstoff ersetzen, sind dafür etwa 20 Blöcke notwendig. Würde man sie an den vorhandenen Standorten der Kernkraftwerke bauen, könnte man zwar die elektrischen Anlagen weiter nutzen, müßte aber neue Erdgaspipelines bauen. Die Mengen können sich sehen lassen: Für 86 TWh braucht man immerhin etwa 15 Milliarden Kubikmeter Erdgas jedes Jahr. Wo die wohl herkommen? Wieviel das Erdgas für die Heizung wohl teurer wird, wenn die Nachfrage derart angekurbelt wird?

Will man 11 GWel durch Kombikraftwerke mit Erdgas als Brennstoff ersetzen, sind dafür etwa 20 Blöcke notwendig. Würde man sie an den vorhandenen Standorten der Kernkraftwerke bauen, könnte man zwar die elektrischen Anlagen weiter nutzen, müßte aber neue Erdgaspipelines bauen. Die Mengen können sich sehen lassen: Für 86 TWh braucht man immerhin etwa 15 Milliarden Kubikmeter Erdgas jedes Jahr. Wo die wohl herkommen? Wieviel das Erdgas für die Heizung wohl teurer wird, wenn die Nachfrage derart angekurbelt wird?

Wahrscheinlicher ist der Ersatz durch Steinkohlekraftwerke. Um die 8 noch laufenden Kernkraftwerke zu ersetzen, wären etwa 14 Blöcke vom Typ Hamburg-Moorburg nötig. Die würden etwa 28 Millionen to Steinkohle pro Jahr fressen. Die müssen nicht nur im Ausland gekauft, sondern auch bis zu den Kraftwerken transportiert werden.

Will man wenigstens die Versorgungssicherheit erhalten, bleibt nur die eigene Braunkohle. Man müßte nur etwa 10 neue Braunkohleblöcke vom Typ BoA-Neurath bauen. Die würden allerdings über 84 Millionen to Braunkohle pro Jahr verbrauchen. Unsere Grünen würde das sicherlich freuen, man müßte die Braunkohleförderung nicht einmal um die Hälfte erhöhen. Wieviele schöne „Demos“ gegen neue Tagebaue könnte man veranstalten!

Politik

Das Wahljahr 2017 (Landtagswahl in NRW und Bundestagswahl) kommt immer näher. Zwischen März und Juli soll der geplante Wahnsinn mit der Abschaltung von Gundremmingen beginnen. Da in Deutschland das Regulativ einer Volksabstimmung (über lebenswichtige Fragen) fehlt, bleibt nur die Auseinandersetzung in einer Parteien-Demokratie. Parteitage und Walkämpfe bieten die Möglichkeit Parteien zu zwingen „Farbe zu bekennen“. Dies gelingt aber nur, wenn die Bürger auch (öffentlich und nachdrücklich) Fragen stellen. Gerade in Deutschland neigt man eher zu „Man-hat-doch-nichts-davon-gewußt“ oder „innerlich-war-man-auch-dagegen“. Zumindest der ersten Lebenslüge, soll dieser Artikel entgegenwirken.

Die Forderung an alle Parteien kann nur lauten: Schluß mit der Kapitalvernichtung durch Abschaltung moderner Kernkraftwerke. Bis 2022 ist es weder möglich geeignete Groß-Speicher zu erfinden, das Stromnetz völlig umzukrempeln, noch fossile Kraftwerke in der benötigten Stückzahl als Ersatz zu bauen. Nicht einmal die Verdoppelung der Windenergie in nur vier Jahren ist möglich – jedenfalls nicht ohne bürgerkriegsähnliche Zustände heraufzubeschwören. Parteien, die dies nicht einsehen wollen, sind schlicht nicht wählbar. In einer indirekten Demokratie, in der dem Bürger das Recht auf Entscheidungen – in überlebenswichtigen Fragen — abgesprochen wird, kann sich der Bürger nur an der Wahlurne wehren. Nichts tut den etablierten Parteien mehr weh, als der Mandatsverlust. Dies ist halt die Kehrseite der Allmachtsphantasien der „indirekten Demokraten“.

Kernenergie als Heizung?

Pünktlich zum Jahresanfang hat sich wieder der Winter eingestellt – trotz aller Beschwörungen der Medien zur Weihnachtszeit. Es ist deshalb angebracht, sich einmal mehr mit dem Thema Heizung zu beschäftigen.

Der Anteil am Energieverbrauch

Der Primärenergieverbrauch in Deutschland – und ähnlichen Regionen auf der Nord- und Südhalbkugel – läßt sich grob in die Bereiche Stromerzeugung, Verkehr und Heizung (Niedertemperaturwärme) unterteilen. Diese Aufteilung ist ein Kompromiß zwischen einer rein energetischen Gruppierung (Kohle, Öl, etc.) und üblichen volkswirtschaftlichen Betrachtungen (Privat, Industrie etc.). Ganz grob kann man sagen, daß in Ländern wie Deutschland jeweils ein Drittel des Primärenergieeinsatzes auf diese drei Sektoren entfallen. Der hohe Anteil der Raumwärme mag auf den ersten Blick manchen verblüffen. Besonders bemerkenswert ist dabei, daß sich dieser Anteil keinesfalls verringert, sondern eher noch zunimmt – trotz aller technischer Fortschritte bei den Gebäuden (Heizungssysteme, Wärmedämmung etc.). Eine wachsende Bevölkerung mit steigenden Komfortansprüchen (Wohnungsgröße und Ausstattung) verbraucht auch immer mehr „Raumwärme“. Hinzu kommt die ständig wachsende Infrastruktur in der Form von Krankenhäusern, Hallenbädern, Sporthallen, Einkaufscentern,Verwaltungsgebäuden usw.

Bemerkenswert ist auch, wie sich auf diesem Gebiet die allgemeine Entwicklung der Energietechnik widerspiegelt: Alles begann mit dem Holz am Lagerfeuer und dieser Brennstoff blieb für Jahrtausende bestimmend. Auch die „Energieeffizienz“ ist keine Erfindung heutiger Tage. Die Entwicklung ging von der offenen Feuerstelle bis zum Kachelofen – immer aus den gleichen Gründen: „Komfort“ und „Kosteneinsparung“. Nachdem man die Wälder fast abgeholzt hatte und die „Bedarfsdichte“ in der Form von großen Städten immer weiter anstieg, ging man zur Kohle über. Nachdem die Luftverschmutzung bedrohliche Ausmaße angenommen hatte, begann das Zeitalter der „Zentralheizung“ und der Brennstoffe Öl und Gas. Das ist – auch in Deutschland – nicht einmal eine Generation her!

Das Problem von Leistung und Energie

Wir Menschen streben in unseren Behausungen ganzjährig möglichst gleichmäßige Temperaturen um die 20 °C an. Das Wetter spielt uns aber einen Streich. Die Außentemperaturen schwanken in unseren Breiten von rund -20 °C bis rund +35 °C. Wir müssen also heizen oder kühlen, um unsere Ansprüche zu erfüllen. Extreme Temperaturen sind aber selten, sodaß wir überwiegend nur wenig heizen oder kühlen müssen. Dies stellt unsere Anlagentechnik vor große technische und wirtschaftliche Probleme. Ist beispielsweise eine Zentralheizung für eine Außentemperatur von -10 °C ausgelegt, so muß sie an Tagen mit 0 °C nur noch 2/3 ihrer Leistung und an Tagen mit +10 °C gar nur noch 1/3 ihrer Leistung bereitstellen. Einzig die Warmwasserbereitung fällt das ganze Jahr über an. Sie kann je nach Geräteausstattung (Geschirrspüler, Waschmaschine) und „Wärmedämmstandard“ des Gebäudes, einen beträchtlichen Anteil an den Heizkosten haben. Anders verhält es sich mit der Energie – das ist das Öl oder Gas auf unserer Heizkostenabrechnung – von dem mehr an den häufigen milden Tagen, als an den wenigen Extremen verbraucht wird.

Inzwischen setzt sich auch die Erkenntnis durch, daß alle „Energiesparmaßnahmen“ (Wärmedämmung, Zwangslüftung etc.) erhebliche Investitionskosten erforderlich machen. Letztendlich nur eine Frage von „Kaltmiete“ und „Heizkosten“. Darüberhinaus stellen sich noch Fragen der Architektur (Bestand, Denkmalschutz etc.) und vor allem der Gesundheit (Schimmelpilz etc.). Die „Nullenergiehäuser“ sind nichts weiter, als eine ideologische Kopfgeburt.

Zentral oder dezentral

Bei jeder Verbrennung entstehen auch Schadstoffe. Bei Einzelfeuerungen sind sie technisch praktisch nicht in den Griff zu bekommen und noch weniger zu überwachen. Wer Öfen fordert, braucht sich um Feinstaub und krebserregende Stoffe in seiner Umwelt keine Gedanken mehr zu machen. Passives Rauchen und Autofahren wird heute von grünen Gesinnungstätern mit Körperverletzung gleichgesetzt. Demgegenüber wird der Gestank und das Gift aus Holzheizungen romantisiert und als „klimafreundlich“ verkauft.

Nicht zuletzt die Brennstoffver- und Ascheentsorgung stellte in dichtbesiedelten Gegenden ein Problem dar. Ende des 19. Jahrhunderts installierte man dafür z. B. in Chicago spezielle U-Bahn-Systeme. Nachdem sich Zentralheizungen in modernen Gebäuden durchgesetzt hatten, boten sich Fernwärmesysteme (Dampf oder Heißwasser bzw. Kaltwasser zur Klimatisierung) an. Interessanterweise hat man von Anfang an Abwärme aus Kraftwerken (sog. Kraft-Wärme-Kopplung) für die Heizungen verwendet. Eine wesentlich bessere Auslastung konnte man erreichen, indem man im Sommer die Fernwärme für die Klimaanlagen nutzte (Absorptionskälteanlagen).

Ein Vorteil der zentralen Versorgung ist die umweltfreundliche Erzeugung. Nur Anlagen ab einer gewissen Größe kann man mit Filteranlagen, Betriebspersonal, einer ständigen Abgasanalyse usw. ausstatten. Dezentral (Gas- oder Ölkessel) muß leider passen, denn die jährliche Kontrolle durch den Schornsteinfeger kann damit nie mithalten.

Direkte oder indirekte Nutzung der Kernenergie?

Es gibt grundsätzlich drei Wege, die Kernenergie für die Gebäudeklimatisierung (Heizung und/oder Kühlung) zu nutzen:

  1. Einsatz der in einem Kernkraftwerk erzeugten elektrischen Energie um damit direkte elektrische Heizungen (z. B. Nachtspeicher oder Radiatoren) oder indirekte Systeme (Wärmepumpen und Kältemaschinen) zu betreiben. Dies ist ein sehr flexibler Weg, der besonders einfach ausbaubar ist. Bevorzugt wird er in Gegenden angewendet, in denen nicht so extreme Temperaturen (z. B. Südfrankreich) vorherrschen oder extrem unterschiedliche Nutzungen der Gebäude in Verbindung mit Leichtbau und Wärmedämmung (Schweden) vorliegen.
  2. Kraft-Wärme-Kopplung. Man koppelt aus der Turbine eines Kernkraftwerks Dampf – der bereits zum Teil Arbeit zur Stromerzeugung geleistet hat – aus und nutzt ihn über ein vorhandenes Rohrnetz. Einst wurde dies sogar in Deutschland gemacht (stillgelegtes Kernkraftwerk Stade) und seit Jahrzehnten bis heute in der Schweiz (KKW Beznau für die „Regionale Fernwärme Unteres Aaretal“). Allerdings erfordert dies Kernkraftwerke, die sich möglichst nahe an Ballungsgebieten befinden.
  3. Man würde reine „Heizreaktoren“ bauen, die nur Wärme – wie ein konventioneller Heizkessel – für ein Fernwärmenetz liefern. Der Sicherheitsgewinn wäre so entscheidend (siehe nächster Abschnitt), daß man sie in den Städten bauen könnte. Eine Optimierung mit Wärmespeichern oder Spitzenlastkesseln könnte zu optimalen Ergebnissen bezüglich Kosten, Versorgungssicherheit und Umweltbelastungen führen.

Der nukleare Heizkessel

Gebäudeheizungen benötigen nur Vorlauftemperaturen unterhalb 90 °C. Will man auch noch Kälte für Klimaanlagen mit Hilfe von Absorptionskälteanlagen (üblich Ammoniak und Lithiumbromid) erzeugen, empfiehlt sich eine Temperatur von 130 °C bis 150 °C im Vorlauf des Fernwärmenetzes. Dabei gilt: Je höher die Temperaturspreizung zwischen Vor- und Rücklauf ist, um so größer ist die transportierte Leistung und damit werden die erforderlichen Rohrdurchmesser um so kleiner. Bei sehr großen Leistungen (Hochhäuser und beengte Rohrleitungstrassen) muß man sogar auf ein Dampfnetz mit seinen spezifischen Nachteilen übergehen.

Für wirtschaftliche und sicherheitstechnische Bewertungen ist es ausschlaggebend, sich einen Überblick über das erforderliche Druckniveau zu verschaffen. Will man Wasser bei 90 °C verdampfen, benötigt man einen Druck von 0,7 bar, bei 130 °C von 2,7 bar und bei 150 °C von 4,8 bar. Umgekehrt gilt, man muß mindestens diese Drücke aufrecht erhalten, wenn man eine Verdampfung verhindern will. Alles meilenweit entfernt von den Zuständen, wie sie in jedem Kernkraftwerk herrschen.

Bei dem erforderlichen Druck- und Temperaturniveau könnte man also einen preiswerten „nuklearen Heizkessel“ zum Anschluß an Fernheizungssysteme bauen ohne irgendwelche Abstriche an der Sicherheitstechnik machen zu müssen. Damit man möglichst viele Gebiete erschließen kann, empfiehlt sich ohnehin: Je kleiner, je lieber. Man könnte diese „nuklearen Heizkessel“ als „nukleare Batterien“ bauen, die komplett und betriebsbereit zur Baustelle geliefert werden und erst nach Jahrzehnten wieder komplett zum Hersteller zurück transportiert werden. Dort könnten sie überarbeitet und der Brennstoff nachgeladen werden. Es bietet sich damit ein interessantes Leasingmodell für Gemeinden an: Für Jahrzehnte billige Heizkosten zu garantierten Festpreisen.

Notwendige Entwicklungen

Eigentlich nicht viel, nimmt man Reaktoren für Schiffe als Ausgangspunkt. So hatte der Reaktor der Otto Hahn eine thermische Leistung von 38 MW. Sein Auslegungsdruck betrug 85 bar bei einer Temperatur von 300 °C. Für einen „nuklearen Heizkessel“ schon viel zu viel. Trotzdem kam man mit Wandstärken von rund 50 mm aus. Er hatte eine Höhe von 8,6 m und einen Durchmesser von 2,6 m. Schon klein genug, um die ganze Fernwärmestation in einem mittleren Gebäude unterzubringen.

Wichtig ist, daß man bei den notwendigen Drücken und Temperaturen mit handelsüblichen Werkstoffen auskommt und nur (relativ) geringe Wandstärken benötigt. Dies vereinfacht die Fertigung und verringert die laufenden Kosten. Ausgehend von Leichtwasserreaktoren sind auch alle Berechnungsverfahren bekannt, erprobt und zugelassen. Die Konstruktion und das Zulassungsverfahren könnten sofort beginnen. Ein Bau wäre in wenigen Jahren realisierbar.

Wirtschaftliche Einflüsse

Die Investitionskosten sind natürlich höher als bei einem konventionellen Heizkessel. Dafür sind die Brennstoffkosten vernachlässigbar, sodaß sich trotzdem sehr attraktive Heizkosten ergeben würden. Betriebswirtschaftlich ist immer die Anzahl der „Vollbenutzungsstunden“ ausschlaggebend. Zumindest in der Anfangsphase sollte daher nur die Grundlast (Warmwasser, Klimatisierung und Heizlast in der Übergangszeit) eines Fernwärmenetzes abgedeckt werden. Die Spitzenlast könnte – wie heute – weiterhin durch Öl- oder Gaskessel bereitgestellt werden.

Der nächste Schritt könnte eine Wärmespeicherung sein. Das Wetter (Außentemperatur, Wind und Sonne in ihrem Zusammenwirken) ändert sich ständig. Tagelange Kälteperioden mit satten Minusgraden sind in Deutschland eher selten. Gebäude und das Fernwärmenetz selbst, besitzen bereits eine erhebliche Speicherfähigkeit. Die Anforderung der Heizleistung wird bereits dadurch gedämpft. Mit relativ kleinen Zusatzspeichern kann man daher die Auslastung erheblich verbessern. Beispiel hierfür sind die handelsüblichen Brauchwasserspeicher in unseren Gebäuden. Großtechnische Speicher mit mehreren GWh sind bereits in bestehenden Fernwärmenetzen installiert. Wie gesagt, alles kann schrittweise erfolgen. Je nach Entwicklung der Brennstoffpreise und verordneten Nebenkosten (Luftverschmutzung etc.).

Heute wird immer weniger Kohle zur Heizung eingesetzt. Der Trend zu Öl und insbesondere Gas, hält unvermittelt an. Durch die Verwendung von Kernenergie für die Gebäudeheizung kann man sofort beträchtliche Mengen davon für Industrie und Verkehr zusätzlich verfügbar machen. Eine wesentlich wirksamere Maßnahme als z. B. das „Elektroauto“. Wo und wann wird denn die Luftverschmutzung unerträglich: In den Großstädten und (in unseren Breiten) im Winter. Eine abgasfreie Heizung würde eine durchschlagende Verbesserung bewirken. Holzheizungen und Faulgas sind Wege in die falsche Richtung, die die Belastung für Natur und Menschen nur unnötig erhöhen. Feinstaub z. B. kommt nicht nur aus dem Auspuff, sondern vor allem aus den unzähligen Kaminen.

Braucht das Leben Strahlung?

Die Erkenntnisse über die Wirkung niedriger Strahlungsdosen schreiten immer weiter voran. Die radikalste Fragestellung dabei ist die Frage nach dem Verhalten von Zellen bei Abwesenheit von ionisierender Strahlung. Die Ergebnisse sind verblüffend – aber der Reihe nach…

Das LNT-Modell

In den 1950er-Jahren einigte man sich weltweit auf einen linearen Zusammenhang, ohne einen Schwellwert (linear no-threshold model; LNT), für den Strahlenschutz. Es ist simpel und damit leicht anwendbar: Man unterstellte, daß die biologischen Schäden (gemeint ist Krebs), die durch ionisierende Strahlung (umgangssprachlich durch Radioaktivität) ausgelöst werden, direkt proportional zur Dosis sind: Die mathematische Funktion ist eine einfache Gerade mit der Steigung 0,05/Sv. Etwas anschaulicher ausgedrückt, wenn man 100 Menschen einer Dosis von 1 SV (Sievert) aussetzt, erkranken davon fünf Menschen (zusätzlich) an Krebs. Mehr steckt nicht dahinter und damit fangen schon die Schwierigkeiten an.

Wie ist man zu dieser einfachen Zahl gekommen? Hauptsächlich durch die Auswertung der Opfer der Bomben auf Hiroshima und Nagasaki. Man hat zehntausende Menschen über Jahre beobachtet und ihre Erkrankungen dokumentiert. Das war der einfache Teil der Aufgabe. Wesentlich schwieriger war schon die Ermittlung der individuellen Strahlendosis, da diese Menschen natürlich keine Meßgeräte getragen haben. Hinzu kamen noch jeweils verschiedene Lebensumstände, Vorerkrankungen etc. Wenn man nun jeden einzelnen Fall in einem Diagramm (Krebserkrankungen über Dosis) aufträgt, kann man streng genommen keinen Punkt eintragen, sondern muß eher einen Klecks verwenden: Weder ist die genaue Dosis zu ermitteln, noch sind die Krebsarten alle gleich, noch kann man sonstige Belastungen (z. B. krebserregende Chemikalien, Umwelteinflüsse, genetische Prägungen etc.) genau erfassen.

In solchen Fällen helfen nur die Methoden der Statistik. Vereinfachend gesagt braucht man eine Wolke aus möglichst vielen Fällen, die möglichst eng zusammenliegen. Sieht das sich ergebende Band nach einer Geraden aus, kann man in guter Näherung eine solche hindurch legen und deren Steigung bestimmen.

Hier ergibt sich aber das Problem, welches seit über 80 Jahren zu heftigsten Diskussionen auch in der Fachwelt führt: Im unteren Teil (kleine Dosen und damit eine geringe Anzahl von Krebsfällen) gibt es kaum Punkte und die streuen auch noch sehr stark. Es ist damit äußerst fragwürdig, den gesamten Bereich – von keiner meßbaren Wirkung, bis zum garantiert kurzfristig eintretendem Strahlentod – durch ein und dieselbe Gerade nachbilden zu wollen. Schon die geringe zusätzliche Anzahl von den ohnehin auftretenden Krebsfällen trennen zu wollen, ist eine schier unlösbare Aufgabe. Hier rächt sich die Statistik: Sie arbeitet stets nur mit Wahrscheinlichkeiten. In dem vorherigen Zahlenbeispiel kann man weder voraussagen, welche fünf Personen von den betrachteten 100 Personen Krebs bekommen, noch ob es exakt fünf Fälle sind. Lediglich, wenn man sehr, sehr viele Menschen mit einem Sievert bestrahlen würde, würde sich die Anzahl der zusätzlichen Krebsfälle (bei diesem Modell!) der Zahl von fünf Prozent annähern.

Schwellwert oder nicht?

Man bezeichnet einen Wert als Schwellwert, wenn sich der Zusammenhang bei einem Modell wesentlich ändert. Für einen Ingenieur ist es nichts ungewöhnliches, Messreihen z. B. abschnittsweise durch unterschiedliche Geraden anzunähern.

Im Arbeitsschutz ist es üblich, für Giftstoffe Schwellwerte zu definieren. Üblicherweise sind dies Dosen, bei denen man auch über ein ganzes Arbeitsleben keine Schädigung feststellen kann. Dahinter steckt eine Alltagserfahrung: Nicht jeder Umgang mit einem Stoff führt sogleich zu einem Schaden. Andrerseits führt ein zu viel – bei jedem Stoff – irgendwann, zu irgendwelchen Schäden.

Bis zur Politisierung der Strahlung durch die „Atombomben“, ist man auch mit ionisierender Strahlung sehr erfolgreich so pragmatisch umgegangen. Man hatte schon wenige Jahre nach der segensreichen Erfindung der Röntgenstrahlung festgestellt, daß diese zu Erkrankungen bei dem medizinischen Personal führen konnte. Man analysierte die Fälle und definierte einen (zulässigen) Schwellwert für den Arbeitsschutz.

Energie und Leistung

Schon jedem Schüler sollte der Zusammenhang von Energie und Leistung vertraut sein. Es macht einen gewaltigen Unterschied, ob ich eine Leistung (W oder J/s) für Bruchteile einer Sekunde aufbringe oder über Stunden verteilt. Eindrucksvolles Beispiel hierfür, ist ein Laser-Strahl: Eine relativ geringe Energie reicht aus, um zwei Stahlplatten miteinander zu verschweißen. Der „Trick“ ist, die Energie in einem sehr kurzzeitigen Blitz zu senden. Über Stunden angewendet, würde sie den Stahl nicht einmal zum glühen bringen.

Warum glaubte man nun, diese Erfahrungstatsachen bei der ionisierenden Strahlung außer Kraft setzen zu können? Es war schlicht ein unvollständiges und damit leider falsches Verständnis der biologischen Zusammenhänge. Man hatte erkannt, daß bei der Zellteilung die DNA kopiert und damit die Erbinformationen weitergegeben würden. Man wußte, daß bereits ein Partikel einen DNA-Strang zerschlagen konnte. Man glaubte, wenn nun der Fehler beim kopieren an die Tochterzelle weitergegeben würde, müßten die Fehler irgendwann so häufig sein, daß eine „Krebszelle“ entstanden wäre. Eine übervorsichtige oder abstruse Vorstellung – ganz nach Standpunkt des Betrachters. Der gesunde Menschenverstand sagt einem schon, daß es einen gewaltigen Unterschied macht, ob man täglich nur einen Schnaps trinkt oder gleich die Flasche „auf ex“ leert. Die ganze Pharmakologie müßte neu geschrieben werden, wenn es keinen Unterschied machte, ob man seine Tabletten nach Anwendungsvorschrift einnimmt oder gleich die ganze Schachtel auf einmal in der Apotheke schluckt. Ausgerechnet bei der ionisierenden Strahlung sollte der seit Jahrhunderten bekannte Grundsatz: Die Dosis macht das Gift, nicht gelten.

Die Kollektivdosis ist schlichtweg Unsinn. Nach dem Motto, wenn wir einer Million Menschen je einen Aspirin geben, haben wir X Tote, weil wir ja wissen und nachweisen können, daß die Einnahme von y Schachteln Aspirin zum Tode führt. Ganz im Gegenteil nehmen Millionen Menschen weltweit täglich eine Tablette Aspirin ein, um z. B. das Risiko von Herzinfarkten drastisch zu senken.

Hormesis

Damit kommen wir zur Hormesis. Darunter wird verstanden, daß ein und derselbe Stoff, in geringen Mengen verabreicht, eine genau gegenteilige Wirkung haben kann. Seit Anbeginn zeigte sich bei „Niedrigstrahlung“ das Phänomen deutlich geringerer Krebsfälle, als nach dem LNT-Modell zu erwarten waren. Fast alle Studien mit Arbeitern aus der kerntechnischen Industrie, Opfern von „Atombomben“ und nicht zuletzt den Reaktorunglücken von Tschernobyl und Fukushima zeigten sogar unter dem Erwartungswert für die entsprechende Bevölkerungsgruppe liegende Werte. Jahrzehntelang versuchte man sich besonders bei Bergleuten mit der besonderen medizinischen Fürsorge und der Vorauswahl („Survival of the Fittest“) aus der Affäre zu stehlen. Bis man sich die Frage stellte, ob nicht ionisierende Strahlung in bestimmten geringen Dosen sogar eine den Krebs verhindernde Wirkung zeigte. Plötzlich war auch die „Radontherapie“ keine Esoterik mehr.

Seit man in der Molekularbiologie große Fortschritte erzielt hat und Gene und die DNA praktisch beobachten kann, kann man diese Phänomene sogar naturwissenschaftlich erklären. Es passieren ständig, in jeder Zelle, zehntausende DNA-Fehler. Hauptsächlich sind dafür Radikale verantwortlich. Es gibt daher einen Reperaturmechanismus, der die DNA größtenteils wieder repariert. Darüberhinaus existiert noch eine weitere Ebene, die Zerstörung entarteter Zellen. Erst wenn alle Reparatur- und Schutzmechanismen versagen, kann sich „Krebs“ ausbilden. Hieraus ergibt sich auch der Zusammenhang von (permanenten) kleinen und kurzzeitig hohen Dosen: Mit einer geringen Anzahl von Fehlern wird das Reparatursystem leicht fertig. Ab einer gewissen Dosis entsteht ein „Sättigungsangriff“, der die Abwehr schlicht weg überfordert.

Ohne diese „Selbstheilungskräfte“ wäre überhaupt kein Leben möglich. Man kann nun in Versuchen zeigen, daß diese Kräfte durch ionisierende Strahlung (in der richtigen Dosis!) motiviert und unterstützt werden. Ein Umstand, der bereits in der Strahlentherapie Anwendung findet. Um Krebszellen zu zerstören, braucht man punktuell sehr hohe Dosen, die natürlich das umliegende gesunde Gewebe stark belasten. Deshalb trainiert man in bestimmten Fällen vor der eigentlichen Behandlung das gesunde Gewebe durch mehrere Bestrahlungen mit niedrigen Dosen.

Der Ultimative Test

Wenn es eine Hormesis gibt, was passiert eigentlich, wenn man von Zellen die Strahlung fern hält? Eine einfache Fragestellung, aber ein schwer durchführbares Experiment. Es gibt nämlich überall ionisierende Strahlung: Aus dem All und aus der Erde – die sogenannte Hintergrundstrahlung. Dieser Strahlung war und ist jedes Leben seit Milliarden Jahren ausgesetzt. Leben hätte sich gar nicht entwickeln können, wäre es nicht gegen ionisierende Strahlung überlebensfähig gewesen. Gott sei es gedankt, ist die Natur etwas einfallsreicher, als die Anhänger des LNT-Modells meinen.

Schon in den 1990er Jahren wurde in Italien ein Experiment mit Hefezellen durchgeführt. Hefezellen sind ein Standardobjekt der Molekularbiologen. Sie wurden in ein Labor 1300 m tief unter einem Bergmassiv gezüchtet. Hier unten war die Strahlung tausendfach kleiner, als in dem oberirdischen Vergleichslabor. Anschließend wurden beide Versuchsgruppen Chemikalien ausgesetzt, die starke genetische Veränderungen auslösen können. Es zeigte sich, daß die Fehlerrate bei den „vor Strahlung geschützten“ Zellen höher war.

Inzwischen werden solche Experimente ausgeweitet. In den USA hat man z . B. in einem Salzstock in Carlsbad ein Labor in 650m Tiefe eingerichtet. Die dortige Salzschicht besteht aus sehr reinem Kochsalz und enthält damit nur sehr wenig „radioaktive Stoffe“. Die Deckschicht schirmt die kosmische Strahlung entsprechend ab. Die „Bakterienzucht“ wird in einem Tresor mit 15 cm dicken Stahlwänden aus Stahl vor dem II. Weltkrieg durchgeführt. Solch alter Schrott wird inzwischen hoch gehandelt, da er noch nicht mit Fallout aus „Atombombenversuchen“ etc. belastet ist. Durch diese Maßnahmen gelang es, eine Strahlung von 0,17 mSv pro Jahr innerhalb des Tresors zu erreichen. Dies ist der geringste Wert, der bisher auf der Erde erzeugt werden konnte.

In der Versuchsanordnung wurden nun als besonders strahlenempfindlich bekannte Bakterien Shewanella oneidensis und als besonders strahlungsresistente Bakterien Deinococcus radioduruans gezüchtet. In regelmäßigen Abständen wurde die DNA der Versuchsgruppen auf Schäden untersucht. Um andere Einflüsse ausschließen zu können, wurden die Bakterien mehrfach zwischen den Orten mit verringerter Strahlung und normaler Strahlung hin und her getauscht.

An dieser Stelle müssen wir uns noch einmal die zentrale Aussage des LNT-Modells verdeutlichen:

  • Jedes „Strahlungsereignis“ schädigt die DNA. Deshalb gilt: Je weniger Strahlung, um so weniger Schäden. Nach dem LNT-Modell gibt es einen Nullpunkt, an dem es infolge der nicht vorhandenen Strahlung auch keine Schäden geben dürfte.
  • Die aufgetretenen Schäden addieren sich. Je länger man eine Probe bestrahlt, um so mehr Schäden treten auf.

Demgegenüber stehen die Messergebnisse des Versuches: Beide Bakterienarten weisen „ohne Strahlung“ mehr Schäden auf als „mit Strahlung“. Besonders verblüffend ist, daß sich die Schäden innerhalb von 24h normalisieren, wenn man die Proben wieder der Hintergrundstrahlung aussetzt. Schützt man die Probe wieder vor Strahlung, nehmen die Schäden auch wieder zu. Dies scheint in beliebigem Wechsel möglich.

Sollten sich diese Erkenntnisse weiter verdichten, würde es bedeuten, daß das LNT-Modell schlicht weg, falsch ist. Benutzt man den gesunden Menschenverstand, ist dies auch nicht besonders überraschend: Es hat immer schon Strahlung auf der Erde gegeben. Früher sogar mehr als heute (Halbwertszeit z. B. von Uran, Kalium etc., Sonnenaktivitäten und unterschiedliche Atmosphäre). Vielleicht wäre ohne Strahlung gar kein Leben möglich?

ALARA

Bei diesen Forschungsergebnissen handelt es sich nicht einfach um irgendwelche Trivialitäten, sondern sie sind hoch brisant. Bisher galt weltweit das Prinzip beim Strahlenschutz, die Strahlenbelastung so gering wie möglich zu halten (As Low As Reasonably Archievable; ALARA). Eine ganze Industrie mit Milliardenumsätzen lebt davon. Geld, das man nutzbringender hätte einsetzen können. Konnte man bisher noch mit Fürsorglichkeit und Vorsicht argumentieren, ist es spätestens nach dem Unglück von Fukushima endgültig damit vorbei. Dort hat man eindeutig das Kind mit dem Bade ausgeschüttet. Es sind viel mehr Menschen seelisch und körperlich durch ALARA zu Schaden gekommen, als durch die vorhandene Strahlung. Es wäre besser gewesen, die Menschen hätten in ihrer Umgebung verbleiben können. Evakuierungen wären nur in ganz wenigen Fällen und auf freiwilliger Basis nötig gewesen. Gut gemeint, war auch hier nicht, gut gemacht. Ideologie kann töten. Die Aufklärung der Bevölkerung ist daher dringend notwendig.

Kapazitätsmärkte – Markt- oder Planwirtschaft?

Ab 2015 soll in Großbritannien ein Kapazitätsmarkt für Kraftwerke starten. Ähnliche Überlegungen gibt es bereits für Belgien, Frankreich und Deutschland. Es ist also höchste Zeit, sich mit dem Thema etwas näher zu beschäftigen.

Das Besondere des Strommarktes

Die Gewinnung und Verteilung elektrischer Energie ist außergewöhnlich kapitalintensiv. Kraftwerke und Stromnetze kosten Milliarden. Sie sind anschließend für Jahrzehnte nutzbar. Nur durch die Verteilung der Kosten auf viele Jahre, ist das Produkt elektrische Energie überhaupt zu geringen Preisen lieferbar. Doch genau darin besteht das außerordentliche betriebswirtschaftliche Risiko: Niemand kann den genauen Bedarf in Jahrzehnten voraussagen.

Zu Beginn der Elektrifizierung ist man deshalb sehr schnell zu staatlich regulierten Monopolen übergegangen. Besonders bei der Verteilung (Leitungsnetze) erscheint es noch heute sinnvoll, an jedem Ort nur ein Netz zu betreiben. Dies ist ein echtes Alleinstellungsmerkmal. In wie weit dieses Gebietsmonopol wirklich natürlich oder eher politisch gewollt ist, sei dahingestellt. So geht z. B. in der Telekommunikation der Trend durchaus zu (zumindest auf Teilstrecken) parallelen Leitungen oder bei Erdgas zu parallelen Systemen (Pipeline und LNG). In der Stromwirtschaft dagegen, wird jede Diversifizierung sofort im Keim erstickt. Jüngstes Beispiel ist die nachträgliche Belastung von Eigenerzeugung mit staatlichen Abgaben.

Seit je her, hat man versucht das Dilemma zwischen hohen Fixkosten und (teilweise) sehr geringen variablen Kosten durch Leistungs- und Energiepreise abzubilden. Einzige Ausnahme waren die Kleinverbraucher (Haushalte), bei denen Aufwand und Nutzen in keinem Verhältnis zueinander standen. Der Leistungspreis deckte dabei einen erheblichen Anteil der Fixkosten bei Erzeugung und Verteilung ab. Er genügte folgenden Anforderungen:

  • Als spezifischer Preis – Leistung (kW), die in einem Abrechnungszeitraum bezogen wird – bot er dem Verbraucher einen unmittelbaren Anreiz, seine gezogene Leistung möglichst klein zu halten und zu vergleichmäßigen. Früher nannte man so etwas Spitzenstromoptimierung, heute wird der alte Wein neudeutsch als „smart grid“ verkauft. Wichtig war die unmittelbare Verknüpfung von Leistung mit Kosten: Wer verschwenderisch mit den volkswirtschaftlichen Investitionen fürs Netz umging, mußte unmittelbar entsprechend mehr bezahlen. Eine sehr wirksame Methode, da der Leistungsanteil im Normalfall etwa die Hälfte der Stromrechnung betrug.
  • Das Investitionsrisiko wurde zwischen Kunde und Lieferant aufgeteilt: Wurde nur selten die geforderte Leistung vom Kunden bezogen, stieg der Leistungsanteil an seiner Stromrechnung merklich an. Ein Leben auf Kosten der Allgemeinheit – wie es heute gern von Besitzern von Photovoltaikanlagen propagiert wird – war in diesem System nicht vorgesehen. Wer nur für wenige Stunden seine elektrische Energie aus dem öffentlichen Netz bezieht, muß indirekt über seinen Leistungspreis für seine Kilowattstunden einen Preis von mehreren Euro bezahlen. Die Propaganda von der bald erreichten „Netzparität“ stellt sich als genauso hohler Werbeslogan wie „Die Sonne schickt keine Rechnung“ heraus. Wenn Netzparität, dann aber bitte nur mit Leistungspreis (auch Bereitstellungspreis genant) oder eigener Batterieanlage für Dunkelheit.
  • Der Leistungspreis war bezüglich des Netzes verursachergerecht. Wer nur das Hochspannungsnetz bzw. Mittelspannungsnetz nutzte, hatte auch unterschiedliche Preise zu entrichten. Dafür mußte er die Transformatorenanlage selbst anschaffen und betreiben. Auch diese volkswirtschaftlich sehr sinnvolle Maßnahme wird immer gern für Propaganda missbraucht: Es wird gern von billigem Strom für die Industrie gefaselt, weil man nur die Arbeitspreise (kWh) für Haushalte und „Großverbraucher“ in Relation zueinander setzt.

Wie das Elend begann

In der guten alten Zeit, mußten sich die Energieversorger alle Preise vorher von dem zuständigen Regulierer genehmigen lassen. Dazu war es nötig, alle Kosten für Erzeugung, Vertrieb und Netznutzung offen zu legen. In wie weit so etwas überhaupt möglich ist, sei dahingestellt. Als Gegenwert erhielten sie das jeweilige Monopol.

Mit der Erschaffung der „Marktliberalisierung“ – ironischerweise gerade durch Kräfte, die der Marktwirtschaft eher kritisch gegenüberstehen – mußte das System umgestellt werden. Man glaubte die Erzeugung (Kraftwerke) und das Netz problemlos voneinander trennen zu können. Warner, die vor der Problematik der Frequenzregelung und der Rosinenpickerei bei den Standorten warnten, wurden als Vertreter der „Monopolkräfte“ abgebürstet. Man wollte politisch eine Strombörse durchsetzen. Man glaubte, einen Markt künstlich erschaffen zu können. Zu diesem Zweck erschuf man die Konstruktion von an einer Börse in Leipzig miteinander handelnden Erzeugern (Kraftwerke, Windparks etc.) und „Großverbrauchern“ (industrielle Kunden, Vertriebsfirmen). Alle sonstigen Schwierigkeiten wurden dem „Netzbetreiber“ auferlegt. Dieser sollte staatlich reguliert werden und würde sich als der Hort der Planwirtschaft erweisen. Er ist die Spielwiese der Politiker, das Ausführungsorgan der Planwirtschaft. Anders als im „real existierenden Sozialismus“ konnten sich aber die Architekten der Planwirtschaft stets hinter den „bösen Kräften des Marktes“ verstecken.

Sollte man nur noch Energie (kWh) handeln, mußten zukünftig alle Kosten durch den Energiepreis (€/MWh) abgedeckt werden. Bei der Unterteilung in „Marktanteil“ und „Plananteil“ war das nur über Zuschläge (Netzentgeld, EEG-Umlage etc.) möglich. Eine Systemumstellung mit fatalen Konsequenzen: Durch die faktische Abschaffung des Leistungspreises wurde das Verursacherprinzip bei den Kapitalkosten ausgehebelt. Zu allem Überdruss wurden aber teilweise Leistungspreise weiter erhoben, was zumindest in der Industrie zu völligen Fehlallokationen führt. Man hat – gewollt oder ungewollt – eine gewaltige Spielwiese für Schlangenölverkäufer aus allen gesellschaftlichen Bereichen geschaffen.

Die zwei Geburtsfehler der Strombörse

Eine Börse ist ein Marktplatz. Zwar ist im Internet-Zeitalter keine Präsenz der Händler mehr auf dem Parkett nötig, aber es gibt einen genau definierten Erfüllungsort. Für die Ölkontrakte über WTI (West Texas Intermediate) ist dies nach wie vor Cushing in Oklahoma USA. Egal wer, wo auf der Welt WTI-Kontrakte handelt, weiß, daß er noch die Transportkosten von seinem Verkaufspreis abziehen bzw. seinem Kaufpreis hinzurechnen muß. Natürlich wird keine physische Ware erst von Rotterdam nach Cushing transportiert und von dort wieder nach Frankfurt. Vielmehr zieht der Verkäufer in Rotterdam die Transportkosten vom Cushing-Preis ab und der Abnehmer in Frankfurt rechnet seine Transportkosten hinzu. Üblich ist nun, daß man sich die Differenz teilt und mit den tatsächlichen Transportkosten von Rotterdam nach Frankfurt verrechnet. Hört sich kompliziert an, ist aber in der Praxis hoch effektiv, weil erst dadurch neue Transportwege entdeckt oder geschaffen werden. Als Beispiel mag nur die Verflüssigung von Erdgas als Alternative zum Rohrleitungstransport dienen. Bei der Strombörse meinte man nun mit „virtuellen Handelsräumen“ arbeiten zu können. Inzwischen spricht es sich aber herum, daß auch neue Stromtrassen Milliarden kosten. Es ist eben keinesfalls egal, wann und wo eine Lieferung vollzogen wird. In Deutschland war man aus politischen Gründen ausdrücklich für eine „Briefmarkenlösung“. Es sollte kein Unterschied bei den Transportkosten geben – egal ob der Strom für München aus dem Kernkraftwerk in der Nähe oder aus dem Windpark bei Helgoland stammt. Wo ein politischer Wille ist, soll auch eine Stromtrasse gebaut sein. Die Kosten dafür, zahlt ja die Allgemeinheit über die „Netzumlage“. Jeder Kohlenhändler würde nur ungläubig mit dem Kopf schütteln, wenn man ihm erzählen wollte, es sei gleich teuer, ob die Kohle aus Ibbenbüren oder Südafrika geliefert wird. Aber darin unterscheiden sich eben reale Märkte von politischen Kopfgeburten.

Der zweite Geburtsfehler war die Zusammenfassung zweier völlig verschiedener Produkte zu einem Handelsprodukt. Konventioneller Strom – egal ob aus Kernkraft-, Kohle oder Gaskraftwerken – ist zu jedem Zeitpunkt ein physikalisch darstellbares Produkt, „Flackerstrom“ aus Wind- und Sonnenenergie hingegen, ist bestenfalls über den Wetterbericht abschätzbar – so, als würde man Schweinehälften mit Roulett zu einem Handelsprodukt vereinen. Die garantierte Lieferbarkeit ist aber die Grundfeste einer jeden Börse. Wie hat man nun das Problem für die Strombörse gelöst? Immer wenn Produktion und Abnahme nicht genau im Gleichgewicht sind, ändert sich die Netzfrequenz. Für die Einhaltung der Frequenz ist aber der Netzbetreiber zuständig. Mit anderen Worten: Jedes mal, wenn ein Verkäufer (Windpark) seine Ware gar nicht liefern kann, muß der Netzbetreiber einspringen. Er muß nun sehr teuer, weil kurzfristig, die fehlende Leistung besorgen. Die Kosten hierfür, darf er über die Netzentgelte auf die Allgemeinheit abwälzen. Wie lange würde wohl eine reale Börse existieren, wenn ständig gar nicht geliefert werden könnte? Entweder würden sich die Handelsteilnehmer frustriert zurückziehen oder die Versicherungsprämien für Lieferausfälle würden jeden Handel ad absurdum führen. Wie weit die Strombörse von realen Börsen entfernt ist, ist schon jedem Laien durch die negativen Preise ersichtlich.

Merit Order

Die Kosten der Erzeugung elektrischer Energie lassen sich als Fixkosten (Kapitalkosten, Personalkosten etc.) und variable Kosten (praktisch nur Brennstoffkosten) darstellen. Trägt man die Brennstoffkosten in einem Diagramm auf, ergibt sich eine Kurve, die im Nullpunkt beginnt (Wind und Sonne), erst sehr flach ansteigt (Kernenergie), dann immer steiler wird (von Braunkohle über Steinkohle), um dann sehr steil (Erdgas) zu enden. Ob ein Kraftwerk nun läuft oder nicht, die Fixkosten (insbesondere sind das die Kapitalkosten) bleiben immer gleich. Ob man es in Betrieb setzt, hängt also vom Verhältnis des momentan erzielbaren Strompreises zu den eigenen Brennstoffkosten ab.

Ein Beispiel mag dies verdeutlichen: Beträgt der Strompreis an der Börse 32 €/MWh ergibt sich für ein Gaskraftwerk mit einem Wirkungsgrad von 50% Grenzkosten bei einem Erdgaspreis von 16 €/MWh. Bei diesem Strompreis und Erdgaspreis könnte es gerade seine Brennstoffkosten wieder einfahren. Ist der erzielbare Strompreis geringer oder der Gaspreis höher, lohnt es sich, das Kraftwerk außer Betrieb zu setzen um weitere Verluste zu vermeiden.

Der erzielbare Strompreis gilt aber nun für alle Kraftwerke. Jedes Kraftwerk muß nun seine Brennstoffkosten ermitteln. Man kann jetzt die Kraftwerke in einer Liste mit steigenden Brennstoffkosten sortieren. Das muß täglich geschehen, da die Brennstoffpreise schwanken. Eine solche Liste bezeichnet man als „merit order“. Alle Kraftwerke, die mit ihren individuellen Brennstoffkosten oberhalb des Grenzwertes (entsprechend dem Börsenpreis für Strom) liegen, würden mit jeder produzierten Kilowattstunde zusätzliche Verluste machen, aber alle Kraftwerke unterhalb des Grenzwertes würden nicht nur ihre Brennstoffkosten voll abdecken, sondern würden auch noch zusätzliche Einnahmen zur Abdeckung ihrer Fixkosten erzielen.

Aus diesem Zusammenhang ergibt sich auch eindeutig, warum in diesem System mit steigendem Anteil an „Erneuerbaren“ auch ständig der Anteil an Strom aus Braunkohle größer werden wird. Momentan gilt der Einspeisevorrang für „Erneuerbare“. Je nach dem, wie stark der Wind weht und die Sonne scheint, ist damit ein entsprechender Anteil an der insgesamt benötigten Strommenge vergeben. Lediglich der Rest bleibt für die anderen Kraftwerke übrig. Das ist politisch so gewollt. Die Strompreise an der Börse purzeln durch das Überangebot bis hin zu absurden negativen Preisen (Entsorgungsgebühren). Ausgerechnet Kernkraftwerke (die aber aus politischen Gründen abgeschaltet werden sollen) und moderne Braunkohlekraftwerke haben die mit Abstand geringsten Brennstoffkosten. Lange vorher, müssen (heute schon) auch modernste Erdgaskraftwerke und bald auch modernste Steinkohlekraftwerke abstellen.

Nicht zu unterschätzen ist in diesem Zusammenhang der Faktor Zeit. Jeden Tag, an dem ein Kraftwerk nicht laufen darf, schreibt es dunkelrote Zahlen. Andererseits können die Kraftwerke mit geringen Brennstoffkosten ihre Kredite weiter abbauen. Hat in diesem Sinne schon jemals ein Politiker oder Konzernlenker über die Konsequenzen nachgedacht, wenn demnächst die Brot-und-Butter-Kraftwerke zwangsweise abgeschaltet werden müssen. Der „Atomausstieg“ wird noch richtig heiter werden.

Interessant sind auch die Auswirkungen auf Neuinvestitionen. Alle reden von einem Boom bei Gaskraftwerken. Sicherlich erfordern Gaskraftwerke die mit Abstand geringsten Investitionen. Insofern erscheint das betriebswirtschaftliche Risiko gering. Allerdings gilt das nur für niedrige Gaspreise (Putin läßt grüßen!) bei gleichzeitig hohen Strompreisen. Wer garantiert aber, daß die Strompreise an der Börse bald stark steigen? Was ist, wenn die Absatzmenge in Deutschland durch eine beschleunigte Deindustrialisierung schneller rückläufig ist, als allgemein erwartet wird? Was, wenn unsere Nachbarn mit billigem Strom – beispielsweise aus Kernkraftwerken – auf den deutschen Markt drängen?

Warum es keine Kapazitätsmärkte gibt

Die Grundvoraussetzung für einen Markt ist das aufeinandertreffen von Angebot und Nachfrage. Wo es gar keine Nachfrage gibt, kann auch kein Markt entstehen. Insofern ist der naturgegebene Markt, der Markt für elektrische Energie. Genauso wie es Märkte und Börsen für Diesel und Benzin gibt, aber keine Börse für Raffinerien. Alle politischen Kopfgeburten leiden an einem systembedingten „Nicht-funktionieren-können“. Der Begriff Markt ist oft nur eine Verballhornung der Planwirtschaft. Typischer Vertreter dieser politischen Kategorie ist der Handel mit CO2.-Zertifikaten“.

Entweder man ist für freie Märkte (nur Energie in €/kWh) oder man entscheidet sich wieder zur Rückkehr zum regulierten Markt (Bereitstellungspreis in €/kW und Energie in €/kWh nach individuellen Umständen). Jedes der beiden Systeme hat Vor- und Nachteile.

Zu Märkten gehören untrennbar Unternehmer und unternehmerisches Risiko. In diesem Sinne kann sich ein Kraftwerk nicht von einer Eisdiele unterscheiden. Mit beiden kann man Geld verdienen. Aber für beide kann die falsche Einschätzung des Wetter-Risikos tödlich sein. Eine Eisdiele muß ihr Geld verdienen, wenn der Kunde Eis essen möchte. Nicht anders, kann es bei einem Kraftwerk sein. Der Spruch: „Man zahlt ja auch nicht nur für die Feuerwehr, wenn es brennt“, ist die Denkweise eines Kombinatsleiters und nicht eines Unternehmers.

Es ist kein Zufall, daß ausgerechnet die „Stadtwerke“, die massiv in Gaskraftwerke investiert haben, nun lautstark „Kapazitätsmärkte“ fordern. Es ist der bekannte Ruf nach Subventionen. Ihr Problem, wenn sie irgendwann angefangen haben, an die eigene Propaganda von den „flexiblen“ und „umweltfreundlichen“ Gaskraftwerken zu glauben. Es ist in diesem Land scheinbar zum Volkssport für gewisse politische Kreise geworden, die Verbraucher immer weiter mit Abgaben zu belasten. Früher war man wenigstens so ehrlich, die eigenen politischen Wünsche aus den öffentlichen Haushalten – und damit über Steuern – abzudecken. Eine weitere „Kapazitätsabgabe“ wird mit Sicherheit die Strompreise nicht senken.

Man sollte dem Markt endlich freien Lauf gewähren und unrentable Kraftwerke pleite gehen lassen. Es wird sich schon ein Käufer finden. Der kann dann anschließend auch billiger anbieten. Die Damen und Herren, die ignoriert haben, daß Kernbrennstoff und Kohle billiger als Erdgas sind, müssen sich halt einen neuen Job suchen. Auch das Warten auf höhere „CO2-Preise“ wird sie nicht mehr retten können. Wenn man CO2. zu einem Schadstoff erklären will, wird man um Grenzwerte nicht umhin kommen. Präsident Obama macht es gerade vor.

„Kapazitätsmärkte“ können die Randbedingungen nicht verändern:

  • Je mehr Wind und Sonne in den Markt gedrückt wird, um so mehr wird Angebot und Nachfrage auseinandergehen. Die unvermeidliche Folge sind immer stärker schwankende Strompreise.
  • Je stärker die Preise schwanken, um so höher muß der Risikoaufschlag werden. Das Niveau der Strompreise (in Deutschland) wird dadurch weiter steigen.
  • Je höher die Preise steigen, um so mehr setzen Ausweichbewegungen ein. Eine massive Abwanderung der Industrie ins Ausland wird stattfinden. Sollte das der heimliche politische Wunsch sein, dann weiter so.
  • Das Ausland wird dem deutschen Vorbild auf keinen Fall folgen. Man wird gerne die Arbeitsplätze übernehmen und wird auch gerne billigen Strom liefern. Schließlich schafft auch der Bau und Betrieb von Kraftwerken Arbeitsplätze.
  • Solange man das Prinzip der Grenzkosten (merit order) beibehält, ist die Schwankung (Volatilität) der Energiepreise immer größer als bei einem regulierten System mit Leistungs- und Energiepreisen. Ein „Kapazitätsmarkt“ kann daran nichts ändern.
  • Ein „Kapazitätsmarkt“, d. h. die Bezahlung für das reine Bereithalten eines Kraftwerks, ist eine Subvention. Es entsteht ein reiner Mitnahmeeffekt, der keine Senkung der Energiepreise zur Folge hat.
  • Eine Lösung ist nur auf europäischer Ebene unter Beachtung europäischen Rechts möglich. Ein weiterer Alleingang Deutschlands wird nicht toleriert werden. Dies gilt um so mehr das Netz durch zusätzliche Grenzkopplungen verstärkt wird.
  • Die Volatilität wird durch den weiteren Ausbau der „Regenerativen“ immer weiter zunehmen. Ein „Kapazitätsmarkt“ kann ohnehin nur einen etwaigen Mangel an Leistung, nicht aber den Überschuß (wenn der Wind mal kräftig weht oder die Sonne großräumig scheint) beeinflussen.
  • Eine Kaltreserve war immer schon üblich. Was geschieht mit dem „Kapazitätsmarkt“, wenn die Gaspreise einmal (relativ) sinken sollten? Werden dann die erhaltenen Subventionen an die Verbraucher zurückgezahlt?
  • Je länger man das Eingeständnis, daß die „Energiewende“ ein Fehler ist, hinauszögert, um so mehr Zwangsabgaben sind nötig: Es begann mit der EEG-Umlage, dann folgte die Netzumlage und jetzt ist eine Kapazitätsabgabe im Gespräch. Planwirtschaft wuchert wie eine Krebsgeschwulst.
  • Nur ein ausgewogener Kraftwerkspark ist die beste Garantie für Preisstabilität. „100% Erneuerbare“ ist eine gefährliche Utopie.

 

Netzentwicklungsplan 2015

– die Vollendung der Planwirtschaft?

Die Übertragungsnetzbetreiber haben den Szenariorahmen 2014 als Grundlage für die Netzentwicklungspläne 2015 veröffentlicht. Alle sind zur Diskussion aufgerufen. Nicht ganz unwichtig, da dieser Plan zur ersten Überarbeitung des Bundesbedarfsplans durch den Bundesgesetzgeber führt.

Wie es sich für eine anständige Planwirtschaft gehört, muß der Deutsche Bundestag alle drei Jahre einen neuen „Bundesbedarfsplan“ verabschieden. Wesentlicher Teil des Bundesbedarfsplans ist eine Liste künftiger Höchstspannungsleitungen. Wer es noch nicht ganz verstanden hat: Es gehört zur ehrenvollen Aufgabe unserer Bundestagsabgeordneten zu entscheiden, wo, welche Höchstspannungsleitung gebaut wird. Da natürlich keiner unserer Abgeordneten so richtig sattelfest in Elektrotechnik sein dürfte, läßt man sich diesen Plan über die Bundesnetzagentur vorlegen. Man braucht dann nur noch mit ja oder nein abstimmen und dafür ist bekanntermaßen keinerlei (Fach)wissen nötig. Nun gibt es aber ein gewisses Restrisiko, in der Form des nächsten Wahltermins. Deshalb bezahlt man eine ganze Scharr von Hofnarren, auf die man gegebenenfalls alles abschieben kann. Die wollen aber natürlich auch nicht ganz allein im Regen stehen und lassen sich deshalb Vorgaben von den Politikern machen. Damit hat man den perfekten Regelkreis der organisierten Verantwortungslosigkeit erschaffen.

Fragt doch mal die Maus!

Nachts ist es dunkel. In Deutschland ist es besonders im Winter ganz schön lange dunkel. Es weht auch oft gar kein Wind – dummerweise gerade auch im Winter, wenn es kalt und dunkel ist. Das hat man immer und immer wieder, so gemessen! Die Natur ist einfach gemein, die will einfach nicht auf die guten Onkel und Tanten mit grüner Gesinnung hören. Weil die Natur nun so ist, wie sie ist, braucht man zu 100 % eine Absicherung durch konventionelle Kraftwerke. Speicher, die den Stromverbrauch von Deutschland für mehrerer Tage speichern könnten, gibt es nicht. Wird es auch wahrscheinlich nie geben. Ganz zu schweigen, von den Kosten und der Umweltbelastung.

Nicht weniger schlimm, ist es aber, wenn der Wind mal kräftig weht und die Sonne scheint. Dann wird plötzlich viel mehr Strom produziert, als wir überhaupt in Deutschland verbrauchen können. Dann müssen wir jedes mal unseren Nachbarn richtig Geld bezahlen, damit sie für uns den Stromabfall entsorgen. Und genau dafür, brauchen wir die vielen neuen Stromleitungen, die so schön in unsere Landschaft passen. Ist doch super, oder? Bezahlen dürfen wir auch gleich doppelt, nicht nur für die vielen Stromleitungen, sondern auch für Produktionskosten an die Windmüller und die schlauen Sonnenmännchen. Unser zuständiger Minister, der „Sigi Pop“ sagt zwar, daß uns unsere Nachbarn für bekloppt halten, aber das kann uns doch egal sein, da stehen wir einfach drüber. So, liebe Abgeordneten, eigentlich wisst ihr jetzt alles, was ihr für die Abstimmung braucht. Seit mal ehrlich, wenn euch das mit dem Euro auch mal einer so einfach erklärt hätte….

Das Verfahren

Die Politik macht eine Vorgabe wieviel elektrische Energie in der Zukunft erzeugt werden soll. Dafür ermitteln die Übertragungsnetzbetreiber ein Leitungssystem, welches diese Vorgabe erfüllen könnte. Abschließend verabschiedet der Bundestag ein Gesetz, in dem diese Höchstspannungsleitungen festgeschrieben werden.

Eigentlich sollte der Unterschied zwischen einer rechnerischen und einer realen Größe jedem Politiker geläufig sein. Addiert man beispielsweise alle Einkommen und teilt diese Summe durch die Anzahl der Einwohner, erhält man den Mittelwert des Pro-Kopf-Einkommens. Das sagt aber nichts darüber aus, wieviel Kleinrentner und Millionäre es gibt! Gibt man nun den prozentualen Anteil an „Erneuerbaren“ vor (konkret 40 bis 45% in 10 und 55 bis 60% in 20 Jahren), ergibt das noch lange keine Einsparung an fossilen Energien. Am anschaulichsten läßt sich dies am Beispiel der Sonnenkollektoren erklären: Nachts ist es dunkel. Will man nun einen bestimmten Anteil des verbrauchten Stroms durch Sonnenenergie gewinnen, müßte man diesen Anteil notgedrungen ausschließlich am Tage produzieren. Rechnerisch erscheint das – zumindest in Grenzen – möglich, real ist es jedoch ohne Speicher physikalisch unmöglich. Wenn man keine Speicher hat, muß man die volle Leistung durch konventionelle Kraftwerke bereit halten. In der Realität ist die Sache aber noch ungünstiger. Der Wind weht relativ selten bzw. überwiegend schwach und die Sonne scheint noch weitaus seltener mit der Leistung auf dem Typenschild. Jedenfalls kann nicht einmal der Mix aus „Erneuerbaren“ mit einer Energieeffizienz von 40 % aufwarten. Die Physik und die Meßwerte (z. B. Energiestatistik von Deutschland) sprechen eine eindeutige Sprache. Warum soll aber diese einfache Erkenntnis eine solche Tragweite haben?

In einem Stromnetz muß zu jedem Zeitpunkt ein Gleichgewicht zwischen erzeugter und verbrauchter Leistung bestehen. Die absolute Obergrenze die man theoretisch einspeisen könnte, ist also die momentan verbrauchte Leistung. Technisch, ist die mögliche Leistung noch wesentlich geringer. Es gibt nur zwei Möglichkeiten mit diesem Problem umzugehen: Entweder man regelt die „Erneuerbaren“ ab, was ihre ohnehin schon geringe Energieeffizienz weiter verschlechtern würde und ihre Kosten in schwindelerregende Höhen treiben würde oder man vergrößert das Netz. Um es noch einmal mit anderen Worten ganz deutlich zu sagen: Der einzige Grund für den geplanten Netzausbau ist, den Abfallstrom aus den Regionen mit Überproduktion abzutransportieren. Nur diesem einzigen Zweck dient der ganze Zirkus. Würde man zu dem alten Grundsatz zurückkehren, Strom dort zu produzieren, wo man ihn auch braucht, würde man auch keine zusätzlichen Höchstspannungstrassen brauchen.

Dem ganzen Ansatz, das Problem von nicht benötigter Leistung durch einen Netzausbau lösen zu wollen, ist ohnehin nur eine kurze Lebensdauer vergönnt. Er wird genau so lange funktionieren, wie unsere Nachbarländer gewillt sind, unseren Stromabfall aufzunehmen. Ein guter Indikator sind die zu entrichtenden Entsorgungsgebühren – auch negative Börsenpreise genannt. Spätestens, wenn die Entsorgungsgebühren höher als die Vergütung (Einspeisevorrang) für die Windmüller und Sonnenmännchen sind, wird man deren Anlagen abregeln. Bin gespannt, wann die ersten (staatlich geförderten) Verschrottungsprämien für Windräder und Sonnenkollektoren eingeführt werden. Mit an Sicherheit grenzender Wahrscheinlichkeit lange bevor ein Anteil von 50% (produzierte Energie, also MWh und nicht nur installierte Leistung MW) Wind und Sonne an der Stromerzeugung erreicht ist.

Die Standortfrage

Einfach eine Stromleitung irgendwo hin zu bauen, nützt auch nichts. Es sollte schon ein Kraftwerk in der Nähe sein. Damit ergeben sich zwei Probleme, die sich auch noch gegenseitig beeinflussen. Einerseits muß man Voraussagen, wo, welche konventionellen Kraftwerke stehen und andererseits wo die „Erneuerbaren“ gebaut werden. Wenn sich die Standorte nicht decken – was wahrscheinlich ist – braucht man auch noch doppelte Leitungen. Außerdem sind die Leitungen für die „Erneuerbaren“ sehr viel kostspieliger, weil sie wegen deren geringen Effizienz ebenfalls nur schlecht ausgelastet sein können.

Konventionelle Kraftwerke

Es ist politisch gefordert, konventionelle Kraftwerke abzuschalten. Außerdem gibt es auch noch unterschiedlich „politisch korrekte Kraftwerke“: Kernkraft, Braunkohle, Steinkohle Erdgas usw.

Inzwischen hat es sich rum gesprochen, daß auch ein Kraftwerk mindestens seine Kosten (Kapital, Brennstoff etc.) einnehmen können muß (Strompreise). Spätestens, wenn die Brennstoffkosten die Stromvergütung übersteigt, ist es an der Zeit, das Kraftwerk abzuschalten. Leider, richten sich gerade die Brennstoffpreise nicht nach den Idealen der Politiker. Auch die planwirtschaftlichen Ideen einer „Brennstabsteuer“ und einer „CO2.-Abgabe“ waren bisher nicht besonders hilfreich.

Wie lösen nun unsere „Szenario-Bastler“ das Problem? Jedes Kraftwerk bekommt eine Lebensdauer zugewiesen. Modelltechnisch eine elegante Lösung. Nur bitte, was soll die Lebensdauer eines Kraftwerks sein? Die technische Lebensdauer eines Kraftwerks ist theoretisch unendlich, da man immer wieder reparieren und modernisieren kann. Es gibt nur eine wirtschaftliche Lebensdauer, die freilich viel schwerer zu definieren ist. In ihr schlummert jede Menge politischer Willkür! In des Wortes Bedeutung, kann jede Flutwelle im fernen Asien das politisch erzwungene aus bedeuten. Die „klimafreundlichen“ und „flexiblen“ Gaskraftwerke können in den wirtschaftlichen Ruin getrieben werden, wenn ein Diktator in Moskau mit dem falschen Bein aufsteht. Ausgerechnet Braunkohle und Kernenergie haben den geringsten Brennstoffpreis und bieten die höchste Versorgungssicherheit – oder ist genau das der Grund, warum sie so bekämpft werden?

Also, liebe Politiker, sagt ihr uns Ingenieuren mal, welche Kraftwerke ihr haben wollt. Wir sagen euch dann, was ihr dafür für Mittel in eurem Haushalt bereitstellen müsst. Ein bischen Planwirtschaft geht genauso wenig, wie ein bischen schwanger sein. Eine Regierung, die sich anmaßt über Stromleitungen zu entscheiden, wird doch wohl auch noch sagen können, welche Kraftwerke wohin sollen. Das ging doch in der DDR auch ganz gut und 40 Jahre muß doch keiner von euch mehr im Amt bleiben. Wir bringen auch an jedem Kraftwerk eine Bronzetafel mit euren Namen an.

Die Rolle der Energiekombinate

Aber unsere Energiekombinate sind keinen Deut besser. Anstatt der Öffentlichkeit mal klaren Wein einzuschenken, hängen sie an den Lippen irgendwelcher Politiker und verzapfen lieber dämliche Werbekampagnen. Mit Unternehmertum hat das schon lange nichts mehr zu tun. Vielleicht ist aber auch das bewusstes handeln, um ein Gesellschaftssystem zu diskreditieren und letztendlich zu zerstören. Mein Mitleid für Massenentlassungen und sinkende Dividenden hält sich jedenfalls immer mehr in Grenzen.

Wer das für übertrieben hält, soll mir mal erklären, warum man in der Netzstudie von einem Abnehmen der Kraftwerkskapazität und dem zukünftigen Strombezug aus dem Ausland ausgeht.

Die Rolle Europas

Das wäre nach meinem Verständnis von Demokratie, eine Debatte die ins Parlament gehört: Wollen wir in Deutschland noch elektrische Energie selbstbestimmt produzieren oder zukünftig nur noch abhängig aus dem Ausland beziehen? Bundespolitiker, die ernsthaft über den Verlauf von Stromleitungen abstimmen wollen, sollten vielleicht besser mal über ihr Selbstverständnis als Bundestagsabgeordnete nachdenken. Im Szenario wird ein zunehmender Stromhandel als gewünscht vorausgesetzt. Angeblich hat der nur Vorteile. Was soll ein „europäischer Stromhandel“ eigentlich sein? Selbstverständlich liegen die Verbrauchsschwerpunkte von Antwerpen und Rotterdam nahe am rheinischen Braunkohlerevier und die tschechischen Kernkraftwerke fast in Sichtweite von Bayern. Aber wollen wir wirklich polnischen Kohlenstrom nach Spanien transportieren und griechischen Sonnenstrom nach Dänemark? Wie soll man die putzigen Diagramme über „Simulationen“ von ganz Europa interpretieren? „Referenzzeitpunkt Januar 19.00“: Um 19.00 Uhr (wahrer) Ortszeit ist es in ganz Europa schon ganz schön dunkel im Januar! Gerade im Januar gibt es ausgeprägte Hochdruckwetterlagen, die zur Flaute in ganz Zentraleuropa führen. Müssen dann beispielsweise die französischen Kernkraftwerke Deutschland versorgen oder dürfen sie ihre eigene Bevölkerung bevorzugen? Wäre es nicht fair, wenn die Franzosen als Ausgleich für die „Strahlenbelastung“ weiter arbeiten dürften und abends eine warme Wohnung vorfänden? Die Deutschen könnten sich ja zum warm tanzen um ihre Windmühlen versammeln.

Wer selbst nichts produziert, hat auch nur noch geringen Einfluß auf die Produktionsweise. Wer keine „Chlorhühnchen“ will, muß halt selber Hühner nach seinen Vorstellungen produzieren, sonst muß gegessen werden, was auf den Tisch kommt – oder man verzichtet gleich ganz aufs Essen.

Prognosen des Stromverbrauches

Prognosen sind Vorhersagen, bei denen man Nachfrage und Angebot vorhersagen muß, die sich aber auch noch gegenseitig beeinflussen. Das macht das Funktionieren einer jeden Planwirtschaft prinzipiell unmöglich. Das Szenario macht es sich nun besonders einfach, indem es die Nachfrage in den nächsten zwanzig Jahren als wesentlich konstant annimmt (mit 600 TWh Jahresenergieverbrauch bei 86 GW Spitzenlast). Man geht lediglich von den politischen Vorgaben der jährlichen Ausbauraten an „Erneuerbaren“ aus. Schon der konventionelle Kraftwerkspark soll sich daraus ergeben, wird angenommen.

Das Angebot in Form von Strompreis und Verfügbarkeit bestimmt aber schon mittelfristig ganz entscheidend die Nachfrage: Je mehr die Strompreise steigen, je mehr Betriebe werden in Deutschland keine Ersatz- und Neuinvestitionen mehr tätigen. Der Stromverbrauch der Industrie wird im Rhythmus der Betriebsschließungen sinken. Aber auch die Sektoren Handel und Handwerk sind betroffen. Zwar ist der Verbrauch der Privathaushalte sehr unelastisch – da hilft auch kein Glühbirnenverbot, keine Zwangsabschaltung von Kaffeemaschinen und keine Staubsaugerattrappen – aber der geringer werdende Konsum wirkt indirekt: Den Euro für die Stromrechnung kann man nicht noch einmal zum Becker tragen, der selbst seine Preise ständig wegen der steigenden Energiekosten erhöhen muß. Konsequenz: Man kauft halt weniger Kuchen. Öko-Sozialismus ist eine Abwärtsspirale, die im Moment noch langsam zunimmt, aber immer enger wird.

Fazit

Dieses Verfahren ist eine einzige Farce. Wenn Politiker über Stromleitungen entscheiden wollen, soll man ihnen eine Karte und ein paar Filzstifte geben. Jeder Abgeordnete kann dann „seine Lieblingsleitung“ einzeichnen. Er muß dann allerdings auch die alleinige Verantwortung dafür übernehmen. Einfach populistisch eine – zudem auch noch völlig unrealistische – Bandbreite vorgeben (40 bis 45% Anteil in zehn Jahren), geht nicht. So einfach, kann man sich nicht aus der Verantwortung für die wirtschaftliche Entwicklung einer ganzen Nation stehlen. Die Kritik trifft aber nicht nur die Politiker allein. Die Übertragungsnetzbetreiber und Energieversorger müssen endlich ihre Verantwortung als Unternehmer übernehmen. Immer nur aus Bequemlichkeit an den Lippen der Politiker kleben und möglichst in vorauseilendem Gehorsam jeden Wunsch erfüllen, ist auf Dauer tödlich. Am Ende ist das Kapital der Aktionäre verbrannt und die Arbeitsplätze der Arbeitnehmer vernichtet. Vielleicht ist aber gerade das, der Zweck der „Energiewende“.