Könnte Deutschland die große Schweiz werden?

Die Bürger der Schweiz haben sich gegen eine vorzeitige Abschaltung ihrer Kernkraftwerke entschieden. Ein Anlass, einmal über die Verhältnisse in Deutschland (neu) nachzudenken.

Der Istzustand

Vielen Menschen in Deutschland ist gar nicht bewußt, daß immer noch acht Blöcke am Netz sind (Isar 2, Brokdorf, Philippsburg 2, Grohnde, Emsland, Neckarwestheim 2, Gundremmingen B und C) und in aller Stille reichlich zur Energieversorgung in Deutschland beitragen. Sie haben immerhin zusammen die stolze Leistung von 10.799 MWel. und produzieren damit durchschnittlich 86.595.052.800 kWh elektrische Energie jährlich. Wohl gemerkt, jedes Jahr, unabhängig davon, wie stark der Wind bläst oder die Sonne scheint. Halt Energie nach den Bedürfnissen der Menschen und nicht „auf Bezugsschein“ irgendwelcher Schlangenölverkäufer mit (meist) öko-sozialistischer Gesinnung. Ganz neben bei, tragen sie durch ihre gewaltigen Generatoren auch noch zur Netzstabilität bei. Wie wichtig und kostenträchtig allein dieser Aspekt ist, werden unsere Laiendarsteller erst merken, wenn diese Kraftwerke endgültig abgeschaltet sind.

Wieviel Volksvermögen vernichtet werden soll

Fangen wir mal mit dem letzten Aspekt an: Die Standorte zukünftiger Windparks und Photovoltaikanlagen können – wegen der geringen Energiedichte von Wind und Sonne – gar nicht den Kernkraftwerken entsprechen. Das vorhandene Stromnetz muß daher komplett umgebaut bzw. erweitert werden. In der Öffentlichkeit wird wohlweislich nur von den neuen „Stromautobahnen“ gesprochen, die den „Windstrom“ von Norddeutschland nach Süddeutschland transportieren sollen. Freilich sind bereits dafür Milliarden erforderlich. Kaum ein Wort über die Frequenzregelung und die Niedervolt Netze zum Einsammeln des flächigen Angebots (z. B. Sonnenkollektoren auf den Dächern).

Wir reden hier nicht von irgendwelchen „Schrottreaktoren“, sondern ausnahmslos von Kernkraftwerken, die erst zwischen 1984 und 1989 ans Netz gegangen sind. Für solche Kraftwerke geht man heute international von einer Betriebszeit von 60 bis 80 Jahren aus. Sie hätten also eine „Restlaufzeit“ bis in die zweite Hälfte dieses Jahrhunderts vor sich – wenn sie nicht in Deutschland, sondern bei unseren Nachbarn stehen würden! Warum nur, fällt mir an dieser Stelle, der alte Witz-über-die-Geisterfahrer ein?

Um es klar und deutlich zu sagen, sie verfügen über Sicherheitseinrichtungen, die heute noch international Spitze sind. Teilweise werden japanische und osteuropäische Kernkraftwerke gerade erst auf dieses Niveau nachgerüstet. Selbst noch im Bau befindliche Reaktoren in China und den Emiraten, sind keinesfalls sicherer. Das alles, obwohl es in Deutschland weder schwere Erdbeben noch Tsunamis gibt.

Wenn man als Wiederbeschaffungswert die Baukosten der koreanischen Reaktoren in den Vereinigten Emiraten ansetzt (4 x 1400 MW für 20 Milliarden US-Dollar), werden hier mal eben rund 35 Milliarden Euro verbrannt. Zugegeben eine grobe Abschätzung, aber wie war das noch mal mit dem Rentenniveau für die kommende Generation? Es ist ja offensichtlich nicht so, als wäre in diesem Land überhaupt kein Kapital mehr vorhanden oder anders: Der Kleinrentner soll auch noch durch überteuerten „Ökostrom“ zusätzlich bluten.

Der energetische Ersatz

Ein beliebter Vergleich der Schlangenölverkäufer ist immer die produzierte Energie. Lassen wir die Zahlen für sich sprechen: Im Jahr 2015 wurden insgesamt 86 TWh Windenergie erzeugt. Dazu waren 27.147 Windmühlen mit einer Gesamtleistung von 44,95 GW notwendig gewesen. Wollte man die acht verbliebenen Kernkraftwerke durch Windmühlen ersetzen, müßte man also noch einmal die gleiche Anzahl zusätzlich bauen. Besser kann man den Irrsinn nicht verdeutlichen. Schon allein unsere Vogelwelt könnte 20.000 zusätzliche Schredderanlagen nicht verkraften. Welche Wälder sollen noch gerodet werden?

Wollte man die gleiche Energie mit Photovoltaik erzeugen, müßte man über 82 GW zusätzlich installieren. Trotzdem wäre es weiterhin des Nachts dunkel.

Die Speicherfrage erübrigt sich, denn allen ökologischen Sturmgeschützen zum Trotz: Es gibt sie wirklich, die Dunkel-Flaute. Jawohl, besonders bei Hochdruck-Wetterlage im Winter weht tagelang kein Wind – auch großflächig nicht.

Andererseits wird es den berühmten Muttertag (8.5.2016) auch immer wieder geben: Sonnenschein mit Starkwind an einem verbrauchsarmen Sonntag, der die Entsorgungskosten an der Strombörse auf -130 EUR/MWh hochgetrieben hat. Wie hoch dürfte die Entsorgungsgebühr wohl sein, wenn der Ausbau noch einmal verdoppelt wird? Sind dann unsere Nachbarn überhaupt noch bereit, unseren „Strommüll“ für uns zu entsorgen? Ich glaube nicht. Zwangsweise Abschaltungen wären die Folge: Die Abwärtsspirale immer schlechter werdender Auslastung für die „Erneuerbaren“ wird immer steiler werden. Das Rennen nach der Fabel von Hase und Igel hat ja bereits längst begonnen. Dies sei allen Traumtänzern gesagt, die von einer Vollversorgung durch Wind und Sonne schwadronieren.

Der notwendige Ersatz

Wie gesagt, es gibt sie wirklich, die Dunkel-Flaute. Speicher in der erforderlichen Größe sind nicht vorhanden. Das seit Jahren erklingende Geraune von der „Wunderwaffe-der-Großspeicher“ wabert konsequenzlos durch die deutschen „Qualitätsmedien“. Physik läßt sich halt nicht durch den richtigen Klassenstandpunkt ersetzen. Es müssen deshalb neue Grundlastkraftwerke gebaut werden. Kurzfristig kann man elektrische Energie aus dem Ausland hinzukaufen – „Atomstrom“ und „Dreckstrom“ aus den östlichen Nachbarländern – bzw. vorhandene Mittellastkraftwerke im Dauerbetrieb verschleißen.

Will man 11 GWel durch Kombikraftwerke mit Erdgas als Brennstoff ersetzen, sind dafür etwa 20 Blöcke notwendig. Würde man sie an den vorhandenen Standorten der Kernkraftwerke bauen, könnte man zwar die elektrischen Anlagen weiter nutzen, müßte aber neue Erdgaspipelines bauen. Die Mengen können sich sehen lassen: Für 86 TWh braucht man immerhin etwa 15 Milliarden Kubikmeter Erdgas jedes Jahr. Wo die wohl herkommen? Wieviel das Erdgas für die Heizung wohl teurer wird, wenn die Nachfrage derart angekurbelt wird?

Will man 11 GWel durch Kombikraftwerke mit Erdgas als Brennstoff ersetzen, sind dafür etwa 20 Blöcke notwendig. Würde man sie an den vorhandenen Standorten der Kernkraftwerke bauen, könnte man zwar die elektrischen Anlagen weiter nutzen, müßte aber neue Erdgaspipelines bauen. Die Mengen können sich sehen lassen: Für 86 TWh braucht man immerhin etwa 15 Milliarden Kubikmeter Erdgas jedes Jahr. Wo die wohl herkommen? Wieviel das Erdgas für die Heizung wohl teurer wird, wenn die Nachfrage derart angekurbelt wird?

Wahrscheinlicher ist der Ersatz durch Steinkohlekraftwerke. Um die 8 noch laufenden Kernkraftwerke zu ersetzen, wären etwa 14 Blöcke vom Typ Hamburg-Moorburg nötig. Die würden etwa 28 Millionen to Steinkohle pro Jahr fressen. Die müssen nicht nur im Ausland gekauft, sondern auch bis zu den Kraftwerken transportiert werden.

Will man wenigstens die Versorgungssicherheit erhalten, bleibt nur die eigene Braunkohle. Man müßte nur etwa 10 neue Braunkohleblöcke vom Typ BoA-Neurath bauen. Die würden allerdings über 84 Millionen to Braunkohle pro Jahr verbrauchen. Unsere Grünen würde das sicherlich freuen, man müßte die Braunkohleförderung nicht einmal um die Hälfte erhöhen. Wieviele schöne „Demos“ gegen neue Tagebaue könnte man veranstalten!

Politik

Das Wahljahr 2017 (Landtagswahl in NRW und Bundestagswahl) kommt immer näher. Zwischen März und Juli soll der geplante Wahnsinn mit der Abschaltung von Gundremmingen beginnen. Da in Deutschland das Regulativ einer Volksabstimmung (über lebenswichtige Fragen) fehlt, bleibt nur die Auseinandersetzung in einer Parteien-Demokratie. Parteitage und Walkämpfe bieten die Möglichkeit Parteien zu zwingen „Farbe zu bekennen“. Dies gelingt aber nur, wenn die Bürger auch (öffentlich und nachdrücklich) Fragen stellen. Gerade in Deutschland neigt man eher zu „Man-hat-doch-nichts-davon-gewußt“ oder „innerlich-war-man-auch-dagegen“. Zumindest der ersten Lebenslüge, soll dieser Artikel entgegenwirken.

Die Forderung an alle Parteien kann nur lauten: Schluß mit der Kapitalvernichtung durch Abschaltung moderner Kernkraftwerke. Bis 2022 ist es weder möglich geeignete Groß-Speicher zu erfinden, das Stromnetz völlig umzukrempeln, noch fossile Kraftwerke in der benötigten Stückzahl als Ersatz zu bauen. Nicht einmal die Verdoppelung der Windenergie in nur vier Jahren ist möglich – jedenfalls nicht ohne bürgerkriegsähnliche Zustände heraufzubeschwören. Parteien, die dies nicht einsehen wollen, sind schlicht nicht wählbar. In einer indirekten Demokratie, in der dem Bürger das Recht auf Entscheidungen – in überlebenswichtigen Fragen — abgesprochen wird, kann sich der Bürger nur an der Wahlurne wehren. Nichts tut den etablierten Parteien mehr weh, als der Mandatsverlust. Dies ist halt die Kehrseite der Allmachtsphantasien der „indirekten Demokraten“.

Jetzt Braunkohle

Nachdem man die Abschaltung der Kernkraftwerke in Deutschland durchgesetzt hat, konzentriert sich die „Öko-Bewegung“ nun auf die Braunkohle.

Die erschreckenden Parallelen zur „Anti-Atomkraft-Bewegung

Die Bilder aus der Lausitz vom Pfingstwochenende gleichen erschreckend denen aus Gorleben: Besetzte Eisenbahnlinien und Erstürmung des Geländes. Das Vorgehen ist immer gleich und wird zwangsläufig in Ausschreitungen enden, auch wenn es diesmal noch glimpflich abging.

Genau wie bei der „Anti-Atomkraft-Bewegung“ steht am Anfang die Schaffung von Ängsten: Dort die „Strahlenangst“, hier die „Klimakatastrophe“. Diese Ängste treiben dann gutgläubige Menschen zu „Protestaktionen“, die wiederum die (eigentlich bekannten) Hooligans als Deckung für ihre Gewaltorgien benötigen.

Es ist aber nicht nur die Aufführung gleich, sondern auch das Theaterstück selbst, welches „Gesellschaftsveränderung“ heißt. Dies wird meist von den Betroffenen gar nicht durchschaut. Wenn man noch vor wenigen Jahren auf den wahren Hintergrund der „Anti-Atomkraft-Bewegung“ hingewiesen hat, wurde man eher mitleidig angeschaut und von den Kombinatsleitern belehrt, es sei ihnen egal, womit sie Umsatz machen würden. Ihr Herz hinge nicht an der Kernenergie. Oh heilige Einfalt! Der Gipfel der Unterwürfigkeit war dann das „Vor-Weg-Gehen“ bei der „Energiewende“. Jeder private Kapitalgeber hätte solchen Vorständen wegen ihrer andauernden Kapitalvernichtung längst den Stuhl vor die Türe gesetzt. In der typisch deutschen Art, versucht der sich über den Dividendenausfall erstaunt gebende Stadtkämmerer, lieber die Bäder und Theater zu schließen und der Kombinatsleiter wünscht sich dringend weitere Subventionen wegen der Arbeitsplätze. Man könnte auch sagen: Macht nichts, zahlen tut immer der Bürger. Von der Hand zu weisen ist diese Einstellung nicht, macht doch der Bürger immer die gleichen Kreuze in der Wahlkabine – jedenfalls bisher. Man könnte auch sagen: Selbst Schuld.

Energiewende einmal anders gedacht

Stellen sie sich einmal vor, sie hätten von der grandiosen Idee erfahren, man könnte mit Wind und Sonne elektrische Energie erzeugen. Geht nicht, meinen sie? Doch, dazu müssen sie sich nur auf das geistige Niveau eines bekannten SPD-Politikers herablassen: „Die-Sonne-schickt-keine-Rechnung“. Sie besorgen sich also Angebote über Windmühlen und alle möglichen Sonnenkollektoren. Jetzt rechnet ihnen jede Bank – wirklich jede – vor, daß sie ihren teuren Strom nicht verkaufen können. Dafür haben sie eine Lösung parat: Ihnen gut bekannte Politiker vom Typ „Kleiner-Klassenkämpfer“, die immer sofort dabei sind, wenn sie die Worte Profite, Konzerne und Kapitalisten vernehmen. Das „Erneuerbare-Energien-Gesetz“ ist geboren. Auf geht’s, für nur eine Eiskugel im Jahr die verhaßten Energiekonzerne in die Knie zwingen.

Als „links gebildeter“ Mensch wissen sie natürlich, daß man den Profit maximiert, indem man die Konkurrenz ausschaltet. Sie werden sich also auf die Kernenergie und Kohle einschießen, da sie weltweit die preiswertesten Energiearten zur Stromerzeugung sind. Allerdings haben sie noch ein gewaltiges Problem: Sie können überhaupt keine Stromversorgung mit ihrem System gewährleisten. Sie wissen das ganz genau. Es kann nicht schaden, ein paar Nebelkerzen in der Form Pump-Speicher, Power to Gas (hört sich doch echt cool an) und Elektromobilität zu werfen. Einfältige Menschen, gibt es bekanntlich mehr als genug. All das ändert aber nichts daran, daß sie dringend ein System brauchen, das eine sichere Stromversorgung für sie herstellt. Sie wissen ganz genau, die Forderung nach ausreichend Speichern zum Ausgleich des Wetters würde ihre profitable Geschäftsidee wie eine Seifenblase platzen lassen. Sie würden an den Kosten ersticken und sogar ihre Freunde aus der Politik müßten sich von ihnen abwenden.

Sie sind aber nicht allein. Sie können auf Erfahrungen z. B. aus den USA zurückgreifen und sich mächtige Verbündete suchen, die sie aus Eigennutz kräftig fördern. Schon in den 1960er Jahren fühlte sich die gesamte Industrie (Öl und Kohle) für fossile Energieträger durch die Kernenergie bedroht. Sie war billig, sauber und unerschöpflich. Man nahm Geld in die Hand und förderte damit z. B. massiv die – durch Teststoppabkommen etc. – sterbende „Anti-Atombomben-Bewegung“. Green Peace ward erschaffen. Man kann den durchschlagenden Erfolg nur verstehen, wenn man das geschichtliche Umfeld (Mai 68, Vietnamkrieg, Kalter Krieg etc.) einbezieht.

In den 1970er Jahren wurde die Ölindustrie durch die zwei Ölkrisen 1973 und 1976 arg gebeutelt. „King Coal“ drohte wieder zu erstarken. Durch die guten Erfahrungen im Kampf gegen die Kernenergie, förderte man erneut „Umweltaktivisten“. Der Ansatz hieß „Alternative Energien“ mit Erdgas und Öl als back up für schlechtes Wetter. Die Lichtgestalt aller Sonnenanbeter war Amory B. Lovins mit seinem Rocky Mountain Institute. Wichtiger Verbündeter gegen Kohle war der Sierra Club. Über ihn gelang der direkte Weg zu Hollywood. In den 1980er Jahren liefen unzählige Filme über den „Treibhauseffekt“ im US-Fernsehen. Vor allem Exxon hatte kein Problem, offen mit seinem „guten Namen“ zu werben. Gründungsmitglied und Vorsitzende der Grünen (nach ihrem Austritt aus der SPD) war eine gewisse Petra Kelly. Sie hatte schon 1968 ihr Handwerk im Präsidentschaftswahlkampf von Bobby Kennedy gelernt. Ein Schelm, wer nur an Zufälle denkt.

Warum Braunkohle?

Kernenergie und Braunkohle sind die preiswertesten Energieträger zur Stromerzeugung. Will man ein Energieversorgungsunternehmen vernichten, muß man genau diese Bereiche bekämpfen. Als erfahrener „Gesellschaftsveränderer“ kann man das natürlich nicht so offen aussprechen, will man doch nicht die viel beschworene „gesellschaftliche Mitte“ verprellen. Das bekannte Erfinden von „Phantasiekosten“ (Endlagerung, Waldsterben etc.) verfängt ebenfalls nur bei sehr schlichten Gemütern. Gerade Jugendliche lassen sich besonders leicht vor den Karren spannen, wenn man ihnen das Gefühl gibt, sie würden „die Welt retten“. Dieses Gefühl ist besonders wichtig für die unvermeidbare Konfrontation mit der lokalen Bevölkerung. Es muß ein moralisches Überlegenheitsgefühl geschaffen werden: Hier, der „edle Demonstrant“, der selbstlos kein Risiko scheut zum Wohle der Menschheit und dort, die tumbe Landbevölkerung, die sich vor Veränderung fürchtet und nur an ihr Auskommen denkt. Ganz besonders zwielichtig ist das Verhalten der Gewerkschaften: Die Funktionäre – überwiegend in der Doppelrolle des Parteimitglieds und Gewerkschaftsfunktionärs – halten sich vornehm zurück. Schließlich sind in ihrem Selbstverständnis Gewerkschaften in erster Linie politische Organisationen und höchsten zweitrangig „Arbeitnehmervertreter“. Diese Auffassung ist fester Bestandteil aller sozialistischen Systeme. Genosse, du mußt verstehen, wir müssen erstmal den Sozialismus verwirklichen und dazu sind auch Opfer – wie dein Arbeitsplatz – nötig. Aber versprochen, wenn der Öko-Sozialismus erstmal verwirklicht ist, wird auch deine Region ein Paradies werden. Ähnlichkeiten mit der Vergangenheit sind rein zufällig.

Die Parolen

Als erster Schritt, kann es nicht schaden, die Parolen der Aktivisten zu hinterfragen:

  • Braunkohletagebaue zerstören die Landschaft. Dies muß jeder selbst beurteilen. Die Zeiten, wo man nach dem Abbau Mondlandschaften hinterlassen hat, sind längst vorbei. Viele finden die neu gestaltete Landschaft (z. B. Seen) sogar reizvoller. Natur gab es vorher und nachher nicht. Alles war und ist Kulturlandschaft, also von Menschen gestaltet.
  • Dörfer werden zerstört. Dieses Argument ist besonders zynisch. Die Braunkohle gibt tausenden Menschen Arbeit. Wenn man den Bergbau einstellt, fallen die Arbeitsplätze weg. Neue sind nicht in Sicht, schon gar nicht für die speziellen Berufsgruppen. Die ganze Region wird in Dauerarbeitslosigkeit und Abwanderung versinken. Dörfer und Kleinstädte werden zu Geisterstädten werden und dem natürlichen Zerfall preisgegeben. Will man so den Nährboden für radikale Organisationen schaffen?
  • Braunkohle ist minderwertig. Richtig ist, daß Braunkohle einen geringen Heizwert hat. Der Transport von Rohbraunkohle lohnt sich daher nur über kurze Strecken. Andererseits ist sie im Tagebau sehr wirtschaftlich zu fördern. Wird sie in Kraftwerken in unmittelbarer Nähe verfeuert, ist der Transport kein Kostenfaktor.
  • Braunkohle hat einen geringen Heizwert. Braunkohle hat einen hohen Ascheanteil und einen hohen Wassergehalt. Der Aschegehalt spielt bei der Verfeuerung in einem Kraftwerk in der Nähe des Bergwerks keine große Rolle. Die Asche geht unmittelbar mit dem Abraum zurück in die Grube.
  • Braunkohle setzt besonders viel CO2 frei. Moderne Steinkohlekraftwerke haben einen Wirkungsgrad von etwa 46%, moderne Braunkohlekraftwerke von etwa 43%. Der Unterschied ist auf den hohen Wassergehalt zurückzuführen. Bei einer Vortrocknung mittels Abdampf (zusätzliche Anlagekosten) kann der Wirkungsgrad nahezu gleich sein.
  • Braunkohle setzt besonders viel Schadstoffe frei. Dies gilt für „schornsteinlose“ Kraftwerke nach deutschen Umweltschutzstandards nicht mehr. In ihnen wird die Asche (enthält z. B. Schwermetalle) durch Filter abgeschieden und die Abgase anschließend gewaschen (z. B. Abscheidung der Schwefelsäure). Die Produktion von Stickoxiden kann bereits durch die Gestaltung der Verbrennung (Temperatur und Sauerstoffgehalt) eingehalten werden. Eine zusätzliche Entstickung über Katalysatoren ist meist nicht nötig. Prinzipiell kann man heute ein Braunkohlekraftwerk genauso „sauber“ betreiben, wie ein (deutsches) Gaskraftwerk. Entscheidend ist immer nur, was im Betrieb (!) hinten raus kommt (Meßwerte).
  • Kohlekraftwerke sind nicht regelbar. Dies ist – zumindest für moderne Kohlekraftwerke – ein reines Propagandamärchen der Wind- und Sonnenlobby. Hier wird immer bewußt Technik und Betriebswirtschaft durcheinander geschmissen. Der „Zappelstrom“ kann überhaupt erst durch konventionelle Kraftwerke in ein brauchbares Produkt verwandelt werden. Dies allein, zeigt schon, wie haltlos diese Behauptung ist. Natürlich ist es ein wirtschaftlicher Unsinn, die kapitalintensiven Braunkohlekraftwerke abzuregeln, damit der ideologisch geforderte Wind- und Sonnenstrom Vorrang hat. Volkswirtschaftlich wäre es vielmehr sinnvoll, die „regenerativen Anlagen“ abzustellen. Wer ein nicht konkurrenzfähiges Produkt herstellt, muß halt aus dem Markt aussteigen. Dies muß endlich auch genauso für einen „Stromhersteller“ gelten, wie für jeden Bäcker an der Ecke.

Kernenergie und Erdgas

In den letzten Jahren hat sich der Weltmarkt für Erdgas dramatisch verändert. Dies betrifft natürlich auch die Kernenergie.

Die Stromerzeugung

Weltweit steigt der Bedarf an elektrischer Energie weiter an. Dies wird auch noch sehr lange so bleiben, selbst wenn die Erdbevölkerung nicht mehr wachsen sollte. Der Stromverbrauch pro Kopf, ist ein unmittelbarer Indikator für den Wohlstand einer Gesellschaft. Insofern wird der Bedarf in Asien (China, Indien) und später auch in Afrika, geradezu explodieren. Die „regenerativen Energien“ – einst hat man sie treffend als „Additive Energien“ bezeichnet – sind schon wegen ihrer Zufälligkeit keine Lösung. Es bleiben nur Kernenergie und fossile Energie (Kohle, Erdgas, Öl).

Gerade in den Schwellenländern wird „king coal“ noch lange der Wachstumsmotor bleiben: Kohle ist ziemlich gleichmäßig auf der Erde verteilt, billig zu gewinnen und leicht zu transportieren und zu lagern. Ist man beim Umweltschutz nicht all zu pingelig, sind Kohlekraftwerke auch einfach, schnell und preiswert zu errichten. Dies galt in den 1950er Jahren bei uns, in China bis heute und in Afrika und Indien noch für lange Zeit. Es dauert einfach seine Zeit, bis der Wohlstandsgewinn durch eine Elektrifizierung vom „smog“ in der Wahrnehmung der Bevölkerung aufgefressen wird.

Das andere Extrem sind Kernkraftwerke: Sie erfordern einen hohen Kapitaleinsatz und eine entsprechende industrielle Infrastruktur. In China kann man die typische Entwicklung wie im Zeitraffer betrachten: Die ersten Kraftwerke wurden praktisch vollständig importiert. Wegen der hohen Stückzahlen war parallel der rasche Aufbau einer eigenen Fertigung möglich. Heute beginnt man bereits als Hersteller auf dem Weltmarkt zu agieren.

Irgendwo dazwischen, liegen Öl- und Gaskraftwerke. Sie erfordern die geringsten Kapitalkosten, haben aber die höchsten Brennstoffkosten. Bei Gaskraftwerken kam bisher noch das Vorhandensein ausreichender Gasmengen hinzu – und genau beim letzten Punkt ergeben sich gewaltige Veränderungen der Randbedingungen.

Die Shale Revolution

Erdgas ist beileibe nicht selten oder bald verbraucht. Bezieht man auch noch die Vorkommen an „Methanhydrat“ ein, so dürfte der Vorrat für Jahrtausende reichen. Man muß das Erdgas nur fördern, aufbereiten und transportieren können. Gerade der Transport stellte dabei das größte Hindernis dar. Für Gas blieb bisher nur die Rohrleitung über, die extrem unflexibel ist. Sie mußte lückenlos vom Gasfeld bis zum Kraftwerk reichen. Noch heute werden gigantische Mengen einfach abgefackelt, weil man sie nicht aufbereiten und transportieren kann.

Wie unter einem Brennglas kann man heute noch die Entwicklung in den USA betrachten. Durch die Entwicklung des „Fracking“ konnte man bis dahin nicht nutzbare Öl- und Gasvorkommen erschließen. Die Förderung ist zwar recht billig, aber das Erdgas leider auch ziemlich wertlos, weil am falschen Ort vorhanden. Mit riesigem Kapitalaufwand ist man immer noch beschäftigt, neue Aufbereitungsanlagen und Verteilnetze zu bauen. Gemessen an den Vorräten hat man damit z. B. in Iran oder Sibirien noch gar nicht begonnen. Dort steht man noch vor dem klassischen Henne-Ei-Problem. In den USA steht dem überreichlichen Angebot zumindest eine potentielle Nachfrage gegenüber. Die geringen Herstellkosten durch „Fracking“ verlocken Investoren neue Pipelines zu bauen. Trotz der Transportkosten ist der Rohstoff Erdgas in den Verbrauchszentren damit immer noch konkurrenzlos günstig. Haushalte und Industrie beginnen umzurüsten. Das braucht aber Zeit und diese Durststrecke muß überbrückt werden.

Gaskraftwerke zum Ausgleich der Nachfrage

Gaskraftwerke erfordern geringe Investitionen und sind schnell zu bauen. Sie wurden deshalb traditionell als Spitzenlast-Kraftwerke (Abdeckung von Verbrauchsspitzen an wenigen Stunden im Jahr) gebaut. Nun sind sie da. Bekommt man an seinem Standort einen besonders günstigen Erdgaspreis, kann man sie jederzeit länger laufen lassen. Betriebswirtschaftlich entscheidend ist einzig die Relation zu anderen Brennstoffen. Dies ist der Grund, warum z. B. die Stromproduktion aus Kohle in den USA stark eingebrochen ist. Der Brennstoffpreis hat die Kohle verdrängt, nicht irgendwelcher „Klimaschutz“. Umgekehrtes gilt in Deutschland: Das „Russengas“ ist – noch – viel zu teuer, sodaß Kohlekraftwerke immer noch preisgünstiger produzieren können. Die Stadtwerke gehen an ihren „umweltfreundlichen“ Gaskraftwerken langsam pleite. Eine klassische Fehlinvestition auf Grund von ideologisch bedingter Fehlsichtigkeit.

Wohin die Entwicklung langfristig geht, kann man bereits in den Golfstaaten erkennen. Dort war Erdgas mehr Abfall als Wirtschaftsgut. Folgerichtig hat man konsequent auf eine Verstromung in Gaskraftwerken gesetzt. Parallel hat man sich aber weltweit neue Absatzmärkte für Erdgas erschlossen und damit den Preis im eigenen Land systematisch nach oben gezogen. In den Vereinigten Emiraten ist man nun an einem Punkt angekommen, wo es günstiger ist, elektrische Energie in Kernkraftwerken zu produzieren. Wohl gemerkt, in den Emiraten. Frei von Rot-Grüner Ideologie, in atemberaubend kurzer Bauzeit, zu günstigen Weltmarktpreisen. Wenn man sich nicht nur im „öko-sozialistischen Nebel“ bewegt, dürft ziemlich klar sein, wohin die Reise geht: Allein China hat gerade die Taktfrequenz (nur in seinem eigenen Land!) auf den Bau von einem Reaktor alle zwei Monate erhöht!

Neues Spiel durch LNG

Bisher hatte Erdgas einen enormen Nachteil zu überwinden: Gas ließ sich nur in Rohrleitungen oder kleinen Gasflaschen transportieren. Dadurch war z. B. der gesamte Verkehrssektor tabu und mußte dem Öl überlassen werden. Die ausschließliche Verbindung zwischen Verbraucher und Produzenten durch Rohrleitungen ist äußerst starr und damit anfällig für jegliche Risiken.

Erdgas war praktisch ein reiner Brennstoff, der nur in Konkurrenz zum Heizöl stand. Insofern war es auch logisch und richtig, die Preisentwicklung an den Rohölpreis zu koppeln. Wer sich einmal an eine Rohrleitung angeschlossen hat, hätte nur bei einer extremen Verbilligung des Heizöls ein Interesse gehabt, zurück zum Öl zu wechseln. Durch die massive Markteinführung von LNG (Liquified Natural Gas) hat sich das Blatt gewendet. Plötzlich gibt es eigene Handelsorte mit eigenen Preisindizes (z. B. Henry Hub) wie schon lange beim Rohöl üblich (z. B. Brent oder WTI). Wo ein funktionierendes Handelsprodukt an einer Börse existiert, wird das notwendige Kapital magisch angezogen. Die Transparenz wirkt dabei wie ein Reaktionsbeschleuniger. Ganz im Gegenteil zu Hinterzimmern, in denen politische Männerfreundschaften (Schröder/Putin) gepflegt werden.

Bisher völlig unterschätzt, wird dabei die Wandlung vom Brennstoff zum Treibstoff. In Windeseile bilden sich Transportketten bis in die letzten Häfen der Welt. Geschickt unter dem Mäntelchen Umweltschutz verkauft, beginnt sich die Weltschifffahrt ein völlig neues Bein als Treibstoff zu erschließen. Gibt es erstmal in jedem größeren Hafen ein Lager und eine Tankstelle für LNG, kommt im nächsten Schritt die Binnenschifffahrt dran (geschieht bereits auf dem Rhein) und als nächstes Eisenbahn (Diesellokomotiven) und schwere LKW. Beides in den USA schon im Ausbau. Hier wird das Henne-Ei-Problem zielstrebig gelöst. Stehen erstmal die Lieferketten, kann der Generalangriff auf die etablierten Gasversorger erfolgen. Wenn Gazprom glaubt, seine hohen Gaspreise auch weiterhin durchsetzen zu können, sollen sie mal weiter träumen. Man wird über die unzähligen Terminals in den europäischen Häfen (gerade nicht in Deutschland!) LNG einspeisen und erstmal die Großverbraucher mit günstigen Angeboten abwerben. Es ist mit Sicherheit kein Zufall, daß z. B. ein neues LNG-Terminal in Swinemünde – nur wenig entfernt von der Anlandungsstelle (Greifswald Lubmin) von Nord Stream – gebaut wurde. Es dient nicht nur der Absicherung Polens gegen die Launen Putins, sondern wird der Grundstock eines Handelspunktes werden, in den auch Gazprom gern einspeisen kann – allerdings zu Weltmarktpreisen und nicht zu Konditionen des Kreml. Notfalls sind z. B. Tankwagen in wenigen Stunden im Verbrauchsschwerpunkt Berlin angekommen. Dies wird die Preisverhandlungen Berliner Kraftwerke noch grundlegend beeinflussen. Ein Leitungsmonopol wird es zukünftig nicht mehr geben. Gazprom könnte das gleiche Schicksal erleiden, wie die Telekom nach „Erfindung“ des Mobiltelefons.

Was macht LNG so anders?

Verflüssigtes Erdgas LNG ist nahezu reines Methan, ohne chemische Verunreinigungen (z. B. Schwefel) und somit einfach (ohne Nachbehandlung) und schadstoffarm zu verbrennen. Es ist sehr klopffest, sodaß es sogar problemlos in Diesel- und Ottomotoren verbrannt werden kann.

Entscheidend ist seine hohe Energiedichte, die etwa 60% von herkömmlichem Kraftstoff beträgt. Weit mehr, als Batterien je erreichen werden. Es ist deshalb ohne all zu große Einbußen an Raum und (totem) Gewicht in Schiffen und LKW einsetzbar. Eine Betankung ist – wie bei allen Flüssigkeiten – schnell und einfach durchführbar.

Nachteil ist die Herstellung: Um die Volumenverkleinerung (1/600) zu erzielen, muß das Erdgas auf etwa -160 °C abgekühlt und gehalten werden. Eine ziemlich aufwendige Technik. Allerdings beherrscht man heute die erforderlichen Schritte sicher. Für die Herstellung und den Transport werden rund 15% des eingesetzten Gases verbraucht. Die Verdampfung aus dem Tank ist nur bei Stillstand ein Verlust, da sonst der „Abdampf“ sofort als Treibstoff genutzt werden kann. Die heutigen „Thermoskannen“ sind so gut geworden, daß sie z. B. als Container über weite Strecken geschickt werden können.

Die Angebotsseite

Der Weltmarkt wächst in den letzten Jahren rasant. 2012 gab es etwa 100 Verflüssigungsstränge mit einer Kapazität von über 297 MMPTA (Hinweis: Wer sich mit Erdgas beschäftigt, muß sich an etliche skurril anmutende Einheiten gewöhnen. 1 MMPTA ist 1 Million metrischer Tonnen pro Jahr.). BP prognostiziert, daß in den nächsten fünf Jahren etwa alle acht Wochen weltweit ein neuer Strang den Betrieb aufnehmen wird. Allein bis 2016 werden in Australien neue Kapazitäten mit 25 MMPTA fertiggestellt. Der Kapitaleinsatz kann sich dabei durchaus mit der Kerntechnik messen. Allein Chevrons Gorgon Projekt (15,6 MMPTA) hat dann über 54 Milliarden US-Dollar gekostet. In den USA sind bis 2020 weitere 58 MMTPA in Planung.

An dieser Stelle erscheint es sinnvoll, sich etwas mit den Relationen vertraut zu machen. Am 24.2.2016 verließ der erste Export-Tanker das Sabine Pass Terminal in USA. Er hatte 3,4 Bcf geladen. Mit diesen 3,4 Milliarden Kubikfüßen (1 Kubikmeter entspricht etwa 35 Kubikfüßen) ist das Gasvolumen nach der Rückverdampfung gemeint. Es entspricht einem Ladungsgewicht von rund 250 000 to – also ein typischer Tanker. Setzt man einen solchen Tanker mit der Nord Stream Pipeline in Vergleich, die eine Kapazität von 55 Milliarden Kubikmetern pro Jahr hat, erkennt man, daß etwa 10 solcher Tanker pro Woche nötig wären, um diese Pipeline komplett zu ersetzen.

Die Preisfrage

Erdgas ist zwischen Öl – als nahem Verwandten – und Kohle eingeklemmt. Die internationale Handelseinheit für Rohöl ist das Faß (1 bbl = 159 l), dessen Heizwert man mit rund 5,8 MMBtu (1 Million British Thermal Unit = 293 kWh) ansetzt. Man muß also die internationale Handelseinheit 1 MMBtu vom Erdgas lediglich mit dem Faktor 5,8 multiplizieren, um das „Öläquivalent“ zu erhalten. Man nennt das auch neudeutsch die „Btu crude ratio method“. Bei Kohle ist es etwas komplizierter, weil spezieller: Die Heizwerte von Kohlen sind sehr verschieden. Ein typischer Richtwert ist der API-2 Index oder die „Rotterdamkohle“ (1 to hat 23,8 MMBtu). Aktuell gilt z. B. für Rohöl (WTI) 35,92 US-Dollar für ein Faß. Somit wäre das Gasäquivalent etwa 6 US-Dollar pro 1 Million Btu. Der Börsenpreis (Henry Hub) betrug aber lediglich 1,67 US-Dollar für eine Million Btu. Die Tonne „Rotterdamkohle“ kostete rund 46 US-Dollar pro Tonne, entsprechend einem Gasäquivalent von 1,93 US-Dollar für eine Million Btu. Da international alle Energieträger miteinander verknüpft sind, erkennt man aus den letzten Relationen, warum der Kohleverbrauch in den Kraftwerken der USA um über 30% eingebrochen ist. Dies ist nicht dem „Klimaschutz“, sondern der harten Hand des Marktes geschuldet. Andererseits liegt der aktuelle Gaspreis an der Leipziger Börse bei rund 4 US-Dollar für eine Million Btu. Auch hier ist der Grund deutlich zu erkennen, warum in Deutschland immer noch – und zukünftig, nach erfolgtem „Atomausstieg“, noch viel mehr — „king coal“ die Stromerzeugung dominiert.

Internationale Aussichten

Die mit Abstand größten LNG-Importeure sind Japan und Korea. Beide setzen konsequent auf den Ausbau von Kernenergie und Kohle. Bereits jetzt ist der Verbrauch in Japan schon wieder rückläufig. Mit jedem Kernkraftwerk, das wieder in Betrieb geht, wird er weiter abnehmen. Auch China hat nicht den Zuwachs im Gasverbrauch, den viele einmal erwartet haben. Kohle läßt sich schon aus sozialpolitischen Gründen nicht so schnell und einfach zurückfahren. Gleichzeitig wurde der Ausbau der Kernenergie noch beschleunigt.

An dieser Stelle scheint eine Verdeutlichung des Erdgasbedarfs in der Stromwirtschaft nötig. Ein Kernkraftwerk würde je 1000 MW Leistung und einer üblichen Auslastung von 90% 44,84 Millionen MMBtu Erdgas pro Jahr, gegenüber einem modernsten Kombikraftwerk (Wirkungsgrad von 60%) einsparen – oder anders ausgedrückt 0,14 Bcf/d. Allein die Erdgasförderung in den USA beträgt rund 74 Bcf/d. Dies erklärt, warum 2015 dort die Stromerzeugung aus Kohle (1356 TWh) und Erdgas (1335 TWh) erstmalig ebenbürtig waren. Die Kohlekraftwerke in USA werden zukünftig die Funktion einer Preisbremse für Erdgas übernehmen und damit den Weltmarktpreis für LNG maßgeblich beeinflussen.

Genau auf die nahen asiatischen Absatzgebiete hat Australien mit seinem massiven Ausbau gesetzt. Nun läßt sich aber die Produktion wegen der hohen Kapitalkosten nicht einfach anhalten, sondern man muß praktisch um jeden Preis verkaufen, damit man die Schulden bedienen kann. Die LNG-Preise werden damit in Asien weiter fallen, was die Exporteure in USA und im mittleren Osten weiter unter Druck setzt. So sind z. B. die Frachtkosten von den Verflüssigungsanlagen nach Asien rund dreimal höher als ins „nahe“ Europa. Für Deutschland als Industriestandort, mit seiner einseitigen Ausrichtung auf „Wind und Russengas“, ziehen deshalb rasch dunkle Wolken auf.

Was haben Diesel und Atomkraftwerke gemeinsam?

Physikalisch gesehen nicht sehr viel, politisch betrachtet, sind sie fast identisch. Wenn Deutschland bleibt wie es ist, wird die Autoindustrie genauso schnell – oder gar noch schneller – aus Deutschland verschwinden, wie weiland die Kerntechnik.

Die unendliche Geschichte von den Stickoxiden

Stickoxide sind – wie der Plural schon andeutet – eine ganze chemische Gruppe mit unterschiedlichen Wirkstoffen. Aber nicht nur das, sondern bezüglich des Umwelt- und Menschenschutzes ist der Ort ihres Auftretens von ganz entscheidender Bedeutung. Für eine direkte Wirkung auf den Menschen sind sehr hohe Konzentrationen notwendig. Viel höher jedenfalls, als sie je an einem Verkehrsknotenpunkt gemessen wurden. Besonders niedlich sind immer die angeblichen Schleimhautreizungen. Stickoxide sind viel schwerer wasserlöslich und deshalb lungengängiger als die Schwefeloxide. Eine absichtliche Verwechslung oder schlicht Unkenntnis?

Stickoxide sind für den Menschen allenfalls indirekt schädlich: Der Cocktail aus Stickoxiden, Ozon (das reizt Augen und Schleimhäute) und Kohlenwasserstoffen in Verbindung mit starker Sonneneinstrahlung ergeben erst den Schadstoff – und hier liegt das Geheimnis der strengen Abgaswerte in Kalifornien. Es verhält sich wie mit dem Tsunami in Fukushima oder Bayern. Für den „Sommersmog“ fehlt uns in Deutschland schlicht der „ständig blaue Himmel“. Er ist übrigens ganz leicht an dem silbrigen Hof um die Sonne erkennbar. Dies passiert selbst in Berlin nur an sehr wenigen Tagen. Ganz im Gegenteil zu gewissen Regionen in der Welt, wo die Sonne nie richtig golden ist. Damit es auch noch richtig kompliziert wird, spielen Zeitdauer der Sonneneinstrahlung und Zeitpunkt der Freisetzung eine höchst komplizierte und widersprüchliche Rolle: Stickoxide können z. B. Ozon fressen und auch bilden – je nach Umständen.

Im Deutschland der 1970er und 1980er Jahre – die Hochzeit vom „Waldsterben“ – ging es immer nur um die Düngerbildung in der Atmosphäre. Eine „Überdüngung“ wurde als Ursache für das Waldsterben herangezogen, nachdem der Schadstoff „Schwefelsäure“ der Betroffenheitsindustrie durch die Entschwefelungsanlagen verloren ging. Auch dies, ein jedem Kerntechniker vertrautes Spiel: Ist man erstmal über ein Stöckchen gesprungen, wird sofort ein größeres Hindernis aufgebaut. Ziel ist und bleibt, die Kosten hoch zu treiben. Wer also in der Autoindustrie glaubt, man müsse nur die Stickoxide absenken, ist ein Narr. Wer nicht massiv Aufklärung betreibt, wird untergehen. Die „Gesellschaftsveränderer“ haben mit Sicherheit den längeren Atem, befinden sie sich doch längst in Staatsstellung mit Beschäftigungsgarantie und Pensionsanspruch. Wer sich dazu nicht in der Lage sieht oder Auseinandersetzungen scheut, sollte seinen Betrieb schnellstens ins Ausland verlegen, bevor er enteignet wird. Ebenfalls eine Erfahrung mit Kernkraftwerken, die alle eine gültige Betriebsgenehmigung besaßen und trotzdem von einem politischen Tsunami hinweggefegt wurden. Gleiches gilt übrigens für die in solchen Betrieben tätigen Ingenieure! Die Kollegen aus den fossilen Kraftwerken wollten auch nicht das Schicksal der Kollegen in der Kerntechnik sehen. Jetzt haben sie selbst berechtigte Existenzängste.

Wie und warum Stickoxide entstehen

Je höher die Verbrennungstemperatur in der Flamme ist und je höher der dort frei vorhandene Sauerstoff (Luftzahl), desto mehr Stickoxide entstehen. Das ist reine Thermodynamik und läßt sich durch keine Ideologie wegdiskutieren. Aus diesem Grunde ist z. B. bei einer Kohlenstaubfeuerung (Stufenbrenner) die spezifische Produktion geringer als bei einem Dieselmotor oder einer Gasturbine. Hinzu kommt noch die Verbrennungsgeschwindigkeit (dazu später). Hier wären wir auch mal wieder bei den „umweltfreundlichen Gaskraftwerken“. Die rötliche Färbung einer Abgasfahne ist ein direktes Maß für den Gehalt an Stickoxiden. Man stelle sich mal in die Nähe eines Gasturbinen-Kraftwerks und beobachte den Schornstein beim Anfahren oder schnellem Lastwechsel. Aber wahrscheinlich verhält es sich mit Stickoxiden, wie mit Radioaktivität: Es gibt gute und böse. Welche, welche sind, kann man nur mit dem richtigen Klassenstandpunkt erkennen.

Warum man nun immer kleinere Motoren mit immer kleineren Verbräuchen in Deutschland gebaut hat, ist ebenfalls eine rein politische Festlegung. Die Weltmarktpreise für Benzin und Diesel sind nicht so verschieden, aber der deutsche Ausbeuterstaat hat die höchsten Steuersätze. Dies wurde auch noch mit Umweltschutz und „peak oil“ verbrämt. Technik ist aber keine „Wünsch-dir-was-Veranstaltung“, sondern es geht immer nur um Optimierung. Wer also kleine, sparsame Dieselmotoren baut, erzeugt damit mehr Stickoxide als mit großvolumigen Ottomotoren. Ab einem gewissen Grenzwert hilft aber nur eine chemische Nachbehandlung der Abgase. Die kostet aber zusätzliche Energie und Geld. Auch wieder nicht unbedingt der Hit bei kleinen Anlagen, die auch noch möglichst billig (Kleinwagen) sein müssen. Der Kerntechniker kennt dies grundsätzliche Problem.

Die untoten Elektroautos

Alle paar Jahrzehnte findet sich wieder eine Lobby für Elektrofahrzeuge. Wahrscheinlich muß jede Generation die gleichen Fehler machen. Diesmal sind es die Schlangenölverkäufer von Wind und Sonne. Sie erhoffen sich dadurch die Rettung für ihren Zufallsstrom. Leider sterben die Elektroautos immer wieder aus dem gleichen Grund: Jedes Fahrzeug (einzige Ausnahme sind Schienenfahrzeuge) muß nicht nur seinen Antrieb, sondern auch seinen gesamten Treibstoff an Bord mitführen. Nun sind aber ausgerechnet Benzin und Diesel die Stoffe mit der höchsten Energiedichte überhaupt. Dagegen läßt sich elektrische Energie nur in (schweren bzw. großvolumigen) Batterien speichern. Bei Fahrzeugen schlichtweg Unsinn, da dieses „tote Gewicht“ mit großem Energieaufwand befördert werden muß. Elektrofahrzeuge haben nur zwei Vorteile: Keine lokalen Abgase (z. B. Kurort) und kaum Geräusche (Innenstadt). Bleibt noch die Frage der Stromerzeugung (vielleicht irgendwann Brennstoffzellen?) im Fahrzeug zu lösen….

Aber auch hier läuft die erprobte Taktik der „Atomkraftgegner“: Ein funktionierendes System unter Vorwänden zerstören, um die eigene Weltsicht durch zu setzen und die eigene Klientel wirtschaftlich zu fördern. Wer das Spiel nicht durchschaut, wird einen hohen Preis zahlen müssen. Die zerstörerische Kraft der „Energiewende“ ist noch lange nicht erschöpft. Gestern die Arbeitsplätze in der Kerntechnik, heute die Arbeitsplätze der Braunkohle und morgen die der Autoindustrie. Am Ende steht ein deindustrialisiertes und verarmtes Deutschland und dann kann man endlich wieder einmal mit der Erschaffung des „neuen Menschen“ beginnen. Die „Grüne Revolution“ so zu sagen als Rolle rückwärts des „großen Sprungs“. Bauchlandung auch hier garantiert.

Der Sinn von definierten Abnahmebedingungen

Wenn ein Auto von zwei Leuten, an zwei verschiedenen Tagen gefahren wird, wird man nie den gleichen Verbrauch und die gleichen Abgase erzielen können. Zu verschieden sind die Randbedingungen. Die Forderung nach „Abgastests während der Fahrt“ ist deshalb schlichtweg Unsinn. Sie würde erst recht Tür und Tor für Manipulationen öffnen. Es wird immer genau definierte Meßverfahren und Abläufe geben müssen. Sonst ist nichts reproduzierbar. Insbesondere wird man nie verschiedene Fahrzeuge vergleichen können. Dies aber, ist genau der Sinn solcher Tests. Ebenso, wird man sich wieder auf die (ausschließlichen) Urteile von Fachleuten verlassen müssen. Die deutsche Krankheit, ausschließlich Laien als (meist selbsternannte) Experten zu bezeichnen und sich durch die Medienlandschaft schwätzen zu lassen, muß endlich aufhören. Wird man zukünftig seine Krebstherapie auch mit dem Pförtner im Krankenhaus besprechen? Warum eigentlich nicht, schließlich hat es ein grüner Musiklehrer als der „Verkehrsexperte“ seiner Partei bis zum Vorsitzenden des Ausschuss für Verkehr im Europaparlament gebracht. Wie gesagt, sie haben sich längst durch die Institutionen geschlichen. Die Kerntechnik hat auch die Theaterwissenschaftlerin als „Atomexpertin“ und den Sozialwirt als Umweltminister und zukünftigen Leiter der „Atommüll-Kommission“ nicht ernst genug genommen. Man war sich einfach zu fein, der Öffentlichkeit mal des Kaisers nackte Kleider vorzuführen. Statt dessen glaubte man, mit Kungelei besser zu fahren.

Die VW-Krankheit

Eigentlich hat VW nahezu die besten Dieselmotoren in seiner Klasse gebaut. Eigentlich etwas, auf das man hätte stolz sein können. Eigentlich ein Produkt, mit dem man hätte Geld verdienen können. Statt dessen, hat man sich in der für das Gewerkschafts- und SPD-Milieu typischen Selbstgerechtigkeit über geschriebene und ungeschriebene Gesetze hinweggesetzt. Symptomatisch für diese Form der Deutschland-AG war die Verkündung des Rücktritts des Vorstandsvorsitzenden durch die heiligen drei Könige: Ein Gewerkschaftsfunktionär, ein Betriebsrat und einer, der Ministerpräsident geworden ist, weil man wirklich keinen besseren mehr hatte. Wer in einem solchen Unternehmen in verantwortlicher Position arbeitet (also im Ernstfall seinen Kopf hinhalten muß) oder diesem sein Geld als Kapital zur Verfügung stellt, dem ist wirklich nicht mehr zu helfen.

In diesem Klima des – wir sind die Guten, denn wir sind von der Gewerkschaft und der Partei für mehr Gerechtigkeit – ist es überhaupt nicht verwunderlich, daß auf Meldungen nicht reagiert wurde. Betrügen – das weiß doch jeder Genosse – tun nur die bösen Kapitalisten. Bei den Zweiflern hat es sich doch nur um einige Querulanten gehandelt, die das Große und Ganze sowieso nicht verstehen. Die Welt verstehen nur Gewerkschaftler und Sozialdemokraten. Und plötzlich der Schock in der niedersächsischen Provinz: Kapitalismus geht ganz anders, als all die Jahre gedacht. Was war denn bloß geschehen?

Man hat in Kalifornien (warum, siehe oben) noch mal einen besonders strengen Grenzwert für Stickoxide bei Dieselmotoren eingeführt. Jedem gelernten Motorenbauer ist klar, daß man diesen Wert nur mit Nachbehandlung der Abgase (z. B. Harnstoff) im Betrieb einhalten kann. Wer damit wirbt, muß ihn einhalten, sonst macht er sich strafbar. Eigentlich ganz einfach zu verstehen. Deshalb hat auch kein Hersteller sonst behauptet, daß er das nur mit Primärmaßnahmen könnte. Nur die Genossen Überflieger aus Wolfsburg. Vielleicht haben die Funktionäre auch einfach nicht den Unterschied zwischen Meßwerten auf einem Prüfstand und im realen Straßenverkehr verstanden. Sie hätten ja mal jemanden fragen können, der etwas davon versteht. Aber halt, das tun sie ja auch nicht, wenn es um Energiewende, Euro etc. geht. Im Hintergrund stricken sie lieber schon an neuen Legenden, von bösen US-Imperialisten, die sie aus dem Geschäft drängen wollen.

Irgendwie vielleicht auch ganz heilsam. Die ganze öde Propaganda von schlechteren Umweltschutz- und Lebensmittelstandards in USA ist für Michel auf einmal geplatzt. In den USA gibt es nicht nur Geldstrafen in Millionenhöhe, sondern auch glasharte Haftstrafen für die jeweils Verantwortlichen. Ausreden, wie mein Chef hat das aber verlangt, gehen grundsätzlich nicht durch. Vielleicht rührte daher immer die Angst der Genossen vor TTIP. Verantwortung geht mit sozialistischer Gesinnung eben gar nicht zusammen.

PRISM das moderne Entsorgungszentrum? Teil 1

Von den populistischen „Argumenten“ gegen die Kernenergie, ist praktisch nur noch eines öffentlichkeitswirksam: Die „ungelöste Entsorgungsfrage“. Aus diesem Grunde, wird in den Medien – zumindest in Deutschland – nur äußerst zurückhaltend über Entwicklungen berichtet, die über das bloße Vergraben hinausgehen.

In England wird seit einigen Jahren ernsthaft über den Bau des sogenannten Power Reactor Innovative Small Module (PRISM) von GE-Hitachi diskutiert. Hintergrund ist der stetig wachsende Plutoniumberg aus der Wiederaufbereitungsanlage. Inzwischen lagern zwischen 100 und 150 Tonnen auf der Insel. Es geht dabei um die sinnvollste Verwendung. Ein „verbuddeln und vergessen“ nach deutschen Vorstellungen, scheidet für GB ohnehin aus. Vielmehr ist man bestrebt, das Gefahrenpotential des „Atommülls“ auf einige hundert Jahre zu begrenzen. Ein Zeitraum, den man unstrittig durch technische Bauten sicher beherrschen kann. Man holt dadurch das Problem von der wenig fassbaren moralischen Ebene – irgendwelcher „Ethikkommissionen“ – auf die berechenbare Ebene der Ingenieurwissenschaften zurück.

Ein Weg – und beileibe nicht der einzige – ist die Nutzung und Beseitigung abgebrannter Brennelemente durch einen mit Natrium gekühlten Reaktor mit schnellem Neutronenspektrum und metallischem Brennstoff: Dem PRISM. Nichts von der Erfindermesse, sondern ein Stück erprobter Technik. Sein unmittelbarer Vorläufer, der EBR II, war 30 Jahre erfolgreich in Betrieb (bis 1994). Ein PRISM-Kraftwerk mit 1866 MWel würde rund zwei Tonnen abgebrannter Brennelemente pro Jahr verbrauchen und damit die gleiche Menge Strom erzeugen, wie Kohlekraftwerke durch die Verbrennung von sechs Millionen Tonnen Steinkohle.

Warum schnelle Neutronen?

Mit hinreichend schnellen Neutronen kann man alle schweren Kerne spalten. Ausdrücklich auch U238, alle Plutoniumisotope und die minoren Aktinoiden (Americium, Curium, Neptunium usw.). Letztere sind für die Langlebigkeit des Atommülls verantwortlich. Gelingt es sie zu spalten, bleiben nur noch Spaltprodukte mit einer Halbwertszeit von unter 30 Jahren übrig. Allerdings hat die Sache einen entscheidenen Harken: Die Reaktionsquerschnitte sind nicht nur stoffabhängig, sondern auch sehr stark energieabhängig. Mit anderen Worten, nimmt die Wahrscheinlichkeit für eine Spaltung mit schnellen Neutronen stark ab.

Eine selbsterhaltende Kettenreaktion läßt sich nur mit U235 (in der Natur vorkommend) und U233. (aus Thorium erbrütet), sowie Pu239 (aus Uran erbrütet) aufrecht erhalten. Auch deren Spaltquerschnitte sind für langsame thermische Neutronen um Größenordnungen geeigneter. Will man also einen schnellen Reaktor bauen, braucht man wesentlich höhere Anteile an Spaltmaterial. Allerdings steigt auch die Anzahl der freigesetzten Neutronen mit der Energie der spaltenden Neutronen an.

An dieser Stelle ergeben sich die drei Varianten des PRISM-Reaktors, die sich nur durch die Zusammensetzung des Kerns unterscheiden:

  1. Der Brenner. Er verbraucht – wie ein Leichtwasserreaktor – mehr Spaltstoff als beständig neu entsteht. Man muß diese Verluste stetig aus abgebrannten Brennelementen ersetzen. Dies wäre eine reine „Abfallverbrennungsanlage“.
  2. Der Selbsterhalter. Er stellt ziemlich genau so viel Pu239 beim Betrieb gleichzeitig her, wie er auch verbraucht. Die Spaltungen müssen nur durch U238– z. B. aus dem Abfall der Anreicherungsanlagen – ergänzt werden.
  3. Der Brüter. Dies ist die wohl bekannteste Variante. Ein solcher Kern erzeugt mehr Pu239., als er selbst verbraucht. Entscheidendes Maß ist bei diesem Typ die sogenannte Verdoppelungszeit. Damit ist die Zeitdauer gemeint, in der ein Reaktor so viel Überschussplutonium produziert hat, wie man braucht, um damit einen zweiten Reaktor in Betrieb nehmen zu können. Diese Variante wird erst attraktiv, wenn die Preise für Natururan explodiert sind. Also erst in sehr ferner Zukunft.

Es ist bei allen drei Varianten sinnvoll, die Spaltprodukte von Zeit zu Zeit abzutrennen. Allerdings haben sie nicht die Bedeutung, die sie bei Leichtwasserreaktoren haben, da ihre Einfangquerschnitte (und dadurch verursachte Neutronenverluste) für hohe Energien recht klein sind. Der Abbrand kann bei schnellen Reaktoren rund fünfmal so hoch sein, wodurch sich eine Wiederaufbereitung wesentlich vereinfacht und nicht so oft geschehen muß (Kosten).

Warum Natrium als Kühlmittel?

Wenn man einen schnellen Reaktor bauen will, muß man ein Kühlmittel verwenden, das Neutronen praktisch nicht abbremst. In diesem Sinne, kommen praktisch nur drei Stoffe in Frage: Natrium, Blei und Helium. Natrium besitzt in allen relevanten Eigenschaften klare Vorteile, sodaß es nicht verwunderlich ist, daß praktisch alle schnellen Reaktoren (über 20 in 8 Ländern) mit Natrium gekühlt wurden. Einzige Ausnahme bilden die sieben Blei-Wismut-Reaktoren der U-Boote der Alpha-Klasse in der Sowjetunion. Sie sind gerade an den Eigenschaften des Blei gescheitert (hohe Schmelztemperatur, die eine ständige Beheizung erfordert; große Korrosionsprobleme; hohe Pumpleistung; starke Aktivierung durch die Bildung von Po210. Je eingehender man sich mit Kühlmitteln beschäftigt, gibt es für ein Kernkraftwerk (zur reinen Stromerzeugung) lediglich zwei optimale Kühlmittel: Wasser für thermische und Natrium für schnelle Reaktoren.

Natrium ist wegen seines elektrischen Widerstandes hervorragend für den Bau von elektromagnetischen Pumpen ohne bewegliche Teile und damit ohne Dichtungsprobleme geeignet.

Bei Natrium braucht man immer einen zusätzlichen Zwischenkreislauf. Der Neutronenfluß bildet Na24, welches ein harter γ.-Strahler ist. Das primäre Natrium muß deshalb gut abgeschirmt werden. Außerdem besteht bei Leckagen im Dampferzeuger die Gefahr der Wasserstofferzeugung und der Bildung von NaOH. Wasserstoff ist ein guter Moderator, der zu einer Beschädigung des Kerns durch einen Reaktivitätssprung führen könnte.

Die Gefahr von Natriumbränden wird meist überschätzt. Natrium hat eine hohe Verdampfungswärme bei hoher Verdampfungstemperatur. Dies führt zu einer geringen Verdampfungsrate während der Verbrennung – dem Feuer mangelt es an Nahrung. Die Verbrennung von Natrium in Luft setzt nur etwa ein Viertel der Energie, wie Benzin frei. Bei dem klassischen Brandversuch in einer offenen Wanne, bilden sich nur wenige Zentimeter hohe Flammen und in einem Meter über den Flammen herrscht nur eine Temperatur von rund 100 °C. Die bei der Verbrennung entstehenden Na2 O und Na O – Aerosole reagieren in Luft unter Anwesenheit von Wasserdampf und Kohlendioxid weiter zu Na OH und Na2 CO3. Diese Aerosole erfordern anschließend gründliche Reinigungsarbeiten, da sie elektrische Anlagen zerstören können und giftig sind.

Natrium besitzt sehr gute Korrosionsschutzeigenschaften, da es leicht mit Sauerstoff reagiert. Erst oberhalb von 50 ppm besteht für gewisse Stähle eine Korrosionsgefahr im flüssigen Natrium. Dieser Wert ist problemlos über eine Kältefalle (Im Prinzip ein Topf, durch den ein Teilstrom von weniger als 5% des Kreislaufes sehr langsam hindurch strömt) auf 10 bis 25 ppm zu halten. In der Kältefalle kristallisiert das Na2Oa bei unter 200 °C aus.

Warum metallischer Brennstoff?

Metallische Brennstoffe ermöglichen die höchsten Brutraten, da sie vollständig aus spaltbarem und brutfähigen Material bestehen könnten. Sie liefern das härteste Neutronenspektrum, da sie nur aus den schwersten Kernen bestehen. Die Folge ist, daß rund 25% der erzeugten Energie aus der direkten Spaltung von U238. stammen können.

Metalle sind ausgezeichnete Wärmeleiter und vertragen sehr schnelle Temperaturänderungen. Im Gegensatz dazu sind Uranoxide – wie sie in allen Leichtwasserreaktoren verwendet werden – Keramiken, mit bekannt schlechter Wärmeleitung und Sprödigkeit. Sie können im Inneren bereits aufschmelzen, wenn sich ihre Randtemperatur noch kaum geändert hat und können bei schockartiger Abkühlung wie eine Teetasse zerspringen.

Metallische Brennstoffe vertragen sich ausgezeichnet mit dem flüssigen Natrium. Chemische Reaktionen, wie zwischen den Brennstabhüllen aus Zr bei Leichtwasserreaktoren und Wasserdampf gibt es nicht (Wasserstoffexplosionen in Fukushima).

Metallischer Brennstoff schwillt durch die Strahlenbelastung um bis zu 30% an. Die Brennstäbe müssen deshalb sehr viel Raum für Spaltgase besitzen. Der notwendige Anfangsspalt zwischen Hüllrohr und Brennstoff wird mit Natrium als Wärmebrücke ausgefüllt.

Man kann bei Metallen die Eigenschaften durch Legierung gezielt verändern. Plutonium hat eine zu geringe Schmelztemperatur. Der Brennstoff kann mit den Legierungsbestandteilen der Stahlhülle schädliche Eutektika bilden usw. Dies alles, hat in den USA Jahrzehnte Forschung und Entwicklung und den Test von hunderttausenden von Brennstäben erfordert. Als Optimal hat sich eine Brennstofflegierung aus Uran und Plutonium mit etwa 10% Zr in einer Hülle aus austenitischem Stahl herausgestellt.

S wie small

Von Anfang an, stand bei der Entwicklung die geometrische Größe des Reaktors im Vordergrund: Man wollte den kompletten nuklearen Teil in einer Fabrik fertigen und testen und anschließend (möglichst) mit der Eisenbahn zum Standort transportieren. Alle Einbauten, der Kern, die Pumpen, die Zwischen-Wärmeübertrager, die Lademaschine mit dem Zwischenlager und die Regelstäbe werden in einen Topf aus Edelstahl eingebaut und mit dem Deckel gasdicht verschweißt. Diesen Reaktorbehälter umschließt noch ein zweiter Sicherheitsbehälter und die Luftkühlung. All das, wird in einer Fabrik zusammengebaut und getestet und anschließend zur Baustelle transportiert und dort in das örtlich gefertigte Betonsilo eingesetzt. Damit ist die geplante Leistung auf etwa 840 MWth. begrenzt. Durch die Serienfertigung in einer spezialisierten Fabrik verspricht man sich einen bedeutenden Kostenvorteil.

M wie modular

Die Modularität bezieht sich sowohl auf einen Block selbst, wie auch auf ein Kraftwerk:

  • Jeder Block besteht aus dem nuklearen Teil in einem unterirdischen Betonsilo, der oberirdischen Dampferzeuger-Anlage und den konventionellen Stromerzeugungsanlagen.
  • Ein komplettes Kernkraftwerk könnte z. B. eine elektrische Leistung von 1866 MWel haben und müßte dann aus sechs Reaktoren (je 840 MWth) bestehen, die jeweils paarweise auf eine Turbine (je 622 MWel.) wirken und insgesamt drei Turbinen haben. Alle sonstigen Einrichtungen (Werkstatt, Sozialgebäude usw.) würden gemeinsam genutzt. Ein solches Kraftwerk könnte auch eine integrierte Wiederaufbereitungsanlage beinhalten.

Die interne Unterteilung zielt auf eine potentielle Kosteneinsparung ab: Lediglich der Reaktor in seinem Betonsilo müßte dem Sicherheitsstandard „nuclear grade“ entsprechen. Bereits die Dampferzeugungsanlage in ihrem separaten Gebäude sollte – nach Meinung von GE – nur einen „gehobenen Industriestandard“ haben. In wie weit die Genehmigungsbehörden dieser Argumentation folgen werden, ist noch nicht ganz eindeutig zu beantworten.

Die Zusammenfassung von zwei Reaktoren mit Dampferzeuger und einer Turbine zu jeweils einer Einheit, zielt auf eine hohe Verfügbarkeit und einen kostengünstigen Ausbau eines Standortes ab. Sobald eine Einheit fertig ist, kann diese bereits Geld verdienen, während der Ausbau des Kraftwerkes weiter läuft. Die heute übliche Vorfinanzierung der gesamten Summe entfällt. Später, hat das Kraftwerk eine sehr hohe Verfügbarkeit bei guten Wirkungsgraden. Letztendlich muß die Praxis zeigen, welcher Weg der günstigere ist. Rußland beispielsweise, versucht es über möglichst große Blöcke.

Das Sicherheitskonzept

PRISM setzt konsequent auf eine passive oder inhärente Sicherheitstechnik. Der völlige Stromausfall (Station-Blackout) ist kein Problem mehr. Es wird lediglich eine elektrische Leistung von weniger als 200 kW für Instrumentierung, Notbeleuchtung, Rechner und Bildschirme usw. benötigt. Diese kann problemlos über Batterien bereitgestellt werden. Notstromdiesel (als Sicherheitstechnik) sind nicht mehr nötig. Die Nachzerfallswärme wird ausschließlich über eine Luftkühlung mit Naturzug abgeführt. Dazu wird die Wärme über das Reaktorgefäß und den Sicherheitsbehälter an einen umgebenden Luftspalt abgegeben. Die erwärmte Luft steigt über vier Kamine auf. Das System ist so bemessen, daß auch bei erheblichen Verstopfungen (z. B. durch Erdbeben oder Anschläge) oder dem kompletten Ausfall von zwei Kaminen oder einem völligen Verschluß der Zuluftöffnungen die Kühlung stets gewährleistet ist. Selbst bei einem völligen Ausfall von 36 Stunden tritt noch keine Kernschmelze auf. Ein Unfall wie in Fukushima, wäre damit ausgeschlossen.

Der gesamte Reaktor ist elastisch auf Federn und Dämpfern gelagert. Da sich alle Rohrleitungen und Pumpen etc. in dem Reaktorgefäß befinden, ergibt sich ein optimaler Erdbebenschutz. Dies gilt auch für Flugzeugabstürze und sonstige Einwirkungen von außen, da sich der Reaktor in einem unterirdischen Betonsilo befindet. Die Verbindung zum Dampferzeuger besteht aus Vor- und Rücklauf des Natrium-Zwischen-Kreislaufes, die ebenfalls in einem Betongraben verlegt sind. Diese Leitungen sind als Rohr in Rohr Konstruktion ausgeführt, um Natrium-Leckagen zu verhindern.

Der Dampferzeuger ist ebenfalls mit einem Mantel zur Luftführung umgeben. Wenn die eigentliche Kühlung des Kraftwerks ausfällt, kann die Wärme auch darüber abgeführt werden. Dies ist jedoch kein nukleares Sicherheitssystem im engeren Sinne, sondern dient dem Anlagenschutz.

Die Lagerung der Brennelemente

Die Handhabung der Brennelemente verläuft bei diesem Reaktor gänzlich anders als bei Leichtwasserreaktoren. Der Reaktor kann wegen des flüssigen Natriums mit seiner hohen Temperatur und Brandgefahr nicht einfach geöffnet werden. Zuerst wird das Helium als Schutzgas und Ausgleichsraum abgesaugt und durch frisches Gas ersetzt. Damit soll die Gefahr der Freisetzung radioaktiver Gase in den Sicherheitsbehälter vermieden werden. Die fest im Reaktor installierte Lademaschine entnimmt abgebrannte Brennelemente und lagert sie oberhalb des Kerns in ein Lagergestell ein. Anders als bei Leichtwasserreaktoren, verbleiben sie für mindestens 20 weitere Monate zur Abkühlung im Reaktor. Ihre Wärmeentwicklung durch den radioaktiven Zerfall ist dann soweit abgeklungen, daß sie auch ohne spezielle Kühlung keine Temperatur von 400 °C mehr überschreiten können. Dies ist für ihren metallischen Kern und die Hüllrohre aus Stahl kein Problem. Ein Brennelemente-Lagerbecken ist nicht nötig.

Ein vollautomatisches Transportfahrzeug dockt an den Reaktordeckel an, entnimmt die zu entladenden Brennelemente und fährt sie anschließend zum zentralen Lagergebäude.

All das, geschieht vollautomatisch und unter Schutzgas. Trotzdem ist ein Auslegungsstörfall der Brand des Natriums im Reaktor. Der Sicherheitsbehälter oberhalb des Reaktors ist so bemessen, daß er die freigesetzte Energie und die Temperaturen aushält. Automatische Löschanlagen mit Schutzgasen sind vorhanden.

Die Auslegungsstörfälle

Schnelle Reaktoren (SR) und Leichtwasserreaktoren (LWR) unterscheiden sich stark in ihrem Unfallverhalten. LWR stehen unter hohem Druck und werden nahe dem Verdampfungspunkt betrieben. Schon bei einem relativ kleinem Leck baut sich der Druck stark ab und das „Kühlwasser“ verdampft. Die Temperatur im Kern steigt damit steil an und nähert sich schnell den Grenzwerten. Gelingt es nicht, das Kühlwasser schnell zu ersetzen, wird der Kern zerstört (Unfall in Harrisburg). Auch nach erfolgreicher Abschaltung, kann die Nachzerfallswärme noch zur Kernschmelze führen (Unfall in Fukushima). Es kommt im weiteren Verlauf dann zur Reaktion zwischen Wasserdampf und den Brennstabhüllen mit starker Wasserstoffproduktion (zerstörende Explosionen in Fukushima).

Bei einem SR sieht der Ablauf gänzlich anders aus. Die Kombination aus metallischem Brennstoff, Brennstabhüllen aus Edelstahl und Natrium als Kühlmittel ergibt eine sehr gute Wärmeübertragung mit hoher Temperaturbeständigkeit. Chemische Reaktionen zwischen den Unfallbeteiligten sind praktisch nicht vorhanden. Mit anderen Worten: Es wird recht schnell und gleichmäßig heißer im Reaktor. Wegen der hohen Verdampfungstemperatur kann es deutlich heißer werden, ohne daß sich wesentliches ändert. Bei einem LWR reicht selbst die Nachzerfallswärme aus, den Kern zum Schmelzen zu bringen, wenn er nicht mehr mit flüssigem Wasser bedeckt ist. Bei einem SR führt die starke Temperaturerhöhung lediglich zu einem neuen Gleichgewicht zwischen „Notkühlluft“ und Reaktorgefäß. Die neue Gleichgewichtstemperatur ist so bemessen, daß sie sich noch weit von Materialgrenzwerten entfernt einstellt. Der Reaktor ist „inhärent sicher“.

Bei jedem Reaktor führen gewisse Grenzwerte zur sofortigen und automatischen Abschaltung. Beim PRISM fallen zu diesem Zweck sechs Regelstäbe in den Kern ein. Die Kettenreaktion wird dadurch in Sekundenbruchteilen unterbrochen. Zur dauerhaften Abschaltung gibt es noch ein zweites System, das Kugeln aus Borkarbid in den Kern einführt. Insofern unterscheiden sich LWR und SR kaum.

Man geht aber beim PRISM-Reaktor noch einen Schritt weiter, in dem man sich den starken Temperaturanstieg nutzbar macht. Dieser führt zu einer Reihe von Auswirkungen, die neutronenphysikalisch wirken (Dopplereffekt, Dichteänderung des Natrium, Axiale und radiale Ausdehnungen des Brennstoffs, usw.). Wichtig ist die konstruktive Gestaltung, damit der Temperaturkoeffizient der Reaktivität immer negativ bleibt (In Tschernobyl war er positiv!). In Alltagssprache: Je heißer der Reaktor wird, um so schneller bricht die Kettenreaktion von selbst zusammen. Wird die Kühlung – aus welchen Gründen auch immer – unterbrochen, schaltet sich der Reaktor von selbst ab. Er ist also auch im Betrieb „inhärent sicher“.

Der Ausfall der Umwälzpumpen im Reaktor (vier Stück) kann zu einer lokalen Überhitzung führen, die örtlich sogar zu einem Verdampfen des Natriums führen könnte. Dadurch könnte der Neutronenfluß lokal weiter ansteigen und Teile des Kerns beschädigen. Ursache sind die elektromagnetischen Pumpen, die keine rotierenden Massen haben und somit sofort ausfallen, wenn der Strom weg ist (Station-Blackout). Sie werden deshalb mit Synchronmotoren, mit extra großen Schwungmassen, parallel betrieben. Die Synchronmaschinen erzeugen im Normalbetrieb Blindleistung und schalten bei Stromausfall automatisch in den Generatorbetrieb um. So entsteht ein mehrere Minuten dauernder Auslauf der Pumpen, der lokale Überhitzungen verhindert und sanft in einen Naturumlauf überführt.

Versagt auch dieses System, werden die Gasraum-Ausdehner wirksam. Sie funktionieren nach dem Prinzip eines umgedrehten Glas im Spülbecken: Je weiter man es eintaucht, um so kleiner wird das Luftpolster infolge des steigenden Wasserdrucks. Im PRISM spielt nun der Pumpendruck auf das Natrium mit einem Gaspolster aus Argon zusammen. So wie der durch die Pumpen erzeugte Druckanstieg kleiner wird, dehnt sich das Argonpolster aus. Da das Gas eine wesentlich geringere Dichte als das flüssige Natrium hat, kann es auch weniger Neutronen in den Kern zurück streuen. Der Ausfluß erhöht sich und die Kettenreaktion bricht zusammen. Ein weiteres, völlig passives, Sicherheitssystem.

Natriumbrand im Dampferzeuger

Ein spezielles Sicherheitsproblem ist die Reaktion zwischen Wasser und Natrium. Bei ihr wird neben Energie auch Wasserstoff frei bzw. es entstehen Reaktionsprodukte, die Wasserstoff enthalten. Daraus ergeben sich folgende Ansprüche:

  • Der Dampferzeuger sollte in einem separaten Gebäude – streng getrennt vom Reaktor – stehen. Da es nur hier eine Schnittstelle zwischen Wasser und Natrium gibt, können alle Auswirkungen besser beherrscht und lokal begrenzt werden.
  • Es sollte eine Isolierung zwischen Dampferzeuger und Reaktorteil geben, um Rückwirkungen auf die Wärmetauscher im Reaktor zu verhindern.
  • Es müssen ausreichend große Abblasetanks vorhanden sein, um Natrium und Wasser möglichst schnell voneinander zu trennen, damit die Brandlasten klein bleiben. Entstandener Wasserstoff muß rekombiniert bzw. sicher abgeleitet werden, um Explosionen zu verhindern (nicht wie in Fukushima, auch noch benachbarte Gebäude zerstören.)

Der Dampferzeuger des PRISM ist ein schlanker, aufrecht stehender Behälter. Er ist nicht vollständig mit Natrium gefüllt, sondern besitzt oben einen mit Argon gefüllten Raum. Dieses Gaspolster, kann bei Störfällen etwaige Druckwellen bereits erheblich mindern. In dieses Natriumbad tauchen, zu einer Spirale gewickelte Rohre ein. In diesen strömt das Wasser und verdampft. Würde ein Rohr undicht werden, strömt Wasser bzw. Dampf unter hohem Druck in das Natrium ein und reagiert dort sofort. Die zusätzliche Energieproduktion kann zu einem Temperaturanstieg im Dampferzeuger führen. Wichtigste Gegenmaßnahme ist nun die Absperrung sowohl der Wasser- und Dampfleitungen wie auch der Natriumleitungen. Dabei sind kleine Leckagen kein Problem, da sie ein langsames Abfahren der Anlage ermöglichen.

Kommt es hingegen zu massiven Wassereinbrüchen, kann es zu einer stärkeren Temperaturerhöhung und einem steilen Druckanstieg führen. Wichtigstes Ziel ist nun, die Druckspitze zu begrenzen und die Druckwelle möglichst von den Zwischenwärmetauschern im Reaktor fern zu halten. Zur Dämpfung dient bereits das Gaspolster im Dampferzeuger. Wird der vorgesehene Druck überschritten, bersten zwei Scheiben in der Verbindungsleitung zum Abblasetank. Der Abblasetank trennt die Gase (insbesondere den entstandenen Wasserdampf) vom flüssigen Natrium. Das Natrium strömt dann weiter in Reservetanks. Bereits gebildeter Wasserstoff wird rekombiniert, um etwaige Explosionen zu vermeiden. Die Restwärme wird über die Außenluft abgeführt.

Unmittelbar hinter dem Sicherheitsbehälter des Reaktorgebäudes befinden sich Isolierventile, die sofort und automatisch schließen. Dadurch wird verhindert, daß überhaupt Reaktionsprodukte zum Reaktor gelangen können.

Schlußbetrachtung

Es gibt international viel Erfahrung aus einigen hundert Betriebsjahren mit natriumgekühlten schnellen Reaktoren. Allein in den USA ist der EBR II über 30 Jahre erfolgreich gelaufen. Man hat in ihm über 100000 Brennelemente getestet und umfangreiche Experimente der Sicherheitssysteme durchgeführt. Mehrfach wurde bei voller Leistung die Wärmesenke einfach abgestellt, um beispielsweise die Richtigkeit der Rechenprogramme zu überprüfen. Die Entwicklung ist seit dem – wenn auch stark reduziert – kontinuierlich weitergeführt worden. Bereits 1994 wurde das eingereichte Konzept von der NRC in einem 400seitigen Abschlussbericht positiv beurteilt. Seit dem, könnte eigentlich ein Kraftwerk als Demonstrationsanlge gebaut werden – wenn der politische Wille vorhanden wäre. Ob auch hier wieder China voranschreiten wird oder kann Europa (GB) noch den Anschluß halten?

Ausblick

Der zweite Teil wird sich mit der Wiederaufbereitung und der Herstellung der metallischen Brennelemente beschäftigen.

Der Wahnsinn geht weiter

Wer immer noch nicht glauben mag, daß Planwirtschaft schneller wuchert als Krebs, hat die Mitteilungen Energie: Bestätigung des Reservekraftwerkbedarfs der Bundesnetzagentur noch nicht gelesen. Inzwischen gibt es eine Verordnung über „Reservekraftwerke“. Immerhin werden hier die „Gebühren“ für zusätzliche Kraftwerke mit bis zu 7800 MWel geregelt, die wir Stromverbraucher zahlen müssen.

Das neu erschaffene Handelsgut der Reservekraftwerke

Irgendwann hat auch jedes Kraftwerk sein Lebensende erreicht: Meist nicht aus technischen Gründen (ein Kraftwerk muß bis zuletzt gewartet werden), oft aus technologischen Gründen, überwiegend aus wirtschaftlichen Erwägungen und neuerdings sogar aus politischen Gründen (Ausstieg aus der Kernenergie). Normalerweise – wie gesagt, bis auf Kernkraftwerke in Deutschland – eine auf betriebswirtschaftliche Daten fußende unternehmerische Entscheidung. Mit einfachen Worten: Wenn die laufenden Kosten, die erzielten Einnahmen übersteigen, wird es stillgelegt. Nun hat man auch früher solche Kraftwerke (eher einzelne Blöcke in einem Großkraftwerk) nicht sofort abgerissen, sondern sie erst einmal in die sogenannte „Kaltreserve“ überführt. Unter „Kaltreserve“ versteht man sorgsam gepflegte Einheiten, die man innerhalb weniger Tage wieder in Betrieb setzen kann. Das kostet natürlich zusätzlich Geld. Quasi eine Versicherungsprämie gegen Ausfälle von Kraftwerken (unerwartete Schäden, Umbau- und Wartungsmaßnahmen etc.). Wieviel und welche Blöcke man in der Kaltreserve belässt, ist wieder eine betriebswirtschaftliche Entscheidung. Weil das so ist, werden stets die Einheiten mit den höchsten Unterhaltungskosten – meist die ältesten – Einheiten endgültig abgerissen. An dieser Stelle muß man verstehen, daß der notwendige Umfang der Kaltreserve ausschließlich in der Verantwortung des jeweiligen Betreibers liegt. Wer seinen Kraftwerkspark optimal betreibt, auf dem Stand der Technik hält und stets gut wartet, kommt mit einer entsprechend kleinen Reserve aus. Wer über den richtigen Brennstoffmix verfügt, braucht unerwartete Preisschwankungen nicht zu fürchten.

Die Politik hat nun durch ihre Vorgaben (Ausstieg aus der Kernenergie, Wunschenergie Wind und Sonne), die vorher beschriebenen Zusammenhänge außer Kraft gesetzt. Damit die Politik nun ihren Willen durchsetzen kann, muß sie die Entscheidung übernehmen, welche Kraftwerke stillgelegt werden dürfen. Da aber Enteignungen in unserem Wirtschaftssystem (noch) schwer durchsetzbar sind, mußte eine Krücke gefunden werden. Will oder muß ein Betreiber ein Kraftwerk abschalten, muß er sich dies genehmigen lassen. Dies stellt für sich schon einen schwerwiegenden Eingriff in das Grundrecht auf Eigentum, Gewerbefreiheit und Vertragsfreiheit dar. Um das durchziehen zu können, muß man zumindest eine akzeptable Entschädigung vorsehen. Das Wirtschaftsgut „Reservekraftwerk“ war geboren. Ein weiteres, von Politikerhand erschaffenes, planwirtschaftliches Monster, welches weitere Monster gebären wird!

Was genau, ist ein Reservekraftwerk?

Wenn der Politik – vertreten durch die Bundesnetzagentur – die endgültige Abschaltung eines Kraftwerks missfällt, wird es zu einem Reservekraftwerk erklärt. Ein Reservekraftwerk darf ausdrücklich nicht mehr von seinem Eigentümer benutzt werden, muß aber stets und in vollem Umfang (Personal, Wartung, Prüfungen etc.) durch ihn unterhalten werden. Lediglich der zuständige Übertragungsnetzbetreiber entscheidet, wann, wie oft, für wie lange, das Kraftwerk betrieben werden soll. Für einen solch schweren Eingriff in das Recht auf Eigentum, muß es natürlich eine Entschädigung geben. Diese Kosten werden auf alle Stromverbraucher über das Netzentgeld umgelegt. Ganz neben bei, ist das eine weitere Verschleierung der tatsächlichen Kosten der Windenergie! Die Festlegung der Entschädigung wird im heute üblichen Neusprech als „Durchführung eines Interessenbekundungsverfahrens “ bezeichnet. Dahinter verbirgt sich folgende Problematik: Die Entschädigung muß ausgehandelt werden. Wenn ein Eigentümer – aus welchen Gründen auch immer – partout kein Reservekraftwerk haben will, kann er sich durch die Nennung eines überhöhten Preises schützen. Deshalb wird schon mal vorsorglich mit der Keule „Gewährleistung der Sicherheit und Zuverlässigkeit des Elektrizitätsversorgungssystems“ gedroht. Andererseits ist die Bundesnetzagentur in einer eher schwachen Position, da bestimmte Kraftwerke aus bekannten technischen Gründen faktisch eine Monopolstellung besitzen. In der Praxis werden die Verhandlungen eher in größter Harmonie verlaufen. Handelt es sich doch um ein klassisches StGeschäft zu Lasten Dritter: Wir Stromkunden müssen auf jeden Fall zahlen, sitzen aber gar nicht am Verhandlungstisch.

Wozu braucht man überhaupt Reservekraftwerke?

In einem Stromnetz müssen zu jedem Zeitpunkt und an jedem Ort Energieverbrauch und Produktion in einem Gleichgewicht sein. Vor dem Zeitalter des Ökologismus hat man deshalb die Kraftwerke so nah wie möglich an den Verbrauchsschwerpunkten gebaut. Teilweise sogar in den Städten (Berlin, Hamburg, München etc.) und hat dabei die Abwärme noch für die Fernheizung verwendet. Insbesondere für die Windenergie wurde zu deren Förderung die Standortwahl freigegeben. Der Strom muß nun irgendwie zum Verbraucher fließen. Die Windparks wurden und werden bevorzugt in Norddeutschland oder sogar im Meer errichtet. Inzwischen hat man dort erhebliche Überkapazitäten. Der Abfallstrom muß auf biegen und brechen (Abnahmezwang) in Süddeutschland und im Ausland entsorgt werden. Genau dieser Abfallstrom ist aber das Hauptproblem! Nicht die Dunkelflaute, von der inzwischen sogar in der breiteren Öffentlichkeit geredet wird ist der Grund für neue Leitungen und Reservekraftwerke. Wenn kein Wind weht und keine Sonne scheint, kann der Bedarf problemlos mit dem vorhandenen Stromnetz und den (noch) vorhandenen Kraftwerken abgedeckt werden. Nur wenn der Wind – ausnahmsweise – mal etwas stärker weht, ergibt sich sofort ein Problem für jedes Stromnetz! Selbst ein immer weiter betriebener Netzausbau ist deshalb keine Lösung. Auch wenn man das Stromnetz so erweitert, daß auch Windenergiespitzen immer transportiert werden können, ist das nur an wenigen Stunden im Jahr nötig und damit völlig unwirtschaftlich.

An dieser Stelle scheint ein kleiner Einschub zum Umweltschutz nötig. Niemand kann große Mengen elektrischer Energie ohne Verluste quer durch Deutschland verschieben. Schon heute betragen allein die Verluste im Übertragungsnetz (das ist nur das Hochspannungsnetz!) an „Starkwindtagen“ 1500 MWel.! Wie die Simulationen der Bundesnetzagentur zeigen, werden diese mit dem Ausbau der Windenergie beständig ansteigen.

Ein weiteres Zauberwort: „Redispatch“

Redispatch ist, wenn man bestimmte Kraftwerke im Netz runter regelt, um die Flüsse innerhalb des Netzes zu verändern. Natürlich muß man diese Minderleistung an anderer Stelle zusätzlich einspeisen. Dazu dienen die Reservekraftwerke und deshalb haben auch nur die Übertragungsnetzbetreiber eine Verfügung über sie. Man kann sich das (stark vereinfacht) so vorstellen: Wenn eine Übertragungsleitung an ihre Grenzen zu stoßen droht, kann man die Kraftwerke vor der Leitung etwas abregeln. Natürlich fehlt diese Leistung am anderen Ende, was zumindest dort zu Spannungseinbrüchen und Frequenzschwankungen führen würde. Als Gegenmaßnahme muß das Reservekraftwerk dort, die fehlende Leistung ersetzen. An dieser Stelle sei daran erinnert, daß bereits für den Winter 2015/2016 eine Reserveleistung von geschätzt 6,7 bis 7,8 GWel. eingekauft werden muß. Die Kosten hierfür sind noch nicht bekannt. Immerhin entspricht das rund sieben Kernkraftwerken und eine solche Leistung kauft man auch in Deutschland nicht beim Kaufmann um die Ecke.

Es muß noch einmal ganz deutlich gesagt werden, das Problem ist nicht, wenn der Wind nicht weht (Dunkelflaute), sondern wenn er mal weht! Bereits jetzt haben wir bei Starkwind ein Exportsaldo von 12,1 GW. Bei Dunkelflaute (meist am Wintertag) ergibt sich nur ein Importsaldo von -2,1 GW. Die eigenen Kraftwerke reichen (noch) aus, um Deutschland zu versorgen. Im Gegensatz dazu, muß der Abfallstrom bei stärkerem Wind erst einmal zu den Grenzen transportiert werden, bevor er anschließend im Ausland teuer entsorgt werden kann.

Milchmädchen und der CO2 – freie Windstrom

Bis vor wenigen Jahren, wurde man von den Schlangenölverkäufern der Windindustrie immer brüsk abgeschmettert, wenn man von der Dunkelflaute sprach. Obwohl jedem, der sich mit den meteorologischen Daten auseinandergesetzt hat, vollkommen klar war, daß der Wind eben nicht immer weht. Gerade im Winter, wenn der Stromverbrauch am höchsten ist, treten immer wieder großräumige Hochdruckwetterlagen in Europa auf. Heute sind diese Meßdaten der Windstromproduktion von jedermann im Netz einsehbar.

Wenn man den einschlägigen Umfragen glauben mag, ist die (gut verdienende) Mehrheit in Deutschland gern bereit, höhere Strompreise zu bezahlen, wenn sie dadurch das Weltklima retten darf. So eine Art von Ablasshandel halt. Allerdings werden auch immer mehr Gutmenschen stutzig über einen vermeintlichen Widerspruch: Kaum ein Tag vergeht, an dem nicht über neue Rekorde an der Ökostrom-Produktionsfront berichtet wird – nur die CO2 – Produktion sinkt nicht parallel dazu! Nur die Schlangenölverkäufer jubeln noch über jede zusätzliche CO2 – freie Kilowattstunde aus Windstrom.

Windstrom ist nur so lange „CO2 – frei“, wie er den Windpark noch nicht verlassen hat. Selbst hartgesottene „Öko’s“ wissen aber, daß er im Windpark ohne jeden Wert ist. Er muß noch auf einem hunderte Kilometer langen Weg bis zu den Verbrauchsstellen im In- und Ausland gelangen. Ohne konventionelle Kraftwerke, läßt sich aber kein „Zappelstrom“ transportieren. Inzwischen kann man aber auch dies messen! Je höher die Produktion von Windstrom an verbrauchsfernen Standorten ist, um so höher ist die CO2.-Freisetzung um diesen Strom über weite Strecken transportieren zu können. Da kommt auch kein Netzausbau hinterher.

Planwirtschaft gegen Realität

Es ist politisch gewollt, noch mehr Windparks im Meer zu bauen. Gleichzeitig will man aus der Kernenergie aussteigen. Der Ersatz dieser Kraftwerke durch (fossile) Neubauten ist unerwünscht. Es beginnt der Kampf gegen die noch vorhandenen Kohlekraftwerke. All das zusammen genommen, führt zu einem gigantischen Park von Reservekraftwerken mit steigendem CO2.-Ausstoß. Letztendlich zum Zusammenbruch des Strommarktes mit anschließender Verstaatlichung.

Man kann schon heute die Entwicklung in Echtzeit an der Strombörse verfolgen. Jedes mal, wenn der Wind etwas stärker weht, fallen die Strompreise an der Börse synchron. Einziger Grund ist der politisch verursachte Abnahmezwang. Wenn man in einem Markt eine Überversorgung herbeiführt, fallen die Preise so lange, bis genug Marktteilnehmer die Produktion einstellen. Schon heute werden für etliche Stunden sogar negative Preise erzielt. Nichts weiter, als eine Entsorgungsgebühr für die Vernichtung der Überproduktion. Je tiefer die Preise fallen, um so mehr Produzenten können ihre Kosten nicht mehr decken und stellen die Produktion ein. Dies betrifft im derzeitigen System ausschließlich die fossilen Kraftwerke. Denn die Windstromerzeuger erhalten auch weiterhin ihren Garantiepreis für ihre garantiert abgenommene elektrische Energie! Dies haben ausschließlich die Politiker zu verantworten, denn sie haben diesen Irrsinn in Gesetzesform gegossen.

Es gibt offensichtlich noch immer genug schlichte Gemüter, die diesen Zusammenhang gut finden. Sie glauben tatsächlich, daß so immer weniger fossile Energie verbraucht wird, wodurch das „Klima gerettet wird“. Das Gegenteil ist der Fall! Je mehr Windenergie produziert werden soll, um so mehr fossile Energie (bei gleichzeitigem Verzicht auf Kernenergie) muß eingesetzt werden. Nicht nur bei Dunkelflaute muß der Strom in konventionellen Kraftwerken produziert werden, sondern auch bei jeder wetterabhängigen Überproduktion müssen vermehrt fossile Kraftwerke zum Transport des Windstroms zu den Entsorgungsstätten eingesetzt werden. Was heute schon an Sonn- und Feiertagen oder in der Nacht passiert, wird bei weiterem Ausbau bald ständig Realität sein. Es gibt keinen Ausweg aus diesem Dilemma:

  • Regelt man die Windmühlen mit zunehmendem Wind ab, wird deren Auslastung immer schlechter und es erhöhen sich beständig die Stromkosten bei den Verbrauchern. Man zahlt dann nur noch für Windmühlen, die in der Landschaft herumstehen. Wie lange die Wähler so etwas dulden, kann man vielleicht aus der Geschichte lernen. Wer kennt nicht mehr die Bilder von Obst- und Gemüseüberproduktion, die zur Stabilisierung der Preise gleich untergepflügt wurden oder die man gegen Gebühr auf der Müllkippe entsorgt hat.
  • Man versucht die Überschußenergie gleich in den Windparks zu speichern, bis sie auch tatsächlich benötigt werden. Bei dieser Energiewandlung gingen dann gleich rund die Hälfte der Produktion wieder verloren. Der zweite Hauptsatz läßt sich durch Ideologie nicht aushebeln! Abgesehen von den gigantischen Investitionen, die hierfür nötig wären. Die Butterberge und Fleischberge der planwirtschaftlichen europäischen Landwirtschaft waren Nicklichkeiten dagegen.
  • Man versucht wie bisher, die Überschüsse im Ausland zu entsorgen. Für die immer weiter entfernten Abnehmer sind immer mehr Hochspannungsleitungen nötig, auf denen immer mehr elektrische Energie gleich „verbraten“ wird. Trotzdem wird man immer mehr Reservekraftwerke benötigen, um die Netze überhaupt betreiben zu können. Logischerweise werden die Betreiber immer ihre ältesten und umweltverschmutzenden Kraftwerke den Übertragungsnetzbetreibern vermieten.

Es gibt nur eine Möglichkeit diesen Wahnsinn zu stoppen. Man macht sofort Schluß damit. Dies kann aber nur die Politik leisten, weil sie dieses Monster der Planwirtschaft erst erschaffen hat.

Die europaweite Dimension

Die Idee, den Stromabfall gegen Gebühr im Ausland zu entsorgen, war ziemlich dämlich. Polen ist bereits dabei, seine Grenzen dicht zu machen. Man ist es leid, kostenlos Strom über Tschechien nach Bayern und Österreich zu transportieren. Auch die Idee Reservekraftwerke in Polen anzumieten, war ziemlich kurz gedacht. Weder sind die Polen bereit, ihre Souveränität für ein Linsengericht an die Deutschen zu verkaufen, noch die dadurch zusätzlich entstehenden Belastungen in ihrem Netz zu tragen. Einzig Greenpeace hätte sich wahrscheinlich einen Ast gelacht: Die als besonders umweltfreundlich bekannten (abgenutzten alten) Kohlekraftwerke in Polen von Deutschland weiter am Leben gehalten, um den „Grünen Strom“ von der Ostsee nach Österreich und weiter zu verkaufen.

Besonders lustig ist auch, daß ausgerechnet Deutschland nun darüber nachdenkt, den Stromhandel mit Skandinavien und Österreich zu begrenzen. Leider weht auch der Wind in Dänemark, wenn er in Norddeutschland weht. Weil ganz Norddeutschland bereits mit Windstrom verstopft ist, tut jede zusätzlich Kilowattstunde, die Dänemark in Deutschland entsorgen will, besonders weh. Langsam merkt man, daß sich Deutschland zu einem Transitland für elektrische Energie entwickelt. Man findet es inzwischen auch nicht mehr so prickelnd, daß deutsche Stromverbraucher für lukrative Geschäfte zwischen Österreich, Ungarn und Italien bezahlen müssen. Deutscher Stromabfall wird billig von Österreich aufgekauft und gewinnbringend an das alte KuK-Gebiet weiterverscherbelt. Inzwischen fließen bereits 8,5 GW nach Österreich. Tendenz weiter steigend. Alles ein Ergebnis des politisch gewollten „Ein-Zonen- Modells“, in dem die örtliche Entfernung per Ukas außer Kraft gesetzt wurde. Strom soll überall gleich teuer sein. Transportkosten müssen zur Verschleierung aus anderen Töpfen bezahlt werden.

Auch das „Vorangehen“ hat sich als blöde Idee herausgestellt. Frankreich z. B. ist inzwischen auch in das Windgeschäft eingestiegen. Dumm nur, daß dort die geographischen Bedingungen (z. B. Atlantikküste) wesentlich günstiger als in Bayern und im Schwabenland sind, somit die Produktionskosten auch geringer. Warum sollte Frankreich also zusätzlichen Windstrom aus Deutschland importieren? Es sei denn, Michel ist bereit, die Subventionen weiter hoch zu schrauben.

Völlig verschlafen haben unsere Politiker beim „Vorangehen“ den Netzausbau in Ost-West-Richtung. Man war zu sehr von der Idee besessen, die Kernkraftwerke in Süddeutschland abzuschalten und durch Windstrom zu ersetzen. Inzwischen hat man durch die politisch verordnete Überproduktion Strompreise an der Börse erzeugt, die (teilweise) unter den Brennstoffkosten liegen. Daraus ergeben sich erbliche Stromflüsse in Ost-West-Richtung. Ein Netzausbau auch in diese Richtung, ist unvermeidbar! Deutschland wird ein Land der „Stromautobahnen“ und „Reservekraftwerke“. Ist das, das „tolle Europa“, was man uns immer zu verkaufen versucht hat? Gut gemeint, ist noch lange nicht, gut gemacht.

Reaktortypen in Europa – Teil3, AP1000

AP1000 ist die Warenmarke eines Druckwasserreaktors der Generation III+ des Herstellers Westinghouse. Westinghouse ist die Mutter aller Druckwasserreaktoren. Sie erschuf 1954 unter Hyman G. Rickover und Alvin M. Weinberg diesen Reaktortyp für den Antrieb des ersten Atom-U-Boots USS Nautilus (SSN-571).

Geschichte

Der AP1000 entwickelt sich zum „Golf“ der Kernkraftwerke. Inzwischen sind acht Reaktoren in Bau: Je zwei in Sanmen und Haiyang in China und in Vogtle (Georgia) und Summer (South Carolina) in USA. Zahlreiche andere befinden sich weltweit im Vergabeverfahren. So sind drei Reaktoren in Moorside (West Cumbria, nordwestlich von Sellafield, UK) in Vorbereitung. Sie sollen durch NuGen, ein Joint Venture aus Toshiba (Westinghouse gehört zu Toshiba) und GDF SUEZ errichtet und betrieben werden.

Ständig steigende Investitionskosten und steigende Sicherheitsanforderungen zwangen Westinghouse das Konzept grundlegend zu überarbeiten. Über 50 Jahre Betriebserfahrung gipfelten in einer völlig neuen Konstruktion mit vier zentralen Anforderungen:

  • Vereinfachte Konstruktion: Was man nicht hat, kostet auch nichts und kann nicht versagen,
  • Übergang von aktiven auf passive Sicherheitssysteme,
  • modularer Aufbau und
  • parallele Errichtung von Bau und Anlagentechnik.

Der AP1000 ist ein schönes Beispiel dafür, was man erreichen kann, wenn man den Mut hat, eine Konstruktion noch einmal mit einem weißen Blatt Papier von Anfang an zu beginnen. Vorgabe war ein Druckwasserreaktor mit einer mittleren Leistung von rund 1000 MWel. Schon damit setzte man sich ab. Man versuchte gar nicht erst eine Kostensenkung über eine Leistungssteigerung zu erzielen, sondern setze lieber auf die Nachfrage des Weltmarktes. Die Größe entsprach nur etwa 2/3 der letzten Typen der zweiten Generation. Dieser Rückschritt sollte dafür die Märkte der Schwellenländer mit noch kleinen Netzen einschließen.

Durch die „geringe“ Leistung kommt man mit nur zwei modernen Dampferzeugern gegenüber üblicherweise vier aus. Dies spart schon mal beträchtlich umbauten Raum, der bei Kernkraftwerken besonders teuer ist (Sicherheitsbehälter, Betonbunker etc.). Durch weiteres, konsequentes „weglassen“ ergibt sich der Druckwasserreaktor mit dem geringsten Beton- und Stahleinsatz pro MWel.

Ein weiterer Ansatz zur Senkung der Stromerzeugungskosten ist die Verlängerung der Nutzungsdauer: Die Ausdehnung auf genehmigte 60 Jahre verteilt die Kapitalkosten auf wesentlich mehr produzierte KWh. Weniger sicherheitsrelevante Teile (z. B. Noteinspeisepumpen mit zugehörigen Ventilen und Rohrleitungen) oder robustere Konstruktionen (z. B. dichtungslose Hauptkühlmittelpumpen) verringern die Wartungskosten und die notwendigen Wiederholungsprüfungen. Eine nicht zu vernachlässigende Einsparung über die Lebensdauer eines Kraftwerks.

Pumpen

Üblicherweise stehen die Hauptkühlmittelpumpen zwischen den Dampferzeugern. Sie sind mit diesen und dem Reaktordruckgefäß über Rohrleitungen verbunden. Die Pumpen saugen das abgekühlte Wasser aus den Dampferzeugern an und drücken es zurück durch den Kern. Beim AP1000 haben sie die gleiche Aufgabe. Sie sind aber paarweise direkt an den Dampferzeugern angeflanscht. Dies erspart nicht nur Rohrleitungen, sondern vereinfacht diese erheblich. Es sind weniger Formstücke und Schweißnähte erforderlich und der Schutz gegen Erdbeben gestaltet sich wesentlich einfacher.

Die Pumpen selbst, sind für zivile Druckwasserreaktoren ungewöhnlich. Sie verfügen über mit Wasser geschmierte Gleitlager und sind voll gekapselt. Der Läufer und der Stator sind in wasserdichte Hüllen eingeschweißt. Das Pumpenrad sitzt direkt auf der Welle des Antriebsmotors. Sie benötigen damit keine Wellendichtungen und sind somit extrem wartungsarm. Sie sind für eine Betriebsdauer von 60 Jahren ausgelegt und zugelassen. Dieser Pumpentyp ist sehr anspruchsvoll in der Fertigung. Die USA verfügen jedoch über eine jahrzehntelange Erfahrung mit diesem Pumpentyp in ihrer Marine.

Passive Sicherheit

Unter „Passiver Sicherheit“ versteht man, daß bei keinem Störfall Pumpen, Diesel etc. benötigt werden um den Reaktor in einen sicheren Zustand zu überführen und zu halten. Alle Armaturen müssen nur einmal ausgelöst werden (voll offen oder voll geschlossen) und nach Auslösung ohne Hilfsenergie auskommen. Es sollten keine Eingriffe durch das Personal nötig sein.

Hinter dieser Definition verbirgt sich noch ein weiterer Ansatz zur Kostensenkung: Man kann „Sicherheit“ oder „Verteidigung“ in mehreren Stufen definieren. Bevor ein Ereignis zu einem Störfall wird, kann man durch automatische Stellglieder die Folgen abwenden. So kann man z. B. bei einem Generatorschaden den Dampf direkt in den Kondensator leiten und dadurch eine Notkühlung verhindern. Alle für diese Umleitung notwendigen Komponenten bräuchten nur den bei konventionellen Kraftwerken üblichen Qualitätsstandard besitzen, da sie das eigentliche Sicherheitssystem (gemeint ist damit das passive Notkühlsystem) nicht berühren. Nur die Komponenten des passiven Sicherheitssystems müssten den Stempel „nuclear grade“ tragen. Oft sind solche Teile völlig identisch mit dem „Industriestandard“ – unterscheiden sich lediglich im bürokratischen Aufwand und im Preis.

Man kann die Sicherheit – bezogen auf eine eventuelle Freisetzung von radioaktiven Stoffen in die Umwelt – noch steigern, indem man eine konsequente Diversifizierung betreibt. Ferner sieht man für wahrscheinlichere Ereignisse eine höhere Anzahl von Verteidigungsstufen vor.

Der Station Blackout

Vor Fukushima war der größte anzunehmende Unfall (GAU) der entscheidende Sicherheitsmaßstab. Man ging von einem plötzlichen Verlust der Reaktorkühlung infolge einer abgerissenen Hauptkühlmittelleitung aus. Um ein solches Ereignis zu beherrschen – ohne Freisetzung nennenswerter Radioaktivität in die Umwelt – muß bei Reaktoren mit aktivem Sicherheitskonzept auf jeden Fall ausreichend elektrische Energie vorhanden sein. Mindestens ein Notstromdiesel muß starten und die entsprechenden Schaltanlagen müssen funktionstüchtig sein. In Fukushima hat beides ein Tsunami außer Gefecht gesetzt.

Seit Fukushima ist der „station blackout“ ins öffentliche Interesse geraten. Gemeint ist damit der völlige Verlust von Wechselstrom (Kraftstrom) im Kraftwerk. Es ist nur noch Gleichstrom aus Batterien für Steuerung und Notbeleuchtung vorhanden. Es ist daher interessant, wie der AP1000 auf solch eine Situation reagieren würde:

Durch den Stromausfall fallen die Regelstäbe durch ihr Eigengewicht in den Reaktorkern ein und unterbrechen jede Kettenreaktion. Allerdings beträgt in diesem Moment die Nachzerfallswärme noch rund 6% der thermischen Leistung (ungefähr 200 MW), die sicher abgeführt werden müssen. Durch den Stromausfall, fallen alle Pumpen aus. Durch die in den Schwungrädern der Hauptkühlmittelpumpen gespeicherte Energie, laufen diese noch geraume Zeit nach und halten den Primärkreislauf aufrecht. Allerdings ist nach etwa zwei Minuten der Wasserstand auf der Sekundärseite der Dampferzeuger auf sein zulässiges Minimum gefallen, da die Speisepumpen auch nicht mehr laufen können. Dieser Zustand öffnet automatisch die beiden Ventile zur Notkühlung (die Ventile sind im Betrieb elektromagnetisch geschlossen, d. h. Strom weg = Ventil offen). Nur ein Ventil müßte öffnen (Redundanz), um die volle Wärmeleistung abzuführen. Das Wasser strömt nun vom Reaktorkern zu einem Wärmeübertrager (PRHR HX) in dem Wassertank innerhalb der Sicherheitshülle (PRHR). Dieser Tank liegt deutlich oberhalb des Reaktordruckgefässes, wodurch sich ein Naturumlauf ergibt. Nach rund zwei Stunden ist die Nachzerfallswärme auf rund ein Prozent (immerhin noch rund 34 MW) abgefallen. Nach ungefähr fünf Stunden wäre der Tank soweit aufgeheizt, daß das Wasser zu sieden beginnt. Der Sicherheitsbehälter ist ein Zylinder aus 45 mm dickem Stahlblech (bessere Wärmeleitung als Beton). Der Dampf würde an den Wänden kondensieren und über ein Auffangsystem zurück in den Tank laufen. Der Sicherheitsbehälter wiederum, würde seine Wärme an die Umgebungsluft abgeben. Die Umgebungsluft steigt wie in einem Kamin im Zwischenraum zwischen Sicherheitshülle und Betonwand der Schutzhülle (gegen Flugzeugabsturz usw.) auf. Steigt der Druck im Sicherheitsbehälter über einen Grenzwert an, werden zur Steigerung der Kühlung die pneumatisch betätigten Ventile der Beregnungsanlage geöffnet. Ganz oben, auf dem Dach des Reaktors befindet sich ein charakteristischer, ringförmiger Wassertank. Aus ihm würde nun Wasser durch Schwerkraft auf die äußere Seite des Sicherheitsbehälters „regnen“ und diesen stärker kühlen. Der Inhalt des Tanks reicht für 72 Stunden Beregnung.

Durch die (gewollte) Abkühlung des Reaktors zieht sich das gesamte Wasser des Primärkreislaufes wieder zusammen. Der Wasserstand im Druckhalter sinkt. Genauso würde er sinken, wenn der klassische GAU – irgendein Leck im Primärkreis – eingetreten wäre. Damit ein zeitweiliges „trocken fallen“ der Brennelemente (Harrisburg und Fukushima) sicher verhindert werden kann, wird rechtzeitig Wasser nachgespeist. Hierfür gibt es sog. Akkumulatoren. Das sind Behälter, die teilweise mit Wasser gefüllt sind und durch ein Stickstoffpolster unter Druck gehalten werden. Aus diesen strömt automatisch (Rückschlagventile, die durch den Druck im Primärkreis geschlossen gehalten werden, Druck zu klein = Ventil offen) Wasser in den Reaktordruckbehälter nach.

Ist der Druck – egal ob durch ein Leck oder Abkühlung – bis auf Umgebungsdruck abgebaut, kann die Kühlung direkt über die Verdampfung des Wassers im Druckbehälter endlos weiter erfolgen. Dieser Zustand kann auch gewollt oder automatisch angestrebt werden. Würde die Kühlung – aus welchen Gründen auch immer – versagen, würde der Druck im Reaktorbehälter immer weiter ansteigen. Um dies zu verhindern, kann man den Druck über ein Abblasen des Druckhalters abbauen. Dies ist ein Beispiel, wie man durch den geschickten Aufbau einer Sicherheitskette das eventuelle Versagen einzelner Glieder überbrücken kann: Würden tatsächlich beide Ventile (2 x 100%) des Notkühlkreislaufes versagen (siehe weiter oben) müßte trotzdem nicht die Kühlung ausfallen, sondern es würde lediglich ein anderer Weg beschritten.

Die 72 h Regel

Beim AP1000 bezieht sich die passive Sicherheit nicht nur auf die Anlagentechnik, sondern auch auf das Personal. Seit den Störfällen von Harrisburg und Tschernobyl weiß man um die Bedeutung von Bedienungsfehlern. Gerade in der Zeit unmittelbar nach der Störung ist die Wahrscheinlichkeit dafür besonders hoch: Das Schichtpersonal muß erst seinen Schock überwinden, eine wahre Informationsflut muß erst einmal verarbeitet werden damit man sich überhaupt einen Überblick verschaffen kann und dann müssen die richtigen Maßnahmen auch noch erkannt und eingeleitet werden. Andererseits sind drei volle Tage eine recht lange Zeit, um etwas zu reparieren, Fachleute außerhalb des Kraftwerks hinzu zu ziehen oder sogar Ersatzgerät herbeizuschaffen. Dies gilt selbst bei schwersten Naturkatastrophen wie in Fukushima.

Dabei sind die 72 Stunden als Mindestwert bei ungünstigsten Bedingungen zu verstehen. Nach Ablauf dieser Zeitspanne sind weitere Auffanglinien vorgesehen. So können z. B. die Kühlwasserbehälter auch von außen über die Feuerlöschtanks auf dem Gelände nachgefüllt werden. Hierfür ist allerdings wenigstens ein kleiner Hilfsdiesel, der zusätzlich zu den eigentlichen Notstromdieseln vorhanden ist, nötig. Der Treibstoffvorrat beträgt vier Tage. Inzwischen dürften längst Hilfskräfte und Material aus den Notfallcentern eingetroffen sein.

Die Strategie zur Kostensenkung

So makaber es klingen mag, aber die Unglücke von Tschernobyl (vollkommen explodierter Reaktor) und Fukushima (in drei Reaktoren gleichzeitige Kernschmelze) haben den „Atomkraftgegnern“ ihr stärkstes Argument von dem „unkalkulierbaren Restrisiko“ bei Kernkraftwerken entzogen. Nur noch sehr schlichte Gemüter glauben das Märchen „Millionen-Tote-für-10000-Jahre-unbewohnbar“. Es ist also kein Zufall, daß sich die „Bewegung“ nun auf angeblich „zu teuer“, konzentriert. Für die Investitionskosten sind folgende Faktoren ausschlaggebend:

  • Unnötig kompliziert: Doppelte Betonbunker, Core catcher, weitere Notstromdiesel, Pumpen etc.
  • Bürokratismus: „Nuclear grade“ erfordert einen – teilweise absurden – bürokratischen Aufwand. Oft kostet das gleiche Bauteil als „nuclear grade“ geadelt, den vier bis fünffachen Preis. Um eine Diskussion über Sinn und Zweck zu vermeiden, sollte dieser Standard nur noch für echte Sicherheitstechnik verlangt sein. So könnte man beispielsweise bei einem Reaktor mit passiver Sicherheit, die Notstromdiesel aus diesem Verfahren entlassen – als wenn es in anderen Bereichen (IT, Luftfahrt, Seefahrt etc.) keine Sicherheitsnormen gäbe.
  • Bauzeit: Je länger die Bauzeit dauert, desto höher sind automatisch die Baukosten (Verzinsung), das Risiko (z. B. Inflation) und der ausgefallene Gewinn (z. B. Zukauf von Strom). Eine Verkürzung läßt sich grundsätzlich nur durch parallele Abläufe erzielen.
  • Baustelle: Arbeiten auf Baustellen sind grundsätzlich teurer, als eine Fertigung in einer Fabrik. Hinzu kommt meist noch ein schwer zu kalkulierendes Witterungsrisiko.
  • Serien: Jeder „first of a kind“ ist teurer als die Nachfolgemodelle. Hat man erst einmal die „Konstruktionsfehler“ behoben und das Personal seine Erfahrungen gesammelt, geht die Arbeit wesentlich flotter. Dies hat sich auch jetzt beim Bau der ersten AP1000 in China und USA wieder gezeigt.

Westinghouse hat konsequent auf eine Modularisierung bei paralleler Fertigung gesetzt. Im Schiffbau nennt man das „Sektionsbauweise“. Ziel ist die Errichtung eines Kernkraftwerks in 36 Monaten. Diesen sind noch der Vorlauf für die Baustelleneinrichtung und die Inbetriebnahme hinzu zu rechnen, sodaß ein Zeitraum von rund fünf Jahren zwischen Auftragserteilung und Übergabe an den Kunden liegt.

Der Rohbau

Üblich ist es schon immer, alle großen Bauteile: Reaktordruckgefäß, Dampferzeuger, Druckhalter, Turbine und Generator, Kühlmittelpumpen etc. möglichst schnell zu vergeben. Diese Aggregate werden von Spezialfirmen gefertigt und getestet und kommen möglichst komplett auf die Baustelle.

Gänzlich anders verhielt es sich bisher mit dem baulichen Teil: Der Hochbau wurde ganz konventionell in Ortbeton hergestellt. Dabei arbeitete man sich, wie bei jedem anderen Gebäude auch, vom Keller bis zum Dach stückweise voran. Wie auf jeder anderen Baustelle auch, konnte man mit dem Innenausbau erst beginnen, wenn der Rohbau fertig war.

Beim AP1000 hat man konsequent mit dieser Tradition gebrochen. Hier gilt: Möglichst wenig Arbeiten auf der unmittelbaren Baustelle und weitgehendste Fertigung in den Fabriken der Zulieferer. Um möglichst parallel arbeiten zu können, werden die Sektionen auf dem Baustellengelände aus den gelieferten Modulen zusammengebaut und die Sektionen termingerecht mit einem Schwerlastkran (3200 to) zu dem eigentlichen Reaktor zusammengefügt.

Konventionell (Schalung aus Holz, Eisengeflecht vor Ort und mit Beton ausgegossen) gebaut, wird nur noch die Grundplatte, auf der die gesamte „nukleare Insel“ steht. Schon die sich anschließende „Reaktorgrube“ ist eine komplette Sektion in Sandwich-Bauweise. So geht es Sektion für Sektion nach oben. Der Schwerlastkran stapelt alle wie auf einer Werft über- und nebeneinander. Dazu gehören auch ganze Baugruppen aus Rohrleitung, Pumpen, Ventilen usw., fertig lackiert, in Stahlgestellen. Die eigentliche Montage vollzieht sich in der erdbebenfesten Verbindung der Gestelle mit dem Baukörper und dem Anschluß an die Versorgungsleitungen etc. Da diese Module schon bei ihren Herstellern vollständig getestet und abgenommen worden sind, verkürzt sich auch die spätere Inbetriebnahme erheblich.

Das Sandwich

Für eine konventionelle Betonwand muß der Zimmermann eine Schalung aus Holz bauen und die Eisenflechter die Moniereisen einbringen. Nach dem Aushärten des Beton muß alles noch mühselig ausgeschalt und meist auch noch nachgearbeitet werden. Eine kosten- und vor allem zeitaufwendige Arbeit. Außerdem sind Zimmerleute keine Feinmechaniker.

Ein Sandwich besteht aus zwei Stahlplatten, die später mit Beton ausgegossen werden. Die Stahlplatten-Konstruktion übernimmt die Funktion einer verlorenen Schalung und enthält auch noch das „notwendige Eisen“, was die Festigkeit eines Stahlbeton ausmacht. Auf den ersten Blick keine revolutionäre Erfindung. Nur sind die Wände und Decken in einem Kraftwerk meist nicht massiv, sondern haben unzählige Durchbrüche und Einbauten. Wenn man die Anlagentechnik auch in Modulen vorfertigen will, müssen diese in der Toleranz von Maschinenbauern und nicht von Zimmerleuten ausgeführt werden. Wenige Millimeter Versatz, enden in einer teuren Katastrophe. Die einzelnen Platten werden nun – wie auf einer Werft – vollautomatisch aus- und zugeschnitten. Die Verstärkungen (die das Eisengeflecht bei konventionellem Beton ersetzen) werden auf Schweißmaschinen angebracht und die Platten zu Modulen zusammengeschweißt. Die Größe der Module ist dabei maßgeblich durch den Transportweg begrenzt. Die größte Sektion besteht z. B. in Vogtle aus 72 Modulen, die auf der Baustelle zusammengeschweißt werden und mittels eines Schwerlasttransporters und des Schwerlastkranes in den Sicherheitsbehälter eingesetzt wurde. Diese Sektion wiegt ohne Betonfüllung rund 1000 to.

Neue Herausforderungen

Die Aufteilung in drei Bauphasen: Fertigung von Modulen bei den Herstellern, zusammenfügen der Module zu Sektionen auf separaten Vormontageplätzen und der Zusammenbau der Sektionen zum eigentlichen Reaktor, erfordert eine besonders ausgefeilte Planung und Logistik.

Ein solches Vorhaben kann nur gelingen, wenn man von Anfang an, wirklich alle Elemente auf einem entsprechenden Rechner in vierdimensionaler (drei Orts- und eine Zeitachse) Abbildung zur Verfügung hat. Solche Werkzeuge gibt es noch nicht sehr lange. Zum Werkzeug gehören aber noch die entsprechend qualifizierten Konstrukteure mit praktischer Erfahrung und eine Lernkurve. So waren z. B. bei den ersten Reaktoren in China einige Abstände zwischen den Kabelbahnen und den Decken des nächsten Moduls zu knapp bemessen. Es ergaben sich tote Ecken bezüglich der Lackierung, usw. Alles Dinge, die zu Zeitverzug und ungeplanter Nacharbeit geführt haben.

Es ist eine ungeheure Disziplin und straffe Organisation über die gesamte Laufzeit eines Projekts erforderlich: Jede Änderung bei einem Zulieferer – irgendwo auf der Welt – kann dutzende Änderungen, zusätzliche Prüfungen usw. bei anderen Zulieferern auslösen. Gerade Dokumentation und Prüfungen sind in der kerntechnischen Industrie eine besondere Herausforderung. In den USA hat letzteres zu erheblichen Verzögerungen beim Bau des Kraftwerks Vogtle geführt. Ein Hersteller aus Louisiana – der seit Jahrzehnten erfolgreich im Bau von Ölförderanlagen etc. tätig war – war mit diesen „Gepflogenheiten der Kerntechnik“ nicht hinreichend vertraut. Im Endergebnis mußten etliche Module aus China nachbestellt werden.

Die Sektionsbauweise ist auch nicht ohne Tücken und erfordert entsprechendes Fachpersonal auf der Baustelle. Es müssen komplizierte und stabile Leergerüste gebaut werden, um die Sektionen aus Modulen passgerecht zusammen zu bauen. Der Verzug beim Schweißen und die Temperaturschwankungen sind bei so großen Bauteilen eine weitere Herausforderung. Der Schwerpunkt ist ebenfalls nicht immer genau festgelegt, was das Anheben ohne zusätzliche Belastungen nicht einfacher macht. Für Sektionen bis zu 1000 to müssen entsprechende Kräne und Transporter bereitgehalten werden. Für diese selbst, muß die Infrastruktur (Schwerlaststraßen, Bewegungsräume, Energieversorgung etc.) geschaffen werden.

Ausblick

Der AP1000 setzt die Maßstäbe für den Bau moderner Druckwasserreaktoren. Seine Weichen werden z. Zt. in China gestellt. Er kann seine wirtschaftlichen Vorteile erst in einer größeren Serie voll ausspielen. Die Lernkurve zeichnet sich bereits in USA und China deutlich ab. Es ist nur eine Frage der Stückzahl, wann die Investitionskosten für ein solches Kernkraftwerk unter das Niveau eines Kohlekraftwerks nach deutschen Standards (Wirkungsgrad 46%, mit Entstickung und Rauchgasentschwefelung, zugehörige Entsorgungsanlagen etc.) gesunken sind. Genau diese Frage, stellt sich aber bereits heute – wie schon in den 1970er Jahren in Deutschland –, wenn man die Luftverschmutzung in Peking betrachtet. Anschließend steht für China ein gigantischer Weltmarkt offen. Wir sprechen bereits in Europa nicht nur über Moorside, sondern auch über Polen, Tschechien und Bulgarien.

Im nächsten Teil4 geht es um die Siedewasserreaktoren, wie sie z. B. für den Standort Wylfa Newydd (Insel Anglesey in Nord Wales, GB) vorgesehen sind.

 

Reaktortypen in Europa – Teil1, Einleitung

In Europa werden bereits einige Kernkraftwerke neu errichtet bzw. stehen kurz vor einer Auftragsvergabe. Es scheint daher angebracht, sich ein bischen näher mit den unterschiedlichen Typen zu befassen und deren (technische) Unterschiede zu erläutern.

Warum überwiegend Leichtwasserreaktoren?

Es dreht sich um größere Kraftwerke. Oberhalb von etlichen hundert Megawatt ist für Wärmekraftwerke nur ein Dampfkreislauf möglich – egal, ob mit Kohle, Gas oder Kernspaltung als Wärmequelle. Dieselmotoren (bis max. 70 MW) oder Gasturbinen (bis max. 350 MW) sind für solche Blockgrößen ungeeignet. Selbst bei gasgekühlten oder mit Flüssigmetallen gekühlten Reaktoren, besteht der eigentliche Arbeitsprozess aus einem Wasserdampfkreisprozeß: Wasser wird unter hohem Druck verdampft und treibt anschließend eine Turbine mit Generator an. Wenn man also ohnehin Dampf braucht, warum nicht gleich damit im Reaktor anfangen?

Es muß allerdings eine Voraussetzung erfüllt sein: Man muß über Uran mit einem Anteil von etwa 2 bis 5% Uran-235 bzw. Plutonium (MOX) verfügen. Beides kommt in der Natur nicht vor. Will man Natururan verwenden, ist man auf schweres Wasser (Deuterium) oder Kohlenstoff (Reaktorgraphit) angewiesen, um überhaupt eine selbsterhaltende Kettenreaktion zu erhalten. Will man andererseits die schwereren Urankerne bzw. Minoren Aktinoide direkt spalten, darf man die bei der Spaltung freigesetzten Neutronen möglichst gar nicht abbremsen und muß deshalb zu Helium oder flüssigen Metallen als Kühlmittel übergehen. Noch ist dieser Schritt nicht nötig, da es genug billiges Natururan gibt und andererseits (noch nicht) die Notwendigkeit zur Beseitigung der langlebigen Bestandteile des sog. „Atommülls“ besteht. Das zweite ist ohnehin eine rein politische Frage. Die sog. Leichtwasserreaktoren werden deshalb auch in den kommenden Jahrhunderten der bestimmende Reaktortyp bleiben.

Die Temperaturfrage

Je höher die Betriebstemperaturen sind, um so höher die Kosten und Probleme. Dieser Grundsatz gilt ganz allgemein. Bis man auf Kernenergie in der chemischen Industrie z. B. zur „Wasserstoffgewinnung“ angewiesen sein wird, wird noch eine sehr lange Zeit vergehen. Solche Anwendungen lassen sich einfacher und kostengünstiger mit fossilen Brennstoffen realisieren. Abgesehen davon, daß die Vorräte an Kohle, Gas und Öl noch für Jahrhunderte reichen werden, kann man beträchtliche Mengen davon frei setzen, wenn man bei der Stromerzeugung auf Kernenergie übergeht. Diesen Weg hat China bereits angefangen.

Ein oft gehörtes Argument ist der angeblich geringe Wirkungsgrad von Leichtwasserreaktoren. Richtig ist, daß der thermodynamische Wirkungsgrad um so besser ist, je höher die Betriebstemperatur ist. Er liegt bei den heute modernsten Steinkohlekraftwerken bei etwa 46% und bei Braunkohlekraftwerken bei 43%. Demgegenüber erscheint der Wirkungsgrad eines modernen Druckwasserreaktors mit 37% als gering. Es gibt jedoch zwei wichtige Aspekte zu berücksichtigen:

  • Die hohen Wirkungsgrade der Kohlekraftwerke erfordern solche Drücke und Temperaturen, daß die (derzeitigen) technologischen Grenzen erreicht, wenn nicht sogar überschritten sind. Der noch vor wenigen Jahren propagierte Wirkungsgrad von 50% ist in weite Ferne gerückt. Die Werkstoff- und Fertigungsprobleme – und damit die Kosten – nehmen mit jedem weiteren Grad überproportional zu. Kombiprozesse (z. B. Gasturbine mit Abhitzekessel) erfordern hochwertige Brennstoffe, wie Erdgas oder Mineralöle. Will man solche erst aus Kohle gewinnen (Kohlevergasung), sackt der Gesamtwirkungsgrad wieder auf die alten Werte ab.
  • Der thermodynamische Wirkungsgrad ist ohnehin nur für Ingenieure interessant. Entscheidend sind im wirklichen Leben nur die Herstellungskosten des Produktes. Hier gilt es verschiedene Kraftwerke bezüglich ihrer Bau- und Betriebskosten zu vergleichen. Es lohnt sich nur eine Verringerung des Brennstoffverbrauches, wenn die dadurch eingesparten Kosten höher als die hierfür nötigen Investitionen sind. Bei den geringen Uranpreisen ein müßiges Unterfangen. Gleiches gilt für die ohnehin geringen Mengen an Spaltprodukten („Atommüll“) als Abfall, der langfristig (nicht Millionen Jahre!) gelagert werden muß.

Der Betriebsstoff Wasser

Wasser erfüllt in einem Kernkraftwerk drei Aufgaben gleichzeitig: Moderator, Kühlmittel und Arbeitsmedium. Es bremst die bei der Kernspaltung frei werdenden Neutronen auf die erforderliche Geschwindigkeit ab, führt in nahezu idealer Weise die entstehende Wärme ab und leistet als Dampf in der Turbine die Arbeit. Vergleicht man die Abmessungen gasgekühlter Reaktoren mit Leichtwasserreaktoren, erkennt man sofort die überragenden Eigenschaften von Wasser. Es ist kein Zufall, daß heute z. B. alle Reaktoren in Atom-U-Booten ausnahmslos Druckwasserreaktoren sind. Je kompakter ein Reaktor ist, um so kleiner ist das notwendige Bauvolumen. Je kleiner ein Gebäude sein muß, desto geringer können die Baukosten sein.

Der Reaktorkern

Der Kern (Core) ist der eigentliche nukleare Bereich in einem Kernkraftwerk, in dem die Kernspaltung statt findet. Er sollte möglichst kompakt sein. Er besteht aus hunderten von Brennelementen, die wiederum aus jeweils hunderten von Brennstäben zusammengesetzt sind. Ein Brennstab ist ein mit Uranoxid gefülltes, bis zu fünf Meter langes, dabei aber nur etwa einen Zentimeter dickes Rohr. Ein solcher Spagetti besitzt natürlich kaum mechanische Stabilität (z. B. bei einem Erdbeben) und wird deshalb durch diverse Stützelemente zu einem Brennelement zusammengebaut. Erst das Brennelement ist durch die genaue Dimensionierung und Anordnung von Brennstäben und wassergefüllten Zwischenräumen das eigentliche Bauelement zur Kernspaltung. Die einzuhaltenden Fertigungstoleranzen stehen bei einem solchen Brennelement einer mechanischen „Schweizer Uhr“ in nichts nach.

Der Brennstab ist das zentrale Sicherheitselement – gern auch als erste von drei Barrieren bezeichnet – eines Kernreaktors. Der Brennstoff (angereichertes Uran oder Mischoxid) liegt in einer keramischen Form als Uranoxid vor. Dies ist eine chemisch und mechanisch äußerst stabile Form. Der Brennstab soll alle „gefährlichen“ Stoffe von der ersten bis zur letzten Stunde seiner Existenz möglichst vollständig zurückhalten. Er ist chemisch so stabil, daß er in der Wiederaufarbeitungsanlage nur in heißer Salpetersäure aufzulösen ist. Grundsätzlich gilt: Je besser er die Spaltprodukte und den Brennstoff zurückhält, um so geringer ist bei einem Störfall die Freisetzung. Wohl gemerkt, Freisetzung innerhalb des Druckgefäßes, noch lange nicht in die Umwelt! Deshalb bezeichnet man den Brennstab auch als erste Barriere, die Schadstoffe auf ihrem langen Weg in die Umwelt überwinden müßten.

In dem Brennstab findet die eigentliche Kernspaltung statt. Fast die gesamte Energie wird genau an diesem Ort frei. Die bei der Spaltung frei werdenden Neutronen müssen nun (fast) alle aus dem Brennstab raus, rein in den genau definierten Wasserspalt zwischen den Brennstäben um dort abgebremst zu werden und wieder zurück in einen Brennstab, um dort die nächste Spaltung auszulösen. Es geht für die Neutronen (fast) immer mehrere Male durch die Brennstabhülle. Sie darf deshalb möglichst keine Neutronen wegfangen. Zirkalloy hat sich zu diesem Zweck als idealer Werkstoff für die Hüllrohre erwiesen. Diese Rohre haben jedoch bei einem schweren Störfall (TMI und Fukushima) eine fatale Eigenschaft: Sie bilden bei sehr hohen Temperaturen im Kontakt mit Wasserdampf Wasserstoffgas, der zu schweren Explosionen führen kann. Wohl jedem, sind die Explosionen der Kraftwerke in Fukushima noch in Erinnerung.

Bei einem Reaktorkern hat die Geometrie entscheidende Auswirkungen auf die Kernspaltung. Bei einer Spaltung im Zentrum des Kerns haben die frei werdenden Neutronen einen sehr langen Weg im Kern und damit eine hohe Wahrscheinlichkeit, eine weitere Spaltung auszulösen. Neutronen, die am Rand entstehen, haben demgegenüber eine hohe Wahrscheinlichkeit einfach aus dem Kern heraus zu fliegen, ohne überhaupt auf einen weiteren spaltbaren Kern zu treffen. Sie sind nicht nur für den Reaktor verloren, sondern können auch schädlich sein (z. B. Versprödung des Reaktordruckgefäßes oder zusätzlicher Strahlenschutz). Es gibt hierfür zahlreiche Strategien, dem entgegen zu wirken: Unterschiedliche Anreicherung, Umsetzung im Reaktor, abbrennbare Neutronengifte, Reflektoren etc. Verschiedene Hersteller bevorzugen unterschiedliche Strategien.

Brennstäbe

Die Brennstäbe müssen einige sich widersprechende Anforderungen erfüllen:

  • Je dünnwandiger die Hüllrohre sind, desto weniger Neutronen können dort eingefangen werden und je kleiner muß die treibende Temperaturdifferenz innen zu außen sein, damit die enormen Wärmemengen an das Kühlwasser übertragen werden können. Je dünner aber, je geringer die Festigkeit und die Dickenreserve gegen Korrosion.
  • Der Brennstoff selbst soll möglichst stabil sein. Uranoxid erfüllt diesen Anspruch, hat aber eine sehr schlechte Wärmeleitfähigkeit. Die Brennstäbe müssen deshalb sehr dünn sein, was nachteilig für ihre mechanische Stabilität ist. Es kann bei Leistungssprüngen sehr schnell zum Aufschmelzen im Innern des Brennstoffes kommen, obwohl es am Rand noch recht kalt ist. Dadurch kommt es zu entsprechenden Verformungen und Ausgasungen, die sicher beherrscht werden müssen.
  • Das umgebende Wasser ist nicht nur Moderator, sondern auch Kühlung für den Brennstab. Eine ausreichende Kühlung ist nur durch eine Verdampfung auf der Oberfläche möglich. Kernreaktoren sind die „Maschinen“ mit der höchsten Leistungsdichte pro Volumen überhaupt. Das macht sie so schön klein, verringert aber auch die Sicherheitsreserve bei einem Störfall. Fallen sie auch nur einen Augenblick trocken, reicht selbst bei einer Schnellabschaltung die Nachzerfallswärme aus, um sie zum Glühen oder gar Schmelzen zu bringen. In dieser Hitze führt die Reaktion der Brennstoffhülle mit dem vorhandenen Dampf zur sofortigen Zersetzung unter Wasserstoffbildung. Beides geschah in den Reaktoren von Harrisburg und Fukushima.
  • Der Zwischenraum mit seiner Wasserfüllung als Moderator erfüllt eine wichtige Selbstregelfunktion. Damit überhaupt ausreichend Kerne gespalten werden können, müssen die Neutronen im Mittel die „richtige“ Geschwindigkeit haben. Diese wird durch den Zusammenstoß mit einem Wasserstoffatom erreicht. Damit dies geschehen kann, müssen sie eine gewisse Anzahl von Wassermolekülen auf ihrem Weg passiert haben. Da die Spalte geometrisch festgeschrieben sind, hängt die Anzahl wesentlich von der Dichte ab. Mit anderen Worten: Vom Verhältnis zwischen Dampf und Wasser im Kanal. Macht die Leistung einen Sprung, verdampft mehr Wasser und die Dichte nimmt ab. Dadurch werden weniger Neutronen abgebremst und die Anzahl der Spaltungen – die der momentanen Leistung entspricht – nimmt wieder ab.
  • Der Brennstoff wird bei Leichtwasserreaktoren nur in der Form kompletter Brennelemente gewechselt. Da aber kontinuierlich Spaltstoff verbraucht wird, muß am Anfang eine sog. Überschußreaktivität vorhanden sein. Wenn am Ende des Ladezyklus noch so viel Spaltstoff vorhanden ist, daß eine selbsterhaltende Kettenreaktion möglich ist, muß am Anfang zu viel davon vorhanden gewesen sein. Dieses zu viel an Spaltstoff, muß über sog. Neutronengifte kompensiert werden. Das sind Stoffe, die besonders gierig Neutronen einfangen und sie somit einer weiteren Spaltung entziehen. Je nach Reaktortyp kann das durch Zusätze im Brennstoff oder Kühlwasser geschehen.
  • Die Leistungsregelung eines Reaktors geschieht hingegen über Regelstäbe, die in Leerrohre in den Brennelementen eingefahren werden können. Die Regelstäbe bestehen ebenfalls aus Materialien, die sehr stark Neutronen einfangen. Fährt man sie tiefer ein, fangen sie mehr Neutronen weg und die Anzahl der Spaltungen und damit die Leistung, wird geringer. Zieht man sie heraus, können mehr Neutronen ungestört passieren und die Leistung steigt. Bei einer Schnellabschaltung werden sie alle – möglichst schnell – voll eingefahren.

Die eigentliche Stromerzeugung

In einem Kernkraftwerk wird – wie in jedem anderen Kraftwerk auch – die elektrische Energie durch einen Generator erzeugt. Dieser Generator wird in einem Kernkraftwerk durch eine sogenannte Nassdampfturbine angetrieben. Das ist ein wesentlicher Unterschied zu einem fossil befeuerten Kraftwerk. Bei denen wird möglichst heißer Dampf (bis 580 °C) auf die Turbine geschickt. Dieser wird nach einer gewissen Arbeitsleistung sogar wieder entnommen und noch einmal im Kessel neu erhitzt (z. B. Zwischenüberhitzung bei 620 °C). Prinzipiell erhöhen diese Maßnahmen den Wirkungsgrad und machen vor allem die Turbine kleiner und preiswerter.

Das Hauptproblem einer Nassdampfmaschine sind die großen Dampfvolumina und der Wassergehalt des Dampfes. Turbinen von Leichtwasserreaktoren haben üblicherweise einen Hochdruck und drei doppelflutige Niederdruckstufen auf einer gemeinsamen Welle. Trotzdem sind die Endstufen damit über 2 m lang und drehen sich mit Überschallgeschwindigkeit. Dadurch wirken auf jedes Blatt Fliehkräfte von über 500 to. In den Kondensatoren herrscht Hochvakuum, wodurch der Dampf mit der zugehörigen Schallgeschwindigkeit strömt. Die sich bereits gebildeten Wassertröpfchen wirken wie ein Sandstrahlgebläse auf die Turbinenschaufeln. Grundsätzlich gilt, je „kälter“ man mit dem Dampf in die Turbinenstufe rein geht, desto höher wird der Wasseranteil bei vorgegebenem Enddruck.

Die Entwässerung ist bei einer Nassdampfmaschine sehr aufwendig und damit teuer. Man versucht möglichst viel Wasser aus den Leitstufen abzusaugen und verwendet auch noch zusätzliche Tröpfchenabscheider außerhalb der Turbine. Vor den Niederdruckstufen überhitzt man den Dampf noch durch Frischdampf. All diese Maßnahmen verursachen aber Druckverluste und kosten nutzbares Gefälle.

Instrumentierung

Es ist von entscheidender Bedeutung, daß das Bedienungspersonal in jedem Augenblick einen möglichst genauen und detaillierten Überblick über die Zustände im Kraftwerk hat. Nur bei genauer Kenntnis der tatsächlichen Lage, können die richtigen Schlüsse gezogen werden und wirksame Gegenmaßnahmen eingeleitet werden. Dies ist die leidige Erfahrung aus allen Störfällen. Der Meßtechnik kommt deshalb große Bedeutung zu. Sie muß in ausreichender Auflösung (Stückzahl) vorhanden sein und zuverlässige Informationen in allen Betriebszuständen liefern.

In diesem Sinne spielen die Begriffe „Redundanz“ und „Diversität“ eine zentrale Rolle:

  • Alle wichtigen Betriebsgrößen werden mehrfach gemessen. Dies gibt Sicherheit gegen Ausfälle. Zusätzlich kann man bei einer mehrfachen – üblicherweise 4-fachen – Messung, Vertrauen zu den Meßwerten herstellen. Bei sicherheitsrelevanten Meßwerten (z. B Druck und Temperatur im Reaktordruckgefäß), die über eine Schnellabschaltung entscheiden, gilt das 3 von 4 Prinzip: Jede Größe wird gleichzeitig 4-fach gemessen. Anschließend werden die Meßwerte verglichen und es werden nur die drei ähnlichsten als Grundlage weiterer Auswertungen verwendet. Man erkennt damit augenblicklich, welche Meßstelle gestört ist und an Hand der Abweichungen untereinander, wie glaubwürdig die Messung ist.
  • Jedes Meßverfahren liefert nur in bestimmten Bereichen Ergebnisse mit hinreichender Genauigkeit. Dies ist eine besondere Herausforderung in einer Umgebung, die sich ständig verändert. So sind z. B. bestimmte Meßverfahren für den Neutronenfluß stark temperaturabhängig. Es ist deshalb üblich, unterschiedliche physikalische Methoden gleichzeitig für dieselbe Messgröße anzuwenden. Damit sind einfache Plausibilitätskontrollen möglich. Dies ist besonders bei Störfällen wichtig, bei denen die üblichen Bereiche schnell verlassen werden.

Digitalisierung und Sicherheit

Es gibt bei einem Kernkraftwerk alle möglichen Grenzwerte, die nicht überschritten werden dürfen. Wird ein solcher Grenzwert erreicht, wird vollautomatisch eine Schnellabschaltung ausgelöst. Jede Schnellabschaltung ergibt nicht nur einen Umsatzausfall, sondern ist auch eine außergewöhnliche Belastung mit erhöhtem Verschleiß. Das Problem ist nur, daß die Vorgänge in einem solch komplexen System extrem nichtlinear sind. Gemeint ist damit, daß „ein bischen Drehen“ an einer Stellschraube, einen nicht erwarteten Ausschlag an anderer Stelle hervorrufen kann.

Die moderne Rechentechnik kann hier helfen. Wenn man entsprechend genaue mathematische Modelle des gesamten Kraftwerks besitzt und entsprechend leistungsfähige Rechner, kann man jede Veränderung in ihren Auswirkungen voraussagen und damit anpassen bzw. gegensteuern. Nun haben aber auch Computerprogramme Fehler und sind schwer durchschaubar. Es tobt deshalb immer noch ein Glaubenskrieg zwischen „analog“ und „digital“. Dies betrifft insbesondere die geforderte Unabhängigkeit zwischen der Regelung und dem Sicherheitssystem.

Seit Anbeginn der Reaktortechnik ist die Aufmerksamkeit und Übung des Betriebspersonals ein dauerhaftes Diskussionsthema. Insbesondere im Grundlastbetrieb ist die Leitwarte eines Kernkraftwerks der langweiligste Ort der Welt: Alle Zeiger stehen still. Passiert etwas, verwandelt sich dieser Ort augenblicklich in einen Hexenkessel. Die Frage ist, wie schnell können die Menschen geistig und emotional Folgen? Wie kann man sie trainieren und „aufmerksam halten“? Die allgemeine Antwort lautet heute: Ständiges Üben aller möglichen Betriebszustände und Störfälle im hauseigenen Simulator. Das Schichtpersonal eines Kernkraftwerks verbringt heute wesentlich mehr Stunden im Simulator, als jeder Verkehrspilot. Die zweite „Hilfestellung“ ist im Ernstfall erst einmal Zeit zu geben, in der sich das Personal sammeln kann und sich einen Überblick über die Lage verschafft. Dies sind die Erfahrungen aus den Unglücken in Harrisburg und Tschernobyl. Dort haben Fehlentscheidungen in den ersten Minuten die Lage erst verschlimmert. Eine ganz ähnliche Fragestellung, wie bei Flugzeugen: Wer hat das sagen, der Pilot oder die Automatik? Eine Frage, die nicht eindeutig beantwortet werden kann, sondern immer zu Kompromissen führen muß.

Ausblick

Wer bis hier durchgehalten hat, hat nicht vergebens gelesen. Ganz im Gegenteil. In den folgenden Beiträgen werden die Reaktoren jeweils einzeln vorgestellt. Um die Unterschiede klarer zu machen, wurden hier vorab einige grundlegende Eigenschaften behandelt. Zuerst werden die Druckwasserreaktoren EPR von Areva und AP-1000 von Westinghouse behandelt und dann die Siedewasserreaktoren ABWR und der ESBWR von GE-Hitachi. Das entspricht in etwa dem derzeitigen Ausbauprogramm in Großbritannien. Soweit Zeit und Lust des Verfassers reichen, werden noch die russischen (Türkei, Finnland, Ungarn) und die chinesisch/kanadischen Schwerwasserreaktoren (Rumänien) folgen.

Ein Strommarkt für die Energiewende

Das Diskussionspapier des Bundesministeriums für Wirtschaft und Energie – Grünbuch – ist gerade erschienen und kann kostenlos unter Grünbuch heruntergeladen werden. Warum das Ding nun ausgerechnet Grünbuch heißt, mag der Minister Gabriel wissen: Vielleicht soll es ja Assoziationen zum Grünen Buch eines bereits verjagten sozialistischen Potentaten aus Nordafrika wecken. Zumindest an Komik und Absurdität steht es ihm kaum nach. Es ist ebenfalls der Versuch, eine ideologische Kopfgeburt durch schwülstige Worte rechtfertigen zu wollen.

Das Ziel

In der Einleitung vom Grünbuch werden die Ziele definiert:

Bis 2020 sollen die Treibhausgasemissionen um 40 Prozent gegenüber 1990 und der Primärenergieverbrauch um 20 Prozent gegenüber 2008 sinken. Die erneuerbaren Energien sollen bis 2025 40 bis 45 Prozent und bis 2035 55 bis 60 Prozent zum Stromverbrauch beitragen.

Bis 2020 sind es noch sechs Jahre, das ist im überregulierten Deutschland ein Wimpernschlag für Investitionen. Vielleicht soll ja auch nur die Statistik helfen. Nur mal so als Denkanstoß: Die Energie aus Kernspaltung gilt als Primärenergie. Deshalb wird der in den Kernkraftwerken produzierte Strom für die Statistik mit dem Faktor 3 multipliziert. Elektrische Energie aus Wind und Sonne hergestellt, ist natürlich bereits Primärenergie, weil ja per Definition „gute Energie“. Wenn man jetzt die Kernkraftwerke durch Windmühlen etc. ersetzen könnte… Kann man natürlich nicht und es muß deshalb mehr Strom aus fossilen Kraftwerken her. Die Nummer mit den „Treibhausgasemissionen“ wird folglich voll nach hinten los gehen. Aber auch da könnte die Statistik helfen: Sie unterscheidet nämlich nicht zwischen dem exportierten Abfallstrom aus Wind und Sonne und dem importierten Strom aus französischen Kernkraftwerken, polnischen Steinkohlekraftwerken oder tschechischen Braunkohlekraftwerken. In der Politik braucht man Statistiken gar nicht zu fälschen, man muß sie nur „richtig“ interpretieren können.

Neue erneuerbare Energien-Anlagen müssen dabei dieselbe Verantwortung für das Gesamtsystem übernehmen wie konventionelle Kraftwerke.

Völlig falsch Herr Minister. Verantwortung können immer nur Menschen übernehmen. Wenn es auch bekanntermaßen Deutschen besonders schwer fällt, die bevorzugt „innerlich schon immer dagegen waren“ oder gleich besser „von allem nichts gewusst haben“ wollen. Wie wäre es also, wenn Sie einmal Verantwortung für die „Energiewende“ und ihre absehbaren Folgen übernehmen würden?

Funktionsweise des Strommarktes

In diesem ersten Kapitel wird die Funktion der Strombörse und ihre verschiedenen Handelsprodukte erklärt. Ganz verschämt steht auch hier ein Satz, über den in der Öffentlichkeit kaum diskutiert wird:

Überwiegend schließen Unternehmen aber weiterhin direkte Lieferverträge mit Stromerzeugern ab.

Der Handel mit diesen außerbörslichen Lieferverträgen wird „Over the Counter“ (OTC) genannt. Hier würden einmal konkrete Zahlen gut tun. Wohlgemerkt, über die physikalischen Mengen (nicht wie oft das „Stück Papier“ an der Börse umgeschlagen wird, sondern die physikalische Energie mit der der Kontrakt hinterlegt wird und die letztendlich hergestellt und verbraucht wird), die an der Börse gehandelt werden, im Vergleich zu der gesamten Produktion. Im weiteren Papier wird nämlich immer etwas von „Marktsignalen“ erzählt, die von der Börse ausgehen. Wenn von der Strombörse „Marktsignale“ ausgehen sollen, die über den weiteren Ausbau des Kraftwerksparks bestimmen sollen, müßte aber erstmal ein Zwang für Stromhandel ausschließlich über die Börse erfolgen. Die Signale, die eine Strombörse auf die tatsächlichen Handelspreise aussenden kann, sind prinzipiell gering, wenn nicht irreführend. Der Strommarkt verhält sich gänzlich anders, als die anderen Rohstoffmärkte (Öl, Getreide, Metalle etc.). Elektrische Energie ist weder lagerbar, noch frei transportierbar. Ein Arbitrage-Handel ist damit gar nicht möglich und die Teilmärkte Börse und OTC sind somit nur sehr locker verbunden.

Noch ein schönes Beispiel für die gestelzte Sprache eines Politbüros:

Setzen die Stromnachfrage oder Erzeuger, die ihre Fixkosten einpreisen, den Strommarktpreis, können auch sehr teure Grenzkraftwerke Deckungsbeiträge erzielen. Wenn die Grenzen der verfügbaren Erzeugungskapazitäten erreicht werden, kann der Ausgleich von Angebot und Nachfrage entweder durch Lastmanagement (d. h. Lastreduktion durch flexible Verbraucher) oder die letzte Erzeugungseinheit erfolgen. 

Alles klar? Wenn nicht, hier eine Übersetzung in Alltagssprache: Jedes Unternehmen muß seine vollständigen Kosten am Markt erzielen können, da es sonst pleite geht. Leider ist dies zur Zeit bei vielen Kraftwerken der Fall. Sind erst einmal genügend konventionelle Kraftwerke in die Pleite getrieben worden, kann bei Dunkel-Flaute die Stromversorgung nicht mehr aufrecht erhalten werden. Stromabschaltungen sind die Folge. Kurz vorher explodieren noch die Strompreise. Der Minister hat auch gleich noch einen Tip parat:

Wenn der Preis den Nutzen übersteigt, können Verbraucher ihren Strombezug freiwillig reduzieren. Bereits am Terminmarkt gekaufter Strom könnte in diesem Fall gewinnbringend weiterverkauft werden.

Auf Deutsch: Spekuliere an der Börse, mach deinen Laden dicht und geh hin und genieße die schöne, neue Welt.

Dieser Abschnitt endet mit einem wunderbaren Satz zur Erklärung der zukünftigen Situation an der Strombörse:

In Zeiten von Überkapazitäten ist diese implizite Vergütung von Leistung gering. Sie steigt, je knapper die Kapazitäten am Strommarkt sind.

Wenn erst mal die Mangelwirtschaft durch die Vernichtung konventioneller Kraftwerke vollendet ist, wird zwar weiterhin der Börsenpreis an vielen Tagen durch den Einspeisevorrang im Keller bleiben, aber bei Dunkel-Flaute würde man ein tolles Geschäft machen können, wenn man dann noch ein Kraftwerk hätte.

Herausforderungen

Geschichte kann so gnadenlos und witzig sein:

Der Strommarkt ist liberalisiert. Bis 1998 hatten Stromversorger feste Versorgungsgebiete.

Wer hat das heutige Chaos erfunden? Die SPD hat’s erfunden. Bis zu dem angegebenen Zeitpunkt war die deutsche Stromwirtschaft geradezu dezentral organisiert (Hamburger-, Berliner-, Bremer-EVU, Bayernwerke, Preussenelektra, RWE, Badische Elektrizitätswerke, usw., usw.). Dann kam ein gewisser Wirtschaftsminister Wilhelm Werner Müller (parteilos). Er war der überraschende Joker des Gazprom-Mitarbeiters – und in seinem damaligen Lebensabschnitt Bundeskanzlers – Gerhard Schröder (SPD). Dieser Müller gab die Parole aus, nur schlagkräftige Großkonzerne seien im zukünftigen Europa überlebensfähig. Sein persönliches Streben galt besonders dem Verhökern der gesamten ostdeutschen Stromversorgung, plus Hamburg und Berlin als Dreingabe, an den schwedischen Staatskonzern Vattenfall. Vattenfall war damals – und inzwischen wieder – von den schwedischen Sozialdemokraten beherrscht. Auch hier fällt der SPD ihre eigene Entscheidung wieder auf die Füße. Damals wohl gelitten, als Gegengewicht zu dem „badischen Atomkonzern“, der noch eine wesentliche Beteiligung durch die EDF hatte, während die schwedische Schwesterpartei den „Atomausstieg“ verkündet hatte. Inzwischen hat Schweden längst den Ausstieg vom Ausstieg vollzogen und man erwärmt sich nun im Volksheim für die „Klimakatastrophe“. Nicht weiter schwierig, wenn man seinen Strom nahezu hälftig aus Wasserkraft und Kernenergie herstellt. Schlecht nur für unseren tapferen Sozialdemokraten, in seiner Funktion als „Wendeminister“: Arbeitsplätze gegen fixe Ideen, wie wird er sich wohl entscheiden?

Um diesen Umbau der Energieversorgung möglichst geräuschlos und ohne lästige Öffentlichkeit durchführen zu können, wurde damals dem grünen Koalitionspartner der Bonbon „Atomausstieg“ zugestanden. Damit unsere Schlafmützen der deutschen Industrie nicht aufwachen, wurde die Einführung der Planwirtschaft mit dem Neusprech-Wort „Strommarktliberalisierung“ getarnt. Tatsächlich gingen die Strompreise in den Anfangsjahren auch etwas zurück und das EEG kostete damals wenig mehr als eine Trittinsche Eiskugel. Michel konnte also beruhigt weiterschlafen. Es waren ja die, die für mehr Gerechtigkeit und die, die die Umwelt schützen an der Regierung. Was sollte an deren Plänen schlechtes sein? Die Sonne strahlte zwar, aber schickte immerhin keine Rechnung.

Manche Sätze sind von beängstigender Klarheit:

Derzeit werden zahlreiche Kraftwerke von ihren Betreibern stillgelegt. Dieser erforderliche Marktbereinigungsprozess wird in den kommenden Jahren anhalten.

Man drückt große Mengen Abfallstrom, den keiner braucht, solange in den Markt, bis die Konkurrenz pleite macht. Im Neusprech heißt das „Marktbereinigung“, in der Volkswirtschaftslehre schlicht Dumping (Verkauf von Waren unterhalb der Herstellungskosten). Erst vernichtet man die Arbeitsplätze in den Kraftwerken, anschließend durch überhöhte Strompreise die in der Industrie. Der Morgenthau-Plan war dagegen wirkungslos.

Ganz langsam dämmert dem Wirtschaftsminister, welche Probleme noch in seiner Amtszeit auf ihn zu kommen:

2011 wurden acht Kernkraftwerke mit einer Erzeugungskapazität von insgesamt rund acht Gigawatt endgültig stillgelegt. … Bis 2022 werden hierdurch weitere Erzeugungskapazitäten in Höhe von rund 12 Gigawatt stillgelegt.

Die damals stillgelegten Kernkraftwerke, waren die „alten und kleinen“. Deshalb wurde im Jahr 2013 in den verbliebenen Kernkraftwerken mit 97,3 TWh immer noch mehr Strom, als mit Wind (53,4 TWh) und Sonne (30,0 TWh) zusammen erzeugt. Er müßte in den nächsten acht Jahren deshalb den Ausbau mehr als verdoppeln, um die Kraftwerke wenigstens energetisch zu ersetzen. Deshalb schreibt er auch gleich im folgenden Absatz:

Hierbei nehmen Windenergie und Photovoltaik die tragende Rolle ein. Wind und Sonne sind die Energiequellen mit den größten Potentialen und den geringsten Kosten.

Na denn, die Partei kann sich nicht irren. Es war ja schließlich ein Sozialdemokrat, der mit dem Slogan „Die Sonne schickt keine Rechnung“ ein bescheidenes Vermögen gemacht hat.

Hier ist es wieder, das übliche ideologische Geschwafel:

Der Gesamtbedarf an fossilen Kraftwerken und insbesondere der Bedarf an Grund- und Mittellastkraftwerken sinkt, während der Bedarf an flexiblen Spitzenlasttechnologien und Lastmanagement steigt.

Speicher gibt es nicht, aus der Kernenergie soll ausgestiegen werden, warum sollte also der Bedarf an fossilen Kraftwerken sinken? Grundlast ist der niedrigste, das ganze Jahr über ständig auftretende Bedarf – also auch nachts. Gabriel glaubt ja viel zu können, aber die Sonne nachts scheinen zu lassen, dürfte ihm nicht gelingen. Mittellast ist der während der Werktage auf die Grundlast aufsattelnde gleichmäßige Energiebedarf. Geht er vielleicht bereits von einer vollständigen Abschaffung der Arbeitswelt aus? Die Spitzenlast ergibt sich zusätzlich an wenigen Stunden pro Tag (z.B. Strombedarf der Bahnen im Berufsverkehr). Vom Bedarf aus betrachtet, ergibt sich also überhaupt keine Veränderung, egal auf welche Art der Strom erzeugt wird. Lediglich durch die Störungen auf der Angebotsseite aus Windmühlen und Photovoltaik ergibt sich ein zusätzlicher und ohne „Erneuerbare“ gar nicht vorhandener Regelungsbedarf.

Man spürt förmlich die Unsicherheit und es wird im nächsten Abschnitt ordentlich weiter geschwurbelt:

Wir bewegen uns von einem Stromsystem, in dem regelbare Kraftwerke der Stromnachfrage folgen, zu einem insgesamt effizienten Stromsystem, in dem flexible Erzeuger, flexible Verbraucher und Speicher zunehmend auf das fluktuierende Dargebot aus Wind und Sonne reagieren.

Da ist sie wieder, die für alle Religionen typische Verheißung des Paradieses in der Zukunft.

Ein wichtiger Grundsatz der Werbung und Propaganda ist die Verbreitung von Halbwahrheiten:

Die derzeit zu beobachtenden niedrigen Großhandelspreise unterstreichen die Tatsache, dass es gegenwärtig erhebliche Überkapazitäten gibt. Die teilweise angekündigten oder bereits realisierten Stilllegungen von Kraftwerken sind ein Zeichen dafür, dass der Strommarkt die richtigen Signale aussendet.

Der Zusammenbruch der Handelspreise an der Börse beruht ausschließlich auf dem Einspeisevorrang der „Erneuerbaren“. Wenn das Angebot von Wind- und Sonnenenergie wegen der Wetterverhältnisse hoch ist und die Nachfrage gering (typisch an Feiertagen), fallen die Handelspreise. In manchen Stunden muß sogar ein negativer Energiepreis (Entsorgungsgebühr) bezahlt werden. Das Marktsignal wäre eindeutig: Sofortige Abschaltung der „Erneuerbaren“. Die Gesetze der Planwirtschaft (Einspeisevorrang und EEG-Vergütung) verbieten dies aber ausdrücklich. Es bleibt nur noch der Ausweg konventionelle Kraftwerke abzuschalten. Teilweise nagelneue, mit den weltweit höchsten Umweltstandards. Gut gemeint, ist halt noch lange nicht gut gemacht.

Alle Theoretiker versuchen immer, ihre Gedanken mit Fällen aus der Praxis zu hinterlegen. Dies gibt ihnen das Gefühl, nicht in einem Elfenbeinturm zu leben. So werden auch im Grünbuch (Seite 14) unter der Überschrift

Kapazitäten sind eine notwendige, aber keine hinreichende Bedingung für Versorgungssicherheit.,

zwei Beispiele geliefert: Einmal der Februar 2012 in Deutschland – und man ist ja weltmännisch – der 7. Januar 2014 in USA. Sätze wie

… eine große Zahl von Bilanzkreisverantwortlichen hatte zu wenig Strom am Markt beschafft, um den tatsächlichen Verbrauch in ihren Bilanzkreisen zu decken.

lassen – zumindest bei Genossen – sofort das Bild vom profitgierigen Spekulanten an der Börse erscheinen, der versucht die „Energiewende“ zu sabotieren. Die Wahrheit ist viel simpler. Es gibt keine 100% zutreffende Wettervorhersage. Insofern kann man nie die Produktion an „Erneuerbaren“ verlässlich voraussagen. Elektrische Energie ist nicht speicherbar (anders als Öl, Kohle etc.) und deshalb kann eine Strombörse auch keine Signale (Arbitrage) für den Netzbetrieb liefern. Die Regelenergie kommt aber aus einem ganz anderen Topf (Netzentgelte). Insofern handelt jeder Börsenhändler rational und richtig, wenn er stets zu knapp einkauft.

Noch toller ist das Beispiel aus den USA:

Der Grund dafür war, dass diese Anlagen keinen ausreichenden Anreiz hatten, auch einsatzbereit zu sein und tatsächlich eingesetzt zu werden.

So ist das nun mal, wie das Windrad Wind braucht, brauchen die „flexiblen und klimafreundlichen“ Gaskraftwerke ausreichend Erdgas zum Betrieb. Man hat an der gesamten Ostküste verstärkt auf Gaskraftwerke gesetzt. Weniger aus Klimaschutz, viel mehr aus Kostengründen. Im Gebiet des Marcellus Shale (fracking!) ist das Gas noch billiger als US-Kohle. Leider wird auch dort Erdgas in den Metropolen zum Heizen und in der Industrie verwendet. Durch den Kälteeinbruch hatten sich die Erdgaspreise nahezu verzehnfacht. Kraftwerke und Gebäudeheizungen haben das Rohrleitungssystem förmlich leer gesaugt. Im Einvernehmen mit den Kraftwerksbetreibern hat man die Gaskraftwerke vom Netz genommen, um die Preisexplosion zu stoppen. Seit dem, tobt eine höchst interessante Diskussion, wer zusätzliche Leitungskapazität – die nur wenige Stunden im Jahr gebraucht wird – finanzieren soll. Ein Schelm, wer Parallelen zu Stromautobahnen für Windstrom von Nord nach Süd sieht!

In den folgenden Absätzen wird versucht, über die eigentlich erkannten Probleme hinweg zu schwafeln:

Alternativ können flexible Verbraucher ihre Stromnachfrage reduzieren und z.B. bereits eingekauften Strom am Markt gewinnbringend verkaufen.

Welche flexiblen Verbraucher? Bisher hat man ein Fußballländerspiel geguckt, wenn es übertragen wurde und Autos produziert, wenn sie bestellt waren. Nur Banken und Spekulanten – sonst die ärgsten Feinde aufrechter Sozialdemokraten – können Strom gewinnbringend handeln. Und im besten Politikerjargon geht es nahtlos weiter:

Auf diese Weise kann der zu niedrigen Grenzkosten angebotene Strom aus Wind- und Sonnenenergie effizient und sicher in das System integriert werden.

Der dümmliche Werbeslogan „Die Sonne schickt keine Rechnung“ wird auf Ministerebene „zu niedrigen Grenzkosten angebotener Strom aus Wind- und Sonnenenergie“ umgeschrieben und wenn man Abfallstrom gegen Erstattung der Entsorgungskosten ins Ausland verhökert wird er „effizient und sicher in das System integriert“. Mein absoluter Lieblingssatz folgt erst kurz danach:

Mein absoluter Lieblingssatz folgt erst kurz danach:

Der Strommarkt ist damit weit entfernt von einem „Überschuss“ erneuerbarer Energien. 2035 könnte die minimale Residuallast minus 25 Gigawatt betragen.

Auf Deutsch: 2035 könnten wir mehr als 25 GW (das ist mehr als das Doppelte, was zur Zeit noch an Kernkraftwerken am Netz ist) Leistung aus Wind und Sonne erzeugen, als wir überhaupt an Strom verbrauchen. Jedem im Politbüro der „Hauptstadt der DDR“ wären vor Rührung die Tränen gekommen bei einer solchen Übererfüllung des Plansoll. Wie hoch dann wohl die Entsorgungsgebühren sein werden?

Flexibilität als eine Antwort

Neben der zeitweisen Stromabschaltung, werden hier echte technologische Knaller zur Lösung der Überproduktion empfohlen:

Bei geringer Residuallast kann mit Strom auch direkt Wärme erzeugt und damit Heizöl bzw. Gas eingespart werden.

Wenn die Wetterlage mehr Strom produziert als überhaupt gebraucht wird, soll man mit Strom heizen. Zum zehnfachen Preis von Heizöl. Der Tauchsieder als Retter der Schlangenölverkäufer (wird bereits in Bremen erprobt).

Manche Aussagen sind schlicht dummdreist:

Darüber hinaus können bei gekoppelten Märkten auch die unterschiedlich verfügbaren Technologien effizienter genutzt werden (z. B. Wind und Sonne in Deutschland, Wasserkraftspeicher in den Alpen und in Skandinavien).

Vielleicht fragt mal einer im Ministerium bei den Betreibern der alpinen Wasserkraftwerke an. Die gehen sogar von Schließung der bestehenden Anlagen aus, wenn das Dumping mit deutschem Abfallstrom noch länger anhalten sollte. Manchmal weiß man auch nicht, ob man lachen oder weinen soll:

Die Kosten für die Erschließung der notwendigen technischen Potenziale sind umso geringer, je breiter und direkter die Preissignale wirken.

Nur sind die Preissignale durch den Einspeisevorrang und die EEG-Vergütung völlig auf den Kopf gestellt. Oder noch gestelzter:

Bei statischer Betrachtung erhöht sich die EEG-Umlage bei einer Abregelung bei moderat negativen Preisen in einem stärkeren Maße, als bei Abregelung bei einem Preis von Null. Bei dynamischer Betrachtung hingegen erweist sich die Abregelung bei moderaten negativen Preisen als kosteneffizient.

Entsorgungsgebühren fallen immer dann an, wenn es keine wirtschaftliche Verwendung für den Abfall gibt. Einzig sinnvolle Konsequenz ist daher die Müllvermeidung – sprich die Abschaltung der Anlagen bei Überproduktion.

So langsam ahnen die Schlangenölverkäufer, daß die Geschäfte zukünftig nicht mehr so profitabel weiter laufen können:

Insbesondere Biomasseanlagen erbringen zunehmend Regelleistung. Zukünftig sollte die Teilnahme am Markt für (negative) Regelleistung auch für Wind- und Photovoltaikanlagen möglich sein.

Man will sich das Abschalten als „negative Regelleistung“ vergüten lassen – hofft jedenfalls der Ingenieur. Vielleicht will man die Windräder auch als Ventilatoren laufen lassen. Innerhalb eines Windparks dürften sich dann tolle Koppelgeschäfte verwirklichen lassen. Aber, damit ist der Kreativität im Wirtschaftsministerium noch kein Ende gesetzt:

Biomasseanlagen haben mit der Flexibilitätsprämie einen Anreiz, ihre Anlagen flexibel auszulegen und zukünftig vor allem bei hohen Strompreisen einzuspeisen. Auch Wind- und Photovoltaik-Anlagen können z. B. durch Schwachwindturbinen oder Ost-West-Ausrichtung eine gleichmäßigere Einspeisung erzielen und in Zeiten hoher Strompreise die hohe Nachfrage besser decken.

Die Konstrukteure von Biogasanlagen haben selbstverständlich auf eine gleichmäßige Auslastung der Anlagen gesetzt, um die Kapitalkosten gering zu halten. Wer soll die zusätzlichen Speicher, Motoren, Verstärkung der Netzanschlüsse etc. bezahlen, wenn plötzlich „geregelt“ eingespeist werden soll? Der „Biostrom“ würde damit noch teurer. Die „Schwachwindturbinen“ und die Ost-West-Ausrichtung kommentieren sich von selbst.

Marktpreissignale für Erzeuger und Verbraucher stärken

Dem Minister scheint der Einsatz von Windrädern als Ventilatoren so wichtig, daß er noch einmal im nächsten Kapitel ausdrücklich gefordert wird:

Die Präqualifikationsbedingungen sollten so angepasst werden, dass insbesondere Windenergieanlagen in Zukunft negative Regelleistung bereitstellen können.

Der nächste Verbesserungsvorschlag erscheint eher etwas nebulös:

Auch könnte in Zukunft die ausgeschriebene Menge für Regelleistung an die jeweilige Einspeisung von Wind- und Sonnenenergie angepasst werden.

Soll es vielleicht demnächst ein Forschungsprojekt zum aufblasbaren Kraftwerk geben?

Schön ist, wenn Politiker auch mal erkennen, daß das Fehlverhalten einiger Geschäftemacher die Folge ihrer blödsinnigen Gesetze ist:

Schätzungen gehen davon aus, dass nur 30 – 50 Prozent der Bilanzkreisverantwortlichen ihren Bilanzkreis aktiv am Intradaymarkt bewirtschaften.

Kein Mensch kann das Wetter des nächsten Tages mit hundertprozentiger Sicherheit voraussagen. Im wirklichen Leben ist ein Händler, der etwas verkauft, was er gar nicht besitzt, ein Betrüger. Deshalb hat jeder Händler ein Lager. Anders im Stromgeschäft. Dort gibt es einen Wohltäter, den Übertragungsnetzbetreiber, der jede fehlende Lieferung augenblicklich ersetzt. Da Wohltäter nur im Märchen vorkommen, holt der sich seine (erhöhten) Kosten über die Netzentgelte von uns zurück. Ein klassisches Geschäft zu Lasten Dritter – aber von der Politik ausdrücklich so gewollt.

Stromnetze ausbauen und optimieren

Eine alte Propagandaweisheit besagt, daß es egal ist, ob etwas falsch oder wahr ist, man muß es nur oft genug wiederholen. So steht auch hier wieder:

Überregionaler Stromaustausch gleicht die Schwankungen von Wind, Sonne und Nachfrage aus.

Wer immer noch dieses Märchen glaubt, sollte sich schnellstens mal mit den meteorologischen Datensammlungen bzw. den Einspeiseverläufen der Übertragungsnetzbetreiber beschäftigen.

Mit den ewig selben fadenscheinigen Argumenten werden auch die Nord-Süd „Stromautobahnen“ begründet:

Dies erhöht in zahlreichen Stunden den Transportbedarf von Norden nach Süden.

Keine einzige Windmühle wird je ein konventionelles Kraftwerk ersetzen können. Weht kein Wind, wird auch keine elektrische Energie erzeugt, weht zufällig mal kräftiger Wind, heißt das noch lange nicht, daß diese auch gebraucht wird. Die Nord-Süd-Leitungen dienen nur dem Zweck, die Überproduktion aus Norddeutschland nach Süddeutschland zu entsorgen – hofft man. Dies wird eher an wenigen Stunden, als an zahlreichen geschehen. Eine weitere Fehlinvestition der „Energiewende“, für die wir Bürger zahlen müssen.

Ebenso irrsinnig und rein ideologisch begründet ist die Annahme:

Der Stromhandel unterstellt ein Netz ohne Engpässe.

Die Vernachlässigung der Transportkosten ist ja gerade ein zentraler Geburtsfehler von Strombörse und EEG. Gibt es auch eine staatliche Tankerflotte, die kostenlos billiges Erdgas nach Europa transportiert? Wer von der Preisdifferenz zwischen USA und Europa profitieren möchte, muß sich völlig selbstverständlich Tanker auf eigene Kosten chartern. Woher leitet ein Windmüller daher ab, daß sein billiger Strom aus der Nordsee (Standortvorteil) kostenlos nach Süddeutschland transportiert wird? Wer Produktionsanlagen weit entfernt von Verbrauchern baut, muß auch selbst für den Transport aufkommen.

Ein weiterer Vorschlag aus der Küche des Wirtschaftsministeriums, der die Situation nur verschlimmert:

Um Redispatchpotentiale außerhalb der Netzreserve zu erschließen, könnten beispielsweise bestehende Netzersatzanlagen mit Steuerungstechnik ausgestattet werden.

Wer bezahlt die Umrüstung und den zusätzlichen Verschleiß? Soll noch ein Stück Umweltschutz auf dem Altar des EEG geopfert werden? Netzersatzanlagen haben wesentlich geringere Umweltstandards als konventionelle Kraftwerke – was auch kein Problem ist, da sie nur im Notfall eingesetzt werden sollten. Was hat Vorrang, die Versorgungssicherheit des städtischen Krankenhauses oder die Wolke über der Photovoltaikanlage im Villenviertel?

Schön ist auch, daß das Wirtschaftsministerium zum Ideenwettbewerb aufruft:

Es ist zu klären, inwieweit die bisher aus den rotierenden Massen der Generatoren erbrachte Momentanreserve durch Energiespeicher oder Photovoltaik-Anlagen mit Umrichtern ersetzt werden kann.

Gar nicht. Es sei denn, mit Umrichter sind Motor-Generator-Sätze gemeint. Aber, spätestens wenn alle Kernkraftwerke abgeschaltet sind, bekommen unsere „Energieexperten“ noch eine Nachhilfestunde in Elektrotechnik erteilt.

Einheitliche Preiszone erhalten

Man kann es kaum unverblümter ausdrücken, daß es sich beim Stromhandel nicht um Marktwirtschaft, sondern Planwirtschaft handelt:

Dieses einheitliche Marktgebiet – auch „einheitliche Preiszone“ oder „einheitliche Gebotszone“ genannt –, ist die Grundlage dafür, dass sich deutschlandweit und in Österreich die gleichen Großhandelspreise für Strom bilden.

Transportkosten werden bewußt ausgeklammert. Wenn sonst irgendjemand weit entfernt von einer Autobahn eine Fabrik baut, muß er selbst für den Transport sorgen. Der niedrige Grundstückspreis und ein geringes Lohnniveau als Marktsignal, lassen sich unmittelbar gegen die erhöhten Transportkosten aufrechnen. Anders im Stromhandel. Hier gibt es keine Transportkosten. Die Verbraucher müssen dem cleveren Investor einen Autobahnanschluß bis vor dessen Türe bauen. Im Volksmund würde man so etwas als schmarotzen bezeichnen.

Wenige Absätze später, wird diese zentrale planwirtschaftliche Säule des EEG-Systems deshalb noch einmal ohne wenn und aber bekräftigt:

Die Möglichkeit, den Strom versorgungssicher und effizient im Netz zu transportieren, ist die Voraussetzung für den Erhalt der einheitlichen Preiszone.

Wohlgemerkt, wir reden hier von zwei- bis dreistelligen Milliardenbeträgen, die in die Übertragungs- und Verteilnetze investiert werden müssen, damit die Windmüller und Sonnenstromer ihr Produkt überhaupt zum Verbraucher transportieren können. Eine der gigantischsten Umverteilungen von unten (alle Stromverbraucher) nach oben (wenige Produzenten), die je in dieser Republik statt gefunden haben.

Die europäische Kooperation intensivieren

Ein echter politischer Hammer ist die folgende Aussage:

Wenn Strom in das Ausland exportiert wird, profitieren die ausländischen Stromverbraucher vom günstigen Strom in Deutschland, während deutsche Stromerzeuger zusätzliche Erlöse erzielen und dort teilweise die Konkurrenz verdrängen.

Ist das wirklich das politische Ziel dieser Regierung? Deutsche Kleinrentner etc. machen sich für ausländische Stromkunden krumm, damit deutsche Stromerzeuger – gemeint sind ja wohl eher Windmüller und Sonnenfarmer – reicher werden? Wie lange glaubt man hier, daß sich unsere Nachbarn diesen Angriff auf ihre Arbeitsplätze gefallen lassen?

Geradezu schizophren sind die folgenden Sätze:

Dies gilt auch, weil die Bedeutung dargebotsabhängiger erneuerbarer Energien und damit stochastisch verfügbarer Erzeugung wächst. Durch die großräumigen Ausgleichseffekte bei den Höchstlasten und dem Beitrag der erneuerbaren Energien zur gesicherten Leistung besteht im europäischen Binnenmarkt grundsätzlich ein geringerer Bedarf an Erzeugungskapazität, Lastmanagement und Speichern.

Also die stochastische (zufällige) Erzeugung durch „Erneuerbare“wächst und dadurch nimmt die gesicherte Leistung zu. Das hat etwas von der unbefleckten Empfängnis der Jungfrau Maria. Nur kommt man mit einem Glaubensbekenntnis bei der Stromerzeugung nicht weiter. Technik ist eben keine Religion!

Unabhängig davon, für welches Strommarktdesign sich Deutschland, seine Nachbarländer oder andere EU-Mitgliedstaaten entscheiden, sollten beispielsweise gemeinsame Regeln geschaffen werden für Situationen, in denen in mehreren gekoppelten Strommärkten gleichzeitig relativ hohe Strompreise im Großhandel beobachtet werden.

Autsch! Kriegt da jemand Angst, daß unsere Nachbarn doch nicht bei Dunkel-Flaute bedingungslos einspringen? Bekommt jemand Bedenken, daß unsere Nachbarn das Gefasel von „Marktsignalen“ wörtlich nehmen und den Preis verlangen, der bezahlt werden muß? Bisher war so etwas ausgeschlossen. Jeder mußte ausreichende Reserven vorhalten. Nur in echten Notfällen – Flaute und Dunkelheit zählen nicht dazu – sind dann die Nachbarn vorübergehend für einander eingesprungen. Aber das ist der Unterschied zwischen Nachbarschaftshilfe und Schmarotzertum.

Hinkley Point C

Der Aufreger der Woche, ist der geplante Neubau zweier Reaktoren als Ersatz für das Kernkraftwerk Hinkley Point. Für die einen ist es der lang ersehnte Neubeginn, für andere ein Sündenfall der europäischen Subventionswirtschaft. Vor allem ist es jedoch ein hoch komplexer Vorgang, für den man etwas mehr Zeit benötigt als in den „Qualitätsmedien“ zur Verfügung steht.

Die Geschichte

Großbritannien (GB) ist die Mutter der sog. „Strom-Markt-Liberalisierung“ in Europa. Traditionell gab es Gebietsmonopole, in denen „Energieversorger“ tätig waren. Als Ausgleich für ihr Monopol, mußten sie ihre Tarife durch eine staatliche Aufsicht kontrollieren und genehmigen lassen. Nach der „Liberalisierung“ sollte elektrische Energie – wie andere Wirtschaftsgüter auch – zwischen Erzeugern und Verbrauchern gehandelt werden. Eine „Strombörse“ sollte hierfür der zentrale Marktplatz sein. So weit, so schlecht. Märkte kann man nicht verordnen, sondern Märkte ergeben sich und müssen sich frei organisieren können. Heute steht man in GB vor einem Scherbenhaufen. Böse Zungen behaupten, daß das heutige Theater um Hinkley Point nur das zwangsläufige Ergebnis für eine seit 30 Jahren nicht vorhandene Energiepolitik sei. Eine sicherlich nicht ganz falsche Feststellung. Noch treffender könnte man sagen, ein bischen Planwirtschaft geht genauso wenig, wie ein bischen schwanger. Um auch weiterhin seinen politischen Einfluß geltend machen zu können, hat man ganz schnell ein prinzipielles „Marktversagen“ in der Form einer von Menschen verursachen „Klimakatastrophe“ konstruiert. Früher gab es eine „Aufsichtsbehörde“ mit klar definierter Verantwortung und Aufgabenstellung. Heute ist die Elektrizitätswirtschaft zu einem Tummelplatz für Laiendarsteller und skrupellose Geschäftemacher verkommen. Im Ergebnis haben sich immer mehr seriöse Investoren aus diesem Sektor zurückgezogen. Dafür wurden immer mehr Kräfte aus dem dunklen Reich der „Gesellschaftsveränderer“ magisch angezogen. Wie konnte es dazu kommen?

Am Anfang und am Ende steht das Atom

In GB gab es zwar nie eine der deutschen „Anti-Atomkraft-Bewegung“ vergleichbare Strömung in der Bevölkerung, gleichwohl erkannten auch dort Politiker das Potential für eine „Gesellschaftsveränderung“. Man versuchte deshalb den Sektor Kernenergie möglichst lange aus der „Strom-Markt-Liberalisierung“ heraus zu halten. Letztendlich wurde auch er „privatisiert“. Die Kernkraftwerke wurden komplett an die staatliche französische EDF verkauft. Von einem Staatskonzern Unternehmertum zu erwarten, dürfte ungefähr genauso erfolgreich sein, wie die Übertragung eines Schnapsgeschäftes an einen Alkoholiker. Parallel wurden die „Alternativenergien“ massiv bevorzugt. Mit dem Ergebnis, daß man auch bald keinen Dummen mehr finden konnte, der gewillt war, in fossile Kraftwerke zu investieren. Nun steht man vor einem Scherbenhaufen: Rund ein Drittel aller Kraftwerke müssen in den nächsten Jahren aus Altersschwäche vom Netz gehen. Dies führt zu einer Versorgungslücke von wahrscheinlich 60 GW. Eine volkswirtschaftliche Herausforderung, wie in einem Schwellenland. Die Zeit wird knapp. Längst hat man gemerkt, daß Windenergie ohne konventionelle Kraftwerke gar nicht funktionieren kann. Da helfen auch noch so hohe Investitionen nicht weiter. Den Weg über den Neubau von Kohlekraftwerken traut man sich nicht zu gehen, hat man doch erst mit großem politischen Aufwand die „Klimakatastrophe“ erschaffen. Der einst erträumte Weg über „flexible und umweltfreundliche Gaskraftwerke“ ist bei der benötigten Stückzahl auch nicht realistisch. Zumindest das Handelsdefizit würde explodieren und das Pfund ruinieren. Man kann es drehen und wenden wie man will, aber zum Schluß landet man wieder bei der (ungeliebten) Kernenergie.

Weisse Salbe oder Reform

Solange man an dem „Einspeisevorrang“ für Windenergie fest hält, wird man keinen Investor für konventionelle Kraftwerke finden. Jedes zusätzliche Windrad drückt die Preise für Strom an der Börse weiter in den Keller und senkt zusätzlich die Auslastung der konventionellen Kraftwerke. Würde man die Einspeisung begrenzen – wenn der Wind einmal zufällig kräftig weht – wären die Windmüller aber über Nacht pleite. Dies wäre zwar die volkswirtschaftlich sinnvollste Lösung, ist aber (zur Zeit noch nicht) politisch durchsetzbar. Deshalb handelt man lieber nach dem alten Grundsatz: Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen: In Deutschland nennt man das „Kapazitätsmärkte“, in GB „Contracts for Difference CfD“. Zwar ist beides durchaus nicht das Selbe, dient aber dem gleichen Zweck. Es dient dazu, die Kosten für ein zusätzliches System für die Zeiten der Dunkel-Flaute nicht dem Verursacher (Windmüller), sondern dem Verbraucher aufs Auge zu drücken. Noch einmal in aller Deutlichkeit: Würde man den „Erneuerbaren“ abverlangen, zu jedem Zeitpunkt den erforderlichen Anteil an der Netzleistung bereitzustellen, wäre der Traum von der „Energiewende“ über Nacht beendet. Es würden sich nämlich die wahren Kosten für jeden ersichtlich zeigen. Jeder Windmüller müßte entweder auf eigene Kosten Speicher bauen oder Notstromaggregate errichten oder Ersatzleistung bei anderen Kraftwerken zu kaufen. Wenn er keinen Strom liefern kann, weil das Netz voll ist (Starkwind) bekommt er auch kein Geld. Alles Selbstverständlichkeiten, die für jedes konventionelle Kraftwerk gültig sind. Ein „Kapazitätsmarkt“ wäre nicht notwendig oder würde sich von selbst ergeben – ganz nach Standort des Betrachters.

Windenergie ist nicht gleichwertig zu Kernenergie

Der Strom aus der Steckdose ist ein homogenes Gut im wirtschaftlichen Sinne. Es ist physikalisch in engen Grenzen (Frequenz, Spannung) immer gleich. Egal ob heute oder morgen oder in Berlin oder am Bodensee. Genauso wie Dieselkraftstoff, bei dem es auch egal ist, wo man tankt. Zu diesem homogenen Wirtschaftsgut wird die elektrische Energie aber noch nicht durch die Erzeugung, sondern erst durch das Netz (Netz nicht nur im Sinne von Drähten, sondern einschließlich Schaltanlagen, Transformatoren, Frequenzregler etc.). Ganz anders als beim Dieselkraftstoff. Der bleibt immer gleich, egal ob er frisch aus der Raffinerie kommt oder aus einem Lagertank. Damit ergibt sich wirtschaftlich ein grundlegender Unterschied: Diesel kann man lagern, bis die Preise günstiger sind (Arbitrage). Elektrische Energie muß man in dem Moment verkaufen, wo sie entsteht (z. B. Windbö). Andersherum gilt genauso: Der aktuelle Strompreis kann noch so hoch sein, wenn Flaute ist hat man nichts davon. Genauso wenig nutzt es, wenn der Sturm in der Nordsee tobt, man aber mangels Leitungen den Strom nicht nach Bayern transportieren kann.

Letztendlich muß der Verbraucher immer alle Kosten tragen. Für einen Vergleich unterschiedlicher Erzeuger ist aber eine richtige Zuordnung der Kosten sehr wohl nötig, will man nicht Äpfel und Birnen gleich setzen. Ein einfaches Beispiel mag das verdeutlichen: Bei einem Kernkraftwerk werden die Schaltanlagen und Anschlußleitungen bis zum „relevanten Anschlußpunkt“ den Baukosten des Kraftwerks zugeschlagen, weil sie als sicherheitsrelevant gelten. Bei Windkraftanlagen ist das genau andersherum, um die Windenergie künstlich günstig zu rechnen. Hier schmarotzt der Anlagenbetreiber von der Allgemeinheit. Insofern sind Investitionskosten ohne genaue Kenntnisse der Verhältnisse nicht unmittelbar gegenüber zu stellen. Begriffe wie „Netzparität“, sind nichts weiter als Irreführung der Verbraucher.

Entspricht 16 nun 34 oder nicht?

Die Baukosten für zwei EPR-Blöcke mit zusammen 3200 MW werden mit 16 Milliarden Pfund angegeben. Dies ist für sich schon ein stolzer Preis. Verwundern kann das jedoch nicht, da die Vergabe ohne Konkurrenz erfolgt. Dies ist nur politisch zu erklären: Der Segen aus Brüssel war sicherlich nur mit massiver Unterstützung von Frankreich möglich. Dürfte dieser Preis Realität werden, dürfte sich der EPR und Areva als sein Hersteller auf dem Weltmarkt erledigt haben. Er wäre schlichtweg nicht konkurrenzfähig. Wie eigenartig das Vergabeverfahren verlaufen ist, erkennt man schon daran, daß der Angebotspreis kurz vor Abgabe noch einmal um zwei Milliarden erhöht worden ist. Dies wurde mit einem zusätzlichen Erwerb eines Grundstückes und den Ausbildungskosten für die Betriebsmannschaft begründet. Vielleicht platzt das ganze Geschäft noch, weil Areva vorher die Luft ausgeht. Vielleicht ist Hinkley Point auch der Einstieg der Chinesen in das europäische Geschäft mit Kernkraftwerken. EDF hat ohnehin nur eine Beteiligung zwischen 45 bis 50% geplant. China General Nuclear und China National Nuclear Corporation sind schon lange als Partner vorgesehen.

Welche Kosten nun die wirklichen Kosten sind, ist so alt wie die Kerntechnik. Die Baukosten werden mit rund 16 Milliarden Pfund angegeben. Genauer gesagt sind dies die „Über-Nacht-Kosten“. Nun beträgt aber die geplante Zeit bis zur Inbetriebnahme etwa 10 Jahre. In dieser Zeit müssen alle Ausgaben über Kredite finanziert werden. Einschließlich der Finanzierungskosten soll das hier etwa 34 Milliarden Pfund ergeben. Weitere rund 10 Milliarden Pfund sollen auf die Rückstellungen für „Atommüll“ und die Abbruchkosten für das Kraftwerk entfallen. So ergibt sich die Zahl von 43 Milliarden Euro, die durch die Presselandschaft geistert. Man sollte dabei nicht vergessen, daß dies alles nur kalkulatorische Kosten zur Rechtfertigung des vertraglich vereinbarten „strike price“ von 92,50 Pfund pro MWh sind.

Es ging hier um ein „Beihilfeverfahren“, in dem die Kosten möglichst hoch angesetzt werden müssen, um das gewollte Ergebnis zu erhalten. Deutlich wird das an der erfolgreichen „Subventionskürzung“ bei der Finanzierung um über eine Milliarde Pfund, die Almunia stolz verkündet hat. Um was geht es genau dabei? Die Finanzierung eines Kernkraftwerks ist mit erheblichen, nicht kalkulierbaren – weil staatlich verursachten – Risiken verbunden. Man kann erst die Kredite zurückbezahlen, wenn man Strom liefern kann. Der Zeitpunkt ist aber unbestimmt, da laufend die Anforderungen der Behörden verändert werden können. Dieses (unkalkulierbare) Risiko, lassen sich die Banken mit erheblichen Zinsaufschlägen vergüten. Aus diesem Gedanken wurde die staatliche Bürgschaft (bis zur Inbetriebnahme) erschaffen. Durch diese Bürgschaft ist der Kredit einer Staatsanleihe gleichwertig. Allerdings kostet eine Bürgschaft immer Gebühren. Der Staat subventioniert hier nicht, sondern kassiert im Gegenteil ab! Zahlen muß – wie immer – der Verbraucher. Für Hinkley Point ist eine Bürgschaft über 10 Milliarden Pfund bzw. 65% der auflaufenden Kosten vorgesehen. Man setzt nun einen fiktiven Zinssatz mit Bürgschaft in Relation zu einem durchschnittlichen Zinssatz für Kredite und hat flugs eine – freilich rein theoretische – Subvention.

Es ging hier auch mehr um die grundsätzliche Absegnung eines Verfahrens. Eine solche Anleihe kann sehr langfristig angelegt werden und dürfte sich zu einem Renner für die Versicherungswirtschaft, Pensionskassen usw. im Zeitalter der niedrigen Zinsen erweisen. Dies war übrigens der Gedanke, der hinter der Erschaffung von Desertec, dem Projekt Strom aus der Sahara, stand. Nur hatten die energiewirtschaftlichen Laien der Münchener Rück auf das falsche Produkt gesetzt. Trotzdem ist die Idee Geld wert. Hier schlummert ein europaweites, gigantisches Infrastrukturprogramm. In diesem Sinne ist auch das chinesische Interesse kein Zufall. Man sucht auch dort händeringend langfristige, sichere und lukrative Anlagemöglichkeiten für die gigantischen Devisenreserven. Kapital gibt es genug, man muß nur die ideologischen Bedenken über Bord werfen.

Ist CfD gleich EEG oder doch nicht?

Um die Antwort vorweg zu nehmen: Das Hinkley Point Modell ist eher eine Abkehr vom deutschen EEG-Modell und eine Rückwärtsbesinnung auf die gute alte Zeit der Energieversorger mit genehmigungspflichtigen Preisen. Insofern hinkt auch hier der Vergleich mit der Förderung von Windenergie.

Nach dem EEG-Modell wird ein einmal beschlossener Energiepreis für die gesamte Laufzeit gewährt. Egal, wie hoch die erzielbaren Preise sind. Selbst wenn eine Entsorgungsgebühr für den erzeugten Strom an der Börse entrichtet werden muß (negative Energiepreise). Die Subvention wird jährlich als Zuschlag auf alle verbrauchten Kilowattstunden umgelegt. Das System ist rein an der Erzeugung orientiert. Je mehr Windstrom erzeugt wird, um so mehr drückt das auf die Börsenpreise und um so höher werden die Subventionen. Langfristig müssen sich die konventionellen Kraftwerke nicht nur ihre eigenen Kosten, sondern auch die Entsorgungsgebühren für Wind und Sonne in den Zeiten der Dunkel-Flaute zurückholen. Dies wird zu extremen Preisschwankungen an der Börse führen. Nicht einmal „Kapazitätsmärkte“ können dagegen etwas ausrichten.

Beim „strike price“ wird ebenfalls ein Preis festgelegt (hier die 92,50 Pfund/MWh auf der Basis 2012), der langfristig gezahlt wird. Immer wenn die an der Börse erzielbaren Preise geringer sind, wird die Differenz draufgelegt. Sind die erzielten Preise jedoch höher, muß diese Differenz zurückbezahlt werden. In der reinen Lehre, sollte es hierfür ein Bankkonto mit Zinsen geben, dessen Kredite durch den Staat (wegen der dann niedrigen Zinsen) verbürgt werden sollten. Dies war angeblich nicht „beihilfekonform“ und soll jetzt über kontinuierliche Umlagen bzw. Vergütungen bei den Stromrechnungen erfolgen. Hier liegt der entscheidende Unterschied zum EEG-Modell: Ein Kernkraftwerk kann immer Strom liefern, wenn es der Betreiber will – eine Windmühle nur, wenn die Natur es will. Kernkraftwerke können die hohen Börsenpreise bei „Spitzenlast“ in der Dunkel-Flaute voll mitnehmen. „Kapazitätsmärkte“ lassen sich so mit dem CfD-Modell elegant umschiffen. Die Kostentransparenz ist größer.

Die Preisaufsicht ist wieder zurück

In der Zeit der Gebietsmonopole, mußten sich die Energieversorger die Preise für die Endverbraucher genehmigen lassen. Ein Modell, welches noch in vielen Teilen der Welt praktiziert wird. Später glaubte man dies durch den freien Handel einer Börse ersetzen zu können. Leider ist dieser „freie Handel“ nie wirklich frei gewesen. Insofern hat es auch nie eine transparente und marktkonforme Preisfindung gegeben. Es war nur ein Alibi für eine Planwirtschaft.

Der von Brüssel genehmigte Preis ist nicht mehr auf ewig festgeschrieben, sondern plötzlich anerkannt veränderlich und bedarf somit einer Kontrolle. Er ist – klassisch, wie eine Preisgleitklausel – mit der allgemeinen Inflationsrate indexiert. Es ist ausdrücklich festgehalten, daß bei geringeren Baukosten als angesetzt, der „strike price“ angepaßt werden muß. Das gleiche gilt, wenn der Gewinn höher als vorgesehen ausfällt. Beides wohl eher fromme Wünsche, handelt es sich doch beim Bauherrn und Betreiber um staatliche Unternehmen. Zumindest die „hauseigene Gewerkschaft der EDF“ wird eher für das 15. und 16. Monatsgehalt streiken, bevor es dem Kunden auch nur einen Cent Preissenkung zugesteht. Man darf gespannt sein, mit welchen Befugnissen die Preisaufsicht ausgestattet werden wird.

Brüssel hat das ursprünglich auf 35 Jahre begrenzte Modell auf die voraussichtlich Lebensdauer von 60 Jahren ausgedehnt. Man will damit verhindern, daß das dann weitestgehend abgeschriebene Kraftwerk zu einer Gewinnexplosion bei dem Betreiber führt. Auch in dem erweiterten Zeitraum, müssen zusätzliche Gewinne zwischen Betreiber und Kunden aufgeteilt werden. Allerdings kehrt man mit diesem Ansatz nahezu vollständig zu dem Modell regulierter Märkte zurück. Eigentlich sollten an einer Börse die Preise durch Angebot und Nachfrage gefunden werden. Der Gewinn sollte dabei der Lohn für das eingegangene unternehmerische Risiko sein. Was unterscheidet das CfD-Modell eigentlich noch von einer rein öffentlichen Energieversorgung?

Nachwort

Man mag ja zur Kernenergie stehen wie man will. Nur was sind die Alternativen? Wenn man die gleiche elektrische Energie (3,2 GW, Arbeitsausnutzung ca. 90%) z. B. mit Sonnenenergie erzeugen wollte, müßte man rund 30 GW (Arbeitsausnutzung ca. 10%) Photovoltaik installieren. Trotzdem bleibt es in der Nacht dunkel – und die Nächte sind im Winterhalbjahr in GB verdammt lang. Im Gegensatz würden 30 GW an einem sonnigen Sonntag das Netz in GB förmlich explodieren lassen. Wollte man diese Leistung auf dem Festland entsorgen, müßte man erst gigantische Netzkupplungen durch den Ärmelkanal bauen.

Windkraftanlagen auf dem Festland erscheinen manchen als die kostengünstigste Lösung. Bei den Windverhältnissen in GB müßte man für die gleiche Energiemenge ungefähr 10 GW bauen und zusätzlich Gaskraftwerke mit etwa 3 GW für die Zeiten mit schwachem Wind. Das ergibt eine Kette von fast 1000 km Windkraftanlagen an der Küste. Wohlgemerkt, nur als Ersatz für dieses eine Kernkraftwerk Hinkley Point!

Oder auch gern einmal anders herum: Der Offshore-Windpark London Array – Paradebeispiel deutscher Energieversorger – hat eine Grundfläche von etwa 100 km2 bei einer Leistung von 0,63 GW. Weil ja der Wind auf dem Meer immer so schön weht (denkt die Landratte) geht man dort von einer Arbeitsausnutzung von 40% aus. Mit anderen Worten, dieses Wunderwerk grüner Baukunst, produziert weniger als 1/10 der elektrischen Energie eines Kernkraftwerkes.