Entwicklung der Kernenergie bis 2050

Die IAEA (International Atomic Energy Agency) hat in ihrem 42ten Bericht einen Ausblick auf die weltweite Entwicklung der Kernenergie in den nächsten 30 Jahren versucht. Für die Entwicklung des Energieverbrauches verwendet sie das umfangreiche Material der OECD. Es handelt sich bei diesen Berichten nicht um Prognosen, sondern eher um fundierte Einschätzungen der erwarteten Bandbreite. Für die untere Begrenzung (low case) wird angenommen, daß die Märkte, die Technologie, die Ressourcen und die Randbedingungen (Gesetze, Politik etc.) bleiben wie gehabt. Dies soll eine konservative, aber plausible Projektion ergeben. Bei der oberen Begrenzung (high case) berücksichtigt man auch technisch machbare Entwicklungen und etwaige Ziele für eine „CO2 arme Gesellschaft“. Gleichwohl sollen die Annahmen plausibel bleiben und man geht deshalb ausdrücklich nicht von „net zero carbon emissions“ aus. Dies ist schon mal die erste interessante Feststellung gegenüber der Vorstellung der Bundesregierung: Fossile Energieträger verschwinden ausdrücklich nicht bis 2050.

Istzustand 2021 weltweit

Im Jahre 2021 sollen fast 7,9 Milliarden Menschen auf der Erde gelebt haben. Sie erzeugten 27007 TWh elektrischer Energie (zum Vergleich: Deutschland 588TWh). Etwa 9,8% davon entstammten der Kernenergie (zum Vergleich: Deutschland 11,8%). Der Anteil der Elektrizität betrug 19,5% (zum Vergleich: Deutschland ca. 20%) an der verbrauchten Endenergie. Schon diese drei Zahlen regen zu grundsätzlichen Überlegungen an: Die Stromproduktion in Deutschland ist gegenüber der gesamten Stromproduktion der Welt nahezu eine vernachlässigbare Größe. Das mag für viele „Weltenretter“ deprimierend sein – oder anders betrachtet – es kann bei dem Kohle- und „Atomausstieg“ gar nicht ums Klima gehen, sondern Energiewende ist lediglich Neusprech für die Zerstörung dieser Gesellschaft. Gerade die Kernenergie hat noch weltweit ein riesiges Wachstumspotential, da selbst im „Ausstieg Deutschland“ die Produktion noch überproportional war. Der Anteil von rund einem Fünftel der Elektroenergie an der Endenergie macht deutlich, wie abwegig eine voll elektrifizierte Welt und wie unverantwortlich eine Versorgung nur durch wetterabhängige Energie wäre.

Ende 2021 waren weltweit 437 Reaktoren mit einer Nettoleistung von 389,5 GWel in Betrieb. Sechs neue Reaktoren mit einer Gesamtleistung von 5,2 GWel gingen ans Netz und es wurden acht Reaktoren mit einer Gesamtleistung von 8,7 GWel abgeschaltet. Gleichzeitig wurde mit dem Bau von zehn Reaktoren mit einer Gesamtleistung von 8,8 GWel neu begonnen. Es befanden sich 56 Reaktoren mit einer Gesamtleistung von 58,1 GWel 2021 in Bau. Die Stromproduktion der Kernkraftwerke wuchs gegenüber 2020 um 4.% auf 2653 TWh. Das ist immerhin die 4,5fache Menge der Gesamtproduktion von Deutschland, d. h. das „Vorangehen beim Atomausstieg“ spielt sich offensichtlich nur in den Köpfen deutscher „Ökos“ ab. Bemerkenswert in diesem Zusammenhang ist, daß die drei größten Produzenten USA (771,6 TWh), China (383,2 TWh) und Frankreich (363,4 TWh) bezüglich des Kernenergieanteils an der Stromproduktion nur den 15ten (19,6%), den 25ten (5%) bzw. den ersten Platz (69%) eingenommen haben. Man sieht daran ganz deutlich, wo das Ausbaupotential in der nahen Zukunft für diese Industrie liegen wird: Die Musik wird weiterhin in den USA und China spielen. Durch die eigenen Binnenmärkte werden sie auch den Weltmarkt dominieren. Demgegenüber hat sich Europa ideologische Fesseln verpaßt und Russland zerstört sich gerade selbst.

Entwicklung in den vergangenen Dekaden

In den letzten 30 Jahren ist der Anteil der fossilen an der Endenergie von etwa 74% auf 66% gesunken. Der Anteil von Öl (40%) und Erdgas (15%) ist bemerkenswert stabil geblieben. Einzig der Stromverbrauch ist um neun Prozentpunkte angewachsen. Ein Zeichen, daß die Industrialisierung durch Elektrifizierung weiter voranschreitet. Dieser Trend wird sich in der Zukunft eher noch beschleunigen.

Es ist daher wichtig, einen Blick auf die Stromproduktion zu werfen. Über 60% der elektrischen Energie stammen immer noch aus fossilen Energieträgern. Kohle hat daran nach wie vor mit rund 40% den größten Anteil. Der Anteil von Öl ist drastisch von etwa 20% auf nur noch 2% gesunken. Es ist vor allem durch (billiges) Erdgas verdrängt worden, dessen Anteil um neun Prozentpunkte gestiegen ist. Wasserkraft – als größte „Erneuerbare“ – hat noch einen Anteil von 16%, ist aber um vier Prozentpunkte gesunken. Ein sicheres Zeichen dafür, daß die natürlichen Quellen erschöpft sind. Es gibt schlicht keine geeigneten Flüsse mehr und die Umweltschäden werden immer größer. Der Anteil von Wind und Sonne ist durch massive Subventionen von unter 1% in 1980 auf etwa 9% in 2021 gestiegen. Zumindest für Windenergie sind langsam die wirtschaftlichen und technischen (Netzstabilität) Grenzen erreicht. Deren Anteil wird sich in den kommenden Dekaden eher wieder verringern müssen. Außerdem wird ja auch noch von „Grünem Wasserstoff“ als Ersatz für die anderen Endenergieträger (Industrie, Raumheizung, Verkehr usw.) geträumt.

Ausblick auf die kommenden Dekaden

Die Studien gehen von einem Anstieg des Endenergieverbrauches um 12% bis 2030 und um 27% bis 2050 aus. Das dürfte die „Grünen Khmer“ vom Schlage Trittin/Hermann nicht sehr freuen. Geht man von der Relation zwischen Weltenergieverbrauch und Deutschland aus, wird daran auch die komplette Deindustrialisierung Deutschlands nicht viel ändern. Der Rest der Welt wird sich nicht zurück entwickeln wollen, sondern gern die Produktion und die Arbeitsplätze und damit den Wohlstand Deutschlands übernehmen.

Der Stromverbrauch wird sich überproportional mit einer Wachstumsrate von geschätzt 2,4% pro Jahr entwickeln und sich bis 2050 gegenüber heute verdoppeln – „Klimakrise“ hin oder „Klimakrise“ her.

Die Elektrifizierung der Welt als der Wohlstandsschöpfer schlecht hin, muß (Bevölkerungswachstum) und wird (streben nach Wohlstand) sich weiter fortsetzen. Die Studien gehen deshalb von einer Steigerung des Anteils an der Endenergie um zehn Prozentpunkte aus. Darin sind so Seltsamkeiten, wie die komplette Umstellung auf E-Mobilität, noch gar nicht enthalten.

Entwicklung des Bestandes

Zwei von drei Reaktoren sind seit mehr als dreißig Jahren in Betrieb. Auch diese Studie ging daher von einer baldigen Außerbetriebnahme aus. Die Zeiten können sich jedoch schnell ändern: Seit dem Überfall Russlands auf die Ukraine ist eine sichere Energieversorgung schlagartig in den Mittelpunkt gerückt. Selbst in Deutschland – dem Kernland der „Atomangst“ – wird über eine längere Betriebsdauer plötzlich offen diskutiert. In Belgien hat man buchstäblich die Notbremse gezogen und fast schon abgeschaltete Reaktoren (die in Deutschland als Schrottreaktoren tituliert werden) um zehn Jahre verlängert. Selbst in GB will man man eigentlich ans (wirtschaftliche) Ende gekommene Reaktoren noch einmal flott machen. Es sind die gestiegenen Strompreise, die alle Wirtschaftlichkeitsrechnungen zu völlig neuen Ergebnissen führen. Dies gilt weltweit, wie das Umdenken in USA, Kanada, Korea und Japan zeigt. Dort will man Laufzeiten verlängern bzw. vorübergehend abgeschaltete Reaktoren (Fukushima) schneller wieder in Betrieb nehmen, um die Nachfrage nach Erdgas zu senken.

In diesem Zusammenhang ist es wichtig, der Propaganda der „Anti-AKW-Gruppen“ und deren Vertreter im Bundestag und in der Bundesregierung entgegen zu wirken: Es gibt bei Kernkraftwerken kein Verfallsdatum. Sie werden ständig überprüft und nicht nur „sicher“ gehalten, sondern sogar modernisiert (Nachrüstung). Dafür sind gewaltige Investitionen erforderlich, die in jedem Einzelfall auf ihre Sinnhaftigkeit überprüft werden müssen. So kosten z. B. die Generalüberholungen der CANDU-Reaktoren mehrere Milliarden US-Dollar. Man erhält dafür eine Flotte neuwertiger Kernkraftwerke, die für mehrere Jahrzehnte weiter ihren Dienst verrichten können. Es gibt keine technische, sondern nur eine wirtschaftliche Lebensdauer. Sie ist dann erreicht, wenn laufende Reparaturen oder Kosten für Nachrüstungen die Kosten eines Neubaus überschreiten. Dabei muß ein Energieversorger alle möglichen Technologien und das Gesamtsystem im Blick behalten. Vor einigen Jahren glaubte man in den USA, daß Gaskraftwerke wegen der geringen Investitionen sinnvoller seien. Ein gewaltiger Irrtum, wie die hohen Betriebskosten durch stark gestiegene Erdgaspreise heute zeigen. Erdgas war nur deshalb in den USA so billig, weil man technisch noch nicht in der Lage war (Bau von LNG Anlagen), das Gas zu Weltmarktpreisen zu verkaufen. Das süße Gift der Subventionen führte zu immer mehr Windkraftanlagen und Photovoltaik. Die Nebenkosten (z.B. Netzausbau) und die Backup-Kosten (Dunkelflaute) ließen die Strompreise stark ansteigen. Hinzu kamen auch noch politische Maßnahmen („Klimaschutz“). All das, wird Länder ohne eigene „billige“ fossile Vorkommen – wie z. B. Deutschland – noch viel brutaler treffen.

Einordnung

In der Folge der 1970er Ölkrise wurden 40% der Reaktoren gebaut, die heute noch in Betrieb sind. Der Überfall auf die Ukraine könnte ähnliche Reaktionen auslösen: Angst vor Erpressung und stark gestiegene Energiepreise. Die Erdgaspreise werden erst – wie damals die Ölpreise – wieder merklich sinken, wenn das Angebot deutlich erhöht wird. Eine sinkende Nachfrage durch eine weltweite Rezession wird nicht so durchschlagen, da Erdgas vornehmlich im Wärmemarkt eingesetzt wird. Russland hat sich für Jahrzehnte selbst aus dem Weltmarkt katapultiert. Kein Land wird sich jemals wieder so abhängig machen, wie Deutschland. Bis Russland die alten Mengen wieder liefern kann, muß es erstmal eine vergleichbare LNG-Struktur wie die USA oder Australien aufbauen. Dafür fehlt es ihm aber an der Technologie und vor allem an Kapital. Die jetzige Situation, daß die anderen Produzenten den Ausfall in Europa decken müssen, wird somit schon aus technischen Gründen länger anhalten. Das Modell der wetterabhängigen Stromversorgung mit billigen Erdgaskraftwerken als Backup ist damit mausetot. Aus diesem Grund ist mit anhaltend hohen Strompreisen in Europa zu rechnen. Ab jetzt wird gnadenlos der Deckel für „Die-Sonne-schickt-keine-Rechnung“ präsentiert. Will man auch noch das Narrativ von der „menschengemachten Erderwärmung“ aufrecht erhalten, bleibt der Fluchtweg in die Kohle versperrt. Wer mehr Windenergie und Photovoltaik fordert, löscht mit Benzin. Wer von „Grünem Wasserstoff“ als Speicher und „Wasserstoff-ready-Turbinen“ für die Dunkelflauten schwadroniert, wirft noch eine Stange Dynamit zusätzlich ins Feuer.

Völlig irrsinnig ist es aber, wenn man in „höchster Erdgasnot“ auch noch drei Kernkraftwerke (Emsland, Isar 2, Neckarwestheim 2) abschaltet. Sie haben zusammen eine elektrische Nettoleistung von 4049 MW. Dies ist ein dauerhafter Schritt, bei dem nur der Ersatz durch teures Erdgas möglich ist, da man ja auch so schnell wie möglich aus der Kohle aussteigen will. Dafür wird man zukünftig jede Stunde mindestens 738 000 Kubikmeter Gas zusätzlich aus LNG verfeuern müssen. Dies ist noch konservativ gerechnet, weil hier angenommen wurde, daß Grundlast durch Grundlast (Gas und Dampf Kombikraftwerk) ersetzt wird. Will man nur die Dunkelflauten überbrücken – was ja das erklärte Ziel unserer Regierung ist – ist man sehr schnell bei deutlich über eine Million Kubikmeter Erdgas in jeder Betriebsstunde. Will man Wasserstoff einsetzen, ergibt das etwa 2,5 Millionen m3 in der Grundlast bzw. weit über 4 Millionen m3 Wasserstoff in jeder Stunde Lastfolgebetrieb. Noch Fragen Herr Habeck?

Übergewinn, für wen?

„Übergewinn“ hat das Zeug zum Wort des Jahres: Es hat alles, was das linke Herz begehrt, es weckt den Neidreflex und jeder kann sich vorstellen, was er will. Nur weiß keiner, was genau das sein soll und vor allen Dingen wieviel. Gewinn ist Gewinn. Für manche ist er stets zu groß und meist überhaupt unanständig. Unsere Öko-Sozialisten werden zaghaft immer deutlicher: Für sie gibt es „Gute Gewinne“ und „Gewinne die wir eigentlich gar nicht wollen“. Erstere sind Gewinne aus Geschäften mit „Erneuerbaren Energien“ und letztere aus Geschäften mit fossilen Energien. Man faselt in diesem Zusammenhang auch gern von notwendigen „Preissignalen“ – hört sich doch irgendwie mehr nach Marktwirtschaft an und stinkt nicht so nach Plan- und Mangelwirtschaft. Besonders Ken (vom grünen Umweltminister zum Leiter der Bundesnetzagentur) und Barbie (Claudia Kemfert vom DIW) tingeln fast jeden Abend damit durchs Staatsfernsehen. Beide von der Ausbildung (Volkswirtschaftslehre) und ihren bisherigen Tätigkeiten ausgewiesene Laiendarsteller auf den Gebieten Gas und elektrische Netze. Gut, Ken ist nicht so toll wie Barbie, die laut Wikipedia „nach einem zweimonatigen Forschungsaufenthalt an der Stanford University (!!!) 1998 in Oldenburg ihre Promotion abschloss“, dafür war er schon Verbraucherschützer, Fachmann für autonomes Fahren und Zukunft der Landwirtschaft. Ein echter Tausendsassa sozusagen. Das Beste, was die Partei Bündnis 90/Die Grünen (Mitglied seit seinem 19. Lebensjahr) nach Robert zu bieten hat. Ein echter Apparatschik, der nur, wenn er gerade kein Mandat hatte, „irgendetwas“ machen mußte. Insofern muß man es ihm wohl nachsehen, daß er sich auf die Frage, warum man zur Zeit soviel Erdgas, wie nie verstromt, antwortet: Man müsse den Franzosen helfen, da dort die Hälfte der Kernkraftwerke außer Betrieb seien, das sei gelebte europäische Solidarität. Die Wahrheit sieht völlig anders aus (6,54% der Elektrizität Wind; 21,12% Solar; 16,03% Erdgas bei 0,57% Import (!) aus der Region Frankreich; Stand 19. August 2022 um 12:00). Die nahe Zukunft wird noch brutaler sein. Je weniger Wind, um so mehr Erdgasverbrauch, da weder Kohle noch „Atomenergie“ gewünscht sind. Wie sagte doch deren Parteivorsitzende: Wir haben keinen Strom, sondern einen Gasmangel. Kann man das nun einfach mit Unwissenheit entschuldigen oder ist das Lyssenkoismus in Reinkultur? Wer solche Machthaber hat, braucht keinen kalten Winter mehr. Die „Energiewende“ ist jedenfalls tot, man mag es nur noch nicht eingestehen, auch wenn man noch hundert Jahre die Landschaft und das Meer weiter verspargelt.

Windfall Profits

Von einem Windfall-Profit oder Marktlagengewinn spricht man, wenn ein unvorhergesehener, nicht eingeplanter bzw. nicht einplanbarer Gewinn entsteht. Der Volksmund bevorzugt in diesem Fall den Begriff Kriegsgewinnler. Ist das aber wirklich bei Erdgas und Mineralöl der Fall? Natürlich sind die Preise durch den Krieg gegen die Ukraine und den daraus resultierenden Boykotten weiter angestiegen. Die Betonung liegt auf weiter bzw. höher als kurzfristig erwartet. Von schlichten Gemütern hört man den Rat, man brauche doch nur den Gewinn aus dem Letzten Jahr mit dem heutigen vergleichen. Wenn die Sache so einfach wäre. Öl- und Gaspreise schwanken ständig – je nach Angebot und Nachfrage auf dem Weltmarkt. Keiner kann gegen den Markt spekulieren. Ölkonzerne müssen damit leben. Manche gehen deshalb immer wieder pleite oder werden von erfolgreicheren Unternehmen geschluckt. Kein Sozialist interessiert sich für die Verluste aus mageren Jahren. Wer Gewinne progressiv besteuert, macht über kurz oder lang die Industrie kaputt – was wohl eher das Ziel der Öko-Sozialisten ist. Andererseits soll man die Kuh nicht schlachten, die man zum Zwecke der „Umverteilung“ melken will. Ganz anders verhält es sich mit unseren Wind- und Sonnenbaronen.

Die ungerechtfertigten Gewinne aus den „Erneuerbaren“

In den Talkshows hört man immer wieder das Beispiel von Biontech SE. Dort hätte doch Uğur Şahin eine enorme geistige Leistung zur Rettung der Menschheit vollbracht und man könne diese – wahrscheinlich guten Gewinne – doch nicht mit den Kriegsgewinnen der Konzerne vergleichen. Tatsächlich? Eins ist jedenfalls daran stichhaltig, es sind keine leistungslosen Gewinne, wie die der Industrie für „Erneuerbare-Energien“! Windmühlen und Photovoltaik sind keine neuen Erfindungen. Deshalb konnte auch China in kürzester Zeit den Weltmarkt erobern – im Gegensatz zu „genbasierten“ Impfstoffen. Die Kombinate – Hersteller wie Versorger – waren so wenig von dieser Technik überzeugt, daß sie nur mit hohen Garantien bereit waren zu investieren. Jahrelang hat ein jeder von uns mit EEG-Umlage und Netzentgelt etc. diesen Unsinn zwangsweise finanzieren müssen. Immerhin haben einige wenige, wie z. B. RWE noch soviel Anstand, daß sie (bisher) keine „Ausgleichsabgabe“ für höhere Einkaufspreise für Erdgas einfordern. Sie haben gerne die Entschädigungen aus Steuermitteln für die Enteignung der Kernkraft- und Kohlekraftwerke eingestrichen. Sie haben teilweise in Gaskraftwerke und massiv in (offshore) Windparks investiert – eben zu garantierten Gewinnen.

Die Strombörse

Einer der genialsten Bubenstücke war die Einführung der Strombörse unter der Verballhornung „Strommarktliberalisierung“. Dort müssen die Kraftwerke für jede Stunde ihre elektrische Energie anbieten. Der Preis für alle wird nach der Merit-Order bestimmt: Beginnend mit dem preiswertesten Angebot werden solange alle Energiemengen aufaddiert, bis die benötigte Strommenge erreicht ist. Jetzt gilt der Preis des höchsten berücksichtigten Angebots für alle. Üblicherweise geht die Reihenfolge: Kernkraftwerke, Kohlekraftwerke, „Erneuerbare“ bis hin zu – richtig geraten – den teureren Erdgaskraftwerken. Wenn man nun aus politischen Gründen die Kernenergie und Kohle verbietet, verschiebt man die Preise immer weiter zu den hohen Erdgaskosten. Bis hierhin hat die Verteuerung überhaupt nichts mit Putin zu tun. Schlüsselgröße sind die „Erneuerbaren“. Weht der Wind kräftig und der Himmel ist blau, drücken sie durch die Zwangseinspeisung in den Markt. Ihre Kosten spielen nicht die geringste Rolle, denn der Börsenpreis wird anschließend durch die EEG-Umlage auf den garantierten Wert aufgefüttert. Abnehmer bekommen sogar Entsorgungsgebühren in der Form negativer Strompreise. Weht umgekehrt kein Wind und es ist Nacht, müssen die fehlenden Mengen durch die Gaskraftwerke geliefert werden. Und – wieder richtig geraten – die Wind – und Sonnenbarone bekommen nun auch die hohen Preise der Erdgaskraftwerke. Ein perfektes System zur Ausplünderung der Bürger.

Differenzkontrakte

In GB hat man sogenannte CfD eingeführt. Vielleicht kann sich der ein oder andere noch an die hämischen Kommentare aus Deutschland über den CfD-Preis von rund 100 EUR/MWh für die elektrische Energie aus dem Kernkraftwerk Hinkley Point C erinnern. Alle Klug… haben die Briten für völlig übergeschnappt erklärt, wo doch Windenergie so günstig ist. Beispielsweise am heutigen Tag haben wir in Deutschland einen Großhandelspreis von 488,24 EUR/MWh. Wir hatten aber auch schon Preise von über 600 EUR/MWh. Jetzt kommt aber der entscheidende Unterschied: Das Kernkraftwerk kann 24/7 Strom liefern (abgesehen von einigen Wochen Wartung pro Jahr). Auch wenn kein Wind weht und es dunkel ist und somit die Preise explodieren, bekommt das KKW nur seinen garantierten Preis und muß erstmal seine Subventionen an die Endverbraucher zurück zahlen. Es wird also in GB der Bürger nicht so brutal geplündert, wie in Deutschland.

Konsequenzen

Die Energiewende ist komplett gescheitert. Schluß damit. Bis dahin müssen die „Übergewinne“ der Wind- und Sonnenbarone vollständig eingezogen und zur Senkung der Endverbraucherpreise eingesetzt werden. Sie dürfen keinen Cent mehr, als die vereinbarten Garantiepreise bekommen. Damit endet auch umgehend der Anreiz, Strom aus teurerem Erdgas herzustellen. Wenn nicht mehr Erdgas zur Preistreiberei verfeuert wird (heute Mittag etwa 2 Millionen Kubikmeter pro Stunde), sinkt die Nachfrage drastisch und auch die Erdgaspreise fallen wieder. Wir können es uns nicht erlauben, um den Preis der Zerstörung unserer Volkswirtschaft – und letztendlich damit unserer Gesellschaft – auf Kohle und Kernenergie (mittelfristig) zu verzichten. Schluß mit dem haltlosen Gelaber eines weltfremden Müller, daß wir 20% Erdgas einsparen müssen. Auf dem heutigen Niveau der Industrie und Haushalte sind solche Raten absolut unmöglich. Wir befinden uns nicht mehr auf dem technologischen Stand der 1950er Jahre. Wer solche Werte in die Welt setzt, will Armut erzeugen. Pol Pot läßt grüßen.

Habecks „gelenkte Wirtschaft“

Wer immer noch nicht wissen will, was mit „Energiewende“ gewollt ist, wird gerade wieder ein wenig angeschubst: Energieminister Habeck bestimmt – nicht der Markt – wieviel, von welcher Energie eingesetzt wird und neuerdings auch noch, welche Unternehmen genehm sind. Die „Gasumlage“ zur Finanzierung eines ausgewählten Unternehmens ist der bisherige Gipfel der Unverfrorenheit unserer derzeitig Regierenden. Waren die bisherigen Enteignungen von Kernkraftwerken, die Stilllegungsprämien für hochmoderne Kohlekraftwerke, die horrenden „Übergewinne“ der Wind- und Solarbarone nur das Vorspiel, werden jetzt die Karten ganz offen auf den Tisch gelegt: Kombinate – das Wort Unternehmen ist hier gänzlich unangebracht – die die „Energiewende“ treu begleiten, erhalten Narrenfreiheit und werden als Gegenleistung stets vom dummen Bürger finanziert. Doch der Reihe nach…

Das Erdgasdilemma

Die Rot/Grünen (Schröder/Trittin) wollten aus der Kernenergie aussteigen. Weniger aus einer irrationalen „Atomangst“, als zum Zwecke der Gesellschaftsveränderung. Die mit Abstand preiswerteste und umweltfreundlichste Stromerzeugung sollte dem verhaßten – und überaus erfolgreichem System „BRD“ – entzogen werden. Gleichzeitig wollte man die Demonstranten der „Anti-AKW-Bewegung“ als Wähler an sich binden. Mit dem Aufbau der Wind- und Sonnenindustrie sollte (wieder einmal) die Überlegenheit der „gelenkten Wirtschaft“ über die (böse) Marktwirtschaft vorgeführt werden. Man lese gern einmal die ganzen schwachsinnigen Prophezeiungen über Arbeitsplätze, billige Energie (die Sonne schickt keine Rechnung), Umweltschutz etc. aus dieser Zeit nach. Nichts von alledem ist eingetreten, lediglich eine neue steinreiche Klasse von Schlangenölverkäufern wurde erschaffen, die fest hinter ihren fütternden Händen steht. Nie gab es in diesem Land eine so mafiöse Melange von Neureichen „Energiewende-Gewinnlern“ und „gutmenschelnden“ Politikern.

Natürlich ist die Vollversorgung einer Industriegesellschaft durch „Regenerative“ unmöglich. Die Energieversorger wurden durch Milliarden Subventionen ruhig gestellt und investierten in „hocheffiziente“ Kohlekraftwerke. Gerade auch die Unternehmen, die heute durch die „Gasumlage“ vor dem Ruin bewahrt werden sollen: Der geneigte Leser möge einmal E.ON und Uniper googeln. Eine endlose Geschichte der Subventionen, von Kernenergie über Kohle und Wind hin zu Erdgas. Die ganzen Stilblüten hießen „Kohlepfennig“, „EEG-Umlage“, „Netzentgelt“ usw.

Die Zeit vor dem Ukraine-Krieg

Erdgas war immer günstiger als Öl. Sonst hätte es sich auf dem Wärmemarkt nicht so durchsetzen können. Dann kam auch noch die „shale revolution“ in den USA. Durch die enormen technischen Fortschritte („fracking“) in der Bohrtechnik fielen die Preise für Erd- und Begleitgas ins Bodenlose. In den USA sogar unter den Wärmepreis für die billige Kohle. Das Gas verdrängte die Kohlekraftwerke und teilweise sogar die Kernkraft. In Europa gab es diese Effekt aus (politischen Gründen ) nicht. Erdgas – im wesentlichen „Russengas“ – war schon immer um ein Vielfaches teurer. Trotzdem setzte man voll auf Erdgas. Warum sonst hat man gegen alle Widerstände das gigantische Projekt Nord Stream 2 durchgezogen? In Deutschland wurde hierfür die „Klimakatastrophe“ vorgeschoben.

Eine Wende trat mit Fukushima ein. Durch das plötzliche Abschalten der Kernkraftwerke in Japan entstand eine gigantische Nachfrage nach LNG (durch Kühlung verflüssigtes Erdgas). Hinzu kam das Wirtschaftswachstum in China. In USA, Katar und Australien begann der Boom der Verflüssigungsanlagen. Absehbar stiegen die lokalen Erdgaspreise wieder an. Erdgas hat gegenüber Öl und Kohle einen entscheidenden Nachteil: Der Transport ist sehr kapitalintensiv. Egal, ob durch lange Rohleitungen und Verdichtung oder verflüssigt und mit Tankern. Bei kontinentalen Pipelines und Verflüssigungsanlagen mit zugehöriger Infrastruktur und Tankern sind Milliarden Dollar die kleinste Recheneinheit. Damit man auf einen akzeptablen Energiepreis pro Kubikmeter kommt, benötigt man Amortisationszeiten von mehreren Jahrzehnten (üblich 20 bis 40 Jahre). Wenn Banken Milliardenkredite ausleihen sollen, verlangen sie sichere Verträge mit vertrauenswürdigen Kunden.

Der Sinn fester Verträge

Bei Verträgen mit LNG aus z. B. den USA sind Verträge über eine Laufzeit von 20 Jahren üblich. Es gilt der Preis am Handelspunkt Henry Hub. Für den Energieaufwand bei der Verflüssigung wird eine Menge von 15% zugeschlagen und der Anlagenbetreiber bekommt einen fest vereinbarten Preis für seinen Aufwand. Hinzu kommen noch die Frachtkosten und die Kosten für die Rückvergasung. Vereinfacht gesagt, wird ein Festpreis über die gesamte Vertragslaufzeit vereinbart. Weil jedoch keiner der beiden Partner in die Zukunft sehen kann, gelten nachvollziehbare Preisgleitklauseln. Jeder solide Versorger deckt einen wesentlichen Teil seines Absatzes über solch langfristige Festverträge ab. Darüberhinaus kann man zusätzlich einen Teil am Spot-Markt zu Tagespreisen einkaufen. Am Ende erhält man einen Einkaufspreis über eine Mischkalkulation. Wichtig dabei ist, daß man die Spot-Preise nicht sicher vorhersehen kann. Keiner kann in die Zukunft blicken. Dieser Teil ist reine Spekulation!

Auch beim „Russengas“ war das seit Sowjetzeiten nicht anders. Gerade die Russen, als Anhänger der Planwirtschaft, wollten immer möglichst lange Festverträge. Fairer weise muß man sagen, daß gerade auch Putin seit Jahren öffentlich auf diesen Zusammenhang hingewiesen hat. Es waren unsere Schlaumeier, die geblendet von niedrigen Weltmarktpreisen auf einen erhöhten Anteil an „Zukauf nach Tagespreis“ umgestiegen sind. Schon letztes Jahr gab es anläßlich der geringen Speichermengen herbe Kritik. Gazprom hat immer wieder darauf hingewiesen, daß es alle vertraglich abgesicherten Mengen liefert. Ob das immer zutraf, kann hier nicht überprüft werden, es erscheint dennoch wahrscheinlich, da kein Versorger dementiert hat.

Fakten oder Propaganda?

In den Medien geistern immer wieder Mindermengen ungeprüft umher. 20%, 40% wovon? Offensichtlich von der Auslegungsleistung der Pipeline. Entspricht – die volle Leistung der Rohrleitung – auch tatsächlich der Vertragsmenge? Ganz offensichtlich nicht. Die gelieferte Leistung ist in vertraglichen Grenzen variabel. Nur ein Beispiel: Die jährlich notwendige Wartung, bei der überhaupt kein Gas geliefert werden kann. Ebenso gibt es Unterschiede im Sommer und Winter. Wenn man beurteilen will, wer der Böse ist, müssen schnellstens die Verträge offen gelegt werden. Wenn das Geld der Steuerzahler bzw. der Endkunden genommen werden soll, gibt es keine Ausreden. Private Verträge sind Privatsache und gehen den Staat grundsätzlich nichts an. Völlig anders verhält es sich, wenn man staatliche oder staatlich angeordnete Leistungen (z. B. GEZ-Gebühren) in Anspruch nehmen will. Dies muß für jeden Konzern genauso gelten, wie für jeden Wohngeldempfänger! Soll die „Gasumlage“ auch über das Finanzamt gepfändet werden, ersatzweise Haft, wie bei der „Demokratieabgabe“? Aber anschließend entscheidet nur die Konzernleitung, wie die Intendantin des RBB, welcher neue Dienstwagen dafür angeschafft wird? So geht es nicht Herr Habeck.

Das Recht auf Spekulation

Es gehört zu den Grundlagen jedes Bankwesens, daß man Anleihen und Kredite stets kongruent finanzieren muß: Wenn man eine Hypothek für zehn Jahre zum Festpreis ausleiht, muß man die gleiche Summe ebenfalls als Festgeld aufnehmen. Alles andere ist eine hochspekulative Wette. Nun hat jeder Privatmann und jedes Unternehmen das Recht an der Börse zu spekulieren. Nur, man muß die Folgen tragen. Auch Kriege sind hier keine Ausrede. Kriege passieren ständig und sind immer wieder Quelle für Profit oder eben auch Verluste. Seit wann werden Unternehmen dafür vom Staat abgesichert? Wenn ein Unternehmen das Risiko mindern will, muß es sich selbst versichern. Nur kostet das Geld und mindert auf jeden Fall den Gewinn.

Der „Verlustausgleich“ für Uniper und Co durch den Endkunden ist doppelt unangemessen. Die vermaledeite „Energiewende“ ist ein Projekt der Parteien. Deshalb muß – wenn überhaupt – der Staat dafür aufkommen. Es kann dann eben etwas weniger für andere Steckenpferde ausgegeben werden. Außerdem unterliegt damit der „Verlustausgleich“ den gleichen parlamentarischen Kontrollen wie alle anderen Haushaltspositionen aus Steuermitteln. Darüberhinaus ist gar nicht einzusehen, daß ein Unternehmen, welches durch seine fahrlässigen Spekulationen in Schieflage geraten ist, durch die Endkunden unterstützt werden soll. Der höhere Gaspreis muß selbstverständlich bezahlt werden, aber die Verluste aus der fahrlässigen Spekulation (langfristige Lieferverträge durch Tageseinkauf abgedeckt) sind von dem Unternehmen und seinen Eigentümern selbst zu tragen. Wenn das Unternehmen pleite geht, dann ist das so. Der Staat kann notfalls die Konkursmasse übernehmen, wenn sich kein anderer findet. Gewinne privatisieren und Verluste sozialisieren geht gar nicht.

Habeck muß weg

Wir werden durch diesen Kinderbuchautor immer tiefer in den wirtschaftlichen Sumpf geführt. Er ist besessen von der Idee, ganz Deutschland mit Windmühlen zu bepflastern. Wie ernst es ihm damit ist, hat er schon in Schleswig Holstein bewiesen. Wie tief seine Verbindung zu der Windmafia geht, hat schon dort die Unterstützung seines Wahlkampfes gezeigt. Kaum im Amt, hat er geliefert und alle Klage- und Beteiligungsrechte ausgehebelt. Naturschutz ist für ihn kein Hinderungsgrund. Noch nie zuvor ist in Deutschland eine Industrie so offen bevorteilt worden. Er ist ein äußerst geschickter Demagoge. Er hat medienwirksam die „EEG-Umlage“ in dem Moment abgeschafft, in dem sie faktisch gar nicht mehr existierte. Die Strompreise sind so hoch getrieben worden, daß sie bereits weit über den zugesicherten Werten liegen. Das Geschwafel von „Übergewinnen“ – was auch immer das sein mag – dient nur um seinen einfältigen und marxistisch geprägten Parteifreunden etwas „Klassenkampf-Zucker“ zu geben. Mineralölkonzerne haben schon immer stark schwankende Gewinne. In fetten Jahren müssen sie mit ihren Gewinnen die Verluste aus schlechten Jahren ausgleichen. Manche schaffen das nicht und sind vom Markt verschwunden. Ganz anders bei seinen Strolchen von der Windindustrie: Die bekommen jetzt den Preis der Erdgaskraftwerke vergütet. Dämmert es jetzt, warum der Robert die Erdgaspreise in die Höhe treibt und gegen die Laufzeitverlängerung der letzten drei Kernkraftwerke sein wird? Wie plappert das Gazelchen immer so schön: Wir haben keinen Strommangel, sondern einen Mangel an Erdgas. Deshalb produzieren wir auch jetzt schon aus Erdgas Strom. Die Bevölkerung soll im Hochsommer die Heizungen etwas runter regeln, damit die Speicher gefüllt werden können mit möglichst teurem Gas. Ohne Rücksicht auf Verluste das Ganze Theater. Viele Industrie- und Handwerksbetriebe können die Gaspreise nicht einfach auf ihre Kunden abwälzen. Besonders nicht, wenn sie international konkurrieren müssen. Eine Welle von Firmenpleiten und Verlagerungen nach Übersee werden im Winter folgen. Was schert das den Robert? Hauptsache, es wird möglichst viel „Windstrom“ verkauft. Das ist er seinen Freunden schuldig. Wahlen sind erst in ein paar Jahren, bis dahin hat der Michel alles vergessen – glaubt er. Jedenfalls kann er schon jetzt eine prall gefüllte Schatulle für den Wahlkampf erwarten. „Robert for Kanzler.“ Und Schuld war doch der Putin, wissen doch alle oder Corona oder so…

Umrüsten von Kohlekraftwerken möglich?

In letzter Zeit tauchen immer wieder Pläne auf, ältere Kohlekraftwerke mit Kernreaktoren umzurüsten. Es erscheint notwendig, die Vor- und Nachteile etwas näher zu betrachten.

Der Ersatz

Bisher war es üblich, vollständig neue Kernkraftwerke zu errichten und anschließend ältere Kraftwerke still zu legen. Vorteil ist die freie Wahl des Standortes und die freie Gestaltung des Kernkraftwerks. Man erhält ein neues Kernkraftwerk (KKW) aus einem Guss. Allerdings ist dies auch die teuerste Lösung. Da der Neubau von KKW unter hohen Investitionen leidet, die zwar zu einem geringen Strompreis über die Laufzeit (heute mehr als 60 Jahre) führen, wird händeringend nach neuen Strategien gesucht. Als ein Weg erscheint die Umrüstung vorhandener Kohlekraftwerke mit SMR (Small Modular Reactor) als Wärmequelle. Man hofft dadurch die notwendigen Investitionen zu senken oder zumindest zu strecken. Grundsätzlich kann man schon jetzt festhalten, daß sich so etwas wahrscheinlich nur bei „jüngeren“ Kohlekraftwerken lohnt, bei denen noch eine Restlaufzeit von Jahrzehnten vorhanden ist. Volkswirtschaftlich dürfte es günstiger sein, diese Kraftwerke bis an ihre (wirtschaftliche) Lebensdauer weiter zu betreiben und erst dann still zu legen. Gleichwohl kann man auf jeden Fall den Standort „retten“ und weiter betreiben.

Der Standort

Jedes Kraftwerk braucht einen „Stromanschluss“, eine Wärmesenke, Betriebspersonal und diverse Infrastruktur. Das Kraftwerk muß seine erzeugte elektrische Energie in das vorhandene Stromnetz einspeisen. Bleibt man bei der vorhandenen Leistung, kann man die Hochspannungsleitungen und die notwendigen Schaltanlagen – sofern sie noch geeignet sind – weiter verwenden. Erste Schwierigkeit hierbei ist nicht technischer Art, sondern liegt in den speziellen Vorschriften für KKW. Der „Stromanschluss“ ist sicherheitsrelevant für die Notkühlung. Es müßten daher inhärent sichere Reaktoren verwendet werden, die keine aktive Notkühlung benötigen. Ähnliche Schwierigkeiten können bei der Genehmigung des alten Standorts entstehen – zumindest, wenn der Standort in unmittelbarer Nähe zu Wohngebieten liegt. Auch hierfür spielt die Sicherheitstechnik eine entscheidende Rolle.

Kraftwerke sind in ihren Gemeinden meist sehr beliebt: Sie bieten gut bezahlte Arbeitsplätze, die Gemeinde bekommt außergewöhnliche Steuereinnahmen und es fällt auch sonst noch einiges ab, um die gute Nachbarschaft zu fördern. Würde ein Kohlekraftwerk in ein KKW umgebaut werden, könnten alle Arbeitsplätze – sofern gewollt – erhalten bleiben. Viele könnten ohne Umschulung weiter arbeiten, einige müßten ihre Fachkenntnisse erweitern. Alles meist sehr kleine Unannehmlichkeiten im Vergleich zur Aufgabe. Wie die Erfahrung zeigt, wurden Gemeinden durch die Schließung überwiegend in den Abgrund gezogen: Die Preise für Immobilien sinken, viele Handwerker verlieren ihre Aufträge und die Einnahmen der Gemeinde sinken bei steigenden Ausgaben.

Jedes Kraftwerk braucht Kühlwasser. Es muß ein ausreichend großer Fluß vorhanden sein, ein See, ein Meeresarm oder eine ausreichende Wasserquelle für einen Kühlturm. Bleibt man in gleicher Größenordnung, kann man die vorhandenen Anlagen des Kohlekraftwerks weiter nutzen. Oft ist das Kühlwasser ein ganz wesentlicher Faktor bei der Standortsuche. Es muß nicht nur Wasser vorhanden sein, sondern es müssen auch alle Umweltauflagen erfüllbar sein. Was aber schon Jahrzehnte problemlos genutzt wurde, kann auch weiter genutzt werden.

Der Turbosatz

Im Turbosatz wird die Energie des Dampfes in elektrische Energie umgeformt. Der Generator wird durch die Turbine angetrieben. Turbine und Generator sind aufeinander abgestimmt (z. B. Drehzahl). Beide stehen auf dem elastisch gelagerten Turbinentisch (auf Federpaketen aus Stahlfedern). Wichtig dabei ist, daß alle drei Komponenten ein System bilden. Unterhalb befinden sich die Kondensatoren, in denen der Dampf durch das Kühlwasser niedergeschlagen wird. Ob Generator und Kondensatoren ohne große Umbauten weiterverwendet werden können, hängt von der Turbine ab.

Die Turbine ist für einen bestimmten Dampfzustand (Druck p und Temperatur t) und einen Massenstrom (kg/s) ausgelegt. Genau hier liegt die Problematik: Kohlekraftwerke sind für möglichst hohe Temperaturen und Drücke ausgelegt. Je höher die Dampftemperaturen, um so besser der Wirkungsgrad und damit um so geringer der Kohleverbrauch. Stellvertretend sei hier das Kraftwerk Boxberg Q genannt, das seit 2000 Strom ins Netz liefert. Es war seinerzeit das modernste Braunkohlekraftwerk mit einem Wirkungsgrad von 43% bei einer Leistung von 906 MWel. Hierfür ist ein Frischdampfdruck von 260 bar bei einer Temperatur von 540°C und einer Zwischenüberhitzung auf 580°C nötig. Damit ergeben sich bereits die Schwierigkeiten für eine Umnutzung durch Kernenergie:

  • Die Blockgröße erfordert mehrere SMR (Small Modular Reactor, definitionsgemäß mit einer Leistung < 300 MWel), die auf eine gemeinsame Turbine arbeiten müßten. Dies ist kein Vorteil, sondern eher ein Nachteil.
  • Die Austrittstemperatur der Reaktoren muß rund 600°C betragen. Damit fallen alle Leichtwasserreaktoren raus (Druckwasserreaktor 165 bar, 330°C; Siedewasserreaktor 71 bar, 286 °C ).
  • Wegen der notwendigen Austrittstemperatur von ungefähr 600°C kommen nur „zukünftige“ Reaktoren, wie z. B. aus den Familien: Gasgekühlt (z.B. HTR-PM, Xe-100), Salzschmelze (z.B. Kairos, Terrestrial Energy, Moltex Energy Waste Burner) oder Flüssigmetalle (BREST, TerraPower) in Frage. Es gibt noch unzählige andere Projekte, aber die aufgeführten Typen sind bereits auf dem Weg, den „Papier-Reaktor-Status“ zu verlassen. Realistisch betrachtet, dürften aber noch ein bis zwei Jahrzehnte bis zur Reife vergehen.
  • Hat man einen Reaktor gewählt, muß noch ein Dampferzeuger konstruiert werden. Keine einfache Aufgabe, denn auch dieser ist einmalig. Die Dimensionen sind bei der gesamten Dampfmenge von etwa 2400 to/h nicht zu unterschätzen. Sicherheitstechnisch problematisch ist die gewaltige Druckdifferenz von über 200 bar. Undichtigkeiten wirken hier immer in Richtung Reaktor. Es müssen bei der Paarung Kühlmittel des Reaktors / Frischdampf noch ganz neue Fragen bezüglich der Werkstoffe beantwortet werden.
  • Ein besonderer Stolperstein ist noch die bei Kohlekraftwerken übliche Zwischenüberhitzung: Wenn der Frischdampf aus dem Hochdruckteil der Turbine austritt, wird er noch einmal zum Kessel zurückgeschickt und wieder möglichst hoch erhitzt, bevor er in den Mitteldruckteil der Turbine zur weiteren Entspannung eintritt. Bisher hat so etwas noch keiner gebaut. Im Gegenteil, in den Anfangstagen der KKW hat man es mit einer fossilen Überhitzung versucht, da man mit Nassdampfmaschinen noch nicht so weit war.

Zusammenfassung

Die Größenordnung scheint verlockend: 2021 wurden 10244 TWh elektrischer Energie weltweit durch Kohlekraftwerke erzeugt (Stromverbrauch in Deutschland etwa 503,8 TWh). Dazu mußten fast 8,2 Milliarden to Kohle gefördert werden. Man muß es sich noch einmal in aller Ruhe deutlich machen: Weltweit wurde rund zwanzig mal so viel Strom aus Kohle gewonnen, wie ganz Deutschland in einem Jahr (2021) verbraucht hat! Schon das verdeutlicht die Unmöglichkeit, auch nur mittelfristig Kohle durch Kernenergie ersetzen zu wollen. Wenn es auch für manchen „Klimatologen“ eine bittere Erkenntnis sein mag, King Coal wird noch für Jahrzehnte – wenn nicht gar Jahrhunderte – dominieren, ob nun Deutschland aus der Kohleverstromung aussteigt oder nicht.

Jedes Kohlekraftwerk ist eine Milliardeninvestition. Hinzu kommt noch die Infrastruktur (Bergwerke, Massengutfrachter, Eisenbahnen etc.). Nur eine so dekadente Gesellschaft, wie die Deutsche, kann glauben, daß man ohne Konsequenzen einen solchen Kapitalstock vernichten kann. Andere Gesellschaften haben ganz andere Sorgen, als ausgerechnet die „Klimakatastrophe durch von Menschen freigesetztes CO2“. Der Rest der Welt, wird seine Kohlekraftwerke bis zu deren wirtschaftlichem Ende betreiben. Schließlich sind diese Teil der „Wohlstandsmaschine“, die zur weiteren Entwicklung zwingend nötig ist. Wenn es um die Einsparung von Kohle geht, bleibt auch noch der Weg, alte Kraftwerke mit geringem Wirkungsgrad durch neue zu ersetzen. Es wird sein, wie es immer war, erst wenn der Brennstoff so teuer wird, daß sich Alternativen lohnen, wird die Anzahl der Kohlekraftwerke schrumpfen. So bereits geschehen in den USA, wo (zeitweise) Erdgas günstiger war.

Realistisch betrachtet, kann höchsten der Zuwachs des weltweiten Strombedarfs durch Kernenergie abgedeckt werden. Eine Umrüstung erscheint bestenfalls in Einzelfällen sinnvoll. Die Entwicklung der Kernenergie wird davon unbeeinflußt weitergehen. Es werden weiterhin „große“ Leichtwasserreaktoren gebaut werden und die Entwicklung „kleiner“ Reaktoren wird ebenfalls weiter vorangehen. Sie werden vielmehr ganz neue Anwendungen (z. B Industrie, Nahwärme etc.) und die kostengünstige Beseitigung des „Atommülls“ erschließen. Sie werden somit auch an den Marktanteilen von Gas und Öl knabbern. Der Anteil von Wind und Sonne ist bereits (gerade in Europa) über das sinnvolle Maß hinausgeschossen – da hilft auch kein neues Schlangenöl aus „Grünem Wasserstoff“.

Was ist los in Dänemark?

Was geschieht im schönen Dänemark, daß sich gleich zwei junge Unternehmen (Seaborg Technologies und Copenhagen Atomics) mit der Entwicklung von Kernreaktoren der Generation IV beschäftigen? War doch bisher für alle „Ökos“ Dänemark das Paradies für Windkraft und Bioenergie. Konnte man sich doch bisher einen schlanken ökologischen Fuß machen, da die Bevölkerung nicht einmal doppelt so groß ist wie die von Berlin und 76% der Arbeitnehmer in der Dienstleistung tätig sind und damit 79% des BIP erwirtschaften. Das bisschen Stahl für die Windmühlen, den Dünger für die intensive Landwirtschaft und die paar Autos konnte man sich bequem auf dem Weltmarkt zusammen kaufen. Die damit verbundenen Umweltbelastungen und der Energieverbrauch gehen halt auf das Konto der Erzeuger. Apropos Autos: Unsere grüne Verkehrssenatorin in Berlin bekommt immer leuchtende Augen, wenn sie von der „Fahrradstadt“ Kopenhagen schwärmt. Warum sollte man auch nicht in Kopenhagen Fahrrad fahren, ist doch annähernd so groß wie Bremen und genauso flach. Allerdings gibt es dort in der Innenstadt Hauptverkehrsachsen mit 3 Fahrspuren + 1 Busspur + 1 Fahrradspur. Nur die Fußgänger müssen sich etwas anpassen, da diese Magistralen nur mit zweimal grün zu überqueren sind. Schön sind auch die Nahverkehrszüge mit großen Fahrradabteilen. Trotzdem stehen die Pendler von und nach Kopenhagen (Großraum über 1,5 Millionen) täglich im Stau. Man kann eben nicht alles haben: Billige Wohnung und gut bezahlter Arbeitsplatz in Bullerbü geht nirgends auf der Welt.

In Dänemark ist aber ein weiteres dickes Ende abzusehen: Bereits heute wird schon oder erst – je nach Blickwinkel – die Hälfte der elektrischen Energie durch Windkraft erzeugt. Ein Netz mit so hohem fluktuierenden Anteil überhaupt am Laufen zu halten, geht nur mit der Wasserkraft in Norwegen, der Kernenergie in Schweden und der Kohle in Deutschland. Da aber alle „Ökos“ in Europa glauben, sie könnten ihre Stromlücken problemlos beim Nachbarn auffüllen, ist damit bald Schluß. Was bleibt, sind die hohen Stromkosten und wahrscheinliche Zwangsabschaltungen. Absehbar zeichnen sich die Grenzen des Wachstums der Windindustrie ab. Die immer größer werdenden Konflikte mit Umweltschützern und den belästigten Anwohnern haben die Schlangenölverkäufer bereits auf die Nord- und Ostsee hinausgetrieben. In einem in der Menschheitsgeschichte bisher nie da gewesenen Ausmaß und Tempo wird das Meer industrialisiert. Es ist halt wie mit den Schornsteinen der frühen Industrialisierung: Einige wenige waren ein willkommenes Fortschrittssymbol, aber ab einem gewissen Ausmaß zeichnete sich der Fluch der Luftverschmutzung ab. Einige wenige „Vogelschredder“ steckt die Natur locker weg, aber eine voll gepflasterte Nordsee wird zur ökologischen Katastrophe für Fauna und Flora. Wer gegenteiliges behauptet, ist ein Ignorant und hat nichts aus der Technikgeschichte gelernt.

Klein und smart passt gut zusammen

Es ist kein Zufall, daß sich gerade die dünner besiedelten Staaten für kleine und „moderne“ Reaktoren interessieren:

  • Ihre (lokalen) Netze sind meist zu klein, um konventionelle Reaktoren wirtschaftlich betreiben zu können.
  • Sie verfügen über keine Schwerindustrie, die die erforderlichen großen Bauteile (z. B. Reaktordruckbehälter) herstellen kann. Es sind deshalb besonders „drucklose“ Konzepte von Interesse.
  • Sie verfügen über zahlreiche kleine fossile Kraftwerke mit Kraft-Wärme-Kopplung (Fernwärme, Industriebetriebe) die ersetzt werden müssen.
  • Dänemark verfügt über eine beachtliche Flotte großer Containerschiffe (Maersk) für die neue Antriebskonzepte gefunden werden müssen (synthetische Brennstoffe und/oder nuklear).
  • Die skandinavischen Länder betreiben seit Jahrzehnten Leichtwasserreaktoren, die bereits eine Menge abgebrannter Brennelemente angehäuft haben – aber zu wenig für eine konventionelle Wiederaufbereitung. Die derzeitige Lösung, der dauerhaften unterirdischer Zwischenlagerung in Bergwerken, schreit förmlich nach neuen Ansätzen.

Geht man von diesen Rahmenbedingungen aus, ist es nicht verwunderlich, daß sich gleich zwei Unternehmen mit der Entwicklung von Reaktoren mit Salzschmelzen beschäftigen.

Salzschmelze-Reaktoren

Wenn man geeignete Salze auf einige hundert Grad erhitzt, werden sie flüssig wie Wasser. Andererseits sind sie dann noch weit entfernt zu verdampfen und damit Druck aufzubauen. Mit einfachen Worten: Man kann einen Reaktor bauen, der beachtliche Temperaturen (bis etwa 700°C) bereitstellt und trotzdem nahezu drucklos bleibt. Wenn man nun Salze aus Uran, Thorium, Plutonium und Minoren Aktinoiden (das sind die, die eine so langfristige Lagerung des Atommülls erforderlich machen) bildet und unter die Salzlösung mischt, erhält man einen Brennstoff, der gleichzeitig der Wärmeträger ist. Also anders als bei konventionellen Reaktoren, wo fester Brennstoff in Hüllrohre verpackt, mit Wasser, Natrium etc. zur Kühlung umgeben wird. Beide Konstruktionsweisen haben spezifische Vor- und Nachteile, die hier nicht näher diskutiert werden. – wie immer in der Technik, wo es grundsätzlich nur Optima gibt und nicht (nur) das Gute oder Schlechte. Selbst wenn man die Reaktortechnik auf Salzschmelzen einengt, ergeben sich noch dutzende verschiedene Konstruktionen. Es empfiehlt sich daher, vorab Gedanken zu machen, welche Anwendungen man anstrebt.

Die Gemeinsamkeiten der Dänen

Sowohl Seaborg, wie auch Copenhagen Atomics streben langfristig eine Serienproduktion an. Dafür müssen die Reaktoren so klein (Gewicht und Abmessungen) sein, daß sie sich komplett fertigen und transportieren lassen. Seaborg will sie auf Bargen in Werften installieren und anschließend betriebsbereit über den Wasserweg zum Verbraucher schleppen. Copenhagen Atomics geht noch einen Schritt weiter und will die komplette Anlage mit Pumpen, Wärmeübertragern und allem notwendigen Zubehör in einen handelsüblichen 40-Fuß-Container einbauen. Es geht also in die Richtung „Autofabrik“ und weit weg von der verfahrenstechnischen Großbaustelle heutiger Kernkraftwerke. Das kann die Kosten senken und vor allem ganz neue Märkte erschließen: Seit dem Krieg gegen die Ukraine wird auch hier breiten Schichten die Bedeutung von „Wärme“ und nicht nur elektrischer Energie für eine Industriegesellschaft bewußt. Es gibt einen riesigen Bedarf für Wärme mit „ein paar hundert Grad“ z. B. in der chemischen und verarbeitenden Industrie. Man stelle sich einmal vor, man könnte die tausende Kessel (< 100 MWth), die überwiegend aus teurem Erdgas und Heizöl nur Warmwasser und Dampf für die Produktion herstellen, durch „Nukleare Container“ ersetzen. Angeliefert und aufgestellt in wenigen Tagen, gemietet und betreut (die Reaktoren laufen voll automatisch) von Service Unternehmen, die für ein paar Cent die erforderliche Wärme bereitstellen. Welch verlockende Perspektive gegenüber dem irren Umweg aus „Grünem Wasserstoff“ Niedertemperaturwärme machen zu wollen.

Es gibt aber noch ein weiteres Anwendungsfeld, das sich Laien nicht so ohne weiteres erschließt, aber Reedern unter den Nägeln brennt: Seeschiffe geraten durch strengere Umweltschutzvorschriften und explodierende Treibstoffpreise immer mehr unter Druck. Langfristig bleibt nur der nukleare Antrieb als Ausweg, wenn man „fossil“ nicht mehr will. Egal ob bei großen Schiffen durch Reaktoren an Bord oder durch voll elektrischen Antrieb bei kleineren Schiffen mit „nuklearen Tankstellen“ auf dem Meer. Viele Reeder setzen auch auf Ammoniak als Treibstoff. Diesen Sektor hat auch Copenhagen Atomics in seinen Überlegungen.

Salzschmelze, zwei Fliegen mit einer Klappe?

Wenn man auf der Basis von Thorium arbeitet, erschließt man sich einen neuen Brennstoff, der noch viel häufiger als Uran vorkommt und zur Zeit schlicht weg Abfall (z. B. bei der Gewinnung seltener Erden) ist. Thorium erzeugt im Gegensatz zum Uranzyklus heutiger Leichtwasserreaktoren praktisch keinen langlebigen Atommüll (Plutonium-Isotopen, Minore Aktinoide). Im Gegenteil, man kann mit ihnen den Reaktor starten und sie so gewinnbringend vernichten. Copenhagen Atomics bezeichnet ihren Reaktor deshalb auch als „Waste Burner“. Gestartet wird der Reaktor mit einem Gemisch aus Thoriumfluorid und Plutoniumfluorid. So wie sich das Plutonium aufbraucht, wird gleichzeitig aus dem Thorium spaltbares Uran-233 „erbrütet“. Wichtig dabei ist, daß man – anders als für Mischoxid-Brennelemente für Leichtwasserreaktoren – kein möglichst reines Plutonium benötigt, sondern es kann durchaus mit Spaltprodukten verunreinigt sein (Proliferation) und soll sogar alle Minoren Aktinoide mit umfassen. Man kommt so zu wesentlich einfacheren Aufbereitungsverfahren für den zwischengelagerten „Atommüll“. Angestrebt sind hier eher reine (kurzlebige) Spaltprodukte, die einfach endgelagert werden können – kleine Menge (< 5%) und kurze Zerfallszeiten, die schnell zu schwach strahlendem „Restmüll“ führen. Ist der Gleichgewichtszustand erreicht, wird nur noch Thorium verbraucht.

Arbeiten wie bei Rickover

Man kann es sich heute gar nicht mehr vorstellen: Das erste Atom-U-Boot überhaupt, die USS Nautilus, wurde in nur fünf Jahren „erfunden“ und gebaut – und das mit den Hilfsmitteln der frühen 1950er Jahre. Dies war nur durch einen ingenieurtechnisch streng pragmatischen Ansatz möglich. An diese Vorgehensweise fühlt man sich bei Copenhagen Atomics erinnert. Werkstoffprobleme (Korrosion in heißem Salz) werden durch Tests gelöst. Zu diesem Zweck hat man sich eigene Prüfstände entwickelt, in denen vollautomatisch verschiedene Salzmischungen und (handelsübliche) Werkstoffe unter Betriebsbedingungen untersucht werden. Nicht „kaufbare“ Komponenten, wie z. B. die Umwälzpumpen sind selbst entwickelt und getestet worden. Das Gleiche betrifft die gesamte Instrumentierung und die notwendige Regelung. Salzmischungen in der erforderlichen Reinheit sind zumindest nicht in den erforderlichen Mengen zu kaufen. Deshalb wurde eine eigene Salzproduktion aufgebaut. Man ist jetzt an dem Punkt angekommen, einen „nicht nuklearen“ Reaktor in Originalgröße in Betrieb zu nehmen und damit Dauertests durchzuführen zu können.

Die Philosophie dahinter ist, nicht Unmengen von Papier und Berechnungen zu produzieren, mit denen man zu einer Genehmigungsbehörde geht und jahrelange theoretische Diskussionen führt, bis endlich mal etwas gebaut wird. Sondern ein konkretes Objekt vorzuzeigen und damit in den Genehmigungsprozess einzusteigen – quasi den Spieß umzudrehen. Was augenscheinlich funktioniert, muß mit starken Argumenten sicherheitstechnisch entkräftet oder eben zugelassen werden. Heute ist es eher üblich, bei theoretischen Diskussionen für jedes gelöste Problem drei neue aufzuwerfen. So kommt es, daß bei allen SMR-Projekten dreistellige Millionenbeträge der Investoren verbrannt sind, bevor der erste Spatenstich erfolgt. Das ist auch nicht verwunderlich, wenn man Genehmigungsverfahren als Stundenlohnarbeiten durchführt.

Bauen, statt nur Papier zu produzieren, hat noch einen weiteren Vorteil. So ist es Copenhagen Atomics gelungen, Gerätschaften die sie für den eigenen Reaktor entwickelt haben, bereits an andere Unternehmen und Forschungseinrichtungen zu verkaufen. Dies generiert nicht nur Umsatz während der Entwicklungsphase, sondern ermöglich ganz natürlich die Zusammenarbeit mit anderen Unternehmen und Forschungseinrichtungen. Darüberhinaus wird so sehr schnell aus einem Startup eine Marke.

Der schwierige Übergang in die nukleare Phase

An diesem Beispiel zeigt sich, in welch fatale Lage sich Europa selbst gebracht hat. Es mangelt nicht an klugen Köpfen, die sich für Kerntechnik begeistern. Immer mehr junge Leute gehen wieder den anspruchsvollen Weg eines Studiums der Kerntechnik. Das Bild von einer Jugend der „Freitagshüpfer“, die irgendwas aus den Weiten der „Genderwissenschaften“, dem „Klimaschutz“ oder sonstigen „Geschwätzwissenschaften“ studieren, um möglichst schnell eine Stellung im Staatsdienst zu ergattern, ist eine Erfindung der (meisten) Medien. Es wäre auch genug privates Kapital vorhanden, trotz aller Subventionen für „Grüne Technik“. Es klemmt heute an ganz anderen Dingen.

Ein Extrembeispiel ist Deutschland. Hier wäre ein Genehmigungsverfahren neuer Reaktoren gar nicht mehr möglich. Was ist, wenn Plan A, wir machen alles mit Wind, Sonne und Erdgas einfach nicht funktionirt? Wie lange glaubt man die Bevölkerung noch auf Kurs halten zu können, wenn die Energiepreise weiter steigen und Massenarbeitslosigkeit die Folge wird? Seit Minister Trittin hat man die deutschen Fachbehörden systematisch ruiniert, indem man frei werdende Stellen stets nach ideologischer Grundhaltung besetzt hat. Man hat sogar – im Gegensatz zu unseren Nachbarn – alles, was irgendwie nach Kerntechnik aussieht, an den Universitäten „auslaufen“ lassen. Was nicht sein darf, kann auch nicht sein.

Wie wird man in Dänemark reagieren, wenn im nächsten Schritt mit radioaktiven Stoffen gearbeitet werden müßte? Welche Behörden haben den Willen und die Fähigkeiten den Bau eines „Forschungsreaktors“ zu genehmigen und zu begleiten? Wahrscheinlich wird dieses Projekt, wie viele andere, Europa Richtung USA oder Asien verlassen müssen. Europa ist in Fragen von Wissenschaft und Technik zu einem mittelalterlichen Kirchenstaat verkommen. Erforscht oder gar gebaut werden darf nur noch, was das Wohlgefallen der „geistigen Obrigkeit“ findet.

Deutschland und die TAXONOMIE

Wenn man die staatsnahen Medien und die meisten deutschen Politiker zu der Veröffentlichung der Taxonomie zur Nutzung von Kernkraft- und Gaskraftwerken hört, denkt man unwillkürlich an „den Geisterfahrer“: Der Geisterfahrer hört in seinem Autoradio die Warnung vor einem Geisterfahrer auf seiner Strecke. Kopfschüttelnd stellt er die Frage: Wieso einer? Man kann es gar nicht fassen, daß die Europäer (bis auf die zwei Kleinstaaten Österreich und Luxemburg) alle Kernkraftwerke wollen, wo doch Deutschland so „tapfer vorangeht“. Flugs wittert man eine Verschwörung in der Veröffentlichung zum Jahresende.

Geschichte

In Wirklichkeit wird die Taxonomie seit mindestens zwei Jahren im Europäischen Parlament und Europarat heftig diskutiert. Es wurden zu den Arbeitspapieren weit über tausend schriftliche Stellungnahmen eingereicht. Allein zum Entwurf vom März 2020 haben 46 591 Interessenten ihre Stellungnahmen abgegeben. Wo waren da unsere Grünen Abgeordneten? Überdies hat die Kommission auch noch 200 Fachleute befragt und ist nicht einfach selbsternannten „Atomexperten“ gefolgt. Ausgerechnet Bündnis90/Die Grünen – die vehementen Verfechter eines europäischen Zentralstaats – sind nun ganz beleidigt, daß sie nicht ihren Willen bekommen. Dumm gelaufen. Hatte man sich doch für besonders schlau gehalten, indem man über das planwirtschaftliche Instrument einer Taxonomie die Investitionen in die nahestehende Windindustrie lenken wollte. Sozialisten sind immer ganz heiß darauf, das Geld anderer auszugeben. Nur wollen die bösen Kapitalisten ihr Geld nicht mit Windmühlen und Sonnenkollektoren verbrennen. Wenn der Staat Subventionen gibt, gern, aber wenn man eigenes Geld investieren soll, sollte am Ende auch eine hübsche Rendite stehen. Könnte sein, daß der Kinderbuchautor Habeck nun einen Schnellkursus in Wirtschaft – als bereits frisch gebackener Wirtschaftsminister – bekommt. Vielleicht hätte er mal lieber die Maus vor Amtsantritt gefragt?

„Grüne“ Kernkraftwerke

Die Kommission übernimmt brutal die Theorie von der Erderwärmung durch CO2 und legt fest, daß Kernkraftwerke weniger als 100 Gramm CO2 -Äquivalent pro kWh (Abkürzung: CO2 e/kWh) in ihrem Lebenszyklus erzeugen und deshalb gut fürs Klima sind – Basta. Dabei ist festzustellen, daß ein Kernkraftwerk durch seinen Betrieb genauso viel CO2 wie ein Windrad oder eine Photovoltaik-Anlage ausstößt – nämlich nichts. Alle Anlagen benötigen aber gleichermaßen Stahl, Beton usw. Bei deren Herstellung wird natürlich CO2 freigesetzt. Wieviel, entscheiden die Bilanzierer der Planwirtschaft. Hinzu kommen noch Betriebsstoffe für z. B. LKW in der Uranmine oder die Kräne zur Montage der Windmühlen. Nur soviel: Die Angabe solcher Zahlen – ohne deren genauen Weg der Ermittlung – ist völlig wertlos. Macht sich aber gut, da sie Seriosität ausstrahlt.

Das Märchen von der nicht beherrschbaren Hoch-Risiko-Technologie

Wir erinnern uns: Nach dem Tsunami in Japan hat die größte Kanzlerin aller Zeiten spontan ihre Ministerpräsidenten zusammengerufen und den „Atomausstieg“ verkündet. Nachdem sie zuvor mit der FDP einen Wahlkampf für eine Laufzeitverlängerung geführt und gewonnen hatte. Die Anbiederung bei den Grünen war umsonst. Kurz darauf gewannen die Grünen die Landtagswahl in Baden-Württemberg und sitzen heute zusammen mit der FDP in der Bundesregierung. Witzig daran ist nur, daß der FDP heute ihre damalige Unterordnung wieder auf die Füße fällt. Gleiche Nummer noch einmal oder etwas dazu gelernt?

Egal, die Kommission hat dieses Märchen brutal zerstört, indem sie verfügt, Kernkraftwerke, die mindestens der Generation III+ entsprechen und von den nationalen Institutionen nach internationalen Regeln geprüft und genehmigt sind, sind sicher (genug). Deutschland steht es selbstverständlich zu, seine „Atomangst“ weiter zu pflegen – nur kann es nicht verlangen, die „German Angst“ auch auf andere Nationen zu übertragen.

Das Märchen von der ungelösten Entsorgungsfrage

Auch hier geht die Kommission pragmatisch vor. Die Bedingungen sind erfüllt, wenn für schwach und mittel aktive Abfälle Endlager bestehen. Für hochaktive Abfälle muß bis 2050 ein geologisches Endlager in Betrieb sein. Bis dahin reicht die Zwischenlagerung abgebrannter Brennelemente. Es gilt der Grundsatz Wiederverwendung vor Endlagerung. Dies könnte für Deutschland noch eine böse Kröte werden. Geht man doch in Grün-Deutschland von einer Endlagerung der kompletten Brennelemente aus, damit die Mengen entsprechend groß bleiben und eine möglichst lange Gefährdung konstruiert werden kann. Was passiert eigentlich, wenn unsere Nachbarn diesen Weg für zu gefährlich halten und einen Verstoß gegen EU-Richtlinien monieren? Plötzlich sind wir nicht mehr die Musterschüler des Umweltschutzes, sondern eher die Umweltsünder Europas. Gerade Deutschland hält doch die Fahne des Recycling (auch für die letzten verdreckten Joghurtbecher) immer hoch und reibt dies allen anderen beckmesserisch unter die Nase. Ist Plastic tatsächlich gefährlicher als Plutonium?

„Grüne“ Gaskraftwerke

Wer jetzt immer noch glaubt, Deutschland könnte sich nach dem Atom- und Kohleausstieg mit Gaskraftwerken als sogenannte Übergangslösung in das Paradies der „Erneuerbaren“ rüber mogeln, sollte sich schleunigst mit der Taxonomie beschäftigen. Erstaunlich ist, wie dieses Kapitel in den Medien verschwiegen wird oder sogar als Zugeständnis für Deutschland dargestellt wird. Bei Lichte betrachtet, ist diese Taxonomie eher eine Absage an Gaskraftwerke.

Übergangslösung bis 2030

Erdgaskraftwerke, für die eine Baugenehmigung bis 2030 erteilt wird, erfüllen nur dann die Taxonomie, wenn sie weniger als 270g CO2 e/kWh freisetzen oder 550kg CO2 e/kW als Mittelwert über 20 Jahre. Um die Tragweite dieser beiden Zahlen zu verstehen, ist eine kleine Zwischenrechnung und etwas Fachkenntnis notwendig.

Die modernsten Erdgas-Kombi-Kraftwerke die man kaufen kann, haben einen elektrischen Wirkungsgrad von 60%, aber auch nur in ihrem Bestpunkt im Grundlast-Betrieb (d. h. sie laufen 24h täglich, 7 Tage die Woche durch). Wären also genau die Kraftwerke, die nach unserer Talkshow-Königin Claudia Kemfert die Netze „verstopfen“ würden. Unsere Windmüller und Sonnenkönige brauchen aber Kraftwerke, die nur ihre wetterabhängigen Lücken auffüllen. Sonst müßte ihr Strom kostenpflichtig entsorgt werden. Im realen Netz kann deshalb auch ein modernstes Kombi-Kraftwerk nicht einen Wirkungsgrad von 60% im Lastfolgebetrieb einhalten. Doch auch schon dieser Wert wäre im Sinne der Taxonomie tödlich. Wenn man eine Kilowattstunde Erdgas verbrennt, werden ungefähr 200g CO2erzeugt. Bei einem Wirkungsgrad von 60% werden somit über 330g CO2 für jede kWh elektrischer Energie erzeugt. Oder anders herum: Wenn man nur 270g CO2 freisetzen darf, wäre ein Wirkungsgrad von 74% erforderlich. Das ist aber für ein (rein elektrisches) Kraftwerk thermodynamisch unmöglich.

Betrachtet man den anderen möglichen Grenzwert von 550kg CO2 e/kW als Mittelwert über 20 Jahre, sieht die Sache nicht viel besser aus: Wenn die Leistung von 1 kW das ganze Jahr über betrieben wird, ergibt das eine Arbeit von 8760 kWh. Bei der Verbrennung von 8760 kWh Erdgas würden rund 1752 kg CO2 pro Jahr erzeugt. Es dürfen aber nur 550kg CO2 e/kW im Jahresmittel freigesetzt werden. Daraus folgt, daß die Anlage nur 2750 Stunden (Jahresnutzung 31%) im Jahresmittel betrieben werden darf. Ein reines Spitzenlastkraftwerk, was nicht ausreicht, um die Dunkelflauten in Deutschland aufzufüllen. Von Wirtschaftlichkeit ist hier ohnehin nicht die Rede. Von dem kleinen fiesen e im Grenzwert auch nicht. Hier müssen die Schadstoffe, der Transport und Leckagen (CH4 hat den Faktor 25) mit ihren „Treibhausgaswerten“ noch hinzu gerechnet werden. Die einschlägig bekannten „Abmahnvereine“ der Dieselkrise werden sich schon die Hände reiben.

Gaskraftwerke allgemein

Erdgaskraftwerke dürfen über ihre Betriebsdauer von 20 Jahren nur weniger als 100 g CO2e/kWh freisetzen. Damit ist der nächste grüne „Gottseibeiuns“ auf der Bildfläche erschienen: Die Abscheidung von CO2 (CCS). Ausdrücklich ist die unterirdische Lagerung vorgeschrieben. Auch hier sei von Kosten gar nicht die Rede.

Das Erdgas darf mit Biogas verschnitten werden, welches die Bedingungen der EU-Vorschrift 2018/2001 erfüllt.

Kraft-Wärme/Kälte-Kopplung

Auch hier gilt der Maximalwert von 100 g CO2 e/kWh. Allerdings beziehen sich die kWh auf die Summe aus elektrischer Energie und nutzbarer Kälte- bzw. Heizenergie. Da man nicht mehr Energie raus bekommen kann, als man reinsteckt, ist auch dieser Wert ohne Abscheidung von CO2 kaum realisierbar. Zudem müßten solche Anlagen wärmegeführt sein (Außentemperatur) und könnten nicht zur nachfrageorientierten Stromversorgung eingesetzt werden. Unbeantwortet bleibt die Frage, ob hiermit nicht die gesamte Industrie der Blockheizkraftwerke (BHKW) ab 2030 gleich mit ausgerottet wird – also noch ein weiterer Ausstieg?

Übergangslösung für KWK bis 2030

Solche Anlagen müssen eine Primärenergieeinsparung von mindestens 10% gegenüber der getrennten Erzeugung von Strom und Wärme haben. Sie dürfen höchstens 270g CO2e/kWh freisetzen. Dies ist machbar, wenn sie – analog zu Wärmepumpen – nur zur Abdeckung der Heizlast bis etwa 0°C eingesetzt werden. Wirtschaftlichkeit spielt auch hier für die Kommission keine Rolle. Ferner muß sie eine vorhandene Anlage mit hohem CO2 Ausstoß ersetzen oder eine getrennte Erzeugung von Strom und Wärme oder eine Anlage, die mit fester oder flüssiger fossiler Energie betrieben wurde. Ferner muß die Anlage mindestens 30% „Gase mit geringem Kohlenstoffgehalt“ mit verfeuern (ab Januar 2026) und 55% ab Januar 2030 und bis 2035 vollständig auf „erneuerbare Gase“ umgestellt sein. Unter „erneuerbaren Gasen“ soll wohl Biogas und Wasserstoff gemeint sein. Besonders über letzteres werden sich die Motorenbauer freuen. Der Ersatz muß zu einer Einsparung von mindestens 55% GHG per kWh produzierter Energien führen. Das dürfte für bereits bestehende BHKW ein Killerkriterium sein.

Zusammenfassung

Wer glaubt, Erdgas erhält ein grünes Label, der irrt sich gewaltig. Wie oben gezeigt wurde, sind die Anforderungen (nahezu) unerfüllbar. Es geht mit großen Schritten in die politisch erträumte Wasserstoffwirtschaft. Alle Michel, die nun wieder glauben, Grenzwerte der EU sitzt man einfach aus, sollen sich mal lieber an die Grenzwerte für Stickoxide bei Dieselmotoren erinnern. Wahrscheinlich ist es sogar viel zu spät noch grundlegende Änderungen vorzunehmen. Viel wahrscheinlicher ist es, daß wir mit Kernkraftwerken an den Grenzen zugepflastert werden (Niederlande 2, Polen 6, Tschechien 2). Wir dürfen dann Strom dort zu deren Preisen kaufen. Wobei halt, niemand kann unsere Nachbarn dazu zwingen, den Willen müssen wir uns schon durch höhere Preise erkaufen. Das Ergebnis wird eine massive (gewollte?) Abwanderung der Industrie sein. Arbeitsplätze und Steuern gehen verloren. Armes Deutschland, scheint hier nicht übertrieben. Wie viel schlimmer die Lage noch werden kann, zeigt ein polnisches Industriekonsortium, das 20 SMR bauen will. Das ergibt schöne „Chemieparks“, in denen deutsche Firmen hoch willkommen sein werden und ausreichend und zuverlässig mit billiger Energie versorgt werden. Wer glaubt, das Kernenergiezeitalter geht durch die Abschaltung von Reaktoren in Deutschland zu Ende, leidet einfach nur an Realitätsverlust.

Steigende Energiepreise

Langsam geht unter den „Energiewendern“ in Europa die Angst vor explodierenden Preisen um. Sicherlich nicht in Deutschland, aber sonst wo in Europa, könnte das Volk im Winter unruhig werden. Selbst unsere Gorch-Fock-Uschi und ihre Spielkameraden verbreiten schon einen Werkzeugkasten (Tackling rising energy prices: a toolbox for action and support) zur Volksberuhigung. Geht man doch von über 30 Millionen Menschen aus, die im Winter ihre Wohnungen nicht ausreichend beheizen können. Wieder einmal werden Haushalte mit geringem Einkommen (Rentner, Allein-Erziehende, Geringverdiener etc.), besonders in ärmeren Ländern (Bulgarien, Rumänien etc.), hart betroffen. Wer weiß schon, ob die es diesmal genauso klaglos hinnehmen, wie nach dem Zusammenbruch des letzten sozialistischem Experiments vor über 30 Jahren? Es könnte ja auch sein, daß die diesmal endgültig die Schnauze voll haben von der Planwirtschaft. War der Anstieg der Großhandelspreise (2019–2021) für Erdgas um 559% und für elektrische Energie um 259% in Deutschland tatsächlich so unvorhersehbar? So wie die Flutkatastrophe? Wenn man nur Staatsfernsehen und sonstige Mainstream-Medien sieht, mag man das ja glauben, aber vielleicht gibt es auch Gesetzmäßigkeiten, die diese Entwicklung als Folge der „Großen Transformation“ entlarven. In der Realität gibt es immer verschiedene Ursachen – gleichwohl kann man meist die Bestimmenden leicht herausfinden.

Die Geldmenge

Wenn man über lange Zeit die Wirtschaft mit astronomischen Mengen erfundenen Geldes (Druckerpresse oder elektronisch) flutet, baut sich ein Ungleichgewicht auf. Die Preise müssen entsprechend steigen. Leider geschieht das nicht sofort und gleichmäßig, sondern zeitlich und sektoral verzögert. Das reingepumpte Geld verhält sich wie ein Tintenklecks im Wasserglas. Weiter entfernt vom Eintritt kann das Wasser noch lange klar bleiben, bis es wirksam wird. Das (erfundene) Zentralbankgeld wird über die Banken in den Wirtschaftskreislauf eingeschleust. Dies erklärt, warum die Aktienkurse und Immobilienpreise schon stark angestiegen sind. Plötzlich kann man Milliarden für die Geschäftsidee eines Fahrradkuriers zur Auslieferung hinblättern oder ganze abgewohnte Siedlungen zu überhöhten Preisen einkaufen. Dumm ist das nicht, man nutzt lediglich den Vorteil der eingeschleusten Geldmenge. Derjenige, der das erschaffene Geld zuerst bekommt – meist ist das der Staat selber – kann damit noch Güter zu alten Preisen kaufen und dadurch einen satten Vermögensgewinn (nahezu risikolos) erzielen. Eine wundersame Umverteilungsmaschine entsteht: Denn man muß ja erstmal Geld haben, um Sachwerte zu kaufen. Am anderen Ende stehen all jene, die nur über ein Einkommen verfügen und deshalb immer den steigenden Preisen hinterher laufen müssen. Auch wenn die Gewerkschaften stetig für einen „Lohnausgleich“ sorgen, laufen sie immer zeitlich hinterher und zahlen deshalb drauf. Dies erklärt aber nur das langsame Einfärben des Glases durch den Tintenfleck. In der Wolke können die Preissteigerungen für Begünstigte noch lange verlockend sein, bis sich das Wasser ganz blau eingefärbt hat, das nennt man dann (allgemeine) Inflation mit dem bekannten Katzenjammer.

Preissteigerungen erfordern aber auch eine Nachfrage. Wenn plötzlich Güter allgemein nachgefragt werden (Container, Energie etc.) und auf große Mengen erschaffenes Geld treffen, beginnt ein gnadenloses Wettrennen über den Preis. Da jeder Mensch und jedes Unternehmen Energie benötigt, hat das den Effekt als ob man das Glas schüttelt. Die Tinte als Analogie für das erschaffene Geld breitet sich schnell aus. Wenn man dann trotzdem weiter Geld in die Wirtschaft pumpt, kommen im nächsten Schritt die Gewerkschaften mit der Forderung eines Lohnausgleichs. Die Preisspirale setzt ein. Alles neu? Nein, gar nicht, höchstens vergessen. Am Ende steht wieder ein Jahrzehnt der Stagflation (geringes Wirtschaftswachstum bei steigenden Preisen), wie schon nach den Ölkrisen 1973 und 1976.

Warum diesmal Erdgas?

Am Anfang stand eine neue Technologie, das Fracking. Mit dieser Technik gelang es riesige Gas- und Ölvorkommen in den USA zu erschließen, die vorher nicht nutzbar waren. Nun ist es aber gar nicht so einfach, solch große Mengen in etablierten Märkten unter zu bringen. Letztendlich muß man andere Energieträger über den Preis verdrängen. Vehikel war und ist die „Dekarbonisierung“. Mit gewaltigen Subventionen – wegen einer vermeintlichen Überhitzung unserer Erde – wurden Wind- und Solaranlagen gebaut. Wenn diese mal witterungsbedingt Strom erzeugen, verringern sie damit die Erträge der vorhandenen Kraftwerke. In Deutschland wurden sogar negative Preise als Entsorgungsgebühren erzielt. In den USA drohten selbst die Kernkraftwerke unwirtschaftlich zu werden. Inzwischen muß man zu deren Erhalt weitere Interventionen in den Strommarkt durchführen. Planwirtschaft frißt sich halt wie eine Krebsgeschwulst durch die Wirtschaft.

Wer sich jemals gefragt hat, warum Ölkonzerne in Wind und Sonne investieren, findet in ihrem Gasgeschäft die Antwort. Mit Wind und Sonne allein, kann man gar kein Stromnetz betreiben. Man braucht auf jeden Fall Backup-Kraftwerke für die (überwiegende) Dunkelflaute. Wenn man „dekarbonisieren“ will oder muß, bietet sich hierfür Erdgas an. In Europa hat man ein weiteres planwirtschaftliches Element erfunden: Den Emissionshandel. Bei Lichte betrachtet, ist es eine Sondersteuer auf CO2. Jedes fossile Kraftwerk muß für seine Emissionen die entsprechende Menge an Zertifikaten kaufen. Die Zertifikate werden selbstverständlich vom Staat erschaffen und nach dessen belieben ausgegeben. Parteien – wie z. B. die FDP – verkaufen das auch noch als marktwirtschaftliche Lösung für den „Klimaschutz“. Der Staat kann sich so vor der Verantwortung drücken Grenzwerte (CO2 ist ja nach deren Definition ein Schadstoff) festzulegen und darüberhinaus noch an dem Ablasshandel verdienen. Der ETS (European Union Emissions Trading System) Preis für CO2 ist allein von Januar bis September 2021 um 30 EUR auf 60 EUR pro Tonne gestiegen. Dieser Anstieg bedeutet eine Kostensteigerung bei der elektrischen Energie von rund 10 EUR/MWh für ein modernes Erdgaskraftwerk (Wirkungsgrad 50%) bzw. 25 EUR/MWh für ein Kohlekraftwerk (Wirkungsgrad 40%). Gleichzeitig stieg aber der Gaspreis um 45 EUR/MWhth, was allein zu einer Steigerung der Stromkosten von 90 EUR/MWel bei einem Erdgaskraftwerk führt. Kohle ist dadurch trotz der höheren CO2Kosten wieder der günstigere Brennstoff geworden.

Wie gehts weiter?

In der EU hat Erdgas einen Anteil an der Primärenergie von rund 25%. Wichtig zur Beurteilung der Auswirkungen für uns ist, daß 23% die Industrie, aber 51% die Haushalte (Heizung) verbrauchen. Nur 26% werden bisher verstromt. Allerdings wird hier Deutschland mit seiner Wind- und Sonnenpolitik bei gleichzeitigem Ausstieg aus Kohle und Kernenergie zum Kostentreiber für ganz Europa werden. Die Strompreise werden den gesamten Winter über weiter steigen. Durch die Verknüpfung aller Strombörsen steigen nicht nur die Preise in Deutschland, sondern werden vielmehr in ganz Europa nach oben gezogen. Es wird sich sehr schnell die Frage stellen, ob unsere Nachbarn bereit sind, die Kosten der wahnwitzigen deutschen Energiepolitik zu tragen. Dies gilt ganz besonders für Frankreich vor der Präsidentenwahl mit seinem hohen Kernenergieanteil. Wird Frankreich die Lieferungen nach Deutschland begrenzen oder die Windfall-Profite nutzen um seine Endverbraucherpreise zu subventionieren? Schauen wir mal. Unsere Ampel könnte hier ganz unerwartet ihre erste „Europakrise“ durchmachen müssen.

Europa steht auf sehr tönernen Füßen. 90% des Erdgases, 44% der Kohle und 97% des Öls müssen importiert werden. Für viele Branchen werden die steigenden Weltmarktpreise fatale Folgen haben. Die Energiekosten machen schon heute 71% bei der Düngemittelproduktion, 40% beim Aluminium (primär) und 25% beim Flachglas aus. Ganze Industrien könnten weg brechen. So, wie schon die Magnesiumproduktion aus Europa komplett abgewandert ist. Wer Flugzeuge und Autos bauen will, braucht aber zwingend Magnesium.

Kurzfristige Hilfe ist weder aus Russland noch aus den USA zu erwarten. Erdgas läßt sich nur schwer kurzfristig steigern (Bohrungen, Rohrleitungen und Aufbereitung) und noch schwerer transportieren (Verflüssigung und Tankerkapazitäten). Nur ein Ausweichen auf Kohle und Öl verspricht kurzfristig Linderung. Die Preise für LNG aus den USA liegen derzeit in den asiatischen Häfen zwischen 31 bis 34 USD/MWh (gegenüber dem durchschnittlichen Großhandelspreis in Europa von etwa 45 EUR/MWh). Alles hängt davon ab, wie der Winter auf der Nordhalbkugel wird und die Wirtschaft in China wieder anspringt. Schnell kann auch eine geringe Nachfrage die Preise in ungekannte Höhen treiben.

Und die Kernenergie?

Glücklich ist der, der schon Kernkraftwerke in Betrieb oder wenigstens im Bau hat. Kernenergie ist wegen der hohen zeitlichen Verfügbarkeit (>90%), der geringen Brennstoffkosten und der langen Nutzungsdauer der Brennelemente (> 3 Jahre im Reaktor) die preisstabilste (thermische) Stromerzeugung. Dies hat man inzwischen auch in den USA erkannt. Von der Abschaltung wegen hoch subventioniertem „Grünstrom“ ist dort keine Rede mehr. Der Wintereinbruch in Texas mit großflächigen Stromabschaltungen und explodierenden Preisen für elektrische Leistung und Energie war eine heilsame Lehre. Die „Anti-Atomkraft-Bewegung“ hat an Boden verloren, nachdem die ideologisch bedingten Abschaltungen von „Atomkraftwerken“ in Kalifornien zu Zuständen, wie in Afrika geführt haben: Allein im Großraum Los Angeles knattern inzwischen über Einhunderttausend Notstrom-Aggregate vor sich hin. Eine bittere Konsequenz der immer zahlreicheren lokalen Stromabschaltungen. Mal am Rande bemerkt – wie in Afrika – sind die ärmsten Bevölkerungsschichten am schlimmsten davon betroffen.

Auch die härtesten Ideologen werden nach diesem Winter das Thema Kernenergie neu bewerten (müssen). Das ist aber beileibe kein Grund für die kerntechnische Industrie zu frohlocken. Es bleiben nach wie vor die hausgemachten Probleme:

  • Lange Bau- und Planungszeiten. Die Planungszeiten sind eher ein politisches Problem und könnten leicht verkürzt werden. Im Moment sind nur China, Russland und Korea in der Lage, Kernkraftwerke in etwa sechs Jahren zu bauen. Dies liegt an der Serienproduktion und vor allem der Kontinuität ihrer Programme.
  • Die Fertigungskapazitäten für Kernkomponenten (Reaktordruckbehälter, Hauptkühlmittelpumpen, Turbinenläufer etc.) sind nur eingeschränkt. Ein Ausbau erfordert viel Kapital und die feste Überzeugung, daß ein Boom auch länger anhalten würde.
  • Es fehlt an qualifiziertem Personal. Das ist schon länger z. B. in USA und GB erkannt worden. Man hat dort schon viel Geld in die Hand genommen, um Universitäten und Ausbildungszentren (insbesondere für Facharbeiter) auszubauen. In Frankreich und Deutschland ist man eher andersherum vorgegangen – mit den bereits spürbaren Konsequenzen (Olkiluoto, Flamanville).
  • Für alle „Kleinreaktoren“ gilt das vorgenannte prinzipiell genauso. SMR sind kein Allheilmittel. Sie versprechen nur Erfolg, wenn man die gemachten Fehler nicht wiederholt. Sie bieten allerdings die Chance, ganz neue Hersteller einzubeziehen. Ein weg von der Kultur der Anlagenbauer (Raffinerien, Chemiefabriken, Großbauten etc.) hin zu der Kultur der Serienhersteller (Flugzeuge, Automobile etc.) könnte heilsam wirken.
  • Die größte Gefahr lauert aber in der sich anbahnenden Inflation. Sie wird eher kurz als lang zu steigenden Zinsen führen. Hohe Zinsen sind aber Gift für kapitalintensive und langlebige Investitionen. Auch dies ist keine neue Erkenntnis. Die Hochzinsphase infolge der beiden Ölkrisen hat maßgeblich zum Ende des hoffnungsvollen Wachstums der kerntechnischen Industrie beigetragen. Neue Aufträge blieben aus und angefangene Projekte wurden teils mitten in der Bauphase abgebrochen.

Kernenergie in Tschechien

Hin und wieder empfiehlt es sich, mal einen Blick auf seine „kleinen“ Nachbarn zu werfen. Dies gilt ganz besonders für die, die glauben immer voran gehen zu können – sonst könnten die irgendwann feststellen, daß sie ganz allein dastehen, umzingelt von Andersdenkenden. Tschechien war und ist Kohlenland. Zwar ist der Primärenergie-Anteil nach dem Zusammenbruch des Ostblocks schon deutlich geringer geworden (1990–63,2%, 2020–30,3%), aber immer noch sehr hoch. Im Ostblock war Tschechien sogar Nettoexporteur. Der Energieverbrauch an Kohle betrug 2019 rund 14 Mtoe (Millionen Tonnen Öläquivalent), von dem etwa 74% für Wärme und Stromerzeugung eingesetzt wurden. Der Anteil an Steinkohle an der inländischen Förderung ist nur noch gering und soll bis 2023 vollständig auslaufen. Bei Braunkohle sieht es noch anders aus: Die Jahresproduktion betrug 2020 über 31 Millionen Tonnen. Die laufenden Tagebaue verfügen noch über Reserven von knapp 600 Mto. Allerdings kommt der Bergbau auch in Tschechien an seine wirtschaftlichen Grenzen und die Kohleimporte nehmen stetig zu. Der Löwenanteil wird – wie in Deutschland auch – in elektrische Energie umgewandelt. Eine Besonderheit ist, daß jährlich 2 bis 3 Millionen Tonnen Braunkohle für die Gebäudeheizung verwendet werden – überwiegend in Fernwärmenetzen in den Städten – und nur in geringem Umfang als Brikett in ländlichen Regionen.

Der Druck aus Brüssel

Braunkohle ist ein heimischer Energieträger, der dem Staat sogar noch direkte Einnahmen über Royalties und indirekte über die Arbeitsplätze verschafft. Brüssel nimmt nun diese Industrie auf mehreren Wegen in die Zange:

  • Durch den Emissionshandel ETS verteuert sich der heimische Energieträger Braunkohle rapide gegenüber dem importierten Erdgas (aus Russland).
  • Die strengen Abgasvorschriften der EU für Kraftwerke zwingen Tschechien zu einem teueren Nachrüstungsprogramm oder sogar zur Schließung der Kraftwerke. So sollen bis 2023 knapp 1,6 GW Braunkohle-Kraftwerke vom Netz gehen. Das sind etwa 14% der Gesamtleistung. Konsequenz ist, daß der Kohlestrom schon 2025 nur noch 25% und ab 2030 wahrscheinlich nur noch 12,5% betragen soll. Eine enorme Bürde für ein so kleines Land mit seiner leidvollen Geschichte.

Die sozialen Verwerfungen der „Großen Transformation“ werden gewaltig sein. Wie weltfremd und absurd Brüssel dabei vorgeht, zeigt sich z. B. an den zu erwartenden Heizkostensteigerungen in den sozialen Brennpunkten der Großstädte: Man unterwirft die Heizkraftwerke der vollen ETS-Abgabe, während Individual-Heizungen davon befreit bleiben – wehe wenn Zentralismus und „Sozialpolitik“ aufeinander treffen. Die Zeche zahlen nicht nur die Mieter in den Plattenbausiedlungen, sondern letztlich auch noch die Natur, denn Kraft-Wärme-Kopplung ist einer der umweltfreundlichsten Formen der Heizung. Immerhin werden ungefähr die Hälfte der Bevölkerung durch Fernwärme versorgt.

Die Alternativen

Tschechien hat 10,7 Millionen Einwohner auf einer Fläche von 79 000 km2. 75% der Einwohner leben in Städten. „Bioenergie“ kann deshalb keine Alternative, bestenfalls eine Ergänzung sein. Offshore-Wind geht in einem Binnenstaat auch nicht. Mit Sonnenenergie ein Industrieland in solch nördlichen Breiten versorgen zu wollen ist absurd. Die totale Abhängigkeit von russischem Erdgas will auch keiner, die Verschandelung der Höhenzüge mit Windmühlen geht mangels Platz und fehlender Speicher auch nicht. Es bleibt also nur mit voller Kraft voraus ins Kernenergiezeitalter. Keine neue Erkenntnis, die Bevölkerung war und ist immer positiv gegenüber Kernkraftwerken eingestellt. Daran hat dort auch keine Flutwelle im fernen Japan etwas ändern können.

Dukovani und Temelin

Tschechien besitzt die Kernkraftwerke Dukovani (vier Blöcke mit zusammen 2040 MW) und Temelin (zwei Blöcke mit zusammen 2250 MW). Die Reaktoren in Dukovani (VVER-440/213) gingen zwischen 1985 und 1987 ans Netz. Die Reaktoren in Temelin (VVER-1000/320) wurden 2002 und 2003 – also erst nach dem Zusammenbruch des Ostblocks – fertiggestellt. Bemerkenswert ist die Kontinuität im Bau von Kernkraftwerken über alle System-Brüche hinweg. Alle Reaktoren sind noch sowjetische Konstruktionen. Sie wurden aber auf westliche Sicherheitsstandards nachgerüstet bzw. durch Westinghouse zu Ende gebaut. Verständlich, daß man sich nach dem „Prager Frühling“ gegenüber Russland etwas distanziert verhält. 2020 produzierten diese Kraftwerke etwa 37,5% der elektrischen Energie bzw. 19,5% der Primärenergie.

Bemerkenswert ist die Versorgung mit Fernwärme für zwei Nachbarstädte von Temelin. Der Ausbau für die 26 km entfernte Stadt České Budějovice (100 000 Einwohner) ist in Arbeit. Der Ausbau der Fernwärme um den Standort Dukovani in Planung (Brno mit 380 000 Einwohnern, 40 km entfernt). Ein so konsequentes Bekenntnis für Kernenergie zur Gebäudeheizung findet man sonst nirgendwo (noch nicht) in Europa.

Die tschechischen Kernkraftwerke wurden nicht nur sicherheitstechnisch auf internationalen Standard nachgerüstet, sondern auch beständig modernisiert. So wurde die Leistung des Kraftwerks Dukovani bis 2021 um 12% auf 2040 MWel gesteigert. Ein ähnliches Programm für Temelin läuft noch. Das alles ist möglich, weil Tschechien über eine bemerkenswerte Forschungs- (3 Forschungsreaktoren) und Ausbildungskapazität verfügt. Skoda war schon im Ostblock ein angesehener Lieferant für Kraftwerkskomponenten.

Neubauprogramm

In den letzten Jahrzehnten wurde immer wieder der Ausbau befürwortet und Angebote eingeholt. 2015 wurde im Rahmen eines Langzeitprogramms für die kerntechnische Industrie der Zubau von drei Reaktoren an den alten Standorten genehmigt. Priorität hat Dukovani 5 als Ersatz für die vorhandenen Blöcke nach (bisher geplant) 60 Jahren Betriebszeit. Geplant ist der Baubeginn für 2029 und die Fertigstellung 2036. Aufgerufen sind nur Modelle mit nachgewiesener Betriebserfahrung. Favorisiert werden der französische EPR, der koreanische APR1400 und der AP1000 aus den USA. Die endgültige Entscheidung wird für den Herbst 2021 – nach den Parlamentswahlen – erwartet.

Die neu gegründete Zweckgesellschaft Elektrárna Dukovany II geht von Baukosten von 6 bis 7 Milliarden USD aus (5000–5833 USD/kWe ohne Finanzierungskosten). Die tschechische Regierung beschloss 2020, daß 70% der Investitionskosten durch einen staatlichen Kredit finanziert werden, der während der Bauzeit zinslos ist und nach Inbetriebnahme mit 2% verzinst wird. Darüberhinaus verabschiedete 2020 die tschechische Regierung ein Gesetz, das es dem Staat erlaubt, ein festes Kontingent (>100 MWel) für mindestens 30 Jahre vom Erzeuger abzukaufen. Diese Energiemenge wird über den Großhandel verkauft. Etwaige Verluste oder Gewinne werden über den Einzelhandelspreis umgelegt. Bei Lichte betrachtet, entspricht dieser Ansatz einer öffentlichen Investition – z. B. für eine Autobahn, einen Kanal etc. – die zu einem Festpreis (das Risiko von Kostensteigerungen während der Bauzeit geht voll zu Lasten des Lieferanten) vergeben wird und die Nutzung (Preis der kWh) meistbietend versteigert wird. Dies ist eine besonders intelligente Lösung, wenn man bedenkt, daß Temelin z. B. nur 60 km von der deutschen und 50 km von der österreichischen Grenze entfernt ist. Diese beiden Länder können sich gern bei Dunkelflaute Strom in Tschechien (zu hohen Preisen wegen der Nachfrage) ersteigern, der „Profit“ kommt dann unmittelbar dem tschechischen Stromkunden zu gute. Energiepolitik einmal ohne Ideologie, dafür aber clever. Sie ist nicht gegen die eigene Bevölkerung gerichtet. Anders als z. B. in Deutschland, wo alle Risiken über das EEG von der Allgemeinheit (den Stromkunden) voll getragen werden müssen, die Gewinne aber ausschließlich garantiert in die Taschen der Sonnen- und Windbarone fließen.

Tschechien geht aber auch mit der Zeit. Frühzeitig wurden Kooperationen für Small Modular Reactors (SMR) mit GE Hitachi (300 MWel Siedewasserreaktor), NuScale (77 MWel Druckwasser-Module) und Rolls-Royce (477 MWel Leichtwasserreaktor) geschlossen. Kleine Reaktoren können für die Kraft-Wärme-Kopplung und die Industrie eine sinnvolle Ergänzung darstellen. Außerdem kann sich die heimische Industrie (Skoda) besser in die Lieferketten einbringen. Der Eigenanteil könnte wesentlich höher sein.

Konsequenzen für Deutschland

Man kann die Ausbaupläne mit einem lachenden und einem weinenden Auge betrachten. In Deutschland werden die Strom- und Heizkosten weiter explodieren – die momentanen Preissteigerungen bei Erdgas sind nur das Wetterleuchten. Wer auf Wind und Sonne zur Energieversorgung setzt, setzt in Wirklichkeit auf Erdgas, wenn er aus Kohle und Kernenergie aussteigt. Immer, wenn der Wind nicht weht oder die Sonne nicht scheint (ausgerechnet im Winter bis zu 16 h täglich) müssen die Erdgaskraftwerke ran. Wasserstoff aus der Nordsee oder Batterien sind in diesem Sinne reines Schlangenöl. Die Bayern können sich glücklich schätzen, wenn Tschechien vor ihrer Tür neue Kernkraftwerke baut. Teurer Strom ist immer noch besser, als gar kein Strom. Teuer wird er werden, denn der Preis richtet sich immer nach Angebot und Nachfrage, nicht nach den Produktionskosten. Warum sollte Tschechien auch Mitleid mit Deutschland haben? Der ein oder andere Deutsche kann vielleicht sogar als Gastarbeiter über die Grenze gehen, wenn er entsprechend qualifiziert ist. Glückliches Bayern, mit Rindviechern und Biobauern.

SMR-2021 Einleitung

Die Kerntechnik bekommt gerade einen unerwarteten Aufschwung: Immer mehr junge Menschen drängen in die einschlägigen Studiengänge, es entstehen unzählige neu gegründete Unternehmen und es steht plötzlich auch viel privates Kapital zur Verfügung. Darüberhinaus zeigt dieser Winter in Texas auch dem gutgläubigsten Menschen, daß eine Stromversorgung (nur) aus Wind, Sonne und Erdgas ein totes Pferd ist.

  • Texas ist nahezu doppelt so groß wie Deutschland, hat aber nur etwa ein Drittel der Einwohner, die sich überwiegend in einigen Großstädten ballen. Windparks waren deshalb höchstens ein Thema für Vogelfreunde und Landschaftsschützer. Texas ist darüberhinaus auch noch sehr windreich durch seine Lage „zwischen Golf und mittlerem Westen“.
  • Texas liegt etwa auf der „Breite der Sahara“ (Corpus Christi 27°N, Amarillo 35°N; Kanarische Inseln 28°N, Bagdad 33°N). Mal sehen, wann in Deutschland wieder von der Photovoltaik in der Sahara gefaselt wird.
  • In Texas kommt das Erdgas aus der Erde. Trotz der inzwischen gigantischen Verflüssigungsanlagen für den Export, muß immer noch Erdgas abgefackelt werden. Das alles ändert aber nichts an der Tatsache, daß im Ernstfall nur das Gas am Anschluss des Kraftwerks zählt. Kommt noch parallel zum Strombedarf der Bedarf für die Gebäudeheizungen hinzu, ist schnell die Grenze erreicht. Wohl gemerkt, das Gas kommt in Texas aus der Erde und nicht aus dem fernen Russland.

Das Kapital ist bekanntlich ein scheues Reh. Nach den Milliarden-Pleiten in Texas wird man sich schnell umorientieren. Darüberhinaus fängt die Bevölkerung an zu fragen, warum man eigentlich zig Milliarden Steuergelder mit Wind und Sonne versenkt hat.

Was sind SMR?

SMR (Small Modular Reactor) sind kleine Kernkraftwerke mit einer elektrischen Leistung von bis zu 300 MWel. Eine ziemlich willkürliche Grenze, die auf kleine Reaktoren abzielt, die gerade noch mit der Eisenbahn (in den USA) transportierbar sein sollen. Eine weitere Untergruppe sind Mikroreaktoren mit einer elektrischen Leistung von bis zu etwa 10 MWel. Bei den bisherigen Kernkraftwerken hat man immer größere Leistungen (z. B. EPR mit 1650 MWel) angestrebt, um die in der Verfahrenstechnik üblichen Skaleneffekte zu erzielen. Problem dabei ist, daß man einen erheblichen Montageaufwand auf der Baustelle hat, da alle Bauteile sehr groß werden. Bei den SMR geht man umgekehrt den Weg, das Kraftwerk weitesgehend in Fabriken in Serie zu fertigen und zu testen. Es steht also Kosteneinsparung durch Skaleneffekte gegen Serienfertigung (wie z. B. im Flugzeugbau). Welcher Weg letztlich kostensparender ist, kann vorab gar nicht gesagt werden. Vielmehr kann durch SMR ein völlig neuer Markt der „kleinen Netze“ erschlossen werden. Das betrifft beileibe nicht nur Schwellenländer, sondern vielmehr lernen wir in Deutschland gerade, welche enormen Netzkosten entstehen, wenn man zentrale Windparks baut. Ferner ist die Finanzierung wegen des kleineren (absoluten) Kapitalbedarfes weniger risikoreich und damit leichter handhabbar. Ein „Kraftwerk von der Stange“ erfordert eine wesentlich kürzere Zeitspanne – also Vorfinanzierung – von der Bestellung bis zur Inbetriebnahme. Hinzu kommt, daß die kleineren Bauteile auch nur kleinere Fertigungsanlagen erfordern. Beispielsweise baut Indien zur Zeit 15 Schwerwasserreaktoren, da dafür alle Komponenten im eigenen Land hergestellt werden können. Der ursprünglich angedachte Bau von konventionellen Druckwasserreaktoren wurde aufgegeben, da dafür wesentliche Komponenten (z.B. Reaktordruckbehälter) im Ausland gegen Devisen gekauft werden müßten. Aus gleichem Grund treffen SMR auch in Europa (z. B. Tschechien, Großbritannien) auf großes Interesse.

Die Sicherheitsfrage

Bei kleineren Kraftwerken kann man näher an die Städte heranrücken und damit Kraft-Wärme-Kopplung in vorhandenen Fernwärmenetzen abgasfrei betreiben. Finnland z. B. plant mittelfristig die vorhandenen Kraftwerke in den Ballungszentren durch SMR zu ersetzen. Analog gelten die gleichen Überlegungen für Fernkälte und Meerwasserentsalzungsanlagen z. B. in der Golfregion. Will man jedoch in der Nähe von Großstädten bauen, müssen solche Kernkraftwerke zwingend „walk away“ sicher sein, damit sie überhaupt genehmigungsfähig sind. Dazu gehört insbesondere der Verzicht auf eine aktive Notkühlung. Reaktoren kleiner Leistung kommen dem physikalisch entgegen: Um die Leistung zu produzieren, ist eine entsprechende Anzahl von Kernspaltungen notwendig. Bei der Kernspaltung entstehen radioaktive Spaltprodukte, die auch nach der Abschaltung noch Zerfallswärme produzieren. Bei kleinen Reaktoren ist diese Nachzerfallswärme so gering, daß sie problemlos passiv abgeführt werden kann – oder anders ausgedrückt, die Temperatur im abgeschalteten Reaktor steigt nur so weit an, daß keine Grenzwerte erreicht werden. Dies war z. B. beim Unfall in Fukushima völlig anders. Dort hat die Nachzerfallswärme gereicht, um eine Kernschmelze auch noch nach der Abschaltung der Reaktoren auszulösen.

Damit Kernkraftwerke in oder in unmittelbarer Nähe zu Städten akzeptiert werden, muß faktisch gewährleistet sein, daß keine (nennenswerte) Radioaktivität das Betriebsgelände überschreitet. Damit an dieser Stelle kein Missverständnis entsteht: Es gibt keine absolute Sicherheit. Es wird auch zukünftig Unfälle in Kernkraftwerken geben, genauso wie immer wieder Flugzeuge abstürzen werden. Trotzdem fliegen Menschen. Der Mensch ist nämlich durchaus in der Lage, Risiken und Vorteile für sich abzuwägen – solange er nicht ideologisch verblödet wird. Selbst eine ideologische Verblödung kann aber nicht unendlich lange aufrecht erhalten werden: Gerade durch Tschernobyl und Fukushima sind die Märchen der „Atomkraftgegner“ von „Millionen-Toten“ etc. als Propaganda entlarvt worden. Auffällig still ist es in den letzten Jahren um die „Gefahren durch Atomkraft“ geworden. Übrig geblieben ist einzig die Lüge von dem „Millionen Jahre strahlenden Atommüll, für den es keine Lösung gibt“. Auch dieser Unsinn wird sich von selbst widerlegen.

Die Vielzahl der Entwürfe

Es gibt unzählige Entwürfe von Kernreaktoren. Jeder Professor, der etwas auf sich hält, erfindet einen neuen Reaktor zu Übungszwecken. Der Weg zu einem Kernkraftwerk ist aber lang. Irgendwann stirbt die überwiegende Anzahl wegen irgendwelcher unvorhergesehenen Detailprobleme. Hier werden nur Entwürfe betrachtet, für die ausreichend Unterlagen aus Genehmigungsverfahren, Veröffentlichungen etc. zur Verfügung stehen. Immerhin blieben noch über 90 Konzepte übrig, die sich auf dem Weg zu einem Prototypen befinden. Für jedes einzelne Konzept wurde bereits mindestens ein zweistelliger Millionenbetrag investiert und ein Unternehmen gegründet. Als erstes soll etwas Systematik in dieses Angebot gebracht werden. In späteren Folgen werden dann einzelne Entwürfe näher vorgestellt und diskutiert werden.

Neutronenspektrum

Je langsamer Neutronen sind, je höher ist die Wahrscheinlichkeit einer Spaltung eines U235 – Kerns. Demgegenüber können alle schnellen Neutronen auch Kerne von U238 bzw. anderer Aktinoiden spalten. Schnelle Reaktoren haben den Vorteil, daß sie mit „Atommüll“ (so verunglimpfen „Atomkraftgegner“ immer die abgebrannten Brennelemente aus Leichtwasserreaktoren) betrieben werden können. Eine verlockende Perspektive: Betrieb der Kernkraftwerke mit „Abfall“, bei gleichzeitiger Entschärfung der „Endlagerproblematik“ auf wenige Jahrzehnte bis Jahrhunderte. Nur hat alles seinen Preis, gerade kleine Reaktoren (im räumlichen Sinne, nicht nur im übertragenen, bezogen auf die Leistung) sind schwierig als schnelle Reaktoren zu bauen. Es ist deshalb nicht verwunderlich, daß 59 Entwürfe mit thermischem Spektrum und nur 20 als schnelle Reaktoren ausgeführt sind.

Die angestrebten geringen Abmessungen (Transport) sind faktisch auch bei thermischen Reaktoren nur über eine höhere Anreicherung realisierbar. Mit der bei heutigen Druckwasserreaktoren üblichen Anreicherung von weniger als 5% lassen sich kaum SMR bauen. Man hat deshalb den neuen Standard HALEU mit einer Anreicherung von knapp unter 20% eingeführt. Der Begriff „thermisch“ im Zusammenhang mit der Geschwindigkeit von Neutronen bezieht sich auf die Geschwindigkeitsverteilung der brownschen Molekularbewegung. Je höher deshalb die Betriebstemperatur eines Reaktors ist, um so höher auch die Geschwindigkeit der Neutronen und damit um so geringer die Wahrscheinlichkeit einer Spaltung eines Urankernes. Deshalb sind „Hochtemperaturreaktoren“ schon wegen der neutronenphysikalischen Auslegung anspruchsvoller.

Moderatoren

Wenn man Neutronen abbremsen will, benötigt man einen Moderator. Bei den Leichtwasserreaktoren ist das das Arbeitsmedium Wasser. Die einfachste Konstruktion ist der Siedewasserreaktor, bei dem der im Reaktor erzeugte Dampf unmittelbar die Turbine antreibt (5 Entwürfe). Demgegenüber wird beim Druckwasserreaktor erst in einem zusätzlichen Wärmeübertrager der Dampf erzeugt (24 Entwürfe). Eine gewisse Sonderstellung nehmen Schwerwasserreaktoren ein, in denen Deuterium die Funktion des Moderators übernimmt (2 Entwürfe). Bei Mikroreaktoren kommen noch andere Moderatoren zum Einsatz.

Kühlmittel

Bei thermischen Reaktoren kommen Wasser, Helium und Salzschmelzen zur Anwendung. Bei Wasser sind die erreichbaren Temperaturen durch die abhängigen Drücke begrenzt (31 Entwürfe). Für eine reine Stromerzeugung ist das jedoch kein Hinderungsgrund. Will man hohe Temperaturen erreichen, bleibt Helium (20 Entwürfe) oder eine Salzschmelze (13 Entwürfe). Bei beiden kommt man mit relativ geringem (Helium) oder gar Atmosphärendruck (Salze) aus. Will man schnelle Reaktoren bauen, bleibt nur Helium (2 Entwürfe), Blei (9 Entwürfe), Natrium (5 Entwürfe) oder Salzschmelzen (3 Entwürfe). Tauscht man Wasser gegen andere Kühlmittel, wird man zwar den hohen Druck und den Phasenübergang los – was oft als Sicherheitsgewinn dargestellt wird – handelt sich aber damit eine Menge neuer Probleme ein: Einfrieren bei Raumtemperatur (Blei und Salzschmelzen), Korrosion (Blei und Salzschmelzen), Staub (Helium), Brandgefahr (Natrium), Zeitstandsfestigkeit usw. Es verwundert deshalb nicht, daß die Überzahl der Entwürfe bei Wasser als Moderator und Kühlmittel bleibt. Durch die überragenden thermodynamischen Eigenschaften des Wasser-Dampf-Kreisprozesses ist das für eine Stromproduktion auch kein Hinderungsgrund. Oft gehörte Argumente von möglichen höheren Wirkungsgraden sind bei den geringen Brennstoffkosten eher Scheinargumente. Anders sieht es mit der Entwicklung von schnellen Reaktoren aus. Blei und Natrium haben hier eine überragende Stellung. Allerdings sind die Preise für Natururan immer noch im Keller und die Zwischenlagerung abgebrannter Brennelemente ist ebenfalls konkurrenzlos billig. In einigen Jahren könnte jedoch ein geschlossener Brennstoffkreislauf aus politischen Gründen (Angst vor Atommüll) zum Renner werden. Momentan liegt Russland bei dieser technischen Entwicklung mit großem Abstand vorn. Die USA haben das erkannt und starten gerade eine beeindruckende Aufholjagd.

Brennstoff

Standard ist immer noch Uran. Bei schnellen Reaktoren kann man den „Abfall“ der konventionellen Reaktoren weiter nutzen. Thorium bleibt vorläufig auch weiter ein Exot. Das Uran kann in unterschiedlichen chemischen Verbindungen (metallisch, Uranoxid, Urannitrid, Legierungen usw.) im Reaktor verwendet werden und in unterschiedlichen geometrischen Formen (als Brennstäbe, als TRISO-Elemente, im Kühlmittel aufgelöst usw.) eingebaut werden. Der Brennstoff ist in seiner chemischen Zusammensetzung und seiner geometrischen Form bestimmend für die maximale Betriebstemperatur. Ferner ist er das erste Glied der Sicherheitskette: Er bindet während des Betriebs die Spaltprodukte und soll diese auch bei einem Störfall zurückhalten. SMR benötigen wegen der höheren Anreicherung mehr Natururan und sind wegen der höheren Trennarbeit teurer in der Herstellung als konventionelle Brennelemente.

Die Hersteller

Mit deutlichem Abstand sind die beiden führenden Länder in der Entwicklung von SMR Russland und die USA.

Alle Projekte befinden sich in einer unterschiedlichen Realisierungsphase von Konstruktion, Genehmigungsverfahren, über Bau bis Probebetrieb. Der chinesische SMR vom Typ ACPR50S (Druckwasserreaktor in klassischer Bauweise mit 50 MWel) ist fast fertiggestellt. Er soll bei Serienfertigung als schwimmender Reaktor auf einem Ponton verwendet werden. Der argentinische SMR Carem (integrierter Druckwasserreaktor mit 30 MWel) ist eine Eigenentwicklung und soll 2023 in Betrieb gehen.

Land LWR Gas Blei Natrium Salz Summe
Argentinien– – – – 1
China– – 7
Dänemark– – – – 
Finnland– – – 
Frankreich1– – – 
GB1– – – 
Indonesien– – – 
Japan– 
Kanada– – 
Luxemburg– – – – 
Russland11 – 17 
Schweden– – – – 
Südafrika– – – – 
Süd Korea– – – 
USA21 
Summe29 17 13 – 
Betrachtete SMR-Entwürfe nach Ländern und Typen geordnet.

Der chinesische HTR-PM (Hochtemperaturreaktor, Kugelhaufen mit Helium, 105 MWel) befindet sich im Testbetrieb. Sein Vorläufer HTR-10 von der Tsinghua University, China (Kugelhaufen mit 2,5 MWel) ist seit 2018 in Betrieb. Der japanische HTTR 1 (prismatischer Hochtemperaturreaktor, Helium, 30 MWth) ist seit 2007 mit Unterbrechungen für Umbauten in Betrieb. Der russische RITM-200M (modularer Druckwasserreaktor mit 50 MWel) ist seit 2020 auf Eisbrechern in Betrieb und soll bis 2027 in Ust-Kuyga in Sibirien als Kraftwerk in Betrieb gehen. Der russische KLT-40S (Druckwasserreaktor in klassischer Bauweise, 35 MWel) ist zweifach auf einem schwimmenden Ponton seit 2020 in Pevek in Chukotka als Heizkraftwerk in Betrieb.

So geht Kohleausstieg

Rechtzeitig zum Winterbeginn wurde am 15. November in Haiyang in der Shandong Provinz in China die erste Stufe einer nuklearen Fernwärmeversorgung in Betrieb genommen. Vorerst werden 700 000 Quadratmeter Wohnfläche aus dem Kernkraftwerk Haiyang mit Wärme versorgt. Es handelt sich um die eigene Wohnsiedlung und einige öffentliche Gebäude. Schon dieser allererste Schritt spart rund 23 200 to Kohle pro Jahr ein. Die lokale Umwelt wird von 222 to Feinstaub und Ruß, 382 to Schwefeldioxid und 60 000 to CO2 jährlich entlastet. Ab 2021 soll ganz Haiyang mit 30 Millionen Quadratmeter versorgt werden. Im Endausbau sollen bis zu 200 Millionen Quadratmeter Wohnfläche in einem Radius von 100 km aus diesem Kernkraftwerk versorgt werden. Dies soll dann 6,6 Millionen to Kohle pro Jahr einsparen. Wohl gemerkt, nur für die Heizung in einem Ballungsraum.

Klimatische Verhältnisse

Neben seiner Größe und seines Bevölkerungsreichtums herrschen in China recht extreme Temperaturen. So liegt Haiyang etwa auf der gleichen Breite wie Tunis, hat aber eher Berliner Temperaturen. Im Januar bewegen sich die mittleren Temperaturen zwischen -5° und 1°C. Obwohl an der Küste gelegen, sind aber auch Temperaturen von unter -10°C durchaus nicht selten. Im Sommer herrscht feuchte Hitze zwischen 24° bis 28°C. Je nach Windrichtung (Monsun), herrscht Meeres- oder Kontinentalklima vor. Im Nordosten von China sind die Winter extrem lang und bitterkalt. Die vielen Kohleheizungen sind dort Ursache für die extrem schlechte Luft im Winter, die von der Bevölkerung nicht mehr länger toleriert wird. Luftverschmutzung ist eins der wesentlichen Probleme für die Regierenden auf allen Ebenen. Als (wirtschaftlich praktikable) Lösung bieten sich nur zwei Ansätze: Ersatz der „schmutzigen“ Kohle durch „sauberes“ Erdgas als Brennstoff oder Ausbau der Fernwärme und Einspeisung von nuklearer Abwärme. Erdgas muß überwiegend importiert werden und erfordert damit einen kontinuierlichen Devisenbedarf. Der Bau von Kernkraftwerken erfordert lediglich in der Bauphase einen großen Kapitalaufwand, während der Uranverbrauch später kaum noch ins Gewicht fällt. Langfristig sicherlich die günstigere Lösung. Mit jedem Kernkraftwerk das in Betrieb geht, sinkt der Kohlenverbrauch gleich um mehrere Millionen Tonnen pro Jahr.

Der Drang in die Ballungsräume

Weltweit wachsen die Ballungsräume immer schneller. Sie sind insbesondere für junge Menschen wegen der angebotenen Arbeitsplätze und der vielfältigen Freizeitangebote höchst attraktiv. Dies haben Berlin und Lagos – wenn auch auf völlig unterschiedlichem Niveau – gemeinsam. Die hohe Bevölkerungsdichte führt allerdings zu enormen Umweltbelastungen (Luftverschmutzung, Verkehr, Müll, Abwasser, usw.), die die Lebensqualität stark einschränken (können). Im Grunde genommen, sind Großstädte wie Mars-Kolonien: Sie sind nur durch „Technik“ überhaupt lebensfähig. Hat man erstmal eine Einwohnerzahl wie Peking (21 Millionen) oder Shanghai (23 Millionen) erreicht, ist eine Heizung bzw. Klimatisierung nur noch über Fernwärme- oder Kaltwassernetze sinnvoll möglich. Will man die Luftqualität merklich verbessern, muß man die Abgasquellen beseitigen oder zumindest aus der Stadt schaffen. Absolut keine neue Erkenntnis. Genau diesen Weg hat man in allen Industrieländern beschritten. Es ist der einzig gangbare Weg: Unabhängig von Region, Kultur und Wirtschaftssystem. Zentraler Gesichtspunkt ist dabei die Energiedichte. Will man den sehr hohen Energiebedarf pro Fläche in einer Großstadt ausgerechnet mit „Regenerativen“ (Wind, Sonne, Biomasse) bereitstellen, zerstört ein Ballungsraum eine ganze Region oder sogar ein ganzes Land. Immerhin hat das „kleine“ Shanghai inzwischen mehr Einwohner als ganz Österreich.

Der chinesische Weg

China hat ernsthafte Probleme mit der Luftverschmutzung. Hauptursache ist der gewaltige – und immer noch steigende –Verbrauch an Kohle. 2016 verbrauchte China 3349 Millionen to Steinkohle (Deutschland 57 Mio to), sowie 140 Millionen to Braunkohle (D 168 Mio to). China setzt deshalb konsequent auf den Ausbau der Kernenergie. In der ersten Phase hat man sich weltweit alle möglichen Reaktortypen zusammengekauft. Diese Phase scheint abgeschlossen. Von jetzt an, setzt man auf den Bau von Eigenentwicklungen (Hualong und CAP1000) auch für den Export. Bisher wurden fast alle Reaktoren an der Küste gebaut (billige Kühlung durch Meerwasser). Endgültige Klarheit über Typen und Standorte wird das Inkrafttreten des 14. Fünfjahrplan (2021–2026) verschaffen.

Von Anfang an, ist man aber mit großen Kraftwerken (bis 6 Reaktoren) möglichst nah an die Ballungszentren herangerückt. Dies spart schon mal lange und kostspielige Hochspannungstrassen. Auch mit diesen – anders als in Deutschland – hat man bereits seine Erfahrungen gesammelt. Das Hochspannungsnetz von China hat eine Länge von etwa einer Million km (Deutschland 35 000 km). Paradestücke ist z. B. die 800 kV Tian-Zhong Stromtrasse mit einer Länge von fast 2200 km. Zehn weitere solcher Trassen sind in Bau oder Planung. Thermische Kraftwerke in der Nähe von großen Städten bieten sich aber auch für die Kraft-Wärme-Kopplung an. Darunter versteht man die doppelte Ausnutzung des Brennstoffs für die Stromerzeugung und Heizung – eine besonders effiziente und umweltfreundliche Energienutzung.

Wenn man jedoch so nah an Ballungsräume heranrückt, ist ganz besonderer Wert auf die Sicherheit zu legen. Bei den zwei Reaktoren vom Typ AP-1000 handelt es sich wohl um die zur Zeit sichersten und modernsten Druckwasserreaktoren, die auf dem Weltmarkt zu kaufen sind. Zwei dieser Reaktoren befinden sich auch in Vogtle USA im Bau, zwei weitere in Sanmen China sind schon in Betrieb. Dieser Reaktor verfügt über passive Sicherheitseinrichtungen, die ein Unglück wie in Fukushima („station blackout“, dies ist ein totaler Ausfall des Kraftstroms) ausschließen. Die Nachzerfallswärme könnte ohne jeden Eingriff des Betriebspersonals abgeführt werden.

Die Verknüpfung mit dem Fernwärmenetz der Fengyan Thermal Power geschieht in einem separaten Gebäude auf dem Gelände des Kernkraftwerks. Wichtig unter Sicherheitsaspekten ist, daß das Fernheiznetz physikalisch durch Wärmeübertrager vom sekundären Dampfkreislauf des Kernkraftwerks völlig getrennt ist. Eine „Ausbreitung von Radioaktivität“ im Heizungsnetz kann also ausgeschlossen und ständig automatisch überwacht werden. Jeder muß nun selbst entscheiden, was für ihn ein größeres Risiko darstellt: Eine virtuelle Strahlenangst oder eine chronische Belastung durch Abgase.

Übertragung auf deutsche Verhältnisse

In Deutschland sind rund 14% aller Wohnungen an Fernwärme angeschlossen und damit werden rund 9% des gesamten Wärmebedarfs abgedeckt. Dies ist z. B. gegenüber Dänemark bescheiden: Dort werden 62% aller Haushalte durch Fernwärme versorgt. In großen Städten ist dort die Versorgung nahezu vollständig. So oder so, lassen sich durch den Ausbau der Fernwärme in Deutschland noch beträchtliche Mengen an fossilen Brennstoffen einsparen. Schneller und kostengünstiger als durch jedwede „Elektromobilität“. Aus ideologischen Gründen verdrängt man in Deutschland umweltfreundliche Kohlekraftwerke (mit Entstaubung, Entstickung und Rauchgaswäsche) durch kaum bessere Gaskraftwerke. Gemessen an den Entwicklungen z. B. in China, kann das nur eine Übergangslösung sein.

Es kann also nicht schaden, sich schon jetzt ein paar Gedanken für die Zeit nach dem Öko-Sozialismus zu machen. In dem dann wieder aufzubauenden Deutschland wird eine kostengünstige und sichere Energieversorgung (wieder) eine zentrale Aufgabe sein. Die Kerntechnik entwickelt sich beständig weiter. Sie hat bereits heute ein sicherheitstechnisches Niveau erreicht, das es erlaubt Kernkraftwerke in unmittelbarer Nähe von Städten zu errichten – jedenfalls eher als Chemieanlagen, Raffinerien, Windparks etc. Allerdings gibt es einen Unterschied zu China: Unsere Städte sind bedeutend kleiner. Der Einsatz konventioneller Reaktoren ist daher begrenzt. In Deutschland gehört die Zukunft den SMR (kleine Reaktoren bis zu etwa 300 MWel). Mit diesen könnten ganz unmittelbar bisherige Heiz-Kraftwerke (Kohle oder Erdgas) ersetzt werden. Alle notwendigen Einrichtungen (Stromanschlüsse, Pumpstationen etc.) könnten weiter benutzt werden. Durch diese dezentrale Lösung entfielen auch neue Hochspannungstrassen, wie sie z. B. für Windenergie aus der Nordsee nötig sind. Hinzu kommt eine enorme Versorgungssicherheit (Abdeckung des Bedarfs 24h an 7 Tagen die Woche) und Unabhängigkeit von Energieimporten. Da in solchen Kraftwerken nur alle paar Jahre ein Brennstoffwechsel notwendig ist, sind z. B. Erpressungsversuche durch Abstellen der Erdgaspipelines ausgeschlossen.