Der Kampf gegen unsere Gesellschaft nimmt Fahrt auf

Pünktlich zum Klimazirkus in Kattowitz macht auch Brüssel wieder von sich reden: Ab 2030 (also in nur 12 Jahren!) soll für neue PKW und Kleintransporter (Handwerker aufgepaßt!) nur noch eine maximale Freisetzung von kapp 60 Gramm CO2 pro Kilometer erlaubt sein. Sie können gar nichts mit diesem Wert anfangen? Das genau, ist die Absicht. Je alltagsferner die Maßeinheit, um so besser für die Propaganda geeignet. Dies wußten schon die „Atomkraft-Gegner“. Übersetzen wir deshalb mal schleunigst diesen geplanten Grenzwert in Maßeinheiten, die jedem Autofahrer nur zu vertraut sind: 60 gr CO2 / km entspricht etwa einem Verbrauch von rund 2,5 Liter Benzin bzw. 2,3 Liter Diesel pro 100 km. Dämmert es jetzt, wohin die Reise gehen soll?

Damit sind Kraftfahrzeuge – wie wir sie heute kennen – gestorben! Nehmen wir mal als stellvertretendes Beispiel einen Golf-Diesel. Der Verbrauch bewegt sich seit dem ersten Modell bis bis zum heutigen Tage um die 6,5 Liter. Dies mag für Annalena und Svenja nur an den Konzernen liegen, aber weit gefehlt Mädels: Es gibt da etwas, was ihr besser nicht abgewählt hättet, das nennt sich Physik! In der Natur verläuft Aufwand und Nutzen immer in der Form von Exponentialfunktionen, die sich einem Grenzwert annähern. Der Volksmund sagte früher: Gott läßt keine Bäume in den Himmel wachsen! In diesem Fall ist der Grenzwert die Leistung (kW!), die man benötigt um ein Auto zu beschleunigen bzw. gegen die Widerstände in Bewegung zu halten. Jetzt kommt auch noch die Zeit (h) mit ins Spiel, die man benötigt um 100 km zurückzulegen. Mal relativ schnell (Autobahn) und mal im „Stop and Go“ (Stadtverkehr) mit ständiger „Kraftstoffvernichtung“ durchs Bremsen. Simsalabim haben wir die benötigte Bewegungs-Energie (kWh!). Nun ist aber Energie, nicht gleich Energie! Die benötigte Antriebsenergie muß erst noch im Fahrzeug (!) erzeugt werden. Diese liegt stets in chemischer Form vor. Gleichgültig ob als Benzin, Diesel, Akku, Wasserstoff oder sonst etwas. Für die Umwandlung setzt die Thermodynamik eindeutige und nicht überwindbare Grenzen. Heutige Verbrennungsmotoren sind nahezu ausgereizt.

Die Energiedichte

Jedes Kraftfahrzeug muß neben seinem Antrieb (Motor, Getriebe und notwendiges Zubehör) auch noch seinen ganzen Energievorrat mitführen. Dieses notwendige Eigengewicht treibt wiederum den Verbrauch selbst in die Höhe. Lange Rede, kurze Aussage: Ein Kraftfahrzeug mit etwa 2 Liter Verbrauch könnte nur ein moderner Trabant sein: Ein Auto mit nur vier Sitzen, aus Plastik und einer Höchstgeschwindigkeit von ca. 100 km/h. Immerhin ein Zugeständnis an die Handwerker, für die bisher ein Lastenfahrrad vorgesehen ist (Kein Witz! Der Rot-Rot-Grüne Berliner Senat fördert bereits Lastenfahrräder für Handwerker und Paketdienste). Wer noch die alte DDR kennt, weiß was alles möglich ist, wenn man nicht anders kann.

Genau das ist der Grund, warum Elektrofahrzeuge ein Flop waren, sind und immer sein werden. Man kann nicht oft genug daran erinnern, daß der erste Porsche einen Elektroantrieb (mit Nabenmotor!) hatte, weil es damals noch keine brauchbaren Verbrennungsmotoren gab. Als es diese gab, war das Konzept schlagartig mausetot. Im Krieg hatte man LKW mit Batterien und Oberleitungsbusse, weil der Treibstoff an der Front gebraucht wurde. Nach dem Krieg war der Spuk wieder vorbei. Die Sache ist eigentlich ganz einfach: Entweder man hat ein Fahrzeug mit geringer Reichweite (kleine Batterie) oder geringer Nutzlast.

Alle Schlaumeier, die nun einfach öfters laden wollen, tappen sofort in die nächste Falle: Die Betankung mit Benzin und Dieselkraftstoff dauert wegen deren hoher Energiedichte (rund 10 kWh/l) nur wenige Minuten. Wollte man gleiches mit elektrischer Energie machen, bräuchte man gewaltige Anschlussleistungen. Hochspannung am Straßenrand, in öffentlich zugänglichen Zapfsäulen?

Ähnliche Überlegungen gelten auch für alle Gase. Hier bleibt nur der Weg über Verflüssigung (LNG). Will man über verdichtete Gase gehen, braucht man große Verdichter (mehrere MW Antriebsleistung bei einer üblichen Autobahntankstelle) und senkt trotzdem die Reichweite auch noch weiter deutlich ab (zwangsläufige Erwärmung im Tank durch die Verdichtung). Wenn es Benzin und Diesel nicht geben würde, müßte man sie halt erfinden. Das das kein Scherz ist, kann man schon an den Kohlehydrieranlagen im Kriegsdeutschland und in Südafrika erkennen.

Mit Wind fahren?

Der größte Witz der Windindustrie ist, man könne doch mit ihrem Abfallstrom CO2 -frei fahren. Scheinbar überschreitet es die geistigen Fähigkeiten von „Ökos“ nachhaltig, den Unterschied zwischen Leistung und Energie zu begreifen. Es ist völlig unbedeutend, wie viel elektrische Energie mit Wind und Sonne erzeugt wird, vielmehr entscheidend ist, welche Leistung wann erzeugt wird. Am anschaulichsten ist es noch bei der Photovoltaik: Nachts ist es dunkel, also Stromproduktion gleich Null. Folglich könnte man damit kein einziges Fahrzeug nachts aufladen – mag die installierte Leistung (dank Subventionen) auch unendlich groß werden.

Ähnlich verhält es sich mit dem Wind. Bläst er tatsächlich mal und die Produktion übersteigt die verwertbare Leistung, hilft nur Abschalten. Man kann doch nicht wirklich glauben, daß sich jemand ein teures Elektroauto kauft um darauf zu warten, daß mal der Wind stark genug bläst. Noch abwegiger ist, die Autobatterien als Netzspeicher zu verwenden. Man stelle sich vor, man muß zur Arbeit, aber die Autobatterie ist leer – gleichgültig ob nicht genug Energie zum Laden vorhanden war oder das Netz mangels Wind noch zusätzlich gezapft hat.

Noch abwegiger ist die Schnapsidee, mit Wind und Sonne Gase herstellen zu wollen. Alle Verfahren sind sehr kapitalintensiv. Die Auslastung einer solchen Anlage ist aber noch deutlich geringer, als die des Windrades selbst. Es soll ja nur dessen „Überschuss-Strom“ eingelagert werden.

Die Stromversorgung

Wenn tatsächlich mehr als 2/3 aller Autos Elektroautos wären, müßten dafür gewaltige Mengen elektrischer Energie zusätzlich produziert werden und noch mehr Leistung (d. h. mehr Kraftwerke) bereitgestellt werden. Praktisch müßte für jedes Auto in der Nähe der eigenen Wohnung oder des Arbeitsplatzes eine Ladestation vorhanden sein. Dafür ist aber das vorhandene Stromnetz gar nicht ausgelegt. Es müßten gewaltige Investitionen in das Nieder- und Mittelspannungsnetz getätigt werden. Überwiegend in den bereits völlig dichten Städten (Erd- und Straßenbauarbeiten). Bei dem heutigen Zustand unseres Landes, eine Aufgabe für Jahrzehnte. Wer trägt dafür die Kosten? Doch wohl letztendlich der Autofahrer selbst.

An dieser Stelle erkennt man auch, wie durchtrieben der Begriff „Flottenverbrauch“ ist. Ein Hersteller der Golf-Klasse müßte für jedes produzierte Auto ein bis zwei Elektromobile verkaufen um den Flottenverbrauch (Elektroautos werden per Definition mit 0,0 COangesetzt, selbst wenn der Strom aus einem Kohlekraftwerk stammt. Alles klar???) zu erreichen. Woher sollen diese Käufer kommen? Für die meisten Familien, die sich höchstens ein Auto finanziell leisten können, dürfte ein Elektromobil völlig ungeeignet sein. Als Zweitwagen mit eigener Garage (Aufladung) oder Arbeitgeberparkplatz mag es ja noch gehen, aber für die Fahrt mit der Familie in den Urlaub?

Da hilft auch keine Mischkalkulation oder Strafzahlungen nach Brüssel. Elektroautos lassen sich nicht verkaufen, wahrscheinlich nicht einmal verschenken.

Gesellschaftliche Konsequenzen

Das Auto soll dem Bürger endgültig mies gemacht werden. Es steckt die allen Sozialisten gemeine Angst vor dem sich frei bewegenden Bürgern dahinter. Michel wird schon noch zu spüren bekommen, wie wahr der alte Slogan „Freie Fahrt für Freie Bürger“ einst war. Man stelle sich mal vor, nur die Hälfte der heutigen Autofahrer müssen auf das nicht vorhandene – bis völlig marode – öffentliche Verkehrssystem umsteigen. Was würden die Konsequenzen für die Vorstädte und ländlichen Räume sein? Nur noch Rentner und Transferleistungsempfänger oder Slums am Rande der Großstädte für die noch arbeitenden?

Der angepeilte Zeitraum von zwölf Jahren ist der ideale Zeitraum für eine „Verschleißstrategie a la DDR“. Man tätigt keine Neuinvestitionen mehr und reduziert Wartung und Instandhaltung um möglichst wenig Wertverlust am Ende zu haben. Parallel investiert man außerhalb dieser seltsamen EU. Die USA – und bald auch GB – stehen schon bereit. Die Europäer können sich dann ausländische Fahrzeuge kaufen oder es bleiben lassen. Wer der Politik auf dem Leim geht – wie einst die Energieversorger mit Energiewende und „Atomausstieg“ – wird untergehen. Jeder in Elektroautos investierte Euro ist zum Fenster rausgeschmissen. Jeder, der jünger als ca. 55 Jahre ist und in der Automobilindustrie oder bei den einschlägigen Zulieferern arbeitet, sollte seine persönliche Lebensplanung dringend überdenken – entweder rechtzeitig den Beruf wechseln oder mit der Industrie ins Ausland gehen. Mit „sozialverträglich“ – wie bei Stahlarbeitern und Steinkohlebergbau, die übrigens hart dafür kämpfen mußten – ist nicht mehr. Dafür ist die Dimension viel zu groß. Rezession ist, wenn dein Nachbar arbeitslos wird, Depression ist, wenn du selbst deinen Arbeitsplatz verlierst.

Kernenergie und Erdgas

In den letzten Jahren hat sich der Weltmarkt für Erdgas dramatisch verändert. Dies betrifft natürlich auch die Kernenergie.

Die Stromerzeugung

Weltweit steigt der Bedarf an elektrischer Energie weiter an. Dies wird auch noch sehr lange so bleiben, selbst wenn die Erdbevölkerung nicht mehr wachsen sollte. Der Stromverbrauch pro Kopf, ist ein unmittelbarer Indikator für den Wohlstand einer Gesellschaft. Insofern wird der Bedarf in Asien (China, Indien) und später auch in Afrika, geradezu explodieren. Die „regenerativen Energien“ – einst hat man sie treffend als „Additive Energien“ bezeichnet – sind schon wegen ihrer Zufälligkeit keine Lösung. Es bleiben nur Kernenergie und fossile Energie (Kohle, Erdgas, Öl).

Gerade in den Schwellenländern wird „king coal“ noch lange der Wachstumsmotor bleiben: Kohle ist ziemlich gleichmäßig auf der Erde verteilt, billig zu gewinnen und leicht zu transportieren und zu lagern. Ist man beim Umweltschutz nicht all zu pingelig, sind Kohlekraftwerke auch einfach, schnell und preiswert zu errichten. Dies galt in den 1950er Jahren bei uns, in China bis heute und in Afrika und Indien noch für lange Zeit. Es dauert einfach seine Zeit, bis der Wohlstandsgewinn durch eine Elektrifizierung vom „smog“ in der Wahrnehmung der Bevölkerung aufgefressen wird.

Das andere Extrem sind Kernkraftwerke: Sie erfordern einen hohen Kapitaleinsatz und eine entsprechende industrielle Infrastruktur. In China kann man die typische Entwicklung wie im Zeitraffer betrachten: Die ersten Kraftwerke wurden praktisch vollständig importiert. Wegen der hohen Stückzahlen war parallel der rasche Aufbau einer eigenen Fertigung möglich. Heute beginnt man bereits als Hersteller auf dem Weltmarkt zu agieren.

Irgendwo dazwischen, liegen Öl- und Gaskraftwerke. Sie erfordern die geringsten Kapitalkosten, haben aber die höchsten Brennstoffkosten. Bei Gaskraftwerken kam bisher noch das Vorhandensein ausreichender Gasmengen hinzu – und genau beim letzten Punkt ergeben sich gewaltige Veränderungen der Randbedingungen.

Die Shale Revolution

Erdgas ist beileibe nicht selten oder bald verbraucht. Bezieht man auch noch die Vorkommen an „Methanhydrat“ ein, so dürfte der Vorrat für Jahrtausende reichen. Man muß das Erdgas nur fördern, aufbereiten und transportieren können. Gerade der Transport stellte dabei das größte Hindernis dar. Für Gas blieb bisher nur die Rohrleitung über, die extrem unflexibel ist. Sie mußte lückenlos vom Gasfeld bis zum Kraftwerk reichen. Noch heute werden gigantische Mengen einfach abgefackelt, weil man sie nicht aufbereiten und transportieren kann.

Wie unter einem Brennglas kann man heute noch die Entwicklung in den USA betrachten. Durch die Entwicklung des „Fracking“ konnte man bis dahin nicht nutzbare Öl- und Gasvorkommen erschließen. Die Förderung ist zwar recht billig, aber das Erdgas leider auch ziemlich wertlos, weil am falschen Ort vorhanden. Mit riesigem Kapitalaufwand ist man immer noch beschäftigt, neue Aufbereitungsanlagen und Verteilnetze zu bauen. Gemessen an den Vorräten hat man damit z. B. in Iran oder Sibirien noch gar nicht begonnen. Dort steht man noch vor dem klassischen Henne-Ei-Problem. In den USA steht dem überreichlichen Angebot zumindest eine potentielle Nachfrage gegenüber. Die geringen Herstellkosten durch „Fracking“ verlocken Investoren neue Pipelines zu bauen. Trotz der Transportkosten ist der Rohstoff Erdgas in den Verbrauchszentren damit immer noch konkurrenzlos günstig. Haushalte und Industrie beginnen umzurüsten. Das braucht aber Zeit und diese Durststrecke muß überbrückt werden.

Gaskraftwerke zum Ausgleich der Nachfrage

Gaskraftwerke erfordern geringe Investitionen und sind schnell zu bauen. Sie wurden deshalb traditionell als Spitzenlast-Kraftwerke (Abdeckung von Verbrauchsspitzen an wenigen Stunden im Jahr) gebaut. Nun sind sie da. Bekommt man an seinem Standort einen besonders günstigen Erdgaspreis, kann man sie jederzeit länger laufen lassen. Betriebswirtschaftlich entscheidend ist einzig die Relation zu anderen Brennstoffen. Dies ist der Grund, warum z. B. die Stromproduktion aus Kohle in den USA stark eingebrochen ist. Der Brennstoffpreis hat die Kohle verdrängt, nicht irgendwelcher „Klimaschutz“. Umgekehrtes gilt in Deutschland: Das „Russengas“ ist – noch – viel zu teuer, sodaß Kohlekraftwerke immer noch preisgünstiger produzieren können. Die Stadtwerke gehen an ihren „umweltfreundlichen“ Gaskraftwerken langsam pleite. Eine klassische Fehlinvestition auf Grund von ideologisch bedingter Fehlsichtigkeit.

Wohin die Entwicklung langfristig geht, kann man bereits in den Golfstaaten erkennen. Dort war Erdgas mehr Abfall als Wirtschaftsgut. Folgerichtig hat man konsequent auf eine Verstromung in Gaskraftwerken gesetzt. Parallel hat man sich aber weltweit neue Absatzmärkte für Erdgas erschlossen und damit den Preis im eigenen Land systematisch nach oben gezogen. In den Vereinigten Emiraten ist man nun an einem Punkt angekommen, wo es günstiger ist, elektrische Energie in Kernkraftwerken zu produzieren. Wohl gemerkt, in den Emiraten. Frei von Rot-Grüner Ideologie, in atemberaubend kurzer Bauzeit, zu günstigen Weltmarktpreisen. Wenn man sich nicht nur im „öko-sozialistischen Nebel“ bewegt, dürft ziemlich klar sein, wohin die Reise geht: Allein China hat gerade die Taktfrequenz (nur in seinem eigenen Land!) auf den Bau von einem Reaktor alle zwei Monate erhöht!

Neues Spiel durch LNG

Bisher hatte Erdgas einen enormen Nachteil zu überwinden: Gas ließ sich nur in Rohrleitungen oder kleinen Gasflaschen transportieren. Dadurch war z. B. der gesamte Verkehrssektor tabu und mußte dem Öl überlassen werden. Die ausschließliche Verbindung zwischen Verbraucher und Produzenten durch Rohrleitungen ist äußerst starr und damit anfällig für jegliche Risiken.

Erdgas war praktisch ein reiner Brennstoff, der nur in Konkurrenz zum Heizöl stand. Insofern war es auch logisch und richtig, die Preisentwicklung an den Rohölpreis zu koppeln. Wer sich einmal an eine Rohrleitung angeschlossen hat, hätte nur bei einer extremen Verbilligung des Heizöls ein Interesse gehabt, zurück zum Öl zu wechseln. Durch die massive Markteinführung von LNG (Liquified Natural Gas) hat sich das Blatt gewendet. Plötzlich gibt es eigene Handelsorte mit eigenen Preisindizes (z. B. Henry Hub) wie schon lange beim Rohöl üblich (z. B. Brent oder WTI). Wo ein funktionierendes Handelsprodukt an einer Börse existiert, wird das notwendige Kapital magisch angezogen. Die Transparenz wirkt dabei wie ein Reaktionsbeschleuniger. Ganz im Gegenteil zu Hinterzimmern, in denen politische Männerfreundschaften (Schröder/Putin) gepflegt werden.

Bisher völlig unterschätzt, wird dabei die Wandlung vom Brennstoff zum Treibstoff. In Windeseile bilden sich Transportketten bis in die letzten Häfen der Welt. Geschickt unter dem Mäntelchen Umweltschutz verkauft, beginnt sich die Weltschifffahrt ein völlig neues Bein als Treibstoff zu erschließen. Gibt es erstmal in jedem größeren Hafen ein Lager und eine Tankstelle für LNG, kommt im nächsten Schritt die Binnenschifffahrt dran (geschieht bereits auf dem Rhein) und als nächstes Eisenbahn (Diesellokomotiven) und schwere LKW. Beides in den USA schon im Ausbau. Hier wird das Henne-Ei-Problem zielstrebig gelöst. Stehen erstmal die Lieferketten, kann der Generalangriff auf die etablierten Gasversorger erfolgen. Wenn Gazprom glaubt, seine hohen Gaspreise auch weiterhin durchsetzen zu können, sollen sie mal weiter träumen. Man wird über die unzähligen Terminals in den europäischen Häfen (gerade nicht in Deutschland!) LNG einspeisen und erstmal die Großverbraucher mit günstigen Angeboten abwerben. Es ist mit Sicherheit kein Zufall, daß z. B. ein neues LNG-Terminal in Swinemünde – nur wenig entfernt von der Anlandungsstelle (Greifswald Lubmin) von Nord Stream – gebaut wurde. Es dient nicht nur der Absicherung Polens gegen die Launen Putins, sondern wird der Grundstock eines Handelspunktes werden, in den auch Gazprom gern einspeisen kann – allerdings zu Weltmarktpreisen und nicht zu Konditionen des Kreml. Notfalls sind z. B. Tankwagen in wenigen Stunden im Verbrauchsschwerpunkt Berlin angekommen. Dies wird die Preisverhandlungen Berliner Kraftwerke noch grundlegend beeinflussen. Ein Leitungsmonopol wird es zukünftig nicht mehr geben. Gazprom könnte das gleiche Schicksal erleiden, wie die Telekom nach „Erfindung“ des Mobiltelefons.

Was macht LNG so anders?

Verflüssigtes Erdgas LNG ist nahezu reines Methan, ohne chemische Verunreinigungen (z. B. Schwefel) und somit einfach (ohne Nachbehandlung) und schadstoffarm zu verbrennen. Es ist sehr klopffest, sodaß es sogar problemlos in Diesel- und Ottomotoren verbrannt werden kann.

Entscheidend ist seine hohe Energiedichte, die etwa 60% von herkömmlichem Kraftstoff beträgt. Weit mehr, als Batterien je erreichen werden. Es ist deshalb ohne all zu große Einbußen an Raum und (totem) Gewicht in Schiffen und LKW einsetzbar. Eine Betankung ist – wie bei allen Flüssigkeiten – schnell und einfach durchführbar.

Nachteil ist die Herstellung: Um die Volumenverkleinerung (1/600) zu erzielen, muß das Erdgas auf etwa -160 °C abgekühlt und gehalten werden. Eine ziemlich aufwendige Technik. Allerdings beherrscht man heute die erforderlichen Schritte sicher. Für die Herstellung und den Transport werden rund 15% des eingesetzten Gases verbraucht. Die Verdampfung aus dem Tank ist nur bei Stillstand ein Verlust, da sonst der „Abdampf“ sofort als Treibstoff genutzt werden kann. Die heutigen „Thermoskannen“ sind so gut geworden, daß sie z. B. als Container über weite Strecken geschickt werden können.

Die Angebotsseite

Der Weltmarkt wächst in den letzten Jahren rasant. 2012 gab es etwa 100 Verflüssigungsstränge mit einer Kapazität von über 297 MMPTA (Hinweis: Wer sich mit Erdgas beschäftigt, muß sich an etliche skurril anmutende Einheiten gewöhnen. 1 MMPTA ist 1 Million metrischer Tonnen pro Jahr.). BP prognostiziert, daß in den nächsten fünf Jahren etwa alle acht Wochen weltweit ein neuer Strang den Betrieb aufnehmen wird. Allein bis 2016 werden in Australien neue Kapazitäten mit 25 MMPTA fertiggestellt. Der Kapitaleinsatz kann sich dabei durchaus mit der Kerntechnik messen. Allein Chevrons Gorgon Projekt (15,6 MMPTA) hat dann über 54 Milliarden US-Dollar gekostet. In den USA sind bis 2020 weitere 58 MMTPA in Planung.

An dieser Stelle erscheint es sinnvoll, sich etwas mit den Relationen vertraut zu machen. Am 24.2.2016 verließ der erste Export-Tanker das Sabine Pass Terminal in USA. Er hatte 3,4 Bcf geladen. Mit diesen 3,4 Milliarden Kubikfüßen (1 Kubikmeter entspricht etwa 35 Kubikfüßen) ist das Gasvolumen nach der Rückverdampfung gemeint. Es entspricht einem Ladungsgewicht von rund 250 000 to – also ein typischer Tanker. Setzt man einen solchen Tanker mit der Nord Stream Pipeline in Vergleich, die eine Kapazität von 55 Milliarden Kubikmetern pro Jahr hat, erkennt man, daß etwa 10 solcher Tanker pro Woche nötig wären, um diese Pipeline komplett zu ersetzen.

Die Preisfrage

Erdgas ist zwischen Öl – als nahem Verwandten – und Kohle eingeklemmt. Die internationale Handelseinheit für Rohöl ist das Faß (1 bbl = 159 l), dessen Heizwert man mit rund 5,8 MMBtu (1 Million British Thermal Unit = 293 kWh) ansetzt. Man muß also die internationale Handelseinheit 1 MMBtu vom Erdgas lediglich mit dem Faktor 5,8 multiplizieren, um das „Öläquivalent“ zu erhalten. Man nennt das auch neudeutsch die „Btu crude ratio method“. Bei Kohle ist es etwas komplizierter, weil spezieller: Die Heizwerte von Kohlen sind sehr verschieden. Ein typischer Richtwert ist der API-2 Index oder die „Rotterdamkohle“ (1 to hat 23,8 MMBtu). Aktuell gilt z. B. für Rohöl (WTI) 35,92 US-Dollar für ein Faß. Somit wäre das Gasäquivalent etwa 6 US-Dollar pro 1 Million Btu. Der Börsenpreis (Henry Hub) betrug aber lediglich 1,67 US-Dollar für eine Million Btu. Die Tonne „Rotterdamkohle“ kostete rund 46 US-Dollar pro Tonne, entsprechend einem Gasäquivalent von 1,93 US-Dollar für eine Million Btu. Da international alle Energieträger miteinander verknüpft sind, erkennt man aus den letzten Relationen, warum der Kohleverbrauch in den Kraftwerken der USA um über 30% eingebrochen ist. Dies ist nicht dem „Klimaschutz“, sondern der harten Hand des Marktes geschuldet. Andererseits liegt der aktuelle Gaspreis an der Leipziger Börse bei rund 4 US-Dollar für eine Million Btu. Auch hier ist der Grund deutlich zu erkennen, warum in Deutschland immer noch – und zukünftig, nach erfolgtem „Atomausstieg“, noch viel mehr — „king coal“ die Stromerzeugung dominiert.

Internationale Aussichten

Die mit Abstand größten LNG-Importeure sind Japan und Korea. Beide setzen konsequent auf den Ausbau von Kernenergie und Kohle. Bereits jetzt ist der Verbrauch in Japan schon wieder rückläufig. Mit jedem Kernkraftwerk, das wieder in Betrieb geht, wird er weiter abnehmen. Auch China hat nicht den Zuwachs im Gasverbrauch, den viele einmal erwartet haben. Kohle läßt sich schon aus sozialpolitischen Gründen nicht so schnell und einfach zurückfahren. Gleichzeitig wurde der Ausbau der Kernenergie noch beschleunigt.

An dieser Stelle scheint eine Verdeutlichung des Erdgasbedarfs in der Stromwirtschaft nötig. Ein Kernkraftwerk würde je 1000 MW Leistung und einer üblichen Auslastung von 90% 44,84 Millionen MMBtu Erdgas pro Jahr, gegenüber einem modernsten Kombikraftwerk (Wirkungsgrad von 60%) einsparen – oder anders ausgedrückt 0,14 Bcf/d. Allein die Erdgasförderung in den USA beträgt rund 74 Bcf/d. Dies erklärt, warum 2015 dort die Stromerzeugung aus Kohle (1356 TWh) und Erdgas (1335 TWh) erstmalig ebenbürtig waren. Die Kohlekraftwerke in USA werden zukünftig die Funktion einer Preisbremse für Erdgas übernehmen und damit den Weltmarktpreis für LNG maßgeblich beeinflussen.

Genau auf die nahen asiatischen Absatzgebiete hat Australien mit seinem massiven Ausbau gesetzt. Nun läßt sich aber die Produktion wegen der hohen Kapitalkosten nicht einfach anhalten, sondern man muß praktisch um jeden Preis verkaufen, damit man die Schulden bedienen kann. Die LNG-Preise werden damit in Asien weiter fallen, was die Exporteure in USA und im mittleren Osten weiter unter Druck setzt. So sind z. B. die Frachtkosten von den Verflüssigungsanlagen nach Asien rund dreimal höher als ins „nahe“ Europa. Für Deutschland als Industriestandort, mit seiner einseitigen Ausrichtung auf „Wind und Russengas“, ziehen deshalb rasch dunkle Wolken auf.

Halbzeit bei GenIV

Nach zehn Jahren der internationalen Zusammenarbeit bei der Entwicklung von Reaktoren der sogenannten „vierten Generation“ erschien eine Überarbeitung der Ursprünglichen Fahrplanes aus dem Jahre 2002 erforderlich.  In der letzten Dekade ist viel geschehen: Dies betrifft die Zusammensetzung und Forschungsintensität der Mitglieder, die bereits gewonnenen Erkenntnisse und nicht zuletzt die Veränderung der äußeren Randbedingungen (Shale Gas Boom, Fukushima, etc.).

Es ist bei den ursprünglich ausgewählten sechs Konzepten geblieben. Neue sind nicht hinzugekommen. Mehrere teilnehmende Länder haben bedeutende Mittel in die Entwicklung natriumgekühlter Reaktoren mit einem schnellen Neutronenspektrum (sodium-cooled fast reactor, SFR) und gasgekühlten Reaktoren mit möglichst hoher Betriebstemperatur (very-high-temperature reactor, VHTR) investiert.

Die restlichen vier Konzepte: Mit Wasser im überkritischen Zustand gekühlte Reaktoren (SCWR), bleigekühlte Reaktoren mit schnellem Neutronenspektrum (LFR), gasgekühlte Reaktoren mit schnellem Neutronenspektrum (GFR) und mit Salzschmelzen gekühlte Reaktoren wurden – mehr oder weniger – auf Sparflamme entwickelt.

Ziele

Weiterhin gelten als zentrale Anforderungen an die sogenannte vierte Generation folgende vier Bereiche:

  • Nachhaltigkeit
  • Sicherheit und Verfügbarkeit
  • Wirtschaftliche Wettbewerbsfähigkeit
  • nicht zur Produktion von Waffen geeignete Technologien und ein physikalischer Schutz gegen jedwede Einwirkungen von Außen (Naturkatastrophen, Terrorismus etc.).

Interessant ist in diesem Zusammenhang die Definition der vier Generationen: Die ersten Reaktoren der Baujahre 1950–1960 (z. B. Shippingport, Dresden, MAGNOX usw.) werden als Demonstrationskraftwerke verstanden und sind bereits stillgelegt. Die zweite Generation umfaßt die Baujahre 1970–1990 und stellt die überwiegend heute im Betrieb befindlichen Leichtwasser- und Schwerwasserreaktoren dar. Die dritte Generation wird als die Leichtwasserreaktoren der Baujahre 1990–2000 definiert, wobei die Reaktoren nach dem Jahr 2000 als Generation III+ bezeichnet werden. Sie stellen eine evolutionäre Weiterentwicklung der Druck- und Siedewassertechnologie dar. Die Vielzahl unterschiedlichster Reaktortypen der Anfangsjahre hat sich also auf lediglich zwei Bauarten verengt. Die Weiterentwicklungen der schwerwassermoderierten, der gasgekühlten und der metallgekühlten Reaktoren ist – zumindest, was die Stückzahlen anbetrifft – auf das Niveau von Demonstrationsanlagen zurückgefallen. Erst ab dem Jahr 2030 wird von der Einführung einer vierten Generation ausgegangen.

Als die zentralen Ziele für die vierte Generation wird dabei die Verringerung der Gesamtkosten über den Lebenszyklus eines Kraftwerks, eine nochmals verbesserte Sicherheit, ein möglichst großer Schutz vor missbräuchlicher Nutzung (Waffen, Terrorismus) und eine erhebliche Verringerung des (Atom)mülls gesehen.

Abgebrannte Brennelemente

Nach einer gewissen Zeit ist jedes Brennelement in einem Reaktor nicht mehr nutzbar und muß ausgetauscht werden. Im Sprachgebrauch der „Atomkraftgegner“ ist es dann „Atommüll“ der zudem auch noch für Jahrtausende tödlich sein soll. In Wirklichkeit sind in einem „abgebrannten“ Brennelement eines Leichtwasserreaktors noch über 95% Brennstoff enthalten. Dieser Brennstoff muß und kann recycled werden. Aber selbst die übrig bleibenden Spaltprodukte sind keinesfalls wertlos. Aus wirtschaftlichen Gründen lohnt meist keine sofortige Aufbereitung. Es empfiehlt sich daher, diesen Atommüll (Müll in Bezug auf eine energetische Verwertung) für längere Zeit sicher zu lagern um ein Abklingen der Radioaktivität abzuwarten. Durch eine Nachbehandlung des Abfalls in geeigneten Reaktoren (mit schnellem Neutronenspektrum oder sog. Transmutation) kann diese notwendige Lagerzeit auf wenige hundert Jahre beschränkt werden. Eine „Endlagerung“ ist weder nötig noch sinnvoll. Das übrig bleibende „Erz“ – mit hohem Gehalt wertvollster Materialien – kann anschließend dem normalen Wirtschaftskreislauf zugeführt werden.

Die Aufgabe der nahen und mittleren Zukunft liegt in der Entwicklung und Realisierung solcher Kreisläufe mit möglichst geringen Kosten. Das bisher vorliegende „Henne-Ei-Problem“ beginnt sich gerade von selbst zu lösen: Es gibt inzwischen weltweit große Mengen abgebrannter Brennelemente, die eine Aufbereitung mit unterschiedlichsten Verfahren im industriellen Maßstab möglich machen. Viele dieser Brennelemente sind bereits soweit abgelagert (die Strahlung nimmt in den ersten Jahren besonders stark ab), daß sich ihre Handhabung stark vereinfacht hat.

Ein „Endlager“ – besser ein Lager mit sicherem Einschluß über geologische Zeiträume – ist nur für die Abfälle nötig, deren Aufbereitung zu kostspielig wäre. Dieser Weg wird bereits für Abfälle aus der Kernwaffenproduktion beschritten. Dafür reicht aber maximal ein „Endlager“ pro Kernwaffenstaat aus.

In naher Zukunft wird sich ein weltweiter Austausch ergeben: Es wird unterschiedliche Wiederaufbereitungsanlagen in verschiedenen Ländern geben. Die Kraftwerksbetreiber können diese als Dienstleistung nutzen. Die dabei wiedergewonnen Wertstoffe werden auf speziellen Märkten gehandelt werden. Wer zukünftig beispielsweise einen „Brutreaktor“ bauen möchte, kann sich das für die Erstbeladung notwendige Plutonium auf diesem Markt zusammenkaufen. Wem die Mengen langlebiger Aktinoiden zu groß werden (Lagerkosten) kann diese an Betreiber von schnellen Reaktoren oder Transmutationsanlagen zur „Verbrennung“ abgeben. Es wird sich genau so ein Markt für „nukleare Müllverbrennungsanlagen“ etablieren, wie er heute für Industrie- und Hausmüll selbstverständlich ist.

Ebenso wird es kommerzielle „Endlager“ geben, die gegen (teure) Gebühren Restmengen aufnehmen, die sich anderweitig nicht mehr wirtschaftlich verwenden lassen. Gerade Deutschland ist weltweit führend in Erwerb und Endlagerung von hoch toxischen Abfällen in ehemaligen Salzbergwerken. Hier ist es auch sprachlich gerechtfertigt, von Endlagern zu sprechen, da die dort eingelagerten Stoffe – anders als radioaktive Stoffe – nie verschwinden werden. „Gefährlich“ ist (zumindest in Deutschland) halt nur eine Frage des ideologischen Standpunktes.

Die sechs Systeme

Im Jahre 2002 wurden aus über 100 Vorschlägen sechs Konzepte ausgewählt. Leitgedanke dabei war, aus verschiedenen Reaktortypen symbiotische Systeme zu bilden. Beispielsweise durch die Verknüpfung von Leichtwasserreaktoren mit Reaktoren mit schnellem Neutronenspektrum, sodaß der „Abfall“ des einen Reaktortyps als Brennstoff für den anderen dienen kann. In diesem Sinne, konzentrierte man sich nicht auf die Entwicklung eines einzelnen neuen Reaktors, sondern wählte sechs Konzepte aus, aus denen ein weltweites Netz aufgebaut werden könnte. Jeder einzelne dieser sechs ausgewählten Konzepte hat ganz spezielle Vor- und Nachteile, die es jedem Land ermöglichen sollte, für seinen speziellen Bedarf, das geeignete Modell auswählen zu können. Es geht also eher darum, Möglichkeiten zu eröffnen, als Konzepte fest zu schreiben. Dies ist ein sehr flexibler und (theoretisch) Kosten sparender Ansatz, da jedes Land seine besonderen Stärken (Werkstofftechnik, Fertigungstechnik, Datenverarbeitung etc.) in die gemeinsame Forschung und Entwicklung einbringen kann, ohne sich ein komplettes Entwicklungsprogramm für einen einzelnen Reaktor aufbürden zu müssen. Insbesondere auch kleinen Ländern, mit beschränkten Ressourcen steht es offen, sich zu beteiligen.

Die ursprünglich ausgewählten Konzepte sind alle in den letzten zehn Jahren verfolgt worden und sollen auch weiter entwickelt werden. Allerdings haben sich durch neue Erkenntnisse und einem unterschiedlichen finanziellen Einsatz in den beteiligten Ländern, der ursprünglich geplante Zeitplan etwas verschoben. Die Entwicklung wurde in jeweils drei Phasen unterteilt.

Zeitplan

Für alle sechs Reaktortypen sollten die Machbarkeitsstudien als erste Phase bereits abgeschlossen sein. Bei der Machbarkeitsstudie sollten alle relevanten Probleme geklärt worden sein und insbesondere für kritische Eigenschaften, die später sogar eine Aufgabe erforderlich machen könnten, zumindest Lösungswege aufgezeigt werden. Für Salzbadreaktoren glaubt man diese Phase nicht vor 2025 und für gasgekühlte Reaktoren mit schnellem Neutronenspektrum, nicht vor 2022 abschließen zu können.

In der Durchführungsphase sollten alle Materialeigenschaften, Berechnungsverfahren etc. entwickelt und als Prototypen getestet und optimiert sein. Diese Phase wurde bisher bei keinem Konzept abgeschlossen. Am weitesten vorn im Zeitplan, liegen der mit Natrium gekühlte schnelle Reaktor (erwartet 2022) und der mit Blei gekühlte schnelle Reaktor (erwartet 2021).

Aus heutiger Sicht wird deshalb kein Reaktor die Demonstrationsphase bis zum Jahr 2030 abschließen können. Bevor eine kommerzielle Anlage in Angriff genommen werden kann, muß wenigstens ein Demonstrationskraftwerk (einschließlich dem erforderlichen Genehmigungsverfahren!) errichtet worden sein und einige Jahre Betriebserfahrung gesammelt haben. Selbst in Ländern mit durchweg positiver Einstellung zur Nutzung der Kernenergie und einem gewissen Pioniergeist (ähnlich der 1950er Jahre) dürfte dies ein ehrgeiziges Ziel sein. Zumal kein wirklicher Zeitdruck vorliegt: Es gibt genug Natururan zu günstigen Preisen, die Mengen abgebrannter Brennelemente sind immer noch so gering, daß kein Kostendruck zur Beseitigung von „Atommüll“ existiert und der Bedarf an Prozeßwärme mit hoher Temperatur kann problemlos durch kostengünstiges Erdgas gedeckt werden. Es bleibt die Erzeugung elektrischer Energie: Die kann aber problemlos und kostengünstig (im Vergleich zu Kohlekraftwerken mit Abgaswäsche) durch konventionelle Leichtwasserreaktoren erzeugt werden. China stellt dies eindrucksvoll unter Beweis.

Fukushimas Auswirkungen

Fukushima hat die Bedeutung für eine nach den Regeln der Technik entsprechende Auslegung und Bauweise gezeigt. Die Lehren aus dem Unglück beeinflussen nicht nur die in Betrieb befindlichen Kraftwerke, sondern auch zukünftige der vierten Generation. Schädigende Einflüsse von außen müssen bauartbedingt von den Reaktoren fern gehalten werden (z. B. Baugrund oberhalb von möglichen Flutwellen) und die Nachzerfallswärme muß auch über längere Zeit und in jedem Falle sicher abgeführt werden (z. B. passive Wasserkühlung aus oberen Tanks ausreichender Dimension).

Für die Reaktoren der vierten Generation sind umfangreiche Forschungsarbeiten zur Beantwortung dieser Fragen notwendig. Dies betrifft insbesondere das Verhalten der andersartigen Kühlmittel (Helium, Natrium, Blei etc.) und die teilweise wesentlich höheren Temperaturen (Werkstoffe, Temperaturschocks etc.). Hinzu kommt die höhere Energiedichte in den Kernen und etwaige Brennstoffkreisläufe in unmittelbarer Nähe.

Gasgekühlter schneller Reaktor (GFR)

Bei dem GFR (Gas-cooled Fast Reactor) handelt es sich um einen mit Helium gekühlten Reaktor mit schnellem Neutronenspektrum. Durch schnelle Neutronen lassen sich alle Aktinoiden – also alle radioaktiven Elemente mit langen Halbwertszeiten – spalten. Dies ist heute der Hauptgrund, warum man diese Entwicklung verfolgt. Man könnte mit solchen Reaktoren die „Endlagerfrage“ eindeutig beantworten: Man braucht faktisch kein Endlager mehr, weil sich das Problem der potentiellen „Gefahr durch strahlenden Atommüll“ auf technische Zeiträume von weniger als 300 Jahren reduziert. Damit ist auch klar, warum sich die „Anti-Atomkraftbewegung“ mit besonderer Vehemenz – und auch Gewalttätigkeit – gegen den Bau solcher Reaktoren gewandt hat. Würden solche Reaktoren mit Wiederaufbereitung abgebrannter Brennelemente eingesetzt, wäre ihnen ihr Totschlagargument von angeblich über Millionen Jahre zu sichernden Endlagern entzogen. Die (deutsche) Scharade einer „Standortsuche“ wäre schlagartig zu Ende.

Ein mit Helium gekühlter Reaktor mit schnellem Neutronenspektrum hat jedoch einen systembedingten Nachteil: Wegen des angestrebten Neutronenspektrums darf ein solcher Reaktor nur geringe Mengen an Materialien enthalten, die Neutronen abbremsen. Idealerweise würde er nur aus Brennstoff und Kühlmittel bestehen. Seine Fähigkeit „Wärme“ zu speichern, ist sehr gering. Jede Leistungsänderung führt somit zu starken und schnellen Temperaturänderungen. Ein ernster Nachteil bei einem Verlust des Kühlmittels. Allein die Nachzerfallswärme könnte zu schwersten Schäden führen. Ebenso ist eine passive Nachkühlung kaum realisierbar. Helium ändert – anders als Wasser – nur geringfügig seine Dichte bei Temperaturänderungen. Man wird daher immer auf aktive Nachkühlung angewiesen sein. Die Ereignisse von Fukushima haben die Genehmigungsfähigkeit dieses Reaktorprinzips nicht unbedingt erhöht.

In nächster Zukunft müssen Gebläse bzw. Turbinen entwickelt werden, die Helium mit hoher Temperatur (Betriebstemperatur 850 °C) und unterschiedlichen Drücken (zwischen 1 und 70 bar) zuverlässig befördern können. Für die Kreisläufe zur Abführung der Nachzerfallswärme sind sicherheitsrelevante Ventile zu entwickeln und zu testen. Es sind zuverlässige Antriebskonzepte für die Notkühl-Gebläse zu entwickeln. Nach den Erfahrungen in Fukushima keine ganz einfache Aufgabe.

Die infrage kommenden Legierungen und Keramiken für die Brennelemente sind ausgiebig zu testen. Gleiches gilt für die Hüllrohre. Es müssen im Störfall Temperaturen von etwa 2000 °C sicher beherrscht werden.

Mit der bisherigen Entwicklung sind die Probleme eher größer geworden. Es wird deshalb nicht mit einem Abschluss der Machbarkeitsstudien in den nächsten zehn Jahren gerechnet. Wegen der Langfristigkeit ist der Einsatz der Mittel eher verringert worden.

Bleigekühlter schneller Reaktor (LFR)

Bei dem Lead-cooled Fast Reactor (LFR) handelt es sich um einen Reaktor, der flüssiges Blei als Kühlmittel verwendet. Blei besitzt einen sehr hohen Siedepunkt (1743 °C), sodaß man mit diesem Reaktortyp sehr hohe Temperaturen ohne nennenswerten Druckanstieg erzeugen kann. Allerdings ist Blei bei Umgebungsbedingungen fest, weshalb man den gesamten Kreislauf stets auf über 328 °C halten muß. Es gibt also zusätzlich den neuen Störfall „Ausfall der Heizung“. Blei ist chemisch recht beständig und reagiert – wenn überhaupt – ohne große Wärmefreisetzung mit Luft oder Wasser. Es schirmt Gammastrahlung sehr gut ab und besitzt ein gutes Lösungsvermögen (bis 600 °C) für Jod und Cäsium. Ferner trägt die hohe Dichte von Blei eher zu einer Rückhaltung als einer Verteilung von radioaktiven Stoffen bei einem schweren Störfall bei. Allerdings stellt die Undurchsichtigkeit und der hohe Schmelzpunkt bei allen Wartungsarbeiten und Sicherheitsinspektionen eine echte Herausforderung dar. Die hohe Dichte von Blei erschwert den Erdbebenschutz und erfordert neue (zugelassene) Berechnungsverfahren. Nach wie vor, ist die Korrosion von Stahl in heißem Blei mit Sauerstoff ein großes Problem. Hier ist noch sehr viel Forschung und Entwicklung nötig, bis ein dem heutigen Niveau von Leichtwasserreaktoren entsprechender Zustand erreicht wird.

In sowjetischen U-Booten wurden Reaktoren mit einem Blei-Wismut-Eutektikum (niedrigerer Schmelzpunkt) verwendet. Die dort (meist schlechten) gesammelten Erfahrungen sind nicht direkt auf das LFR-Konzept übertragbar. Die Reaktoren sind wesentlich kleiner, haben eine geringere Energiedichte und Betriebstemperatur und eine geringere Verfügbarkeit. Außerdem arbeiteten sie mit einem epithermischen und nicht mit einem schnellen Neutronenspektrum. Der Vorteil des geringeren Schmelzpunktes einer Blei-Wismut-Legierung ist nicht ohne weiteres auf eine zivile Nutzung übertragbar, da durch den Neutronenbeschuß Polonium-210 gebildet wird. Es handelt sich dabei um einen starken Alphastrahler (Halbwertszeit 138 Tage), der den gesamten Kühlkreislauf kontaminiert.

Im Moment werden im Projekt drei verschiedene Konzepte verfolgt: Ein Kleinreaktor mit 10 bis 100 MWel in den USA (Small Secure Transportable Autonomous Reactor or SSTAR), ein Reaktor mit 300 MWel in Russland (BREST) und ein Reaktor mit mehr als 600 MWel in Europa (European Lead Fast Reactor or ELFR – Euratom).

Wenn man einen solchen Reaktor als Brüter betreiben will, benötigt man eine Mindestleistung. Je größer, je effektiver. Ein kleiner Reaktor, wie z. B. der SSTAR, ist nur als reiner „Aktinoidenbrenner“ geeignet. Allerdings kann er sehr lange ohne einen Brennstoffwechsel betrieben werden. Will man Spaltmaterial erbrüten, ist ein häufiger Brennstoffwechsel unvermeidlich. Es empfiehlt sich deshalb, einen entsprechenden Brennstoffzyklus zu entwickeln. Es wird auf den Bau mehrere Reaktoren mit einer gemeinsamen Wiederaufbereitungsanlage hinauslaufen. Das Verfahren zur Wiederaufbereitung hängt wiederum von dem Brennstoffkonzept des Reaktors ab.

Ein besonderes Konzept, im Zusammenhang mit Blei, ist die Entwicklung einer Spallationsquelle (Japan, MYRRHA in Belgien usw.). In einem Beschleuniger wird ein Strahl von Protonen auf über 1 GeV beschleunigt und auf flüssiges Blei geschossen. Beim Auftreffen auf ein Bleiatom „verdampft“ dieses seine Kernelemente. Es wird eine große Anzahl von Neutronen frei. Diese Neutronen werden von einem Mantel aus Aktinoiden absorbiert. Diese eingefangenen Neutronen führen teilweise zu einer Spaltung oder einer Umwandlung. Durch die Spaltungen wird – wie in jedem Kernreaktor – Wärme frei, die anschließend konventionell genutzt werden kann. Es entsteht aber keine selbsterhaltende Kettenreaktion. Wird der Beschleuniger abgeschaltet, brechen auch sofort die Kernreaktionen in sich zusammen. Es handelt sich hierbei also um eine Maschine, die primär der Stoffumwandlung und nicht der Energieerzeugung dient. Durch die Verwendung von Blei als „Neutronenquelle“ und Kühlmittel sind aber alle Erfahrungen und Probleme unmittelbar übertragbar.

Am weitesten scheint die Entwicklung in Russland vorangeschritten zu sein. Man entwickelt einen bleigekühlten Reaktor mit 300 MWel (BREST-300) und betreibt die Weiterentwicklung der U-Boot-Reaktoren mit Blei-Wismut-Eutektikum als Kühlmittel (SVBR-100). Beide Reaktoren sollen bis zum Ende des Jahrzehnts erstmalig kritisch werden. In Europa plant man eine Demonstrationsanlage mit 300 MWth (Advanced Lead Fast Reactor European Demonstrator, ALFRED).

Salzbadreaktoren (MSR)

Salzbadreaktoren (Molten Salt Reaktor, MSR) werden in zwei Gruppen eingeteilt: Reaktoren, bei denen der Spaltstoff im Salz selbst gelöst ist und Reaktoren, bei denen das flüssige Salz nur als Kühlmittel dient (Fluoride salt-cooled High-temperature Reactor, FHR).

Zwischen 1950 und 1976 gab es in den USA ein umfangreiches Entwicklungsprogramm, aus dem zwei Prototypen erfolgreich hervorgingen (Aircraft Reactor Experiment, ARE und Molten Salt Reactor Experiment, MSRE). Anfangs konzentrierte man sich in der Entwicklung auf Salzbadreaktoren mit thermischem Neutronenspektrum.

Ab 2005 entwickelte sich eine Linie, die von in Salz gelöstem Brennstoff und Spaltprodukten ausging. Als Kühlmittel soll ebenfalls Salz dienen. Das Neutronenspektrum soll schnell sein. Von dieser Kombination verspricht man sich einerseits das Erbrüten von Spaltstoff (z. B. Uran-233 aus Thorium-232) und andererseits das kontinuierliche „Verbrennen“ von Minoren-Aktinoiden mit dem Ziel eines relativ kurzlebigen „Atommülls“, der nur noch aus Spaltstoffen besteht. Durch das Salzbad möchte man hohe Betriebstemperaturen bei nahezu Umgebungsdruck erreichen. Bis zum Bau eines Reaktors, ist jedoch noch ein langer Weg zurück zu legen: Es müssen die chemischen (Korrosion) und thermodynamischen Zustandsdaten für solche n-Stoff-Salze bestimmt werden. Es müssen Verfahren zur kontinuierlichen Entgasung der Salzschmelze entwickelt werden, da ein großer Teil der Spaltprodukte (zumindest bei der Betriebstemperatur) gasförmig ist. Für das flüssige Salzgemisch müssen gekoppelte neutronenphysikalische und thermohydraulische Berechnungsverfahren geschaffen werden. Für die radioaktiven Salzgemische sind zahlreiche Sicherheitsversuche zur Datensammlung und Absicherung der Simulationsmodelle nötig. Die Chemie und Verfahrenstechnik der Aufbereitung während des Reaktorbetriebs muß praktisch noch vollständig getestet werden.

Natriumgekühlter schneller Reaktor (SFR)

Der Sodium-cooled Fast Reactor (SFR) verwendet flüssiges Natrium als Kühlmittel. Natrium hat nahezu ideale Eigenschaften: Relativ geringer Schmelzpunkt (98 °C), aber hoher Siedepunkt (890 °C), sehr gute Wärmeleitfähigkeit (140 W/mK) bei annehmbarer Wärmekapazität (1,2 KJ/kgK). Es hat keine korrosiven Eigenschaften, reagiert aber heftig unter Wärmefreisetzung mit Luft und Wasser. Bisher wurden bereits 17 Reaktoren gebaut und drei weitere befinden sich in Russland, Indien und China im Bau.

Ursprüngliches Ziel war die Erschaffung eines „schnellen Brüters“. Mit ihm sollte mehr (thermisch) spaltbares Plutonium erzeugt werden, als dieser Reaktortyp zu seinem Betrieb benötigte. Dieses zusätzlich gewonnene Plutonium sollte dann zum Start weiterer Reaktoren verwendet werden. Inzwischen gibt es aus dem Betrieb von Leichtwasserreaktoren und der Rüstungsindustrie mehr als genug Plutonium auf der Erde. Darüber hinaus sind die Natururanvorräte nahezu unerschöpflich. Deshalb hat sich die Zielrichtung in den letzten Jahren verschoben. Die benutzten Brennelemente aus Leichtwasserreaktoren werden von „Atomkraftgegnern“ abfällig als „Atommüll“ bezeichnet. In Wirklichkeit sind aber das gesamte enthaltene Uran und Plutonium (weit über 95 %) vollständig zur Energiegewinnung nutzbar. Gerade aus dem wertvollsten Material – dem Plutonium – wird wegen dessen langer Halbwertszeit der Bedarf eines Endlagers und dessen „sicherer Einschluß über Millionen von Jahre“ konstruiert. Selbst die Spaltprodukte – als tatsächlicher Abfall der Energieerzeugung durch Kernspaltung – sind (wirtschaftlich) nutzbar.

Man geht heute von einer Erstbeladung eines schnellen natriumgekühlten Reaktors mit einem Gemisch aus Uran und knapp 20% Plutonium aus. Das Plutonium gewinnt man aus den abgebrannten Brennelementen der Leichtwasserreaktoren. Die abgebrannten Brennelemente eines solchen schnellen Reaktors werden nach angemessener Zwischenlagerung in einem elektrochemischen Prozeß (wie z. B. bei der Kupfer- und Aluminiumproduktion) wieder aufbereitet. Bei diesem Wiederaufbereitungsverfahren liegt der Schwerpunkt in der Gewinnung möglichst reiner (kurzlebiger) Spaltprodukte. Alle langlebigen Aktinoiden werden wieder in den neuen Brennelementen weiter verwendet. Das „verbrauchte“ Uran und Plutonium wird dabei durch „Atommüll“ aus Leichtwasserreaktoren ergänzt. Ein solcher Reaktor gleicht also einer „Müllverbrennungsanlage“, in der ja auch „gefährliche Stoffe“ unter gleichzeitiger Stromerzeugung beseitigt werden.

Natriumgekühlte Reaktoren können in beliebiger Größe gebaut werden. Lediglich wenn man Brennstoff erbrüten will (d. h. mehr Plutonium produzieren als man verbraucht) muß der Reaktor geometrisch groß sein, um Neutronenverluste zu vermeiden. Gerade „Aktinoidenbrenner“ können sehr klein und kurzfristig gebaut werden. Die Entwicklung bezieht sich auf die Kombination aus Brennstoff (oxidisch, metallisch, karbidisch und Nitride möglich) und die Wiederaufbereitung (naßchemisch, pyrotechnisch). Es gilt die optimale Kombination aus Werkstoffen und Verfahren zu finden. Ferner sind homogene Brennstoffe und spezielle heterogene Anordnungen zur Verbrennung von Minoren-Aktinoiden denkbar. Diese Anordnungen koppeln wieder auf die Neutronenphysik, die Regelung und damit letztendlich auf die Sicherheit zurück.

Reaktor mit überkritischem Wasser (SCWR)

Wird Wasser oberhalb des kritischen Punktes (374,12 °C bei 221,2 bar) verwendet, ändert es radikal seine chemischen und physikalischen Eigenschaften. Entscheidend ist die kontinuierliche Änderung der Dichte. Es gibt nicht mehr das gleichzeitige Auftreten von Dampf und Flüssigkeit (z. B. Blasen) in einem Behälter.

Ziel von „überkritischen Kesseln“ ist die Steigerung des Wirkungsgrades. So sind heute in modernen Kohlekraftwerken Wirkungsgrade von 46 % möglich. Für den Supercritical-water-cooled reactor (SCWR) ist ein Wirkungsgrad von 44 % angestrebt. Die leidvolle Entwicklungsgeschichte bei konventionellen Kraftwerken hat jedoch gezeigt, daß die Steigerung von Druck und Temperatur mit erheblichen Werkstoffproblemen und damit Kosten verbunden ist. Solange Kernbrennstoffe so billig wie heute sind, scheint dieser Weg bei Reaktoren zumindest wirtschaftlich nicht sinnvoll.

Die gesamte Sicherheitstechnik muß neu durchdacht und experimentell bestätigt werden. Es gibt keine lokale Selbstregelung durch Dampfblasenbildung mehr. Die Gefahr von überhitzten Stellen im Kern muß schon im Normalbetrieb sicher beherrscht werden. Die Notkühlsysteme müssen bei einem Druckabfall sowohl im überkritischen Zustand, als auch im Zwei-Phasenbereich voll wirksam sein. Man kann sich nicht mehr auf den Wasserstand als Stellgröße verlassen, sondern muß auf den Durchfluß übergehen, was wesentlich schwerer zu realisieren ist. Die Wasserchemie ist im überkritischen Zustand wesentlich anders und schwerer zu beherrschen.

Bisher wurden nur Tests mit Komponenten ausgeführt. Man hofft auf dieser Basis in den nächsten fünf Jahren eine Entscheidung für den Bau eines Prototyps fällen zu können. Bis zu einem kommerziell nutzbaren Reaktor dürften noch weit über 20 Jahre vergehen.

Hösttemperaturreaktor (VHTR)

Der Very-High-Temperature Reactor (VHTR) ist eine Weiterentwicklung eines mit Helium gekühlten Reaktors mit thermischem Neutronenspektrum. Es gibt die – ursprünglich in Deutschland entwickelte – Anordnung der Brennelemente als Kugelhaufen oder eine prismatischer Anordnung. Ziel war immer das Erreichen von Betriebstemperaturen von nahezu 1000 °C. Dieser Reaktortyp sollte primär als Wärmequelle in der Verfahrenstechnik (Kohleveredlung etc.) dienen. In diesem Sinne war ein Meilenstein immer das Erreichen einer Temperatur von 950 °C, bei der eine rein thermische Zerlegung von Wasser über einen Schwefel-Jod-Prozeß möglich ist. Dies war als Fundament einer „Wasserstoffwirtschaft“ gedacht. In Deutschland wurde das Konzept einer „kalten Fernwärme“ entwickelt, in dem Methan im Kreislauf läuft und beim Verbraucher lediglich chemisch zerlegt wird und die Bestandteile anschließend wieder mit der Hilfe der Wärme des Kernreaktors wieder zusammengesetzt werden. Der Charme dieses Konzepts liegt in der Fähigkeit, Energie über große Entfernungen mit geringen Verlusten (wie ein Erdgasnetz) transportieren und auch speichern zu können. Stellt man das „Erdgas“ synthetisch aus Kohle her, kann man dieses Gas in das vorhandene Erdgasnetz einspeisen. Interessanterweise wird dieser Gedanke in China aus den gleichen Gründen, wie damals in Deutschland, wieder aufgegriffen: Luftverschmutzung durch Kohle, bei (noch) geringen eigenen Erdgasvorkommen.

Die Entwicklung von Höchsttemperaturreaktoren ist im wesentlichen ein Werkstoffproblem. Wobei nicht übersehen werden darf, daß mit steigender Temperatur der Aufwand und die Kosten exponentiell ansteigen. Allerdings kann diese Entwicklung evolutionär durchgeführt werden. China scheint offensichtlich diesen Weg eingeschlagen zu haben. Ausgehend vom (Nachbau) des deutschen Kugelhaufenreaktors begibt man sich schrittweise vorwärts.

SMR Teil 3 – Innovative Reaktoren

Es gibt inzwischen unzählige Reaktorentwürfe. Es gehört praktisch zum guten Ton einer jeden Forschungsstätte sich mit einer neuen Studie zu schmücken. Je nach Mitteln und Background, reichen (meist) auch Variationen bekannter Prinzipien aus.

Es ist daher sinnvoll, auch bei der Betrachtung „kleiner“ Reaktoren (SMR) den potentiellen Markt nicht außer acht zu lassen. Die Domäne der Kernenergie ist und bleibt die Erzeugung elektrischer Energie. Dies liegt einerseits an der universellen Verwendbarkeit von „Strom“ und andererseits an Gewicht und Volumen eines Kernreaktors. Die Untergrenze für den technisch/wirtschaftlichen Einsatz ist ein Schiff.

Zwar ist die Wärmeerzeugung immer noch mit großem Abstand die überragende Energieanwendung, aber nur ein geringer Bedarf entfällt davon auf Hochtemperatur-Wärme (chemische Prozesse). Die „Endlichkeit“ von Kohle, Öl, Erdgas und Uran hat sich längst als Wunschtraum unbelehrbarer Anhänger der Planwirtschaft erwiesen. Längst ist man daher in diesen Kreisen auf eine indirekte Verknappung (Klimaschutz – wir dürfen gar nicht so viel fossile Brennstoffe nutzen, wie wir zur Verfügung haben) umgestiegen. Es lohnt sich nicht, sich damit weiter auseinander zu setzen. Für diese Betrachtungen reicht folgender Zusammenhang vollständig aus:

  • Energieverbrauch und Wohlstand sind die zwei Seiten ein und derselben Medaille. Wer das Recht aller Menschen auf ein Mindestmaß an Wohlstand anerkennt, muß von einem weiter steigenden Energiebedarf ausgehen. Oder andersherum ausgedrückt: Wer eine Senkung des Energieverbrauches fordert – wie es scheinbar immer populärer wird – will die Armut für den größten Teil der Menschheit weiter festschreiben.
  • Mit fortschreitender Entwicklung steigt der Verbrauch elektrischer Energie überproportional an. Der für eine zuverlässige und kostengünstige Stromversorgung einzusetzende Primärenergieaufwand steigt damit weiter an. Ersetzt man die hierfür notwendigen Mengen an Kohle und Erdgas durch Kernenergie, bekommt man mehr als genug dieser Energieträger frei um damit Industrie und Transportsektor zu versorgen. Die USA führen diesen Weg mit der Erschließung unkonventioneller Öl- und Gasvorkommen – bei gleichzeitigem Ausbau der Kernkraftwerke – eindrucksvoll vor.

Hat man diesen Zusammenhang verstanden, wird auch die Entwicklung der „kleinen“ Reaktoren in den nächsten Jahrzehnten vorhersagbar. Das Streben nach „hohen Temperaturen“ hat durch die Entwicklung des Erdgasmarktes (außerhalb Deutschlands!) an Bedeutung eingebüßt. Erdgas – egal aus welchen Vorkommen – ist der sauberste und kostengünstigste Brennstoff zur Erzeugung hoher Temperaturen und zur Gewinnung von Wasserstoff. Zur Stromerzeugung eigentlich viel zu schade!

Das Argument des geringeren Uranverbrauches durch Reaktoren mit höherer Temperatur ist ebenfalls nicht stichhaltig: Die Uranvorräte sind nach menschlichen Maßstäben unerschöpflich und der Minderverbrauch durch höhere Wirkungsgrade wiegt den wirtschaftlichen Mehraufwand bei weitem nicht auf. Ein Anhaltspunkt hierfür, bietet die Entwicklung bei Kohlekraftwerken: Sie liegt heute noch in Regionen mit „billiger“ Kohle eher in der Größenordnung von Leichtwasserreaktoren (ungefähr 33 %) als bei deutschen und japanischen Steinkohlekraftwerken (fast 46 %). Bis Uran so teuer wird, daß sich eine Wirkungsgradsteigerung um 40 % wirtschaftlich lohnt, dürften eher Jahrhunderte, als Jahrzehnte vergehen. Damit dürften alle Hochtemperaturreaktoren eher Nischenprodukte bleiben, was aber gerade dem Gedanken einer Serienproduktion widerspricht. Gleiches gilt auch für sog. „Schnelle Brüter“.

Gleichwohl sind einige gasgekühlte Reaktoren und Reaktoren mit schnellen Neutronen in der Entwicklung. Diese Prototypen sollen im Folgenden etwas näher vorgestellt werden.

NPMC-Reaktor

National Project Management Corporation (NPMC) hat zusammen mit dem Staat New York , der City of Oswego und der Empire State Development einen Antrag auf Förderung für einen heliumgekühlten Kugelhaufen-Reaktor mit 165 MWel.eingereicht. Dem Konsortium hat sich National Grid UK, die New York State Energy Research Development und die Pebble Bed Modular Reactor (PBMR) of South Africa angeschlossen.

Eingereicht wurde ein Gas Turbine Modular High-Temperature Reactor (GT-MHR). Die Entwicklung beruht auf dem in Deutschland entwickelten THTR-Reaktor. Sie wurde in Südafrika fortgesetzt. Anders als in Deutschland und China wollte man aber nicht einen konventionellen Dampfkreislauf sekundärseitig verwenden, sondern wollte zur Stromerzeugung eine Gasturbine einsetzen. Die Entwicklung eines solchen geschlossenen Gasturbinen-Kreisprozesses mit Helium als Arbeitsmittel überstieg aber bei weitem die wirtschaftlichen Möglichkeiten Südafrikas, was letztendlich zur Aufgabe führte.

Eine Gasturbine hat so hohe Austrittstemperaturen, daß problemlos eine trockene Kühlung mit Außenluft möglich wird. Die Schwierigkeit in den Verbrauchsschwerpunkten in Südafrika ist die Bereitstellung von ausreichend Kühlwasser. Unter dem Wassermangel leiden dort alle konventionellen Kraftwerksprojekte (hauptsächlich Kohle). In New York gibt es zwar genug Wasser, aber die (angebliche) Umweltbelastung durch Kühlwasser ist der Hauptansatz gegen die vorhandenen und geplanten Kernkraftwerke. Nichts desto trotz könnten SMR mit geschlossenen Gasturbinen ein Modell für die dezentrale Versorgung in zahlreichen ariden Gebieten auf der Welt sein.

China verfolgt ebenfalls konsequent den Kugelhaufen-Hochtemperatur-Reaktoren weiter. Allerdings sind alle in Bau und Planung befindlichen Kraftwerke mit konventionellen Dampfkreisläufen ausgerüstet.

Energy Multiplier Module (EM2)

Auch General Atomics (GA) hat ein Gas-Turbine Modular Helium Reactor (GT-MHR) Konzept mit 265 MWel eingereicht. Man geht aber nicht von einem Kugelhaufen (siehe oben), sondern von hexagonalen Prismen als Brennelementen aus. Basis ist ein eigenes Modell aus den 1980er Jahren. Das Modul soll bei einer thermischen Leistung von 500 MWth. komplett und fertig mit Brennstoff beladen auf einem LKW zur Baustelle transportiert werden. Die Austrittstemperatur des Heliums soll (extrem hohe) 850 °C betragen. Damit wäre der Einsatz als Wärmequelle in der Verfahrenstechnik, bis hin zur thermischen Wasserstoffproduktion, denkbar. Ein Turbosatz mit hoher Drehzahl wird auf einem zweiten LKW angeliefert. Die Gasturbine und der angeschlossenen Generator laufen mit mehreren 10.000 Umdrehungen pro Minute. Die Umwandlung der elektrischen Energie in „netzfähigen Strom“ erfolgt über elektronische Umformer. Bei der eingereichten Variante handelt es sich um ein reines Kraftwerk zur Stromerzeugung. Im Begleittext wird betont, daß dieser Reaktor lediglich die Abmessungen eines „Schulbusses“ hätte. Hinzu käme ein etwa gleich großes Modul für den Turbosatz. Insofern wäre die Leistungsdichte (umbauter Raum) konkurrenzlos gering. Wegen der hohen Austrittstemperatur hätte dieses Kraftwerk einen elektrischen Wirkungsgrad von 53 %. Das Kraftwerk käme mit Luftkühlung aus und wäre damit äußerst flexibel einsetzbar. Durch den hohen Wirkungsgrad und seine neutronenphysikalischen Eigenschaften wäre selbst ohne Wiederaufbereitung, der „Atommüll“ um 80% geringer als bei üblichen Reaktoren.

Noch innovativer als der Turbosatz, ist das Brennstoffkonzept: Der Reaktor wird in der Fabrik mit Brennstoff beladen und komplett nach 30 Jahren Laufzeit wieder in die Fabrik zurückgeliefert. Das ganze ähnelt also eher einer Batterie, als einem klassischen Kraftwerk. Dieses Konzept würde die gesamte Stromversorgung revolutionieren. Ein „Energieversorger“ mietet sich quasi für 30 Jahre eine „Stromerzeugungseinheit“ und gibt diese nach Gebrauch komplett wieder zurück. Durch die speziellen Sicherheits- und Betriebsanforderungen löst sich auch das Problem der Personalkosten: Verkleinert man einfach heutige Reaktorkonzepte, steigt der spezifische Personalaufwand stark an. Das ist leider die Umkehrung der Betriebskostendegression mit zunehmender Kraftwerksgröße. Die Kombination aus geringen Investitionskosten, kaum Betriebskosten, kaum Netzkosten, keine „Atommüllprobleme“…, könnte einen ähnlichen Quantensprung, wie die Einführung des PC in der Datenverarbeitung auslösen. Davon dürften sicherlich nicht alle begeistert sein!

Die Brennelemente besitzen eine Umhüllung aus einem Siliziumcarbid-Faser-Verbundwerkstoff. Das Material verträgt Temperaturen von weit über 2000 °C und reagiert wegen seiner keramischen Eigenschaften praktisch nicht mit Luft und Wasser. Der Brennstoff ist inhärent sicher und selbstregelnd: Steigt die Temperatur zu stark an, bricht die Kettenreaktion in sich zusammen (Dopplereffekt). Auch die Nachzerfallswärme kann dem Brennstoff praktisch nichts anhaben, da er sich gefahrlos so weit aufheizen kann, daß schon die Wärmeabgabe durch Strahlung (Kühlmittelverluststörfall) dauerhaft ausreicht. Dieses Verhalten ist unzählige male experimentell bestätigt worden.

Jeder Reaktor wird erstmalig mit etwa 20 to abgebranntem Brennstoff aus Leichtwasserreaktoren oder abgereichertem Uran beladen. Hinzu kommt als „Starter“ rund 22 to auf 12% angereichertes Uran. Nach 30 Jahren Betriebszeit werden in einem speziellen Aufbereitungsprozess die entstandenen etwa 4 to Spaltprodukte entfernt und durch 4 to abgebrannten Brennstoff aus Leichtwasserreaktoren ergänzt.

General Atomic ist eines der führenden Unternehmen (nicht nur) der Kerntechnik. Am bekanntesten dürften die weltweit gelieferten 66 TRIGA-Reaktoren (Training, Research, Isotopes, General Atomic) sein. Zusätzlich gehören zu dem Bewerbungskonsortium noch zwei der weltweit führenden Anlagenbauer: CB&I und Mitsubishi Heavy Industries und die Mutter der schnellen Reaktoren und der Wiederaufbereitung: Das Idaho National Laboratory (INL). Es fehlt also nicht an Kapital und Sachverstand. Größte Hürde dürfte das NRC mit seinem „unendlichen“ Genehmigungsverfahren sein. Aber auch auf dem Sektor des Bürokratismus bewegt sich in den USA etwas: Nicht nur, wegen der Drohkulisse, die China am Horizont aufbaut.

PRISM

Ein weiterer „schneller“ Reaktor, aber mit Flüssigmetallkühlung, ist der von General Electric und Hitachi Nuclear Energy (GEH) propagierte Power Reactor Innovative Small Module (PRISM). Es handelt sich ebenfalls um einen vollständig vorgefertigten und transportierbaren Reaktor mit einer thermischen Leistung von 840 MWth und 311 MWel. Es ist geplant, je zwei solcher Einheiten auf einen konventionellen Turbosatz (typisches Kohlekraftwerk) mit 622 MWel. zusammenzuschalten.

Das PRISM-Konzept bricht ziemlich radikal mit der heutigen Nutzung der Kernenergie und ihrem Brennstoffkreislauf. Es senkt konsequent den Einsatz von Natururan und entlässt als Abfall wesentlich geringere Mengen mit deutlich kürzerem Gefährdungszeitraum. Um dieses Ziel zu erreichen, ist nicht nur der Übergang auf „schnelle“ Neutronen nötig, sondern auch auf einen völlig neuen Brennstoffkreislauf. Durch die Verwendung von Neutronen mit hoher Energie (hoher Geschwindigkeit) kann man praktisch alle Aktinoide spalten – allerdings um den Preis einer geringeren Wahrscheinlichkeit. Man braucht deshalb eine wesentlich höhere Konzentration von U235 bzw. Pu239 um überhaupt eine Kettenreaktion in Gang setzen zu können. Außerdem muß man auf Wasser als Kühlmittel verzichten. Ein in diesem Sinne ideales Kühlmittel, ist das Metall Natrium. Geht man auf ein flüssiges Metall als Kühlmittel über, macht es Sinn, auch den Brennstoff in metallischer Form zu verwenden. Eine Legierung aus Uran, Zirconium und – gegebenenfalls allen möglichen – Transuranen, hat sich als besonders geeignet erwiesen. Wenn man aber schon einen Brennstoff in metallischer Form vorliegen hat – und keinerlei Ambitionen hegt, Kernwaffen zu bauen – bieten sich die erprobten Verfahren der Elektrometallurgie (Aluminium-, Kupferproduktion etc.) an. Vereinfacht gesagt, löst man den zerstückelten „abgebrannten“ Brennstoff in geschmolzenem Lithiumchlorid auf und legt eine Spannung von 1,34V an. Nun wandert das Uran und alle sonstigen Aktinoide zur Kathode und scheiden sich dort ab. Die Spaltprodukte bleiben im Lithiumchlorid zurück. Die Kathode wird eingeschmolzen und daraus neue Pellets hergestellt. Diese werden in Stahlrohre (H9) gesteckt, mit flüssigem Natrium zur besseren Wärmeleitung ausgegossen und mit einem Gaspolster aus Helium versehen, zu einem neuen Brennstab verschweißt. Im Prinzip ist diese Technik so simpel und automatisierter, daß sie in ein (größeres) Kraftwerk integriert werden könnte. Die übrig geblieben Spaltprodukte – etwa 1 kg für jedes 1 MWel. produziert über ein ganzes Jahr – kann man „irgendwo“ lagern, da sie nach wenigen hundert Jahren auf die Intensität des ursprünglichen Uranerzes abgeklungen sind – also die Gefahr, wieder voll und ganz, natürlich ist.

Sicherheitstechnisch betrachtet, hat sich dieser Reaktortyp als äußerst gutmütig erwiesen. Selbst, wenn man alle Regelstäbe voll gezogen hatte, regelte er sich selbst herunter, da durch den starken Temperaturanstieg die nukleare Kettenreaktion unverzüglich zusammenbricht. Für die Leistungsregelung gibt es Regelstäbe aus Borkarbid (B~4 C). Zusätzliche Regelstäbe hängen an Magneten. Fällt der Strom aus oder geht der Magnetismus infolge zu hoher Temperaturen verloren, fallen sie in den Reaktor und stellen ihn dauerhaft ab.

Allerdings hat Natrium einen entscheidenden Nachteil: Es reagiert sowohl mit Luft als auch mit Wasser sehr heftig. Deshalb sind der Reaktorkern, die zwei Wärmeübertrager und die vier elektromagnetischen Pumpen (ohne rotierende Teile) alle zusammen in einem mit Natrium gefüllten Topf eingebettet. Dieses Gefäß ist zusammen mit dem Sicherheitsbehälter am Deckel fest verschweißt. Sowohl das Reaktorgefäß, wie auch der Sicherheitsbehälter haben keine Durchbrüche. Die etwa 20 cm Zwischenraum und der Arbeitsraum über dem Deckel sind mit Argon – unter leichtem Überdruck zur Kontrolle auf etwaige Leckagen – befüllt. Da Natrium durch Neutronenbeschuß strahlend wird (Halbwertszeit etwa 1 Minute), wird die Wärme durch die Wärmeübertrager im Reaktorgefäß an einen zweiten Kreislauf mit Natrium übertragen. Dieses Natrium ist nicht radioaktiv und wird ständig überwacht. Das Natrium gelangt durch Rohr in Rohr Leitungen zum überirdischen Dampferzeuger. Der Dampferzeuger ist ein hoher, zylindrischer Behälter, der vollständig mit Natrium gefüllt ist. In diesem Behälter verlaufen schraubenförmige Rohrleitungen, in denen das Wasser zum Antrieb der Turbine verdampft wird. Im Normalbetrieb sorgen zwei elektromagnetische Pumpen für die Umwälzung des Natriums. Zur Abführung der Nachzerfallswärme nach Abschaltung des Reaktors, würde der sich einstellende Naturumlauf ausreichen. Wegen der vorliegenden Temperaturspreizungen (Kerneintritt: 360 °C, Kernaustritt: 499 °C, Dampferzeuger Eintritt: 477 °C, Austritt 326 °C) besteht ein ausreichend großes Sicherheitsgefälle.

Der Reaktor benötigt keinerlei elektrische Energie nach einer Schnellabschaltung. Ein Unglück wie in Fukushima ist daher ausgeschlossen. Die Nachzerfallswärme kann auf drei Wegen abgeführt werden:

  1. Über einen Bypass der Turbine durch den normalen Dampfkreislauf des Kraftwerks.
  2. Zwischen dem Dampferzeuger und seiner Isolierung befindet sich ein Luftspalt. Ist der Weg 1 nicht möglich (z. B. Bruch einer Dampfleitung), kann über den Naturzug die Wärme an die Umgebung abgegeben werden.
  3. Zwischen Sicherheitsbehälter und Betongrube befindet sich ebenfalls ein Luftspalt. Dieser ist mit Abluftkaminen oberhalb der Erde verbunden. Die durch die Nachzerfallswärme des Reaktors aufgeheizte Luft kann in diesen aufsteigen und wird durch nachströmende kühle Umgebungsluft ersetzt (Reactor Vessel Auxiliary Cooling System RVACS).

Anders, als bei Leichtwasserreaktoren, werden die abgebrannten Brennelemente nicht in einem separaten Brennelementelagerbecken gelagert, sondern verbleiben mindestens für einen weiteren Zyklus (Ladezyklus 12 bis 24 Monate, je nach Betriebsweise) im Reaktorbehälter. Dazu entfernt die automatische Lademaschine das gewünschte Brennelement, ersetzt es durch ein neues und stellt das alte zur Zwischenlagerung in das „obere Stockwerk“ des Reaktorbehälters. Erst, wenn die Brennelemente zur Wiederaufbereitung sollen, werden sie von der Lademaschine aus dem Reaktor gezogen, gereinigt und übergeben. Sie sind dann bereits soweit abgekühlt, daß sie problemlos „an die Luft können“, da die Brennstäbe aus Stahlrohren gefertigt sind.

Neu, ist die ganze Technik überhaupt nicht. Allein der Experimental Breeder Reactor EBR-II hat 30 Jahre erfolgreich gelaufen. Wenn sich jetzt mancher fragt, warum solche Reaktoren nicht längst gebaut werden, ist die Antwort einfach: Wir haben einfach noch nicht genug von dem, was „Atomkraftgegner“ als „Atommüll“ bezeichnen! Eine Serienproduktion macht wirtschaftlich nur Sinn, wenn die Stückzahl ausreichend groß ist. Dieser Reaktor braucht zur Inbetriebnahme 11% bis 17% spaltbares Plutonium und kann 18% bis 23% Transurane vertragen. Um 100 Reaktoren erstmalig zu befüllen, benötigt man daher geschätzt 56.000 bis 70.000 Tonnen Schwermetall in der Form abgebrannter Brennelemente aus Leichtwasserreaktoren. Es ist jetzt der richtige Zeitpunkt, mit Planung und Bau eines Prototypen zu beginnen. Diesen kann man gut mit „Bomben-Plutonium“ aus der Abrüstung oder bereits vorhandenem Plutonium aus Wiederaufbereitungsanlagen bauen. Die Zeit läuft nicht weg: Natururan ist noch billig und je länger die abgebrannten Brennelemente lagern, um so einfacher lassen sie sich aufbereiten. Geht man von kostenlos erhältlichem „Atommüll“ aus – manche meinen ja sogar, man benötige ein Milliarden teueres Endlager für abgebrannte Brennelemente – liegen die kompletten Brennstoffkosten (einschließlich geologischem Lager für die Spaltprodukte) für diesen Reaktortyp weit unter 1/2 Cent pro kWh elektrischer Energie. Spätestens jetzt sollte jedem klar sein, warum man die abgebrannten Brennelemente so sorgfältig in so aufwendigen Behältern verpackt „zwischenlagert“. Sehen so Mülltonnen aus? Die Lagerhalle von Gorleben beispielsweise, ist eher ein Goldschatz.

ALFRED

Das einzige europäische Projekt ist der Advanced Lead Fast Reactor European Demonstrator (ALFRED). Er wird zur Zeit von dem Konsortium aus ENEA und Ansaldo Nuclear aus Italien und der rumänischen ICN verfolgt. Es wird auch Fostering Alfred Construction FALCON genannt. Die über 1 Milliarde Euro Kosten sollen wesentlich von der EU, aus verschiedenen Töpfen aufgebracht werden. Der Standort soll in Mioveni in der Nähe von Pitesti in Rumänien sein. Baubeginn ist für 2017 und eine Fertigstellung bis 2025 gedacht. Er soll eine Leistung von 125 MWel bei 300 MWth. haben. Es ist wohl eine reine Demonstrationsanlage. An eine Serienfertigung ist eher nicht gedacht.

Die Verwendung von Blei als Kühlmittel ist ein Abfallprodukt der europäischen Entwicklung eines, durch einen Beschleuniger angetriebenen, unterkritischen Reaktors. Zum Betrieb eines „schnellen“ Reaktors ist Blei ein eher exotisches Kühlmittel. Alle anderen Nationen verwenden ein Eutektikum aus Blei-Bismut als Kühlmittel. Die längste – und negativste Erfahrung – mit Blei und Blei-Bismut hat Rußland. Dort wurden sie zum Antrieb von Atom-U-Booten der sog. Alpha-Klasse in den 1950er Jahren entwickelt. Wegen ständiger Schäden – bis hin zum Totalverlust – verwendet auch die russische Marine inzwischen Leichtwasserreaktoren.

Als Vorteil von Blei bzw. Blei-Bismut werden immer wieder gerne, folgende Vorteile plakativ in den Vordergrund gestellt:

  • Blei reagiert nicht mit Wasser (gemeint ist, im Gegensatz zu Natrium) und es könnten daher die Dampferzeuger angeblich gefahrlos im Reaktorgefäß integriert werden.
  • Sehr hohe Siedetemperatur (1745 °C) bei sehr geringem Dampfdruck. Daraus wird ein günstiger Blasenkoeffizient der Reaktivität abgeleitet, der einen angeblichen Sicherheitsvorteil ergibt.
  • Blei wäre ein besonders schlechter Moderator und besässe besonders kleine Absorptionsquerschnitte.

Ansonsten fallen einem leider nur Nachteile ein:

  • Blei wird überhaupt erst bei 327 °C flüssig. Darum haben die Russen von Anfang an mit einem Eutektikum aus Blei und Bismut (Schmelzpunkt 124 °C) gearbeitet. Wartungs- und Inspektionsarbeiten bei so hohen Temperaturen sind Neuland. Der Reaktor muß ständig beheizt werden. Es gibt den neuen Störfall „(lokale) Unterkühlung“ mit entsprechenden Konsequenzen für das Genehmigungsverfahren.
  • Flüssiges Blei ist korrosiv. Die Russen haben dieses Problem nie so richtig in den Griff bekommen. Die Wege über den Sauerstoffgehalt und Beschichtungen waren nicht zielführend – ein überhöhter Verschleiß (Lebensdauer) ist die Folge. Darüber hinaus, ist flüssiges Blei auch noch abtragend. Die Strömungsgeschwindigkeit muß deshalb klein gehalten werden.
  • Durch die grosse Masse des Bleis im Reaktor, sind besondere Schutzmaßnahmen gegen Erdbeben notwendig.
  • Durch die hohe Dichte des Bleis werden die Regelstäbe von unten eingeschwommen (völlig neues Prinzip, Genehmigungsverfahren) oder von oben pneumatisch eingeschossen (nicht passiv).
  • Als Brennstoff sind Uranoxid oder Urannitrid vorgesehen. Wegen der gegenüber metallischen Brennstoffen schlechten Wärmeleitung, besteht (wieder) die Gefahr der (lokalen) Kernschmelze. Der Effekt einer inhärenten Sicherheit scheint nur schwer nachweisbar. Eine Kühlung über unterkühltes Blasensieden (wie auch in jedem Druckwasserreaktor) scheidet durch den hohen Siedepunkt (der ja immer als Vorteil bezeichnet wird) aus.
  • Bisher gibt es bei ALFRED kein echtes Notkühlsystem. Die Nachzerfallswärme müßte immer über die innenliegenden Dampferzeuger abgeführt werden. Der Nachweis – auch nach einer physikalischen Dampfexplosion oder eines abschnittsweisen Verstopfens durch Einfrieren –. dürfte sich schwierig gestalten.

Bis ein mit flüssigem Blei gekühlter Reaktor in einem westlichen Land genehmigungsfähig ist, dürften noch Jahrzehnte Forschungs- und Entwicklungsarbeit nötig sein. Insofern dürften sie außerhalb der Konkurrenz mit anderen SMR-Entwürfen stehen. Manchmal fragt man sich wirklich, warum sich manche Kerntechniker immer selbst im Wege stehen müssen. Man könnte fast sagen: Gott schütze uns vor diesen Forschern, mit den „Atomkraftgegnern“ werden wir schon selber fertig.

Vorläufiges Ende

Hier ist das vorläufige Ende des Drei-Teilers erreicht. Es wurden die im derzeitigen Rennen um Förderung für SMR vorne liegenden Typen vorgestellt. Was noch fehlt, wären z. B. der Super-Safe, Small and Simple, 4S von Toshiba; die Encapsulated Nuclear Heat Source ENHS; der Flibe Energy Salzbadreaktor; der International Reactor Innovative & Secure IRIS Druckwasserreaktor; der Purdue Novel Modular Reactor PNMR Siedewasserreaktor; der Travelling Wave Reactor TWR; der ANTARES von Areva, der Advanced Reactor Concept ARC-100 und wer weiß noch, welche sonst alle….

 

 

Reaktortypen heute und in naher Zukunft

Warum haben sich einige Reaktoren durchgesetzt und andere nicht?

Bevor die technische Betrachtung los gehen kann, sind einige Vorbemerkungen erforderlich. Es sind die immer gleichen Sätze, die aber all zu gern gerade von Technikern und Wissenschaftlern verdrängt werden: Da draußen, in der realen Welt, außerhalb von Hörsälen und Politologenseminaren, kostet alles Geld und muß auch alles wieder Geld einbringen. Einen Euro, den man für Forschung ausgegeben hat, kann man nicht noch einmal für „soziale Projekte“ oder sonst irgend etwas ausgeben. In der Politik herrscht der nackte Verteilungskampf. Jeder in der Wirtschaft investierte Euro, muß nicht nur wieder eingespielt werden, sondern auch noch einige Cents zusätzlich einbringen – gemeinhin Gewinn genannt. Dies ist geradezu naturgesetzlich. Wie der „Real Existierende Sozialismus“ eindrücklich bewiesen hat, bricht sonst ein ganzes Gesellschaftssystem einfach in sich zusammen.

Die Evolution

Von den unzähligen Reaktortypen, haben nur drei – in der Reihenfolge ihrer Stückzahl – überlebt: Druckwasser-, Siedewasser- und Schwerwasserreaktoren. Gestorben sind alle mit Gas gekühlten, Graphit moderierten, und „schnellen“ Reaktoren. Manche sind über den Status eines Prototypen – wie z. B. die Salzbadreaktoren – nicht hinaus gekommen. Das sagt weniger über ihre „technischen Qualitäten“, als sehr viel mehr über die Gültigkeit der Vorbemerkung aus.

Die „schnellen“ Brüter

Das einzige, in der Natur vorkommende Material, mit dem man eine Kettenreaktion einleiten kann, ist Uran-235. Der Anteil dieses Isotops am Natururan beträgt nur 0,7%. Hört sich beängstigend gering an. Mit Prozenten ist das aber immer so eine Sache: Wenn man nicht fragt, von wieviel, kann man schnell zu falschen Schlüssen gelangen. Drei Dinge sind zu berücksichtigen, die sich gegenseitig positiv verstärken:

  1. Nach menschlichen Maßstäben, gibt es auf der Erde unerschöpflich viel Uran. Uran ist als Spurenelement überall vorhanden. Allein in den oberen 30 cm Erdschicht, sind auf jedem Quadratkilometer rund 1,5 to vorhanden (der durchschnittliche Urangehalt in der Erdkruste liegt bei 2,7 Gramm pro Tonne). Das Uran-Vorkommen im Meerwasser wird auf vier Milliarden Tonnen geschätzt. Der Menschheit wird das Uran also nie ausgehen. Eine von „Atomkraftgegnern“ immer wieder gern verbreitete angebliche Reichweite von ohnehin nur 30 bis 80 Jahren, ist einfach nur grottenschlechte Propaganda.
  2. Für uns Menschen setzt die Kernspaltung von Uran unvorstellbare – weil außerhalb unseres normalen Erfahrungshorizont liegend – Energiemengen frei. Die Spaltung eines einzelnen Gramms Uran setzt rund 22.800 kWh Wärme frei oder viel anschaulicher ausgedrückt, 13 boe (Fässer Rohöläquivalent). Zur Zeit kostet ein barrel (159 Liter) Rohöl rund 80 Euro am Weltmarkt. Ein Pound (453 gr) U3 O8 kostet aber nur etwa 50 US-Dollar – und damit nicht 1 Million (!!) Dollar, wie es seinem „Öläquivalent“ entsprechen würde. Diese Abschätzung macht deutlich, daß noch einige Zeit vergehen dürfte, bis das Uran auch nur im wirtschaftlichen Sinne knapp werden wird. Allein das bisher geförderte Uran (in der Form von Sprengköpfen, abgebrannten Brennelementen etc.) reicht für einige Jahrtausende aus, um den heutigen Weltbedarf an elektrischer Energie zu produzieren.
  3. In thermischen Reaktoren (gemeint ist damit, Reaktoren in denen überwiegend nur sehr langsame Neutronen die Kernspaltung betreiben.) wird vorwiegend Uran-235 genutzt, das aber im Natururan nur zu 0,7 % enthalten ist. Man glaubte, durch diesen „Faktor 100“ könnte sich vielleicht früher ein Engpass ergeben. Um so mehr, da bei Leichtwasserreaktoren eine Anreicherung auf 3 bis 5 % sinnvoll ist. Wegen der erforderlichen Anreicherung benötigt man fast die zehnfache Menge Natururan für die Erstbeladung eines solchen Reaktors. In Wirklichkeit ist es weit weniger dramatisch, da bei jeder Spaltung durch die Überschußneutronen neuer Spaltstoff (Plutonium) erzeugt wird. Die Konversionsrate bei heutiger Betriebsweise beträgt etwa 0,6. Mit anderen Worten, wenn 10 Kerne gespalten werden, bilden sich dadurch 6 neue „Spaltkerne“. Dafür benötigt man eine Wiederaufbereitungsanlage, deren Betrieb aber reichlich Geld kostet. Bei den heutigen, geringen Uranpreisen am Weltmarkt (siehe oben) lohnt sich das wirtschaftlich kaum. Man läßt die abgebrannten Brennelemente erst einmal stehen. Für die Kraftwerksbetreiber sind sie Abfall (weil nicht länger mehr im Reaktor einsetzbar), aber trotzdem Wertstofflager und keinesfalls Müll. Darüber hinaus sind sie um so leichter zu verarbeiten, je länger sie abgelagert sind.

Bedenkt man diese drei Punkte und den Vorspann, hat man unmittelbar die Antwort, warum sich Reaktoren mit schnellem Neutronenspektrum bis heute nicht kommerziell durchsetzen konnten. Sie sind in Bau und Betrieb wesentlich teurer als Leichtwasserreaktoren. So muß man Natrium- oder Bleilegierungen als Kühlmittel einsetzen. Eine völlig andere Technologie. Für Pumpen, Ventile und was man noch so alles in einem Kraftwerk braucht, gibt es nur weniger als eine Handvoll Hersteller, die alles in Einzelanfertigung herstellen mußten. Selbst das Kühlmittel ist ein Problem: Für vollentsalztes Wasser findet man heute praktisch in jeder Stadt einen Lieferanten. Für „Reaktornatrium“ gibt es nach Kenntnis des Autors praktisch nur einen Hersteller weltweit – übrigens ein deutsches Unternehmen – der bis nach Rußland und China liefert. In einem „natriumgekühlten“ Reaktor hat man drei Kühlkreisläufe (einen radioaktiven durch den Kern, einen Zwischenkreis zum Strahlenschutz und einen Wasser-Dampf-Kreislauf zur eigentlichen Stromerzeugung). Demgegenüber hat ein Siedewasserreaktor nur einen, der auch ohne Umwälzpumpen auskommen kann. Der Unterschied in Investitions- und Betriebskosten dürfte auch jedem Laien nachvollziehbar sein.

Weitaus schwerwiegender ist aber das wirtschaftliche Risiko. Kein verantwortungsvoller Energieversorger auf der Welt, wird sich für einen schnellen Reaktor zur kommerziellen Stromerzeugung entscheiden. Unkalkulierbares Genehmigungsverfahren mit unbestimmten Ausgang: Dafür findet sich keine Bank, die darauf einen Kredit gibt. Es bleibt daher auf absehbare Zeit wie es ist. Solche Reaktoren können nur in Rußland, China und Indien in staatlicher Regie gebaut werden. Sollten sich in einem „westlichen“ Land tatsächlich Politiker finden, die dafür die Verantwortung tragen wollen, könnte es sofort losgehen. Das Jahrzehnte dauernde Drama in Japan (Monju, Baubeginn 1984 (!), bis heute im ständigen Umbau) ist allerdings abschreckendes Beispiel genug. Technisch, gibt es keine grundlegenden Probleme mehr. Technisch, hätte das Projekt ungefähr das Risiko und den finanziellen Aufwand eines neuen Verkehrsflugzeugs oder einer neuen Weltraumrakete – nur für Politiker ist es eben nicht attraktiv. Dies ist übrigens keine Politikerschelte, denn die werden von uns selbst gewählt.

Selbst in USA läßt man sich für zig Milliarden lieber eine Mischoxid-Brennelemente-Fabrik von Areva bauen, nur um seinen vertraglichen Pflichten gegenüber Rußland aus dem Abrüstungsprogramm nachkommen zu können. Was in Frankreich funktioniert, kann so schlecht nicht sein. Die eigene IFR-Entwicklung hat man an Japan verscherbelt. Sie lebt heute unter dem Kürzel PRISM (Power Reactor Innovative Small Module) in einem Gemeinschaftsunternehmen von GE und Hitachi Nuclear Energy (GEH) mehr schlecht als recht, weiter. 2012 hat sich GEH in Großbritannien um ein Projekt zur Beseitigung des nationalen Überschusses an Plutonium beworben. Als Alternative zu Mischoxid-Brennelementen, mit deren Fertigung man in GB keine berauschenden Erfahrungen gemacht hatte. Mal sehen, was daraus wird. Es sollte übrigens ausdrücklich kein „Brüter“, sondern ein „Brenner“ werden, der möglichst schnell, möglichst kostengünstig, große Mengen Plutonium untauglich für eine Waffenherstellung macht.

Die Hochtemperaturreaktoren

Immer wieder taucht die (zweifelhafte) Forderung nach höheren Temperaturen auf. Entweder ist die Begründung ein besserer Wirkungsgrad oder die Nutzung für die Chemie. Deutschland war nach der Ölkrise der 1970er federführend in der Entwicklung. Will man höhere Temperaturen (über 300 °C) erreichen, bleibt praktisch nur eine Gaskühlung, da bei Wasserdampf der Druck in eine nicht mehr sinnvolle Dimension ansteigt. Außerdem verläßt man im Reaktor das Naßdampfgebiet, was für die „Reaktordynamik“ nur Nachteile bringt.

In den 1950er Jahren hatte man das Problem mit „zu nassem“ Dampf im Turbinenbau. Ausserdem ging zwangsläufig der Bau von Reaktoren mit Graphit als Moderator (für die Rüstung) voran. In Großbritannien ergaben sich die MAGNOX-Reaktoren mit Natururan und CO2. als Kühlmittel. Sie wurden mit einem Druck von knapp 21 bar und 400 °C betrieben. Schon damals unwirtschaftlich. Die Entwicklung ging folgerichtig weiter, zum AGR mit rund dem doppelten Druck und einer Temperatur von 630 °C. Von diesem Advanced Gas-cooled Reactor (AGR) wurden immerhin zehn Reaktoren mit einer Gesamtleistung von fast 6.000 MWe gebaut. Die hohe Temperatur in Verbindung mit CO2. führte zwar immer wieder zu Korrosionsproblemen, aber eigentlich sind es recht robuste Kraftwerke. Bei Neuplanungen geht man aber auch in Großbritannien ausschließlich von Leichtwasserreaktoren aus.

In der Sowjetunion erschuf man einen mit Graphit moderierten Druckröhren Reaktor (RBMK). Er erlangte in Tschernobyl traurige Berühmtheit. Es sind wohl immer noch acht Reaktoren in Betrieb. Die Mehrzahl wurde aber bereits aus dem Verkehr gezogen.

Auf die „echten“, mit Helium gekühlten Hochtemperatur-Reaktoren (z. B THTR in Deutschland mit 750 °C Austrittstemperatur) wird weiter unten noch eingegangen.

Kernenergie zur Stromproduktion

Bisher hat sich die Kernenergie weltweit ausschließlich zur Produktion elektrischer Energie durchgesetzt. Warum das auch auf absehbare Zeit so bleiben wird, später.

Nun hört man immer wieder das „Modewort“ von der „Energieeffizienz“. Gegen Leichtwasserreaktoren wird von „Atomkraftgegnern“ immer gern das Argument der angeblich schlechten Wirkungsgrade angeführt. Als Wirkungsgrad ist das Verhältnis von erhaltener Energie (die elektrische Energie, die aus dem Kraftwerk ins Netz geht) zu eingesetzter Energie (Spaltung von Uran oder Plutonium) definiert. Eine solche Definition macht in diesem Fall ohnehin wenig Sinn: Zumindest Plutonium ist ein (außer als Energieträger) wertloser Stoff, der potentiell sogar gefährlich (wie z. B. Quecksilber) ist. Eine andere Situation als bei Öl, Erdgas usw., die man auch als Rohstoff für vielfältige, andere Zwecke (Treibstoff, Kunststoffe etc.) nutzen kann. Ein besserer Wirkungsgrad macht bei der Kernenergie nur als „verminderte“ Betriebskosten Sinn. Wie aber schon oben gezeigt wurde, kostet Uran (energetisch betrachtet) fast nichts, aus dem Schornstein (im Vergleich zu einem Kohlekraftwerk) kommt auch nichts und die Asche (Spaltprodukte) ist weniger, als bei einem Gasturbinen-Kraftwerk aus dem Schornstein kommt. Alles keine Anreize, damit man um Wirkungsgrad-Punkte kämpft.

Trotzdem kann es nicht schaden, wenn man mal über den Zaun schaut. Die Spitzenwerte liegen heute für Koppelprozesse in Gasturbinen-Kraftwerken, mit nachgeschaltetem Dampfkreislauf zur Abwärmenutzung, bei 60%. Die modernsten Steinkohle-Kraftwerke haben Wirkungsgrade von 46% und der EPR von Areva 37%. Wenn man den Koppelprozeß mit 1 ansetzt, verhalten sich Kombi-, zu Steinkohle-Kraftwerk und Druckwasserreaktor wie 1,0 : 0,77 : 0,62. Alles keine Zahlen, um ein völlig neues Kraftwerkskonzept zu verkaufen (Sie erinnern sich noch an den Vorspann?).

Sehr interessant in diesem Zusammenhang wäre die Kraft-Wärme-Kopplung: Ein Kernkraftwerk als Heizkraftwerk. Plötzlich hätte man die gleichen Nutzungsgrade, wie aus den Prospekten der Block-Heiz-Kraft-Werk (BHKW) Hersteller und Rot/Grünen-Parteitagen – und das auch noch ohne Abgase und Geräusche. Ja, wenn nur die Strahlenphobie nicht wäre. Wir könnten leben, wie in der Schweiz (KKW Beznau) oder einst an der Unterelbe (KKW Stade).

Kernenergie als Wärmequelle

Mit Leichtwasserreaktoren läßt sich sinnvoll nur Wärme unter 300 °C herstellen. Wärme läßt sich wirtschaftlich immer nur über kurze Strecken transportieren. Andererseits nimmt gerade die Niedertemperaturwärme (Raumheizung, Warmwasser etc.) einen beträchtlichen Anteil in der nördlichen Hemisphäre ein. Man müßte lediglich Kernkraftwerke (vielleicht SMR?) in der Nähe von Metropolen bauen um „Fernwärme“ auszukoppeln.

Sehr hohe Temperaturen braucht man nur in der Industrie (Metalle, Glas etc.) und der Chemie. Diese Anwendungen sind heute eine Domäne von Erdgas und werden es auch bleiben. Hochtemperatur-Reaktoren wurden immer nur als Angebot für das Zeitalter nach dem „Ölzeitalter“ (wann das wohl sein wird?) vorgeschlagen. In Deutschland nannte man das „Kohle und Kernenergie“ und schuf den Thorium-Hochtemperatur-Reaktor (THTR), auch Kugelhaufen-Reaktor genannt. Er hat Austrittstemperaturen von 750 °C erreicht (für die Stromerzeugung mit Trockenkühlturm), sollte aber über 1000 °C für „Kalte Fernwärme“ und Wasserstoffproduktion erreichen.

Weltweit werden mehr als 500 Milliarden Normkubikmeter Wasserstoff produziert. Hauptsächlich aus Erdgas. Größte Verbraucher sind Raffinerien und Chemieanlagen. Folgt man einmal nicht Greenpeace und Putin („Wir brauchen mehr umweltfreundliche Gaskraftwerke“), sondern ersetzt im Gegenteil Erdgaskraftwerke durch Kernkraftwerke, kann man ganz konventionell riesige Wasserstoffmengen zusätzlich produzieren. Dagegen kann nicht mal die „Klima-Schutz-Staffel aus Potsdam“ etwas einwenden, denn bei der Umwandlung von Methan fällt nur Wasserstoff und CO2 an. Das Kohlendioxid kann nach texanisch, norwegischem Muster in den alten Öl- und Gasfeldern entsorgt werden oder nach niederländischem Muster in Tomaten. Der Einstieg in die „Wasserstoffwirtschaft“ kann erfolgen. Bis uns das Erdgas ausgeht, können Hochtemperaturreaktoren warten.

Fazit

Es geht mir hier nicht darum, für die Einstellung von Forschung und Entwicklung auf dem Gebiet der Kerntechnik einzutreten. Ganz im Gegenteil. Es nervt mich nur, wenn ganz schlaue Kernenergiegegner einem im Schafspelz gegenübertreten und einem erzählen wollen, daß sie ja eigentlich gar nicht gegen Kernenergie sind: Wenn, ja wenn, nur die „ungelöste Entsorgungsfrage“ erstmal gelöst ist und es „sichere Reaktoren“ gibt. Man würde ja in letzter Zeit auch immer von ganz „interessanten Konzepten“ lesen. Was spreche denn dagegen, erstmal abzuwarten? Bis dahin könnte man ja Wind und Sonne ausbauen. Die würden ja dadurch auch ständig billiger werden (Ha, ha, ha) und wahrscheinlich bräuchte man dann auch gar keine Kernenergie mehr. Und überhaupt, die „Energieeffizienz“ sei überhaupt die größte Ressource, man vertraue da ganz auf den Erfindergeist der „Deutschen Ingenieure“. Na denn ….

Brennstoffbank

Die International Atomic Agency (IAEA) hat bereits mehrere Treffen mit Regierungsstellen in Kasachstan zur Einrichtung einer Brennstoffbank abgehalten. Ziel der Verhandlung ist die Einrichtung eines international zugänglichen Lagers für leicht angereichertes Uran (Low Enriched Uran project, LEU-project). Es wurden zwölf technische Aufgabenbereiche zur erforderlichen Klärung festgelegt, von denen einige, wie z. B. Fragen zu Erdbeben, bereits in Bearbeitung sind. Ende Mai hat die IAEA ihre Mitgliedsstaaten über den Fortschritte offiziell informiert.

Ausgestaltung

Eigentümer und Verwalter der Brennstoffbank auf kasachischem Boden wird die IAEA sein. Das Lager soll anfangs Material für die Erstbeladung von zwei bis drei Leichtwasser-Reaktoren enthalten. Alle Mitgliedsstaaten der IAEA, die sich ausdrücklich verpflichten auf eigene Anreicherung und Wiederaufbereitung zu verzichten, können im „Ernstfall“ auf die Lagerbestände zurückgreifen. Sie würden dann aus dem Bestand mit Brennstoff zu aktuellen Weltmarktpreisen versorgt. Anschließend würde die Brennstoffbank wieder unverzüglich ihre Reserven durch Zukäufe am Weltmarkt aufstocken.

Die Brennstoffbank übernimmt also die Funktion einer (politischen) Rückversicherung. Ein Staat ohne eigene Anreicherung, wäre wirtschaftlich und politisch erpressbar, wenn man ihm bei „Nachladebedarf“ eine Belieferung ganz verweigern würde oder nur zu überhöhten Preisen leisten würde. Dies ist die klassische – und leider nicht ganz von der Hand zu weisende – Argumentation z. B. Irans für sein eigenes Zentrifugenprogramm gewesen. Die Versorgungssicherheit hat sogar Deutschland bewogen, eigene Anreicherungsanlagen auf deutschem Boden zu betreiben. Die „politische Glaubwürdigkeit“ ist nur ein schwaches Argument beim Verzicht auf Kernwaffen. Demgegenüber ist der völlige Verzicht auf Anreicherung und Wiederaufbereitung ein eindeutiges und leicht zu kontrollierendes Bekenntnis. Staaten die bereit sind, so konsequent zu handeln (bisher nur die Vereinigten Arabischen Emirate), müssen dafür von der internationalen Gemeinschaft abgesichert werden.

Im Sinne einer Versicherung reichen hierfür recht kleine Mengen aus. Die hohe Energiedichte von Uran erfordert einen Brennelementewechsel nur in großen zeitlichen Abständen (alle 12 bis 24 Monate) und es können leicht (kleinere) Mengen selbst vorgehalten werden. Der Versuch einer Erpressung ist somit durch die garantierte Verfügbarkeit aus der Brennstoffbank von vornherein zum Scheitern verurteilt. Dieses Konzept lebt mehr von der „Abschreckung“ als von der realen Lieferung. Es steht und fällt allerdings mit der Glaubwürdigkeit der Garantie. Deshalb ist eine strikte internationale Kontrolle und Absicherung nötig. Im Umkehrschluß gilt, daß kein Staat zur zivilen Nutzung der Kernenergie „doppeldeutige“ Anlagen oder Verfahren mehr benötigt.

Entstehung

Das Verfahren geht auf die Nuclear Threat Initiative (NTI) zurück. Eine regierungsunabhängige und gemeinnützige Privatorganisation. Sie wurde 2001 von Ted Turner (Begründer von CNN und WTBS) und Sam Nunn (demokratischer Senator von Georgia 1972–1997) begründet. Sie versteht sich als aktiv handelnde Organisation. Ihre erste spektakuläre Aktion war 2002 die Finanzierung und Organisation eines Transports von fast 50 kg hoch angereichertem Uran aus einem „Forschungsinstitut“ in der Nähe von Belgrad zurück nach Rußland. Dort wurde es mit Natururan verschnitten und anschließend in zivilen Reaktoren zur Stromerzeugung verbraucht. NTI trug maßgeblich zur Gründung und deren Finanzierung des World Institute for Nuclear Security (WINS) bei. WINS hat sich zum Ziel gesetzt, die Sicherheit vor Diebstahl und jedweden Mißbrauch von nuklearem Material durch Terroristen oder Staaten zu verbessern. In dieser Organisation sind neben Behördenvertretern auch private Unternehmen organisiert, die sich gegenseitig unterstützen, austauschen und beraten. Inzwischen haben auch Norwegen und Kanada beträchtliche finanzielle Unterstützung zugesagt.

Diese Organisationen sind ein schönes Beispiel für die Wirksamkeit von privater Initiative. Durch die Mobilisierung von privaten Mitteln (Stiftungen) konnte unmittelbar und mit durchschlagendem Erfolg mit der Arbeit begonnen werden. Der „private Charakter“ ermöglichte die Zusammenkunft und Mitarbeit losgelöst von politischer Blockbildung. Regierungen sind auf solch sensiblen Gebieten handlungsunfähig. Sie können bestenfalls auf erfolgreiche Züge aufspringen. Für grundlegende Veränderungen in festgefahrenen Sektoren sind immer Einzelpersonen notwendig. Politische Parteien etc. müssen auf die vermeintlich geltenden Meinungen Rücksicht nehmen und sind stets ihren Lagern verpflichtet.

Modellcharakter

Seit der ersten Stunde der Nutzung der Kernenergie besteht immer der Konflikt zwischen „friedlich“ und „militärisch“. Die Kernenergie ist leider erst als Massenvernichtungswaffe der breiten Öffentlichkeit bekannt geworden. Die Nutzung als nahezu unerschöpfliche Energiequelle erschien erst nachträglich aufgesetzt. Mehr als 40 Jahre „Kalter Krieg“ mit Lügen und Propaganda wirken bis heute fort. „Angst vor dem Atom“ war und ist ein wesentlicher Stellvertreter in der „Systemfrage“. Hierin liegt aber auch die Chance: Die beiden Blöcke gibt es in ihrer ursprünglichen Form nicht mehr und zahlreiche neue Akteure sind auf der Weltbühne erschienen. Es ist Zeit für ein neues Zeitalter der Aufklärung.

Ohne Übertreibung kann man sagen, daß die Bevölkerungsentwicklung inzwischen für die Menschheit einen mindestens so brisanten Stellenwert, wie die „Atombombe“ besitzt. Entweder die Menschheit ist in der Lage, der Mehrheit einen akzeptablen Lebensstandard zu bieten oder sie wird im Elend versinken. Dabei ist es egal, ob sie in einem atomaren Inferno oder endlosen „Religionskriegen“ oder schlichtweg Umweltkatastrophen versinkt. Eine – nicht die einzige, aber die wesentliche – Herausforderung ist dabei, die ausreichende Versorgung mit preiswerter Energie. An dieser Stelle muß – insbesondere in Deutschland – mal wieder betont werden, daß „ausreichend“, „preiswert“ und „umweltschonend“ absolut gleichrangige Kriterien sind! Die Bevorzugung nur eines Kriteriums, ist für die Menschheit kontraproduktiv und wird entgegen des (hier durchaus unterstellten) guten Willens, geradewegs in die Katastrophe führen. Man kann es in jedem Entwicklungsland studieren: Armut und Umweltzerstörung (z. B. Abholzung von Urwäldern) gehen Hand in Hand, Luftverschmutzung ist und war die Folge „billiger Technik“ (Kohlekraftwerke ohne Filter, Autos ohne Abgasbehandlung).

Energieverbrauch pro Kopf und Wohlstand sind untrennbar miteinander verbunden. Alles Geschwafel von „Energieeffizienz“ ist nur eine Umschreibung für Verzicht. Wer kann und soll in einer Weltordnung verzichten, in der rund zehn Prozent der Menschen den Löwenanteil der Energie verbrauchen? Selbst wenn wir, in den Wohlstandsregionen Europas und USA, auf die Hälfte der Energie verzichten würden, würde diese Umverteilung die Milliarden von „ein Dollar pro Tag Verdienern“ nicht aus ihrem Elend herausführen können. Andererseits würde eine solche „Effizienzsteigerung“ bei uns wahrscheinlich zu Aufständen führen, denn auch hier leben nicht alle Menschen auf der „Sonnenseite“. Davon abgesehen, werden uns Chinesen und Afrikaner immer weniger um unsere Meinung fragen. Sie werden tun, was sie für richtig halten und das ist auch gut so.

Wenn man die Welt realistisch und mal nicht nur durch eine rosarote ökologische Brille betrachtet, bleibt nur die Erkenntnis, daß der Verbrauch von fossilen Energien (insbesondere Kohle) und Kernenergie auf absehbare Zeit noch zunehmen muß und wird. Ja, gerade wenn man den Zuwachs im Verbrauch fossiler Energien eindämmen will, wird man die Kernenergie weiter ausbauen müssen. „Regenerative“ sind bestenfalls ergänzende Energieträger und sind wegen ihrer Unstetigkeit und ihrer geringen Energiedichte und den daraus resultieren Kosten als Ersatz völlig ungeeignet. Es ist zu bezweifeln, ob die Menschheit jemals so reich sein wird, daß sie sich „regenerative Energien“ leisten können wird. In Wahrheit, wird sie sich dann, nahezu auf ihre Anzahl im vorindustriellen Zeitalter zurück schrumpfen müssen. Wer bestimmt, wer ausscheiden muß?

Das Dilemma zwischen friedlicher und militärischer Nutzung bleibt somit weiter bestehen. Man kann weder eine Waffentechnologie der 1940er Jahre dauerhaft geheim halten, noch läßt sich der größere Teil der Menschheit dauerhaft gängeln. China ist ein deutliches Beispiel. Wer glaubt noch ernsthaft daran, China Vorschriften machen zu können, wieviel von welcher Energieform es nutzen darf? Bestenfalls führt es eine Selbstbeschränkung auf 4 Milliarden to Kohle pro Jahr selbst durch. Um dieses Ziel einhalten zu können, muß es Kernkraftwerke in Serie bauen. Es ist zum Erfolg in der Kerntechnik verdammt. Unzählige „Schwellenländer“ blicken mit großen Erwartungen auf diese Entwicklung. Vorbild wird China und nicht das „Wendeland“ Deutschland sein.

Wenn es aber so ist, wie es ist, wird man Wege finden müssen, ein atomares Wettrüsten zu verhindern. Auch Nord Korea und Iran wird seine Nachahmer finden. Wenigstens den gutwilligen Nationen muß man Möglichkeiten bieten, nicht zwangsweise mitmachen zu müssen. Insofern ist der freiwillige Verzicht der Vereinigten Emirate auf ein atomares Wettrüsten mit seinem Nachbarn Iran, ein Hoffnungsschimmer. Es ist auch kein Zufall, daß die Unterstützung dafür von Privat und nicht aus „Regierungskreisen“ kommt. Wahrscheinlich auch nicht, daß eine „junge Nation“ aus dem ehemaligen Sowjetreich begeistert den Vorschlag für eine Brennstoffbank aufgegriffen hat.

Zentral, Dezentral, …egal?

Heute reicht die Bandbreite bei der Stromerzeugung von der Photovoltaik auf dem Dach oder dem „Mini-BHKW“ im Keller des Einfamilienhauses bis zum Windpark in der Nordsee oder gar der Solarfarm in der Sahara. Die konventionelle Stromversorgung liegt irgendwo dazwischen. In Deutschland ist die Diskussion darüber hoch emotional und ideologisch aufgeladen. Wenn man jedoch ein wenig darüber nachdenkt, kann man durchaus Kriterien für eine Entscheidung finden.

Energienachfrage

Betrachtet man ein Versorgungsgebiet, wie z. B. Deutschland, so erkennt man eine höchst ungleiche Nachfrage nach elektrischer Energie: Es gibt Verbrauchsschwerpunkte und Regionen mit weit unterdurchschnittlicher Nachfrage. Man verwendet in der Energiewirtschaft nicht ohne Grund die Kennzahl Energieverbrauch pro Kopf. Sie wird für alle möglichen Energieformen ermittelt. In Städten ist die Bevölkerungsdichte und damit der Energiebedarf sehr hoch. Unsere Urgroßväter haben dies schon erkannt und Kraftwerke mitten in der Stadt gebaut (Berlin, Hamburg, München etc.). Lange vor der Erfindung der Ökologie haben sie bereits ihre Abwärme zur Heizung von Gebäuden genutzt. Umgekehrt ist der Verbrauch an elektrischer Energie in ländlichen Regionen nur gering und dünn gestreut. Eine Elektrifizierung ist hier auch in Deutschland wesentlich später erfolgt. Diese Entwicklung kann man auch heute noch in den Entwicklungsländern beobachten.

Energievorkommen

Elektrische Energie kommt leider nicht in verwertbaren Mengen in der Natur vor. Man kann deshalb die Frage „woher“ nicht vom „wie“ trennen. Will man man die Art der Erzeugung vorschreiben, muß man sich geeignete Vorkommen suchen. Mögen sie auch noch so weit entfernt sein. Das ist die Realität der Energiewende!

Energieart

Elektrische Energie muß erst durch Umwandlung aus anderen Energieformen gewonnen werden. Man steht damit vor der Wahl: Transportiert man den Primärenergieträger oder die elektrische Energie? Letztendlich, ist das auch nur eine Frage der Wirtschaftlichkeit. Man kann aber schon mit Physik und Technik eine Tendenz erkennen. Sind die Primärenergieträger gar nicht transportierbar (Wind, Sonne, Wasserkraft), bleibt nur der Transport der elektrischen Energie. Dies ist der einzige Grund, warum für die „Energiewende“ das Leitungsnetz drastisch ausgebaut werden muß. Ohne die ideologische Festlegung auf Sonnenenergie und ihre Ableger, wäre eine Verdrahtung der Landschaft in bisher unvorstellbarem Ausmaß gar nicht nötig. Haben die Energieträger nur einen geringen Heizwert, wie Biomasse oder auch Braunkohle, müssen sie vorher veredelt werden. Wer will schon Sand und Wasser transportieren? Das Zauberwort hieß früher Brikett und heute Biogas. Leider kostet jede Veredelung auch Energie, die man anschließend leider nicht mehr verkaufen kann. Deshalb ist auch hier meist der Transport der elektrischen Energie die wirtschaftlichere Lösung.

Energiedichte

Die Energiedichte ist der Dreh- und Angelpunkt in der Energiewirtschaft. Schon die antike Stadt war nicht in der Lage, die benötigte Energie innerhalb ihrer Stadtmauern zu erzeugen. Die Bevölkerungsdichte war einfach zu hoch. Wollte man heutige Metropolen mit ihrer Industrie ausschließlich durch Wind, Sonne und Biomasse versorgen, müsste man auch noch auf die letzten unbewohnten Gebiete der Erde zurückgreifen. Will man den Windpark im heimischen Landschaftsschutzgebiet nicht haben, bleibt eben nur die Palmölplantage im Regenwald oder die Sonnenfarm in der Sahara.

Die Transportfrage

Man kann es drehen und wenden wie man will: Die Energie muß immer von der Förderstelle zum Verbraucher transportiert werden. Jeder Transport erfordert Energie und kostet Geld. Förderstellen und Verbraucher müssen durch Transportsysteme miteinander verbunden sein. Das können Straßen, Eisenbahnen, Rohrleitungen oder elektrische Netze sein. Die vorhandene Infrastruktur beeinflußt maßgeblich die Auswahl des Kraftwerktyps. Ein Kohlekraftwerk erfordert einen leistungsfähigen Eisenbahnanschluß, ein Gaskraftwerk eine Hochdruckleitung entsprechender Kapazität und ein Wasserkraftwerk geeignete geologische Verhältnisse. Einzige Ausnahme bildet ein Kernkraftwerk: Wegen der ungeheuren Energiedichte, reichen einige LKW-Ladungen im Jahr aus. Ein Vorteil, der zukünftig immer größere Bedeutung gewinnen wird. So hat z. B. der Ballungsraum Shanghai heute schon mehr Einwohner als Österreich. Die Infrastruktur ist chronisch überlastet. Baugrund ist viel zu kostbar, um ihn für zusätzliche Eisenbahnstrecken für Kohlenzüge zu verwenden.

Stromnetze

Jeder Erzeuger muß mit jedem Verbraucher durch Leitungen verbunden sein. Es entsteht ein Stromnetz. Jede Minderproduktion oder jeder Mehrverbrauch wirkt sich sofort im ganzen Netz aus. Ein Stromnetz ist deshalb viel mehr als nur ein Gewirr von Drähten. Je mehr Störungen auf ein Netz wirken, um so komplizierter und teurer wird es. Ein weiterer Fluch der „Energiewende“. Früher brauchte der Kraftwerkseinsatz nur nach den Verbrauchsgewohnheiten geplant zu werden. Heute müssen die Störgrößen Wind- und Sonnenenergie zwangsweise aufgenommen werden. Man muß sich die Konsequenz so veranschaulichen: Verschiedene Fluggesellschaften entwickeln gemäß der Verbrauchernachfrage feste Flugpläne, die notwendigerweise sehr eng mit den Flugplätzen und der Luftverkehrsüberwachung abgestimmt sind. Ein sehr komplexes und langwieriges Verfahren. Jetzt macht der Staat ein Gesetz zur Förderung nahestehender Flugzeugbesitzer. Grün angestrichene Flugzeuge dürfen ab sofort starten und landen wann und wo sie wollen. Flughäfen müssen ausdrücklich nicht grün angestrichene Flugzeuge so lange am Boden warten lassen oder in der Luft kreisen lassen, bis kein grün angestrichenes Flugzeug mehr starten oder landen will. Dieses Recht gilt stets und ausnahmslos. Wenn die Kapazität eines Flughafens nicht mehr ausreicht, muß er sofort erweitert werden. Zur Beschleunigung des Ausbaues wird das geltende Verwaltungsrecht stark eingeschränkt. Die Kosten werden unmittelbar auf alle Fluggäste umgelegt. Die Luftverkehrsüberwachung muß sehen, wie sie mit dem neuen Chaos fertig wird. Selbstverständlich werden vom fürsorglichen Staat keine Sicherheitseinbußen tolleriert. Wenn sie meinen, daß diese Darstellung überzogen sei, haben sie sich noch nicht mit dem „EEG“ und den einschlägigen Vorschriften zum Netzausbau beschäftigen müssen.

Aber zurück zum Problem der Entfernung. Es macht einen sehr großen Unterschied, ob die Kraftwerke möglichst nahe bei den Verbrauchern errichtet werden oder weit davon entfernt. Es seien hier nur die wichtigsten Gründe erwähnt:

  • Mit jedem Meter Leitungslänge steigen die Verluste.
  • Je größer die über weite Entfernungen zu transportierende Leistung ist, um so mehr steigen die Kosten und um so höher wird deshalb die Spannung gewählt. Jedes mal, wenn die Spannungsebene geändert werden muß, ist eine Transformation mit zusätzlichen Verlusten nötig.
  • Je mehr elektrische Energie hin und her geschoben wird, um so mehr Verluste treten auf und erhöhen sich die Investitionen: Wegen der geringen Energiedichte müssen viele Leitungen erstmal die Energie von den unzähligen Windmühlen und Sonnenkollektoren einsammeln. Weil die Energie am Entstehungsort gar nicht gebraucht wird, wird sie nach der Sammlung hochtransformiert (bei Photovoltaik über alle Spannungsebenen) um diesen Vorgang weit entfernt wieder rückwärts ablaufen zu lassen.
  • Jedes Drehstromnetz überträgt nicht nur Wirkleistung (das ist das, was der Kunde eigentlich haben will), sondern auch Blindleistung. Je länger die Kabel, um so größer die erforderliche Kompensation. Diese Kompensation haben bisher die konventionellen Kraftwerke übernommen. Ziel ist aber gerade deren Stilllegung mit wachsendem Anteil der „Erneuerbaren“. Der Windpark in der Nordsee wirkt daher doppelt auf die zukünftigen Netzkosten.
  • Manche sehen ihr Heil in Höchstspannugs-Gleichstrom-Übertragung. Diese kann aber nur Strom von Punkt zu Punkt transportieren. Dies ist ungefähr so, als ob die Bahn zur Entlastung ihres Netzes neue Breitspurtrassen von Norddeutschland nach Süddeutschland bauen würde. Die Güter würden dann in Norddeutschland mit der vorhandenen Eisenbahn eingesammelt, am Kopfbahnhof umgeladen, nach Süddeutschland mit der Breitspurbahn zum dortigen Kopfbahnhof gefahren, dort wieder umgeladen und mit der vorhandenen Eisenbahn in Bayern feinverteilt. Für ein so kleines Land wie Deutschland, erscheint mir das keine sinnvolle Lösung.

Fazit

Das Stromnetz und der Kraftwerkspark, den wir bisher in Deutschland hatten, ist nicht zufällig entstanden, sondern das Ergebnis eines rund hundert Jahre alten Entwicklungsprozesses. Dieses System verkörpert das Gehirnschmalz einer Legion von Ingenieuren. Stromnetze sind nicht zufällig überall auf der Welt recht ähnlich. Es gilt halt überall die gleiche Physik. Es gibt in der Energietechnik auch keine allein selig machende Lösung. Jeder Energieträger und jedes Versorgungsprinzip hat seine ganz speziellen Vor- und Nachteile. Es kann stets nur eine optimierte Lösung für das gesamte System aus Netz, Erzeuger und Verbraucher gefunden werden. Für Ideologien ist kein Platz vorhanden.