Die Elektrifizierung des Krieges

Der Bedarf an elektrischer Energie schreitet bei den Streitkräften stetig voran: Immer mehr Computer und Datenverkehr, immer mehr Radargeräte etc. und neuerdings sogar Laser-Waffen. Hinzu kommen – zumindest beim US-Militär – bedeutende strategische Verschiebungen hin zu einer Konfrontation mit China und Rußland. Bei diesen Gegnern hat man es weniger mit Kalaschnikows und „Panzerfäusten“, sondern mit präzisen Mittelstreckenraketen, einer funktionstüchtigen Luftabwehr und elektronischer Kriegsführung zu tun. Das alles vor allem in den Weiten des Pazifiks – für Amerikaner tauchen dabei sofort die Trauma von Perl Harbor, den Philippinen und dem blutigen „Inselhopping“ auf dem Weg nach Japan auf. In einer breiten Allianz zwischen den Parteien im Kongress und Senat ist bereits der Umbau der Teilstreitkräfte eingeleitet worden. An dieser Stelle kommt die Kernenergie mit riesigen Schritten ins Laufen.

Die Rolle der Stützpunkte

Stützpunkte (Flugbasen, Häfen etc.) haben den Bedarf von Kleinstädten an elektrischer Energie und Wärme. Sie müssen auch und gerade im Krieg sicher versorgt werden. Um welche finanzielle Größenordnung es sich dabei dreht, sieht man an den Energiekosten von 3,4 Milliarden US$ des US-Militärs (Fiskaljahr 2018) für seine 585 000 Einrichtungen und seine 160 000 Unterstützungsfahrzeuge. Damit im Kriegsfall diese Einrichtungen und die kämpfende Truppe sicher versorgt werden können, ist ein erheblicher logistischer Aufwand nötig. Nicht nur das, in den neun Jahren des Irak- und Afghanistan-Krieges sind 52% aller Opfer (18 700 Kriegsopfer) bei den Versorgungsfahrten eingetreten. Eine typische vorgeschobene Basis mit einer Grundlast von 13 MWel benötigt 16 000 Gallonen Diesel täglich. Das entspricht allein etwa sieben Tankwagen täglich. In den Weiten des Pazifiks unter feindlichen U-Booten und dem Beschuß durch Präzisionsmunition kaum zu leisten. Hier kommt die Idee des Einsatzes von Kernreaktoren. Durchaus keine neue Idee, aber mit neuer Technologie und neuen Randbedingungen.

Wie gewaltig die Stückzahlen sind, ergibt eine Studie der US-Army. Man hat zahlreiche Stützpunkte untersucht und kommt zum Schluß, daß man etwa 35 bis 105 Reaktoren mit einer elektrischen Leistung von 10 MWel und 61 bis 108 Reaktoren mit 5 MWel benötigt. Parallel hat das DOD („Verteidigungsministerium“) eine Untersuchung der Einrichtungen „in der Heimat“ (continental United States (CONUS)) durchgeführt. Es kommt zum Schluß, es sind 500 (!) Mini-Reaktoren sinnvoll. Abgesehen von den Einrichtungen in abgelegenen Regionen, werden die meisten Anlagen aus den öffentlichen Netzen versorgt. Man ist aber besorgt, daß die öffentlichen Netze immer anfälliger werden (Naturkatastrophen, Wind und Sonne etc.). Versorgungssicherheit ist aber für eine moderne Armee mit Radaranlagen, Raketenabwehr und totalem Kommunikationsanspruch überlebenswichtig. Im zweiten Weltkrieg konnte man notfalls einen Flugplatz noch mit Petroleumlampen betreiben – eine Abwehr von Interkontinentalraketen ohne Strom für das Rechenzentrum und das Phasenradar ist so wertvoll wie eine Steinaxt. Insofern stellen sich hier notwendige Investitionen anders dar: Da die Versorgungssicherheit im Vordergrund steht, muß auch beim Bezug „billiger Energie“ aus dem öffentlichen Stromnetz trotzdem die volle Leistung über Dieselanlagen vorgehalten werden.

Laserwaffen etc.

Seit dem (in Deutschland verlachten) „Krieg der Sterne“ Programm von Ronald Reagen, wird die Entwicklung von Hochenergie-Lasern mit Hochruck vorangetrieben. Die Klasse unter einem kW geht bereits an die Truppe, die Klasse bis 150 kW ist in der Erprobung. Die erste Anlage zur Abwehr von Drohnen ist bereits auf einem Schiff im Golf im Einsatz. Drohnen sind sehr billig und effektiv, wie man spätestens nach dem Einsatz durch den Iran gegen Ölanlagen in Saudi Arabien feststellen mußte. Weil sie so billig sind, kann man durch einen Sättigungsangriff schnell auch modernste Luftabwehr überfordern. Als Gegenmaßnahme bleiben nur Laser zum Schutz der Anlagen im Nahbereich – ohne teuere Raketen, sondern nur mit „Energie“.

Ein weiterer Schritt sind Geschütze (rail gun), die massive Geschosse mit mehrfacher Schallgeschwindigkeit über große Entfernungen sehr präzise verschießen. Die erste Installation sollte auf den Zerstörern der Zumwalt-Klasse erfolgen. Dies sind vollelektrische Schiffe, die ein Gasturbinenkraftwerk zur wahlweisen Energieversorgung besitzen. Dieses Konzept hat sich aber nicht bewährt, da die elektrische Belastung (Trägheit des Bordnetzes durch An/Abschaltung so großer Leistungsspitzen, Wellenbildung im Bordnetz usw.) die gesamte Stromversorgung des Schiffes gefährdet. Man favorisiert z. Zt. deshalb sogar auf Schiffen separate „Mini-Reaktoren“.

Die Elektromobilität

Fahrzeuge mit Elektroantrieb besitzen zwei militärische Vorteile: Sie sind leise und haben nur sehr geringe Abwärme – sind also nur schwer zu orten. Erste Kleinlaster für den Einsatz bei Spezialeinheiten sind mit Elektroantrieb in der Erprobung. Grundsätzlich gilt auch hier, der Bedarf an elektrischer Leistung für Elektronik und (später) Bewaffnung nimmt stetig zu. Im Moment deutet sich deshalb ein Übergang zu hybriden Antriebssystemen an. Der immer größer werdende Bedarf an elektrischer Energie soll dann bei Stillstand (teilweise) aus Batterien gedeckt werden. Als Nebenprodukt ergibt sich noch der etwas geringere Spritverbrauch durch Vermeidung ungünstiger Teillast. Wenn es gelänge, hoch mobile Kleinstreaktoren in Frontnähe zur Verfügung zu haben, könnte bei einer Umstellung auf vollelektrische Fahrzeuge der erforderliche Nachschub auf ein Minimum begrenzt werden. Alle hierfür notwendigen Unterstützungseinheiten würden für den Fronteinsatz frei. Ganz besonders groß ist das Interesse bei den US-Marines: Bei einer Konfrontation mit China müßten deren Einheiten sich möglichst schnell auf unterschiedlichen kleinen Inseln bewegen, um einer Vernichtung durch Mittelstreckenraketen etc. zu entgehen. Die Logistik – tausende Meilen von der Heimat entfernt – ist dabei das zentrale Problem. Diese Problematik ergibt sich bereits bei der Abschreckung um den Frieden zu bewahren.

Die Finanzierung

Wichtig ist in diesem Zusammenhang, daß es in den USA eine breite Unterstützung für die Kernenergie quer durch die Parteien gibt. Dies schließt sogar „Umweltschutzgruppen“ mit ein. Eine völlig andere Situation als in Merkelhausen. Widerstände kommen in den USA – wenn überhaupt – nur aus der fossilen Industrie. Selbst dort muß man noch deutlich unterscheiden: Die Kohleindustrie kämpft inzwischen selbst ums Überleben. Der „Feind“ ist nicht mehr nur die Kernenergie, sondern auch der Erdgassektor, der durch den Hype um Wind- und Sonnenenergie einen totalen Imagewandel erfahren hat. Jede neue Windmühle und jeder zusätzliche Sonnenkollektor fördert den Absatz von Erdgas (Dunkel-Flaute) bei der Stromerzeugung. Deutlich erkennt man diese Tendenz bereits in Texas: Kohlekraftwerke werden geschlossen und Gaskraftwerke neu in Betrieb genommen. Der Druck kommt über die „Alternativenergien“, für die Texas geradezu ideale Vorraussetzungen hat (dünne Besiedelung, recht stetige Winde vom Golf und jede Menge Sonnenschein). Hinzu kommen noch günstige Gaspreise (Begleitgas aus der Ölförderung) bei allerdings zunehmenden und preisstabilisierenden Exporten (nach Mexiko per Rohrleitungen und nach Übersee als verflüssigtes Erdgas).

Bisher haben die vom Kongress zugewiesenen Mittel sogar die Anforderungen der Verwaltung übertroffen. So wurden im Haushaltsjahr 2020 für das DOE’s Office of Nuclear Energy („Fachbereich Kernenergie des Energieministeriums“) nicht nur $1,49 Milliarden für die Kernenergie-Forschung bereitgestellt, sonder $230 Millionen Dollar zweckgebunden für ein „Programm zur Demonstration fortschrittlicher Reaktoren“. Im Rahmen dieses Programms wurden drei Wege für die Kooperation mit der Privatwirtschaft beschlossen: Förderung von zwei „Demonstrationsvorhaben“ innerhalb der nächsten 5–7 Jahre, Risikominimierung bei Vorhaben, die einen erwarteten Entwicklungsbedarf von 10 Jahren haben und „fortschrittliche Reaktorkonzepte“ die einen Zeithorizont von mehr als 15 Jahren besitzen.

Der Kongress (Mehrheit Demokraten) hat das DOD („Verteidigungsministerium“) bereits 2019 (also Während der Präsidentschaft von Trump) aufgefordert seine Stützpunkte durch „Minireaktoren“ unabhängiger von der öffentlichen Stromversorgung zu machen (siehe 2019 National Defense Authorization Act (NDAA) Section 327 ). Darin wird gefordert, mindestens einen Stützpunkt bis zum 31.12.2027 durch einen zugelassenen „Minireaktor“ zu versorgen. Das DOD’s Office of Acquisition and Sustainment („Beschaffungsstelle des US-Verteidigungsministeriums“) arbeitet dafür eng mit dem DOE („Energieministerium“) zusammen. Ebenfalls 2019 wurden $70 Millionen im Haushaltsjahr 2020 für ein Konstruktions- und Testprogramm für mobile Kleinstreaktoren zur Versorgung vorgeschobener Militärbasen eingestellt. Dies war der Start des „Projekt Pele“. Im März 2020 wurden knapp $40 Millionen für die Unternehmen BWXT, Westinghouse, und X-energy für einen zweijährigen Konstruktionszeitraum bewilligt. Danach soll ein Prototyp beim National Laboratory (INL) gebaut und 2024 mit einer C-17 zu einem Stützpunkt in Alaska geflogen werden, um die Mobilität und den Betrieb unter Praxisbedingungen zu demonstrieren. Damit es mit der Kerntechnik vorangehen kann, hat das DOD im Haushaltsjahr 2021 über $100 Milliarden für Forschung, Entwicklung, Tests, und Auswertung (RDTE) beantragt. Das ist der größte Betrag in der Geschichte des DOD. Allgemein wird geschätzt, daß für die Umsetzung des „Minireaktor-Programms“ insgesamt $500 Millionen benötigt werden.

Genehmigungsproblematik

Eigentlich kann das US-Militär Reaktoren bauen wie es will. Beispiel hierfür sind die zahlreichen Reaktoren für U-Boote und Flugzeugträger. Übrigens mit einer exzellenten Verfügbarkeit und Sicherheitsbilanz. Allerdings mit einem entscheidenden juristischen Unterschied: Die Schiffe sind amerikanisches Territorium. Man braucht mit ausländischen Häfen nur über eine Genehmigung zum Einlaufen bzw. den einzuhaltenden Regularien zu verhandeln. Für Stützpunkte in anderen Ländern geht das sicher nicht. Dort wird man sich den jeweiligen nationalen Genehmigungsverfahren unterwerfen müssen. Das gilt schon für den Transport mobiler Reaktoren dort hin. Insofern ist es folgerichtig, daß man von Anfang an eine Zulassung durch das NRC (Genehmigungsbehörde für kommerzielle Kernkraftwerke) anstrebt. Da immer noch die Zulassung durch das NRC als internationaler „Goldstandard“ betrachtet wird, wird dies die Genehmigung im Ausland stark vereinfachen und beschleunigen.

Ganz so einfach ist die Sache allerdings nicht. Das NRC ist bisher auf die Genehmigung von Leichtwasserreaktoren spezialisiert. Für „fortschrittliche Reaktoren“ mit anderen Kühlmitteln, Brennstoffen und Sicherheitssystemen sind noch erhebliche Vorarbeiten zu leisten, bis das Risiko qualitativ und quantitativ nachvollziehbar bemessen werden kann. Je mehr Unternehmen mit unterschiedlichen Konzepten kommen, um so mehr kommt das NRC an seine Kapazitätsgrenzen. In diesem Fiskaljahr beträgt ihr Etat rund $860 Millionen, wovon etwa $430 Millionen auf die Reaktorsicherheit entfallen.

Kommerzieller Ausblick

Das US-Militär arbeitet schon immer eng mit der Privatwirtschaft zusammen und man ging schon immer unkonventionelle Wege: In den 1950er Jahren entwickelte man die Sidewinder Flugabwehrrakete: Einmal abgeschossen, suchte sie sich selbst über ihren Infrarot-Suchkopf ihren Weg ins feindliche Ziel. Ein echter Gamechanger im Luftkampf. Die Sache hatte nur einen Haken: Man brauchte große Stückzahlen, was aber beim damaligen Stand der Halbleitertechnik schlicht zu teuer war. Man ging einen typisch kapitalistischen Weg: Um die Stückpreise zu senken, brauchte man zusätzliche Stückzahlen aus dem zivilen Sektor. Die Spielkonsole war geboren.

In Punkto „Mini-Reaktoren“ zeichnet sich der gleiche Weg ab. Man kann bereits Minengesellschaften für solche Reaktoren begeistern. Überall wo Diesel-Kraftwerke in abgelegenen Regionen im Einsatz sind, besteht wegen der hohen Stromkosten ernsthaftes Interesse. Ein weiteres Einsatzgebiet ergibt sich aus dem Hype für Elektrofahrzeuge. Will man Schwerlaster elektrifizieren, braucht man überall dort, wo man heute Tankstellen hat, Ladestationen. Diese brauchen aber enorme Leistungen, wenn man einen LKW auch in etwa 20 Minuten voll aufladen will. Hier kommen flugs Minireaktoren ins Spiel. Mit ihnen könnte man kontinuierlich Wärmespeicher beladen, die anschließend bei Bedarf große Spitzenleistungen über Dampfturbinen bereitstellen könnten. Es gibt bereits Pläne in Zusammenarbeit mit den Marketing-Genies von Tesla. Da freut sich doch das Grüne-Öko-Herz oder vielleicht doch nicht?

SMR Teil 1 – nur eine neue Mode?

Small Modular Reactor (SMR) aus energiewirtschaftlicher Sicht

In letzter Zeit wird wieder verstärkt über „kleine, bausteinförmig aufgebaute Kernkraftwerke“ diskutiert. Wie immer, wenn es ums Geld geht, war der Auslöser ein Förderungsprogramm des Department of Energy (DoE) in den USA. Hersteller konnten sich um einen hälftigen Zuschuss zu den Kosten für das notwendige Genehmigungsverfahren bewerben. Der Gewinner bekommt vom amerikanischen Staat fünf Jahre lang die Kosten des Genehmigungsverfahrens und die hierfür notwendigen Entwicklungs- und Markteinführungskosten anteilig ersetzt. Es gibt die Förderung nur, wenn das Kraftwerk bis 2022 fertig ist (es handelt sich also um kein Forschungs- und Entwicklungsprogramm) und man muß sich zusammen mit einem Bauherrn bewerben.

Sieger der ersten Runde war Babcock & Wilcox (B&W) mit seinem mPower Konzept, zusammen mit Bechtel und Tennessee Valley Authority. Eine sehr konservative Entscheidung: Babcock & Wilcox hat bereits alle Reaktoren der US Kriegsschiffe gebaut und besitzt deshalb jahrzehntelange Erfahrung im Bau kleiner (militärischer) Reaktoren. Bechtel ist einer der größten internationalen Ingenieurfirmen mit dem Schwerpunkt großer Bau- und Infrastrukturprojekte. Tennessee Valley Authority ist ein öffentliches Energieversorgungsunternehmen. Wie groß die Fördersumme letztendlich sein wird, steht noch nicht fest. Die in der Öffentlichkeit verbreiteten 452 Millionen US-Dollar beziehen sich auf das gesamte Programm und nicht jeden Hersteller. Insofern war die Entscheidung für den Kandidaten, mit dem am weitesten gediehenen Konzept, folgerichtig.

Die Wirtschaftlichkeit

An dieser Stelle soll nicht auf den Preis für eine kWh elektrischer Energie eingegangen werden, da in diesem frühen Stadium noch keine ausreichend genauen Daten öffentlich zugänglich sind und es rein spekulativ wäre. Es sollen viel mehr ein paar qualitative Überlegungen angestellt werden.

Man geht von deutlich unter einer Milliarde US-Dollar pro SMR aus. Auch, wenn man nur eine Stückzahl von 100 Stück annimmt, ergibt das den stolzen Umsatz von 100 Milliarden. Dies entspricht in etwa dem „Modellwert“ in der Flugzeugindustrie. Damit wird sofort klar, daß das keine Hinterhof-Industrie werden kann. Der Weltmarkt wird unter einigen wenigen Konsortien von der Größenordnung Boing oder Airbus unter sich aufgeteilt werden! Wer zu lange wartet, hat praktisch keine Chance mehr, in diesen Markt einzusteigen. Ob Europa jemals noch ein Konsortium wie Airbus schmieden kann, ist mehr als fraglich. Die Energieindustrie wird wohl nur noch von den USA und China bestimmt werden.

Es ergeben sich auch ganz neue Herausforderungen für die Finanzindustrie durch die Verlagerung des Risikos vom Besteller zum Hersteller. Bisher mußte ein Energieversorger das volle Risiko allein übernehmen. Es sei hier nur das Risiko einer nicht termingerechten Fertigstellung und das Zinsänderungsrisiko während einer Bauzeit von zehn Jahren erwähnt. Zukünftig wird es einen Festpreis und kurze Bauzeiten geben. Die Investition kann schnell wieder zurückfließen. Daraus erklärt sich der Gedanke, ein Kernkraftwerk heutiger Größenordnung zukünftig aus bis zu einem Dutzend einzelner Anlagen zusammen zu setzen. Sobald der erste Reaktor in Betrieb geht, beginnt der Kapitalrückfluss. Man spielt plötzlich in der Liga der Gaskraftwerke!

Damit stellt sich aber die alles entscheidende Frage: Wer ist bereit, das finanzielle Risiko zu tragen? China hat sich durch den Bau von 28 Kernkraftwerken eine bedeutende Zulieferindustrie aufgebaut. Auch die USA verfügen über eine solche. Das Risiko auf verschiedene Schultern zu verteilen, ist ein probates Mittel. Europa müßte sich unter – wahrscheinlich französisch-britischer Führung – mächtig sputen, um den Anschluß nicht zu verlieren. Im Moment sieht es eher so aus, als wenn Frankreich, Großbritannien und die USA gleichermaßen um die Gunst von China buhlen.

Um es noch einmal in aller Deutlichkeit zu sagen: Europa fehlt es nicht an technischen Möglichkeiten und an Finanzkraft, sondern am politischen Willen. Es ist das klassische Henne-Ei-Problem: Ohne ausreichende Bestellungen, ist keiner bereit, in Fertigungsanlagen zu investieren. Wer aber, sollte diesen Mut aufbringen, ausgerechnet in Deutschland, wo es keinen Schutz des Eigentums mehr gibt, wo eine Hand voll Politiker nach einem Tsunami im fernen Japan, mit einem Federstrich, Milliarden vernichten können und die breite Masse dazu auch noch Beifall klatscht?

Fertigung in einer Fabrik

Bisher wurden Kernreaktoren mit immer mehr Leistung gebaut. Inzwischen wurde beim EPR von Areva fast die 1700 MWel erreicht. Man macht damit Kernkraftwerke und ihre Komponenten selbst zu einem Nischenprodukt. Nur wenige Stromnetze können so große Blockgrößen überhaupt verkraften. Andererseits wird der Kreis der Zulieferer immer kleiner. Es gibt weltweit nur eine Handvoll Stahlwerke, die überhaupt das Rohmaterial in der erforderlichen Qualität liefern können. Hinzu kommen immer weniger Schmieden, die solch große Reaktordruckgefäße, Turbinenwellen, Schaufeln etc. bearbeiten können. Je kleiner die Stückzahlen und der Kreis der Anbieter wird, um so teurer das Produkt.

Es macht aber wenig Sinn, kleine Reaktoren als verkleinertes Abbild bisheriger Typen bauen zu wollen. Dies dürfte im Gegenteil zu einem Kostenanstieg führen. Will man kostengünstige SMR bauen, muß die gesamte Konstruktion neu durchdacht werden. Man muß praktisch mit dem weißen Blatt von vorne beginnen. Typisches Beispiel ist die Integration bei einem Druckwasserreaktor: Bei der konventionellen Bauweise ist jede Baugruppe (Druckgefäß, Dampferzeuger, Umwälzpumpen, Druckhalter) für sich so groß, daß sie isoliert gefertigt und transportiert werden muß und erst am Aufstellungsort durch Rohrleitungen miteinander verbunden werden kann. Damit wird ein erheblicher Arbeits- und Prüfaufwand auf die Baustelle verlegt. Stundensätze auf Baustellen sind aber wegen ihrer Nebenkosten stets um ein vielfaches höher, als in Fabriken. Gelingt es, alle Baugruppen in das Druckgefäß zu integrieren, entfallen alle notwendigen Montagearbeiten auf der Baustelle, weil ein bereits fertiger und geprüfter „Reaktor“ dort angeliefert wird. Bauteile, die es gar nicht gibt (z. B. Rohrleitungen zwischen Reaktordruckgefäß und Dampferzeugern) müssen auch nicht ständig gewartet und wiederholt geprüft werden, was auch noch die Betriebskosten erheblich senkt.

Wenn alle Bauteile wieder „kleiner“ werden, erweitert sich auch automatisch der potentielle Herstellerkreis. Die Lieferanten können ihre Fertigungsanlagen wieder besser auslasten, da sie nicht so speziell sein müssen. Es ist wieder möglich, eine nationale Fertigung mit akzeptablen Lieferzeiten zu unterhalten.

Durch die Fertigung von Bauteilen in geschlossenen Hallen ist man vor Witterungseinflüssen (oder schlicht Dreck) geschützt, was die Kosten und das Ausschussrisiko senkt. Eine Serienfertigung führt durch den Einsatz von Vorrichtungen und die Umlage von Konstruktions- und Entwicklungskosten etc. zu geringeren Kosten. Die Standardisierung senkt Schulungskosten und erhöht die Qualität.

In der Automobilindustrie ist die Teilung in Markenhersteller und Zulieferindustrie üblich. Gelingt es Bauteile für Kernkraftwerke zu standardisieren, kann sich auch eine kerntechnische Zulieferindustrie etablieren. Ein wesentlicher Teil der Kostenexplosion bei Kernkraftwerken ist dem erforderlichen „nuclear grade“ geschuldet. Es ist kein Einzelfall, daß ein und das selbe Teil für Kernkraftwerke durch diesen Status (Dokumentation, Zulassung etc.) oft ein Vielfaches des „handelsüblichen“ kostet. Ein wesentlicher Schritt für den Erfolg, ist dabei die klare Trennung in „sicherheitsrelevante“ und „sonstige“ Teile. Eine Vorfertigung und komplette Prüfung von Baugruppen kann dabei entscheidend sein. Wird beispielsweise das Notkühlsystem komplett passiv ausgelegt – also (fast) keine elektrische Energie benötigt – können die kompletten Schaltanlagen usw. in den Zustand „normales Kraftwerk“ entlassen werden.

Was ist die richtige Größe?

Die Bandbreite der elektrischen Leistung von SMR geht etwa von 40 bis 300 MWel. Die übliche Definition von „klein“ leitet sich von der Baugröße der Zentraleinheit ab. Sie sollte noch in einem Stück transportierbar sein. Dies ist eine sehr relative Definition, die sich beständig nach oben ausweitet. Es werden heute immer größere Einheiten (Ölindustrie, Schiffbau usw.) auch über Kontinente transportiert. Der Grundgedanke bei dieser Definition bleibt aber die Zusammenfassung eines „kompletten“ Reaktors in nur einem Teil und die Funktionsprüfung vor der Auslieferung, in einer Fabrik.

Sinnvoller erscheint die Definition nach Anwendung. Grundsätzlich sind Insellösungen und die Integration in vorhandene Netze unterscheidbar. Besonders abgelegene Regionen erfordern einen erheblichen Aufwand und laufende Kosten für die Energieversorgung. Auf diese Anwendung zielt beispielsweise das russische Konzept eines schwimmenden Kernkraftwerks. Die beiden je 40 MWel Reaktoren sollen nach Chuktoa in Ost-Sibirien geschleppt werden und dort Bergwerke versorgen. Sehr großes Interesse existiert auch im kanadischen Ölsandgebiet. Ein klassischer Anwender war früher auch das US-Militär. Es besitzt wieder ein verstärktes Interesse, abgelegene Militärstützpunkte durch SMR zu versorgen. Langfristig fallen in diese Kategorie auch Chemieparks und Raffinerien.

Kernkraftwerke unterliegen – wie alle anderen Kraftwerke auch – prinzipiell einer Kostendegression und Wirkungsgradverbesserung mit steigender Leistung. Es ist deshalb bei allen Kraftwerkstypen eine ständige Vergrößerung der Blockleistungen feststellbar. Heute wird die maximale Leistung hauptsächlich durch das Netz bestimmt. Man kann die Grundregel für Neuinvestitionen (stark vereinfacht) etwa so angeben:

  • Baue jeden Block so groß, wie es das Netz erlaubt. Das Netz muß Schnellabschaltungen oder Ausfälle vertragen können.
  • Baue von diesen Blöcken auf einem Gelände so viel, wie du kannst. Wieviel Ausfall kann das Netz bei einem Ausfall einer Übertragungsleitung verkraften? Wie kann die Brennstoffversorgung am Standort gewährleistet werden (Erdgaspipeline, Eisenbahnanschluss, eigener Hafen etc.)? Wie groß ist das Kühlwasserangebot und wie sind die Randbedingungen bezüglich des Umweltschutzes?

Aus den vorgenannten Überlegungen ergeben sich heute international Blockgrößen von 200 bis 800 MWel, bei zwei bis acht Blöcken an einem Standort.

Wie groß der potentielle Markt ist, sieht man allein an der Situation in den USA. Dort müssen wegen verschärfter Bestimmungen zur Luftverschmutzung (Mercury and Air Toxic Standards (MATS) und Cross-State Air Pollution Rule (CSDAPR)) bis 2016 rund 34 GWel Kohlekraftwerke vom Netz genommen werden. Neue Kohlekraftwerke dürfen praktisch nicht mehr gebaut werden. Die Umstellung auf Erdgas kann wegen der erforderlichen Gasmengen und des daraus resultierenden Nachfragedrucks nur eine Übergangslösung sein. Da die „alten Kohlekraftwerke“ relativ klein sind, würde ein Ersatz nur durch „große“ Kernkraftwerke einen erheblichen Umbau der Netzstruktur erforderlich machen. Eine schmerzliche Erfahrung, wie teuer Zentralisierung ist, macht gerade Deutschland mit seinem Programm „Nordseewind für Süddeutschland“. Insofern brauchen SMR auch nur mit „kleinen“ Kohlekraftwerken (100 bis 500 MWel) konkurrieren, die der gleichen Kostendegression unterliegen.

Das Sicherheitskonzept

Bei der Markteinführung von SMR gibt es kaum technische, aber dafür um so größere administrative Probleme. Aus diesem Grund rechtfertigt sich auch das staatliche Förderprogramm in den USA. Die Regierung schreibt zwingend eine Zulassung und Überwachung durch die NRC vor. Dieses Verfahren muß vollständig durch die Hersteller und Betreiber bezahlt werden. Die Kosten sind aber nicht nur (mit dem jedem Genehmigungsantrag innewohnenden) Risiko des Nichterfolges versehen, sie sind auch in der Höhe unkalkulierbar. Die Prüfung erfolgt in Stundenlohnarbeit, zu Stundensätzen von knapp 300 US-Dollar! In diesem System begründet sich ein wesentlicher Teil der Kostenexplosion bei Kernkraftwerken. Die NRC hat stets – nicht ganz uneigennützig – ein offenes Ohr für Kritik an der Sicherheit von Kernkraftwerken. Mögen die Einwände auch noch so absurd sein. Als „gute Behörde“ kann sie stets „Bürgernähe“ demonstrieren, da die Kosten durch andere getragen werden müssen, aber immer den eigenen Stellenkegel vergrößern. Dieses System gerät erst in letzter Zeit in das Licht der Öffentlichkeit, nachdem man erstaunt feststellt, um wieviel billiger und schneller beispielsweise in China gebaut werden kann. Nur mit geringeren Löhnen, läßt sich das jedenfalls nicht allein erklären.

Die „Massenproduktion“ von SMR erfordert völlig neue Sicherheitskonzepte. Auf die technischen Unterschiede wird in den weiteren Teilen noch ausführlich eingegangen werden. Die Frage ist eher, welches Niveau man als Bezugswert setzt. Einem überzeugten „Atomkraftgegner“ wird nie ein Kraftwerk sicher genug sein! Im Gegenteil ist die ständige Kostentreiberei ein zentrales „Kampfmittel“. Allerdings wird durch die Erfolge von China und Korea das Märchen von der „ach so teuren Atomkraft“ immer schwerer verkaufbar. Selbst in einem tiefgläubigen Land wie Deutschland, muß man daher immer mehr auf andere Strategien (z. B. angeblich ungelöste „Entsorgung“) ausweichen. Sollte man jedoch das heute erreichte Sicherheitsniveau als Grenzwert setzen, lassen sich bei den meisten SMR-Konzepten bedeutende Kostenvorteile erreichen. Es ist nicht auszuschließen, daß das – außerhalb Deutschlands – so gesehen wird. Andererseits kann man durch zusätzliche Sicherheitsmaßnahmen die Auswirkungen auf das Umfeld auch bei schwersten Störfällen so stark begrenzen, daß ein Einsatz innerhalb des Stadtgebiets z. B. zur Fernwärmeversorgung akzeptabel wird. Könnte sogar sein, daß SMR in Städten mit starker Luftverschmutzung hoch willkommen sind.

Es gibt aber durchaus einige offene Fragen. Je mehr Standorte es gibt, um so aufwendiger ist die Organisation eines lückenlosen Überwachung- und Bewachungssystems. Heute hat jedes US-Kernkraftwerk zwischen 400 und 700 Festangestellte. Allein die „eigene Privatarme“ umfaßt durchschnittlich 120 Mann. Für jeden Reaktor gibt es ständig zwei – vom Energieversorger zu bezahlende – NRC-Kontrolleure.

International sind Abkommen zu treffen, die sich über die gegenseitige Anerkennung von Zulassungen und Prüfungen verständigen. Es macht keinen Sinn, wenn jedes Land von neuem das gesamte Genehmigungsverfahren noch einmal wiederholt. Bisher gilt eine NRC-Zulassung international als „gold standard“. Es würde sich lohnen, wenn die Kerntechnik sich hierbei an der internationalen Luftfahrt orientiert. Ebenfalls ein Bereich mit sehr hohen Sicherheitsanforderungen.

Nach allgemeiner Auffassung sollten die Lieferketten in „nuclear“ und „non nuclear“ unterteilt betrachtet werden. Die Lieferketten für alle sicherheitstechnisch bedeutenden Teile (Brennelemente, Dampferzeuger, Kühlmittelpumpen usw.) müssen schon sehr früh in der Genehmigungsphase stehen, da ihre Entwürfe unmittelbar mit der Sicherheit verbunden sind. Die Zulieferer müssen sehr eng mit dem eigentlichen Kraftwerkshersteller verknüpft werden. Es ergibt sich ein ähnliches Geschäftsmodell, wie in der Automobilindustrie. Dort werden die Zulieferer mit ihrem speziellen Wissen und Erfahrungen möglichst früh und eng in den Entwicklungsprozess einbezogen. Diese Lieferketten sollten für die Bauartzulassung (vorübergehend) festgeschrieben werden. Es sollten Bauteile gebaut und eingehend geprüft werden. Während dieses Prozesses sind alle Produktionsschritte und Prüfverfahren genau zu dokumentieren, um den Herstellerkreis später ausweiten zu können. Alle sonstigen Bestandteile des Kraftwerks können im Industriestandard und nach lokalen Gegebenheiten unmittelbar nach der jeweiligen Auftragsvergabe vergeben werden.

Hinweis

Dieser erste Teil beschäftigt sich mehr mit den grundsätzlichen Eigenheiten sog. „Small Modular“ Reaktoren. Die Betonung liegt hier auf der energiewirtschaftlichen Betrachtung. Es folgt ein zweiter Teil, der sich näher mit der Technik von SMR in der Bauweise als Leichtwasserreaktor beschäftigt. Ein dritter Teil wird auf die ebenfalls im Bewerbungsverfahren befindlichen schnellen Reaktoren eingehen.