Kernkraft und Arbeit

Kernkraftwerke erzeugen nicht nur elektrische Energie, sondern bieten auch — meist überdurchschnittlich bezahlte — Arbeitsplätze. Dies ist der breiten Öffentlichkeit nicht so bewußt, weshalb viele „Ökos“ kopfschüttelnd vor Bürgern stehen, die sich für den Erhalt „ihres Reaktors“ (z. B. Fessenheim) einsetzen oder sich gar um ein „atomares Endlager“ (Schweden, Finnland) bewerben. Es erscheint daher sinnvoll, dieser Frage mal etwas näher nachzugehen.

Wo sind die Arbeitsplätze?

Weltweit gibt es verschiedenste Studien zu dieser Fragestellung. Die Beantwortung ist nicht ganz einfach. Irgendwie muß man in komplexen und zudem noch international verknüpften Volkswirtschaft, die unzähligen Arbeitsverhältnisse aufdröseln. Um eine Systematik in die Angelegenheit zu bringen, unterscheidet man grundsätzlich drei Bereiche:

  • Direkte Arbeitsplätze sind noch am leichtesten zu erfassen. Das sind die unmittelbar in einem Kernkraftwerk tätigen Menschen oder die auf der Baustelle beim Neubau oder Abriss arbeiten. Analoges gilt für die Herstellung von Brennelementen oder die Lagerung und Behandlung von Abfällen.
  • Indirekte Arbeitsplätze. Hier wird die Sache schon komplizierter und undurchsichtiger: Beim Bau eines Kernkraftwerkes werden z. B. große Mengen Zement und Betonstahl benötigt. Dies sind handelsübliche Produkte. Die Hersteller arbeiten deshalb nicht nur für Kernkraftwerke. In der Praxis ist es damit gar nicht so einfach, die für ein bestimmtes Objekt notwendigen indirekten oder zugelieferten Arbeitsstunden zu ermitteln.
  • Induzierte Arbeitsplätze. Das sind die Arbeitsplätze, die ganz besonders die Gemeinden am Standort einer kerntechnischen Anlage interessieren. Die Menschen, die in einem Kernkraftwerk arbeiten, geben einen großen Teil ihres Einkommens auch vor Ort aus: Sie kaufen in den lokalen Geschäften ein, bauen sich ein Häuschen oder wohnen im Hotel, wenn sie als Monteure im Kraftwerk (zeitweise) beschäftigt sind. Diese „Kaufkraft“ schafft zusätzliche Arbeitsplätze, die nur über Statistiken umzurechnen sind — ein breites Betätigungsfeld für Volkswirtschaftler.

All diese Arbeitsplätze fallen lokal, regional, national und international an. Wo sie anfallen, hängt vor allem vom Entwicklungsstand einer Volkswirtschaft ab. In Deutschland konnte man einst alles von der letzten Schraube bis zur kompletten Dampfturbine „zu Hause“ kaufen. In Rußland oder China ist das durchaus heute noch nicht der Fall. Viele Komponenten müssen noch im Ausland zugekauft oder zumindest gegen Lizenzgebühren „nachgebaut“ werden. Dies gilt natürlich auch in umgekehrter Richtung: Baut man keine Kernkraftwerke mehr, muß man sich nicht wundern, warum beispielsweise der eigene Turbinenbau verschwindet. Diese Tatsache haben viele Gewerkschaftsfunktionäre und Kombinatsleiter in Deutschland offensichtlich völlig unterschätzt.

Man kann all diese Zusammenhänge in herrliche Computermodelle stecken und tolle Bilder — für welchen Zweck auch immer — damit erzeugen. Wie so oft im Leben, hilft einem aber eine einfache qualitative Überlegung weiter: Die Kosten des einen — und Kernkraftwerke sind bekanntlich richtig teuer — sind immer auch der Umsatz der anderen. Dies ist ein maßgeblicher Grund, warum z. B. Großbritannien massiv neue Kernkraftwerke bauen will. Wohlstand fällt nicht vom Himmel. Auch die schicke Bibliothek, das Schwimmbad und letztendlich sogar der „Biobäcker“ müssen erstmal finanziert werden. Wie man sieht, sind schon viele „Dörfler“ weiter und sehen ein Kernkraftwerk deshalb nicht (mehr) als Bedrohung, sondern als Chance zur Entwicklung.

Das Zeitdauer-Problem

Bei Kernkraftwerken unterscheidet man vier Lebensphasen: Bau, Betrieb, Rückbau und Endlagerung. Die Bauzeit wird international in die zwei Phasen „Baustellenvorbereitung“ und „Errichtung“ (ab dem ersten Beton für die Grundplatte bis zur Übergabe) mit jeweils fünf Jahren angesetzt. Die Betriebszeit mit 50 Jahren. Der Rückbau ebenfalls in zwei Phasen von je fünf Jahren (nuklearer Teil und konventioneller Abriß). Für die Endlagerung 40 Jahre (Zwischenlagerung, Verpackung und sicherer Einschluß der Abfälle). Dies sind Mittelwerte, die sich aus der bisherigen weltweiten Erfahrung gebildet haben. Im Einzelfall können sich erhebliche Abweichungen ergeben. Zukünftig sind Veränderungen angesagt: So wird bei der Betriebsdauer für neue Kraftwerke bereits von 60 bis 80 Jahren ausgegangen. Entsprechend würden sich die Zahlen für die Beschäftigten verschieben.

Der Praktiker liebt Kennzahlen, mit deren Hilfe er grobe Überschlagsrechnungen ausführen kann. Dies wird — im Zeitalter der Computermodelle — (zumindest) für Plausibilitätskontrollen immer wichtiger. So wird z. B. im „Kleingedruckten“ für die direkte Beschäftigung eine Fehlerbandbreite von ± 10%, bei der indirekten Beschäftigung von ± 20% und bei der induzierten Beschäftigung von ± 30% angegeben. Ganz schlimm wird es, wenn Politiker Vergleichsstudien für unterschiedliche Energiesysteme in Auftrag geben. Solche „Vergleichsabschätzungen“ weisen aus Erfahrung Abweichungen von ± 50% auf.

Diese Bandbreiten sind nicht verwunderlich. Beruhen doch alle Daten auf Statistiken aus der Vergangenheit. Neben Fehlern bei der Datenerfassung ergeben sich immer Veränderungen aus technologischen Gründen über so lange Zeiträume (10+50+10+40=110 Jahre). Ganz besonders mit Vorsicht zu genießen, sind die Daten zu den induzierten Arbeitsplätzen. Hier erfolgt die Verknüpfung mit den direkten und indirekten Arbeitsplätzen über das Einkommen bzw. die Preise. Wer aber wieviel, für was, in einer Gesellschaft ausgibt, ist äußerst variabel. Bei so langen Betrachtungszeiträumen sind sogar Systembrüche (z. B. DDR in BRD) nicht auszuschließen.

Ein paar Anhaltswerte

Die USA betreiben über 100 Reaktoren, haben bereits mehrere abgerissen und verfügen vor allen Dingen über einen kompletten Brennstoffkreislauf, vom Uranbergwerk bis zur Endlagerung. Sie verfügen damit über ausreichend Daten. Allerdings ist dabei der Zeitraum von mehreren Jahrzehnten (Technologiesprünge, Inflationsraten usw.) zu beachten. Um die Werte für Überschlagsrechnungen besser handhabbar zu machen, wurden sie als Mannjahre pro 1000 MWel (MJ) normiert. Mannjahre ist dabei ein in der Industrie geläufiger Begriff: Es werden eigentlich die angefallenen Arbeitsstunden registriert und anschließend durch die zulässigen Jahresarbeitszeiten (Feiertage, Urlaub etc.) geteilt. Auf die Bauzeit entfallen 12 000 MJ, auf den Betrieb 30 000 MJ, auf den Rückbau 5000 MJ und auf die „Endlagerung“ 3000 MJ. In der Summe also 50 000 MJ an direkt angestellten Arbeitskräften. Hinzu kommen noch einmal die gleiche Anzahl in der Zulieferindustrie. Insgesamt sind damit 100 000 Mannjahre pro GWel über den Lebenszyklus eines Kernkraftwerks in den USA nötig. Diese induzieren noch weitere Arbeitsplätze, sodaß die Statistiker auf über 400 Millionen Arbeitsstunden für jeden Reaktor (mit 1000 MWel ) in der Volkswirtschaft kommen.

Statistische Auswertungen in Korea und Frankreich kommen zu ähnlichen Ergebnissen. So sind für den Bau von Reaktoren der II. Generation in Frankreich 26 600 MJ, in Korea 28 300 MJ und in den USA 24 473 Mannjahre auf den Baustellen und in der Zulieferindustrie pro installiertem GWel angefallen. Wen wundert es da, daß in Frankreich und den USA kaum jemand auf den „Industriezweig Kerntechnik“ verzichten mag? Ganz im Gegenteil: Man will in beiden Ländern neue Kernkraftwerke bauen.

Noch ein weiterer Gesichtspunkt mag verdeutlichen, warum in immer mehr Gemeinden in den USA inzwischen Bürgerinitiativen für den Weiterbetrieb „ihres“ Kernkraftwerks kämpfen: Im Jahr 2013 arbeiteten 62 170 Angestellte in den 104 Kernkraftwerken in den USA. Das macht im Mittel 598 Beschäftigte pro Kraftwerk (Bandbreite zwischen 400 bis 700) mit einem Durchschnittseinkommen von 95 000 US$ pro Jahr (von der Küchenfee bis über den Direktor gemittelt). Neben den Steuerausfällen reißt der Kaufkraftverlust eine Gemeinde nach der Abschaltung schnell in den wirtschaftlichen Abgrund.

Wenn man schon mal mit Zahlenspielereien beschäftigt ist, kann man auch ruhig mal die Betrachtungen andersherum anstellen: Ein Leichtwasserreaktor benötigt etwa 185 to Natururan jährlich (pro 1000 MWel ) für seine Stromerzeugung. Wenn man die Weltdaten (384 GW und 65 000 Minenarbeiter) nimmt, ergibt das etwa 170 Angestellte im Uranbergbau und weitere 100 Angestellte in der Brennstoffherstellung (Konversion, Anreicherung und Brennelementfertigung). Jedenfalls unter 300 Angestellte für die gesamte Brennstoffversorgung. Man vergleiche diese Produktivität mal mit der Förderung und dem Transport von Steinkohle für den Betrieb eines gleich großen Kohlekraftwerks. Auch hier wieder eine Antwort, warum China, Indien — und selbst die USA — gar nicht auf Kohlekraftwerke verzichten können. Geschehe die Umstellung etwa innerhalb nur eines Jahrzehntes, wären die sozialen Verwerfungen unvorstellbar.

Oder noch einmal die Zahlen von weiter oben andersherum: Für die Erzeugung von 4000 KWh elektrischer Energie in einem Kernkraftwerk — die auch noch jederzeit auf Wunsch verfügbar sind — benötigt man nur etwa eine Arbeitsstunde über den gesamten Lebenszyklus gerechnet. Auch dies eine Antwort, warum die Energiewende nur ein Hirngespinst sein kann.

Schlusswort

Wer bisher immer noch glaubt, die „Anti-Atom-Bewegung“ besteht aus verhuschten Theaterwissenschaftlerinnen, die ganz, ganz viel Angst vor Strahlung haben oder sonstigen Menschen, die sich echt dolle Sorgen um die Welt und die Wale machen, ist ein Narr. Überwiegend handelt es sich bei den Verantwortlichen in den einschlägigen Parteien um marxistisch geschulte Kader, die sich ganz bewußt die Kernenergie als Angriffsobjekt auf diese Gesellschaftsordnung ausgesucht haben. Erst Ausstieg aus der Kernenergie, dann Ausstieg aus der Kohle und parallel Angriff auf die Autoindustrie. Verbündet mit Schlangenölverkäufern, die sich auf Kosten von Kleinrentnern und Kleinverdienern .(ständig steigende Stromrechnungen und gesperrte Anschlüsse!) gierig die Taschen füllen. Getreu dem Grundsatz aller Sozialisten: Erst mal die Probleme schaffen, die man anschließend vorgibt zu lösen. Von Venezuela lernen, heißt Untergang lernen. Dunkle Aussichten für Michel, es sei denn, er kriegt doch noch die Kurve an der Wahlurne.

Lückenpresse oder doch mehr?

Am Montag dem 23.7.2018 um 20.00 Ortszeit brach der fast fertiggestellte Staudamm Xepian-Xe Nam Noy in Laos. 5 Milliarden Kubikmeter Schlamm und Wassermassen ergossen sich über mehrere Dörfer. Offizielle Bilanz: (angeblich nur) 27 Tote, aber Hunderte vermisste Personen — zumeist Kinder — und fast 7000 Obdachlose. Eine schreckliche Tragödie. Solche Unglücke im Zusammenhang mit der Gewinnung elektrischer Energie und Naturereignissen — hier außergewöhnliche Regenfälle — wird es immer wieder geben. Nur Laien glauben an „gute“ und „böse“ Arten von Energie. Es soll hier nicht um die technischen Aspekte gehen, sondern das Warum steht hier im Vordergrund und die (zweifelhafte) Reaktion der Medien in Deutschland.

Die Demokratische Volksrepublik Laos ist einer der ärmsten Länder in Asien. Ein vom Kommunismus gebeuteltes Land. Mehr als 23% der Bevölkerung haben weniger als 2 US$ pro Tag zur Verfügung. Von einschlägigen Kreisen wird es wegen seiner Topographie gern als „Batterie Südostasiens“ bezeichnet. Der Mekong durchfließt das Land auf rund 2000 km Länge. Zahlreiche laotische Flüsse münden in ihm. Besonders diese Nebenflüsse werden mit Stauseen zur Stromerzeugung gepflastert. Geld hierfür fließt zur Zeit in Strömen — nicht nur aus China — denn Staudämme sind wie Windräder gut für das Klima. Besonders all die Anleger, die aus der „bösen Kohle“ aussteigen, brauchen dringend neue profitable Geldanlagen. Der gerade zusammengebrochene Xepian-Damm hat bereits über eine Milliarde US$ verschlungen. Er sollte eine Leistung von 410 MWel haben und 1860 GWh pro Jahr liefern. Dies ergibt aufschlußreiche Zahlen: Die spezifischen Investitionskosten betragen somit etwa 2400 US$ pro KWel. Aber halt, da ist ja noch eine zweite Zahl: Geplante Produktion 1860 GWh pro Jahr. Hoppla, das sind ja gerade 4536 Vollbenutzungsstunden. So ist das halt mit den wetterabhängigen Umweltenergien. Ein Kernkraftwerk läuft mindestens 7885 Vollaststunden pro Jahr, also fast doppelt so lange. Und dies immer dann, wenn man den Strom braucht und nicht wenn der Wettergott Lust hat. Somit dürften die gleichwertigen Investitionskosten also rund 4200 US$ pro kWel betragen. Das ist die Antwort, warum ganz Asien Kernkraftwerke (nahezu keine Brennstoffkosten, aber entsprechende Infrastruktur erforderlich) oder Kohlekraftwerke baut.

Hinzu kommt noch ein anderes Problem: Konventionelle Kraftwerke sind nahezu standortunabhängig und benötigen nur wenig Fläche. Wasserkraftwerke können praktisch nur noch in Diktaturen gebaut werden: In diesem Fall mußten sechs Dörfer mit ihren Einwohnern verschwinden. Entschädigung? Es handelte sich um eine Minderheit von Bergstämmen. Wer bekommt den Strom? Die „Eingeborenen“ wären gar nicht in der Lage die elektrische Energie zu bezahlen. Deshalb sollen 90% der Stromproduktion nach Thailand exportiert werden. Langfristige Verträge über 27 Jahre sichern den Banken ihren Rückfluß des eingesetzten Kapitals — plus einer netten Rendite. Umweltbelastung? Bei einem Wasserkraftwerk kommt zwar kein „böses CO2“ aus dem Schornstein, aber jeder Staudamm belastet das „Ökosystem Fluß“. Wenn man dutzende miteinander verbundene Wasserkraftwerke baut, wird das einen erheblichen Einfluß auf Flora und Fauna haben. Der Mekong ist aber die Lebensader für die Flußanrainer von China bis Vietnam.

Die Berichterstattung in unserem Lande

Erinnern sie sich noch an Fukushima? Von morgens bis abends gab es kein anderes Thema. Nun ist Laos auch nicht weiter als Japan. In beiden Fällen war die Ursache ein Naturereignis. In Laos ein Tropensturm mit außergewöhnlichen Niederschlägen und in Japan ein Tsunami. Die immerwährenden Wasserschäden halt. Naturgewalt wird man nie ausschließen können, lediglich sich dagegen durch viel Technik wappnen können. In beiden Fällen entstand erheblicher Sachschaden. Nicht nur für die Anlagenbetreiber, sondern auch für viele völlig unbeteiligte Personen in weiterer Entfernung. In einem Fall wahrscheinlich hunderte Tote durch die direkte Einwirkung der Anlage, im anderen Fall sind keine Menschenleben zu beklagen. Was macht nun den Unterschied in der Wahrnehmung beider Ereignisse aus?

In der Wahrnehmung „normaler Menschen“ gibt es kaum einen Unterschied. Im Gegenteil dürfte das Mitfühlen für die Angehörigen der Todesopfer (überwiegend Kinder) in Laos eher größer sein. Man erinnere sich nur an die Kinder-Fußballmannschaft in Thailand. Weltweit wurde tagelang mit den in der Höhle eingeschlossenen mitgefiebert. Aus aller Welt traf Unterstützung ein. Warum also, reagierten die Medien in Deutschland — das muß ausdrücklich betont werden — so desinteressiert? Es ist ja nicht so, daß kein Bildmaterial oder Hintergrundinformationen vorhanden sind. Es liegt alles vor für eine „Enthüllungs-Geschichte“ a la „Panama-Papers“ etc.: Diktatoren, Indigene Minderheiten, Ausbeutung der „3. Welt“, Banken, internationale Konzerne, großräumige Umweltzerstörung usw. Kurz, alles was einen Linken elektrisiert. Ne richtige „Spiegel Story“ so zu sagen.

Man könnte die Antwort in einem Satz geben: Was nicht sein darf, findet auch nicht statt. Die totale Realitätsverweigerung. Wie einst in der DDR. Tschernobyl hielt erst mit tagelanger Verzögerung Einzug in die Aktuelle Kamera. So funktionieren halt staatliche Medien. Nur mit dem Unterschied, daß die DDR sich selbst gegenüber so ehrlich war, ihre Medien direkt aus dem Staatshaushalt und nicht über eine Zwangsabgabe für Wohnungen zu finanzieren. Die Wirkung ist die gleiche: Von den Regierenden mit üppigen Mitteln und unzähligen Privilegien ausgestattet, weiß man auch ohne direkte Anweisung, was zu tun ist.

Die Vorgabe ist einfach und auch von „Nachrichten-Vorlesern“ mit geringer Bildung auszuführen: Die Energiewende ist um jeden Preis zu verteidigen. Kernenergie und Kohle sind beides Teufelszeug, müssen daher mit allen Mitteln — besser gesagt Gruselgeschichten — madig gemacht werden. Einzig selig machend ist Wind- und Sonnenenergie mit (noch zu erfindenden) Speichern und deshalb darf der Bruch eines Staudammes nicht stattfinden. Höchsten als Randnotiz, sonst könnte der Bürger noch auf abwegige Gedanken kommen.

Das „GEZ-Fernsehen“ ist schon länger auf dem Niveau der Prawda angekommen: Immer mal rein schauen, damit man weiß, was einem die Regierung zum Thema Energie mitteilen will. Aber als Informationsmedium absolut unbrauchbar. Wer glaubt, was einem dort verkauft wird, macht sich selbst und freiwillig zum Deppen.

Wer Informationen sucht, muß sich notgedrungen im kapitalistischen Ausland umschauen. Dort sind Nachrichten immer noch eine Ware und keine ideologischen Verlautbarungen zur Volksertüchtigung. Deshalb war in wenigen Stunden das Staudammunglück verbreitet — samt Hintergrundinformationen: Wer hat den Damm gebaut, wer hat die Finanzierung gemacht, wie haben sich deren Aktienkurse entwickelt usw. Im Internetzeitalter alles was man braucht, um seinen eigenen Ansprüchen entsprechend weiter zu recherchieren. Genau die journalistische Arbeit, die im Deutschen Fernsehen immer mehr verweigert wird — ob schlicht aus Faulheit oder aus Boshaftigkeit sei dahingestellt. Überdeutlich wird dies immer wieder im Zusammenhang mit Donald Trump: Bevor man sich seine Rede selbst anhört, verwendet man lieber einen Beitrag eines klassenbewußten „Experten“ darüber, was der Präsident angeblich gesagt haben soll. Sicher ist sicher, wie bei der Energiewende. Wenn man mit den Wölfen heult und immer nur das nach quatscht, was die einschlägigen „Größten Denker“ vorgekaut haben, ist man immer auf der richtigen Seite. Schlimmstenfalls haben sich halt alle anderen auch geirrt. Die üppige Pension ist damit, gemäß deutscher Tradition, auf jeden Fall gesichert. Später sagt man einfach, wenn man das gewußt hätte….

Thorcon – neue Reaktoren aus/mit Indonesien?

Das US-Unternehmen Thorcon will Salzbadreaktoren in Indonesien bauen.

Indonesien

Für ein besseres Verständnis, erscheinen ein paar Worte über die Energiesituation in Indonesien angebracht. Indonesien besteht aus über 17000 Inseln und ist mit 253 Millionen Einwohnern (Stand 2014) das viertgrößte Land der Erde. Als Schwellenland hat es einen rasanten Anstieg des Primärenergieverbrauches zu verzeichnen. In der Dekade zwischen 2003 und 2013 um 43%. Die Hauptenergieträger sind Öl, Kohle und Erdgas. Indonesien ist seit 1885 ein Ölförderland. Inzwischen ist die Nachfrage durch Bevölkerungs- und Wirtschaftswachstum so stark gestiegen, daß es seit etwa 2003 Nettoölimporteur ist.

Es besitzt auch große Erdgasvorkommen (Platz 13 in der Weltrangliste, Platz 2 in Asien) und ist immer noch Nettoexporteur. Der Verbrauchsanstieg ist aber so groß, daß es neuerdings sogar Erdgas als LNG aus den USA importiert (20 Jahresvertrag mit Cheniere). Hinzu kommt die ungleiche Verteilung im Inselreich.

Eigentlich ist Indonesien Kohlenland mit über 500 Millionen Tonnen jährlich. Davon werden rund 80% exportiert (weltweit größter Exporteur nach Masse). Trotzdem beträgt der Inlandsverbrauch rund 80 Millionen Tonnen mit stark steigender Tendenz wegen des Zubaues von Kohlekraftwerken.

In Indonesien sind erst 84% der Bevölkerung überhaupt an das Stromnetz angeschlossen. Bei bisher erst 51 GWel installierter Leistung (88% fossil, davon 50% Kohle) ist das Netz chronisch überlastet. Die häufigen Zwangsabschaltungen sind eine enorme Belastung für Bevölkerung und Industrie.

Traurige Berühmtheit erlangte Indonesien durch die Brandrodung des Regenwaldes zur Anpflanzung gigantischer Palmölplantagen. Auch hier wieder ökosozialistische Wahnvorstellungen als entscheidende Triebkraft: Biokraftstoffe und Holzschnitzel zur „Klimarettung“ und gegen „Peakoil“.

Indonesiens Weg in die Kernenergie

Langfristig kommt Indonesien als bevölkerungsreiches Schwellenland – genauso wie China und Indien – nicht ohne eine Nutzung der Kernenergie aus. Man will aber offensichtlich einen etwas anderen Weg gehen: Nicht der schnelle Einstieg durch den Kauf fertiger Kraftwerke steht im Vordergrund, sondern der Aufbau einer eigenen kerntechnischen Industrie. Konsequent setzt man auf die Entwicklung „neuer“ Kernreaktoren. Dies ist zwar mit einem erheblichen Risiko verbunden, erlaubt aber eine konsequente Anpassung an lokale Verhältnisse und vermeidet hohe Lizenzgebühren. Für ein Inselreich bieten sich kleine Reaktoren (SMR) an, bevorzugt als schwimmende Einheiten.

Eine Entwicklungsschiene ist ein gasgekühlter Hochtemperaturreaktor mit Uran als TRISO Kugelhaufen. Der Prototyp RDE (Reaktor Daya Eksperimental) soll eine Leistung von 10 MWel haben, die später auf bis zu 100 MWel erweitert werden soll. Diese SMR (Small Modular Reactor) sind besonders für die „kleineren“ Inseln des Archipels vorgesehen. Noch dieses Jahr soll ein detaillierter Konstruktionsplan durch ein Konsortium aus Universitäten und privaten Unternehmen einer internationalen Kommission der IAEA zur Begutachtung vorgelegt werden. Grundlage für eine endgültige Entscheidung und die Finanzierung.

Schon 2015 hat die US-Firma Martingale (jetzt ThorCon International) mit einem staatlichen indonesischen Konsortium PT Industry Nuklir Indonesia (INUKI) ein Abkommen zum Bau eines Flüssigsalzreaktors abgeschlossen. Angeblich soll schon 2019 mit dem Bau begonnen werden und das erste Kraftwerk 2025 in Betrieb gehen.

Das ThorConIsle-Konzept

Der Guru der Flüssigsalzreaktoren Robert Hargraves verkündet in seinem neuesten Prospekt vollmundig, daß sein Kraftwerk weniger Investitionen als ein Kohlekraftwerk erfordern würde. Allerdings erinnert das schön bebilderte Verkaufsprospekt an einschlägige Exponate von Bauträgern: Alles schön, keine Probleme, super günstig, daher sofort kaufen.

Das Grundkonzept ist von den Russen abgekupfert: Man baut ein Schiff ohne Antrieb um zwei Reaktoren (plus dem nötigem Zubehör) herum. Alles etwas größer und schöner, versteht sich. Nur mit dem Unterschied, daß das russische Modell nach langer Bauzeit endlich schwimmt. Kein Supertanker – nur 2 x 35 MWel anstelle von 2 x 256 MWel – und „nur“ mit auf Eisbrechern erprobten Reaktoren, anstelle von frisch erfundenen Thorium-Flüssigsalz-Reaktoren. Schön wenn ein solches Kraftwerk mal gebaut wird, aber ganz gewiss nicht bis 2025 und dazu noch billiger als ein Kohlekraftwerk.

Die Idee Kernkraftwerke als Schiffe in Serie zu bauen, ist sicherlich für ein Inselreich verlockend. Nur ist eben ein Kernkraftwerk kein Supertanker (Schuhkarton ), sondern randvoll mit Technik. Insofern können die Baukosten nicht einfach übertragen werden.. Ein Schiff bleibt ein Schiff: Die Korrosionsprobleme im tropischen Meer sind gewaltig und erfordern erhöhte Betriebskosten. Ein Schiff kann auch keine „Betonburg“ (Terrorismus, Flugzeugabsturz etc.) sein. Ganz so einfach, wie im Prospekt, dürfte es nicht gehen: Man kippt einfach die Zwischenräume voll Beton und erhält so einen tollen Bunker. Wer z. B. das Genehmigungsverfahren für den AP-1000 (Sandwich aus Stahlplatten und Beton) verfolgt hat, ahnt, wie Genehmigungsbehörden ticken.

Alle Komponenten sollen zwischen 150 und 500 to schwer sein und sich sogar während des Betriebs auswechseln lassen. Auch hier scheint es mehr um Wunschdenken zu gehen.

Der Reaktor

Bei dem Reaktor handelt sich um eine Kanne, in der der eigentliche Reaktorbehälter (gen. Pot), die Umwälzpumpen und die Wärmetauscher untergebracht sind. Die Kanne wiegt knapp 400 to, wovon etwa 43 to auf die Salzfüllung entfallen. Dieses Gebilde soll spätesten nach acht Jahren komplett ausgebaut und mit einem Spezialschiff zur Wiederaufbereitung geschickt werden. Nach acht Jahren ist das Salz so voller Spaltprodukten, daß es nicht mehr weiter im Kraftwerk eingesetzt werden kann. Vor dem Transport soll es vier Jahre lagern, bis die Strahlung auf akzeptable Werte abgeklungen ist. Jeder Block hat deshalb zwei Kannen.

Die Kanne ist das Neuartige an diesem Konzept: Man tauscht nicht regelmäßig Brennstoff aus, sondern der eigentliche Reaktor ist eine „Batterie“, die komplett gewechselt wird. Vorteil dabei ist, daß man erforderliche Inspektionen und Reparaturen in einer Spezialfabrik durchführen kann. Der gesamte nukleare Teil („der strahlt.“) befindet sich in dieser Kanne. Alle anderen Komponenten sind „konventionell“. Mal sehen, was der Genehmigungsbehörde dazu alles einfällt….

Allerdings stellt das Batterieprinzip alle bisher geltenden Lehrmeinungen über Thorium-Reaktoren auf den Kopf:

  • Bisher ging man von einer kontinuierlichen Wiederaufbereitung aus. Man wollte das Spaltproduktinventar stets gering halten. So hätte man es bei einem schweren Störfall automatisch nur mit geringen Mengen zu tun.
  • Je mehr Neutronengifte – und im Sinne einer selbsterhaltenden Kettenreaktion ist schon Thorium selbst ein starker Parasit – vorhanden sind und je länger die Wechselintervalle sein sollen, um so mehr spaltbares Uran muß man am Anfang zugeben. Dieses muß auch noch möglichst hoch angereichert sein (hier geplant 19,7 %).

Das Salz

Als Brennstoff soll ein NaF – BeF2 – ThF4 – UF4 (mit 76 – 12 – 10,2 – 1,8 mol%) Salz verwendet werden. Es soll ganz tolle Lösungseigenschaften haben, die alle „gefährlichen“ Spaltprodukte zurückhalten. An dieser Stelle fällt mir immer der alte Chemikerwitz ein: Ruft der Professor überglücklich, ich habe endlich das ultimative Lösungsmittel gefunden. Antwortet der Laborant trocken, Glückwunsch und wo soll ich es jetzt hinein füllen? Bei einem solchen Salz ist das leider mehr als ein blöder Witz. Zumal hier auch noch mit Temperaturen von über 700 °C gearbeitet werden soll. Mit Schiffbaustahl (Kostenangaben) wird sich da leider gar nichts ausrichten lassen.

Beryllium und auch Berylliumfluorid sind sehr giftig und werden als krebserregend eingestuft. Wenn Beryllium ein Neutron einfängt, bildet es Helium und setzt dabei zwei Neutronen frei. Es wirkt dabei sowohl als Moderator, wie auch als Neutronenvervielfacher. Fluor und Fluorwasserstoff sind gasförmig und sehr giftig. Fluor ist äußerst reaktionsfreudig und geht mit fast allen Elementen stabile chemische Verbindungen ein. Mit Wasserstoff reagiert es letztendlich zu Flußsäure, die sogar Glas ätzt. Jede Kernspaltung zerstört auch die chemische Verbindung und neue chemische Elemente in Form der Spaltprodukte entstehen. Man hat es deshalb stets auch mit elementarem Fluor zu tun, der auch gern mit dem Strukturmaterial reagieren kann. Da Fluoride sehr reaktionsfreudig sind, reagieren sie natürlich auch wieder mit dem größten Teil der Spaltprodukte und binden diese sicher ein. Es gibt aber zwei Ausnahmen: Edelmetalle und Edelgase. Die Edelmetalle lagern sich innerhalb der Anlage ab und führen zu „Verschmutzungen“, die man regelmäßig und aufwendig wird entfernen müssen (Die Batterie doch komplett auf den Müll?). Die Edelgase müssen (eigentlich) durch Helium ständig aus dem Salz herausgespült werden.

Der immer wieder gern gehörte Hinweis aus der Salzbad-Scene auf den legendären MSRE-Reaktor, hilft in diesem Sinne leider auch nicht weiter: Er hat nur 1,5 Voll-Lastjahre (1966 bis 1969) gelaufen.

Das Sicherheitskonzept

Der Reaktor stellt sich immer selbstständig ab, wirbt ThorCon. Zwar ist dies durchaus kein Alleinstellungsmerkmal eines Flüssigsalzreaktors, aber trotzdem eine feine Sache. Locker mit „Walkaway Safe“ umschrieben. Es ist kein Hexenwerk, eine Kettenreaktion durch Überhitzung (Verkleinerung des makroskopischen Einfangquerschnittes) aus sich selbst heraus zusammenbrechen zu lassen, es bleibt aber immer noch die Nachzerfallswärme (Fukushima und Harrisburg): Sie muß entsprechend schnell abgeführt werden, sonst schmilzt der Reaktor. Auch hier gilt natürlich, je mehr Spaltprodukte im Reaktor enthalten sind (Batterie gegen kontinuierliche Aufbereitung), um so größer ist das Problem.

Die Konstrukteure von Flüssigsalzreaktoren gehen nun davon aus, daß das Salz unter allen denkbaren Umständen und überall im Reaktor schön fließfähig bleibt. Im Ernstfall läuft es dann problemlos in einen gekühlten Tank aus. Dazu denkt man sich an geeigneter Stelle einen Pfropfen als Verschluß, der während des Normalbetriebs durch permanente Kühlung erzeugt wird. Unterbricht man im Notfall die Kühlung, schmelzt das flüssige Salz den Pfropfen auf und gibt so den Weg frei. Der Nottank soll aus vielen Röhren bestehen, die über ihre Oberflächen die Wärme gegen eine Kühlwand abstrahlen. Die Wand wird mit Wasser gefüllt, welches verdampfen kann und sich in Kühltürmen auf Deck wieder niederschlägt. Das Kondensat läuft dann in die Hohlwand zurück.

Schlussbetrachtung

Indonesien muß wie jedes andere Schwellenland in die Kerntechnik einsteigen. Nicht nur zur Energiegewinnung, sondern auch um Anschluß an moderne Industriestaaten zu gewinnen. Kerntechnik ist neben Luft- und Raumfahrt die Schlüsseltechnologie schlechthin. In keiner anderen Branche kommen so viele Technologien mit ihren jeweiligen Spitzenleistungen zusammen. Insofern ist es nur konsequent, möglichst frühzeitig in die internationale Entwicklung „neuer“ Reaktortechnologien einzusteigen. Schon die Zusammenarbeit mit Spitzenuniversitäten und Hochtechnologieunternehmen stellt einen unschätzbaren Wert für die eigene Ausbildungslandschaft dar. Selbst wenn diese jungen Ingenieure später nicht in der Kerntechnik tätig werden, werden sie mit Sicherheit zu den gefragten Spitzenkräften in ihrer Heimat zählen. Keine „Entwicklungshilfe“, die „angepasste Technologie“ für die „große Transformation“ verbreiten will, wird auch nur ansatzweise vergleichbares hervorbringen. Technik – und damit die Gesellschaft –entwickelt sich halt immer nur durch machen weiter und nicht in irgendwelchen geisteswissenschaftlichen Seminaren.

Nukleare Fernwärme

Neuerdings rückt die Kerntechnik wieder in den Zusammenhang mit „Luftverbesserung“. Besonders in China wird über den Ersatz von Kohle nachgedacht.

Der Raumwärmebedarf

Die Heizung bzw. Kühlung von Gebäuden wird oft unterschätzt. Alle reden von Verkehr und Stromerzeugung. In Wirklichkeit werden aber ein Viertel bis ein Drittel des gesamten Energieverbrauches für unsere Gebäude benötigt. Unter dem Gesichtspunkt von Luftschadstoffen (z. B. Stickoxide, Feinstaub etc.) ist besonders problematisch, daß die Energiewandlung unmittelbar in unseren Städten stattfindet und das auch noch in unzähligen Einzelfeuerstätten (hiermit sind auch die „Zentralheizungen“ gemeint). Die einzelnen Heizkessel – oder gar Holzöfen – können keine kontrollierte Verbrennung gewährleisten oder gar eine Rauchgaswäsche benutzen. Zudem werden ihre Abgase in geringer Höhe flächig abgegeben. Eine hohe Luftbelastung gerade in Ballungsgebieten ist die Folge. Eine Erkenntnis, die schon unsere Urgroßväter hatten. Man begann deshalb schon Ende des 19. Jahrhunderts mit dem Bau zentraler Heizwerke.

Das Wärmenetz

Die angestrebte Raumtemperatur liegt bei etwa 20 °C. Es ist also ausgesprochene „Niedertemperaturwärme“. Hinzu kommt noch ein ganzjähriger Brauchwasserbedarf mit etwa 60 °C (Legionellen). Will man auch Kaltwasser für Klimaanlagen damit erzeugen, ist eine Temperatur von 130°C (Absorptions-Kälteanlagen) zu empfehlen. Damit ergeben sich schon die Randbedingungen für ein Rohrleitungsnetz.

Die Strömungsgeschwindigkeit ist begrenzt. Somit hängt die transportierbare Wärmeleistung von dem verwendeten Rohrdurchmesser und der Temperaturspreizung zwischen Vor- und Rücklauf ab. Alles eine Kostenfrage. Hat man sehr hohe Leistungen pro Grundstück (z. B. Hochhäuser in Manhattan) und dazu noch beengte Straßenverhältnisse, bleibt sogar nur Dampf als Transportmedium übrig. Zumindest in Deutschland hat sich eine maximale Vorlauftemperatur im Netz von 130 °C bis 150 °C als optimal erwiesen. Die Vorlauftemperatur im Netz wird proportional zur Außentemperatur geregelt. In manchen Regionen hat man noch ein drittes Rohr als „Konstantleiter“, an dem die Brauchwasserbereiter und die Klimaanlagen angeschlossen sind. Dadurch kann man im Sommer den Heizungsvorlauf komplett abstellen. Alles eine Frage der vorhandenen Bausubstanz.

Heizwerk oder Kraftwärmekopplung

Das Problem ist, daß das gesamte System für die maximale Leistung (kältester Tag in einer Region) ausgelegt sein muß. Diese tritt aber nur an wenigen Tagen auf. Die ohnehin hohen Kapitalkosten führen zu hohen Fixkosten, die wegen der geringen Anzahl von Vollbenutzungsstunden zu vergleichsweise hohen spezifischen Heizkosten führen. Als einzige Stellschraube bleiben die Brennstoffkosten.

Man ist deshalb schon frühzeitig auf die Idee gekommen, Kraftwerke mitten in den Städten zu bauen, um die Leitungskosten (Strom und Wärme) gering zu halten. Die Kraftwerke liefen auch als Kraftwerke und haben das ganze Jahr über elektrische Energie erzeugt. Sie haben ihre Kosten über die Stromproduktion eingespielt. Zusätzlich zu den normalen Kondensatoren hat man noch „Heizkondensatoren“ als Quelle für das Fernwärmenetz eingebaut. In diesen Heizkondensatoren wurde ein Teil des Dampfes (in Abhängigkeit von der Außentemperatur) zur Beheizung niedergeschlagen. Da dieser Dampf nicht mehr vollständig seine Arbeit in der Turbine verrichten konnte, ging die Stromproduktion etwas zurück. Dieser Rückgang wurde dem Kraftwerk vom Fernwärmenetzbetreiber vergütet. Es war quasi dessen „Brennstoffpreis“.

Zusätzlich hatte man auch immer schon reine Heizwerke, die nur Wärme für die Fernwärme erzeugt haben. Die geringen Kapitalkosten eines solchen „Warmwasserkessels“ lohnten sich schon immer als Reserve oder zur Spitzenlasterzeugung an wenigen Tagen eines Jahres.

Die nukleare Heizung

Soweit zur Fernwärme im Allgemeinen. Jetzt zu der Frage, was eine Umstellung auf Kernspaltung bringen kann. Der Brennstoffpreis des Urans ist konkurrenzlos gering. Geringer noch als Kohle. Es gibt fast keine Belastung durch Transporte (Kohle, Asche, Heizöl etc.). Es gibt keine Luftbelastung durch Abgase. Es besteht eine enorm hohe Versorgungssicherheit und Preisstabilität (Heizkosten als „zweite Miete“). Dagegen spricht eigentlich nur „die Angst vor dem Atom“. Diese ist aber zum Glück unterschiedlich ausgeprägt. Man kann sie sogar noch beträchtlich verringern. Um die notwendigen technischen Aspekte wird es im Weiteren gehen.

Kernkraftwerke als Wärmequelle

Technisch gesehen, besteht kein Unterschied zwischen einem Kernkraftwerk und einem fossilen Kraftwerk. Man könnte problemlos z. B. ein Kohlekraftwerke durch ein Kernkraftwerk ersetzen. Es gibt aber ein juristisches Hindernis: Das Genehmigungsverfahren. Bisher muß man immer noch davon ausgehen, daß es schwere Störfälle gibt (z. B. Fukushima), die einen Teil der Radioaktivität austreten läßt und somit die unmittelbare Umgebung belasten könnte. Dafür ist der Nachweis von Evakuierungszonen und Plänen notwendig. Spätestens seit Fukushima weiß man zwar, daß die Annahmen über Freisetzungsraten viel zu konservativ waren, aber das tut der Argumentation der Angstindustrie keinen Abbruch. Die jahrzehntelange Gehirnwäsche „Millionen-Tote, zehntausend-Jahre-unbewohnbar“ hat sich zumindest in den Industrieländern festgesetzt.

Will man Kernkraftwerke in Ballungsgebieten bauen, müssen neue Reaktortypen her, die als „inhärent sicher“ betrachtet werden. Außerdem empfiehlt es sich, kleinere Reaktoren (SMR) zu bauen, um zu lange Rohrleitungen (Kosten und Wärmeverluste) zu vermeiden. Gerade in den letzten Wochen wurde in diesem Sinne ein Durchbruch erzielt: Die US-Genehmigungsbehörde hat dem Reaktor der Firma NuScale bescheinigt, daß er ohne elektrische Hilfsenergie auch bei schwersten Störfällen auskommt. Es handelt sich um einen kleinen (50 MWel) Reaktor, der selbst in einem wassergefüllten Becken steht. Er ist also stets von ausreichend Kühlwasser umgeben. Alle Einbauten (Druckhaltung, Dampferzeuger etc.) befinden sich im Druckgefäß (keine Rohrleitungen), das von einem Containment nach dem Prinzip einer Thermosflasche umgeben ist. Er benötigt keine Pumpen zur „Notkühlung“, da er schon im Normalbetrieb ausschließlich im Naturumlauf (warmes Wasser steigt auf und sinkt nach der Abkühlung wieder in den Reaktorkern zurück) funktioniert. Ein solches Kernkraftwerk bietet ein geringeres Risiko für seine Nachbarn, als jedes Gas- oder Ölkraftwerk. Genau solche Kraftwerke befinden sich aber zahlreich mitten in deutschen Großstädten. Seit Jahrzehnten lebt ihre Nachbarschaft relativ angstfrei damit – Geräusche und Abgase inbegriffen.

Den deutschen „Grün-Wähler“ wird das alles nicht überzeugen. Er ist unerschütterlich in seinem Öko-Glauben. Warum auch nicht? Man diskutiert ja auch nicht mit einem Katholiken über die unbefleckte Empfängnis der Jungfrau Maria oder mit einem Hindu über die Heiligkeit von Kühen. In den Weiten Sibiriens wird die Kernenergie schon heute positiv bewertet. In ähnlichen Regionen Kanadas und den USA wird sie aus gleichen Gründen (Versorgungssicherheit auch bei -40 °C) ernsthaft in Erwägung gezogen. In den bevölkerungsreichen Metropolen Chinas steht die Luftverschmutzung im Vordergrund. Die reale Gefahr von Lungenkrebs und Herz- Kreislauferkrankungen durch Smog wird dort gegen die eingebildete „Strahlengefahr“ abgewogen. Selbst im Großraum Helsinki prüft man den Ersatz der fossilen Fernheizwerke durch Kernenergie. Sonne geht gar nicht und Wind nur sehr eingeschränkt in diesen nördlichen Breiten.

Nukleare Heizwerke

Seit Anbeginn der Kernkraftnutzung gab es die Idee von reinen Heizwerken. Die reine Wärmeproduktion kann einige Vorteile haben: Schließlich verbrennt man ja auch Gas in einem einfachen Heizkessel und setzt nicht alles Gas in „rotierenden Öfen“ (Blockheizkraftwerk) zur gleichzeitigen Stromerzeugung ein. Schon nach den „Ölkrisen“ der 1970er Jahre, setzte sich z. B. der Schweizer Professor Seifritz für ein solches Konzept ein. Er ging damals von der Verwendung erprobter Komponenten aus Kernkraftwerken (Druckbehälter, Brennelemente etc.) zum Bau eines abgespeckten Heizreaktors aus. Durch die „Überdimensionierung“ erhoffte er sich einen zusätzlichen Sicherheitsgewinn, der zu einer Akzeptanz bei der Politik führen würde. Die Grundüberlegung ist noch heute so gültig, wie vor nunmehr 50 Jahren: Ersatz fossiler Brennstoffe durch Uran. Damals wie heute, standen der Ölpreis und die Luftverschmutzung in den Städten im Vordergrund.

Um den Ansatz von Professor Seifritz zu verstehen, ist etwas Physik notwendig. Ein typischer Druckwasserreaktor eines Kernkraftwerks hat eine Wärmeleistung von etwa 4000 MWth. Viel zu viel für ein Fernheizwerk. Geht man aber mit der Leistung um mehr als eine Größenordnung runter – läßt den Reaktor quasi nur im Leerlauf laufen – hat man einen entsprechenden Sicherheitsgewinn in allen Parametern. Bis überhaupt die Betriebszustände eines – zigfach erprobten – Druckwasserreaktors erreicht werden, müßte eine Menge schief gehen. Man hätte genug Zeit den Reaktor abzustellen.

Bei einer so geringen Leistung, könnte man handelsübliche Brennelemente viel länger im Reaktor belassen bis sie „abgebrannt“ wären (Versorgungssicherheit, Preisstabilität etc.).

Ein Druckwasserreaktor in einem Kernkraftwerk arbeitet mit einem Betriebsdruck von etwa 155 bar und einer Wassertemperatur von etwa 325 °C. Beides recht ordentliche Werte. Wie sehe es bei einem Heizreaktor aus? Gehen wir von einer Vorlauftemperatur im Netz von 150 °C aus (Einsatz von Absorptionsanlagen zur Klimatisierung um das Netz auch im Sommer besser auszulasten). Damit das Wasser noch flüssig bleibt und nicht verdampft ist ein Betriebsdruck von mindestens 5 bar nötig. Geben wir noch mal 30 °C als treibende Temperaturdifferenz für die Wärmeübertrager im Heizreaktor drauf, kommen wir auf eine Betriebstemperatur von 180 °C. Dafür ist ein Betriebsdruck von mindestens 10 bar nötig. Ein beträchtlicher Sicherheitsgewinn.. Vor allen Dingen entfallen alle Hochdruck-Sicherheitseinrichtungen: Was man nicht hat, kann auch nicht kaputt gehen.

Noch eleganter erscheint ein Heizreaktor auf der Basis eines Siedewasserreaktors. Man bräuchte – da keine Turbine vorhanden ist – auch keinerlei Einbauten zur Dampftrocknung und keine Umwälzpumpen. Einfacher und sicherer geht nicht.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

Nachbemerkung

Fernheizungsnetze erfordern sehr hohe Investitionen, haben dafür kaum Betriebskosten und halten Jahrzehnte. Sie sind somit anderen Infrastrukturen, wie Trinkwasser- und Abwassernetzen sehr ähnlich. Gleichwohl gibt es schon heute weltweit unzählige Fernwärmenetze, die kontinuierlich erweitert werden. Der Markt für Wärmeerzeuger ist somit gewaltig. Auch die in Deutschland so beliebte „Plastikverpackung“ von Neubauten tut dem keinen Abbruch. Was braucht man also, um eine solche Entwicklung zu fördern?

  • Man benötigt möglichst kleine Heizreaktoren. Die Netzkosten fressen sonst sehr schnell etwaige Kosteneinsparungen bei den Reaktoren auf.
  • Die Reaktoren müssen sehr einfach und robust sein. Sie müssen standardisiert sein und in großen Stückzahlen in Fabriken hergestellt werden.
  • Es sollte weitgehend auf genehmigte Verfahren und Bauteile aus der Kernkraftwerkstechnik zurückgegriffen werden. Nur so kann man die kostspieligen und langwierigen Genehmigungsverfahren in den Griff bekommen.
  • Die Reaktoren müssen inhärent sicher sein und vollautomatisch betrieben werden können.
  • Sie müssen komplett und ständig fernüberwacht werden.
  • Die Anforderungen an Umgebung und Personal müssen vor Beginn des ersten Projekts neu definiert, öffentlich diskutiert und rechtssicher verabschiedet sein.
  • Bei jedem Standort müssen die Anwohner frühzeitig einbezogen werden. Nur durch Aufklärung kann man die einschlägige Angstindustrie und ihre Kumpane aus der Politik abwehren. Skandinavien und Frankreich bieten hierfür zahlreiche Beispiele und erprobte Vorgehensweisen.

Manchem mag das alles phantastisch vorkommen. Nur, ist die Diskussion nicht nur in China losgetreten worden. Sie läuft bereits auch in Osteuropa und Skandinavien. Es mag in Deutschland noch ein paar Jahre dauern, aber dann wird die Mehrheit der Bevölkerung erkennen, wie sie systematisch von Politikern und Schlangenölverkäufern mit der „Energiewende“ betrogen worden ist. Ist dieser Punkt erst erreicht, wird das Pendel ruckartig in seine alte Lage zurückkehren.

Ende der „Energiewende“ in USA?

Trump arbeitet weiterhin konsequent seine Wahlversprechen ab und startet nach dem „Klimaausstieg“ einen Versuch zur Wiederherstellung eines funktionstüchtigen Stromnetzes. Mehr noch, es wird nebenbei auch noch eine Renaissance der Kernenergie eingeleitet.

Der Vorstoß von Rick Perry

Vereinfachend gesagt, kann der Präsident der USA über seinen „Secretary of Energy“ Dienstanweisungen erlassen. Letztendlich sind dagegen Einsprüche innerhalb von 60 Tagen durch berufene Stellen möglich, sonst treten sie in Kraft. Ein durchaus mächtiges Werkzeug, um den Senat und das Repräsentantenhaus vor sich her zu treiben. Rick Perry hat dieses Werkzeug am 28. September 2017 eingesetzt, um damit indirekt gegen die Subventionen von Wind und Sonne vorzugehen. Die Problematik in den USA ist ganz ähnlich zu der in Deutschland: Die subventionierten Umgebungsenergien Wind und Sonne belasten das Stromnetz und treiben mit ihren Dumpingpreisen konventionelle Kraftwerke in den Ruin. Je weniger konventionelle Kraftwerke am Netz sind, desto instabiler wird das gesamte Versorgungssystem und ein großräumiger Zusammenbruch ist unvermeidbar. Dies gefährdet die „Nationale Sicherheit“. Ein Argument, dessen sich kein Politiker in den USA verschließen kann. Der Tanz ist damit eröffnet: Physik gegen Ideologie.

Der Kernsatz

Affordable, Reliable and Resilient [Anmerkung: Die Fachbegriffe werden noch ausführlich beschrieben und diskutiert] elektrische Energie ist überlebenswichtig für die Wirtschaft und die nationale Sicherheit der Vereinigten Staaten und ihrer Einwohner.

Das sind die klaren und eindeutigen Aussagen, wegen deren Donald Trump zum Präsidenten gewählt wurde. In Deutschland von linken Schwadroneuren gern als Populismus abgestempelt. Kein ewiges Rumgeeiere, sondern eine eindeutige Festlegung des eigenen Standpunktes. Früher nannte man so etwas Verantwortung übernehmen und meinte damit eher eine Tugend. Keine esoterischen oder religiösen Begründungen a la „Klimakatastrophe“ für die eigene Bereicherung oder den Drang zur Gesellschaftsveränderung, sondern nachvollziehbare und für jeden verständliche Argumente. Würde doch mal im Deutschen Bundestag jemand den Ökosozialisten einen solchen Satz entgegenhalten. Es wäre schön zu sehen, wie sie darüber hinwegschwafeln müßten.

Affordable Electricity

Bezahlbare Energie. Mit der Übersetzung ist es so eine Sache: Hier schwingt für jeden Amerikaner auch noch erschwinglich, kostengünstig, leistbar, zu angemessenen Preisen, im Hinterkopf mit.

Elektrische Energie ist die Schlüsselgröße einer jeden modernen Gesellschaft. Ohne Strom geht weder im Privathaushalt noch in irgendeinem Unternehmen etwas. Stromkosten wirken wie eine Umsatzsteuer auf alle Produkte: Nicht nur zum Betrieb eines Fernsehers, nein auch schon zu seiner Herstellung war sie nötig. Das ist der perfide Grund für die sozialistische Lehre von (notwenigen) hohen Strompreisen zum „Energiesparen“. Es gibt kaum eine Steuer oder Gebühr, mit der man das eigene Volk besser aussaugen kann. Energiesparen ist lediglich eine Verniedlichung für Konsumverzicht und Entbehrung.

Aber damit immer noch nicht genug: Wenn man funktionierende Kraftwerke in den Ruin treibt, ist das nichts anderes als „Kapitalvernichtung“. Jeder redet von Kapitalvorsorge für das Alter – Deutschland enteignet entschädigungslos Kernkraftwerke und vernichtet dadurch Milliarden an Anleihe- und Aktienvermögen. Jeder Sozialist schwafelt von zusätzlichen staatlichen Investitionen in Infrastruktur als Zukunftsfürsorge – Deutschland treibt nagelneue kommunale Gas- und Kohlekraftwerke in die Pleite. Für die Staatsverschuldung, die zu ihrem Bau notwendig war, wird auch noch die zukünftige Generation zahlen.

Bevor sich jetzt auch noch die Jünger der Försterlehre von der „Nachhaltigkeit“ bemüssigt fühlen: Man kann nur jeden Euro einmal ausgeben. Was wäre, wenn man die Milliarden, die man in die „Reichskrafttürme“ etc. gesteckt hat, tatsächlich in Bildung, „Digitalisierung“ usw. investiert hätte? Fehlinvestitionen sind auch immer verschenkte Chancen anderer.

Reliable Electricity

Betriebs- und Versorgungssicherheit. In den USA werden alle Energieträger (Kohle, Öl, Gas und Uran) in großen Mengen – anders als in Deutschland – selbst gefördert und ihre Anwendungsenergien in eigenen Anlagen (Raffinerien, Anreicherungsanlagen, Brennelementefabrik etc.) hergestellt. Hinzu kommt eine eigene leistungsfähige Industrie, die die dafür notwendigen Anlagen baut und entwickelt.

In Deutschland wird die entsprechende Industrie systematisch zerstört und das Fachwissen ins Ausland verramscht. Noch nie, war Deutschland in seiner Geschichte so abhängig von der Energieversorgung aus dem Ausland. Schröder, der als Kanzler den Ausstieg aus der Kernenergie gepredigt hat und heute seine Rendite als Gasmann bei Putin einfährt, ist wahrlich nur die Spitze des Eisbergs. Phänomenal ist nur, wie sich hier der Wähler den Weg zurück ins Mittelalter als Zukunft verkaufen läßt. Im Gegenteil, wenn Michel eine überbezahlte Telepromter-VorleserIn in den Tagesthemen etc. erzählt, daß alle Wähler in den USA Deppen sind, kommt er sich auch noch überlegen vor. Werden schon sehen, diese rückständigen Amerikaner, wo sie bleiben, wenn die Kanzlerin erstmal die Wunderwaffe Speicher und Elektromobil hat. Ehrlich gesagt, ich kann es nicht mehr hören, wenn Politiker, die Mathematik und Physik karrierefördernd abgewählt haben, immer vom Vertrauen-in die-Kunst-unserer-Ingenieure faseln.

In den USA ist der Begriff Versorgungssicherheit durchaus enger zu fassen. Dort wird darunter eher die Sicherstellung der Versorgung bei Naturkatastrophen verstanden. Krieg, Terror und Boykott sind eher Abfallprodukte dieser Sicherungsmaßnahmen. Genau in diesem Punkt setzt Perry den Hebel an. Er bezieht sich ausdrücklich auf den „Polar Vortex“ und die Wirbelstürme über der Golfküste. Bei dem Kälteeinbruch im Jahre 2014 hing die Stromversorgung im gesamten Norden nur noch am seidenen Faden. Sie konnte nur noch durch die Kernkraftwerke (Arbeitsverfügbarkeit 95%) und das Wiederanfahren von Kohlekraftwerken, die bereits in der Stilllegung waren, aufrecht erhalten werden. Wind und Sonne gab es wegen schlechtem Wetter nicht und das Erdgas war knapp, weil alle Heizungen wegen der geringen Temperaturen ebenfalls mit voller Leistung liefen. Beim letzten Hurricane in Texas gingen sogar die Kohlekraftwerke in die Knie: Die Kohlenhalden hatten sich durch den sintflutartigen Regen in Matsch verwandelt, der die Förderanlagen außer Betrieb setzte. Einzig das Kernkraftwerk in der Matagorda Bay – gerade hier ging der Hurricane an Land – hielt seine Produktion aufrecht. Man hatte sich mit 250 Mann Betriebspersonal eingeschlossen und tapfer weiter produziert. Fukushima sei Dank. Die Resultierenden Nachrüstungen zum „U-Boot“ haben sich im unfreiwilligen Praxistest voll bewährt.

Perry nutzt diese beiden Fälle geschickt, um die Bedeutung von Kernenergie und Kohlekraftwerke für die Versorgungssicherheit eines Stromnetzes nachzuweisen. Er fordert für Kraftwerke, die für 90 Tage Brennstoff auf ihrem Gelände bevorraten können, eine zusätzliche Vergütung. Wir erinnern uns: Die Kernkraftwerke und die Kohlekraftwerke sind nur durch die hohen Subventionen für Wind und Sonne unrentabel geworden. Erdgaskraftwerke haben die geringsten Investitionskosten bei (momentan) auch noch niedrigen Brennstoffpreisen. Die Brennstoffpreise sind aber nur dann günstig, wenn sie außerhalb der Heizperiode betrieben werden. Eigene Speicher für Erdgas würden den Kostenvorteil sehr schnell umkehren. Politisch sehr geschickt ist die Forderung nach zusätzlichen Zahlungen für Kohle- und Kernkraftwerke. Die Forderung, die Subventionen für Wind und Sonne aufzugeben, würde sofort den Aufstand der Schlangenölverkäufer provozieren, die sofort ihre militanten Helfer auf die Straße schicken würden. Die Sachargumente würden in den Straßenkämpfen untergehen. Kann sich noch jemand an das ist-politisch-nicht-durchsetzbar von Gorleben erinnern? Fallen zusätzliche Kosten an, muß man die Frage stellen, wer dafür aufkommen soll. Die Verbraucher zu belasten, verstößt gegen „Affordable Electricity“. Vielleicht Ausgleichszahlungen der Schlangenölverkäufer? Dies würde schnell zum Zusammenbruch zahlreicher „Wind-Fonds“ führen. Die anstehende Debatte in den USA verspricht interessant zu werden.

Schlau war auch, erstmal den Pulverdampf über den „Klimaausstieg“ abziehen zu lassen und die Kohlenindustrie durch die Einstellung des „Kriegs gegen die Kohle“ zumindest neutral zu stellen. Jetzt kann man die Diskussion über die Kernenergie mit der Versorgungssicherheit wieder neu beleben.

Resilient Electricity

Dieser Ausdruck ist am schwersten zu übersetzen. Gemeint sind die Konsequenzen aus den Kirchhoffschen Regeln: Die Einspeisung elektrischer Leistung muß stets genau gleich dem Verbrauch sein. Ist das nicht der Fall, geraten Spannung und Frequenz augenblicklich außer Kontrolle und das Netz bricht in kürzester Zeit zusammen. Früher hatte der „Vertikale Energiekonzern“ die Sache fest im Griff. Alle Kraftwerke und das Stromnetz lagen in eigener Verantwortung und waren aufeinander abgestimmt. Störungen gab es praktisch nur durch das Versagen eigener Anlagen.

Durch die Förderung von Umweltenergien und den Vorrang für ihren Ausbau und die Einspeisung ist das System „Stromversorgung“ absehbar aus den Fugen geraten. Nun hat man den unzuverlässigsten Lieferanten im System, den man sich überhaupt vorstellen kann: Das Wetter. Nachts ist es dunkel, im Winter sind die Tage kürzer und Wolken dämpfen die Sonneneinstrahlung. Die Verfügbarkeit läßt sich mit Uhr, Kalender und Wetterbericht noch einigermaßen vorhersagen. Wie aber die letzte Sonnenfinsternis in den USA eindrucksvoll gezeigt hat, sind die Grenzen für das System bereits erreicht. Innerhalb von Minuten sind zig Megawatts verschwunden, um nach dem Sonnendurchgang ebenso schnell wieder anzuliegen. Solche massiven und schnellen Störungen sind nur durch konventionelle Kraftwerke auszuregeln.

Nicht viel anders, wenn nicht sogar schlimmer, sieht es mit dem Wind, dem himmlischen Kind, aus. Die Leistung eines Windrades ändert sich mit der dritten Potenz der Windgeschwindigkeit. Mit anderen Worten: Wenn sich die Windgeschwindigkeit verdoppelt, nimmt die Leistung um das acht-fache zu. Sturm mit Orkanböen ist ein einziger Albtraum für jeden Netzbetreiber. Auch das hat der letzte Hurricane in Texas eindrucksvoll gezeigt: Erst stieg die Stromproduktion steil an, dann brach die Windstromerzeugung urplötzlich in sich zusammen, weil der Wind zu stark geworden war und die Mühlen aus dem Wind gedreht werden mußten.

Ohne konventionelle Kraftwerke gibt es keine Nutzung der Umweltenergien. Dies gilt nicht nur für die Versorgung bei Dunkel-Flaute, sondern schon im „Normalbetrieb“. Die Schwankungen von Wind (Bö) und Sonnenschein (Wolke) sind so schnell, daß nur die Rotation von großen Turbosätzen sie ausgleichen kann. Eine Vollversorgung durch Wind und Sonne ist physikalisch unmöglich. Sprüche wie: Irgendwo weht immer der Wind oder Kohlenstrom verstopft die Netze, sind daher nichts weiter als tumbe Propaganda. Viel schlimmer, bisher wurde die Dienstleistung Netzstabilität kostenlos für die Betreiber von Windparks und Sonnenfarmen erbracht. Je mehr Kohle- und Kernkraftwerke einfach aufgeben, um so schlimmer wird die Situation. Man muß es so deutlich sagen, Betreiber von Windkraftanlagen und Sonnenkollektoren sind Schmarotzer. Es wird höchste Zeit, daß sie die für sie erbrachten Dienstleistungen auch bezahlen. Diese wären nämlich gar nicht nötig, wenn es sie und ihre politisch gewollten Privilegien nicht geben würde.

Die Ironie – jedenfalls für deutsche „Atomkraftgegner“ – liegt nun darin, daß gerade Kernkraftwerke die schnellsten Laständerungen von allen Kraftwerken bereitstellen können. Wer mehr Wind und Sonne will, kann auf Kernkraftwerke in seinem Versorgungsgebiet nicht verzichten. Diese Erkenntnis greift schon in vielen Bundesstaaten in den USA. Wer mit Steuervergünstigungen den Bau von Windfarmen anfacht, muß im nächsten Schritt auch Subventionen für den Erhalt der Kernkraftwerke bereitstellen. Ein Irrsinn, der sich immer schwerer politisch verkaufen läßt. Die Trump-Administration streut mit ihrer Initiative deshalb gezielt Salz in diese Wunde. Man kann sich schon jetzt darauf freuen, wie Spiegel und das Zwangsgebühren-Fernsehen geifern werden. Nachdem der Braunkohlenstrom die Netze verstopft hat, müssen nun auch noch die unwirtschaftlichen „Atomkraftwerke“ subventioniert werden. Es ist keine Lüge zu dreist, als daß sie der Deutsche Michel nicht fressen würde und er wird ganz gewiss auch diesmal wieder brav auf die Wunderwaffen warten. Wenn die Kanzlerin erstmal ihre Speicher und E-Mobile hat, ist der Endsieg in der großen Transformation nicht mehr weit.

Zusammenfassung

Vom Wetter bestimmte elektrische Energie ist wertlos. Im Mittelalter wurde gemahlen, wenn der Wind wehte und gesegelt, wenn keine Flaute war. Wer den Lehren von Pol Pot anhängend, den Aufbau des Sozialismus über einen Rückschritt in das vorindustrielle Zeitalter machen zu wollen, ist deshalb mit dem Ausbau der „Regenerativen Energien“ zielstrebig auf seinem Kurs. Eine Zivilisation benötigt aber den „Strom aus der Steckdose“ – jederzeit ausreichend verfügbar, ausschließlich nachfrageorientiert.

Schluß mit Dumpingpreisen. Unter Dumping versteht man den Verkauf eines Produkts unter den Gestehungskosten. Schon die DDR war mit dem Verkauf ihrer Waren unter Selbstkosten (Devisenknappheit) wenig erfolgreich. Die Kosten von Wind- und Sonnenstrom entsprechen aber (mindestens) den zugewiesenen und garantierten Vergütungen nach dem EEG. Eindrucksvoll zeigen die erzielten Preise an der Strombörse ihren tatsächlichen Wert. Inzwischen werden schon negative Preise (gleichbedeutend mit Entsorgungsgebühren für den Abfall) erzielt.

Schluß mit der Planwirtschaft. Eine moderne Volkswirtschaft kann nicht ohne ein komplettes Backup aus konventionellen Kraftwerken funktionieren. Auch bei Dunkel-Flaute muß der Strom erzeugt werden, der gerade nachgefragt wird – oder es geht gar nichts mehr. Insofern kann der tatsächliche Wert von Umweltenergie nur den Brennstoffkosten konventioneller Kraftwerke entsprechen. Alle Kosten, die durch die „Erneuerbaren“ entstehen, müssen darüberhinaus ausschließlich diesen angerechnet werden: Kosten für Transportleitungen, Regelenergie etc. Die Sonne schickt zwar keine Rechnung, aber jeder Hersteller muß den Transport bezahlen, um erstmal seine Ware zum Verbraucher zu bringen, muß die Ware sicher verpacken usw. Erst wenn all diese Kosten eingerechnet sind, ergibt sich der notwendige Mindestverkaufspreis seines Produkts. Würde man diese Regeln der Realen Welt auf die Welt der Sonnen- und Windbarone anwenden, wäre der ganze Spuk sehr schnell vorbei.

Aber halt, natürlich wäre es dann auch mit der „Großen Transformation“ vorbei und was soll dann aus all den Scharlatanen werden, die bisher trefflich davon lebten? Was hat Donald Trump versprochen? „Ich will euch euer Land zurückgeben.“ Vielleicht liegt es daran, daß ihn gewisse Kreise so hassen. „Grid Resiliency Pricing Rule“ ist jedenfalls ein weiterer (kleiner) Schritt in diese Richtung. Fast (noch) unbemerkt von den Medien.

Das Trump’sche Energiezeitalter

Wenn man nach einigen Wochen USA wieder zurück ist und das Zwangsgebühren-Fernsehen einschaltet, glaubt man Nachrichten von einem anderen Stern zu sehen. Jedenfalls ist Washington ferner, als einst Bonn für „Aktuelle Kamera“ und den „Schwarzen Kanal“ gewesen sind. Es ist deshalb dringend zu raten, sich etwas näher mit der Energiepolitik der USA zu beschäftigen.

Was will Trump?

Hier wird immer noch von einer „Unberechenbarkeit des POTUS (President Of The United States)“ geschwafelt. Die Wirklichkeit ist anders: Für deutsche Verhältnisse offensichtlich unbegreiflich, handelt es sich bei Trump um einen Mann – die Bezeichnung Politiker wird an dieser Stelle bewußt nicht verwendet – der das ausspricht, was er denkt und es anschließend auch umsetzt. Wer die unzähligen Wahlkampfauftritte aufmerksam verfolgt hat, ist von keinem seiner Schritte überrascht.

Trump ist kein Politiker und er wird wahrscheinlich auch nie einer werden, weil er es gar nicht sein will. Er ist ein Vollblut-Unternehmer in des Wortes ursprünglicher Bedeutung. Der Kosmos „Washington“ ist ihm so fremd und so zuwider, daß er nur noch vom Sumpf spricht. Getreu seinem Vorbild Ronald Reagan: Der Staat ist nicht die Lösung, der Staat ist das Problem. Bezeichnenderweise wird genau dieser Präsident bis zum heutigen Tage in Deutschland gern als Schauspieler verunglimpft. Anders in den USA: Dort wird er – unabhängig von der Parteizugehörigkeit – inzwischen zu den zehn besten Präsidenten gezählt, die es je in der Geschichte der USA gegeben hat. Freilich gemessen an ihren Taten und nicht an irgendeinem Geschwafel aus den Lehrbüchern der „politischen Wissenschaften“. Obama war der Prototyp des Schönsprechers schlechthin. Er hat diesen Stil soweit auf die Spitze getrieben, bis er sogar farbige Wähler, Minderheiten und vor allem die sogenannte Arbeiterschaft (die traditionelle Wählerschaft der Demokraten) in das Trump’sche Lager getrieben hat.

Trump ist Patriot. Das kann man mögen oder nicht. Er wurde in Schule und Elternhaus so erzogen und er ist von der Kraft der Bibel und der Verfassung zutiefst überzeugt und kann aus beiden auswendig zitieren. Wer glaubt, >>America first again<< sei nur ein flotter Spruch einer Wahlkampfagentur gewesen, hat diesen Mann und seine Anhängerschaft in keiner Weise verstanden. Ganz im Gegenteil: Das gesamte Trumplager ist geradezu beseelt von dem Gedanken, die USA wieder großartig zu machen und sie haben auch ganz klare Vorstellungen wohin die Reise gehen soll: Mehr Wohlstand, mehr Freiheit und Verantwortung für den Einzelnen und größere Stärke nach außen, um diese Werte jederzeit verteidigen zu können – ein Frontalangriff auf jede linke Ideologie.

Wer sich hier der Illusion hingibt, ein paar „Kulturschaffende“ oder gewalttätige „Antifanten“ könnten den personifizierten linken Albtraum bald vertreiben, wird sich täuschen: Hält Trump Kurs, wird er mit überwältigender Mehrheit wieder gewählt werden und der „American way of live“ wird wieder einmal für viele zum Vorbild werden. Wie zielstrebig und hartnäckig der „Baulöwe“ ist, hat er bereits in seinem bisherigen Leben unter Beweis gestellt: Jedes seiner Bauprojekte war umstritten und von vielen „Experten“ als undurchführbar erklärt worden. Gleichzeitig liegt aber in seinem Erfolg auch sein persönliches Risiko: Er könnte Opfer – wie Ronald Reagan – eines Attentats werden.

Der Stellenwert der Energie im Trump’schen Plan

Trump weiß, daß Energie die wirtschaftliche Schlüsselgröße ist: Mit Energie geht alles, ohne (preiswerte) Energie geht nichts. Er hat deshalb sofort mit der Entfesselung begonnen. Bereits in der Übergangszeit zwischen seiner Wahl und seinem Amtsantritt hat er zahlreiche Dekrete unterschriftsreif ausgearbeitet und diese ohne zu zögern bei Amtsantritt in Umlauf gebracht. Diejenigen in der Industrie, die ihm schon vorher aufmerksam zugehört hatten, haben sich parallel auf das zu erwartende vorbereitet. Die „Energieexperten“ in Deutschland reiben sich noch heute die Augen, warum Benzin und Diesel plötzlich wieder rund 50 Eurocent in den USA kostet. Geschweige, begreifen sie auch nur annähernd die Konsequenzen. Sie verharren lieber weiter in ihrer Traumwelt aus Wind, Sonne und Elektroautos.

Wenn man Wohlstand will, muß man Arbeitsplätze gestatten. Für Arbeitsplätze braucht man ein nachgefragtes Produkt. Sich gegenseitig die Haare zu schneiden – wie es mal ein in Ungnade gefallener SPD-Politiker treffend formuliert hat – oder staatliche Arbeitsbeschaffungsmaßnahmen, bringen gar nichts. Öl, Gas und Kohle werden überall auf der Welt zu kalkulierbaren Preisen nachgefragt. Amerika hat sie in unvorstellbaren Mengen. Man muß nur Förderung, Abbau und Handel gestatten.

Wie einfach „Wirtschaftswunder“ geht, kann man im gesamten Süden der USA beobachten. Mit den Bohrtürmen, Pipelines und Tanklagern kommen die Arbeiter, die so etwas bauen. Diese brauchen aber Essen und Unterkunft. Es entstehen überall Motels und Restaurants. Diese wiederum müssen gebaut und renoviert werden, was das lokale Handwerk fördert. Aus Dörfern werden Kleinstädte – wie einst im Ölboom der 1920er Jahre. Es folgen die Familien, die Schulen und Kindergärten etc.

Und die Löhne steigen. Ganz ohne Gewerkschaftsfunktionäre, sondern durch Nachfrage. Sicheres Anzeichen dafür, sind heute schon die Schilder am Straßenrand: Wir stellen sofort ein. Üblich sind für einen LKW-Fahrer im Ölgeschäft 1.500 bis 2.000 Dollar – pro normaler Arbeitswoche. Wer bereit ist, auch nachts und am Wochenende (Zuschläge) zu fahren, auf Urlaub verzichtet, kommt auf bis zu 200.000 Dollar Jahreseinkommen. Wohlgemerkt als LKW-Fahrer. Bei Steuern und Sozialabgaben, die davon sogar etwas übrig lassen. Viele ziehen das einige Jahre durch und haben dann ein schuldenfreies Eigenheim. Man sieht auch immer mehr Frauen im Transportsektor. Sie verdienen halt mehr, als eine Friseuse oder Kindergärtnerin. Gleichberechtigung auf Kapitalismusart, ganz ohne Gendergedöns.

Wie wurde der Ölboom möglich?

Fachleuten war schon immer klar, daß die Ölvorräte (bezogen auf die heutigen Förderraten) nach menschlichen Maßstäben schier unerschöpflich sind. Alles nur eine Frage der Fördermethoden und der aktuellen Preise. Akzeptiert man das, ist es nur ein kleiner Schritt, Förderbeschränkungen und Handelsschranken abzuschaffen. Befreit man sich erst einmal von Irrlehren wie „Peak Oil“, „Klimakatastrophe“ und dem Försterspruch von der „Nachhaltigkeit“, geht alles ganz schnell.

Trump brauchte nur die diversen Bohr- und Förderschikanen aus der Obamazeit außer Kraft setzen und schon wurde wieder gebohrt. Je mehr gebohrt wird, um so mehr wird in die Technik investiert und um so billiger werden die Bohrungen. Selbst Fachleute sind über den Preisverfall erstaunt. Je billiger das Öl wird, um so mehr steigt die Förderung. Hinter diesem vermeintlichen Widerspruch steht einfach die unsichtbare Hand des Marktes. Ökonomisch betrachtet, besteht kein Unterschied zwischen Computern und Öl.

Das Öl muß aber noch zum Verbraucher. Pipelines sind nach wie vor die günstigste und sicherste Methode. Trump hat per Federstrich die Verbote von Obama außer Kraft gesetzt. Schon flossen die Milliarden in diesen Sektor. Über die fadenscheinigen Gefahren für die Umwelt, wird man in einigen Jahren nur noch schmunzeln, wenn man sich überhaupt noch daran erinnert.

Je mehr Öl und Ölprodukte exportiert werden, je geringer werden die Inlandspreise. Seit den 1970er Ölkrisen gab es gravierende Exportbeschränkungen in den USA. Getreu der Lehre vom „peak oil“mußte mit dem kostbaren Saft sparsam umgegangen werden. Öl und insbesondere Gas ist aber wertlos, so lange es nicht vom Bohrloch zum Verbraucher gelangen kann. Je schlechter die Transportkette ist, um so höher sind die Abschläge für den Förderer. Dies führte dazu, daß die Ölpreise in den Weiten der USA weit unter den Weltmarktpreisen lagen. Kein Anreiz für Investoren. Es wurden lieber Raffinerien an der Küste gebaut und teures Importöl verwendet. Je mehr die Exportbeschränkungen gelockert wurden, um so mehr stieg die Nachfrage an. Es trat das ein, was viele jahrelang bestritten haben: Die Preise an den Tankstellen sanken, denn plötzlich gab es Inlandsöl zu Weltmarktpreisen. Durch die Skaleneffekte sanken die Produktionskosten. Viel schneller, als sich Saudi Arabien etc. vorstellen konnten.

Der Gassektor

Ausgelöst durch die technische Entwicklung von Bohr- und Fördertechnik für Schiefergas – hier als „fracking“ bezeichnet – gab es plötzlich Erdgas im Überfluß. Die Preise fielen um mehrere hundert Prozent. Die Technik wurde schnell auf die Ölförderung übertragen. Zum Überdruss tritt aber selten Gas und Öl alleine auf. Zumeist kommt aus jeder Ölquelle auch Begleitgas und aus jeder Gasquelle zumindest auch Kondensat (damit wird Rohöl besonders dünner Konsistenz bezeichnet). Plötzlich hatte man auch – insbesondere in den Ölfördergebieten des Permian-Basin und Bakken – Erdgas im Überfluss. Es mußten schnellstens Pipelines gebaut und zusätzliche Nachfrage geschaffen werden. Übergangsweise blieb nur das Verfeuern in Gaskraftwerken, was die Sektoren Kohle und Kernenergie (vorübergehend) kräftig durcheinander brachte.

Inzwischen baut man riesige Gasverflüssigungsanlagen und eine ganze Tankerflotte. Ziel ist es, sich die weitaus höheren Weltmarktpreise für Erdgas zu erschließen. Durch die steigenden Inlandspreise kann man die Förderung weiter ankurbeln und die anderen Energiesektoren wieder weiterentwickeln.

Kohle

Die USA sind (auch noch) ein Kohlenland. Sie verfügen über riesige Vorräte, die sich überwiegend noch im Tagebau gewinnen lassen. Als Trump im Wahlkampf angetreten ist und den Bergleuten versprochen hat, ihnen ihre Arbeitsplätze zurückzugeben, hat jede Telepromter-VorleserIn in der deutschen Medienlandschaft sich bemüssigt gefühlt, ihn mit Spott und Häme zu überziehen. Inzwischen hat die erste Kohlenmine seit 45 Jahren neu eröffnet und die Produktion zieht langsam wieder an. Die Nachfrage steigt weltweit immer weiter. Nicht nur in Entwicklungsländern. Trump hat nie behauptet, daß er die Kohle ausschließlich in den USA verfeuern will. Auch hier hätte man besser zuhören sollen.

Für den Verbrauch im Inland liegt der Schlüsselpreis bei etwa 2,3 $/MMBtu (1 Million British Thermal Units entspricht etwa 293 kWh) Wärmepreis. Liegt der Erdgaspreis darunter, werden die Gasturbinen angeworfen. Steigt das Erdgas über diesen Wert, übernehmen die Kohlekraftwerke wieder die Stromproduktion. Eigentlich ein sehr flexibles System. Obama wußte das auch und hat deshalb versucht die Kohlekraftwerke durch „Klimaschutz“ auszuschalten.

Als Trump bei seinem werbewirksamen Fernsehauftritt mit Bergarbeitern den Spuk der Obama-Administration zurückgenommen hat, hat er immer wieder beschwörend den Begriff „clean coal“ benutzt. Darunter versteht man nicht einfach „saubere Kohle“, sondern es ist ein Fachausdruck für CO2-Abscheidung. Nicht etwa zum „Klimaschutz“, sondern die Ölindustrie wartet sehnsüchtig auf große CO2 Ströme. Wenn die endlich bereitgestellt werden, kann man für sehr kleines Geld die bereits versiegten Ölquellen wieder reaktivieren und die Märkte endgültig mit billigem Öl fluten. Auch dies eine Entwicklung, die in Deutschland völlig verdrängt und verschlafen wird. Hier redet man sich lieber gegenseitig von der Zukunft des Elektro-Autos besoffen.

Der politische Aspekt

In Deutschland wird den Menschen seit ihrer Schulzeit eingehämmert, daß die USA Kriege nur um Öl führen. Dies war zwar schon immer Blödsinn, gehört aber inzwischen zu den festen Glaubensbekenntnissen linker Gutmenschen. Wer ein Gefühl dafür haben will, wie tief diese Propaganda viele Amerikaner verletzt, sollte sich mal mit Veteranen des Golfkriegs unterhalten. Inzwischen schlägt die Reaktion geradezu in Trotz um. Man will nicht nur von Ölimporten unabhängig werden, sondern es den „Feinden Amerikas“ heimzahlen und ihnen ihr bequemes Leben durch Öleinnahmen wegnehmen. Es ist kein Zufall, daß auf den Bohrtürmen in Texas die amerikanische Fahne weht und viele Öltanks in der Wüste mit „remember 9/11“ verziert sind. Im konservativen Amerika hat man längst begriffen, daß die wahre Macht der USA nicht seine Bomber, sondern seine Wirtschaftskraft ist. Genau darum geht es den Kreisen um Trump und das ist der politische Hintergrund der Parole „Make America Great Again“.

Eine besondere Stellung nimmt hierbei das (alte) Europa ein. Die Kritik an den nicht eingehaltenen Zusagen über die Verteidigungsausgaben ist nur das erste Wetterleuchten am Horizont. Die Stimmung in der Bevölkerung geht schon viel weiter: Man versteht es nicht, warum Europa mit seinen Energieausgaben Rußland füttert und anschließend Amerika deshalb seine Rüstungsausgaben erhöhen muß. Auch in dieser Frage sollte man nicht vergessen, daß das Vorbild von Trump Ronald Reagan ist. Reagan hat das „Reich des Bösen“ dadurch zur Implosion gebracht, indem er auf das Wettrüsten voll eingestiegen ist und die Spirale beschleunigt hat. Man nannte diese Strategie damals in Deutschland abfällig den „Krieg der Sterne“. Nach dem Zusammenbruch des Sowjetreiches folgte eine lange Periode der Sympathie für Rußland in den USA. Inzwischen schlägt die Stimmung um: Man fühlt sich wieder bedroht und hintergangen. In der Deutschland eigenen Realitätsverweigerung und dem völligen Unverständnis der amerikanischen Mentalität wird das hier zur Wahlkampfposse zwischen Trump und den Clintons verniedlicht. Die Falken in den USA kommen langsam in eine Stimmung gegenüber Putins Reich, wie gegenüber Japan nach Pearl Harbor. Wenn Rußland weiter aufrüstet und Weltreich spielt, werden sie ihre Panzer und Kernwaffen diesmal nach nordkoreanischem Vorbild essen müssen.

Amerika bereitet sich darauf vor, die Öl- und Gaspreise jederzeit ins Bodenlose fallen lassen zu können. Staaten – wie Deutschland – die auf Rußland setzen (Ostseepipeline etc.), werden mit in den Strudel gezogen werden. Die Amerikaner bevorzugen immer simple Lösungen: O.K., wir haben im Moment keine Waffe gegen die U-Boote der Nazis, also müssen wir Schiffe schneller bauen als die Deutschen sie versenken können – hört sich aberwitzig an, hat aber funktioniert. Wenn Rußland weiter aufrüstet, o. k. dann müssen wir ihnen eben ihre einzige Einnahmequelle kaputt machen, indem wir die Energiepreise unter ihre Produktionskosten senken – einmal so betrachtet, ist die Nord-Korea-Frage ein Testlauf. Das Energiewende-Deutschland wird schon in wenigen Jahren ein böses Erwachen haben.

Die Kugelhaufen sind zurück

Weltweit tauchen Meldungen über Hochtemperaturreaktoren (HTR) mit Kugelhaufen als Kern auf. Es könnte eine Renaissance geben, wenn man es richtig anpackt.

Geschichte

Die Verwendung eines Gases als Kühlmittel geht bis auf die Anfänge der Kerntechnik zurück: 1956 ging in Calder Hall in Großbritannien das erste Magnox-Kraftwerk mit einer elektrischen Leistung von 50 MW ans Netz. Die Bezeichnung Magnox leitete sich aus dem Material für die Brennstabhüllen Magnesium und dem Kühlmittel Kohlendioxid ab. Bei dieser Werkstoffkombination ergab sich nur ein geringer Wirkungsgrad von rund 20%. Später ging man zu Brennstabhüllen aus Stahl, angereichertem Uran, höheren Drücken beim CO2 und höheren Betriebstemperaturen über. Dieser Advanced Gas Reactor (AGR) Typ ist teilweise heute noch in Betrieb, wird aber schon lange nicht mehr neu gebaut.

Das „Helium-Zeitalter“ begann 1965 in Großbritannien mit dem Dragon-Reaktor (20 MWth) und in Deutschland 1966 mit dem AVR Kugelhaufenreaktor in Jülich – eine 21 jährige Erfolgsgeschichte. Der AVR als Versuchskraftwerk ist weltweit die Mutter aller Kugelhaufen-Reaktoren bis zum heutigen Tag geblieben. Man kann mit Fug und Recht sagen, daß in Deutschland dieser mit Helium gekühlte Hochtemperaturreaktor bis zur Anwendungsreife entwickelt worden ist. Analog zu den Leichtwasserreaktoren in den USA. Ganz besonders betrifft dies die Forschung und Entwicklung der TRISO Brennelemente. Nicht auszudenken, wo der Entwicklungsstand heute wäre, wenn nicht die Wahnvorstellungen der Ökosozialisten aus SPD und Grünen über Deutschland hereingebrochen wären. Inhärent sichere Reaktoren, hohe Temperaturen auch zur Prozeßwärme, Trockenkühlung, kalte Fernwärme, Kohleveredelung: Alles deutsche Produkte, die heute weltweit (mühselig) nachvollzogen werden.

Der Unterschied

Bei Leichtwasserreaktoren (LWR) ist das Wasser Kühlmittel, Moderator („Neutronenbremse“) und Arbeitsmedium in einem. Dadurch kann man sehr kleine Kerne – nicht unbedingt Reaktoren – mit sehr hoher Leistungsdichte bauen. Genau diese hohe Leistungsdichte ist aber sicherheitstechnisch ein Problem bzw. Nachteil.

Bei den Hochtemperaturreaktoren ist das Gas ein reines Kühlmittel. Da es keinen Phasenübergang mehr gibt (vom Wasser als Flüssigkeit zum Dampf als Gas) ist der Temperatur- und Druckanstieg kontinuierlich und gemäßigt. Physikalische Explosionen sind damit ausgeschlossen. Verwendet man ein Edelgas wie Helium, sind auch chemische Reaktionen auszuschließen. Anders als bei den Störfällen von Harrisburg und Fukushima: Durch hohe Temperaturen und Trockenfallen der Brennstäbe kam es zur Wasserstoffbildung. Wie die Explosionen in Fukushima zeigten, ein ernsthaftes Sicherheitsrisiko.

Da Helium kaum mit Neutronen reagiert, wird es auch nicht aktiviert. Anders als z. B. die Kühlmittel CO2 und Wasser. Man braucht allerdings einen zusätzlichen Moderator. In diesem Falle das Reaktorgraphit der Brennelemente. Da das Bremsvermögen kleiner ist, benötigt man entsprechend mehr Volumen. Sicherheitstechnisch ist dies wiederum ein Vorteil: Man gewinnt bei einem Störfall wegen der Speicherfähigkeit wertvolle Zeit. Reaktorgraphit verträgt sehr hohe Temperaturen, ohne sich wesentlich zu verändern. Die möglichen hohen Temperaturen sind ein weiterer Sicherheitsgewinn durch passive Kühlung. Die unmittelbar nach einer Schnellabschaltung entstehende große Wärmeleistung durch den Zerfall der kurzlebigen Spaltprodukte, kann im Graphit zwischengespeichert werden. Die hohen – ohne Festigkeitseinbußen, Druckanstiege etc. – möglichen Temperaturen ergeben zur Umwelt eine große treibende Temperaturdifferenz. Die Wärmeabgabe durch Konvektion erfolgt proportional zur Temperaturdifferenz. Die Wärmeabgabe durch Strahlung sogar mit der vierten Potenz. Bei kleinen Reaktoren (Verhältnis von Oberfläche zu Volumen) ist dies ohne zusätzliche Sicherheitseinrichtungen beherrschbar. Können Brennelemente, Einbauten und Kühlmittel eine hohe Temperatur vertragen, kommt man damit automatisch zu einer inhärenten Sicherheit auch nach der Abschaltung. Ein Störfall wie in Fukushima ist – auch ohne Nachkühlung – ausgeschlossen. Es gibt keine – nicht einmal eine theoretische – Kernschmelze.

Das Arbeitsmedium

Grundsätzlich gibt es zwei Wege zur Erzeugung mechanischer Energie aus der Reaktorwärme: Über eine Heliumturbine oder eine Dampfturbine. Auch die Chinesen haben sich wie einst die Deutschen, zu einem konventionellen Dampfkreislauf entschieden. Man verfügt damit ab dem Wärmeübertrager über eine konventionelle und erprobte Kraftwerkstechnik. Wenn man unbedingt will, kann man damit einen Wirkungsgrad von nahezu 50% erzielen, wie es in modernsten Kohlekraftwerken üblich ist. Ein reines Optimierungsproblem, was bei den geringen Brennstoffpreisen eines Kernkraftwerks nicht unbedingt erforderlich ist. Wenn man bewußt auf etwas elektrischen Wirkungsgrad verzichtet, kann man Abwärme mit höherer Temperatur auskoppeln zur Verwendung in Fernwärmenetzen oder einen Trockenkühlturm verwenden. Dies wurde bereits beim THTR in Hamm-Uentrop erfolgreich vorgeführt. Die Stromerzeugung in ariden Gebieten ist ein nicht zu unterschätzender Markt. Aktuell ist z. B. Saudi Arabien und Südafrika brennend an Hochtemperaturreaktoren interessiert.

Südafrika ist bei dem Versuch einer Heliumturbine gescheitert. Zumindest die Lösung einer doppelten Aufgabe: Neuer Reaktor und neues System zur Energiewandlung, war absehbar eine Überforderung. Die unvermeidbare Verunreinigung des Heliums durch Graphitabrieb und Spaltprodukte führt zu dauerhaften Wartungsproblemen. Es sprechen aber auch grundsätzliche thermodynamische Überlegungen gegen eine Heliumturbine. Helium hat eine sehr geringe Dichte bei hoher Schallgeschwindigkeit. Bei der Entspannung in einer Düse ergeben sich sehr hohe Strömungsgeschwindigkeiten bzw. sehr hohe Schaufelgeschwindigkeiten im Verdichter. Beides führt zu notwendig hohen Drehzahlen. Ferner benötigt man bei Helium für ein vorgegebenes Druckverhältnis wesentlich mehr Stufen und Zwischenkühler als z. B. bei Luft. Zusätzlich muß man wegen der geringeren spezifischen Wärmekapazität des Heliums auch noch wesentlich größere Volumenströme umwälzen. (Hinweis für Thermodynamiker: Abschätzung über die Adiabatengleichung unter Berücksichtigung der unterschiedlichen Exponenten vornehmen.) Vermeintliche Vorteile hoher Temperaturen und Einkreissysteme werden so schnell wieder aufgefressen.

Der Brennstoff

Wie schon die Bezeichnung Kugelhaufenreaktor vermuten läßt, besteht der Kern aus Kugeln. Basis dieser Kugeln sind die TRISO (Tri-coated Isotropic) Elemente. Ein winzig kleiner Kern aus Brennstoff ist von mehreren Schichten Reaktorgraphit und einer Schutzschicht aus Siliciumcarbid ummantelt. Dies ist ein sehr flexibles Konzept. Das Brennstoffpartikel hat einen Durchmesser von weniger als einem halben Millimeter und besteht chemisch aus Oxiden oder Karbiden. Es kann aus Uran-, Plutonium- oder Thoriumisotopen im geeigneten Mischungsverhältnis bestehen. Die Kohlenstoffschichten dienen als Moderator und als Puffer für Spaltgase. Die Siliciumcarbid-Schicht dient als „Brennstoffhülle“ zur Zurückhaltung der Spaltprodukte. Das fertige TRISO-Element ist ein Kügelchen von etwa einem Millimeter Durchmesser. Aus diesen Kügelchen preßt man nun Kugeln von 50 mm Durchmesser, die noch mit einer weiteren Schutzschicht aus Graphit überzogen werden. Es ergeben sich – chemisch wie mechanisch – sehr widerstandsfähige, tennisballgroße Brennelemente.

An dieser Stelle sei vermerkt, daß man diese TRISO-Elemente auch zu Brennstäben pressen kann. Diese werden in hexagonale „Bausteine“ aus Graphit eingesetzt, aus denen man einen Kern „aufmauern“ kann. Diese Bausteine enthalten Kanäle in denen das Gas gerichtet strömen kann und auch Kontrollstäbe etc. eingesetzt werden können. Das ist das andere derzeit verfolgte Konzept für gasgekühlte Hochtemperaturreaktoren. Mit ihm lassen sich auch größere Reaktoren bauen.

Ein Haufen ist ein Haufen

Die Idee, einen schlanken Silo zu bauen und den von oben kontinuierlich mit Kugeln zu befüllen, erscheint als eine verblüffend einfache Idee. Die sich ergebenden Hohlräume zwischen den Kugeln dienen dabei dem Kühlmittel Helium zur Durchströmung. Aber wo Licht ist, ist auch Schatten. Jeder Kern eines Reaktors hat unterschiedliche Zonen mit unterschiedlichem Neutronenfluß und damit unterschiedlicher Leistung. Bei ortsfesten Brennelementen kann man z. B. über eine unterschiedliche Anreicherung diese Effekte ausgleichen. Bei einem stetig rutschenden Kugelhaufen geht das nicht.

  • Die Wege und die Durchlaufzeit einer einzelnen Kugel sind nicht vorhersagbar.
  • Man kann in dieser Schüttung praktisch keine Regelstäbe oder Meßsonden einbauen.
  • Die Strömungsverhältnisse des Kühlgases sind unbestimmt.

Dies führt alles zu stark unterschiedlichen Temperaturen, der eine Kugel bei einem Durchlauf ausgesetzt war. Auch wenn die Austrittstemperatur stets im grünen Bereich war, sind einzelne Kugeln sehr stark erwärmt worden. Je höher die gewünschte Austrittstemperatur, um so höher auch die Anzahl überlasteter Kugeln und dadurch in das Kühlmittel freigesetzte Spaltprodukte.

Nur bei kleinen Kernen kann man die unterschiedliche Leistungsverteilung durch Reflektoren an den Behälterwänden ausreichend kompensieren. In diese Reflektorschicht kann man auch Regelstäbe zur sicheren Abschaltung einführen. Zwar braucht ein Kugelhaufen nicht so viele Regelstäbe, da er ja kontinuierlich mit frischen Elementen beschickt wird und nicht den gesamten Brennstoff für den Zyklus schon am Anfang in sich haben muß (Überschußreaktivität), aber ganz kann man nicht darauf verzichten. An dieser Stelle wird klar, daß Kugelhaufenreaktoren nur als Kleinreaktoren (SMR) geeignet sind. Mit zunehmender Größe, kehren sich die Vorteile schnell in Nachteile um. Deshalb auch die andere Entwicklungsschiene, aus TRISO-Kügelchen Brennelemente als Bausteine herzustellen.

Die Sicherheit

Wenn man sich auf kleine Leistungen und moderate Austrittstemperaturen beschränkt, erhält man einen nahezu „unkaputtbaren“ Kernreaktor. Der Versuchsreaktor AVR hatte eine Leistung von 46 MWth und eine elektrische Leistung von 15 MWel. Die in China in Bau befindliche Weiterentwicklung eine thermische Leistung von 250 MWth pro Modul bei noch vernünftigen Austrittstemperaturen von 750 °C. Was spricht eigentlich wirklich gegen diese Bandbreite? Es gibt zwei riesige Märkte für „kleine“ Reaktoren: Alle dünn besiedelten Gebiete von Alaska bis Afrika und den Markt der Kraft-Wärme-Kopplung (einschließlich Fernkälte) in Ballungsgebieten. Hier kommt es auf geringen Personalaufwand für den Betrieb (möglichst automatisch) und Robustheit (Sicherheit, Zuverlässigkeit und geringe Wartung) an. Wer ein Kernkraftwerk, wie einen Schiffsdiesel baut, dem stehen hier alle Türen offen. Es ist kein Zufall, daß sich gerade Saudi Arabien für den chinesischen HTR interessiert: Ein riesiges Land, was konventionelle Stromnetze sehr teuer macht. Lokaler Bedarf nicht nur an elektrischer Energie, sondern immer auch gleichzeitig an Kälte (Klimatisierung) und Trinkwasser, bei gleichzeitigem Mangel an Kühlwasser für konventionelle Kraftwerke. Ähnliches gilt für Südafrika: Es mangelt nicht an Energie (riesige Kohlevorräte), sondern an Kühlwasser für Kraftwerke.

Die Temperaturfrage

Wir verfügen noch mindestens für Jahrhunderte über ausreichend billige fossile Energien. Je weniger man davon für Stromerzeugung und Heizung verfeuert, je länger kann man die Preise stabil halten. Es besteht also für Jahrzehnte gar keine Notwendigkeit für nukleare Prozeßwärme mit hohen Temperaturen und damit auch kein Markt! Schon allein, wenn man das Erdgas, was man heute in Kraftwerken verfeuert, zur (billigen) Wasserstoffproduktion verwendet, kann man damit die Weltmärkte überschwemmen.

Mit der Temperatur steigt der technische Aufwand exponentiell an. Temperatur ist in der Kraftwerkstechnik der Kostentreiber Nummer eins. Die Kerntechnik leidet aber bereits unter den Investitionskosten. Es ist dringend ein umlenken in die andere Richtung notwendig. Keine exotischen Experimente (Heliumturbine), sondern Einsatz erprobter Technik. Dampfturbinen mit unter 600 °C Eintrittstemperaturen um bei handhabbaren Werkstoffen zu bleiben.

Nimmt man dies als Richtwert, kommt man beim Reaktor deutlich unter 800 °C Austrittstemperatur an. Bei TRISO-Elementen ist die im Störfall freigesetzte Menge an Spaltprodukten stark temperaturabhängig. Nicht nur die maximale Temperatur im Störfall, sondern auch durchaus der Temperaturverlauf im Betrieb sind bestimmend. Je weiter man von den Grenzwerten Abstand hält, um so geringer ist die Freisetzung ins Helium. Je sauberer das Helium ist, je kleiner die potentielle Strahlenbelastung der unmittelbaren Umgebung.

Dies muß ja niemanden von der Jagd nach Temperaturrekorden abhalten. Es wird hier nur für einen ingenieurmäßigen, evolutionären Weg plädiert. Kein Ingenieur hat bei der Entwicklung der Verkehrsflugzeuge gleich Schallgeschwindigkeit gefordert. Vielleicht von geträumt, aber realistischer Weise nicht unmittelbar angestrebt.

Zusammenfassung

Wenn man konsequent die (derzeitigen) Grenzen der Technik akzeptiert und sich auf die Vorteile der Kugelhaufenreaktoren besinnt, kann man sehr schnell einen Durchbruch erzielen. Der PC hat seinen Siegeszug nicht angetreten, weil er in Konkurrenz zu Großrechnern angetreten ist, sondern weil er das „persönliche“ in den Vordergrund gestellt hat. Rausgekommen sind heute Rechner, die mehr leisten, als Großrechner in den 1960er Jahren und das zu einem „Mitnahmepreis“.

Für die Kugelhaufenreaktoren heißt das:

  • Konsequente Betonung der Sicherheit. Es ist möglich einen Rektor zu bauen, der so sicher ist, daß man ihn in einem Wohngebiet bedenkenlos aufstellen könnte.
  • Schwerpunkt auf einen automatischen Betrieb mit Fernüberwachung und geringem Wartungsaufwand.
  • Senkung der Investitionskosten durch Besinnung auf handelsübliche Technik.

Für die öffentliche Akzeptanz sind medienwirksame Vorführungen an Demonstrationskraftwerken notwendig: Trennung bei voller Last vom Netz, völliger Verlust des Kühlgases usw. Nachweis ist dabei, daß nicht mehr an Strahlung als aus einem konventionellen Kraftwerk die Grundstücksgrenze übertritt. Nur so, kann der Angstindustrie und ihrer Propaganda wirksam entgegen getreten werden.

Für die Fachwelt der Kunden (Stadtwerke, Industrie, usw.) steht die Bedienbarkeit und die Kosten im Vordergrund. Nichts ist vertrauenserweckender, als eine vertraute Technik (z. B. konventionelle Dampfturbine), mit der man sich auskennt und Erfahrung (Werkstofftechnik, Schweißtechnik etc.) hat. In diesem Sinne, kann man den Kollegen in China nur viel Erfolg auf ihrem eingeschlagenen Weg wünschen.

Kernenergie und Erdgas

In den letzten Jahren hat sich der Weltmarkt für Erdgas dramatisch verändert. Dies betrifft natürlich auch die Kernenergie.

Die Stromerzeugung

Weltweit steigt der Bedarf an elektrischer Energie weiter an. Dies wird auch noch sehr lange so bleiben, selbst wenn die Erdbevölkerung nicht mehr wachsen sollte. Der Stromverbrauch pro Kopf, ist ein unmittelbarer Indikator für den Wohlstand einer Gesellschaft. Insofern wird der Bedarf in Asien (China, Indien) und später auch in Afrika, geradezu explodieren. Die „regenerativen Energien“ – einst hat man sie treffend als „Additive Energien“ bezeichnet – sind schon wegen ihrer Zufälligkeit keine Lösung. Es bleiben nur Kernenergie und fossile Energie (Kohle, Erdgas, Öl).

Gerade in den Schwellenländern wird „king coal“ noch lange der Wachstumsmotor bleiben: Kohle ist ziemlich gleichmäßig auf der Erde verteilt, billig zu gewinnen und leicht zu transportieren und zu lagern. Ist man beim Umweltschutz nicht all zu pingelig, sind Kohlekraftwerke auch einfach, schnell und preiswert zu errichten. Dies galt in den 1950er Jahren bei uns, in China bis heute und in Afrika und Indien noch für lange Zeit. Es dauert einfach seine Zeit, bis der Wohlstandsgewinn durch eine Elektrifizierung vom „smog“ in der Wahrnehmung der Bevölkerung aufgefressen wird.

Das andere Extrem sind Kernkraftwerke: Sie erfordern einen hohen Kapitaleinsatz und eine entsprechende industrielle Infrastruktur. In China kann man die typische Entwicklung wie im Zeitraffer betrachten: Die ersten Kraftwerke wurden praktisch vollständig importiert. Wegen der hohen Stückzahlen war parallel der rasche Aufbau einer eigenen Fertigung möglich. Heute beginnt man bereits als Hersteller auf dem Weltmarkt zu agieren.

Irgendwo dazwischen, liegen Öl- und Gaskraftwerke. Sie erfordern die geringsten Kapitalkosten, haben aber die höchsten Brennstoffkosten. Bei Gaskraftwerken kam bisher noch das Vorhandensein ausreichender Gasmengen hinzu – und genau beim letzten Punkt ergeben sich gewaltige Veränderungen der Randbedingungen.

Die Shale Revolution

Erdgas ist beileibe nicht selten oder bald verbraucht. Bezieht man auch noch die Vorkommen an „Methanhydrat“ ein, so dürfte der Vorrat für Jahrtausende reichen. Man muß das Erdgas nur fördern, aufbereiten und transportieren können. Gerade der Transport stellte dabei das größte Hindernis dar. Für Gas blieb bisher nur die Rohrleitung über, die extrem unflexibel ist. Sie mußte lückenlos vom Gasfeld bis zum Kraftwerk reichen. Noch heute werden gigantische Mengen einfach abgefackelt, weil man sie nicht aufbereiten und transportieren kann.

Wie unter einem Brennglas kann man heute noch die Entwicklung in den USA betrachten. Durch die Entwicklung des „Fracking“ konnte man bis dahin nicht nutzbare Öl- und Gasvorkommen erschließen. Die Förderung ist zwar recht billig, aber das Erdgas leider auch ziemlich wertlos, weil am falschen Ort vorhanden. Mit riesigem Kapitalaufwand ist man immer noch beschäftigt, neue Aufbereitungsanlagen und Verteilnetze zu bauen. Gemessen an den Vorräten hat man damit z. B. in Iran oder Sibirien noch gar nicht begonnen. Dort steht man noch vor dem klassischen Henne-Ei-Problem. In den USA steht dem überreichlichen Angebot zumindest eine potentielle Nachfrage gegenüber. Die geringen Herstellkosten durch „Fracking“ verlocken Investoren neue Pipelines zu bauen. Trotz der Transportkosten ist der Rohstoff Erdgas in den Verbrauchszentren damit immer noch konkurrenzlos günstig. Haushalte und Industrie beginnen umzurüsten. Das braucht aber Zeit und diese Durststrecke muß überbrückt werden.

Gaskraftwerke zum Ausgleich der Nachfrage

Gaskraftwerke erfordern geringe Investitionen und sind schnell zu bauen. Sie wurden deshalb traditionell als Spitzenlast-Kraftwerke (Abdeckung von Verbrauchsspitzen an wenigen Stunden im Jahr) gebaut. Nun sind sie da. Bekommt man an seinem Standort einen besonders günstigen Erdgaspreis, kann man sie jederzeit länger laufen lassen. Betriebswirtschaftlich entscheidend ist einzig die Relation zu anderen Brennstoffen. Dies ist der Grund, warum z. B. die Stromproduktion aus Kohle in den USA stark eingebrochen ist. Der Brennstoffpreis hat die Kohle verdrängt, nicht irgendwelcher „Klimaschutz“. Umgekehrtes gilt in Deutschland: Das „Russengas“ ist – noch – viel zu teuer, sodaß Kohlekraftwerke immer noch preisgünstiger produzieren können. Die Stadtwerke gehen an ihren „umweltfreundlichen“ Gaskraftwerken langsam pleite. Eine klassische Fehlinvestition auf Grund von ideologisch bedingter Fehlsichtigkeit.

Wohin die Entwicklung langfristig geht, kann man bereits in den Golfstaaten erkennen. Dort war Erdgas mehr Abfall als Wirtschaftsgut. Folgerichtig hat man konsequent auf eine Verstromung in Gaskraftwerken gesetzt. Parallel hat man sich aber weltweit neue Absatzmärkte für Erdgas erschlossen und damit den Preis im eigenen Land systematisch nach oben gezogen. In den Vereinigten Emiraten ist man nun an einem Punkt angekommen, wo es günstiger ist, elektrische Energie in Kernkraftwerken zu produzieren. Wohl gemerkt, in den Emiraten. Frei von Rot-Grüner Ideologie, in atemberaubend kurzer Bauzeit, zu günstigen Weltmarktpreisen. Wenn man sich nicht nur im „öko-sozialistischen Nebel“ bewegt, dürft ziemlich klar sein, wohin die Reise geht: Allein China hat gerade die Taktfrequenz (nur in seinem eigenen Land!) auf den Bau von einem Reaktor alle zwei Monate erhöht!

Neues Spiel durch LNG

Bisher hatte Erdgas einen enormen Nachteil zu überwinden: Gas ließ sich nur in Rohrleitungen oder kleinen Gasflaschen transportieren. Dadurch war z. B. der gesamte Verkehrssektor tabu und mußte dem Öl überlassen werden. Die ausschließliche Verbindung zwischen Verbraucher und Produzenten durch Rohrleitungen ist äußerst starr und damit anfällig für jegliche Risiken.

Erdgas war praktisch ein reiner Brennstoff, der nur in Konkurrenz zum Heizöl stand. Insofern war es auch logisch und richtig, die Preisentwicklung an den Rohölpreis zu koppeln. Wer sich einmal an eine Rohrleitung angeschlossen hat, hätte nur bei einer extremen Verbilligung des Heizöls ein Interesse gehabt, zurück zum Öl zu wechseln. Durch die massive Markteinführung von LNG (Liquified Natural Gas) hat sich das Blatt gewendet. Plötzlich gibt es eigene Handelsorte mit eigenen Preisindizes (z. B. Henry Hub) wie schon lange beim Rohöl üblich (z. B. Brent oder WTI). Wo ein funktionierendes Handelsprodukt an einer Börse existiert, wird das notwendige Kapital magisch angezogen. Die Transparenz wirkt dabei wie ein Reaktionsbeschleuniger. Ganz im Gegenteil zu Hinterzimmern, in denen politische Männerfreundschaften (Schröder/Putin) gepflegt werden.

Bisher völlig unterschätzt, wird dabei die Wandlung vom Brennstoff zum Treibstoff. In Windeseile bilden sich Transportketten bis in die letzten Häfen der Welt. Geschickt unter dem Mäntelchen Umweltschutz verkauft, beginnt sich die Weltschifffahrt ein völlig neues Bein als Treibstoff zu erschließen. Gibt es erstmal in jedem größeren Hafen ein Lager und eine Tankstelle für LNG, kommt im nächsten Schritt die Binnenschifffahrt dran (geschieht bereits auf dem Rhein) und als nächstes Eisenbahn (Diesellokomotiven) und schwere LKW. Beides in den USA schon im Ausbau. Hier wird das Henne-Ei-Problem zielstrebig gelöst. Stehen erstmal die Lieferketten, kann der Generalangriff auf die etablierten Gasversorger erfolgen. Wenn Gazprom glaubt, seine hohen Gaspreise auch weiterhin durchsetzen zu können, sollen sie mal weiter träumen. Man wird über die unzähligen Terminals in den europäischen Häfen (gerade nicht in Deutschland!) LNG einspeisen und erstmal die Großverbraucher mit günstigen Angeboten abwerben. Es ist mit Sicherheit kein Zufall, daß z. B. ein neues LNG-Terminal in Swinemünde – nur wenig entfernt von der Anlandungsstelle (Greifswald Lubmin) von Nord Stream – gebaut wurde. Es dient nicht nur der Absicherung Polens gegen die Launen Putins, sondern wird der Grundstock eines Handelspunktes werden, in den auch Gazprom gern einspeisen kann – allerdings zu Weltmarktpreisen und nicht zu Konditionen des Kreml. Notfalls sind z. B. Tankwagen in wenigen Stunden im Verbrauchsschwerpunkt Berlin angekommen. Dies wird die Preisverhandlungen Berliner Kraftwerke noch grundlegend beeinflussen. Ein Leitungsmonopol wird es zukünftig nicht mehr geben. Gazprom könnte das gleiche Schicksal erleiden, wie die Telekom nach „Erfindung“ des Mobiltelefons.

Was macht LNG so anders?

Verflüssigtes Erdgas LNG ist nahezu reines Methan, ohne chemische Verunreinigungen (z. B. Schwefel) und somit einfach (ohne Nachbehandlung) und schadstoffarm zu verbrennen. Es ist sehr klopffest, sodaß es sogar problemlos in Diesel- und Ottomotoren verbrannt werden kann.

Entscheidend ist seine hohe Energiedichte, die etwa 60% von herkömmlichem Kraftstoff beträgt. Weit mehr, als Batterien je erreichen werden. Es ist deshalb ohne all zu große Einbußen an Raum und (totem) Gewicht in Schiffen und LKW einsetzbar. Eine Betankung ist – wie bei allen Flüssigkeiten – schnell und einfach durchführbar.

Nachteil ist die Herstellung: Um die Volumenverkleinerung (1/600) zu erzielen, muß das Erdgas auf etwa -160 °C abgekühlt und gehalten werden. Eine ziemlich aufwendige Technik. Allerdings beherrscht man heute die erforderlichen Schritte sicher. Für die Herstellung und den Transport werden rund 15% des eingesetzten Gases verbraucht. Die Verdampfung aus dem Tank ist nur bei Stillstand ein Verlust, da sonst der „Abdampf“ sofort als Treibstoff genutzt werden kann. Die heutigen „Thermoskannen“ sind so gut geworden, daß sie z. B. als Container über weite Strecken geschickt werden können.

Die Angebotsseite

Der Weltmarkt wächst in den letzten Jahren rasant. 2012 gab es etwa 100 Verflüssigungsstränge mit einer Kapazität von über 297 MMPTA (Hinweis: Wer sich mit Erdgas beschäftigt, muß sich an etliche skurril anmutende Einheiten gewöhnen. 1 MMPTA ist 1 Million metrischer Tonnen pro Jahr.). BP prognostiziert, daß in den nächsten fünf Jahren etwa alle acht Wochen weltweit ein neuer Strang den Betrieb aufnehmen wird. Allein bis 2016 werden in Australien neue Kapazitäten mit 25 MMPTA fertiggestellt. Der Kapitaleinsatz kann sich dabei durchaus mit der Kerntechnik messen. Allein Chevrons Gorgon Projekt (15,6 MMPTA) hat dann über 54 Milliarden US-Dollar gekostet. In den USA sind bis 2020 weitere 58 MMTPA in Planung.

An dieser Stelle erscheint es sinnvoll, sich etwas mit den Relationen vertraut zu machen. Am 24.2.2016 verließ der erste Export-Tanker das Sabine Pass Terminal in USA. Er hatte 3,4 Bcf geladen. Mit diesen 3,4 Milliarden Kubikfüßen (1 Kubikmeter entspricht etwa 35 Kubikfüßen) ist das Gasvolumen nach der Rückverdampfung gemeint. Es entspricht einem Ladungsgewicht von rund 250 000 to – also ein typischer Tanker. Setzt man einen solchen Tanker mit der Nord Stream Pipeline in Vergleich, die eine Kapazität von 55 Milliarden Kubikmetern pro Jahr hat, erkennt man, daß etwa 10 solcher Tanker pro Woche nötig wären, um diese Pipeline komplett zu ersetzen.

Die Preisfrage

Erdgas ist zwischen Öl – als nahem Verwandten – und Kohle eingeklemmt. Die internationale Handelseinheit für Rohöl ist das Faß (1 bbl = 159 l), dessen Heizwert man mit rund 5,8 MMBtu (1 Million British Thermal Unit = 293 kWh) ansetzt. Man muß also die internationale Handelseinheit 1 MMBtu vom Erdgas lediglich mit dem Faktor 5,8 multiplizieren, um das „Öläquivalent“ zu erhalten. Man nennt das auch neudeutsch die „Btu crude ratio method“. Bei Kohle ist es etwas komplizierter, weil spezieller: Die Heizwerte von Kohlen sind sehr verschieden. Ein typischer Richtwert ist der API-2 Index oder die „Rotterdamkohle“ (1 to hat 23,8 MMBtu). Aktuell gilt z. B. für Rohöl (WTI) 35,92 US-Dollar für ein Faß. Somit wäre das Gasäquivalent etwa 6 US-Dollar pro 1 Million Btu. Der Börsenpreis (Henry Hub) betrug aber lediglich 1,67 US-Dollar für eine Million Btu. Die Tonne „Rotterdamkohle“ kostete rund 46 US-Dollar pro Tonne, entsprechend einem Gasäquivalent von 1,93 US-Dollar für eine Million Btu. Da international alle Energieträger miteinander verknüpft sind, erkennt man aus den letzten Relationen, warum der Kohleverbrauch in den Kraftwerken der USA um über 30% eingebrochen ist. Dies ist nicht dem „Klimaschutz“, sondern der harten Hand des Marktes geschuldet. Andererseits liegt der aktuelle Gaspreis an der Leipziger Börse bei rund 4 US-Dollar für eine Million Btu. Auch hier ist der Grund deutlich zu erkennen, warum in Deutschland immer noch – und zukünftig, nach erfolgtem „Atomausstieg“, noch viel mehr — „king coal“ die Stromerzeugung dominiert.

Internationale Aussichten

Die mit Abstand größten LNG-Importeure sind Japan und Korea. Beide setzen konsequent auf den Ausbau von Kernenergie und Kohle. Bereits jetzt ist der Verbrauch in Japan schon wieder rückläufig. Mit jedem Kernkraftwerk, das wieder in Betrieb geht, wird er weiter abnehmen. Auch China hat nicht den Zuwachs im Gasverbrauch, den viele einmal erwartet haben. Kohle läßt sich schon aus sozialpolitischen Gründen nicht so schnell und einfach zurückfahren. Gleichzeitig wurde der Ausbau der Kernenergie noch beschleunigt.

An dieser Stelle scheint eine Verdeutlichung des Erdgasbedarfs in der Stromwirtschaft nötig. Ein Kernkraftwerk würde je 1000 MW Leistung und einer üblichen Auslastung von 90% 44,84 Millionen MMBtu Erdgas pro Jahr, gegenüber einem modernsten Kombikraftwerk (Wirkungsgrad von 60%) einsparen – oder anders ausgedrückt 0,14 Bcf/d. Allein die Erdgasförderung in den USA beträgt rund 74 Bcf/d. Dies erklärt, warum 2015 dort die Stromerzeugung aus Kohle (1356 TWh) und Erdgas (1335 TWh) erstmalig ebenbürtig waren. Die Kohlekraftwerke in USA werden zukünftig die Funktion einer Preisbremse für Erdgas übernehmen und damit den Weltmarktpreis für LNG maßgeblich beeinflussen.

Genau auf die nahen asiatischen Absatzgebiete hat Australien mit seinem massiven Ausbau gesetzt. Nun läßt sich aber die Produktion wegen der hohen Kapitalkosten nicht einfach anhalten, sondern man muß praktisch um jeden Preis verkaufen, damit man die Schulden bedienen kann. Die LNG-Preise werden damit in Asien weiter fallen, was die Exporteure in USA und im mittleren Osten weiter unter Druck setzt. So sind z. B. die Frachtkosten von den Verflüssigungsanlagen nach Asien rund dreimal höher als ins „nahe“ Europa. Für Deutschland als Industriestandort, mit seiner einseitigen Ausrichtung auf „Wind und Russengas“, ziehen deshalb rasch dunkle Wolken auf.

Kernenergie als Heizung?

Pünktlich zum Jahresanfang hat sich wieder der Winter eingestellt – trotz aller Beschwörungen der Medien zur Weihnachtszeit. Es ist deshalb angebracht, sich einmal mehr mit dem Thema Heizung zu beschäftigen.

Der Anteil am Energieverbrauch

Der Primärenergieverbrauch in Deutschland – und ähnlichen Regionen auf der Nord- und Südhalbkugel – läßt sich grob in die Bereiche Stromerzeugung, Verkehr und Heizung (Niedertemperaturwärme) unterteilen. Diese Aufteilung ist ein Kompromiß zwischen einer rein energetischen Gruppierung (Kohle, Öl, etc.) und üblichen volkswirtschaftlichen Betrachtungen (Privat, Industrie etc.). Ganz grob kann man sagen, daß in Ländern wie Deutschland jeweils ein Drittel des Primärenergieeinsatzes auf diese drei Sektoren entfallen. Der hohe Anteil der Raumwärme mag auf den ersten Blick manchen verblüffen. Besonders bemerkenswert ist dabei, daß sich dieser Anteil keinesfalls verringert, sondern eher noch zunimmt – trotz aller technischer Fortschritte bei den Gebäuden (Heizungssysteme, Wärmedämmung etc.). Eine wachsende Bevölkerung mit steigenden Komfortansprüchen (Wohnungsgröße und Ausstattung) verbraucht auch immer mehr „Raumwärme“. Hinzu kommt die ständig wachsende Infrastruktur in der Form von Krankenhäusern, Hallenbädern, Sporthallen, Einkaufscentern,Verwaltungsgebäuden usw.

Bemerkenswert ist auch, wie sich auf diesem Gebiet die allgemeine Entwicklung der Energietechnik widerspiegelt: Alles begann mit dem Holz am Lagerfeuer und dieser Brennstoff blieb für Jahrtausende bestimmend. Auch die „Energieeffizienz“ ist keine Erfindung heutiger Tage. Die Entwicklung ging von der offenen Feuerstelle bis zum Kachelofen – immer aus den gleichen Gründen: „Komfort“ und „Kosteneinsparung“. Nachdem man die Wälder fast abgeholzt hatte und die „Bedarfsdichte“ in der Form von großen Städten immer weiter anstieg, ging man zur Kohle über. Nachdem die Luftverschmutzung bedrohliche Ausmaße angenommen hatte, begann das Zeitalter der „Zentralheizung“ und der Brennstoffe Öl und Gas. Das ist – auch in Deutschland – nicht einmal eine Generation her!

Das Problem von Leistung und Energie

Wir Menschen streben in unseren Behausungen ganzjährig möglichst gleichmäßige Temperaturen um die 20 °C an. Das Wetter spielt uns aber einen Streich. Die Außentemperaturen schwanken in unseren Breiten von rund -20 °C bis rund +35 °C. Wir müssen also heizen oder kühlen, um unsere Ansprüche zu erfüllen. Extreme Temperaturen sind aber selten, sodaß wir überwiegend nur wenig heizen oder kühlen müssen. Dies stellt unsere Anlagentechnik vor große technische und wirtschaftliche Probleme. Ist beispielsweise eine Zentralheizung für eine Außentemperatur von -10 °C ausgelegt, so muß sie an Tagen mit 0 °C nur noch 2/3 ihrer Leistung und an Tagen mit +10 °C gar nur noch 1/3 ihrer Leistung bereitstellen. Einzig die Warmwasserbereitung fällt das ganze Jahr über an. Sie kann je nach Geräteausstattung (Geschirrspüler, Waschmaschine) und „Wärmedämmstandard“ des Gebäudes, einen beträchtlichen Anteil an den Heizkosten haben. Anders verhält es sich mit der Energie – das ist das Öl oder Gas auf unserer Heizkostenabrechnung – von dem mehr an den häufigen milden Tagen, als an den wenigen Extremen verbraucht wird.

Inzwischen setzt sich auch die Erkenntnis durch, daß alle „Energiesparmaßnahmen“ (Wärmedämmung, Zwangslüftung etc.) erhebliche Investitionskosten erforderlich machen. Letztendlich nur eine Frage von „Kaltmiete“ und „Heizkosten“. Darüberhinaus stellen sich noch Fragen der Architektur (Bestand, Denkmalschutz etc.) und vor allem der Gesundheit (Schimmelpilz etc.). Die „Nullenergiehäuser“ sind nichts weiter, als eine ideologische Kopfgeburt.

Zentral oder dezentral

Bei jeder Verbrennung entstehen auch Schadstoffe. Bei Einzelfeuerungen sind sie technisch praktisch nicht in den Griff zu bekommen und noch weniger zu überwachen. Wer Öfen fordert, braucht sich um Feinstaub und krebserregende Stoffe in seiner Umwelt keine Gedanken mehr zu machen. Passives Rauchen und Autofahren wird heute von grünen Gesinnungstätern mit Körperverletzung gleichgesetzt. Demgegenüber wird der Gestank und das Gift aus Holzheizungen romantisiert und als „klimafreundlich“ verkauft.

Nicht zuletzt die Brennstoffver- und Ascheentsorgung stellte in dichtbesiedelten Gegenden ein Problem dar. Ende des 19. Jahrhunderts installierte man dafür z. B. in Chicago spezielle U-Bahn-Systeme. Nachdem sich Zentralheizungen in modernen Gebäuden durchgesetzt hatten, boten sich Fernwärmesysteme (Dampf oder Heißwasser bzw. Kaltwasser zur Klimatisierung) an. Interessanterweise hat man von Anfang an Abwärme aus Kraftwerken (sog. Kraft-Wärme-Kopplung) für die Heizungen verwendet. Eine wesentlich bessere Auslastung konnte man erreichen, indem man im Sommer die Fernwärme für die Klimaanlagen nutzte (Absorptionskälteanlagen).

Ein Vorteil der zentralen Versorgung ist die umweltfreundliche Erzeugung. Nur Anlagen ab einer gewissen Größe kann man mit Filteranlagen, Betriebspersonal, einer ständigen Abgasanalyse usw. ausstatten. Dezentral (Gas- oder Ölkessel) muß leider passen, denn die jährliche Kontrolle durch den Schornsteinfeger kann damit nie mithalten.

Direkte oder indirekte Nutzung der Kernenergie?

Es gibt grundsätzlich drei Wege, die Kernenergie für die Gebäudeklimatisierung (Heizung und/oder Kühlung) zu nutzen:

  1. Einsatz der in einem Kernkraftwerk erzeugten elektrischen Energie um damit direkte elektrische Heizungen (z. B. Nachtspeicher oder Radiatoren) oder indirekte Systeme (Wärmepumpen und Kältemaschinen) zu betreiben. Dies ist ein sehr flexibler Weg, der besonders einfach ausbaubar ist. Bevorzugt wird er in Gegenden angewendet, in denen nicht so extreme Temperaturen (z. B. Südfrankreich) vorherrschen oder extrem unterschiedliche Nutzungen der Gebäude in Verbindung mit Leichtbau und Wärmedämmung (Schweden) vorliegen.
  2. Kraft-Wärme-Kopplung. Man koppelt aus der Turbine eines Kernkraftwerks Dampf – der bereits zum Teil Arbeit zur Stromerzeugung geleistet hat – aus und nutzt ihn über ein vorhandenes Rohrnetz. Einst wurde dies sogar in Deutschland gemacht (stillgelegtes Kernkraftwerk Stade) und seit Jahrzehnten bis heute in der Schweiz (KKW Beznau für die „Regionale Fernwärme Unteres Aaretal“). Allerdings erfordert dies Kernkraftwerke, die sich möglichst nahe an Ballungsgebieten befinden.
  3. Man würde reine „Heizreaktoren“ bauen, die nur Wärme – wie ein konventioneller Heizkessel – für ein Fernwärmenetz liefern. Der Sicherheitsgewinn wäre so entscheidend (siehe nächster Abschnitt), daß man sie in den Städten bauen könnte. Eine Optimierung mit Wärmespeichern oder Spitzenlastkesseln könnte zu optimalen Ergebnissen bezüglich Kosten, Versorgungssicherheit und Umweltbelastungen führen.

Der nukleare Heizkessel

Gebäudeheizungen benötigen nur Vorlauftemperaturen unterhalb 90 °C. Will man auch noch Kälte für Klimaanlagen mit Hilfe von Absorptionskälteanlagen (üblich Ammoniak und Lithiumbromid) erzeugen, empfiehlt sich eine Temperatur von 130 °C bis 150 °C im Vorlauf des Fernwärmenetzes. Dabei gilt: Je höher die Temperaturspreizung zwischen Vor- und Rücklauf ist, um so größer ist die transportierte Leistung und damit werden die erforderlichen Rohrdurchmesser um so kleiner. Bei sehr großen Leistungen (Hochhäuser und beengte Rohrleitungstrassen) muß man sogar auf ein Dampfnetz mit seinen spezifischen Nachteilen übergehen.

Für wirtschaftliche und sicherheitstechnische Bewertungen ist es ausschlaggebend, sich einen Überblick über das erforderliche Druckniveau zu verschaffen. Will man Wasser bei 90 °C verdampfen, benötigt man einen Druck von 0,7 bar, bei 130 °C von 2,7 bar und bei 150 °C von 4,8 bar. Umgekehrt gilt, man muß mindestens diese Drücke aufrecht erhalten, wenn man eine Verdampfung verhindern will. Alles meilenweit entfernt von den Zuständen, wie sie in jedem Kernkraftwerk herrschen.

Bei dem erforderlichen Druck- und Temperaturniveau könnte man also einen preiswerten „nuklearen Heizkessel“ zum Anschluß an Fernheizungssysteme bauen ohne irgendwelche Abstriche an der Sicherheitstechnik machen zu müssen. Damit man möglichst viele Gebiete erschließen kann, empfiehlt sich ohnehin: Je kleiner, je lieber. Man könnte diese „nuklearen Heizkessel“ als „nukleare Batterien“ bauen, die komplett und betriebsbereit zur Baustelle geliefert werden und erst nach Jahrzehnten wieder komplett zum Hersteller zurück transportiert werden. Dort könnten sie überarbeitet und der Brennstoff nachgeladen werden. Es bietet sich damit ein interessantes Leasingmodell für Gemeinden an: Für Jahrzehnte billige Heizkosten zu garantierten Festpreisen.

Notwendige Entwicklungen

Eigentlich nicht viel, nimmt man Reaktoren für Schiffe als Ausgangspunkt. So hatte der Reaktor der Otto Hahn eine thermische Leistung von 38 MW. Sein Auslegungsdruck betrug 85 bar bei einer Temperatur von 300 °C. Für einen „nuklearen Heizkessel“ schon viel zu viel. Trotzdem kam man mit Wandstärken von rund 50 mm aus. Er hatte eine Höhe von 8,6 m und einen Durchmesser von 2,6 m. Schon klein genug, um die ganze Fernwärmestation in einem mittleren Gebäude unterzubringen.

Wichtig ist, daß man bei den notwendigen Drücken und Temperaturen mit handelsüblichen Werkstoffen auskommt und nur (relativ) geringe Wandstärken benötigt. Dies vereinfacht die Fertigung und verringert die laufenden Kosten. Ausgehend von Leichtwasserreaktoren sind auch alle Berechnungsverfahren bekannt, erprobt und zugelassen. Die Konstruktion und das Zulassungsverfahren könnten sofort beginnen. Ein Bau wäre in wenigen Jahren realisierbar.

Wirtschaftliche Einflüsse

Die Investitionskosten sind natürlich höher als bei einem konventionellen Heizkessel. Dafür sind die Brennstoffkosten vernachlässigbar, sodaß sich trotzdem sehr attraktive Heizkosten ergeben würden. Betriebswirtschaftlich ist immer die Anzahl der „Vollbenutzungsstunden“ ausschlaggebend. Zumindest in der Anfangsphase sollte daher nur die Grundlast (Warmwasser, Klimatisierung und Heizlast in der Übergangszeit) eines Fernwärmenetzes abgedeckt werden. Die Spitzenlast könnte – wie heute – weiterhin durch Öl- oder Gaskessel bereitgestellt werden.

Der nächste Schritt könnte eine Wärmespeicherung sein. Das Wetter (Außentemperatur, Wind und Sonne in ihrem Zusammenwirken) ändert sich ständig. Tagelange Kälteperioden mit satten Minusgraden sind in Deutschland eher selten. Gebäude und das Fernwärmenetz selbst, besitzen bereits eine erhebliche Speicherfähigkeit. Die Anforderung der Heizleistung wird bereits dadurch gedämpft. Mit relativ kleinen Zusatzspeichern kann man daher die Auslastung erheblich verbessern. Beispiel hierfür sind die handelsüblichen Brauchwasserspeicher in unseren Gebäuden. Großtechnische Speicher mit mehreren GWh sind bereits in bestehenden Fernwärmenetzen installiert. Wie gesagt, alles kann schrittweise erfolgen. Je nach Entwicklung der Brennstoffpreise und verordneten Nebenkosten (Luftverschmutzung etc.).

Heute wird immer weniger Kohle zur Heizung eingesetzt. Der Trend zu Öl und insbesondere Gas, hält unvermittelt an. Durch die Verwendung von Kernenergie für die Gebäudeheizung kann man sofort beträchtliche Mengen davon für Industrie und Verkehr zusätzlich verfügbar machen. Eine wesentlich wirksamere Maßnahme als z. B. das „Elektroauto“. Wo und wann wird denn die Luftverschmutzung unerträglich: In den Großstädten und (in unseren Breiten) im Winter. Eine abgasfreie Heizung würde eine durchschlagende Verbesserung bewirken. Holzheizungen und Faulgas sind Wege in die falsche Richtung, die die Belastung für Natur und Menschen nur unnötig erhöhen. Feinstaub z. B. kommt nicht nur aus dem Auspuff, sondern vor allem aus den unzähligen Kaminen.

Kohle, Gas, Öl, Kernenergie? – Teil 1

Wenn man sich über die Zukunft der Energieversorgung einen Überblick verschaffen will, darf man die aktuellen Entwicklungen bei den fossilen Energieträgern nicht außer acht lassen. Insbesondere für die Stromversorgung wird das gegenseitige Wechselspiel dieser Energieträger auch weiterhin bestimmend bleiben.

Am Anfang steht die Kohle

Kohle ist der billigste Energieträger, sofern man

  • billige Arbeitskräfte zur Verfügung hat. Dies war in der Vergangenheit in Europa genauso der Fall, wie heute noch in Indien, China und Afrika. Mit steigendem Lohnniveau steigen auch die Produktionskosten der Kohle. Je höher der Entwicklungsstand einer Industriegesellschaft ist, je geringer ist der Anteil der Kohle an den verbrauchten Primärenergieträgern. Man könnte auch sagen, je einfacher es ist einen Arbeitsplatz außerhalb eines Bergwerkes zu finden.
  • Günstige geologisch Verhältnisse und kostengünstige Transportwege hat. Es lohnt sich sogar in Deutschland (minderwertige) Braunkohle in rationellen Tagebauen zu gewinnen oder Steinkohle über preiswerte Schiffstransporte aus anderen Kontinenten herbeizuschaffen.
  • Kohle umweltbelastend verbrennen kann. Kohle verbrennt nicht rückstandslos, sondern bildet Asche, die Mineralien, Schwermetalle und radioaktive Stoffe enthält. Ferner entstehen z. B. schweflige Säure und Stickoxide. Alles Dinge, die man nicht so gern in der Atemluft oder dem Trinkwasser haben will.

Der letzte Punkt ist entscheidend und wird oft übersehen. In einem armen Land beginnt die wirtschaftliche Entwicklung immer mit Umweltbelastungen. Die Belastung wird gegenüber dem Wohlstandsgewinn nicht als negativ empfunden. Außerdem gilt auch hier wieder die Konzentration: Die wenigen Anlagen mit hohem Schadstoffausstoß können (noch) gut von Mensch und Natur ertragen werden. Ab einem gewissen Punkt schlägt diese Entwicklung ins Gegenteil um. Das war vor etwa 60 Jahren im Ruhrgebiet nicht anders als heute in Peking.

Ein schornsteinloses Kraftwerk nach deutschem Standard (Entstaubung, Entstickung und Rauchgaswäsche) kostet aber bereits heute in China oder Indien mehr als ein Kernkraftwerk. Es setzen Ausweichbewegungen auf breiter Front ein. Der relative Anteil an dem Primärenergieverbrauch sinkt. Wo – zumindest kurzfristig – keine Ersatzbrennstoffe in ausreichender Menge zur Verfügung stehen, wird ein Teil der Kohle bereits an der Grube in Gas und flüssige Kohlenwasserstoffe umgewandelt. Solche Anlagen sind aber sehr teuer und verlagern die Umweltbelastungen oft nur oder erzeugen neue Probleme. Solche Anlagen benötigen z. B. große Mengen Wasser. China plant z. B. gigantische Industrieanlagen zur Produktion von synthetischem Erdgas aus Kohle ausgerechnet in seinen Wüstengebieten, das dann mit Pipelines in die Verbrauchszentren nahe der Millionen-Städte transportiert werden soll. Man hofft, einen Teil der in solchen Anlagen zur Veredelung zusätzlich verbrauchten Energie über Kernreaktoren bereitstellen zu können. Auch kein ganz neuer Gedanke: In Deutschland startete man einst die Entwicklung der Hochtemperaturreaktoren unter dem Slogan Kohle und Kernenergie.

Erdgas als saubere Energiequelle

Vielfach wird die Lösung aller Probleme im Erdgas gesehen. Erdgas ist ein sauberer Brennstoff der keinen Schwefel (mehr) enthält, keine Asche hinterlässt und sich besonders einfach und umweltfreundlich (geringe Stickoxidbildung) verbrennen läßt. Erdgaskraftwerke sind außerdem die Kraftwerke mit den geringsten Investitionskosten und der kürzesten Bauzeit. Auch in der Industrie und der Gebäudeheizung ist Erdgas universell gut einsetzbar.

Erdgas hat nur einen Nachteil, es ist ein teurerer Brennstoff – zumindest in großen Teilen der Welt. Allerdings hat sich durch technologische Sprünge in den letzten Jahren bei der Nutzung von Schiefergas (shale gas), tight gas in schwer durchlässigen Sandsteinschichten und Kohlenflözgas aus unwirtschaftlichen Lagerstätten, eine völlig neue Situation ergeben. Unterstütz wird diese Entwicklung durch die Fortschritte bei der Verflüssigung von Erdgas. Durch sie wird es möglich, einerseits Erdgasvorkommen in entlegensten Regionen nutzbar zu machen und andererseits völlig neue Anwendungen auf der Verbrauchsseite zu erschließen (Antrieb von Schiffen und schweren LKW).

Um diese Entwicklung besser zu verstehen, scheint es nötig, etwas näher auf diese Technologie einzugehen. Genauer gesagt handelt es sich um die neuartige Kombination dreier bekannter Techniken: Die großräumige Erschließung dünner Schichten durch „waagerechte“ Bohrungen, die genaue räumliche Bestimmung solcher Schichten durch neue Meßverfahren und verbesserte Berechnungen und das „aufsprengen“ solcher Schichten durch Flüssigkeiten (hydraulic fracturing oder kurz „fracking“).

  1. Um eine solche Lagerstätte anbohren zu können, muß man sehr genau die Schichtung kennen. Hierzu wird der Untergrund mit Schallwellen durchleuchtet. Neuartig ist die vierdimensionale Auswertung der Meßwerte. Aus den empfangenen Echos kann ein genaues räumliches Bild der Erdschichten erstellt werden. Diese Schichten können auch noch in ihrem zeitlichen Verlauf über die Nutzung simuliert werden. Allerdings sind hierfür unvorstellbar viele Rechenoperationen nötig. In den Rechenzentren dieser Firmen stehen die zur Zeit schnellsten Rechner. Sie werden lediglich (geringfügig) von der Leistung der Rechner in den Kernforschungszentren übertroffen.
  2. Das Bohren bis in die Tiefe der Lagerstätten erfolgt völlig konventionell: Während des eigentlichen Bohrvorganges wird das Loch durch die Spülflüssigkeit (mud) stabilisiert. Sie muß nicht nur das Bohrklein nach oben transportieren, die Wand stützen, absperren gegen eindringende Flüssigkeiten, sondern soll auch kühlen und schmieren. Der „mud man“ ist auf jeder Bohrstelle einer der wichtigsten Spezialisten, der seine Spülflüssigkeit ständig den sich ändernden Verhältnissen anpassen muß. Bei den Herstellern seiner Zutaten handelt es sich um eine milliardenschwere Industrie, die nur eingeweihten vertraut ist. Nach und nach wird das Bohrloch mit Stahlrohren ausgekleidet, die jeweils gegenüber dem Gestein durch Zementinjektionen verankert werden. Bis es überhaupt zum „fracking“ kommt, ist das Bohrloch mit mehreren solchen konzentrischen Schichten ausgekleidet. Nach jeder Schicht wird durch eine Druckprobe deren Dichtigkeit festgestellt. Dieser Arbeitsschritt wird so ausführlich geschildert, um den Schauergeschichten von einer Gefahr für das Grundwasser entgegen zu treten. Bis hierhin handelt es sich um die gleichen Arbeitsschritte, wie bei jeder anderen konventionellen Bohrung auch. Das Risiko einer Verseuchung (von oberflächennahen Trinkwasserschichten) ist mithin genauso groß – oder besser – klein. Die Lagerstätten liegen zudem hunderte Meter unterhalb jeder nutzbaren Grundwasserschicht.
  3. Ist die notwendige Tiefe erreicht, wird die Bohrung in die Horizontale umgelenkt. Hierzu ist es notwendig, auf einen durch einen Motor unmittelbar hinter der Krone angetriebenen Bohrer zu wechseln. Ein solcher Motor ist üblicherweise ein Schneckenantrieb, der einem Fleischwolf ähnelt. Die Spülflüssigkeit treibt die Schnecke vor ihrem Austritt aus der Bohrkrone an. Wegen der sich ständig ändernden geologischen Verhältnisse ist es schon nicht einfach, senkrecht nach unten zu bohren. Einer Schicht im Untergrund auf wenige Dezimeter genau zu folgen, ist eine Kunst. Man muß ständig messen, wo man sich genau in der zu folgenden Schicht (siehe Punkt 1) befindet und dem Verlaufen des Bohrers ständig korrigierend entgegenwirken. Hierzu dienen hydraulisch ausfahrbare Leisten am Bohrgestänge. Durch eine individuelle Ansteuerung können sie sich an der Bohrwand abdrücken.
  4. Ist die Bohrung in einer mehrere Kilometer langen Schicht fertig, beginnt erst das eigentliche „fracking“. Anfangs hat man in einem Schritt auf der ganzen Länge Risse erzeugt. Heute geht man in bis zu 30 einzelnen Abschnitten vor. Hierzu werden mit Sprengladungen kleine Anrisse in der Wand des Lochs erzeugt. Anschließend wird ein Flüssigkeits-Sand-Gemisch unter hohem Druck hinein gepreßt. Die Flüssigkeit bricht das Gestein auf und der Sand soll die entstandenen Risse dauerhaft offen halten. Wichtig zum Verständnis der Gefahren ist dabei, daß hier viele kurze Risse erzeugt werden. Man will ja gerade nicht die dünne gasführende Schicht durchdringen, sondern man will das enthaltene Gas schließlich gewinnen! Kein Mensch gibt für eine solche Bohrung zwischen einer bis zehn Millionen Dollar aus, um „sein Gas“ irgendwo im Untergrund verschwinden zu lassen.
  5. Zum Schluß muß vor dem Beginn der Förderung alle Flüssigkeit wieder raus aus dem System. Es ist nicht vermeidbar, daß während der Arbeiten Salze etc. in der Flüssigkeit gelöst werden. Es ist also eine mehr oder weniger giftige Brühe die da hoch kommt. Anfangs hat man die einfach in den nächsten Fluß gegeben. Auch das war – bei den Anfangs noch kleinen Mengen – kein großes Problem. Heute hat man aber über eine Million Bohrungen durchgeführt. Im Schnitt werden in den USA 100 „fracks“ pro Tag ausgeführt. Deswegen werden die Abwässer heute in dafür vorgesehene unterirdische Schichten verpreßt oder das Wasser wird bei Frischwassermangel wieder (kostspielig) aufbereitet. In manchen Fällen ist es ohnehin sogar günstiger mit Propan-Butan-Gemischen („Feuerzeug-Gas“) zu arbeiten.

An dieser Stelle sei ein Einschub gestattet: Kann sich noch jemand an den Medienrummel um die Nutzung von Geothermie vor einigen Jahren erinnern? Der Grüne-Un-Verstand wollte damit die Grundlastversorgung in Deutschland sicherstellen. Die Arbeitsschritte 4 und 5 sind dafür genauso nötig. Nur die Risse müssen für Geothermie hunderte Meter lang sein und das Wasser löst (nach erfolgter Abkühlung) beständig weiter „Schadstoffe“ aus dem Untergrund. Aber Geothermie ist halt politisch korrekt und „fracking“ böse. Zum Glück ist es nach den ausgelösten (und bei jeder Rissbildung unvermeidlichen) Mikrobeben still um die Geothermie in Deutschland geworden.

Die Dauerhaftigkeit der Fracking-Methode

Diskutiert wird die Nutzung solcher Vorkommen. Tatsache ist, daß die Fördermengen einer solchen Bohrung in den ersten Jahren um bis zu 80% abfallen. Das sind gänzlich andere Verhältnisse als bei einer konventionellen Lagerstätte. Allerdings liefert auch eine Fracking-Bohrung über Jahrzehnte Gas. Prinzipiell ist das kein Hindernis: Das Fördergebiet muß nur groß sein und man muß ständig weiter bohren. Solange man mehr für das geförderte Gas bekommt, als das Loch gekostet hat, lohnt sich die Sache. Das ist allerdings der Interessenkonflikt zwischen Verbraucher und Förderer. Sinken die Preise unter ein bestimmtes Niveau ab, wird die Bohrtätigkeit eingestellt. Eine resultierende Explosion der Erdgaspreise wäre die Folge. Deshalb versucht man durch mehrere Verflüssigungsanlagen und Export die Nachfrage zu vergleichmäßigen. Ziel ist eine kalkulierbare Preisstabilität. Sie soll den Anreiz für Investitionen in Großverbraucher (Kraftwerke, Chemieanlagen) schaffen. Besonders wichtig, sind absehbar langfristig günstige Preise, für den weiteren Ausbau der Infrastruktur im Verkehrssektor.

Ein weiterer Aspekt ist, daß man derzeit nur etwa 5% der in einer Schicht enthaltenen Kohlenwasserstoffe fördern kann. Die noch vorhandenen 95% in einem voll erschlossenen Fördergebiet sind ein nicht zu unterschätzender Anreiz. Man arbeitet bereits an sekundären Fördermethoden. Würde es gelingen, nur weitere 5 Prozentpunkte zu gewinnen, würde das den vorhandenen Schatz verdoppeln – wohlgemerkt, bei dann bereits vorhandener Infrastruktur.

Zumindest in den USA dürfte die Gasförderung für Jahrzehnte auf dem heutigen Niveau weiterlaufen. Allen Unkenrufen der „Peak-Oil-Fraktion“ zum Trotz, besteht noch beträchtliches Entwicklungspotential bei bekannt hohen Kohlenwasserstoffgehalten in den Lagerstätten.

Allerdings sind die Erfahrungen nicht ohne weiteres auf andere Regionen übertragbar. Die gesamte „Shale-Revolution“ ist nicht von den großen Ölkonzernen, sondern von mittelständig geprägten Ölfirmen in den USA angetrieben worden. Solche Strukturen gibt es praktisch nicht außerhalb der USA. Deswegen sind die Fortschritte in Argentinien, Polen und China bisher enttäuschend verlaufen. Es wären grundlegende Wirtschaftsreformen in diesen Ländern nötig, um den Erfolg nachvollziehen zu können. Russland ist technologisch und finanziell kaum in der Lage, seine konventionelle Förderung ohne westliche Technik aufrecht zu erhalten. Bei seinem derzeitigen politischen Kurs, dürfte die Entwicklung der dort ebenfalls reichlich vorhandenen Vorkommen für Jahrzehnte auf Eis liegen. Am ehesten dürfte noch China zu Zugeständnissen an US-Firmen bereit sein, da es wegen seiner Luftverschmutzung unter einem enormem Druck steht.

Und nun auch noch Öl

Öl ist in letzter Zeit mehr und mehr aus dem Blickfeld der breiteren Öffentlichkeit geraten. Noch vor wenigen Jahren wurde das baldige Ende der Ölfelder (peak oil) vorausgesagt. Die Welt sollte in Kriege um die letzten Ölfelder untergehen oder der Kapitalismus wegen steigender Ölpreise in sich zusammenbrechen. All diese Katastrophen-Szenarien sind heute unwahrscheinlicher denn je. Leuchtendes Beispiel sind die USA mit ihrem nahen Aufstieg zum größten Ölproduzenten der Welt. Ihr Netto Ölimport fällt beständig und es wird immer lauter über Ölexporte nachgedacht. Aussenpolitisch und weltwirtschaftlich werden die Konsequenzen in Deutschland noch gar nicht richtig wahrgenommen.

Unkonventionelle Ölvorkommen

In einer funktionierenden Marktwirtschaft wie den USA, haben die vor ein paar Jahren steil ansteigenden Ölpreise sofort einen neuen „Goldrausch“ ausgelöst. Jeder wollte sich ein Stück vom Kuchen abschneiden. Außerhalb von Politzirkeln und Konzernzentralen übernahmen die Tüftler die Initiative. Mit ungeheuerlicher Beharrlichkeit und großen persönlichen Risiken wurde die „shale revolution“ geschaffen. Wie war das möglich?

Auf der Erde sind Kohlenwasserstoffe gar nicht so selten, wie uns die unverbesserlichen „Malthusianer“ gerne einreden möchten. Die Verfügbarkeit ist variabel und hängt von der technischen Entwicklung und dem Preisniveau (Nachfrage) ab. Die Technik – sofern man sie nicht politisch behindert – schreitet immer weiter voran. So hat die oben beschriebene „neue Technologie“ zur Gasförderung auch unmittelbar Eingang in die Ölproduktion gefunden. Parallel drang man in die Tiefsee vor. Die Robotertechnik erlaubt heute Ölförderung in tausenden Metern Wassertiefe. Durch diese technischen Entwicklungen sind die Landkarten praktisch neu gezeichnet worden. Gehört es noch heute zur Grundüberzeugung in Deutschland, daß die USA den Golfkrieg nur wegen des Öls geführt hätten, sind die USA inzwischen zum führenden Ölproduzenten aufgestiegen und fangen bereits mit den ersten Exporten an (Kondensate nach Asien, Bau von LNG-Terminals an der Golf- und Ostküste).

Ein Grund für die momentan eher sinkenden Ölpreise ist das gemeinsame Auftreten von Öl und Gas: Es gibt kaum reine Ölvorkommen (z. B. Ölsände in Kanada) oder reine Gasvorkommen. Vielmehr kommt bei der Ölförderung praktisch immer auch Erdgas und bei der Gasförderung immer auch Erdöl (Kondensate, wet gas) mit hoch. Bei der Ölförderung kann man sich (anfangs) mit einem Abfackeln an Ort und Stelle helfen. Die Kondensate der Gasförderung hingegen drücken unmittelbar auf die Ölmärkte. Die Mengen sind in den USA inzwischen so groß, daß die Preise ins Bodenlose gefallen sind. Dadurch wird immer weniger leichtes Erdöl (aus z. B. Nigeria) und zukünftig – nach erfolgtem Umbau der Raffinerien – schwerere und saurere Ölqualitäten (aus Venezuela und Saudi Arabien) verbraucht werden. Die Welthandelsströme für Rohöl werden sich innerhalb eines Jahrzehnts völlig umkrempeln. Die drei großen Produzenten USA, Saudi Arabien und Rußland werden sich neue Märkte suchen müssen. Da die USA wegfallen und Europa und Rußland eher stagnieren, wird wohl Asien lachender Dritter sein.

Ausblick auf die laufenden Entwicklungen

Bei den Förderkosten spielen die Kosten für den Bohrplatz und die Bohrung eine wesentliche Rolle. Für die Akzeptanz in der Bevölkerung insbesondere die Anzahl der Bohrplätze. Für jeden „Bohrturm“ muß ein Stück Wald oder landwirtschaftliche Nutzfläche zumindest zeitweise zerstört werden. Diese Bohrplätze müssen noch durch Straßen und Rohrleitungen untereinander verbunden werden. Vereinfachend kann man sagen, je weniger Bohrplätze, desto größer die Akzeptanz. Man versucht deshalb immer mehr Bohrungen von einem Bohrplatz aus abzuteufen („Polypentechnik“). Entwickelt wurde diese Technik für Bohrinseln. Diese Technik bietet auch noch enorme wirtschaftliche Anreize. Jeder Auf- und Abbau und Transport des Bohrgerätes kostet Zeit, in der die Bohrfirma kein Geld verdienen kann.

Egal ob konventionelle oder unkonventionelle Lagerstätten: Nach der Ausbeutung bleiben immer noch über 60% der Kohlenwasserstoffe unerreichbar in den Feldern. Seit Beginn der Ölförderung ist deshalb die mögliche Entölung ein Dauerproblem. Auch hier gilt: Je mehr Öl man fördern will, je anspruchsvoller die erforderliche Technik und damit überproportional steigende Kosten. Je besser man die Lagerstätten versteht und simulieren kann (s. o. Punkt 1.), desto gezielter kann man „chemische Cocktails“ zur Loslösung der Restöle entwickeln. Diese Forschung ist der Forschung in der Pharmaindustrie zur Entwicklung neuer Medikamente sehr verwandt.Momentaner Renner ist die Verwendung von CO2 als Lösungsmittel. Die Ergebnisse sind so vielversprechend, daß sich CO2 bald von einem „Abfallproblem“ in einen (großtechnisch erzeugten und gehandelten) Wertstoff wandeln dürfte. Erste Anlagen zur Gewinnung von CO2. aus Kohlekraftwerken zur Ölförderung sind in den USA im Bau. Studien für „fortschrittliche Kohlekraftwerke“ in der Golfregion mit seinen zahlreichen alternden Feldern in Arbeit.

Insbesondere in China gewinnt die unterirdische Kohlevergasung zunehmendes Interesse. Auch in USA und Zentraleuropa gibt es schier unendliche Kohlevorräte in unwirtschaftlichen Tiefen oder in der Form zu dünner Flöze. Seit je her gab es Pläne, diese Kohle durch Bohrungen und „In-situ-Vergasung“ zu erschließen. Bisher scheiterten diese Versuche an der geringen Durchlässigkeit der Stein-Kohle. Die Methoden des „shale gas“ eröffnen nun ganz neue Möglichkeiten.

In letzter Zeit ist es etwas still um die Methanhydrate geworden. Nichts desto trotz, ist man sich einig, daß ihre Vorräte größer als alle sonstigen Erdgasfelder und Kohlevorräte zusammengenommen sind. Allein dieser Umstand lockt. Es ist nur eine Frage der Zeit, wann die erste kommerzielle Förderung beginnen wird.

Eigenbedarf und Substitution

Alle Energieträger sind irgendwie untereinander verbunden. Die Relationen der Energiepreise sind relativ konstant. Bricht ein Energieträger aus, wie vor ein paar Jahren die Ölpreise, setzt sofort eine Verschiebung unter allen anderen Energieträgern ein.

Eine besonders bemerkenswerte Substitution findet gerade in Saudi Arabien statt. Es hat 9,6 Millionen Barrel Rohöl pro Tag in 2013 produziert. Inzwischen steht es aber mit seinem Primärenergieverbrauch an zwölfter Stelle (Deutschland Rang 7, Frankreich Rang 10, Großbritannien Rang 13) weltweit. Es deckt über 60% seines Eigenverbrauchs mit Erdöl ab. Die Produktion von knapp 300 TWh (Deutschland rund 600 TWh/a) elektrischer Energie jährlich geschieht ausschließlich in Öl und Gaskraftwerken. Man will nun in den nächsten Jahren 0,5 Millionen barrel Öl pro Tag „gewinnen“, indem man die Feuerung in einigen Ölkraftwerken auf Erdgas umstellt. Damit jedoch nicht genug. Da Stromverbrauch und der Energiebedarf für Meerwasserentsalzung auch in den nächsten Jahren stark ansteigen wird, ist der Bau von mindestens 14 Kernkraftwerken in den nächsten zwanzig Jahren geplant. Die Vereinigten Emirate haben bereits vier Reaktoren im Bau und Iran plant ebenfalls weitere Kernkraftwerke.

Ausblick

Teil 2 wird sich mit der Situation der Kernenergie unter diesen Randbedingungen befassen.