Evolution der Brennstäbe

Auch die kontinuierliche Weiterentwicklung einzelner Bauteile kann die Sicherheit von Reaktoren erhöhen. Dies gilt besonders nach den Erfahrungen aus dem Unglück in Fukushima.

Brennstäbe heute

Brennstäbe für Leichtwasserreaktoren haben eine Durchmesser von nur 11 mm bei einer Länge von fast 5 m. Sie sind deshalb so instabil, daß sie zu sog. Brennelementen fest zusammengebaut werden. Dort werden sie durch Abstandshalter und Befestigungsplatten in ihrer Position gehalten. Zusätzlich enthalten die noch Einbauten für Regelstäbe, Messeinrichtungen usw. Wichtig in diesem Zusammenhang ist, daß solche Brennelemente mit sehr engen Toleranzen gefertigt werden müssen, da z. B. die sich ergebenden Abstände sehr entscheidend für die Strömungsverhältnisse (Kühlung) und die Abbremsung der Neutronen sind.

Die Brennstäbe bestehen aus Hüllrohren aus Zirkalloy mit Wandstärken von weniger als einem Millimeter und sind mit Tabletten aus Urandioxid gefüllt. Auf die Konsequenzen aus dieser Materialwahl wird später noch eingegangen werden. Die Tabletten sind gesintert („gebrannt“ wie eine Keramik) und anschließend sehr präzise im Durchmesser geschliffen; an den Stirnflächen konkav gearbeitet, um Ausdehnungen im Betrieb zu kompensieren usw. All dieser Aufwand ist nötig, um die Temperaturverteilung im Griff zu behalten.

Das Temperaturproblem

Brennstäbe dürfen nicht schmelzen, denn dann ändert sich ihre mechanische Festigkeit und ihre Abmessungen (Kühlung und Neutronenspektrum). Keramiken sind zwar chemisch sehr beständig, besitzen aber gegenüber Metallen nur eine sehr schlechte Wärmeleitung. Jeder kennt den Unterschied, der schon mal heißen Kaffee aus einem Metallbecher getrunken hat. Außerdem sind Keramiken sehr spröde.

Die gesamte Wärme kann nur über den Umfang an das Kühlwasser abgegeben werden. Sie entsteht aber ziemlich gleich verteilt innerhalb des Brennstabes, da er für Neutronen ziemlich durchsichtig ist. Dies hat zur Folge, daß es einen sehr starken Temperaturunterschied zwischen Zentrum und Oberfläche gibt. Zusätzlich verschlechtert sich auch noch die Wärmeleitfähigkeit mit zunehmender Temperatur. All das führt dazu, daß der Brennstab in seinem Innern bereits aufschmelzen kann, obwohl er an seiner Oberfläche noch relativ kalt ist. Die Temperaturdifferenz zwischen Oberfläche und Kühlwasser ist aber in dieser Phase die bestimmende Größe für die Wärmeabfuhr.

Steigt die Oberflächentemperatur über die Verdampfungstemperatur des Kühlwassers, fängt das Wasser (an der Oberfläche) an zu verdampfen. Die Dampfblasen kondensieren nach deren Ablösung im umgebenden „kalten“ Wasser. Durch dieses sogenannte „unterkühlte Blasensieden“ kann man sehr große Wärmemengen abführen. Tückisch ist nur, wenn die Wärmeproduktion durch Kernspaltung einen Grenzwert übersteigt, bildet sich eine geschlossenen Dampfschicht auf der Oberfläche die auch noch stark isolierend wirkt. Als Folge steigt die Temperatur in der dünnen Brennstabhülle explosionsartig an. Dampf in Verbindung mit hoher Temperatur führt aber zur Oxidation des Zirkalloy. Die Hülle verliert schnell ihre Festigkeit.

Harrisburg und auch Fukushima

Bricht die Kühlung zusammen, überhitzen die Brennstäbe. Wie Fukushima gezeigt hat, kann das auch noch (kurz) nach dem Abschalten des Reaktors geschehen, da dann die Nachzerfallswärme noch sehr groß ist. Durch die hohen Temperaturen in den Brennstabhüllen in Verbindung mit Wasserdampf oxidieren die Hüllen und setzen dabei große Mengen Wasserstoff frei. Dieser Wasserstoff hat zu den fürchterlichen Explosionen in den Reaktorgebäuden geführt. In Harrisburg waren die Wasserstoffmengen zwar beherrschbar, aber auch damals schon zerfielen Teile des Reaktorkerns. Die Wiederbenetzung konnte zwar schlimmeres verhindern – aber man schrecke mal eine glühende Tasse mit Wasser ab.

Für alle Leichtwasserreaktoren bedeutet das, die zulässigen Temperaturen müssen bei allen Betriebsbedingungen in allen Teilen des Reaktorkerns sicher eingehalten werden. Mit anderen Worten, die Kühlung darf nie versagen. In diesem Sinne ist der Sicherheitsgewinn einer passiven (auf die natürlichen Kräfte, wie z. B. Schwerkraft beruhende) Kühlung zu verstehen.

Oberflächenschutz der Brennstäbe

Insbesondere nach den Ereignissen in Fukushima hat man unterschiedlichste Maßnahmen ergriffen, um die Sicherheit bestehender Kraftwerke weiter zu erhöhen. Außerhalb Deutschlands nach den üblichen Vorgehensweisen wie sie bei Flugzeugabstürzen, Schiffsunglücken etc. üblich sind: Akribische Untersuchung der Schadensabläufe mit dem Zweck Schwachstellen zu ermitteln und Lösungen dafür zu finden. Ein Weg war die Verbesserung der Brennstabhüllen. Zu diesem Zweck hat man z. B. in den USA das Entwicklungsprogramm „Enhanced Accident-tolerant Fuel programme.“ gestartet.

Aus einer internationalen Zusammenarbeit haben sich zwei neue Konzepte – IronClad und ARMOR. – entwickelt, deren Prototypen im Kernkraftwerk Hatch in Georgia, USA seit März 2018 im Normalbetrieb getestet werden. Der Test unter realen Bedingungen in einem laufenden Kernkraftwerk ist ein üblicher Entwicklungsschritt. Nur so kann man Fehlentwicklungen vermeiden.

IronClad sind Hüllrohre, die aus einer Eisen-Chrom-Aluminium-Legierung bestehen. Man glaubt damit einen wesentlich robusteren Werkstoff gefunden zu haben, der nicht so temperaturempfindlich ist, nicht so leicht oxidiert und kein Wasserstoffgas produziert.

ARMOR ist ein eher evolutionärer Ansatz. Man panzert konventionelle Hüllrohre mit einer Schutzschicht auf der Basis von Chrom. Es sind Produkte dreier Hersteller in der Erprobung: Global Nuclear Fuel-Japan Co (GE-Hitachi), Framatom mit zusätzlich mit Chrom geimpften Brennstofftabletten und EnCore Fuel.(Westinghouse) mit Tabletten auf der Basis von Uran-Siliciden.

Ein ganz neues Konzept

Das Unternehmen Lightbridge hat das Bauelement Brennstab noch einmal ganz neu gedacht und bereits prototypenreif entwickelt. Inzwischen ist man eine Kooperation für die Weiterentwicklung und Serienproduktion mit Framatom eingegangen. Entscheidend war die Anforderung des Ersatzes von Brennstäben in konventionellen Leichtwasserreaktoren im Betrieb. Deshalb ist nicht nur ein Ersatz, sondern auch ein gemischter Betrieb mit konventionellen Brennelementen angestrebt worden.

Der Übergang von keramischem Uranoxid auf eine metallische Legierung aus Uran und Zirkon ist für Leichtwasserreaktoren revolutionär. Bisher wurde so etwas nur in schnellen Reaktoren mit Natrium – und nicht Wasser – als Kühlmittel gemacht. Ebenso neu ist die Form: Sie sind nicht mehr zylindrisch, sondern kreuzförmig. Diese Kreuze sind spiralförmig verdreht, sodaß sich vier gewindeähnliche Kanäle für das Kühlwasser bilden.. Außen sind sie mit einer dünnen und fest verbundenen Schicht aus Zirkon versehen um eine übliche Wasserchemie zu gewährleisten. Diese „Gewindestäbe“ liegen in dem Brennelement dicht beieinander, sodaß keine Abstandshalter mehr erforderlich sind.

Metall verfügt über eine bessere Wärmeleitung als Keramik und die Kreuzform ergibt eine größere Oberfläche und dünnere Querschnitte. Beides führt zu geringeren Betriebs- und Spitzentemperaturen (starke und schnelle Lastschwankungen). Der Strömungswiderstand solcher Brennelemente ist kleiner, wodurch sich der Durchfluß durch den Kern bei gleicher Pumpenleistung erhöht. Man geht deshalb von einer möglichen Leistungssteigerung von 10% aus. Ein nicht zu unterschätzender wirtschaftlicher Anreiz, wenn man in einer bestehenden Flotte für „kleines Geld“ ganze Kraftwerke zusätzlich erhält.

Die neuen Lightbridge-Brennelemente vertragen alle Leistungstransienten besser, sind aber vom Prinzip her gegen längerfristige Kühlmittelverluste anfälliger, da Metalle einen geringeren Schmelzpunkt als Keramiken besitzen. Dies war der Hauptgrund für die ursprüngliche Wahl von Uranoxid als Werkstoff.

Bei einer Simulation eines Abrisses einer Hauptkühlmittelleitung bei einem VVER-1000 Druckwasserreaktor ergab sich eine maximale Kerntemperatur von 500 °C. Dieser Wert liegt weit unterhalb von der Temperatur, bei der überhaupt Wasserstoff (900 °C) gebildet wird. Durch die hohe Wärmeleitung stellt sich bereits wieder nach 60 Sekunden nach erfolgter Wiederbenetzung erneut die normale Betriebstemperatur ein. Bei konventionellen Brennelementen steigt die Temperatur auf über 1000 °C und erreicht erst nach acht Minuten wieder den stabilen Zustand. Dies hat einen erheblichen Druckanstieg im Reaktor zur Folge, der ein ansprechen der Sicherheitsventile erforderlich macht. Bei diesem Abblasen gelangen auch geringe Mengen von radioaktivem Jod und Cäsium (zumindest) in das Containment. Der Abriß einer Hauptkühlmittelleitung ist der Auslegungsstörfall, der sicher beherrscht werden muß.. In diesem Sinne führen die Lightbridge-Brennelemente zu einem Sicherheitsgewinn.

Es sind aber noch etliche praktische Erfahrungen zu sammeln. Ein Reaktor ist ein komplexes physikalisches und chemisches System. Dies betrifft z. B. das Rückhaltevermögen für Spaltprodukte unter allen möglichen Betriebs- und Störfallbedingungen. In der Kerntechnik dauert wegen der besonderen Sicherheitsansprüche halt alles länger. Die Maßeinheit für die Einführung von Neuerungen ist eher Jahrzehnte als Jahre.

Ein weiterer vielversprechender Entwicklungsaspekt ist der Zusatz von Thorium als „abbrennbarer Brutstoff“ zur Ausdehnung der erforderlichen Ladezyklen auf vier Jahre. Um solch lange Ladezyklen zu erreichen, muß man den Brennstoff höher anreichern. Um diese Überschußreaktivität zu kompensieren muß man abbrennbare Neutronengifte zumischen. Würde man Thorium verwenden, kann man diese Überschußneutronen zum Erbrüten von Uran-233 verwenden.. Längere Ladezyklen würden die Wirtschaftlichkeit bestehender Reaktoren weiter erhöhen.

Durch die Verwendung von metallischem Brennstoff ergeben sich auch völlig neue Perspektiven der Wiederaufbereitung. Durch den Übergang auf elektrochemische Verfahren – wie man sie bereits beim EBRII – erfolgreich ausprobiert hat, kann man zu kleinen Wiederaufbereitungsanlagen in der Nähe der Kernkraftwerke übergehen. Ein weiterer Lösungsweg für die angebliche Atommüllproblematik. Gerade im Zusammenhang mit der Wiederaufbereitung und Proliferation ist auch der Zusatz von Thorium besonders interessant.

Schlussbemerkung

Man sieht, daß die Leichtwasserreaktoren noch lange nicht am Ende ihrer Entwicklung angekommen sind. Insbesondere der Einsatz von metallischen Brennstäben ergibt nicht nur einen evolutionären Weg für bestehende Reaktoren, sondern auch für Neukonstruktionen. Im Zusammenhang mit passiver Kühlung kann ein erheblicher Sicherheitsgewinn erzielt werden. Irgendwann wird die Frage der Anpassung der Genehmigungsbedingungen gestellt werden müssen. Dann aber, beginnt das Kernenergiezeitalter erst richtig. Billige Energie im Überfluß. Egal, was in Deutschland darüber gemeint wird.

Der LFTR – ein Reaktor mit Salzbad

Immer massiver wird für ein völlig neuartiges Reaktorkonzept geworben, den Liquid-Fluorid Thorium Reactor (LFTR). Dieses Konzept bricht radikal mit den Prinzipien der heutigen Leichtwasserreaktoren: Thorium in der Form als Salz für Brennstoff und Kühlmittel und integrierte Wiederaufbereitung.

Warum Thorium?

Thorium und Uran sind die einzigen in der Natur vorkommenden Elemente zur Gewinnung von Energie durch Kernspaltung. Thorium kommt etwa vier mal häufiger vor und ist wesentlich gleichmäßiger verteilt. Es gibt bereits große Mengen als Abfall aus der Gewinnung seltener Erden. In Indien und Brasilien gibt es ganze Strände, die aus thoriumhaltigem Sand bestehen. Eine verlockende zusätzliche und nahezu unerschöpfliche Energiequelle. Uran und Thorium zusammen, könnten den gesamten Energieverbrauch der Menschheit mindestens für Jahrtausende decken.

Aus Thorium läßt sich – anders als aus natürlichem Uran – kein Reaktor mit einer sich selbst erhaltenden Kettenreaktion bauen. Man muß das Thorium zuerst in Uran umwandeln. Dieser „Brutprozess“ soll in in dem LFTR-Reaktor integriert werden. Um eine optimale Ausbeute zu erhalten, soll es jeweils einen „Brutkreislauf“ (in dem Thorium in Uran umgewandelt wird) und einen „Spaltkreislauf“ (in dem die gewünschte Energieerzeugung stattfindet) in dem Reaktor geben. Wenn ein Thorium-232-Kern ein Neutron einfängt, bildet sich Thorium-233. Dieses zerfällt mit einer Halbwertszeit von knapp 22 Minuten in Protactinium-233 und anschließend erst mit einer Halbwertszeit von 27 Tagen in Uran-233. Mit anderen Worten, erst nach rund einem Jahr ist die (nahezu vollständige) Umwandlung von Thorium in ein brauchbares Spaltmaterial erfolgt. In dieser Zeit, sollten die Zwischenprodukte keinen weiteren Neutronen ausgesetzt sein, da sich sonst unerwünschte Elemente bilden könnten.

Thorium hat im Gegensatz zu Uran nur etwa 232 anstelle von 238 Protonen und Neutronen in seinem Kern. Da immer nur ein Neutron eingefangen werden kann, dauert es bei Thorium wesentlich länger und ist wesentlich unwahrscheinlicher, bis sich „überschwere“ Kerne gebildet haben. Genau diese Kerne (z. B. Plutonium, Americium, Curium usw.) sind aber für die Langlebigkeit von „Atommüll“ verantwortlich. Entstehen sie erst gar nicht, ist der „Atommüll“ relativ harmlos und seine technische Lagerung bis zum (nahezu) vollständigen Zerfall reduziert sich auf Jahrzehnte bis Jahrhunderte.

Warum Salzschmelze als Betriebsmittel?

Man kann Thorium auch in anderen Reaktorkonzepten (Kugelhaufen-, Schwerwasserreaktoren etc.) nutzen. Umgekehrt kann man auch bei Salzschmelzen Uran oder Plutonium einsetzen. Es muß also noch andere Gründe geben.

Ein Alleinstellungsmerkmal des LFTR ist die integrierte Wiederaufbereitung. Nur bei der ersten Beladung muß Spaltstoff aus anderen Quellen hinzugefügt werden. Ist der Reaktor erst einmal im Gleichgewicht, wird nur noch Thorium dem Brutkreislauf hinzugefügt und Spaltstoffe aus dem Spaltungskreislauf abgezogen. Wegen der geringen Mengen wird eine Lagerung auf dem Gelände des Kraftwerks vorgeschlagen. Später kann dann über eine etwaige Endlagerung entschieden werden. Da die Spaltstoffe recht kurzlebig sind und (langlebige) Aktinoide praktisch nicht im Abfall vorhanden sind, erscheint eine industrielle Nutzung (Abklingzeit je nach Verwendungszweck) eher wahrscheinlich.

Grundsätzlich kann man den Brennstoff in fester Form in Brennelemente einschließen oder in einer Flüssigkeit auflösen. Im ersten Fall müssen die Brennelemente durch eine Flüssigkeit oder ein Gas gekühlt werden. Im zweiten Fall erhitzt sich die Flüssigkeit infolge der Kernspaltung und kann durch einen Wärmeübertrager gepumpt werden, in dem sie ihre Energie an ein Arbeitsmedium bzw. ein Kühlmittel abgibt. So gesehen, besteht kein großer Unterschied zwischen beiden Systemen. Bei Brennelementen muß der gesamte Spaltstoff für die gesamte Betriebszeit des Brennelementes schon am Anfang in dieses eingebracht werden (Überschußreaktivität) und umgekehrt enthalten sie beim Ausladen alle Spaltprodukte der vollständigen Betriebsdauer. Bei flüssigem Brennstoff kann dieser kontinuierlich gereinigt werden. Bei einem schweren Störfall (z. B. Fukushima) braucht man auch nur von der Freisetzung einer kleinen Menge auszugehen. Das kann einen entscheidenden Sicherheitsgewinn bedeuten.

Mit Salzschmelzen kann man hohe Temperaturen erreichen und bleibt trotzdem auch bei geringem Druck noch weit vom Siedepunkt entfernt. Die oft als Argument angegebene „Drucklosigkeit“ ist aber etwas übertrieben. Schließlich muß das Salz beständig durch die (engen) Kanäle des Kerns hindurch gepumpt werden. Der Druckverlust ist erheblich, sodaß man beim LFTR von einem erforderlichen Druck hinter der Pumpe von 11 bar ausgeht.

Fluoride als Salz für Brennstoff und Brutstoff

Als besonders geeignet hat sich ein Salz der Zusammensetzung 2*LiF2 – BeF2 – XF4 herausgestellt. Lithium (Li) und Beryllium (Be) bilden das Grundgerüst, in dem Uran-233 (X) bzw. Thorium-232 (X) in der erforderlichen Menge gelöst sind. Diese Stoffe sind nicht ganz unproblematisch:

  • Lithium kommt in der Natur in den Isotopen Li-6 (7,4%) und Li-7 (92,6%) vor. Li-6 ist ein starkes Neutronengift. Wenn es ein Neutron einfängt, bildet sich radioaktives Tritium. Es kann als Wasserstoff explosive Gase bilden, die nach der Reaktion mit Sauerstoff zu „radioaktivem“ Wasser führen. Alles unerfreuliche Nebeneffekte. Man verwendet daher abgereichertes Lithium, das aber recht teuer ist.
  • Beryllium und auch Berylliumfluorid sind sehr giftig und werden als krebserregend eingestuft. Wenn es ein Neutron einfängt, bildet es Helium und setzt dabei zwei Neutronen frei. Es wirkt dabei sowohl als Moderator, wie auch als Neutronenvervielfacher.
  • Fluor und Fluorwasserstoff sind gasförmig und sehr giftig. Fluor ist äußerst reaktionsfreudig und geht mit fast allen Elementen stabile chemische Verbindungen ein. Mit Wasserstoff reagiert es letztendlich zu Flußsäure, die sogar Glas ätzt.

Die Lithium-Beryllium-Salze sind zwar chemisch sehr beständig, haben einen hohen Verdampfungspunkt und man hat vielfache praktische Erfahrungen mit ihnen in der chemischen Industrie. In einem Kernreaktor ist aber besonders, daß mit jeder Kernspaltung auch die chemische Verbindung zerstört wird und neue chemische Elemente in Form der Spaltprodukte entstehen. Man hat es deshalb stets auch mit elementarem Fluor zu tun, der auch gern mit dem Strukturmaterial reagieren kann. Ferner muß man für die Wiederaufbereitung ständig mit Fluor und Beryllium umgehen, um neues „Brennstoff- und Brutsalz“ zu bilden. Ähnliches gilt am anderen Ende des Prozesses bei der Abscheidung der Spaltprodukte. Hier muß noch eine Menge Entwicklungsarbeit geleistet werden und unbedingt Erfahrungen bei einer großtechnischen Anwendung im Alltagsbetrieb gewonnen werden.

Da Fluoride sehr reaktionsfreudig sind, reagieren sie auch mit dem größten Teil der Spaltprodukte und binden diese sicher ein. Es gibt aber zwei Ausnahmen: Edelmetalle und Edelgase. Die Edelmetalle lagern sich innerhalb der Anlage ab und führen zu „Verschmutzungen“, die man regelmäßig und aufwendig wird entfernen müssen. Die Edelgase müssen durch Helium ständig aus dem Salz herausgespült werden.

Der Aufbau des LFTR-Kraftwerks

Aus Thorium läßt sich sehr gut Uran-233 mit thermischen Neutronen erbrüten. Für die Spaltung sind thermische Neutronen ohnehin besser geeignet. Da selbst das enthaltene Beryllium nicht zur entsprechenden Abbremsung ausreicht, ist Kohlenstoff als Moderator vorgesehen. Damit kommt man zu der bekannten Struktur aus Graphitblöcken, die von Kanälen für die Salze und Einbauten durchzogen sind. Ein Bauprinzip, das schon bei den englischen Gasreaktoren und den russischen Reaktoren vom „Typ Tschernobyl“ nicht unbedingt überzeugt hat. Das Graphit wird von der Salzschmelze lediglich benetzt. Nach kurzer Zeit werden die Poren des Graphits vom Salz so verstopft, daß keine Spaltprodukte in das Graphit einziehen. Graphit verändert jedoch durch den Neutronenbeschuß seine Geometrie. Infolge der jahrzehntelangen Erfahrungen mit gasgekühlten Reaktoren in GB kann man dieses Phänomen inzwischen gut vorausberechnen und beherrschen.

Wegen der bereits beschriebenen Reaktionskette: Thorium über Protactinium zu Uran-233, hält man Brutstoff (sog. blanket salt) und Brennstoff (sog. fuel salt) fein säuberlich in zwei Flüssigkeitskreisläufen getrennt. Man will aus dem Thorium möglichst reines Uran-233 erbrüten. Insofern macht es keinen Sinn, das Protactinium oder das Uran-233 weiterem Neutronenbeschuß auszusetzen. Der Brutkreislauf soll keine Wärme produzieren, die Spaltung soll erst im Brennstoffkreislauf stattfinden. Gleichwohl setzt der Zerfall des Th-233 (geringe Halbwertszeit von 22 Minuten) beträchtliche Energie frei und es läßt sich nicht chemisch abtrennen. Der Brutkreislauf muß deshalb über eine geeignete Notkühlung verfügen.

Wegen der Trennung zwischen Brut- und Spaltkreislauf ergibt sich eine recht komplexe Reaktivitätssteuerung. Man kann die Reaktivität erhöhen, indem man die Urankonzentration im Spaltkreislauf erhöht. Dies kann zwar nur langsam, aber kontinuierlich geschehen. Der Brutkreislauf „verschluckt“ laufend Neutronen, wodurch er wie ein großer Regelstab wirkt. Deshalb ist bei diesem Reaktorkonzept der Verlust der Salzschmelze im Brutbereich, ein wichtiger Auslegungsstörfall. Zur Feinregulierung und Schnellabschaltung sind zusätzliche Regelstäbe notwendig. Diese sollen auf den Salzschmelzen schwimmen, sodaß sie bei einem Leck automatisch in den Reaktor einsinken. Weiterhin sind auch mit Gas gefüllte Kanäle zur Regelung vorgesehen. Über den Gasdruck kann damit das Salzvolumen und damit die Reaktivität gesteuert werden.

Der gesamte Kern, mit all seinen Einbauten befindet sich in einem Tank aus Hastelloy N. Einer Legierung die zu 94% aus Nickel, Chrom und Molybdän besteht. Diese Legierung wurde an den Oak Ridge National Laboratories für den Einsatz bei Fluorsalzen entwickelt. Dies dürfte der Werkstoff der Wahl für solche Reaktoren sein, da heiße Fluorsalze sehr korrosiv wirken können.

Die Salzschmelze wird permanent durch den Reaktor und einen Wärmeübertrager gepumpt. Im Kern werden die Neutronen im Graphit abgebremst. Nur hier, in diesem Bereich, kann eine selbsterhaltende Kettenreaktion stattfinden. Durch die Kernspaltungen erwärmt sich das Salz entsprechend. Diese Wärme wird in dem Wärmeübertrager an das Salz des Sekundärkreislaufes übertragen. Der Primärkreislauf ist durch einen gefrorenen Pfropfen in der Leitung zu dem Sicherheits-Lagertank getrennt. Dieser Pfropfen wird im Betrieb ständig gekühlt. Tritt eine Überhitzung im Reaktor ein, schmilzt er und gibt dadurch den Weg in den Tank frei. Im Tank bricht die Kettenreaktion sofort zusammen. Hier entsteht nur noch die Nachzerfallswärme, die wegen der permanenten Aufbereitung viel geringer als in herkömmlichen Leichtwasserreaktoren ist. Sie kann leicht über (z. B.) die Oberfläche des Tanks an die Umgebung abgegeben werden. Umgekehrt muß eine Heizung vorhanden sein, die das Salz aufschmelzen kann.

Das Arbeitsmedium

Zwischen dem Primärkreislauf des Reaktors und dem Arbeitsmedium befindet sich ein Sekundärkreislauf aus Salzschmelze. Dieser hat zwei entscheidende Sicherheitsfunktionen:

  • Das Arbeitsmedium CO2 steht unter einem Druck von etwa 200 bar. Bei einer Leckage im Wärmeübertrager steigt der Druck zwar im Sekundärkreislauf stark an, aber nicht im Reaktor. Er ist durch Sicherheitseinrichtungen abgesichert. Das austretende Salz ist kaum radioaktiv.
  • Die Wärmeübertragung zwischen zwei Salzströmen ist sehr gut. Der reaktorseitige Wärmeübertrager kann damit klein ausfallen und damit auch das Volumen an Spaltstoff und Spaltprodukten im Reaktor.

Bisher hat man bei allen Kernkraftwerken (und konventionellen Kraftwerken) einen Dampfkreislauf mit Dampfturbine und Kondensator zur Umwandlung von Wärme in mechanische Energie verwendet. Beim LFTR ist das anders: Hier will man einen geschlossenen Gasturbinenkreislauf (Turbineneintritt: 550 °C, 198 bar; Turbinenaustritt: 440 °C, 79 bar) mit überkritischem CO2 verwenden. Die Turbine treibt neben dem Generator zur Stromerzeugung zwei Verdichter zur Druckerzeugung an. Das Abgas der Turbine wird benutzt um den Gasstrom vor dem Eintritt in den Salz/Gas-Wärmeübertrager vorzuwärmen. Durch diese sog. „regenerative Vorwärmung“ verbessert sich der Wirkungsgrad ganz erheblich. Der Wirkungsgrad des LFTR soll auch bei trockener Luftkühlung über 40% betragen. Ein Vorteil für trockene Landstriche.

Als Hauptgrund für die Abkehr von Wasser als Arbeitsmedium, wird die relativ hohe Produktion von Tritium bei diesem Reaktorkonzept genannt. Reagiert es mit Sauerstoff, ergibt sich „radioaktives Wasser“, welches sich praktisch immer mehr im Wasserkreislauf (Halbwertszeit 12,3 Jahre) anreichern würde. Hingegen ist es relativ einfach, dieses Wasser aus dem CO2. zu entfernen.

Die Chemiefabrik im Kraftwerk

Der LFTR ist ein Brutreaktor mit integrierter Aufbereitung. Es ist nicht einfach ein Kernkraftwerk, das mit Thorium betrieben wird. Das Konzept des flüssigen Brennstoffs (Salzschmelze) erfordert eine kontinuierliche Entfernung der Spaltprodukte und eine kontinuierliche Zuführung von frischem Brutmaterial (Thorium) und Spaltstoff (erbrütetes Uran-233).

Aus dem Brutkreislauf wird kontinuierlich das Protactinium und das Uran-233 abgeschieden. Zu diesem Zweck wird flüssiges Wismut, in dem metallisches Thorium und Lithium gelöst sind, mit einem Teilstrom des Brutmaterials vermischt. Chemisch betrachtet (reductive extraction), „tauschen“ Thorium und Lithium mit dem Protactinium und Uran die Plätze. Das nun gereinigte Salz, wird mit Thorium und Lithium ergänzt dem Reaktor wieder zugeführt.

Das Wismut wir in einem weiteren Schritt wieder „gereinigt“, in dem alle in ihm gelösten Metalle elektrolytisch oxidiert werden. Sie werden einem Lagertank zugeführt, in dem weiterhin Protactinium (Halbwertszeit 27 Tage) zu Uran zerfallen kann. Das so gereinigte Wismut wird in einer weiteren Zelle elektrolytisch reduziert und der Waschkolonne für das Brutmaterial erneut zugeführt.

Der Strom aus dem Lagertank, wird in einem weiteren Verfahrensschritt mit gasförmigem Fluor in Kontakt gebracht. Hierdurch bildet sich gasförmiges Uranhexafluorid, das so leicht abgezogen werden kann. Die Restflüssigkeit wird an geeigneter Stelle dem vorher beschriebenen Kreislauf wieder zugeführt.

Das Uranhexafluorid wir in einem weiteren Verfahrensschritt mit Wasserstoff reduziert, damit es anschließend dem Brennstoffkreislauf des Reaktors zugeführt werden kann.

Ähnlich muß auch das Brennstoffsalz behandelt werden. Ein Teilstrom wird abgezogen und einem Tank zugeführt, in dem die besonders kurzlebigen Spaltprodukte schon mal vorab zerfallen können. Dies senkt die radioaktive Strahlung in der „Chemiefabrik“ ganz beträchtlich. Anschließend wird mit gasförmigem Fluor Uranhexafluorid gebildet, welches relativ einfach abgeschieden werden kann. Es wird mit dem vorher beschriebenem Strom aus der Aufbereitung des Brutmaterials zusammengeführt.

Das so behandelte Brennstoffsalz wird mit in Wismut gelöstem Lithium reduziert und so von den Spaltprodukten befreit. Die Spaltprodukte haben die Plätze des Lithium in der Metallschmelze eingenommen und das Lithium ist in der Form von Lithiumfluorid an das Brennstoffsalz übergegangen. Die Spaltprodukte müssen wieder aus dem Wismut abgeschieden werden und in eine sicher lagerfähige Form überführt werden.

Die chemischen Prozesse sind hier nur sehr grob beschrieben worden. Sie sind recht komplex und bedürfen noch einer umfangreichen Entwicklungsarbeit bis sie großtechnisch und im Alltagsbetrieb zuverlässig anwendbar sind. Sie sind keinesfalls einfacher als das Purex-Verfahren – nur eben ganz neu. Unter den speziellen Randbedingungen der Kerntechnik, wird man realistisch von Jahrzehnten ausgehen müssen.

Die Abgasstrecke

Bei der Kernspaltung entstehen zahlreiche Gase und Edelgase. Bisher ging man davon aus, diese möglichst lange und sicher in den Brennstäben einzuschließen. Sie sollten erst nach vielen Jahren in der Wiederaufbereitungsanlage kontrolliert austreten. Bei einer Salzschmelze ist dies gar nicht möglich. Die Edelgase gehen auch keine chemische Verbindung ein, sondern verlassen an irgendeiner ungewünschten Stelle das Salz.

Es ist daher geplant, einen Teilstrom der Salzschmelze mit Helium zu durchspülen. Die radioaktiven Gase gehen dabei in das Helium über. Dieser Abgasstrom soll in einer Absorptionsstrecke (gekühlte Aktivkohle) 47 Stunden gehalten werden, bevor er erneut zur Spülung eingesetzt wird. Ein Teilstrom wird für 90 Tage gelagert, damit das radioaktive Xenon und Krypton – mit Ausnahme von Kr-85 mit einer Halbwertszeit von 10,7 Jahren – zerfallen kann. Anschließend wird das Gas durch Abkühlung verflüssigt und in Xenon (Handelsprodukt), Krypton (zur weiteren Lagerung) und Helium (zur Wiederverwendung) getrennt.

Schlusswort

Die „Molten-Salt“-Reaktoren stellen ein weiteres vielversprechendes Reaktorkonzept dar. Ihre Vorteile liegen in der hohen Betriebstemperatur bei geringem Druck und der eleganten Erschließung einer weiteren Energiequelle, in der Form von Thorium. Allerdings sind beide Punkte keine „Killerapplikation“: Hohe Temperaturen werden nur in der industriellen Anwendung benötigt. Zur Stromproduktion – und das ist bis auf weiteres die Domäne der Kerntechnik – sind sie nicht zwingend erforderlich. Thorium läßt sich auch in anderen, bereits erprobten Reaktoren (THTR, Candu) nutzen.

Unter den politischen Bedingungen der Kerntechnik, dürfte die Entwicklung bis zur Serienreife, noch mehrere Jahrzehnte dauern. Es ist fraglich, ob sich ein Energieversorger finden dürfte, der das damit verbundene Risiko auf sich nehmen wollte. Auch die „Chemiefabrik“ in der eigenen Regie, dürfte eher abstoßend wirken. Gleichwohl, wird die Entwicklung in USA und China im Moment eher beschleunigt vorangetrieben.

PRISM das moderne Entsorgungszentrum? Teil 1

Von den populistischen „Argumenten“ gegen die Kernenergie, ist praktisch nur noch eines öffentlichkeitswirksam: Die „ungelöste Entsorgungsfrage“. Aus diesem Grunde, wird in den Medien – zumindest in Deutschland – nur äußerst zurückhaltend über Entwicklungen berichtet, die über das bloße Vergraben hinausgehen.

In England wird seit einigen Jahren ernsthaft über den Bau des sogenannten Power Reactor Innovative Small Module (PRISM) von GE-Hitachi diskutiert. Hintergrund ist der stetig wachsende Plutoniumberg aus der Wiederaufbereitungsanlage. Inzwischen lagern zwischen 100 und 150 Tonnen auf der Insel. Es geht dabei um die sinnvollste Verwendung. Ein „verbuddeln und vergessen“ nach deutschen Vorstellungen, scheidet für GB ohnehin aus. Vielmehr ist man bestrebt, das Gefahrenpotential des „Atommülls“ auf einige hundert Jahre zu begrenzen. Ein Zeitraum, den man unstrittig durch technische Bauten sicher beherrschen kann. Man holt dadurch das Problem von der wenig fassbaren moralischen Ebene – irgendwelcher „Ethikkommissionen“ – auf die berechenbare Ebene der Ingenieurwissenschaften zurück.

Ein Weg – und beileibe nicht der einzige – ist die Nutzung und Beseitigung abgebrannter Brennelemente durch einen mit Natrium gekühlten Reaktor mit schnellem Neutronenspektrum und metallischem Brennstoff: Dem PRISM. Nichts von der Erfindermesse, sondern ein Stück erprobter Technik. Sein unmittelbarer Vorläufer, der EBR II, war 30 Jahre erfolgreich in Betrieb (bis 1994). Ein PRISM-Kraftwerk mit 1866 MWel würde rund zwei Tonnen abgebrannter Brennelemente pro Jahr verbrauchen und damit die gleiche Menge Strom erzeugen, wie Kohlekraftwerke durch die Verbrennung von sechs Millionen Tonnen Steinkohle.

Warum schnelle Neutronen?

Mit hinreichend schnellen Neutronen kann man alle schweren Kerne spalten. Ausdrücklich auch U238, alle Plutoniumisotope und die minoren Aktinoiden (Americium, Curium, Neptunium usw.). Letztere sind für die Langlebigkeit des Atommülls verantwortlich. Gelingt es sie zu spalten, bleiben nur noch Spaltprodukte mit einer Halbwertszeit von unter 30 Jahren übrig. Allerdings hat die Sache einen entscheidenen Harken: Die Reaktionsquerschnitte sind nicht nur stoffabhängig, sondern auch sehr stark energieabhängig. Mit anderen Worten, nimmt die Wahrscheinlichkeit für eine Spaltung mit schnellen Neutronen stark ab.

Eine selbsterhaltende Kettenreaktion läßt sich nur mit U235 (in der Natur vorkommend) und U233. (aus Thorium erbrütet), sowie Pu239 (aus Uran erbrütet) aufrecht erhalten. Auch deren Spaltquerschnitte sind für langsame thermische Neutronen um Größenordnungen geeigneter. Will man also einen schnellen Reaktor bauen, braucht man wesentlich höhere Anteile an Spaltmaterial. Allerdings steigt auch die Anzahl der freigesetzten Neutronen mit der Energie der spaltenden Neutronen an.

An dieser Stelle ergeben sich die drei Varianten des PRISM-Reaktors, die sich nur durch die Zusammensetzung des Kerns unterscheiden:

  1. Der Brenner. Er verbraucht – wie ein Leichtwasserreaktor – mehr Spaltstoff als beständig neu entsteht. Man muß diese Verluste stetig aus abgebrannten Brennelementen ersetzen. Dies wäre eine reine „Abfallverbrennungsanlage“.
  2. Der Selbsterhalter. Er stellt ziemlich genau so viel Pu239 beim Betrieb gleichzeitig her, wie er auch verbraucht. Die Spaltungen müssen nur durch U238– z. B. aus dem Abfall der Anreicherungsanlagen – ergänzt werden.
  3. Der Brüter. Dies ist die wohl bekannteste Variante. Ein solcher Kern erzeugt mehr Pu239., als er selbst verbraucht. Entscheidendes Maß ist bei diesem Typ die sogenannte Verdoppelungszeit. Damit ist die Zeitdauer gemeint, in der ein Reaktor so viel Überschussplutonium produziert hat, wie man braucht, um damit einen zweiten Reaktor in Betrieb nehmen zu können. Diese Variante wird erst attraktiv, wenn die Preise für Natururan explodiert sind. Also erst in sehr ferner Zukunft.

Es ist bei allen drei Varianten sinnvoll, die Spaltprodukte von Zeit zu Zeit abzutrennen. Allerdings haben sie nicht die Bedeutung, die sie bei Leichtwasserreaktoren haben, da ihre Einfangquerschnitte (und dadurch verursachte Neutronenverluste) für hohe Energien recht klein sind. Der Abbrand kann bei schnellen Reaktoren rund fünfmal so hoch sein, wodurch sich eine Wiederaufbereitung wesentlich vereinfacht und nicht so oft geschehen muß (Kosten).

Warum Natrium als Kühlmittel?

Wenn man einen schnellen Reaktor bauen will, muß man ein Kühlmittel verwenden, das Neutronen praktisch nicht abbremst. In diesem Sinne, kommen praktisch nur drei Stoffe in Frage: Natrium, Blei und Helium. Natrium besitzt in allen relevanten Eigenschaften klare Vorteile, sodaß es nicht verwunderlich ist, daß praktisch alle schnellen Reaktoren (über 20 in 8 Ländern) mit Natrium gekühlt wurden. Einzige Ausnahme bilden die sieben Blei-Wismut-Reaktoren der U-Boote der Alpha-Klasse in der Sowjetunion. Sie sind gerade an den Eigenschaften des Blei gescheitert (hohe Schmelztemperatur, die eine ständige Beheizung erfordert; große Korrosionsprobleme; hohe Pumpleistung; starke Aktivierung durch die Bildung von Po210. Je eingehender man sich mit Kühlmitteln beschäftigt, gibt es für ein Kernkraftwerk (zur reinen Stromerzeugung) lediglich zwei optimale Kühlmittel: Wasser für thermische und Natrium für schnelle Reaktoren.

Natrium ist wegen seines elektrischen Widerstandes hervorragend für den Bau von elektromagnetischen Pumpen ohne bewegliche Teile und damit ohne Dichtungsprobleme geeignet.

Bei Natrium braucht man immer einen zusätzlichen Zwischenkreislauf. Der Neutronenfluß bildet Na24, welches ein harter γ.-Strahler ist. Das primäre Natrium muß deshalb gut abgeschirmt werden. Außerdem besteht bei Leckagen im Dampferzeuger die Gefahr der Wasserstofferzeugung und der Bildung von NaOH. Wasserstoff ist ein guter Moderator, der zu einer Beschädigung des Kerns durch einen Reaktivitätssprung führen könnte.

Die Gefahr von Natriumbränden wird meist überschätzt. Natrium hat eine hohe Verdampfungswärme bei hoher Verdampfungstemperatur. Dies führt zu einer geringen Verdampfungsrate während der Verbrennung – dem Feuer mangelt es an Nahrung. Die Verbrennung von Natrium in Luft setzt nur etwa ein Viertel der Energie, wie Benzin frei. Bei dem klassischen Brandversuch in einer offenen Wanne, bilden sich nur wenige Zentimeter hohe Flammen und in einem Meter über den Flammen herrscht nur eine Temperatur von rund 100 °C. Die bei der Verbrennung entstehenden Na2 O und Na O – Aerosole reagieren in Luft unter Anwesenheit von Wasserdampf und Kohlendioxid weiter zu Na OH und Na2 CO3. Diese Aerosole erfordern anschließend gründliche Reinigungsarbeiten, da sie elektrische Anlagen zerstören können und giftig sind.

Natrium besitzt sehr gute Korrosionsschutzeigenschaften, da es leicht mit Sauerstoff reagiert. Erst oberhalb von 50 ppm besteht für gewisse Stähle eine Korrosionsgefahr im flüssigen Natrium. Dieser Wert ist problemlos über eine Kältefalle (Im Prinzip ein Topf, durch den ein Teilstrom von weniger als 5% des Kreislaufes sehr langsam hindurch strömt) auf 10 bis 25 ppm zu halten. In der Kältefalle kristallisiert das Na2Oa bei unter 200 °C aus.

Warum metallischer Brennstoff?

Metallische Brennstoffe ermöglichen die höchsten Brutraten, da sie vollständig aus spaltbarem und brutfähigen Material bestehen könnten. Sie liefern das härteste Neutronenspektrum, da sie nur aus den schwersten Kernen bestehen. Die Folge ist, daß rund 25% der erzeugten Energie aus der direkten Spaltung von U238. stammen können.

Metalle sind ausgezeichnete Wärmeleiter und vertragen sehr schnelle Temperaturänderungen. Im Gegensatz dazu sind Uranoxide – wie sie in allen Leichtwasserreaktoren verwendet werden – Keramiken, mit bekannt schlechter Wärmeleitung und Sprödigkeit. Sie können im Inneren bereits aufschmelzen, wenn sich ihre Randtemperatur noch kaum geändert hat und können bei schockartiger Abkühlung wie eine Teetasse zerspringen.

Metallische Brennstoffe vertragen sich ausgezeichnet mit dem flüssigen Natrium. Chemische Reaktionen, wie zwischen den Brennstabhüllen aus Zr bei Leichtwasserreaktoren und Wasserdampf gibt es nicht (Wasserstoffexplosionen in Fukushima).

Metallischer Brennstoff schwillt durch die Strahlenbelastung um bis zu 30% an. Die Brennstäbe müssen deshalb sehr viel Raum für Spaltgase besitzen. Der notwendige Anfangsspalt zwischen Hüllrohr und Brennstoff wird mit Natrium als Wärmebrücke ausgefüllt.

Man kann bei Metallen die Eigenschaften durch Legierung gezielt verändern. Plutonium hat eine zu geringe Schmelztemperatur. Der Brennstoff kann mit den Legierungsbestandteilen der Stahlhülle schädliche Eutektika bilden usw. Dies alles, hat in den USA Jahrzehnte Forschung und Entwicklung und den Test von hunderttausenden von Brennstäben erfordert. Als Optimal hat sich eine Brennstofflegierung aus Uran und Plutonium mit etwa 10% Zr in einer Hülle aus austenitischem Stahl herausgestellt.

S wie small

Von Anfang an, stand bei der Entwicklung die geometrische Größe des Reaktors im Vordergrund: Man wollte den kompletten nuklearen Teil in einer Fabrik fertigen und testen und anschließend (möglichst) mit der Eisenbahn zum Standort transportieren. Alle Einbauten, der Kern, die Pumpen, die Zwischen-Wärmeübertrager, die Lademaschine mit dem Zwischenlager und die Regelstäbe werden in einen Topf aus Edelstahl eingebaut und mit dem Deckel gasdicht verschweißt. Diesen Reaktorbehälter umschließt noch ein zweiter Sicherheitsbehälter und die Luftkühlung. All das, wird in einer Fabrik zusammengebaut und getestet und anschließend zur Baustelle transportiert und dort in das örtlich gefertigte Betonsilo eingesetzt. Damit ist die geplante Leistung auf etwa 840 MWth. begrenzt. Durch die Serienfertigung in einer spezialisierten Fabrik verspricht man sich einen bedeutenden Kostenvorteil.

M wie modular

Die Modularität bezieht sich sowohl auf einen Block selbst, wie auch auf ein Kraftwerk:

  • Jeder Block besteht aus dem nuklearen Teil in einem unterirdischen Betonsilo, der oberirdischen Dampferzeuger-Anlage und den konventionellen Stromerzeugungsanlagen.
  • Ein komplettes Kernkraftwerk könnte z. B. eine elektrische Leistung von 1866 MWel haben und müßte dann aus sechs Reaktoren (je 840 MWth) bestehen, die jeweils paarweise auf eine Turbine (je 622 MWel.) wirken und insgesamt drei Turbinen haben. Alle sonstigen Einrichtungen (Werkstatt, Sozialgebäude usw.) würden gemeinsam genutzt. Ein solches Kraftwerk könnte auch eine integrierte Wiederaufbereitungsanlage beinhalten.

Die interne Unterteilung zielt auf eine potentielle Kosteneinsparung ab: Lediglich der Reaktor in seinem Betonsilo müßte dem Sicherheitsstandard „nuclear grade“ entsprechen. Bereits die Dampferzeugungsanlage in ihrem separaten Gebäude sollte – nach Meinung von GE – nur einen „gehobenen Industriestandard“ haben. In wie weit die Genehmigungsbehörden dieser Argumentation folgen werden, ist noch nicht ganz eindeutig zu beantworten.

Die Zusammenfassung von zwei Reaktoren mit Dampferzeuger und einer Turbine zu jeweils einer Einheit, zielt auf eine hohe Verfügbarkeit und einen kostengünstigen Ausbau eines Standortes ab. Sobald eine Einheit fertig ist, kann diese bereits Geld verdienen, während der Ausbau des Kraftwerkes weiter läuft. Die heute übliche Vorfinanzierung der gesamten Summe entfällt. Später, hat das Kraftwerk eine sehr hohe Verfügbarkeit bei guten Wirkungsgraden. Letztendlich muß die Praxis zeigen, welcher Weg der günstigere ist. Rußland beispielsweise, versucht es über möglichst große Blöcke.

Das Sicherheitskonzept

PRISM setzt konsequent auf eine passive oder inhärente Sicherheitstechnik. Der völlige Stromausfall (Station-Blackout) ist kein Problem mehr. Es wird lediglich eine elektrische Leistung von weniger als 200 kW für Instrumentierung, Notbeleuchtung, Rechner und Bildschirme usw. benötigt. Diese kann problemlos über Batterien bereitgestellt werden. Notstromdiesel (als Sicherheitstechnik) sind nicht mehr nötig. Die Nachzerfallswärme wird ausschließlich über eine Luftkühlung mit Naturzug abgeführt. Dazu wird die Wärme über das Reaktorgefäß und den Sicherheitsbehälter an einen umgebenden Luftspalt abgegeben. Die erwärmte Luft steigt über vier Kamine auf. Das System ist so bemessen, daß auch bei erheblichen Verstopfungen (z. B. durch Erdbeben oder Anschläge) oder dem kompletten Ausfall von zwei Kaminen oder einem völligen Verschluß der Zuluftöffnungen die Kühlung stets gewährleistet ist. Selbst bei einem völligen Ausfall von 36 Stunden tritt noch keine Kernschmelze auf. Ein Unfall wie in Fukushima, wäre damit ausgeschlossen.

Der gesamte Reaktor ist elastisch auf Federn und Dämpfern gelagert. Da sich alle Rohrleitungen und Pumpen etc. in dem Reaktorgefäß befinden, ergibt sich ein optimaler Erdbebenschutz. Dies gilt auch für Flugzeugabstürze und sonstige Einwirkungen von außen, da sich der Reaktor in einem unterirdischen Betonsilo befindet. Die Verbindung zum Dampferzeuger besteht aus Vor- und Rücklauf des Natrium-Zwischen-Kreislaufes, die ebenfalls in einem Betongraben verlegt sind. Diese Leitungen sind als Rohr in Rohr Konstruktion ausgeführt, um Natrium-Leckagen zu verhindern.

Der Dampferzeuger ist ebenfalls mit einem Mantel zur Luftführung umgeben. Wenn die eigentliche Kühlung des Kraftwerks ausfällt, kann die Wärme auch darüber abgeführt werden. Dies ist jedoch kein nukleares Sicherheitssystem im engeren Sinne, sondern dient dem Anlagenschutz.

Die Lagerung der Brennelemente

Die Handhabung der Brennelemente verläuft bei diesem Reaktor gänzlich anders als bei Leichtwasserreaktoren. Der Reaktor kann wegen des flüssigen Natriums mit seiner hohen Temperatur und Brandgefahr nicht einfach geöffnet werden. Zuerst wird das Helium als Schutzgas und Ausgleichsraum abgesaugt und durch frisches Gas ersetzt. Damit soll die Gefahr der Freisetzung radioaktiver Gase in den Sicherheitsbehälter vermieden werden. Die fest im Reaktor installierte Lademaschine entnimmt abgebrannte Brennelemente und lagert sie oberhalb des Kerns in ein Lagergestell ein. Anders als bei Leichtwasserreaktoren, verbleiben sie für mindestens 20 weitere Monate zur Abkühlung im Reaktor. Ihre Wärmeentwicklung durch den radioaktiven Zerfall ist dann soweit abgeklungen, daß sie auch ohne spezielle Kühlung keine Temperatur von 400 °C mehr überschreiten können. Dies ist für ihren metallischen Kern und die Hüllrohre aus Stahl kein Problem. Ein Brennelemente-Lagerbecken ist nicht nötig.

Ein vollautomatisches Transportfahrzeug dockt an den Reaktordeckel an, entnimmt die zu entladenden Brennelemente und fährt sie anschließend zum zentralen Lagergebäude.

All das, geschieht vollautomatisch und unter Schutzgas. Trotzdem ist ein Auslegungsstörfall der Brand des Natriums im Reaktor. Der Sicherheitsbehälter oberhalb des Reaktors ist so bemessen, daß er die freigesetzte Energie und die Temperaturen aushält. Automatische Löschanlagen mit Schutzgasen sind vorhanden.

Die Auslegungsstörfälle

Schnelle Reaktoren (SR) und Leichtwasserreaktoren (LWR) unterscheiden sich stark in ihrem Unfallverhalten. LWR stehen unter hohem Druck und werden nahe dem Verdampfungspunkt betrieben. Schon bei einem relativ kleinem Leck baut sich der Druck stark ab und das „Kühlwasser“ verdampft. Die Temperatur im Kern steigt damit steil an und nähert sich schnell den Grenzwerten. Gelingt es nicht, das Kühlwasser schnell zu ersetzen, wird der Kern zerstört (Unfall in Harrisburg). Auch nach erfolgreicher Abschaltung, kann die Nachzerfallswärme noch zur Kernschmelze führen (Unfall in Fukushima). Es kommt im weiteren Verlauf dann zur Reaktion zwischen Wasserdampf und den Brennstabhüllen mit starker Wasserstoffproduktion (zerstörende Explosionen in Fukushima).

Bei einem SR sieht der Ablauf gänzlich anders aus. Die Kombination aus metallischem Brennstoff, Brennstabhüllen aus Edelstahl und Natrium als Kühlmittel ergibt eine sehr gute Wärmeübertragung mit hoher Temperaturbeständigkeit. Chemische Reaktionen zwischen den Unfallbeteiligten sind praktisch nicht vorhanden. Mit anderen Worten: Es wird recht schnell und gleichmäßig heißer im Reaktor. Wegen der hohen Verdampfungstemperatur kann es deutlich heißer werden, ohne daß sich wesentliches ändert. Bei einem LWR reicht selbst die Nachzerfallswärme aus, den Kern zum Schmelzen zu bringen, wenn er nicht mehr mit flüssigem Wasser bedeckt ist. Bei einem SR führt die starke Temperaturerhöhung lediglich zu einem neuen Gleichgewicht zwischen „Notkühlluft“ und Reaktorgefäß. Die neue Gleichgewichtstemperatur ist so bemessen, daß sie sich noch weit von Materialgrenzwerten entfernt einstellt. Der Reaktor ist „inhärent sicher“.

Bei jedem Reaktor führen gewisse Grenzwerte zur sofortigen und automatischen Abschaltung. Beim PRISM fallen zu diesem Zweck sechs Regelstäbe in den Kern ein. Die Kettenreaktion wird dadurch in Sekundenbruchteilen unterbrochen. Zur dauerhaften Abschaltung gibt es noch ein zweites System, das Kugeln aus Borkarbid in den Kern einführt. Insofern unterscheiden sich LWR und SR kaum.

Man geht aber beim PRISM-Reaktor noch einen Schritt weiter, in dem man sich den starken Temperaturanstieg nutzbar macht. Dieser führt zu einer Reihe von Auswirkungen, die neutronenphysikalisch wirken (Dopplereffekt, Dichteänderung des Natrium, Axiale und radiale Ausdehnungen des Brennstoffs, usw.). Wichtig ist die konstruktive Gestaltung, damit der Temperaturkoeffizient der Reaktivität immer negativ bleibt (In Tschernobyl war er positiv!). In Alltagssprache: Je heißer der Reaktor wird, um so schneller bricht die Kettenreaktion von selbst zusammen. Wird die Kühlung – aus welchen Gründen auch immer – unterbrochen, schaltet sich der Reaktor von selbst ab. Er ist also auch im Betrieb „inhärent sicher“.

Der Ausfall der Umwälzpumpen im Reaktor (vier Stück) kann zu einer lokalen Überhitzung führen, die örtlich sogar zu einem Verdampfen des Natriums führen könnte. Dadurch könnte der Neutronenfluß lokal weiter ansteigen und Teile des Kerns beschädigen. Ursache sind die elektromagnetischen Pumpen, die keine rotierenden Massen haben und somit sofort ausfallen, wenn der Strom weg ist (Station-Blackout). Sie werden deshalb mit Synchronmotoren, mit extra großen Schwungmassen, parallel betrieben. Die Synchronmaschinen erzeugen im Normalbetrieb Blindleistung und schalten bei Stromausfall automatisch in den Generatorbetrieb um. So entsteht ein mehrere Minuten dauernder Auslauf der Pumpen, der lokale Überhitzungen verhindert und sanft in einen Naturumlauf überführt.

Versagt auch dieses System, werden die Gasraum-Ausdehner wirksam. Sie funktionieren nach dem Prinzip eines umgedrehten Glas im Spülbecken: Je weiter man es eintaucht, um so kleiner wird das Luftpolster infolge des steigenden Wasserdrucks. Im PRISM spielt nun der Pumpendruck auf das Natrium mit einem Gaspolster aus Argon zusammen. So wie der durch die Pumpen erzeugte Druckanstieg kleiner wird, dehnt sich das Argonpolster aus. Da das Gas eine wesentlich geringere Dichte als das flüssige Natrium hat, kann es auch weniger Neutronen in den Kern zurück streuen. Der Ausfluß erhöht sich und die Kettenreaktion bricht zusammen. Ein weiteres, völlig passives, Sicherheitssystem.

Natriumbrand im Dampferzeuger

Ein spezielles Sicherheitsproblem ist die Reaktion zwischen Wasser und Natrium. Bei ihr wird neben Energie auch Wasserstoff frei bzw. es entstehen Reaktionsprodukte, die Wasserstoff enthalten. Daraus ergeben sich folgende Ansprüche:

  • Der Dampferzeuger sollte in einem separaten Gebäude – streng getrennt vom Reaktor – stehen. Da es nur hier eine Schnittstelle zwischen Wasser und Natrium gibt, können alle Auswirkungen besser beherrscht und lokal begrenzt werden.
  • Es sollte eine Isolierung zwischen Dampferzeuger und Reaktorteil geben, um Rückwirkungen auf die Wärmetauscher im Reaktor zu verhindern.
  • Es müssen ausreichend große Abblasetanks vorhanden sein, um Natrium und Wasser möglichst schnell voneinander zu trennen, damit die Brandlasten klein bleiben. Entstandener Wasserstoff muß rekombiniert bzw. sicher abgeleitet werden, um Explosionen zu verhindern (nicht wie in Fukushima, auch noch benachbarte Gebäude zerstören.)

Der Dampferzeuger des PRISM ist ein schlanker, aufrecht stehender Behälter. Er ist nicht vollständig mit Natrium gefüllt, sondern besitzt oben einen mit Argon gefüllten Raum. Dieses Gaspolster, kann bei Störfällen etwaige Druckwellen bereits erheblich mindern. In dieses Natriumbad tauchen, zu einer Spirale gewickelte Rohre ein. In diesen strömt das Wasser und verdampft. Würde ein Rohr undicht werden, strömt Wasser bzw. Dampf unter hohem Druck in das Natrium ein und reagiert dort sofort. Die zusätzliche Energieproduktion kann zu einem Temperaturanstieg im Dampferzeuger führen. Wichtigste Gegenmaßnahme ist nun die Absperrung sowohl der Wasser- und Dampfleitungen wie auch der Natriumleitungen. Dabei sind kleine Leckagen kein Problem, da sie ein langsames Abfahren der Anlage ermöglichen.

Kommt es hingegen zu massiven Wassereinbrüchen, kann es zu einer stärkeren Temperaturerhöhung und einem steilen Druckanstieg führen. Wichtigstes Ziel ist nun, die Druckspitze zu begrenzen und die Druckwelle möglichst von den Zwischenwärmetauschern im Reaktor fern zu halten. Zur Dämpfung dient bereits das Gaspolster im Dampferzeuger. Wird der vorgesehene Druck überschritten, bersten zwei Scheiben in der Verbindungsleitung zum Abblasetank. Der Abblasetank trennt die Gase (insbesondere den entstandenen Wasserdampf) vom flüssigen Natrium. Das Natrium strömt dann weiter in Reservetanks. Bereits gebildeter Wasserstoff wird rekombiniert, um etwaige Explosionen zu vermeiden. Die Restwärme wird über die Außenluft abgeführt.

Unmittelbar hinter dem Sicherheitsbehälter des Reaktorgebäudes befinden sich Isolierventile, die sofort und automatisch schließen. Dadurch wird verhindert, daß überhaupt Reaktionsprodukte zum Reaktor gelangen können.

Schlußbetrachtung

Es gibt international viel Erfahrung aus einigen hundert Betriebsjahren mit natriumgekühlten schnellen Reaktoren. Allein in den USA ist der EBR II über 30 Jahre erfolgreich gelaufen. Man hat in ihm über 100000 Brennelemente getestet und umfangreiche Experimente der Sicherheitssysteme durchgeführt. Mehrfach wurde bei voller Leistung die Wärmesenke einfach abgestellt, um beispielsweise die Richtigkeit der Rechenprogramme zu überprüfen. Die Entwicklung ist seit dem – wenn auch stark reduziert – kontinuierlich weitergeführt worden. Bereits 1994 wurde das eingereichte Konzept von der NRC in einem 400seitigen Abschlussbericht positiv beurteilt. Seit dem, könnte eigentlich ein Kraftwerk als Demonstrationsanlge gebaut werden – wenn der politische Wille vorhanden wäre. Ob auch hier wieder China voranschreiten wird oder kann Europa (GB) noch den Anschluß halten?

Ausblick

Der zweite Teil wird sich mit der Wiederaufbereitung und der Herstellung der metallischen Brennelemente beschäftigen.

Reaktortypen in Europa – Teil6, CANDU

Der CANDU (Canada Deuterium Uranium) Reaktor ist der einzige Schwerwasserreaktor, der sich weltweit durchgesetzt hat. Er ist in seiner neuesten Ausführung ein echter Gen III+ Reaktor mit passiver Sicherheit. Für manche mutet er vielleicht etwas exotisch an, besitzt aber sehr viel Potential für die Nutzung von Thorium und die Weiterverwendung ausgedienter Brennelemente von Leichtwasserreaktoren – gerne auch als „Atommüll“ verunglimpft.

Geschichte

SNC-Lavalin und China Nuclear Power Engineering Company wollen zusammen zwei weitere Reaktoren dieses Typs in Rumänien errichten. Bereits seit 1997 und 2007 laufen dort sehr erfolgreich zwei solche Reaktoren. Wie in zahlreichen anderen Ländern auch: Indien, Südkorea, Rumänien, Pakistan, Argentinien und China. Insgesamt wurden 47 CANDU-Reaktoren gebaut, davon bilden 22 Reaktoren das Rückgrat der kanadischen Stromversorgung. Keine schlechte Bilanz, wenn man bedenkt, wie viele Totgeburten es seit den 1940er Jahren gegeben hat.

In Kanada begann die Entwicklung von Schwerwasserreaktoren bereits während des zweiten Weltkrieges. Es war ein etwas ungeliebter Seitenarm des Manhattan-Projekts unter maßgeblichem Einfluß des französischen Wissenschaftlers Joliot, der wegen seiner politischen Ansichten in den USA als potentielles Sicherheitsrisiko eingestuft war. In den 1960er Jahren wurde die kommerzielle Entwicklung von der kanadischen Regierung forciert: Kanada verfügte über keine Anreicherung und keine Schwerindustrie, die in der Lage war, Reaktordruckgefäße zu schmieden. Beide Argumente besitzen heute noch für viele Entwicklungs- und Schwellenländer Gültigkeit. Man kann sich nahezu aus allen Ecken der Welt mit Natururan versorgen, während man bei der Anreicherung nach wie vor, maßgeblich auf die „Atommächte“ angewiesen ist. Wegen des einfachen Aufbaues ist ein Übergang auf nationale Fertigung in relativ kurzer Zeit und kleinen Stückzahlen möglich.

Allerdings besitzt der CANDU einen entscheidenden (politischen) Nachteil: Mit ihm läßt sich hervorragend waffengrädiges Plutonium und Tritium herstellen. Diesen Weg hat Indien mit seiner ersten Bombe „Smiling Buddha“ vorgemacht, dessen Plutonium aus dem Schwerwasser-Forschungsreaktor „CIRUS“ stammte.

Aufbau

Bei den CANDU-Reaktoren handelt es sich um Druckwasserreaktoren mit schwerem Wasser (D2 O.) als Moderator und Kühlmittel. Das schwere Wasser wird durch Pumpen zwischen dem Kern und den Dampferzeugern umgewälzt. In den Dampferzeugern wird der Dampf für die Turbine erzeugt. Man könnte also sagen, ab dem Reaktorgefäß handelt es sich um einen „ganz normalen Druckwasserreaktor“.

Er besitzt jedoch kein Druckgefäß, sondern zahlreiche Druckröhren. Bei einem EC6 sind es 380 horizontale Röhren, in denen sich jeweils 12 Brennelemente befinden. Die Brennelemente sind rund und nicht rechteckig (wie bei Leichtwasserreaktoren), sodaß sie die Druckröhren optimal ausfüllen. Sie sind auch wesentlich kleiner (etwa 50 cm lang und 10 cm im Durchmesser) und bestehen aus nur 37 Brennstäben. Durch die Abmessungen und ihr geringes Gewicht (rund 25 kg) sind sie optimal für eine vollautomatische Handhabung geeignet. Durch die hohe Anzahl (37 Stück x 12 Brennelemente x 380 Brennstoffkanäle) ergibt sich eine sehr flexible Anordnung und Materialausstattung, auf die später noch eingegangen wird. Durch die vollautomatischen Lademaschinen, die unter voller Last eingesetzt werden können, ergibt sich stets eine optimale Durchmischung und Anordnung. Es ist kaum Überschußreaktivität nötig, die bei Leichtwasserreaktoren am Anfang des Ladezyklus durchVergiftung (z. B. Borsäure, Gadolinium etc.) abgebaut werden muß.

Die Brennstoffkanäle sind schachbrettartig, horizontal in einem Wassertank – der sog. Calandria – angeordnet. Dieser Tank ist vollständig mit schwerem Wasser gefüllt und bildet den eigentlichen Moderator und Reflektor. Die Calandria befindet sich in einem weiteren Wassertank zur Abschirmung, der mit normalem Wasser gefüllt ist. Dieses System ist von einem Tresor aus Stahlbeton umgeben. Oberhalb befinden sich die vier Umwälzpumpen und die vier Dampferzeuger. Zusätzlich ist der gesamte Reaktor von einer Stahlbetonhülle (Containment) umgeben. Äußerlich ist deshalb ein EC6-CANDU kaum von einem üblichen Druckwasserreaktor zu unterscheiden.

Sicherheitskonzept

Jeder Brennstoffkanal ist von einem zweiten Rohr umgeben. Der sich ergebende Spalt dient zur Wärmeisolierung. Das schwere Wasser der Calandria ist kalt und wird auch ständig über eigene Wärmeübertrager kalt gehalten. Zusammen mit dem Wasser der Abschirmung ergibt sich ein großer Wärmespeicher für die Abfuhr der Nachzerfallswärme. Geht Kühlwasser durch Leckagen verloren, kann dieses aus einem großen Wassertank auf dem Dach des Sicherheitsbehälters ersetzt werden. Dafür sind keine Pumpen, sondern nur die Schwerkraft nötig.

Als einziger Reaktortyp verfügt der CANDU über zwei vollständig voneinander unabhängige Schnellabschaltungssysteme: Oberhalb der Calandria befinden sich von Elektromagneten gehaltene Regelstäbe. Bei einer Schnellabschaltung fallen sie durch die Schwerkraft getrieben in die Calandria ein. Seitlich befinden sich Druckbehälter mit Gadoliniumnitrat, die durch das Gaspolster aus Helium angetrieben, ihre Flüssigkeit zur Vergiftung in die Calandria einspritzen.

Warum überhaupt schweres Wasser?

Deuterium ist Wasserstoff, dessen Kern nicht nur aus einem Proton besteht, sondern zusätzlich noch ein Neutron enthält. Es verbindet sich mit Sauerstoff zu schwerem Wasser. Es kommt daher überall auf der Erde in unerschöpflicher Menge vor. Allerdings in nur sehr geringer Konzentration von 0,000018%. Die Anreicherung ist wegen des relativ großen Massenunterschieds zwar relativ einfach, erfordert gleichwohl viel Energie und Apparatur. Mit anderen Worten, es ist recht teuer. Die hohen Investitionskosten sind deshalb der Hauptnachteil beim CANDU. Enthält doch ein EC6 über 472 to davon, bei nur etwa 700 MWel. Leistung. Der laufende Verbrauch ist nur sehr gering. Ein weiterer Nachteil ist die erhöhte Produktion von Tritium. Da Deuterium bereits ein Neutron enthält, ist die Aufnahme eines weiteren sehr viel wahrscheinlicher, als bei normalem Wasser.

Ausschlaggebend sind die überragenden neutronenphysikalischen Eigenschaften. Die Wahrscheinlichkeit für eine Spaltung steigt umgekehrt proportional mit der Geschwindigkeit der Neutronen. Abgebremst werden die Neutronen durch Zusammenstöße mit dem Moderator. Je kleiner die Kerne sind, je mehr Energie geht bei einem einzelnen Stoß verloren – dies spricht für Wasserstoff als Moderator. Leider gibt ein Kern nicht jedes Neutron wieder her. Jedes absorbierte Neutron ist aber für eine weitere Spaltung verloren. Je größer die Wahrscheinlichkeit für eine Streuung ist und um so kleiner die Wahrscheinlichkeit für eine Absorption, desto besser ist das Material als Moderator geeignet. Man mißt dies mit der „Moderating Ratio“ MR. Sie beträgt bei H2 O nur 62. Im Gegensatz dazu, ist sie bei D2O. mit 4830 fast 78 mal so gut. Zusätzlich kann man den Bremseffekt noch verbessern, wenn man den Moderator möglichst kühl hält. Dies ist der Grund für die kalte Calandria.

Alles zusammen, führt dazu, daß man bei einem CANDU mit Natururan auskommt und trotzdem mittlere Abbrände von 7500 MWd/toU erzielt. Dies ergibt nicht nur die beste Ausnutzung von Natururan, sondern eröffnet noch ganz andere Brennstoffkreisläufe.

CANDU und Leichtwasserreaktoren im Verbund

In jedem Reaktor werden nicht nur Kerne gespalten, sondern auch immer neue Kerne durch das Einfangen von Neutronen gebildet. Allerdings ist die Nutzungsdauer der Beladung immer zeitlich begrenzt – egal in welcher Form der Brennstoff vorliegt. Es verhält sich mit dem Brennelement wie mit einer Weinflasche: Nach dem Gebrauch ist sie für den Nutzer Abfall, aber deshalb noch kein Müll. Man kann auch die leere Flasche vielfältig weiter nutzen oder sie recyceln.

Auch wenn die Brennstäbe in den Leichtwasserreaktoren nicht mehr nutzbar sind, enthalten sie doch noch unzählige Wertstoffe. In diesem Zusammenhang sind Uran und Plutonium von Interesse. Man kann diese beiden auf verschiedene Art und Weise nutzen:

  • Zuerst sollte man sie so lange – wie wirtschaftlich vertretbar – lagern. Genau das, geschieht im Moment weltweit. Radioaktive Stoffe besitzen die angenehme Eigenschaft, daß sie nur zerfallen können, also stetig weniger werden. Je mehr Spaltprodukte aber zerfallen sind, desto geringer ist die Strahlungsleistung geworden. Ein enormer Vorteil bei der weiteren Verarbeitung.
  • Man kann diese Brennelemente z. B. nach dem Purex-Verfahren wieder aufbereiten. Man erhält als Produkt hochreines Uran und Plutonium. Das Uran ist aber ohne eine weitere Anreicherung nicht wieder in einem Leichtwasserreaktor verwendbar. Hier kommen die CANDU’s ins Spiel:
  • Das Uran aus der Wiederaufbereitung hat einen etwas höheren Gehalt an U235 (ungefähr 0,9% plus 0,6% Pu) als Natururan. Man kann nun dieses Uran mit abgereichertem Uran aus Anreicherungsanlagen zu synthetischem Natururan verschneiden. Man spart also den Aufwand für eine weitere Anreicherung.
  • Viel sinnvoller ist es, das Uran aus der Wiederaufbereitung im ursprünglichen Zustand zu verwenden. Man muß es nicht verschneiden, sondern kann es durch die unzählige Kombination von Brennstäben aus unterschiedlichen Materialien als sehr viel effektivere Neutronenquelle einsetzen.
  • Es ist sogar möglich, die abgebrannten Brennelemente aus Leichtwasserreaktoren in CANDU-Reaktoren ein weiteres mal zu nutzen: Man müßte sie lediglich auf Länge schneiden und erneut in eine Hülle einschweißen. Allerdings bräuchte man hierfür wegen der hohen Strahlenbelastung eine fernbediente Herstellung und Handhabung. China führt bereits in seinen laufenden Reaktoren Versuche aus. Es wurde in Zusammenarbeit mit den Kanadiern ein umfangreiches Entwicklungsprogramm gestartet.
  • Man kann aber auch die abgebrannten Brennstäbe vorher pulverisieren und erhitzen. Da der größte Teil der Spaltprodukte (z. B. die Edelgase und Jod) schon bei relativ geringen Temperaturen ausgasen, können sie einfach abgeschieden werden. Man erhält nach dem Sintern „neue“ Brennelemente, mit wesentlich geringerer Strahlenbelastung (als die unbehandelten Brennelemente) und weniger parasitärem (bezüglich der Neutronen) Inhalt. Diese Schiene – mit teilweiser Wiederaufbereitung – wird in Korea verfolgt und als DUPIC-Verfahren (Direct Use of spent PWR fuel In Candu) bezeichnet.

Es gibt also zahlreiche Wege, aus Leichtwasser- und Schwerwasserreaktoren einen Energieverbund herzustellen. Man kann in etwa sagen, daß vier Leichtwasserreaktoren mit ihren abgebrannten Brennelementen einen Schwerwasserreaktor versorgen können. Dies könnte das evolutionäre Glied zur Nutzung – und damit Beseitigung – von „Atommüll“ sein: Man ersetzt das kostspielige PUREX-Verfahren durch „Neuverpackung“ oder „Teilreinigung“. Diese Verfahrensschritte sind sicherlich wesentlich eher mit der Gewinnung von Natururan wirtschaftlich konkurrenzfähig.

Thorium

Neben Uran, kann man auch mit Thorium Reaktoren betreiben. Thorium ist in manchen Ländern (z. B. Indien) leicht zu fördern oder fällt sogar als Abfall an (z. B. Produktion seltener Erden in China). Allerdings kann man mit Thorium keine selbsterhaltende Kettenreaktion erzeugen. Vorher muß man daraus U233 erbrüten. Anders als bei Uran, funktioniert das Brüten bei Thorium auch sehr gut mit thermischen Neutronen. Es war daher schon frühzeitig ein Gedanke, Thorium als Brennstoff in Schwerwasserreaktoren einzusetzen.

Aus der Konstruktion von Brennstoffkanälen, die mit Brennelementen gefüllt sind, die sich wiederum aus Brennstäben zusammensetzen, ergeben sich beim CANDU zwei grundsätzliche Varianten: Der gemischte Kern (mixed-core) und das gemischte Brennelement (mixed-fuel-bundle).

Bei einem gemischten Kern, verwendet man Brennelemente aus reinem Thorium, die zum Erbrüten von U233 dienen. Die hier verschluckten Neutronen müssen an anderer Stelle im Reaktor erzeugt werden. Dafür verwendet man Brennelemente mit leicht angereichertem Uran oder aus Mischoxid. Hierfür bietet sich – wie weiter oben schon beschrieben – idealerweise der „Abfall“ aus Leichtwasserreaktoren an. Diese Strategie erfordert – wegen der wechselnden Orte und der unterschiedlichen Verweilzeiten in den Kanälen – eine komplexe Steuerung der Lademaschinen. Wenn man nur reines Thorium in einem Brennelement einsetzt, kommt man zu einer besonders eleganten „Einfach-Nutzung“. Aus Thorium bilden sich durch das Einfangen von Neutronen weit weniger langlebige Aktinoiden, als aus Uran. Da man es im wesentlichen nur mit (kurzlebigen) Spaltprodukten zu tun hat, ergibt sich ein „Atommüll“, der besonders gut für eine „Endlagerung“ geeignet ist. Diese Beschränkung auf eine technische Zwischenlagerung – ohne Wiederaufbereitung und/oder geologisches „Endlager“ – ist ein weiterer Anreiz für Länder mit großen Thoriumvorkommen (z. B. Norwegen).

Der andere Weg sind die gemischten Brennelemente. Dort wird bevorzugt der mittlere Brennstab aus reinem Thorium hergestellt und die ihn konzentrisch umgebenden Stäbe aus leicht angereichertem Uran. Dies vereinfacht das Umsetzen, hat aber eine schlechtere Ausnutzung der Neutronen zur Folge. Wenn man bereits gebrütete Brennelemente verwendet, um deren Stäbe in gemischten Brennelementen weiterzuverwenden, benötigt man keinerlei Wiederaufbereitung. Dieser Brennstoffkreislauf bietet sich besonders für Länder an, die unbedingt und nachweisbar auf Kernwaffen verzichten wollen.

Man kann mit Schwerwasserreaktoren Konversionsraten von nahezu eins erreichen. Wenn man über mehrere CANDU-Reaktoren verfügt, kann man einige davon vollkommen mit Thorium betreiben. Lediglich einige müssen zusätzlich leicht angereichertes Uran bzw. Mischoxid verwenden um den Fehlbedarf an U233abzudecken. Ein Land wie z. B. Indien, mit großen Mengen eigenem Thorium, aber kaum eigenem (wirtschaftlichem) Uran, kann so einen beträchtlichen Anteil aus heimischen Energieträgern abdecken.

Neben der Streckung von Uranvorräten bietet die Verwendung von Thoriumoxid noch eine Reihe anderer Vorteile: Bessere Wärmeleitung, höherer Schmelzpunkt, sehr gute chemische Stabilität und weniger Bildung von Aktinoiden.

Schlußwort

Mit diesem Beitrag, soll die Serie über die Reaktortypen in Europa vorläufig abgeschlossen werden. Eigentlich fehlen hier noch die russischen Druckwasserreaktoren wie sie in Finnland und der Türkei gebaut werden sollen. Bisher mangelt es aber nach wie vor an frei zugänglichen Informationen.

Sinn dieser Serie sollte es sein, interessierten Menschen einen Überblick darüber zu verschaffen, was geht, was man morgen bestellen und bauen könnte, was genehmigt und erprobt ist. Forschung und Entwicklung stehen auf einem anderen Blatt. Man kann – wenn man politisch will – sofort mit dem Ausbau der Kernenergie beginnen bzw. fortschreiten. China macht es eindrucksvoll vor: Den Einstieg in das Zeitalter der Kerntechnik auf breiter Front durch Nutzung von allem, was der Weltmarkt hergibt. Ein gigantischer Vergleich unter gleichen Rahmenbedingungen. Bisher gab es das nur in den USA – und man erinnert sich kaum, in Deutschland. Vielleicht muß man wirklich schon daran erinnern. Es gab einmal deutsche Siedewasser-, Druckwasser-, Schwerwasser-, Thorium-Hochtemperaturreaktoren und natriumgekühlte schnelle Reaktoren. Alle gebaut und mit besten Betriebserfahrungen und ganz ohne schwere Unfälle. Wenn es dem Esel zu gut geht, geht er aufs Eis tanzen, sagt ein altes Sprichwort. Jedenfalls reist heute eine ehemalige Pionierleiterin nach Japan, um der dortigen Regierung deutsche Wind- und Sonnentechnik schmackhaft zu machen. Selbstverständlich bei ausdrücklicher Verweigerung eines Besuchs in Fukushima. Zu viel Realität, konnte man im Politbüro noch nie ertragen. Das Ergebnis ist bekannt.

Reaktortypen in Europa – Teil5, ESBWR

Der ESBWR (Economic Simplified Boiling Water Reactor) ist die bisherige Krönung in der Evolution der Leichtwasserreaktoren. Es ist ein Reaktor der Generation III+ und erfüllt sicherheitstechnisch bereits die Ziele der vierten Generation: Passive und inhärente Sicherheit, die die Anlage stets selbstständig in einen sicheren Zustand überführt.

Geschichte

Bereits nach dem Reaktorunglück von TMI in Harrisburg begann man in den USA das Genehmigungsverfahren für einen stark vereinfachten Reaktor, den SBWR (Simplified Boiling Water Reactor). Nachdem man über eine halbe Milliarde Dollar Entwicklungs- und Genehmigungskosten investiert hatte, mußte man erkennen, daß dieser Reaktor mit 670 MWel schlicht zu klein und damit unverkäuflich war. Im nächsten Schritt legte man mehr Wert auf die „Wirtschaftlichkeit (Economic)“ und erhöhte die Leistung auf 1600 MWel. Ein weiteres Jahrzehnt mit unzähligen Prüfungen verging. Seit letztem Jahr liegen endlich alle Genehmigungen für den Typ vor. Es fehlt nur noch ein Kunde mit einem konkreten Bauauftrag. Inzwischen gibt es auch dazu Verhandlungen in USA, Polen und Indien. Wie immer, wird der „mutige Investor“ gesucht, der bereit ist in eine neue Technik (first of a kind) zu investieren. Dabei ist die Technik alles andere als revolutionär, sondern im Gegenteil strikt evolutionär. Man hat Schritt für Schritt auf in der Praxis bewährte Bauteile zurückgegriffen. Dies sei nur am Rande bemerkt, für all die Erfinder, die immer nach revolutionären Konzepten schreien. Erfinden und in allen Details den Nachweis der Funktionstüchtigkeit erbringen, sind zwei völlig verschiedene Dinge. Zumindest der Nachweis der Funktionstüchtigkeit – nach den Maßstäben der Kerntechnik – erfordert Jahrzehnte und verschlingt somit immense Summen. Vergleichbares gibt es nur in der zivilen Luftfahrt. Auch dort sind revolutionäre Flugzeugentwürfe nur etwas für Universitäten und Medien.

Anforderungen

Alle bisherigen Erfahrungen mit Kernkraftwerken – insbesondere die Unglücke in Harrisburg, Tschernobyl und Fukushima – haben zu folgenden Anforderungen für einen sicheren und wirtschaftlichen Betrieb geführt:

  • Je weniger Bauteile man hat, je weniger kann kaputt gehen (Schaden) und je weniger muß gewartet und überwacht werden (Wirtschaftlichkeit).
  • Je einfacher („kiss = keep it simple stupid“) das Kraftwerk ist, je einfacher ist es auch zu bedienen – dies gilt für die Automatik, wie auch für das Personal.
  • Je mehr man auf Naturkräfte (Schwerkraft, Speicherung etc.) bei der Sicherheitstechnik setzt, um so sicherer ist ihre Verfügbarkeit im Ernstfall.
  • Je unabhängiger man von äußeren Einflüssen ist (Netzanschluss, Kühlwasser etc.), je weniger können solche „Einwirkungen von außen“ (Tsunami, Wirbelsturm, aber auch Flugzeugabsturz, Terror etc.) zu Schäden beim Kraftwerk führen.
  • Je passiver die Sicherheitsketten sind, je weniger muß man sich auf eine hohe Bereitschaft des Schichtpersonals verlassen. Gerade in Ausnahmesituationen (Erdbeben mit Tsunami) brauchen Menschen Zeit sich darauf umzustellen.
  • Wenn man bewußt von dem Versagen aller Sicherheitssysteme ausgeht und offensiv solche Ereignisse durchspielt, kann man trotzdem die Schäden für die Umwelt noch weiter mindern.

Nur die konsequente Umsetzung der vorausgehenden Punkte hat zu der gewaltigen Steigerung der Sicherheit beim ESBWR geführt. Hatte die „Fukushima-Generation“ noch eine Wahrscheinlichkeit von einer Kernschmelze in 100.000 Betriebsjahren, so liegt diese Wahrscheinlichkeit beim ESBWR bei etwa einer Kernschmelze in 170.000.000 Betriebsjahren. Spätestens nach den Ereignissen von Tschernobyl und Fukushima legt man großen Wert auf die Freisetzung von Radioaktivität nach dem Versagen aller Sicherheitseinrichtungen (z. B. Beschädigung des Containment etc.). Man kann durch geeignete Maßnahmen auch in einem solchen schweren – und unwahrscheinlichen – Unfall, die Freisetzung von radioaktiven Stoffen erheblich verringern. Simulationen für Standorte in USA haben ergeben, daß selbst in Betrachtungszeiträumen von einer Milliarde Jahren (berücksichtigt die geringe Wahrscheinlichkeit der Ereignisse) in einer Entfernung von 800 m (!) keine Dosen über 1 Sv auftreten würden. Natürlich können solche Berechnungen „Atomkraftgegner“ nicht überzeugen. Sie halten auch nach Tschernobyl und Fukushima tapfer an ihrem Glauben von Millionen-Tote-für-zehntausende-Jahre-unbewohnbar fest. Was soll’s, es gibt auch heute noch Menschen, die an Hexen glauben.

Der Naturumlauf

Die Idee einen Siedewasserreaktor ohne Umwälzpumpen zu bauen, ist keinesfalls neu. Allerdings waren die ursprünglichen Modelle, wie z. B. Dodewaard (183 MWth) und Humboldt Bay (165 MWth) geradezu winzig gegenüber einem ESBWR (4500 MWth). Gleichwohl haben sie in den Jahrzehnten ihres Betriebs wertvolle Erkenntnisse und Messreihen geliefert, die als Referenz für die Auslegungsprogramme des ESBWR dienen. Dodewaard war von 1969 bis 1997 am Netz und hat trotz seiner bescheidenen Leistung von 55 MWel fast 11000 GWhelStrom produziert.

Wenn man einen Reaktor mit Naturumlauf bauen will, muß man die treibende Kraft der Umwälzpumpen durch einen Kamineffekt ersetzen: Es steht nur die Dichtedifferenz zwischen kaltem Abwärtsstrom und dampfhaltigem Aufwärtsstrom zur Verfügung. Um überhaupt genug Druck erzeugen zu können, damit man die Reibung in den Bauteilen überwinden kann, ist eine erhebliche Bauhöhe erforderlich. Genau das war aber in den Anfangsjahren das Problem. Man konnte solch große Druckgefäße – zumindest wirtschaftlich – nicht herstellen. Es bot sich deshalb an, besser Umwälzpumpen zu verwenden. Heute haben sich die Verhältnisse umgekehrt. Es gelang praktisch das im ABWR verwendete Druckgefäß auch im ESBWR zu verwenden. Es mußte allerdings für den Kamin oberhalb des Reaktorkerns, von 21,7 auf 27,6 m verlängert werden. Solch schlanke Behälter haben Vor- und Nachteile. Für die Gebäudehöhe und den Erdbebenschutz ist eine solche Länge eher nachteilig. Allerdings ergibt sich auch ein sehr großes Wasservolumen, was sich positiv bei Störfällen auswirkt.

Der Kern des ESBWR ist gegenüber dem ABWR größer (1590 gegenüber 1350 Brennelemente) und flacher (3,0 m gegenüber 3,7 m aktive Brennstablänge). Dies ist auf die höhere Leistung (4500 gegenüber 3926 MWth.) und die anderen thermohydraulischen Bedingungen zurückzuführen. Wegen der höheren Anzahl der Brennelemente erhöht sich auch die Anzahl der Regelstäbe (269 gegenüber 205). Diesem Mehraufwand ist die Einsparung von zehn internen Umwälzpumpen gegen zu rechnen.

Der Rechenaufwand

Einfach anmutende natürliche Systeme, sind meist wesentlich schwieriger zu beschreiben, als technische Systeme. Technische Anlagen, wie z.B. Pumpen, können definierte Randbedingungen schaffen, die eine Berechnung oft stark vereinfachen. Nur auf Naturkräfte beruhende Systeme sind die hohe Schule der Simulation. Schnell stößt man bei der notwendigen räumlichen und zeitlichen Auflösung an die Grenzen heutiger Rechner. Hinzu kommt hier eine sehr große Anzahl von Gleichungen, da die Thermohydraulik und die Neutronenphysik sich sehr stark gegenseitig beeinflussen.

Man muß es eigentlich nicht besonders erwähnen, hier hat man es mit einer Genehmigungsbehörde zu tun und bewegt sich nicht als freischaffender Künstler in der Welt von Klimamodellen oder Wirtschaftsprognosen. Hier muß man nicht nur sein Programm offen legen, sondern auch noch nachweisen, daß es richtig rechnet. Dazu müssen zahlreiche Messreihen an 1:1 Modellen nachgerechnet werden, um Unterprogramme (z. B. Druckverlust in einem Brennelement) zu testen. Ist diese Hürde – zur Zufriedenheit der Genehmigungsbehörde – erfolgreich genommen, geht es daran, Versuche an bereits gebauten Reaktoren nachzurechnen. Erst wenn der Genehmigungsbehörde kein Testfall mehr einfällt, ist das Programm zugelassen. So etwas kann dauern, schließlich arbeitet die Behörde im Stundenlohn für einen Stundensatz von 280 US-Dollar. So viel zum Thema: Junge Unternehmen entwickeln einen innovativen Reaktor. Die alten Zeiten eines Admiral Hyman G. Rickover, für den der Reaktor der USS Nautilus noch mit Rechenschieber, Bleistift und ganz viel Hirn ausgelegt wurde, sind lange vergangen.

Allein die Anpassung des vorhandenen Programms an die Besonderheiten des ESBWR soll bei GE mehr als 100 Mann-Jahre gedauert haben. Erst dann konnten für alle möglichen geforderten Zustände, die Leistungen, Durchflüsse, Dampfzustände und Dampfanteile, Blasenkoeffizienten, die Leistungsdichte und -verteilung, sowie die Stabilität (z.B. Xenon-Schwingungen) nachgewiesen werden.

Führt man sich diesen Aufwand vor Augen, wird einsichtig, warum die Entwicklung evolutionär verläuft. Man hat versucht, soviel wie möglich vom ABWR beim ESBWR weiter zu verwenden. Nicht einmal ein Verbund von internationalen Konzernen aus GE, Hitachi und Toshiba kann es sich heute noch erlauben, die Entwicklung eines kommerziellen Reaktors mit einem weißen Blatt Papier zu beginnen. Ob das nun gut oder eher schlecht ist, mag jeder für sich selbst entscheiden.

Die Notkühlung

Nach dem Unglück in Fukushima sind zwei Ereignisse in den Mittelpunkt der Sicherheitsüberlegungen gerückt:

  1. Der Verlust der Hauptwärmesenke. In Fukushima wurden durch die Flutwelle die Kühlwasserpumpen und Einlaufbauwerke zerstört. Damit ging die Fähigkeit zur Abfuhr der Nachzerfallswärme verloren. Für sich genommen, schon ein wesentlicher Schritt zur Kernschmelze.
  2. Verlust (nahezu) jeglicher Stromversorgung. Durch die Schnellabschaltung infolge der Erdstöße war die Eigenversorgung weg, durch die großräumigen Verwüstungen durch die Naturkatastrophe, die Stromversorgung über das Netz und durch die Flutwelle wurden die Schaltanlagen und Notstromdiesel zerstört.

Wie hätte sich nun ein ESBWR in einer solchen Ausnahmesituation verhalten? Er verfügt über eine zusätzliche Wärmesenke für den Notfall, die vollständig unabhängig vom normalen Kühlwassersystem funktioniert: Die Außenluft. Der Auslegungsphilosophie folgend, sich nur auf Naturkräfte zu verlassen, handelt es sich dabei um offene „Schwimmbecken“ oberhalb des Sicherheitsbehälters. Das Volumen ist so bemessen, daß es für mindestens 72 Stunden reicht. Die Temperatur ist – unabhängig von den Umweltbedingungen – durch die Verdampfung auf maximal 100 °C begrenzt. Es kann jederzeit – auch von außen durch die Feuerwehr – aus verschiedenen Tanks nachgefüllt werden.

Das nur mit der Schwerkraft betriebene Notkühlsystem ECCS (Emergency Core Cooling System) besteht aus vier voneinander unabhängigen Zügen. In jeweils einem „Schwimmbecken“ oberhalb des Sicherheitsbehälters befinden sich zwei Kondensatoren. Diese bestehen aus je zwei übereinander angeordneten Sammlern, die durch zahlreiche dünne Rohre verbunden sind. Von dem Reaktordruckgefäß steigt eine Leitung zu den Sammlern auf. Im Kondensator kühlt sich das entweichende Dampf/Wassergemisch ab und strömt über den (kalten) Rücklauf wieder dem Reaktordruckgefäß zu. Es entsteht ein natürlicher Kreislauf, der sich selbst antreibt. Im Normalbetrieb ist die „warme“ Dampfleitung stets offen. Jede „kalte“ Rückleitung ist durch je zwei parallele Ventile verschlossen. Aus Gründen der Diversität ist ein Ventil elektrohydraulisch und das jeweils andere pneumatisch über einen Druckgasspeicher betrieben. Die Ventile befinden sich in einer „fail-safe“ Stellung: Während des Betriebs werden sie durch die Kraft der Hydraulik oder des Gases geschlossen gehalten. Geht der Druck weg – aus welchen Gründen auch immer, gewollt oder nicht – geben die Ventile den Weg frei. Wegen der Redundanz, reicht ein Ventil aus, um den gesamten Strom durchzulassen. Da die Kondensatoren und die Rückleitung vollständig mit „kaltem“ Wasser gefüllt sind, rauscht dieses Wasser infolge der Schwerkraft in den Reaktordruckbehälter und der Kondensator saugt dadurch ein „warmes“ Gas- und Dampfgemisch aus dem Reaktorgefäß nach. Ein Naturumlauf ist entfacht. Dieser läuft solange, wie der Kern Nachzerfallswärme produziert und die Außenluft diese Wärme abnimmt.

Wenn das nukleare System irgendwo ein Leck hat, würde irgendwann der Kern trocken fallen. Das entweichende Wasser muß sofort ersetzt werden. Zu diesem Zweck gibt es innerhalb des Sicherheitsbehälters große Wassertanks. Damit aber das Wasser in freiem Fall nachströmen kann, muß zuerst der Druck im System abgebaut werden. Hierfür gibt es 8 Sicherheitsventile, 10 Abblaseventile (die zeitweilig durch pneumatische Antriebe geöffnet werden können) und 8 Druckentlastungsventile unmittelbar am Reaktordruckgefäß. Letztere enthalten verschweißte Membranen, durch die sie dauerhaft dicht und wartungsfrei sind. Wenn sie öffnen müssen, „durchschneidet“ ein Kolben die Dichtung. Dieser Kolben wird durch Gas, welches pyrotechnisch in einem Gasgenerator erzeugt wird, bewegt. Es ist das gleiche Prinzip, wie bei einem „Airbag“ im Auto – ein sehr kleiner „Signalstrom“ reicht zur Zündung aus und erzeugt über die „Sprengkraft“ eine sehr große Gasmenge. Diese Ventile sind so gebaut, daß sie den Weg vollständig frei geben, nicht verstopfen können und sich nicht wieder schließen lassen.

Der Energieabbau und die Kühlung geschieht in mehreren miteinander verknüpften Schritten:

  1. Aus den diversen Abblaseventilen strömt (zumindest am Anfang) ein Dampfstrahl mit hoher Energie und Geschwindigkeit. Dieser wird feinverteilt in Wasserbecken eingeblasen. Diese sog. Kondensationskammern befinden sich unten im Sicherheitsbehälter.
  2. Durch die Kondensation fällt der Dampf in sich zusammen und bildet wieder Wasser. Die Verdampfungswärme geht dabei an das Wasser der Kondensationskammer über. Würde man das Wasser nicht kühlen, wäre irgendwann Schluß damit. Der Zeitraum hängt von der Nachzerfallswärme und dem Wasservolumen ab.
  3. Das Wasser in den Kondensationskammern kann auf verschiedenen Wegen gekühlt werden. Der wichtigste Weg ist über die weiter oben beschriebenen Kondensatoren.
  4. Damit der Reaktorkern stets sicher gekühlt ist, sind die Wasservolumina in den Kondensationskammern und Speichern so bemessen, daß der Kern auch dann unter Wasser bleibt, wenn sich das Wasser im Sicherheitsbehälter ausbreitet. Dieser Zustand kann auch absichtlich herbeigeführt werden.
  5. Um eine Kettenreaktion sicher und dauerhaft zu verhindern, wird zusätzlich aus Speichern borhaltiges (Neutronengift) Wasser eingesprüht.

Der „Supergau“

Im Gegensatz zu den Anfängen der Kernkraftwerkstechnik diskutiert man schon heute im Zulassungsverfahren ganz offensiv das Versagen aller Sicherheitseinrichtungen: Einerseits setzt man sich dabei mit den Auswirkungen der dadurch freigesetzten Radioaktivität auf die Umgebung auseinander und andererseits beschäftigt man sich mit Möglichkeiten diese Auswirkungen trotzdem abzumildern.

Ein typischer Fall ist das Versagen des Sicherheitsbehälters. Man versucht alles erdenkliche zu tun um dies zu verhindern, beschäftigt sich aber trotzdem mit diesem Ereignis. Ein Schritt diesen Unfall abzumildern, ist die gesteuerte Ableitung über Filter und den Abgaskamin. Durch die Kaminhöhe verdünnt sich die Abgaswolke beträchtlich. Durch das Vorschalten von geeigneten Filtern kann die Schadstoffmenge zusätzlich gemindert werden.

Ähnlich verhält es sich mit dem Kern: Durch redundante, passive Kühlsysteme versucht man den Brennstoff und die Spaltprodukte im Reaktordruckgefäß zu halten. Trotzdem untersucht man auch ein Versagen des Druckbehälters. Wie Fukushima gezeigt hat, ist auch beim Versagen der Notkühlung nicht mit einem „China Syndrom“ (Hollywood Phantasie, nach der sich der schmelzende Kern immer weiter in den Untergrund frisst) zu rechnen. Trotzdem geht man von einem Schmelzen des Stahlbehälters wie bei einem Hochofenabstich aus. Die Grube des Reaktorgefässes ist deshalb als „feuerfester Fußboden“ (BiMAC, Basemat Internal Melt Arrest and Coolability device) ausgeführt. Unterhalb einer feuerfesten Schicht befindet sich ein Rohrleitungssystem, welches – quasi wie bei einer Fußbodenheizung – diese Schicht kühlt. Dieser „Fußboden“ ist bezüglich seiner Konstruktion und Leistung für den 4-fachen Kerninhalt ausgelegt. Zusätzlich könnte die Grube mit dem im Sicherheitsbehälter vorhandenem Wasser vollständig geflutet werden, um die Spaltprodukte größtenteils darin zurückzuhalten.

Leistungsregelung

Normalerweise geschieht die Leistungsregelung bei Siedewasserreaktoren über die Steuerstäbe und die Umwälzpumpen. Die Steuerstäbe dienen nur zum Anfahren und bis etwa 50% der Auslegungsleistung. Im Bereich oberhalb 60% wird die Leistung nur noch über die Umwälzpumpen durchgeführt. Die Steuerstäbe dienen dann nur noch zur Kompensation des Abbrands.

Beim ESBWR kann der Reaktor durch langsames ziehen der Steuerstäbe auf Temperatur gebracht werden. Da im Siedebereich Temperatur und Druck miteinander gekoppelt sind, steigt auch der Druck im nuklearen System entsprechend an. Würde man keinen Dampf entnehmen, würde der Druck im „Kessel“ immer weiter ansteigen bis die Sicherheitsventile ansprechen. Natürlich wird so bald wie möglich Dampf entnommen, um die Turbine und das gesamte nukleare System damit aufzuwärmen. Wenn man aber Dampf entnimmt, muß die gleiche Menge durch Speisewasser ersetzt werden. Das Speisewasser wird im Betriebszustand auf 216°C vorgewärmt. Dies geschieht in sechs Stufen. Man entnimmt dazu an bestimmten Stellen der Turbine eine gewisse Menge Dampf. Dies ist sinnvoll, da der jeweils entnommene Dampf bereits Arbeit geleistet hat und sich somit der Wirkungsgrad verbessert. Man nennt diese Strategie „Carnotisierung“.

Der ESBWR hat gegenüber einem normalen Siedewasserreaktor (z. B. ABWR) eine siebte Vorwärmstufe, die mit frischem Dampf aus dem Reaktor beheizt wird. Normalerweise wird sie deshalb umgangen. Wenn man beispielsweise mit dieser Stufe die Speisewassertemperatur auf 252°C erhöht, geht die Leistung des Reaktors – bei gleicher Position der Steuerstäbe – auf 85% zurück. Umgekehrt könnte man die Steuerstäbe etwa so weit einfahren, daß nur noch rund 50% der Auslegungsleistung erzeugt wird. Würde man nun die Speisewassertemperatur auf 180°C absenken, würde sich wieder die ursprüngliche Leistung einstellen. Es ergibt sich somit im Bereich zwischen 50% bis 100% Leistung ein umfangreiches Feld, in dem sich die Leistung durch Kombination von Steuerstabstellungen und Speisewassertemperatur regeln läßt.

Die physikalische Ursache ist bei allen Siedewasserreaktoren die Abhängigkeit der Abbremsung der Neutronen von der Dichte des Moderators. Bei Reaktoren mit Umwälzpumpen wird die Dichte durch „ausspülen“ von Dampfblasen aus den Brennelementen erhöht, bei Naturumlauf durch das Absenken der mittleren Temperatur.

Wegen seiner Leistung von 1600 MWel. dürfte dieser Reaktor eher in der Grundlast eingesetzt werden. Gleichwohl ist ein täglicher Lastfolgebetrieb vorgesehen und genehmigt. So sind z. B. die Steuerstäbe für eine Betriebsdauer von 10 Jahren bei täglichem Lastwechsel zugelassen. Idealerweise fährt man mit diesem Reaktor aber mit konstant volle Leistung. Wegen seiner Stabilität und seiner passiven Notkühlung ist er sogar für den Betrieb durch nur einen Bediener konstruiert und zugelassen!

Ausblick

Im nächsten Teil werden die Schwerwasserreaktoren vorgestellt. Es ist bereits beschlossen, einen weiteren solchen Reaktor in Kooperation mit China, in Rumänien zu errichten.

Reaktortypen in Europa – Teil3, AP1000

AP1000 ist die Warenmarke eines Druckwasserreaktors der Generation III+ des Herstellers Westinghouse. Westinghouse ist die Mutter aller Druckwasserreaktoren. Sie erschuf 1954 unter Hyman G. Rickover und Alvin M. Weinberg diesen Reaktortyp für den Antrieb des ersten Atom-U-Boots USS Nautilus (SSN-571).

Geschichte

Der AP1000 entwickelt sich zum „Golf“ der Kernkraftwerke. Inzwischen sind acht Reaktoren in Bau: Je zwei in Sanmen und Haiyang in China und in Vogtle (Georgia) und Summer (South Carolina) in USA. Zahlreiche andere befinden sich weltweit im Vergabeverfahren. So sind drei Reaktoren in Moorside (West Cumbria, nordwestlich von Sellafield, UK) in Vorbereitung. Sie sollen durch NuGen, ein Joint Venture aus Toshiba (Westinghouse gehört zu Toshiba) und GDF SUEZ errichtet und betrieben werden.

Ständig steigende Investitionskosten und steigende Sicherheitsanforderungen zwangen Westinghouse das Konzept grundlegend zu überarbeiten. Über 50 Jahre Betriebserfahrung gipfelten in einer völlig neuen Konstruktion mit vier zentralen Anforderungen:

  • Vereinfachte Konstruktion: Was man nicht hat, kostet auch nichts und kann nicht versagen,
  • Übergang von aktiven auf passive Sicherheitssysteme,
  • modularer Aufbau und
  • parallele Errichtung von Bau und Anlagentechnik.

Der AP1000 ist ein schönes Beispiel dafür, was man erreichen kann, wenn man den Mut hat, eine Konstruktion noch einmal mit einem weißen Blatt Papier von Anfang an zu beginnen. Vorgabe war ein Druckwasserreaktor mit einer mittleren Leistung von rund 1000 MWel. Schon damit setzte man sich ab. Man versuchte gar nicht erst eine Kostensenkung über eine Leistungssteigerung zu erzielen, sondern setze lieber auf die Nachfrage des Weltmarktes. Die Größe entsprach nur etwa 2/3 der letzten Typen der zweiten Generation. Dieser Rückschritt sollte dafür die Märkte der Schwellenländer mit noch kleinen Netzen einschließen.

Durch die „geringe“ Leistung kommt man mit nur zwei modernen Dampferzeugern gegenüber üblicherweise vier aus. Dies spart schon mal beträchtlich umbauten Raum, der bei Kernkraftwerken besonders teuer ist (Sicherheitsbehälter, Betonbunker etc.). Durch weiteres, konsequentes „weglassen“ ergibt sich der Druckwasserreaktor mit dem geringsten Beton- und Stahleinsatz pro MWel.

Ein weiterer Ansatz zur Senkung der Stromerzeugungskosten ist die Verlängerung der Nutzungsdauer: Die Ausdehnung auf genehmigte 60 Jahre verteilt die Kapitalkosten auf wesentlich mehr produzierte KWh. Weniger sicherheitsrelevante Teile (z. B. Noteinspeisepumpen mit zugehörigen Ventilen und Rohrleitungen) oder robustere Konstruktionen (z. B. dichtungslose Hauptkühlmittelpumpen) verringern die Wartungskosten und die notwendigen Wiederholungsprüfungen. Eine nicht zu vernachlässigende Einsparung über die Lebensdauer eines Kraftwerks.

Pumpen

Üblicherweise stehen die Hauptkühlmittelpumpen zwischen den Dampferzeugern. Sie sind mit diesen und dem Reaktordruckgefäß über Rohrleitungen verbunden. Die Pumpen saugen das abgekühlte Wasser aus den Dampferzeugern an und drücken es zurück durch den Kern. Beim AP1000 haben sie die gleiche Aufgabe. Sie sind aber paarweise direkt an den Dampferzeugern angeflanscht. Dies erspart nicht nur Rohrleitungen, sondern vereinfacht diese erheblich. Es sind weniger Formstücke und Schweißnähte erforderlich und der Schutz gegen Erdbeben gestaltet sich wesentlich einfacher.

Die Pumpen selbst, sind für zivile Druckwasserreaktoren ungewöhnlich. Sie verfügen über mit Wasser geschmierte Gleitlager und sind voll gekapselt. Der Läufer und der Stator sind in wasserdichte Hüllen eingeschweißt. Das Pumpenrad sitzt direkt auf der Welle des Antriebsmotors. Sie benötigen damit keine Wellendichtungen und sind somit extrem wartungsarm. Sie sind für eine Betriebsdauer von 60 Jahren ausgelegt und zugelassen. Dieser Pumpentyp ist sehr anspruchsvoll in der Fertigung. Die USA verfügen jedoch über eine jahrzehntelange Erfahrung mit diesem Pumpentyp in ihrer Marine.

Passive Sicherheit

Unter „Passiver Sicherheit“ versteht man, daß bei keinem Störfall Pumpen, Diesel etc. benötigt werden um den Reaktor in einen sicheren Zustand zu überführen und zu halten. Alle Armaturen müssen nur einmal ausgelöst werden (voll offen oder voll geschlossen) und nach Auslösung ohne Hilfsenergie auskommen. Es sollten keine Eingriffe durch das Personal nötig sein.

Hinter dieser Definition verbirgt sich noch ein weiterer Ansatz zur Kostensenkung: Man kann „Sicherheit“ oder „Verteidigung“ in mehreren Stufen definieren. Bevor ein Ereignis zu einem Störfall wird, kann man durch automatische Stellglieder die Folgen abwenden. So kann man z. B. bei einem Generatorschaden den Dampf direkt in den Kondensator leiten und dadurch eine Notkühlung verhindern. Alle für diese Umleitung notwendigen Komponenten bräuchten nur den bei konventionellen Kraftwerken üblichen Qualitätsstandard besitzen, da sie das eigentliche Sicherheitssystem (gemeint ist damit das passive Notkühlsystem) nicht berühren. Nur die Komponenten des passiven Sicherheitssystems müssten den Stempel „nuclear grade“ tragen. Oft sind solche Teile völlig identisch mit dem „Industriestandard“ – unterscheiden sich lediglich im bürokratischen Aufwand und im Preis.

Man kann die Sicherheit – bezogen auf eine eventuelle Freisetzung von radioaktiven Stoffen in die Umwelt – noch steigern, indem man eine konsequente Diversifizierung betreibt. Ferner sieht man für wahrscheinlichere Ereignisse eine höhere Anzahl von Verteidigungsstufen vor.

Der Station Blackout

Vor Fukushima war der größte anzunehmende Unfall (GAU) der entscheidende Sicherheitsmaßstab. Man ging von einem plötzlichen Verlust der Reaktorkühlung infolge einer abgerissenen Hauptkühlmittelleitung aus. Um ein solches Ereignis zu beherrschen – ohne Freisetzung nennenswerter Radioaktivität in die Umwelt – muß bei Reaktoren mit aktivem Sicherheitskonzept auf jeden Fall ausreichend elektrische Energie vorhanden sein. Mindestens ein Notstromdiesel muß starten und die entsprechenden Schaltanlagen müssen funktionstüchtig sein. In Fukushima hat beides ein Tsunami außer Gefecht gesetzt.

Seit Fukushima ist der „station blackout“ ins öffentliche Interesse geraten. Gemeint ist damit der völlige Verlust von Wechselstrom (Kraftstrom) im Kraftwerk. Es ist nur noch Gleichstrom aus Batterien für Steuerung und Notbeleuchtung vorhanden. Es ist daher interessant, wie der AP1000 auf solch eine Situation reagieren würde:

Durch den Stromausfall fallen die Regelstäbe durch ihr Eigengewicht in den Reaktorkern ein und unterbrechen jede Kettenreaktion. Allerdings beträgt in diesem Moment die Nachzerfallswärme noch rund 6% der thermischen Leistung (ungefähr 200 MW), die sicher abgeführt werden müssen. Durch den Stromausfall, fallen alle Pumpen aus. Durch die in den Schwungrädern der Hauptkühlmittelpumpen gespeicherte Energie, laufen diese noch geraume Zeit nach und halten den Primärkreislauf aufrecht. Allerdings ist nach etwa zwei Minuten der Wasserstand auf der Sekundärseite der Dampferzeuger auf sein zulässiges Minimum gefallen, da die Speisepumpen auch nicht mehr laufen können. Dieser Zustand öffnet automatisch die beiden Ventile zur Notkühlung (die Ventile sind im Betrieb elektromagnetisch geschlossen, d. h. Strom weg = Ventil offen). Nur ein Ventil müßte öffnen (Redundanz), um die volle Wärmeleistung abzuführen. Das Wasser strömt nun vom Reaktorkern zu einem Wärmeübertrager (PRHR HX) in dem Wassertank innerhalb der Sicherheitshülle (PRHR). Dieser Tank liegt deutlich oberhalb des Reaktordruckgefässes, wodurch sich ein Naturumlauf ergibt. Nach rund zwei Stunden ist die Nachzerfallswärme auf rund ein Prozent (immerhin noch rund 34 MW) abgefallen. Nach ungefähr fünf Stunden wäre der Tank soweit aufgeheizt, daß das Wasser zu sieden beginnt. Der Sicherheitsbehälter ist ein Zylinder aus 45 mm dickem Stahlblech (bessere Wärmeleitung als Beton). Der Dampf würde an den Wänden kondensieren und über ein Auffangsystem zurück in den Tank laufen. Der Sicherheitsbehälter wiederum, würde seine Wärme an die Umgebungsluft abgeben. Die Umgebungsluft steigt wie in einem Kamin im Zwischenraum zwischen Sicherheitshülle und Betonwand der Schutzhülle (gegen Flugzeugabsturz usw.) auf. Steigt der Druck im Sicherheitsbehälter über einen Grenzwert an, werden zur Steigerung der Kühlung die pneumatisch betätigten Ventile der Beregnungsanlage geöffnet. Ganz oben, auf dem Dach des Reaktors befindet sich ein charakteristischer, ringförmiger Wassertank. Aus ihm würde nun Wasser durch Schwerkraft auf die äußere Seite des Sicherheitsbehälters „regnen“ und diesen stärker kühlen. Der Inhalt des Tanks reicht für 72 Stunden Beregnung.

Durch die (gewollte) Abkühlung des Reaktors zieht sich das gesamte Wasser des Primärkreislaufes wieder zusammen. Der Wasserstand im Druckhalter sinkt. Genauso würde er sinken, wenn der klassische GAU – irgendein Leck im Primärkreis – eingetreten wäre. Damit ein zeitweiliges „trocken fallen“ der Brennelemente (Harrisburg und Fukushima) sicher verhindert werden kann, wird rechtzeitig Wasser nachgespeist. Hierfür gibt es sog. Akkumulatoren. Das sind Behälter, die teilweise mit Wasser gefüllt sind und durch ein Stickstoffpolster unter Druck gehalten werden. Aus diesen strömt automatisch (Rückschlagventile, die durch den Druck im Primärkreis geschlossen gehalten werden, Druck zu klein = Ventil offen) Wasser in den Reaktordruckbehälter nach.

Ist der Druck – egal ob durch ein Leck oder Abkühlung – bis auf Umgebungsdruck abgebaut, kann die Kühlung direkt über die Verdampfung des Wassers im Druckbehälter endlos weiter erfolgen. Dieser Zustand kann auch gewollt oder automatisch angestrebt werden. Würde die Kühlung – aus welchen Gründen auch immer – versagen, würde der Druck im Reaktorbehälter immer weiter ansteigen. Um dies zu verhindern, kann man den Druck über ein Abblasen des Druckhalters abbauen. Dies ist ein Beispiel, wie man durch den geschickten Aufbau einer Sicherheitskette das eventuelle Versagen einzelner Glieder überbrücken kann: Würden tatsächlich beide Ventile (2 x 100%) des Notkühlkreislaufes versagen (siehe weiter oben) müßte trotzdem nicht die Kühlung ausfallen, sondern es würde lediglich ein anderer Weg beschritten.

Die 72 h Regel

Beim AP1000 bezieht sich die passive Sicherheit nicht nur auf die Anlagentechnik, sondern auch auf das Personal. Seit den Störfällen von Harrisburg und Tschernobyl weiß man um die Bedeutung von Bedienungsfehlern. Gerade in der Zeit unmittelbar nach der Störung ist die Wahrscheinlichkeit dafür besonders hoch: Das Schichtpersonal muß erst seinen Schock überwinden, eine wahre Informationsflut muß erst einmal verarbeitet werden damit man sich überhaupt einen Überblick verschaffen kann und dann müssen die richtigen Maßnahmen auch noch erkannt und eingeleitet werden. Andererseits sind drei volle Tage eine recht lange Zeit, um etwas zu reparieren, Fachleute außerhalb des Kraftwerks hinzu zu ziehen oder sogar Ersatzgerät herbeizuschaffen. Dies gilt selbst bei schwersten Naturkatastrophen wie in Fukushima.

Dabei sind die 72 Stunden als Mindestwert bei ungünstigsten Bedingungen zu verstehen. Nach Ablauf dieser Zeitspanne sind weitere Auffanglinien vorgesehen. So können z. B. die Kühlwasserbehälter auch von außen über die Feuerlöschtanks auf dem Gelände nachgefüllt werden. Hierfür ist allerdings wenigstens ein kleiner Hilfsdiesel, der zusätzlich zu den eigentlichen Notstromdieseln vorhanden ist, nötig. Der Treibstoffvorrat beträgt vier Tage. Inzwischen dürften längst Hilfskräfte und Material aus den Notfallcentern eingetroffen sein.

Die Strategie zur Kostensenkung

So makaber es klingen mag, aber die Unglücke von Tschernobyl (vollkommen explodierter Reaktor) und Fukushima (in drei Reaktoren gleichzeitige Kernschmelze) haben den „Atomkraftgegnern“ ihr stärkstes Argument von dem „unkalkulierbaren Restrisiko“ bei Kernkraftwerken entzogen. Nur noch sehr schlichte Gemüter glauben das Märchen „Millionen-Tote-für-10000-Jahre-unbewohnbar“. Es ist also kein Zufall, daß sich die „Bewegung“ nun auf angeblich „zu teuer“, konzentriert. Für die Investitionskosten sind folgende Faktoren ausschlaggebend:

  • Unnötig kompliziert: Doppelte Betonbunker, Core catcher, weitere Notstromdiesel, Pumpen etc.
  • Bürokratismus: „Nuclear grade“ erfordert einen – teilweise absurden – bürokratischen Aufwand. Oft kostet das gleiche Bauteil als „nuclear grade“ geadelt, den vier bis fünffachen Preis. Um eine Diskussion über Sinn und Zweck zu vermeiden, sollte dieser Standard nur noch für echte Sicherheitstechnik verlangt sein. So könnte man beispielsweise bei einem Reaktor mit passiver Sicherheit, die Notstromdiesel aus diesem Verfahren entlassen – als wenn es in anderen Bereichen (IT, Luftfahrt, Seefahrt etc.) keine Sicherheitsnormen gäbe.
  • Bauzeit: Je länger die Bauzeit dauert, desto höher sind automatisch die Baukosten (Verzinsung), das Risiko (z. B. Inflation) und der ausgefallene Gewinn (z. B. Zukauf von Strom). Eine Verkürzung läßt sich grundsätzlich nur durch parallele Abläufe erzielen.
  • Baustelle: Arbeiten auf Baustellen sind grundsätzlich teurer, als eine Fertigung in einer Fabrik. Hinzu kommt meist noch ein schwer zu kalkulierendes Witterungsrisiko.
  • Serien: Jeder „first of a kind“ ist teurer als die Nachfolgemodelle. Hat man erst einmal die „Konstruktionsfehler“ behoben und das Personal seine Erfahrungen gesammelt, geht die Arbeit wesentlich flotter. Dies hat sich auch jetzt beim Bau der ersten AP1000 in China und USA wieder gezeigt.

Westinghouse hat konsequent auf eine Modularisierung bei paralleler Fertigung gesetzt. Im Schiffbau nennt man das „Sektionsbauweise“. Ziel ist die Errichtung eines Kernkraftwerks in 36 Monaten. Diesen sind noch der Vorlauf für die Baustelleneinrichtung und die Inbetriebnahme hinzu zu rechnen, sodaß ein Zeitraum von rund fünf Jahren zwischen Auftragserteilung und Übergabe an den Kunden liegt.

Der Rohbau

Üblich ist es schon immer, alle großen Bauteile: Reaktordruckgefäß, Dampferzeuger, Druckhalter, Turbine und Generator, Kühlmittelpumpen etc. möglichst schnell zu vergeben. Diese Aggregate werden von Spezialfirmen gefertigt und getestet und kommen möglichst komplett auf die Baustelle.

Gänzlich anders verhielt es sich bisher mit dem baulichen Teil: Der Hochbau wurde ganz konventionell in Ortbeton hergestellt. Dabei arbeitete man sich, wie bei jedem anderen Gebäude auch, vom Keller bis zum Dach stückweise voran. Wie auf jeder anderen Baustelle auch, konnte man mit dem Innenausbau erst beginnen, wenn der Rohbau fertig war.

Beim AP1000 hat man konsequent mit dieser Tradition gebrochen. Hier gilt: Möglichst wenig Arbeiten auf der unmittelbaren Baustelle und weitgehendste Fertigung in den Fabriken der Zulieferer. Um möglichst parallel arbeiten zu können, werden die Sektionen auf dem Baustellengelände aus den gelieferten Modulen zusammengebaut und die Sektionen termingerecht mit einem Schwerlastkran (3200 to) zu dem eigentlichen Reaktor zusammengefügt.

Konventionell (Schalung aus Holz, Eisengeflecht vor Ort und mit Beton ausgegossen) gebaut, wird nur noch die Grundplatte, auf der die gesamte „nukleare Insel“ steht. Schon die sich anschließende „Reaktorgrube“ ist eine komplette Sektion in Sandwich-Bauweise. So geht es Sektion für Sektion nach oben. Der Schwerlastkran stapelt alle wie auf einer Werft über- und nebeneinander. Dazu gehören auch ganze Baugruppen aus Rohrleitung, Pumpen, Ventilen usw., fertig lackiert, in Stahlgestellen. Die eigentliche Montage vollzieht sich in der erdbebenfesten Verbindung der Gestelle mit dem Baukörper und dem Anschluß an die Versorgungsleitungen etc. Da diese Module schon bei ihren Herstellern vollständig getestet und abgenommen worden sind, verkürzt sich auch die spätere Inbetriebnahme erheblich.

Das Sandwich

Für eine konventionelle Betonwand muß der Zimmermann eine Schalung aus Holz bauen und die Eisenflechter die Moniereisen einbringen. Nach dem Aushärten des Beton muß alles noch mühselig ausgeschalt und meist auch noch nachgearbeitet werden. Eine kosten- und vor allem zeitaufwendige Arbeit. Außerdem sind Zimmerleute keine Feinmechaniker.

Ein Sandwich besteht aus zwei Stahlplatten, die später mit Beton ausgegossen werden. Die Stahlplatten-Konstruktion übernimmt die Funktion einer verlorenen Schalung und enthält auch noch das „notwendige Eisen“, was die Festigkeit eines Stahlbeton ausmacht. Auf den ersten Blick keine revolutionäre Erfindung. Nur sind die Wände und Decken in einem Kraftwerk meist nicht massiv, sondern haben unzählige Durchbrüche und Einbauten. Wenn man die Anlagentechnik auch in Modulen vorfertigen will, müssen diese in der Toleranz von Maschinenbauern und nicht von Zimmerleuten ausgeführt werden. Wenige Millimeter Versatz, enden in einer teuren Katastrophe. Die einzelnen Platten werden nun – wie auf einer Werft – vollautomatisch aus- und zugeschnitten. Die Verstärkungen (die das Eisengeflecht bei konventionellem Beton ersetzen) werden auf Schweißmaschinen angebracht und die Platten zu Modulen zusammengeschweißt. Die Größe der Module ist dabei maßgeblich durch den Transportweg begrenzt. Die größte Sektion besteht z. B. in Vogtle aus 72 Modulen, die auf der Baustelle zusammengeschweißt werden und mittels eines Schwerlasttransporters und des Schwerlastkranes in den Sicherheitsbehälter eingesetzt wurde. Diese Sektion wiegt ohne Betonfüllung rund 1000 to.

Neue Herausforderungen

Die Aufteilung in drei Bauphasen: Fertigung von Modulen bei den Herstellern, zusammenfügen der Module zu Sektionen auf separaten Vormontageplätzen und der Zusammenbau der Sektionen zum eigentlichen Reaktor, erfordert eine besonders ausgefeilte Planung und Logistik.

Ein solches Vorhaben kann nur gelingen, wenn man von Anfang an, wirklich alle Elemente auf einem entsprechenden Rechner in vierdimensionaler (drei Orts- und eine Zeitachse) Abbildung zur Verfügung hat. Solche Werkzeuge gibt es noch nicht sehr lange. Zum Werkzeug gehören aber noch die entsprechend qualifizierten Konstrukteure mit praktischer Erfahrung und eine Lernkurve. So waren z. B. bei den ersten Reaktoren in China einige Abstände zwischen den Kabelbahnen und den Decken des nächsten Moduls zu knapp bemessen. Es ergaben sich tote Ecken bezüglich der Lackierung, usw. Alles Dinge, die zu Zeitverzug und ungeplanter Nacharbeit geführt haben.

Es ist eine ungeheure Disziplin und straffe Organisation über die gesamte Laufzeit eines Projekts erforderlich: Jede Änderung bei einem Zulieferer – irgendwo auf der Welt – kann dutzende Änderungen, zusätzliche Prüfungen usw. bei anderen Zulieferern auslösen. Gerade Dokumentation und Prüfungen sind in der kerntechnischen Industrie eine besondere Herausforderung. In den USA hat letzteres zu erheblichen Verzögerungen beim Bau des Kraftwerks Vogtle geführt. Ein Hersteller aus Louisiana – der seit Jahrzehnten erfolgreich im Bau von Ölförderanlagen etc. tätig war – war mit diesen „Gepflogenheiten der Kerntechnik“ nicht hinreichend vertraut. Im Endergebnis mußten etliche Module aus China nachbestellt werden.

Die Sektionsbauweise ist auch nicht ohne Tücken und erfordert entsprechendes Fachpersonal auf der Baustelle. Es müssen komplizierte und stabile Leergerüste gebaut werden, um die Sektionen aus Modulen passgerecht zusammen zu bauen. Der Verzug beim Schweißen und die Temperaturschwankungen sind bei so großen Bauteilen eine weitere Herausforderung. Der Schwerpunkt ist ebenfalls nicht immer genau festgelegt, was das Anheben ohne zusätzliche Belastungen nicht einfacher macht. Für Sektionen bis zu 1000 to müssen entsprechende Kräne und Transporter bereitgehalten werden. Für diese selbst, muß die Infrastruktur (Schwerlaststraßen, Bewegungsräume, Energieversorgung etc.) geschaffen werden.

Ausblick

Der AP1000 setzt die Maßstäbe für den Bau moderner Druckwasserreaktoren. Seine Weichen werden z. Zt. in China gestellt. Er kann seine wirtschaftlichen Vorteile erst in einer größeren Serie voll ausspielen. Die Lernkurve zeichnet sich bereits in USA und China deutlich ab. Es ist nur eine Frage der Stückzahl, wann die Investitionskosten für ein solches Kernkraftwerk unter das Niveau eines Kohlekraftwerks nach deutschen Standards (Wirkungsgrad 46%, mit Entstickung und Rauchgasentschwefelung, zugehörige Entsorgungsanlagen etc.) gesunken sind. Genau diese Frage, stellt sich aber bereits heute – wie schon in den 1970er Jahren in Deutschland –, wenn man die Luftverschmutzung in Peking betrachtet. Anschließend steht für China ein gigantischer Weltmarkt offen. Wir sprechen bereits in Europa nicht nur über Moorside, sondern auch über Polen, Tschechien und Bulgarien.

Im nächsten Teil4 geht es um die Siedewasserreaktoren, wie sie z. B. für den Standort Wylfa Newydd (Insel Anglesey in Nord Wales, GB) vorgesehen sind.

 

Reaktortypen in Europa – Teil2, EPR

EPR ist eine Warenmarke des französischen Herstellers Areva für einen Druckwasserreaktor der dritten Generation. Interessant ist schon die unterschiedliche Herleitung der drei Buchstaben EPR: European oder Evolutionary Pressurized Water Reactor. Beides ist angebracht.

Die Geschichte

Inzwischen sind von diesem Typ vier Reaktoren in Bau: Olkiluoto 3 in Finnland (seit Oktober 2005), Flamanville 3 in Frankreich (seit Dezember 2007) und Taishan 1 und 2 in China (seit Oktober 2009). Wahrscheinlich wird in den nächsten Jahren mit dem Bau zweier weiterer Reaktoren in Hinkley Point in Großbritannien begonnen werden.

Auf den ersten Blick eine Erfolgsbilanz. Wie kam es dazu? Ende der 1990er Jahre kam in Deutschland die Rot/Grüne-Koalition an die Macht. Die Kombinatsleitung von Siemens läutete in gewohnter Staatstreue den sofortigen und umfassenden Ausstieg aus der Kernenergie ein. Eine unternehmerische Fehlentscheidung. Heute sind die ganzen Staatsaufträge an Telefonen, Eisenbahnzügen etc. zu „besonders auskömmlichen Preisen“ längst Geschichte. Noch kann man ein paar Windmühlen nach altem Muster „an den Mann bringen“. Aber die einzige Zukunftstechnologie, in der Siemens wirklich einmal zur Weltspitze gehörte, ist unwiederbringlich und ohne Not „abgewickelt“ worden. Siemens fand in Framatome (Vorläufer von Areva) einen dankbaren Abnehmer. Die Franzosen konnten nach ihrem beispielhaften Ausbauprogramm von 57 Reaktoren ihre Kapazitäten nur durch den Ausbau des Auslandsgeschäftes aufrecht erhalten. Ein „Made in Germany“ kam ihnen dabei sicherlich nicht ungelegen. Siemens reichte der Einfuß von 34% der Aktien an dem neuen Gemeinschaftsunternehmen. Kernenergie war ja nicht mehr politisch korrekt und man wollte seinen (damals) lukrativen Kunden – die Öffentliche Hand – nicht verärgern. Man glaubte damals wohl auch noch, seinen überlegenen Turbinenbau allein weiter führen zu können. So als ob Daimler sein Autogeschäft verkaufen würde um zukünftig nur noch mit dem Reifengeschäft zu überleben. Jedenfalls ist Olkiluoto wohl das letzte Kernkraftwerk mit einer deutschen Turbine. Alle weiteren EPR haben natürlich französische Turbosätze der Marke Arabella. Dies gilt selbstverständlich auch für alle weiteren Geschäfte mit China. Ob die Kombinatsleitung den Chinesen ersatzweise politisch korrekte Windmühlen angeboten hat, weiß man nicht. Es gab ja mal eine Zeit lang in bildungsfernen Kreisen den festen Glauben, Deutschland würde „vorweg gehen“ mit seiner Energiepolitik.

Die Mitarbeiter in Frankreich und Deutschland waren jedenfalls redlich bemüht, das beste aus beiden Welten zu erschaffen. Grundlage des EPR sind die französische Baureihe N4 (Kraftwerke Chooz 1+2, Civaux 1+2) und die deutsche Konvoi Baureihe (Neckar 2, Emsland, Isar 2). Es war von Anfang an eine evolutionäre und ausdrücklich keine revolutionäre Entwicklung geplant. Außerdem nahm man nicht nur die Genehmigungsbehörden in beiden Ländern mit ins Boot, sondern auch 12 europäische Energieversorgungsunternehmen. Es sollte ein Reaktor entstehen, der europaweit genehmigungsfähig war. Heute ist er auch in China und USA geprüft und grundsätzlich zugelassen worden.

Das Problem der Größe

Jedes elektrische Netz kann nur eine gewisse Blockgröße vertragen. Über den Daumen gilt immer noch die Regel von maximal zehn Prozent der Leistung, die im Netz anliegt. Ist der Reaktor zu groß, scheiden weltweit eine Menge Netze aus. Das ist ein Problem bei der Vermarktung des EPR. Areva hat bereits schon länger die Problematik erkannt und bietet nun in Kooperation mit Mitsubishi auch einen kleineren Druckwasserreaktor (ATMEA mit ca. 1100 MWel) an. Wahrscheinlich werden die ersten Anlagen in der Türkei errichtet. Demgegenüber sollen die vier EPR von Olkiluoto bis Taishan eine Leistung zwischen 1600 und 1660 MWel erreichen. Die Vorläufer – z. B. das größte deutsche Kernkraftwerk Isar 2 – hatten eine Leistung von etwa 1400 MWel..

Bei Kraftwerken gibt es eine bedeutende Kostendegression. Je mehr man einen gegebenen Entwurf vergrößert, um so kleiner werden die spezifischen Investitions- und Betriebskosten. Man wollte ja ausdrücklich eine evolutionäre Entwicklung. Jetzt steckt man dafür in einer Größenfalle – und was fast noch schlimmer ist – die Kosten sind trotzdem viel zu hoch. Der EPR ist in diesem Sinne kein glücklicher Entwurf.

Die grünen Phantasien

Besonders von den deutschen Genehmigungsbehörden wurden die beiden Sicherheitsanforderungen „Absturz eines Jumbo“ und das „China Syndrom“ aus Hollywood eingebracht. Man glaubte in Deutschland lange genug, man müsste nur über jedes Stöckchen springen, das einem „Atomkraftgegner“ hin halten und dann würden sie auch irgendwann Kernkraftwerke ganz toll finden. Die simple Strategie, die Kosten durch immer neue Ideen immer weiter in die Höhe zu treiben, wurde nicht erkannt. Jetzt steht man mit einer millionenteuren doppelten Sicherheitshülle aus Beton und dem Gimmick eines „core catcher“ da und die „Atomkraftgegner“ lieben den EPR immer noch nicht.

Der Flugzeugabsturz

Solange es Kernkraftwerke gibt, hat man sich über „Einwirkungen von außen (EVA)“ Gedanken gemacht. Schon immer gehörte ein Flugzeugabsturz dazu. Frühzeitig bekamen deshalb die Reaktoren eine entsprechende Betonhülle als Schutz. Die vier Unglücksreaktoren in Fukushima hatten noch keine – mit den bekannten Konsequenzen. Bei ihnen war nur der unmittelbare Bereich um das Reaktordruckgefäß durch dicke Betonabschirmungen geschützt. Von Anfang an stellte sich die Frage, wie dick eine Betonhülle als Bunker sein müßte. In Deutschland ging man vom Absturz eines Militärjets vom Typ Phantom F4 aus. Eine heute noch sinnvolle Annahme – selbst nach den Ereignissen des 11. September. Die Phantom ist bis heute das Flugzeug mit der „größten Dichte“. Ein Militärjet noch aus dem „Stahlzeitalter“. Die Triebwerke einer im Tiefflug dahin rasenden Phantom, würden wie Rammböcke auf die Schutzhülle eines Reaktors wirken. Dahingegen entspricht die Wirkung einer abstürzenden A380 oder eines Jumbojets eher einer Bierdose. Die Terrorflieger des 11. September konnten selbst ein filigranes Hochhaus bzw. das Pentagon nur zum Wackeln bringen. Etwas anderes ist die ungeheure Brandlast eines voll betankten Großraumflugzeuges, aber gegen die hilft Beton nur bedingt.

Jedenfalls steht der EPR heute mit einer doppelten Betonhülle dar. Der innere Teil – das Containment – besteht aus ca. 1,3 m dickem Spannbeton und die äußere Schutzhülle aus einer weiteren ca. 1,8 m dicken Betonhülle. Zusätzlich verschwinden alle nuklearen Komponenten (Dampferzeuger, Reaktordruckgefäß usw.) hinter weiteren Betonmauern, die als Abschirmung gegen Strahlung dienen. Dieses „Bunkersystem“ ist mit Sicherheit stark genug, um jedem Flugzeugabsturz oder einem Terroranschlag zu widerstehen. Wir erinnern uns: Tschernobyl hatte nicht einmal ein Containment und in Fukushima waren nur die Reaktoren geschützt. Das Brennelementebecken stand in einer normalen Industriehalle. Anders als beim ERP, bei dem sogar das Lagergebäude für die Brennelemente und diverse Sicherheitsanlagen mit einer Betonhülle verbunkert sind.

Beton kann nicht schaden, er ist nur sehr teuer. Erschwerend kommt beim EPR die lohnintensive und zeitraubende Ausführung als Ortbeton hinzu. Dies wurde zumindest in Olkiluoto völlig unterschätzt.

Grundsätzlich ist die Konstruktion aus zwei Hüllen mit Zwischenraum sicherheitstechnisch zu begrüßen. Wird das Containment durch eine Explosion (Fukushima) oder was auch immer beschädigt, kann die äußere Hülle ihre Funktion wenigstens zum Teil übernehmen. Der Zwischenraum wird ständig abgesaugt und in leichtem Unterdruck gehalten. Die „radioaktiv belastete Luft“ wird vor der Abgabe über den Kamin gefiltert. Durch eine solche Maßnahme kann selbst, wenn die gasförmigen Spaltprodukte im Reaktor freigesetzt werden sollten, der größte Teil zurück gehalten bzw. auf ein erträgliches Maß verdünnt werden.

Der core catcher

Dank Hollywood ist jeder „Atomkraftgegner“ mit dem „China Syndrom“ vertraut: Eine einmal eingetretene Kernschmelze soll endlos andauern. Selbst die unfreiwilligen Großversuche von Harrisburg, Tschernobyl und Fukushima können einen rechtgläubigen „Atomkraftgegner“ nicht von diesem Irrglauben abbringen.

Fangen wir mal mit dem Schlimmsten an:

  • Der Reaktor in Tschernobyl stand in einer einfachen Industriehalle. Nachdem eine Kernschmelze stattgefunden hatte, verabschiedete sich der Reaktor durch eine physikalische Explosion. Er spie wie ein Vulkan den größten Teil seines radioaktiven Inhalts in die Umwelt aus. Dies ist der schlimmste – überhaupt vorstellbare – Unfall.
  • In Fukushima trat in mehreren Reaktoren (zumindest teilweise) eine Kernschmelze ein. Ursache war hierfür der zeitweise Ausfall der Stromversorgung und dadurch ein Mangel an Kühlwasser. Die Nachzerfallswärme konnte die Brennelemente (teilweise) schmelzen lassen. Die Nachzerfallswärme nimmt aber sehr schnell ab und die Kühlung konnte – wenn auch verspätet – wieder aufgenommen werden. Wieviel Corium sich tatsächlich durch die Reaktorgefäße gefressen hat, wird erst eine genaue Untersuchung zeigen können. Jedenfalls hat die Menge nicht einmal gereicht, um den Betonboden der Reaktorgrube zu durchschmelzen. Ursache für die Freisetzung von Radioaktivität sind schlicht weg Konstruktionsfehler: Die Wasserstoffexplosion und die „Untertunnelung“ des Kraftwerks.
  • Bei dem TMI-Reaktor in Harrisburg hatte man wenigstens alles grundsätzlich richtig konstruiert, obwohl dann später alles schief lief. Maßgeblich durch Bedienungsfehler fiel ein Teil des Kerns unbemerkt trocken. Es entstand Wasserstoff, welcher aber nicht zu einer heftigen Explosion führte. Das Reaktordruckgefäß blieb ganz und in ihm sammelten sich Bruchstücke und Schmelze. Es gelangte praktisch keine unzulässig hohe Radioaktivität in die Umwelt.

Anstatt durch Aufklärung entgegen zu wirken, versuchte man den Segen der „Atomkraftgegner“ durch die Erfindung des core catcher zu erlangen. Ein von Anfang an sinnloses Unterfangen. Die Strategie der „Atomkraftgegner“ ging vielmehr auf: Die Kosten wurden weiter in die Höhe getrieben um mit einer vorgeblich „unwirtschaftlichen Atomkraft“ argumentieren zu können.

Wie sieht dieses Ding nun beim EPR aus? Man pflastert den Boden unterhalb des Reaktordruckgefäßes mit Steinen aus einer feuerfesten Keramik. Gemäß den Vorstellungen aus Hollywood frisst sich das Corium als glühende Schmelze durch das Reaktordruckgefäß und sammelt sich in der feuerfesten Wanne. In der Realität nimmt die Nachzerfallswärme zwar exponentiell ab, nach Drehbuch natürlich nicht, sondern der Boden der Wanne aus einem Spezialbeton schmilzt langsam auf und die Schmelze rinnt anschließend über eine Schräge in eine großflächige Vertiefung. Diese soll dauerhaft und automatisch durch Wasser gekühlt werden. Dort soll die Schmelze dann dauerhaft erstarren. Man könnte dieses Konzept auch mit: „Richtige Antworten auf falsche Fragestellungen umschreiben.“ Jedenfalls kostet allein der umbaute Raum für diese technische Glanzleistung zig Millionen.

Die magische Zahl vier

Der EPR hat vier Primärkreise: Um das Druckgefäß im Zentrum stehen kreisförmig angeordnet vier Dampferzeuger. Zwischen ihnen stehen die vier Hauptkühlmittelpumpen für die Umwälzung des Wassers durch den Reaktorkern und die Wärmeübertrager. All diese Komponenten stehen in Betonkammern, die der Abschirmung der Strahlung dienen. Damit ist der Sicherheitsbehälter auch während des Betriebes begehbar.

Dieser Grundanordnung folgend, gibt es auch vier vollständige Sicherheitseinrichtungen, deren Komponenten in vier voneinander völlig getrennten Gebäuden um den Sicherheitsbehälter angeordnet sind. Diese vier Sicherheitsabschnitte, sowie die Bedienungszentrale und das Gebäude für die Brennelemente, sind ebenfalls (wie das zylindrische Reaktorgebäude) gegen Flugzeugabstürze verbunkert.

Etwas abseits liegen zwei Gebäude, die die Notstromversorgung enthalten. Sie befinden sich jeweils in Deckung durch den eigentlichen Reaktorbau. Da sie ebenfalls vollständig redundant sind, geht man nur von höchstens einem Schaden bei einem Flugzeugabsturz aus. Die Gebäude sind mit wasserdichten Türen verschlossen. Ein Auslöschen durch eine Flutwelle (Fukushima) wäre ausgeschlossen.

Jedes, der vier Notkühlsysteme, kann allein die gesamte Wärme abführen (4 x 100%). In erster Linie dient das zur Verbesserung der Verfügbarkeit. Da alle vier Züge völlig voneinander unabhängig sind, kann man Wartungsarbeiten im laufenden Betrieb ausführen. Wenn ein System gewartet wird, stehen immer noch drei zur Verfügung.

Die Nachzerfallswärme

Bei einem Störfall wird das Kernkraftwerk durch eine Unterbrechung der Kettenreaktion abgeschaltet. Das Einfahren der Steuerstäbe entspricht z. B. dem Ausschalten der Feuerung bei einem konventionellen Kraftwerk. Bei beiden muß nun noch die im System gespeicherte Wärme abgeführt werden. Es gibt bei einem Kernkraftwerk aber zusätzlich den physikalischen Effekt der Nachzerfallswärme: Der radioaktive Zerfall der Spaltprodukte läßt sich durch nichts aufhalten. Es wird also auch nach der Abschaltung noch Wärme produziert! Die freiwerdende Wärme hängt von verschiedenen Umständen ab. In den ersten Sekunden können es über 5% der thermischen Leistung sein. Die Nachzerfallswärme nimmt sehr schnell ab und es sind nach einer Stunde nur noch rund 1%. Gleichwohl handelt es sich um gewaltige Leistungen. Ist ein EPR längere Zeit mit Höchstlast im Netz gewesen, sind das entsprechend 225 MW bzw. noch 45 MW nach einer Stunde. Diese Wärme muß auf jeden Fall – auch bei widrigsten äußeren Umständen (Fukushima) – abgeführt werden, da sonst der Kern schmilzt.

Praktisch ist die einzige Möglichkeit solche Leistungen sicher abzuführen, die Verdampfung. Ist die äußere Wärmesenke (Fluß, Meer oder Kühlturm) nicht mehr nutzbar, muß dies ausschließlich über die Notkühlung möglich sein. Zuerst baut man über Ventile am Druckhalter den Druck im Primärkreis ab. Schon durch dieses „auskochen“ tritt eine merklich Kühlung ein. Allerdings muß die abgelassene Wassermenge möglichst schnell ersetzt werden, da sonst das Reaktordruckgefäß ausdampft und der Kern (teilweise, wie in Harrisburg) trocken fällt. Ist der Druck auf ein gewisses Niveau abgefallen (ungefähr 100 bar) setzt eine Nachspeisung von Kühlwasser ein. Für den Antrieb der Pumpen ist aber elektrische Energie nötig. Würde die Notstromversorgung – wie in Fukushima – versagen, würde die Überhitzung des Kerns eher noch schneller eintreten. Das Reaktormodell aus den 1960er Jahren hatte bereits eine pfiffigere Idee: Der abgelassene Dampf wurde vor der Kondensation in der wassergefüllten Ringkammer über eine kleine Turbine geleitet. Diese Turbine treibt eine kleine Speisepumpe, die Wasser aus dem Ringraum zurück in das Druckgefäß speist. Dies funktioniert bis zu einem gewissen Temperaturausgleich recht gut. Eine Notmaßnahme, die zumindest in den ersten Minuten ohne jede Hilfsenergie sehr gut funktioniert hat.

Gegenüber seinen Vorläufern hat der EPR durch das Wasserbecken am Boden einen Sicherheitsgewinn: Das Wasser dient nicht nur zur Noteinspeisung, sondern stellt auch eine Wärmesenke innerhalb des Sicherheitsbehälters dar. Das Wasser kann durch Wärmeübertrager gepumpt werden, um es „kühl“ zu erhalten. Die Lagerung am Boden kommt der statischen Belastung bei Erdbeben entgegen, vergibt aber die Chance einer passiven Nachspeisung durch Schwerkraft.

Bei dem EPR ergibt sich kein grundsätzlicher Sicherheitsgewinn gegenüber seinen Vorgängern des Konvoi. Er arbeitet nach den gleichen Prinzipien: Lediglich die Stückzahl und Aufstellung der Sicherheitseinrichtungen wurde erhöht: Je zwei Notstromdiesel in zwei verschiedenen Gebäuden (2 x 2 x 8 MW Redundanz) und je ein Notstromaggregat zusätzlich im Gebäude (2 x 1 MW Diversität). Es bleibt aber das alte Problem aktiver Sicherheitssysteme: Strom weg, Wasser weg! Die vorgeblich um den Faktor zehn erhöhte Sicherheit, ergibt sich rechnerisch hauptsächlich aus dem Core Catcher.

Der Zugewinn an Lebensdauer

Beim EPR ist die konstruktive Nutzungsdauer von 40 auf 60 Jahre erhöht. Dies ist durch eine konsequente Überarbeitung aller Bauteile geschehen. So ist man z. B. beim Druckgefäß und den Hauptkühlmittelleitungen auf den Werkstoff Alloy 690 (59,5% Nickel, 30% Chrom, 9,2% Eisen etc.) übergegangen. Er besitzt bessere Korrosionsbeständigkeit und bildet nicht soviel „Atommüll“ durch Neutroneneinfang. Zusätzlich hat man das Druckgefäß mit einem Reflektor aus Stahl ausgestattet. Durch das Zurückstreuen von Neutronen in den Kern kann man den Brennstoff besser ausnutzen und gleichzeitig den Druckbehälter weniger belasten (Versprödung durch Neutronen).

Sicherheit und Wartung stehen in enger Beziehung. Schweißnähte weisen immer Fehler auf, die in regelmäßigen Abständen überprüft werden müssen. Solche Wiederholungsprüfungen sind zeitaufwendig (Verfügbarkeit) und kostspielig. Je weniger Schweißnähte, desto besser. Wenn schon Schweißnähte, dann an gut zugänglichen Stellen. Man hat deshalb beim EPR wesentlich komplizierter geschmiedete Formstücke (hohe Investitionskosten) für die Hauptkühlmittelleitungen verwendet bzw. durch Aushalsungen beim Druckbehälter die Anschlüsse vorverlegt.

Schlusswort

Ohne jede Frage hat man in hunderten von Betriebsjahren eine Menge Erfahrungen gesammelt. Hinzu kamen die realen „Großversuche“ aus Harrisburg und Fukushima. Insofern ist der EPR nicht mehr mit den ersten Druckwasserreaktoren vergleichbar. Als Ersatz für gasgekühlte Reaktoren (Hinkley Point) oder als Zubau (Olkiluoto, Taishan) ist er sicherlich eine gute Lösung. Aber ist der Sicherheitsgewinn beispielsweise gegenüber einer Konvoi-Anlage so viel höher, daß ein Ersatz durch einen EPR zu rechtfertigen wäre? Zumal man mit wenigen Nachrüstungen bzw. Ersatzteilen (z. B. Dampferzeuger) sehr kostengünstig eine Betriebsdauer von 80 und mehr Jahren erreichen könnte. Genug Zeit jedenfalls, um auf fortschrittlichere Konzepte umzusteigen.

Im nächsten Teil geht es um den APR-1000 von Westinghouse, der in Moore Side (und anderswo) geplant ist.

Reaktortypen in Europa – Teil1, Einleitung

In Europa werden bereits einige Kernkraftwerke neu errichtet bzw. stehen kurz vor einer Auftragsvergabe. Es scheint daher angebracht, sich ein bischen näher mit den unterschiedlichen Typen zu befassen und deren (technische) Unterschiede zu erläutern.

Warum überwiegend Leichtwasserreaktoren?

Es dreht sich um größere Kraftwerke. Oberhalb von etlichen hundert Megawatt ist für Wärmekraftwerke nur ein Dampfkreislauf möglich – egal, ob mit Kohle, Gas oder Kernspaltung als Wärmequelle. Dieselmotoren (bis max. 70 MW) oder Gasturbinen (bis max. 350 MW) sind für solche Blockgrößen ungeeignet. Selbst bei gasgekühlten oder mit Flüssigmetallen gekühlten Reaktoren, besteht der eigentliche Arbeitsprozess aus einem Wasserdampfkreisprozeß: Wasser wird unter hohem Druck verdampft und treibt anschließend eine Turbine mit Generator an. Wenn man also ohnehin Dampf braucht, warum nicht gleich damit im Reaktor anfangen?

Es muß allerdings eine Voraussetzung erfüllt sein: Man muß über Uran mit einem Anteil von etwa 2 bis 5% Uran-235 bzw. Plutonium (MOX) verfügen. Beides kommt in der Natur nicht vor. Will man Natururan verwenden, ist man auf schweres Wasser (Deuterium) oder Kohlenstoff (Reaktorgraphit) angewiesen, um überhaupt eine selbsterhaltende Kettenreaktion zu erhalten. Will man andererseits die schwereren Urankerne bzw. Minoren Aktinoide direkt spalten, darf man die bei der Spaltung freigesetzten Neutronen möglichst gar nicht abbremsen und muß deshalb zu Helium oder flüssigen Metallen als Kühlmittel übergehen. Noch ist dieser Schritt nicht nötig, da es genug billiges Natururan gibt und andererseits (noch nicht) die Notwendigkeit zur Beseitigung der langlebigen Bestandteile des sog. „Atommülls“ besteht. Das zweite ist ohnehin eine rein politische Frage. Die sog. Leichtwasserreaktoren werden deshalb auch in den kommenden Jahrhunderten der bestimmende Reaktortyp bleiben.

Die Temperaturfrage

Je höher die Betriebstemperaturen sind, um so höher die Kosten und Probleme. Dieser Grundsatz gilt ganz allgemein. Bis man auf Kernenergie in der chemischen Industrie z. B. zur „Wasserstoffgewinnung“ angewiesen sein wird, wird noch eine sehr lange Zeit vergehen. Solche Anwendungen lassen sich einfacher und kostengünstiger mit fossilen Brennstoffen realisieren. Abgesehen davon, daß die Vorräte an Kohle, Gas und Öl noch für Jahrhunderte reichen werden, kann man beträchtliche Mengen davon frei setzen, wenn man bei der Stromerzeugung auf Kernenergie übergeht. Diesen Weg hat China bereits angefangen.

Ein oft gehörtes Argument ist der angeblich geringe Wirkungsgrad von Leichtwasserreaktoren. Richtig ist, daß der thermodynamische Wirkungsgrad um so besser ist, je höher die Betriebstemperatur ist. Er liegt bei den heute modernsten Steinkohlekraftwerken bei etwa 46% und bei Braunkohlekraftwerken bei 43%. Demgegenüber erscheint der Wirkungsgrad eines modernen Druckwasserreaktors mit 37% als gering. Es gibt jedoch zwei wichtige Aspekte zu berücksichtigen:

  • Die hohen Wirkungsgrade der Kohlekraftwerke erfordern solche Drücke und Temperaturen, daß die (derzeitigen) technologischen Grenzen erreicht, wenn nicht sogar überschritten sind. Der noch vor wenigen Jahren propagierte Wirkungsgrad von 50% ist in weite Ferne gerückt. Die Werkstoff- und Fertigungsprobleme – und damit die Kosten – nehmen mit jedem weiteren Grad überproportional zu. Kombiprozesse (z. B. Gasturbine mit Abhitzekessel) erfordern hochwertige Brennstoffe, wie Erdgas oder Mineralöle. Will man solche erst aus Kohle gewinnen (Kohlevergasung), sackt der Gesamtwirkungsgrad wieder auf die alten Werte ab.
  • Der thermodynamische Wirkungsgrad ist ohnehin nur für Ingenieure interessant. Entscheidend sind im wirklichen Leben nur die Herstellungskosten des Produktes. Hier gilt es verschiedene Kraftwerke bezüglich ihrer Bau- und Betriebskosten zu vergleichen. Es lohnt sich nur eine Verringerung des Brennstoffverbrauches, wenn die dadurch eingesparten Kosten höher als die hierfür nötigen Investitionen sind. Bei den geringen Uranpreisen ein müßiges Unterfangen. Gleiches gilt für die ohnehin geringen Mengen an Spaltprodukten („Atommüll“) als Abfall, der langfristig (nicht Millionen Jahre!) gelagert werden muß.

Der Betriebsstoff Wasser

Wasser erfüllt in einem Kernkraftwerk drei Aufgaben gleichzeitig: Moderator, Kühlmittel und Arbeitsmedium. Es bremst die bei der Kernspaltung frei werdenden Neutronen auf die erforderliche Geschwindigkeit ab, führt in nahezu idealer Weise die entstehende Wärme ab und leistet als Dampf in der Turbine die Arbeit. Vergleicht man die Abmessungen gasgekühlter Reaktoren mit Leichtwasserreaktoren, erkennt man sofort die überragenden Eigenschaften von Wasser. Es ist kein Zufall, daß heute z. B. alle Reaktoren in Atom-U-Booten ausnahmslos Druckwasserreaktoren sind. Je kompakter ein Reaktor ist, um so kleiner ist das notwendige Bauvolumen. Je kleiner ein Gebäude sein muß, desto geringer können die Baukosten sein.

Der Reaktorkern

Der Kern (Core) ist der eigentliche nukleare Bereich in einem Kernkraftwerk, in dem die Kernspaltung statt findet. Er sollte möglichst kompakt sein. Er besteht aus hunderten von Brennelementen, die wiederum aus jeweils hunderten von Brennstäben zusammengesetzt sind. Ein Brennstab ist ein mit Uranoxid gefülltes, bis zu fünf Meter langes, dabei aber nur etwa einen Zentimeter dickes Rohr. Ein solcher Spagetti besitzt natürlich kaum mechanische Stabilität (z. B. bei einem Erdbeben) und wird deshalb durch diverse Stützelemente zu einem Brennelement zusammengebaut. Erst das Brennelement ist durch die genaue Dimensionierung und Anordnung von Brennstäben und wassergefüllten Zwischenräumen das eigentliche Bauelement zur Kernspaltung. Die einzuhaltenden Fertigungstoleranzen stehen bei einem solchen Brennelement einer mechanischen „Schweizer Uhr“ in nichts nach.

Der Brennstab ist das zentrale Sicherheitselement – gern auch als erste von drei Barrieren bezeichnet – eines Kernreaktors. Der Brennstoff (angereichertes Uran oder Mischoxid) liegt in einer keramischen Form als Uranoxid vor. Dies ist eine chemisch und mechanisch äußerst stabile Form. Der Brennstab soll alle „gefährlichen“ Stoffe von der ersten bis zur letzten Stunde seiner Existenz möglichst vollständig zurückhalten. Er ist chemisch so stabil, daß er in der Wiederaufarbeitungsanlage nur in heißer Salpetersäure aufzulösen ist. Grundsätzlich gilt: Je besser er die Spaltprodukte und den Brennstoff zurückhält, um so geringer ist bei einem Störfall die Freisetzung. Wohl gemerkt, Freisetzung innerhalb des Druckgefäßes, noch lange nicht in die Umwelt! Deshalb bezeichnet man den Brennstab auch als erste Barriere, die Schadstoffe auf ihrem langen Weg in die Umwelt überwinden müßten.

In dem Brennstab findet die eigentliche Kernspaltung statt. Fast die gesamte Energie wird genau an diesem Ort frei. Die bei der Spaltung frei werdenden Neutronen müssen nun (fast) alle aus dem Brennstab raus, rein in den genau definierten Wasserspalt zwischen den Brennstäben um dort abgebremst zu werden und wieder zurück in einen Brennstab, um dort die nächste Spaltung auszulösen. Es geht für die Neutronen (fast) immer mehrere Male durch die Brennstabhülle. Sie darf deshalb möglichst keine Neutronen wegfangen. Zirkalloy hat sich zu diesem Zweck als idealer Werkstoff für die Hüllrohre erwiesen. Diese Rohre haben jedoch bei einem schweren Störfall (TMI und Fukushima) eine fatale Eigenschaft: Sie bilden bei sehr hohen Temperaturen im Kontakt mit Wasserdampf Wasserstoffgas, der zu schweren Explosionen führen kann. Wohl jedem, sind die Explosionen der Kraftwerke in Fukushima noch in Erinnerung.

Bei einem Reaktorkern hat die Geometrie entscheidende Auswirkungen auf die Kernspaltung. Bei einer Spaltung im Zentrum des Kerns haben die frei werdenden Neutronen einen sehr langen Weg im Kern und damit eine hohe Wahrscheinlichkeit, eine weitere Spaltung auszulösen. Neutronen, die am Rand entstehen, haben demgegenüber eine hohe Wahrscheinlichkeit einfach aus dem Kern heraus zu fliegen, ohne überhaupt auf einen weiteren spaltbaren Kern zu treffen. Sie sind nicht nur für den Reaktor verloren, sondern können auch schädlich sein (z. B. Versprödung des Reaktordruckgefäßes oder zusätzlicher Strahlenschutz). Es gibt hierfür zahlreiche Strategien, dem entgegen zu wirken: Unterschiedliche Anreicherung, Umsetzung im Reaktor, abbrennbare Neutronengifte, Reflektoren etc. Verschiedene Hersteller bevorzugen unterschiedliche Strategien.

Brennstäbe

Die Brennstäbe müssen einige sich widersprechende Anforderungen erfüllen:

  • Je dünnwandiger die Hüllrohre sind, desto weniger Neutronen können dort eingefangen werden und je kleiner muß die treibende Temperaturdifferenz innen zu außen sein, damit die enormen Wärmemengen an das Kühlwasser übertragen werden können. Je dünner aber, je geringer die Festigkeit und die Dickenreserve gegen Korrosion.
  • Der Brennstoff selbst soll möglichst stabil sein. Uranoxid erfüllt diesen Anspruch, hat aber eine sehr schlechte Wärmeleitfähigkeit. Die Brennstäbe müssen deshalb sehr dünn sein, was nachteilig für ihre mechanische Stabilität ist. Es kann bei Leistungssprüngen sehr schnell zum Aufschmelzen im Innern des Brennstoffes kommen, obwohl es am Rand noch recht kalt ist. Dadurch kommt es zu entsprechenden Verformungen und Ausgasungen, die sicher beherrscht werden müssen.
  • Das umgebende Wasser ist nicht nur Moderator, sondern auch Kühlung für den Brennstab. Eine ausreichende Kühlung ist nur durch eine Verdampfung auf der Oberfläche möglich. Kernreaktoren sind die „Maschinen“ mit der höchsten Leistungsdichte pro Volumen überhaupt. Das macht sie so schön klein, verringert aber auch die Sicherheitsreserve bei einem Störfall. Fallen sie auch nur einen Augenblick trocken, reicht selbst bei einer Schnellabschaltung die Nachzerfallswärme aus, um sie zum Glühen oder gar Schmelzen zu bringen. In dieser Hitze führt die Reaktion der Brennstoffhülle mit dem vorhandenen Dampf zur sofortigen Zersetzung unter Wasserstoffbildung. Beides geschah in den Reaktoren von Harrisburg und Fukushima.
  • Der Zwischenraum mit seiner Wasserfüllung als Moderator erfüllt eine wichtige Selbstregelfunktion. Damit überhaupt ausreichend Kerne gespalten werden können, müssen die Neutronen im Mittel die „richtige“ Geschwindigkeit haben. Diese wird durch den Zusammenstoß mit einem Wasserstoffatom erreicht. Damit dies geschehen kann, müssen sie eine gewisse Anzahl von Wassermolekülen auf ihrem Weg passiert haben. Da die Spalte geometrisch festgeschrieben sind, hängt die Anzahl wesentlich von der Dichte ab. Mit anderen Worten: Vom Verhältnis zwischen Dampf und Wasser im Kanal. Macht die Leistung einen Sprung, verdampft mehr Wasser und die Dichte nimmt ab. Dadurch werden weniger Neutronen abgebremst und die Anzahl der Spaltungen – die der momentanen Leistung entspricht – nimmt wieder ab.
  • Der Brennstoff wird bei Leichtwasserreaktoren nur in der Form kompletter Brennelemente gewechselt. Da aber kontinuierlich Spaltstoff verbraucht wird, muß am Anfang eine sog. Überschußreaktivität vorhanden sein. Wenn am Ende des Ladezyklus noch so viel Spaltstoff vorhanden ist, daß eine selbsterhaltende Kettenreaktion möglich ist, muß am Anfang zu viel davon vorhanden gewesen sein. Dieses zu viel an Spaltstoff, muß über sog. Neutronengifte kompensiert werden. Das sind Stoffe, die besonders gierig Neutronen einfangen und sie somit einer weiteren Spaltung entziehen. Je nach Reaktortyp kann das durch Zusätze im Brennstoff oder Kühlwasser geschehen.
  • Die Leistungsregelung eines Reaktors geschieht hingegen über Regelstäbe, die in Leerrohre in den Brennelementen eingefahren werden können. Die Regelstäbe bestehen ebenfalls aus Materialien, die sehr stark Neutronen einfangen. Fährt man sie tiefer ein, fangen sie mehr Neutronen weg und die Anzahl der Spaltungen und damit die Leistung, wird geringer. Zieht man sie heraus, können mehr Neutronen ungestört passieren und die Leistung steigt. Bei einer Schnellabschaltung werden sie alle – möglichst schnell – voll eingefahren.

Die eigentliche Stromerzeugung

In einem Kernkraftwerk wird – wie in jedem anderen Kraftwerk auch – die elektrische Energie durch einen Generator erzeugt. Dieser Generator wird in einem Kernkraftwerk durch eine sogenannte Nassdampfturbine angetrieben. Das ist ein wesentlicher Unterschied zu einem fossil befeuerten Kraftwerk. Bei denen wird möglichst heißer Dampf (bis 580 °C) auf die Turbine geschickt. Dieser wird nach einer gewissen Arbeitsleistung sogar wieder entnommen und noch einmal im Kessel neu erhitzt (z. B. Zwischenüberhitzung bei 620 °C). Prinzipiell erhöhen diese Maßnahmen den Wirkungsgrad und machen vor allem die Turbine kleiner und preiswerter.

Das Hauptproblem einer Nassdampfmaschine sind die großen Dampfvolumina und der Wassergehalt des Dampfes. Turbinen von Leichtwasserreaktoren haben üblicherweise einen Hochdruck und drei doppelflutige Niederdruckstufen auf einer gemeinsamen Welle. Trotzdem sind die Endstufen damit über 2 m lang und drehen sich mit Überschallgeschwindigkeit. Dadurch wirken auf jedes Blatt Fliehkräfte von über 500 to. In den Kondensatoren herrscht Hochvakuum, wodurch der Dampf mit der zugehörigen Schallgeschwindigkeit strömt. Die sich bereits gebildeten Wassertröpfchen wirken wie ein Sandstrahlgebläse auf die Turbinenschaufeln. Grundsätzlich gilt, je „kälter“ man mit dem Dampf in die Turbinenstufe rein geht, desto höher wird der Wasseranteil bei vorgegebenem Enddruck.

Die Entwässerung ist bei einer Nassdampfmaschine sehr aufwendig und damit teuer. Man versucht möglichst viel Wasser aus den Leitstufen abzusaugen und verwendet auch noch zusätzliche Tröpfchenabscheider außerhalb der Turbine. Vor den Niederdruckstufen überhitzt man den Dampf noch durch Frischdampf. All diese Maßnahmen verursachen aber Druckverluste und kosten nutzbares Gefälle.

Instrumentierung

Es ist von entscheidender Bedeutung, daß das Bedienungspersonal in jedem Augenblick einen möglichst genauen und detaillierten Überblick über die Zustände im Kraftwerk hat. Nur bei genauer Kenntnis der tatsächlichen Lage, können die richtigen Schlüsse gezogen werden und wirksame Gegenmaßnahmen eingeleitet werden. Dies ist die leidige Erfahrung aus allen Störfällen. Der Meßtechnik kommt deshalb große Bedeutung zu. Sie muß in ausreichender Auflösung (Stückzahl) vorhanden sein und zuverlässige Informationen in allen Betriebszuständen liefern.

In diesem Sinne spielen die Begriffe „Redundanz“ und „Diversität“ eine zentrale Rolle:

  • Alle wichtigen Betriebsgrößen werden mehrfach gemessen. Dies gibt Sicherheit gegen Ausfälle. Zusätzlich kann man bei einer mehrfachen – üblicherweise 4-fachen – Messung, Vertrauen zu den Meßwerten herstellen. Bei sicherheitsrelevanten Meßwerten (z. B Druck und Temperatur im Reaktordruckgefäß), die über eine Schnellabschaltung entscheiden, gilt das 3 von 4 Prinzip: Jede Größe wird gleichzeitig 4-fach gemessen. Anschließend werden die Meßwerte verglichen und es werden nur die drei ähnlichsten als Grundlage weiterer Auswertungen verwendet. Man erkennt damit augenblicklich, welche Meßstelle gestört ist und an Hand der Abweichungen untereinander, wie glaubwürdig die Messung ist.
  • Jedes Meßverfahren liefert nur in bestimmten Bereichen Ergebnisse mit hinreichender Genauigkeit. Dies ist eine besondere Herausforderung in einer Umgebung, die sich ständig verändert. So sind z. B. bestimmte Meßverfahren für den Neutronenfluß stark temperaturabhängig. Es ist deshalb üblich, unterschiedliche physikalische Methoden gleichzeitig für dieselbe Messgröße anzuwenden. Damit sind einfache Plausibilitätskontrollen möglich. Dies ist besonders bei Störfällen wichtig, bei denen die üblichen Bereiche schnell verlassen werden.

Digitalisierung und Sicherheit

Es gibt bei einem Kernkraftwerk alle möglichen Grenzwerte, die nicht überschritten werden dürfen. Wird ein solcher Grenzwert erreicht, wird vollautomatisch eine Schnellabschaltung ausgelöst. Jede Schnellabschaltung ergibt nicht nur einen Umsatzausfall, sondern ist auch eine außergewöhnliche Belastung mit erhöhtem Verschleiß. Das Problem ist nur, daß die Vorgänge in einem solch komplexen System extrem nichtlinear sind. Gemeint ist damit, daß „ein bischen Drehen“ an einer Stellschraube, einen nicht erwarteten Ausschlag an anderer Stelle hervorrufen kann.

Die moderne Rechentechnik kann hier helfen. Wenn man entsprechend genaue mathematische Modelle des gesamten Kraftwerks besitzt und entsprechend leistungsfähige Rechner, kann man jede Veränderung in ihren Auswirkungen voraussagen und damit anpassen bzw. gegensteuern. Nun haben aber auch Computerprogramme Fehler und sind schwer durchschaubar. Es tobt deshalb immer noch ein Glaubenskrieg zwischen „analog“ und „digital“. Dies betrifft insbesondere die geforderte Unabhängigkeit zwischen der Regelung und dem Sicherheitssystem.

Seit Anbeginn der Reaktortechnik ist die Aufmerksamkeit und Übung des Betriebspersonals ein dauerhaftes Diskussionsthema. Insbesondere im Grundlastbetrieb ist die Leitwarte eines Kernkraftwerks der langweiligste Ort der Welt: Alle Zeiger stehen still. Passiert etwas, verwandelt sich dieser Ort augenblicklich in einen Hexenkessel. Die Frage ist, wie schnell können die Menschen geistig und emotional Folgen? Wie kann man sie trainieren und „aufmerksam halten“? Die allgemeine Antwort lautet heute: Ständiges Üben aller möglichen Betriebszustände und Störfälle im hauseigenen Simulator. Das Schichtpersonal eines Kernkraftwerks verbringt heute wesentlich mehr Stunden im Simulator, als jeder Verkehrspilot. Die zweite „Hilfestellung“ ist im Ernstfall erst einmal Zeit zu geben, in der sich das Personal sammeln kann und sich einen Überblick über die Lage verschafft. Dies sind die Erfahrungen aus den Unglücken in Harrisburg und Tschernobyl. Dort haben Fehlentscheidungen in den ersten Minuten die Lage erst verschlimmert. Eine ganz ähnliche Fragestellung, wie bei Flugzeugen: Wer hat das sagen, der Pilot oder die Automatik? Eine Frage, die nicht eindeutig beantwortet werden kann, sondern immer zu Kompromissen führen muß.

Ausblick

Wer bis hier durchgehalten hat, hat nicht vergebens gelesen. Ganz im Gegenteil. In den folgenden Beiträgen werden die Reaktoren jeweils einzeln vorgestellt. Um die Unterschiede klarer zu machen, wurden hier vorab einige grundlegende Eigenschaften behandelt. Zuerst werden die Druckwasserreaktoren EPR von Areva und AP-1000 von Westinghouse behandelt und dann die Siedewasserreaktoren ABWR und der ESBWR von GE-Hitachi. Das entspricht in etwa dem derzeitigen Ausbauprogramm in Großbritannien. Soweit Zeit und Lust des Verfassers reichen, werden noch die russischen (Türkei, Finnland, Ungarn) und die chinesisch/kanadischen Schwerwasserreaktoren (Rumänien) folgen.

Halbzeit bei GenIV

Nach zehn Jahren der internationalen Zusammenarbeit bei der Entwicklung von Reaktoren der sogenannten „vierten Generation“ erschien eine Überarbeitung der Ursprünglichen Fahrplanes aus dem Jahre 2002 erforderlich.  In der letzten Dekade ist viel geschehen: Dies betrifft die Zusammensetzung und Forschungsintensität der Mitglieder, die bereits gewonnenen Erkenntnisse und nicht zuletzt die Veränderung der äußeren Randbedingungen (Shale Gas Boom, Fukushima, etc.).

Es ist bei den ursprünglich ausgewählten sechs Konzepten geblieben. Neue sind nicht hinzugekommen. Mehrere teilnehmende Länder haben bedeutende Mittel in die Entwicklung natriumgekühlter Reaktoren mit einem schnellen Neutronenspektrum (sodium-cooled fast reactor, SFR) und gasgekühlten Reaktoren mit möglichst hoher Betriebstemperatur (very-high-temperature reactor, VHTR) investiert.

Die restlichen vier Konzepte: Mit Wasser im überkritischen Zustand gekühlte Reaktoren (SCWR), bleigekühlte Reaktoren mit schnellem Neutronenspektrum (LFR), gasgekühlte Reaktoren mit schnellem Neutronenspektrum (GFR) und mit Salzschmelzen gekühlte Reaktoren wurden – mehr oder weniger – auf Sparflamme entwickelt.

Ziele

Weiterhin gelten als zentrale Anforderungen an die sogenannte vierte Generation folgende vier Bereiche:

  • Nachhaltigkeit
  • Sicherheit und Verfügbarkeit
  • Wirtschaftliche Wettbewerbsfähigkeit
  • nicht zur Produktion von Waffen geeignete Technologien und ein physikalischer Schutz gegen jedwede Einwirkungen von Außen (Naturkatastrophen, Terrorismus etc.).

Interessant ist in diesem Zusammenhang die Definition der vier Generationen: Die ersten Reaktoren der Baujahre 1950–1960 (z. B. Shippingport, Dresden, MAGNOX usw.) werden als Demonstrationskraftwerke verstanden und sind bereits stillgelegt. Die zweite Generation umfaßt die Baujahre 1970–1990 und stellt die überwiegend heute im Betrieb befindlichen Leichtwasser- und Schwerwasserreaktoren dar. Die dritte Generation wird als die Leichtwasserreaktoren der Baujahre 1990–2000 definiert, wobei die Reaktoren nach dem Jahr 2000 als Generation III+ bezeichnet werden. Sie stellen eine evolutionäre Weiterentwicklung der Druck- und Siedewassertechnologie dar. Die Vielzahl unterschiedlichster Reaktortypen der Anfangsjahre hat sich also auf lediglich zwei Bauarten verengt. Die Weiterentwicklungen der schwerwassermoderierten, der gasgekühlten und der metallgekühlten Reaktoren ist – zumindest, was die Stückzahlen anbetrifft – auf das Niveau von Demonstrationsanlagen zurückgefallen. Erst ab dem Jahr 2030 wird von der Einführung einer vierten Generation ausgegangen.

Als die zentralen Ziele für die vierte Generation wird dabei die Verringerung der Gesamtkosten über den Lebenszyklus eines Kraftwerks, eine nochmals verbesserte Sicherheit, ein möglichst großer Schutz vor missbräuchlicher Nutzung (Waffen, Terrorismus) und eine erhebliche Verringerung des (Atom)mülls gesehen.

Abgebrannte Brennelemente

Nach einer gewissen Zeit ist jedes Brennelement in einem Reaktor nicht mehr nutzbar und muß ausgetauscht werden. Im Sprachgebrauch der „Atomkraftgegner“ ist es dann „Atommüll“ der zudem auch noch für Jahrtausende tödlich sein soll. In Wirklichkeit sind in einem „abgebrannten“ Brennelement eines Leichtwasserreaktors noch über 95% Brennstoff enthalten. Dieser Brennstoff muß und kann recycled werden. Aber selbst die übrig bleibenden Spaltprodukte sind keinesfalls wertlos. Aus wirtschaftlichen Gründen lohnt meist keine sofortige Aufbereitung. Es empfiehlt sich daher, diesen Atommüll (Müll in Bezug auf eine energetische Verwertung) für längere Zeit sicher zu lagern um ein Abklingen der Radioaktivität abzuwarten. Durch eine Nachbehandlung des Abfalls in geeigneten Reaktoren (mit schnellem Neutronenspektrum oder sog. Transmutation) kann diese notwendige Lagerzeit auf wenige hundert Jahre beschränkt werden. Eine „Endlagerung“ ist weder nötig noch sinnvoll. Das übrig bleibende „Erz“ – mit hohem Gehalt wertvollster Materialien – kann anschließend dem normalen Wirtschaftskreislauf zugeführt werden.

Die Aufgabe der nahen und mittleren Zukunft liegt in der Entwicklung und Realisierung solcher Kreisläufe mit möglichst geringen Kosten. Das bisher vorliegende „Henne-Ei-Problem“ beginnt sich gerade von selbst zu lösen: Es gibt inzwischen weltweit große Mengen abgebrannter Brennelemente, die eine Aufbereitung mit unterschiedlichsten Verfahren im industriellen Maßstab möglich machen. Viele dieser Brennelemente sind bereits soweit abgelagert (die Strahlung nimmt in den ersten Jahren besonders stark ab), daß sich ihre Handhabung stark vereinfacht hat.

Ein „Endlager“ – besser ein Lager mit sicherem Einschluß über geologische Zeiträume – ist nur für die Abfälle nötig, deren Aufbereitung zu kostspielig wäre. Dieser Weg wird bereits für Abfälle aus der Kernwaffenproduktion beschritten. Dafür reicht aber maximal ein „Endlager“ pro Kernwaffenstaat aus.

In naher Zukunft wird sich ein weltweiter Austausch ergeben: Es wird unterschiedliche Wiederaufbereitungsanlagen in verschiedenen Ländern geben. Die Kraftwerksbetreiber können diese als Dienstleistung nutzen. Die dabei wiedergewonnen Wertstoffe werden auf speziellen Märkten gehandelt werden. Wer zukünftig beispielsweise einen „Brutreaktor“ bauen möchte, kann sich das für die Erstbeladung notwendige Plutonium auf diesem Markt zusammenkaufen. Wem die Mengen langlebiger Aktinoiden zu groß werden (Lagerkosten) kann diese an Betreiber von schnellen Reaktoren oder Transmutationsanlagen zur „Verbrennung“ abgeben. Es wird sich genau so ein Markt für „nukleare Müllverbrennungsanlagen“ etablieren, wie er heute für Industrie- und Hausmüll selbstverständlich ist.

Ebenso wird es kommerzielle „Endlager“ geben, die gegen (teure) Gebühren Restmengen aufnehmen, die sich anderweitig nicht mehr wirtschaftlich verwenden lassen. Gerade Deutschland ist weltweit führend in Erwerb und Endlagerung von hoch toxischen Abfällen in ehemaligen Salzbergwerken. Hier ist es auch sprachlich gerechtfertigt, von Endlagern zu sprechen, da die dort eingelagerten Stoffe – anders als radioaktive Stoffe – nie verschwinden werden. „Gefährlich“ ist (zumindest in Deutschland) halt nur eine Frage des ideologischen Standpunktes.

Die sechs Systeme

Im Jahre 2002 wurden aus über 100 Vorschlägen sechs Konzepte ausgewählt. Leitgedanke dabei war, aus verschiedenen Reaktortypen symbiotische Systeme zu bilden. Beispielsweise durch die Verknüpfung von Leichtwasserreaktoren mit Reaktoren mit schnellem Neutronenspektrum, sodaß der „Abfall“ des einen Reaktortyps als Brennstoff für den anderen dienen kann. In diesem Sinne, konzentrierte man sich nicht auf die Entwicklung eines einzelnen neuen Reaktors, sondern wählte sechs Konzepte aus, aus denen ein weltweites Netz aufgebaut werden könnte. Jeder einzelne dieser sechs ausgewählten Konzepte hat ganz spezielle Vor- und Nachteile, die es jedem Land ermöglichen sollte, für seinen speziellen Bedarf, das geeignete Modell auswählen zu können. Es geht also eher darum, Möglichkeiten zu eröffnen, als Konzepte fest zu schreiben. Dies ist ein sehr flexibler und (theoretisch) Kosten sparender Ansatz, da jedes Land seine besonderen Stärken (Werkstofftechnik, Fertigungstechnik, Datenverarbeitung etc.) in die gemeinsame Forschung und Entwicklung einbringen kann, ohne sich ein komplettes Entwicklungsprogramm für einen einzelnen Reaktor aufbürden zu müssen. Insbesondere auch kleinen Ländern, mit beschränkten Ressourcen steht es offen, sich zu beteiligen.

Die ursprünglich ausgewählten Konzepte sind alle in den letzten zehn Jahren verfolgt worden und sollen auch weiter entwickelt werden. Allerdings haben sich durch neue Erkenntnisse und einem unterschiedlichen finanziellen Einsatz in den beteiligten Ländern, der ursprünglich geplante Zeitplan etwas verschoben. Die Entwicklung wurde in jeweils drei Phasen unterteilt.

Zeitplan

Für alle sechs Reaktortypen sollten die Machbarkeitsstudien als erste Phase bereits abgeschlossen sein. Bei der Machbarkeitsstudie sollten alle relevanten Probleme geklärt worden sein und insbesondere für kritische Eigenschaften, die später sogar eine Aufgabe erforderlich machen könnten, zumindest Lösungswege aufgezeigt werden. Für Salzbadreaktoren glaubt man diese Phase nicht vor 2025 und für gasgekühlte Reaktoren mit schnellem Neutronenspektrum, nicht vor 2022 abschließen zu können.

In der Durchführungsphase sollten alle Materialeigenschaften, Berechnungsverfahren etc. entwickelt und als Prototypen getestet und optimiert sein. Diese Phase wurde bisher bei keinem Konzept abgeschlossen. Am weitesten vorn im Zeitplan, liegen der mit Natrium gekühlte schnelle Reaktor (erwartet 2022) und der mit Blei gekühlte schnelle Reaktor (erwartet 2021).

Aus heutiger Sicht wird deshalb kein Reaktor die Demonstrationsphase bis zum Jahr 2030 abschließen können. Bevor eine kommerzielle Anlage in Angriff genommen werden kann, muß wenigstens ein Demonstrationskraftwerk (einschließlich dem erforderlichen Genehmigungsverfahren!) errichtet worden sein und einige Jahre Betriebserfahrung gesammelt haben. Selbst in Ländern mit durchweg positiver Einstellung zur Nutzung der Kernenergie und einem gewissen Pioniergeist (ähnlich der 1950er Jahre) dürfte dies ein ehrgeiziges Ziel sein. Zumal kein wirklicher Zeitdruck vorliegt: Es gibt genug Natururan zu günstigen Preisen, die Mengen abgebrannter Brennelemente sind immer noch so gering, daß kein Kostendruck zur Beseitigung von „Atommüll“ existiert und der Bedarf an Prozeßwärme mit hoher Temperatur kann problemlos durch kostengünstiges Erdgas gedeckt werden. Es bleibt die Erzeugung elektrischer Energie: Die kann aber problemlos und kostengünstig (im Vergleich zu Kohlekraftwerken mit Abgaswäsche) durch konventionelle Leichtwasserreaktoren erzeugt werden. China stellt dies eindrucksvoll unter Beweis.

Fukushimas Auswirkungen

Fukushima hat die Bedeutung für eine nach den Regeln der Technik entsprechende Auslegung und Bauweise gezeigt. Die Lehren aus dem Unglück beeinflussen nicht nur die in Betrieb befindlichen Kraftwerke, sondern auch zukünftige der vierten Generation. Schädigende Einflüsse von außen müssen bauartbedingt von den Reaktoren fern gehalten werden (z. B. Baugrund oberhalb von möglichen Flutwellen) und die Nachzerfallswärme muß auch über längere Zeit und in jedem Falle sicher abgeführt werden (z. B. passive Wasserkühlung aus oberen Tanks ausreichender Dimension).

Für die Reaktoren der vierten Generation sind umfangreiche Forschungsarbeiten zur Beantwortung dieser Fragen notwendig. Dies betrifft insbesondere das Verhalten der andersartigen Kühlmittel (Helium, Natrium, Blei etc.) und die teilweise wesentlich höheren Temperaturen (Werkstoffe, Temperaturschocks etc.). Hinzu kommt die höhere Energiedichte in den Kernen und etwaige Brennstoffkreisläufe in unmittelbarer Nähe.

Gasgekühlter schneller Reaktor (GFR)

Bei dem GFR (Gas-cooled Fast Reactor) handelt es sich um einen mit Helium gekühlten Reaktor mit schnellem Neutronenspektrum. Durch schnelle Neutronen lassen sich alle Aktinoiden – also alle radioaktiven Elemente mit langen Halbwertszeiten – spalten. Dies ist heute der Hauptgrund, warum man diese Entwicklung verfolgt. Man könnte mit solchen Reaktoren die „Endlagerfrage“ eindeutig beantworten: Man braucht faktisch kein Endlager mehr, weil sich das Problem der potentiellen „Gefahr durch strahlenden Atommüll“ auf technische Zeiträume von weniger als 300 Jahren reduziert. Damit ist auch klar, warum sich die „Anti-Atomkraftbewegung“ mit besonderer Vehemenz – und auch Gewalttätigkeit – gegen den Bau solcher Reaktoren gewandt hat. Würden solche Reaktoren mit Wiederaufbereitung abgebrannter Brennelemente eingesetzt, wäre ihnen ihr Totschlagargument von angeblich über Millionen Jahre zu sichernden Endlagern entzogen. Die (deutsche) Scharade einer „Standortsuche“ wäre schlagartig zu Ende.

Ein mit Helium gekühlter Reaktor mit schnellem Neutronenspektrum hat jedoch einen systembedingten Nachteil: Wegen des angestrebten Neutronenspektrums darf ein solcher Reaktor nur geringe Mengen an Materialien enthalten, die Neutronen abbremsen. Idealerweise würde er nur aus Brennstoff und Kühlmittel bestehen. Seine Fähigkeit „Wärme“ zu speichern, ist sehr gering. Jede Leistungsänderung führt somit zu starken und schnellen Temperaturänderungen. Ein ernster Nachteil bei einem Verlust des Kühlmittels. Allein die Nachzerfallswärme könnte zu schwersten Schäden führen. Ebenso ist eine passive Nachkühlung kaum realisierbar. Helium ändert – anders als Wasser – nur geringfügig seine Dichte bei Temperaturänderungen. Man wird daher immer auf aktive Nachkühlung angewiesen sein. Die Ereignisse von Fukushima haben die Genehmigungsfähigkeit dieses Reaktorprinzips nicht unbedingt erhöht.

In nächster Zukunft müssen Gebläse bzw. Turbinen entwickelt werden, die Helium mit hoher Temperatur (Betriebstemperatur 850 °C) und unterschiedlichen Drücken (zwischen 1 und 70 bar) zuverlässig befördern können. Für die Kreisläufe zur Abführung der Nachzerfallswärme sind sicherheitsrelevante Ventile zu entwickeln und zu testen. Es sind zuverlässige Antriebskonzepte für die Notkühl-Gebläse zu entwickeln. Nach den Erfahrungen in Fukushima keine ganz einfache Aufgabe.

Die infrage kommenden Legierungen und Keramiken für die Brennelemente sind ausgiebig zu testen. Gleiches gilt für die Hüllrohre. Es müssen im Störfall Temperaturen von etwa 2000 °C sicher beherrscht werden.

Mit der bisherigen Entwicklung sind die Probleme eher größer geworden. Es wird deshalb nicht mit einem Abschluss der Machbarkeitsstudien in den nächsten zehn Jahren gerechnet. Wegen der Langfristigkeit ist der Einsatz der Mittel eher verringert worden.

Bleigekühlter schneller Reaktor (LFR)

Bei dem Lead-cooled Fast Reactor (LFR) handelt es sich um einen Reaktor, der flüssiges Blei als Kühlmittel verwendet. Blei besitzt einen sehr hohen Siedepunkt (1743 °C), sodaß man mit diesem Reaktortyp sehr hohe Temperaturen ohne nennenswerten Druckanstieg erzeugen kann. Allerdings ist Blei bei Umgebungsbedingungen fest, weshalb man den gesamten Kreislauf stets auf über 328 °C halten muß. Es gibt also zusätzlich den neuen Störfall „Ausfall der Heizung“. Blei ist chemisch recht beständig und reagiert – wenn überhaupt – ohne große Wärmefreisetzung mit Luft oder Wasser. Es schirmt Gammastrahlung sehr gut ab und besitzt ein gutes Lösungsvermögen (bis 600 °C) für Jod und Cäsium. Ferner trägt die hohe Dichte von Blei eher zu einer Rückhaltung als einer Verteilung von radioaktiven Stoffen bei einem schweren Störfall bei. Allerdings stellt die Undurchsichtigkeit und der hohe Schmelzpunkt bei allen Wartungsarbeiten und Sicherheitsinspektionen eine echte Herausforderung dar. Die hohe Dichte von Blei erschwert den Erdbebenschutz und erfordert neue (zugelassene) Berechnungsverfahren. Nach wie vor, ist die Korrosion von Stahl in heißem Blei mit Sauerstoff ein großes Problem. Hier ist noch sehr viel Forschung und Entwicklung nötig, bis ein dem heutigen Niveau von Leichtwasserreaktoren entsprechender Zustand erreicht wird.

In sowjetischen U-Booten wurden Reaktoren mit einem Blei-Wismut-Eutektikum (niedrigerer Schmelzpunkt) verwendet. Die dort (meist schlechten) gesammelten Erfahrungen sind nicht direkt auf das LFR-Konzept übertragbar. Die Reaktoren sind wesentlich kleiner, haben eine geringere Energiedichte und Betriebstemperatur und eine geringere Verfügbarkeit. Außerdem arbeiteten sie mit einem epithermischen und nicht mit einem schnellen Neutronenspektrum. Der Vorteil des geringeren Schmelzpunktes einer Blei-Wismut-Legierung ist nicht ohne weiteres auf eine zivile Nutzung übertragbar, da durch den Neutronenbeschuß Polonium-210 gebildet wird. Es handelt sich dabei um einen starken Alphastrahler (Halbwertszeit 138 Tage), der den gesamten Kühlkreislauf kontaminiert.

Im Moment werden im Projekt drei verschiedene Konzepte verfolgt: Ein Kleinreaktor mit 10 bis 100 MWel in den USA (Small Secure Transportable Autonomous Reactor or SSTAR), ein Reaktor mit 300 MWel in Russland (BREST) und ein Reaktor mit mehr als 600 MWel in Europa (European Lead Fast Reactor or ELFR – Euratom).

Wenn man einen solchen Reaktor als Brüter betreiben will, benötigt man eine Mindestleistung. Je größer, je effektiver. Ein kleiner Reaktor, wie z. B. der SSTAR, ist nur als reiner „Aktinoidenbrenner“ geeignet. Allerdings kann er sehr lange ohne einen Brennstoffwechsel betrieben werden. Will man Spaltmaterial erbrüten, ist ein häufiger Brennstoffwechsel unvermeidlich. Es empfiehlt sich deshalb, einen entsprechenden Brennstoffzyklus zu entwickeln. Es wird auf den Bau mehrere Reaktoren mit einer gemeinsamen Wiederaufbereitungsanlage hinauslaufen. Das Verfahren zur Wiederaufbereitung hängt wiederum von dem Brennstoffkonzept des Reaktors ab.

Ein besonderes Konzept, im Zusammenhang mit Blei, ist die Entwicklung einer Spallationsquelle (Japan, MYRRHA in Belgien usw.). In einem Beschleuniger wird ein Strahl von Protonen auf über 1 GeV beschleunigt und auf flüssiges Blei geschossen. Beim Auftreffen auf ein Bleiatom „verdampft“ dieses seine Kernelemente. Es wird eine große Anzahl von Neutronen frei. Diese Neutronen werden von einem Mantel aus Aktinoiden absorbiert. Diese eingefangenen Neutronen führen teilweise zu einer Spaltung oder einer Umwandlung. Durch die Spaltungen wird – wie in jedem Kernreaktor – Wärme frei, die anschließend konventionell genutzt werden kann. Es entsteht aber keine selbsterhaltende Kettenreaktion. Wird der Beschleuniger abgeschaltet, brechen auch sofort die Kernreaktionen in sich zusammen. Es handelt sich hierbei also um eine Maschine, die primär der Stoffumwandlung und nicht der Energieerzeugung dient. Durch die Verwendung von Blei als „Neutronenquelle“ und Kühlmittel sind aber alle Erfahrungen und Probleme unmittelbar übertragbar.

Am weitesten scheint die Entwicklung in Russland vorangeschritten zu sein. Man entwickelt einen bleigekühlten Reaktor mit 300 MWel (BREST-300) und betreibt die Weiterentwicklung der U-Boot-Reaktoren mit Blei-Wismut-Eutektikum als Kühlmittel (SVBR-100). Beide Reaktoren sollen bis zum Ende des Jahrzehnts erstmalig kritisch werden. In Europa plant man eine Demonstrationsanlage mit 300 MWth (Advanced Lead Fast Reactor European Demonstrator, ALFRED).

Salzbadreaktoren (MSR)

Salzbadreaktoren (Molten Salt Reaktor, MSR) werden in zwei Gruppen eingeteilt: Reaktoren, bei denen der Spaltstoff im Salz selbst gelöst ist und Reaktoren, bei denen das flüssige Salz nur als Kühlmittel dient (Fluoride salt-cooled High-temperature Reactor, FHR).

Zwischen 1950 und 1976 gab es in den USA ein umfangreiches Entwicklungsprogramm, aus dem zwei Prototypen erfolgreich hervorgingen (Aircraft Reactor Experiment, ARE und Molten Salt Reactor Experiment, MSRE). Anfangs konzentrierte man sich in der Entwicklung auf Salzbadreaktoren mit thermischem Neutronenspektrum.

Ab 2005 entwickelte sich eine Linie, die von in Salz gelöstem Brennstoff und Spaltprodukten ausging. Als Kühlmittel soll ebenfalls Salz dienen. Das Neutronenspektrum soll schnell sein. Von dieser Kombination verspricht man sich einerseits das Erbrüten von Spaltstoff (z. B. Uran-233 aus Thorium-232) und andererseits das kontinuierliche „Verbrennen“ von Minoren-Aktinoiden mit dem Ziel eines relativ kurzlebigen „Atommülls“, der nur noch aus Spaltstoffen besteht. Durch das Salzbad möchte man hohe Betriebstemperaturen bei nahezu Umgebungsdruck erreichen. Bis zum Bau eines Reaktors, ist jedoch noch ein langer Weg zurück zu legen: Es müssen die chemischen (Korrosion) und thermodynamischen Zustandsdaten für solche n-Stoff-Salze bestimmt werden. Es müssen Verfahren zur kontinuierlichen Entgasung der Salzschmelze entwickelt werden, da ein großer Teil der Spaltprodukte (zumindest bei der Betriebstemperatur) gasförmig ist. Für das flüssige Salzgemisch müssen gekoppelte neutronenphysikalische und thermohydraulische Berechnungsverfahren geschaffen werden. Für die radioaktiven Salzgemische sind zahlreiche Sicherheitsversuche zur Datensammlung und Absicherung der Simulationsmodelle nötig. Die Chemie und Verfahrenstechnik der Aufbereitung während des Reaktorbetriebs muß praktisch noch vollständig getestet werden.

Natriumgekühlter schneller Reaktor (SFR)

Der Sodium-cooled Fast Reactor (SFR) verwendet flüssiges Natrium als Kühlmittel. Natrium hat nahezu ideale Eigenschaften: Relativ geringer Schmelzpunkt (98 °C), aber hoher Siedepunkt (890 °C), sehr gute Wärmeleitfähigkeit (140 W/mK) bei annehmbarer Wärmekapazität (1,2 KJ/kgK). Es hat keine korrosiven Eigenschaften, reagiert aber heftig unter Wärmefreisetzung mit Luft und Wasser. Bisher wurden bereits 17 Reaktoren gebaut und drei weitere befinden sich in Russland, Indien und China im Bau.

Ursprüngliches Ziel war die Erschaffung eines „schnellen Brüters“. Mit ihm sollte mehr (thermisch) spaltbares Plutonium erzeugt werden, als dieser Reaktortyp zu seinem Betrieb benötigte. Dieses zusätzlich gewonnene Plutonium sollte dann zum Start weiterer Reaktoren verwendet werden. Inzwischen gibt es aus dem Betrieb von Leichtwasserreaktoren und der Rüstungsindustrie mehr als genug Plutonium auf der Erde. Darüber hinaus sind die Natururanvorräte nahezu unerschöpflich. Deshalb hat sich die Zielrichtung in den letzten Jahren verschoben. Die benutzten Brennelemente aus Leichtwasserreaktoren werden von „Atomkraftgegnern“ abfällig als „Atommüll“ bezeichnet. In Wirklichkeit sind aber das gesamte enthaltene Uran und Plutonium (weit über 95 %) vollständig zur Energiegewinnung nutzbar. Gerade aus dem wertvollsten Material – dem Plutonium – wird wegen dessen langer Halbwertszeit der Bedarf eines Endlagers und dessen „sicherer Einschluß über Millionen von Jahre“ konstruiert. Selbst die Spaltprodukte – als tatsächlicher Abfall der Energieerzeugung durch Kernspaltung – sind (wirtschaftlich) nutzbar.

Man geht heute von einer Erstbeladung eines schnellen natriumgekühlten Reaktors mit einem Gemisch aus Uran und knapp 20% Plutonium aus. Das Plutonium gewinnt man aus den abgebrannten Brennelementen der Leichtwasserreaktoren. Die abgebrannten Brennelemente eines solchen schnellen Reaktors werden nach angemessener Zwischenlagerung in einem elektrochemischen Prozeß (wie z. B. bei der Kupfer- und Aluminiumproduktion) wieder aufbereitet. Bei diesem Wiederaufbereitungsverfahren liegt der Schwerpunkt in der Gewinnung möglichst reiner (kurzlebiger) Spaltprodukte. Alle langlebigen Aktinoiden werden wieder in den neuen Brennelementen weiter verwendet. Das „verbrauchte“ Uran und Plutonium wird dabei durch „Atommüll“ aus Leichtwasserreaktoren ergänzt. Ein solcher Reaktor gleicht also einer „Müllverbrennungsanlage“, in der ja auch „gefährliche Stoffe“ unter gleichzeitiger Stromerzeugung beseitigt werden.

Natriumgekühlte Reaktoren können in beliebiger Größe gebaut werden. Lediglich wenn man Brennstoff erbrüten will (d. h. mehr Plutonium produzieren als man verbraucht) muß der Reaktor geometrisch groß sein, um Neutronenverluste zu vermeiden. Gerade „Aktinoidenbrenner“ können sehr klein und kurzfristig gebaut werden. Die Entwicklung bezieht sich auf die Kombination aus Brennstoff (oxidisch, metallisch, karbidisch und Nitride möglich) und die Wiederaufbereitung (naßchemisch, pyrotechnisch). Es gilt die optimale Kombination aus Werkstoffen und Verfahren zu finden. Ferner sind homogene Brennstoffe und spezielle heterogene Anordnungen zur Verbrennung von Minoren-Aktinoiden denkbar. Diese Anordnungen koppeln wieder auf die Neutronenphysik, die Regelung und damit letztendlich auf die Sicherheit zurück.

Reaktor mit überkritischem Wasser (SCWR)

Wird Wasser oberhalb des kritischen Punktes (374,12 °C bei 221,2 bar) verwendet, ändert es radikal seine chemischen und physikalischen Eigenschaften. Entscheidend ist die kontinuierliche Änderung der Dichte. Es gibt nicht mehr das gleichzeitige Auftreten von Dampf und Flüssigkeit (z. B. Blasen) in einem Behälter.

Ziel von „überkritischen Kesseln“ ist die Steigerung des Wirkungsgrades. So sind heute in modernen Kohlekraftwerken Wirkungsgrade von 46 % möglich. Für den Supercritical-water-cooled reactor (SCWR) ist ein Wirkungsgrad von 44 % angestrebt. Die leidvolle Entwicklungsgeschichte bei konventionellen Kraftwerken hat jedoch gezeigt, daß die Steigerung von Druck und Temperatur mit erheblichen Werkstoffproblemen und damit Kosten verbunden ist. Solange Kernbrennstoffe so billig wie heute sind, scheint dieser Weg bei Reaktoren zumindest wirtschaftlich nicht sinnvoll.

Die gesamte Sicherheitstechnik muß neu durchdacht und experimentell bestätigt werden. Es gibt keine lokale Selbstregelung durch Dampfblasenbildung mehr. Die Gefahr von überhitzten Stellen im Kern muß schon im Normalbetrieb sicher beherrscht werden. Die Notkühlsysteme müssen bei einem Druckabfall sowohl im überkritischen Zustand, als auch im Zwei-Phasenbereich voll wirksam sein. Man kann sich nicht mehr auf den Wasserstand als Stellgröße verlassen, sondern muß auf den Durchfluß übergehen, was wesentlich schwerer zu realisieren ist. Die Wasserchemie ist im überkritischen Zustand wesentlich anders und schwerer zu beherrschen.

Bisher wurden nur Tests mit Komponenten ausgeführt. Man hofft auf dieser Basis in den nächsten fünf Jahren eine Entscheidung für den Bau eines Prototyps fällen zu können. Bis zu einem kommerziell nutzbaren Reaktor dürften noch weit über 20 Jahre vergehen.

Hösttemperaturreaktor (VHTR)

Der Very-High-Temperature Reactor (VHTR) ist eine Weiterentwicklung eines mit Helium gekühlten Reaktors mit thermischem Neutronenspektrum. Es gibt die – ursprünglich in Deutschland entwickelte – Anordnung der Brennelemente als Kugelhaufen oder eine prismatischer Anordnung. Ziel war immer das Erreichen von Betriebstemperaturen von nahezu 1000 °C. Dieser Reaktortyp sollte primär als Wärmequelle in der Verfahrenstechnik (Kohleveredlung etc.) dienen. In diesem Sinne war ein Meilenstein immer das Erreichen einer Temperatur von 950 °C, bei der eine rein thermische Zerlegung von Wasser über einen Schwefel-Jod-Prozeß möglich ist. Dies war als Fundament einer „Wasserstoffwirtschaft“ gedacht. In Deutschland wurde das Konzept einer „kalten Fernwärme“ entwickelt, in dem Methan im Kreislauf läuft und beim Verbraucher lediglich chemisch zerlegt wird und die Bestandteile anschließend wieder mit der Hilfe der Wärme des Kernreaktors wieder zusammengesetzt werden. Der Charme dieses Konzepts liegt in der Fähigkeit, Energie über große Entfernungen mit geringen Verlusten (wie ein Erdgasnetz) transportieren und auch speichern zu können. Stellt man das „Erdgas“ synthetisch aus Kohle her, kann man dieses Gas in das vorhandene Erdgasnetz einspeisen. Interessanterweise wird dieser Gedanke in China aus den gleichen Gründen, wie damals in Deutschland, wieder aufgegriffen: Luftverschmutzung durch Kohle, bei (noch) geringen eigenen Erdgasvorkommen.

Die Entwicklung von Höchsttemperaturreaktoren ist im wesentlichen ein Werkstoffproblem. Wobei nicht übersehen werden darf, daß mit steigender Temperatur der Aufwand und die Kosten exponentiell ansteigen. Allerdings kann diese Entwicklung evolutionär durchgeführt werden. China scheint offensichtlich diesen Weg eingeschlagen zu haben. Ausgehend vom (Nachbau) des deutschen Kugelhaufenreaktors begibt man sich schrittweise vorwärts.

SMR Teil 2 – Leichtwasserreaktoren

Leichtwasserreaktoren haben in den letzten zwanzig Jahren täglich mehr Energie produziert, als Saudi Arabien Öl fördert. Sie sind die Arbeitspferde der Energieversorger. Kein anders Reaktorkonzept konnte bisher dagegen antreten.

Sieger der ersten Runde des Förderungsprogramm des Department of Energy (DoE) war Babcock & Wilcox (B&W) mit seinem mPower Konzept, zusammen mit Bechtel und Tennessee Valley Authority. Sicherlich kein Zufall, sind doch (fast) alle kommerziellen Reaktoren Leichtwasserreaktoren und B&W ist der Hoflieferant der US-Navy – hat also jahrzehntelange Erfahrung im Bau kleiner Druckwasserreaktoren.

Die Gruppe der kleinen Druckwasserreaktoren

Bei konventionellen Druckwasserreaktoren sind um das „nukleare Herz“, dem Reaktordruckgefäß, die Dampferzeuger (2 bis 4 Stück), der Druckhalter und die Hauptkühlmittelpumpen in einer Ebene gruppiert. Diese Baugruppen sind alle mit dem eigentlichen Reaktor durch dicke und kompliziert geformte Rohrleitungen verbunden. Eine solche Konstruktion erfordert langwierige und kostspielige Montagearbeiten unter den erschwerten Bedingungen einer Baustelle. Die vielen Rohrleitungen bleiben für die gesamte Lebensdauer des Kraftwerks „Schwachstellen“, die regelmäßig gewartet und geprüft werden müssen. Der gesamte Raum muß in einem Containment (Stahlbehälter aus zentimeterdicken Platten) und einer Stahlbetonhülle (meterdick, z. B. gegen Flugzeugabstürze) eingeschlossen werden.

Bei einem Small Modular Reaktor (SMR) stapelt man alle erforderlichen Komponenten vertikal übereinander und packt sie alle zusammen in einen Druckbehälter. Dadurch entfallen die vielen Rohrleitungen und Ventile zu ihrer Verbindung. Was es gar nicht gibt, kann auch nicht kaputt gehen. Der „größte – im Sinne eines Auslegungskriteriums – anzunehmende Unfall“ (GAU, oft zitiert und kaum verstanden), der Verlust des Kühlmittels, wird weniger wahrscheinlich und läßt sich einfacher bekämpfen. Allerdings sind bei dieser „integrierten Bauweise“ die Größen der einzelnen Komponenten begrenzt, will man noch eine transportierbare Gesamteinheit haben. Will man ein Kraftwerk mit heute üblicher Leistung bauen, muß man daher mehrere solcher Einheiten „modular“ an einem Standort errichten.

Geht man von diesem Konstruktionsprinzip aus, erhält man ein röhrenförmiges (kleiner Durchmesser, große Länge) Gebilde. Die Länge – als Bauhöhe umgesetzt – läßt sich hervorragend für passive Sicherheitskonzepte nutzen. Die schlanke Bauweise erlaubt es, den kompletten Reaktor in eine Grube zu versenken: Durch die unterirdische Bauweise hat man einen hervorragenden Schutz gegen alle Einwirkungen von außen (EVA) gewonnen.

Das Grundprinzip der Anordnung übereinander, eint diese Gruppe. Gleichwohl, sind im Detail eine Menge Variationen möglich und vielleicht sogar nötig. So meldete allein nuSkale diesen Monat voller Stolz, daß sie über 100 verschiedene Patente in 17 Ländern für ihren Reaktor angemeldet haben. Inzwischen dürften die SMR-Patente in die Tausende gehen. Nach einer sterbenden Industrie sieht das jedenfalls nicht aus.

Das mPower Konzept

Das „Nuclear Steam Supply System“ (NSSS) von Babcock & Wilcox (B&W) ist besonders schlank geraten: Es hat eine Höhe von über 25 m bei einem Durchmesser von 4 m und wiegt 570 (ohne Brennstoff) bzw. 650 to (mit Brennstoff). Damit soll es in den USA noch auf dem Schienenweg transportierbar sein. Seine Wärmeleistung beträgt 530 MWth und seine elektrische Leistung 155 MWel (mit Luftkondensator) oder 180 MWel bei Wasserkühlung. Ein komplettes Kraftwerk mit zwei Blöcken und allen erforderlichen Hilfs- und Nebenanlagen (300 – 360 MWel) soll einen Flächenbedarf von etwa 16 ha haben. Damit ist die Hauptstoßrichtung klar: Der Ersatz bestehender, alter Kohlekraftwerke.

Das Core besteht aus 69 Brennelementen mit 2413 mm aktiver Länge in klassischer 17 x 17 Anordnung bei einer Anreicherung von weniger als 5 % U235.. Hierbei zielt man auf die kostengünstige Weiterverwendung handelsüblicher Brennelemente für Druckwasserreaktoren ab. Bei diesem kleinen Reaktor kann man damit Laufzeiten von rund 4 Jahren zwischen den Nachladungen erreichen. Durch die Doppelblockbauweise ergibt sich somit eine extrem hohe Arbeitsausnutzung von (erwartet) über 95%. Das integrierte Brennelementelagerbecken kann Brennelemente aus 20 Betriebsjahren aufnehmen.

Die Turmbauweise erlaubt vollständig passive Sicherheitseinrichtungen, wodurch ein Unglück wie in Fukushima (völliger Stromausfall) von vornherein ausgeschlossen ist. Die Brennelemente sitzen ganz unten im Druckbehälter. Darüber kommt die gesamte Steuereinheit (Regelstäbe und ihre Antriebe) und darüber die Dampferzeuger. Ganz oben sitzen die acht Umwälzpumpen und der Druckhalter. Bei einem Stromausfall würden die Regelstäbe sofort und vollautomatisch durch die Schwerkraft in den Reaktorkern fallen und diesen abschalten. Die – im ersten Moment noch sehr hohe – Nachzerfallswärme erwärmt das Kühlwasser weiter und treibt durch den entstehenden Dichteunterschied das Kühlwasser durch den inneren Kamin nach oben. In den höher gelegenen Dampferzeugern kühlt es sich ab und sinkt im Außenraum des Reaktorbehälters wieder nach unten: Ein Naturumlauf entsteht, der für die sichere und automatische Abfuhr der Restwärme sorgt.

Als „Notstrom“ werden nur entsprechende Batterien für die Instrumentierung und Beleuchtung etc. vorgehalten. Große Notstromaggregate mit Schalt- und Hilfsanlagen werden nicht benötigt. Auch hier gilt wieder: Was es gar nicht gibt, kann im Ernstfall auch nicht versagen!

Westinghouse SMR (NextStart Alliance)

Westinghouse hat den ersten Druckwasserreaktor überhaupt entwickelt (Nautilus Atom-U-Boot 1954), das erste kommerzielle Kernkraftwerk (Shippingport 1957) gebaut und ist bei fast allen (westlichen) Druckwasserreaktoren Lizenzgeber. Es ist also nicht überraschend, wenn der Marktführer auch in diesem Segment dabei ist. Die NextStart SMR Alliance ist ein Zusammenschluss mehrerer Energieversorger und Gemeinden, die bis zu fünf Reaktoren im Ameren Missouri’s Callaway Energy Center errichten will.

Der Westinghouse SMR soll eine Leistung von 800 MWth und mindestens 225 MWel haben. Er unterscheidet sich von seinem Konstruktionsprinzip nicht wesentlich vom vorher beschriebenen B&W „Kleinreaktor“. Seine Zykluszeit soll 24 Monate betragen (bei Verwendung der Brennelemente des AP1000). Seine Lastfolgegeschwindigkeit im Bereich von 20 bis 100% Auslegungsleistung beträgt 5% pro Minute. Der Reaktor kann selbstregelnd Lastsprünge von 10 % mit einer Rate von 2% pro Minute dauerhaft ausregeln. Das alte Propagandamärchen der „Atomkraftgegner“ von den „unflexiblen AKW’s“ trifft auch bei diesen Reaktortypen nicht zu. Im Gegenteil dreht Westinghouse den Spieß werbewirksam um und offeriert diesen Reaktor als (immer notwendiges) Backup für Windkraft- und Solaranlagen zur CO2 – freien Stromversorgung.

Westinghouse integriert in das Containment noch einen zusätzlichen Wasservorrat und bekämpft auch noch passiv einen völligen Verlust des Kühlwasserkreislaufes. Damit dieser Störfall eintreten kann, müßte das Druckgefäß des SMR zerstört worden sein. In diesem Fall könnte das Wasser auslaufen und würde sich im Sumpf des Containment sammeln. Damit jeder Zeit der Kern des Reaktors mit Wasser bedeckt bleibt (und nicht wie in Fukushima und Harrisburg teilweise und zeitweise trocken fallen kann), wird automatisch Wasser aus den Speichern im Containment zusätzlich hinzugefügt. Alle Systeme sind so bemessen, daß sich der Reaktor auch nach einem schweren Unglück selbst in einen sicheren Zustand versetzt und mindestens für die folgenden 7 Tage keines menschlichen Eingriffs bedarf.

Wenn nur der Strom total ausfällt, aber das Reaktordruckgefäß nicht geplatzt ist, funktioniert die passive Notkühlung in drei gestaffelten Ebenen. Solange der normale Kühlkreislauf (Kühlturm oder Kühlwasser) noch Wasser enthält, wird über diesen durch Verdunstung die Nachzerfallswärme abgeführt. Versagt dieser sekundäre Kreislauf des Kraftwerks, tritt die innere Notkühlung in Kraft. Das kalte und borierte Wasser in den Nottanks strömt in den Reaktor. Gleichzeitig kann das heiße Wasser den Reaktor verlassen und in die Notkühlbehälter zurückströmen – es entsteht ein Naturumlauf. Damit das Wasser in den Notkühlbehältern auch weiterhin „kalt“ bleibt, besitzt jeder dieser Behälter im oberen Teil einen Wärmeübertrager. Diese Wärmeübertrager sind außerhalb des Containment mit „offenen Schwimmbecken“ verbunden, die durch Verdunstung die Energie an die Umwelt abgeben können. Bricht auch dieser Kühlkreislauf in sich zusammen, kann die Wärme immer noch durch Verdampfung des Wassers im Sumpf des Containment und durch anschließende Kondensation an der Oberfläche des Containment abgeführt werden.

Ausdrücklich wird der Markt für diesen Reaktortyp auch in der Fernwärmeversorgung und zur Meerwasserentsalzung gesehen. Peking hat z. B. viele Kohleheizwerke, die stark zur unerträglichen Luftverschmutzung beitragen. Es ist also kein Zufall, daß bereits Kooperationsverhandlungen laufen.

NuScale

Diese Variante ist aus einem durch das U.S. Department of Energy (USDOE) geförderten Forschungsprojekt am Idaho National Environment & Engineering Laboratory (INEEL) und der Oregon State University (OSU) hervorgegangen. Im Jahre 2008 hat dieses „Startup“ einen Genehmigungsantrag bei der US Nuclear Regulatory Commission (USNRC) für einen 45 MWel. Reaktor gestellt. Im Jahr 2011 ist das Unternehmen praktisch vollständig von FLUOR übernommen worden. Es besteht zudem eine sehr enge Verbindung mit Rolls-Royce.

Das NuScale Modul hat nur eine thermische Leistung von 160 MWth und eine elektrische Leistung von mindestens 45 MWel.. Bei einem Durchmesser von 4,5 m, einer Höhe von 24 m und einem Gewicht von 650 to ist es aber fast genau so groß, wie die beiden schon vorgestellten SMR. Die geringe Energiedichte führt zu einer starken Vereinfachung. Das Unternehmen gibt die spezifischen Investitionskosten mit weniger als 5.000 $/kW an.

Bei dem Konzept handelt es sich um einen Zwitter aus Siedewasser- und Druckwasserreaktor. So etwas ähnliches gab es auch schon in Deutschland, unter der Bezeichnung FDR, als Antrieb der Otto Hahn. Dieses Konzept hat sich schon damals als sehr robust und gutmütig erwiesen. Der NuSkale SMR kommt völlig ohne Umwälzpumpen aus. Man nimmt im Reaktorkern einen etwas höheren (als bei einem reinen Druckwasserreaktor üblichen) Dampfanteil in Kauf, bekommt dafür aber einen großen Dichteunterschied (bezogen auf das „kalte“ Eintrittswasser), der hervorragend einen Naturumlauf anregt. Allerdings erzeugt man keinen Dampf, den man direkt auf die Turbine gibt (wie bei einem Siedewasserreaktor), sondern „beheizt“ damit nur die zwei in dem Reaktordruckgefäß integrierten Dampferzeuger. Man hat also wie bei einem konventionellen Druckwasserreaktor einen physikalisch voneinander getrennten Primär- (durch den Reaktorkern) und Sekundärkreislauf (über die Turbine).

Das NuScale-Konzept bricht radikal mit einigen Gewohnheiten:

  • Man geht von bis zu zwölf Reaktoren aus, die zu einem Kraftwerk mit dann mindestens 540 MWel. zusammengefaßt werden Sie sollen in zwei Reihen zu sechs Reaktoren in einem „unterirdischen Schwimmbecken“ angeordnet werden. Bei einem Ladezyklus von 24 Monaten, könnte somit alle zwei Monate ein Brennelementewechsel erfolgen. Bei einem zusätzlichen „Reservemodul“ könnte das Kraftwerk nahezu mit 100 % Arbeitsausnutzung durchlaufen. Die „Auszeit“ eines konventionellen Kernkraftwerk entfällt. Ebenso wird die Personalspitze(üblicherweise mehr als 1000 Leute beim Brennelementewechsel) vermieden. Der Brennelementewechsel mit seinen Wiederholungsprüfungen wird zu einem stetigen „Wartungsprozess“ umgestaltet. Dies kann zu beträchtlichen Kosteneinsparungen führen.
  • Durch den Verzicht von Umwälzpumpen wird die Konstruktion noch einmal stark vereinfacht.
  • Durch die Aufstellung in einem „großen Schwimmbecken“ sind die Reaktoren vor Erdbeben und Druckwellen praktisch vollkommen geschützt. Überflutungen (Fukushima) sind kein Sicherheitsrisiko mehr, da ja die Reaktoren ohnehin ständig im Wasser stehen.
  • Die Reaktoren verzichten vollständig auf Wechselstrom (Fukushima) und benutzen lediglich passive Sicherheits- und Kühlsysteme. Elektrische Energie ist nur für die Instrumentierung und Beleuchtung notwendig. Relativ kleine Batterien sind hierfür ausreichend. Der Batterie- und Kontrollraum befindet sich im unterirdischen Teil des Kraftwerks.
  • Selbst wenn es zu einer Beschädigung des Reaktorkerns kommen würde (Fukushima), würden radioaktive Stoffe im Schwimmbecken und Reaktorgebäude zurückgehalten werden. Außerdem beträgt das radioaktive Inventar in jedem Modul weniger als 5% eines konventionellen Reaktors. Somit ist auch die bei einem Unfall abzuführende Restwärme entsprechend klein.
  • Im Containment herrscht Vakuum. Eine Bildung explosiver Gase (Fukushima) ist somit ausgeschlossen. Es wirkt wie eine Thermosflasche. Zusätzliche Isolierungen sind nicht erforderlich. Andererseits würde es bei einer Zerstörung des eigentlichen Druckbehälters, den entweichenden Dampf aufnehmen und eine „Wärmebrücke“ zum umgebenden Wasser herstellen.

Die überragende sicherheitstechnische Philosophie dieses Konzeptes ist, daß sich auch nach schwersten Zerstörungen (z. B. Tsunami in Fukushima) der Reaktor ohne menschliche Eingriffe selbsttätig in einen sicheren Zustand überführt und dort ohne jeden (nötigen) Eingriff ewig verbleibt! Dies mag noch einmal an der „Notkühlung“ verdeutlicht werden: Wenn die äußere Wärmesenke entfällt (Ausfall der Kühlwasserpumpen in Fukushima durch den Tsunami), alle Stromquellen ausfallen (Zerstörung der Schaltanlagen und Notstromaggregate durch die Flutwelle in Fukushima), dient das „Schwimmbecken“ zur Aufnahme der Nachzerfallswärme. Es ist so bemessen, daß sein Wasserinhalt durch Erwärmung und Verdunstung den Reaktorkern sicher kühlt. Selbst, wenn man kein Wasser nachfüllen würde, wäre es erst nach etwa einem Monat leer. Dann aber, ist die Nachzerfallswärme bereits so stark abgeklungen (< 400 kW pro Modul), daß die „Luftkühlung“ in dem nun leeren Wasserbecken, sicher ausreichen würde.

Das Brennelementelagerbecken ist zur Aufnahme von 15 Betriebsjahren ausgelegt. Es befindet sich ebenfalls im unterirdischen Teil und kann für mindestens 30 Tage ohne zusätzliches Wasser auskommen (Fukushima). Es besteht aus einem Edelstahlbecken in einer Stahlbetonwanne. Stahlbecken und Betonwanne sind seismisch von einander isoliert, sodaß auch schwerste Erdbeben praktisch wirkungslos für die gelagerten Brennelemente sind.

Die NuScale Konstruktion ist ein schönes Beispiel, wie man Jahrzehnte alte Entwürfe der Leichtwasserreaktoren noch einmal ganz neu durchdenken kann. Es ist der radikalste Ansatz unter den zur Genehmigung eingereichten Konzepten. Die Wahrscheinlichkeit für eine schwere Beschädigung des Reaktorkerns mit teilweiser Kernschmelze – wie in Harrisburg und Fukushima geschehen – verringert sich auf unter ein Ereignis in zehn Millionen Betriebsjahren. Selbst wenn es eintreten würde, wären die Auswirkungen auf die Umwelt noch geringer. Es wird bereits diskutiert, ob bei diesem Reaktortyp überhaupt noch eine „Sicherheitszone“ mit potentieller Evakuierung der Anwohner, erforderlich ist. Jedenfalls gibt es in USA bereits ein reges Interesse zahlreicher Gemeinden und Städte zur dezentralen, kostengünstigen, umweltschonenden und krisensicheren (Wirbelstürme, Tornados, etc.) Versorgung mit Strom und Fernwärme.

Holtec international

Einem klassischen Reaktor noch am ähnlichsten, ist das von Holtec im Jahre 2012 eingereichte Konzept des „Holtec Inherently-Safe Modular Reactor“ (HI-SMUR) mit einer geplanten Leistung von 145 MWel.. Er besteht aus den klassischen drei Baugruppen: Reaktor, Dampferzeuger und Druckhalter. Der Druckbehälter ist ein fast 32 m langes Gebilde, welches in einer brunnenförmigen Grube versenkt ist. Es ist mit den Dampferzeugern entweder durch ein „Rohrstück“ (senkrechte Variante) verbunden oder die waagerechten Dampferzeuger sind direkt angeschweißt. Liegende Dampferzeuger sind nur bei russischen Konstruktionen gebräuchlich. Werden stehende Dampferzeuger verwendet, baut dieser Typ oberirdisch noch einmal 28 m hoch.

Der Entwurf ist sehr eigenwillig. Man hat ursprünglich waagerechte Dampferzeuger mit separater Überhitzung vorgesehen. Angeblich kann man durch eine angestrebte Überhitzung auf handelsübliche Industrieturbinen zurückgreifen. Man verzichtet auf Umwälzpumpen, bei gleichzeitig großem Abstand vom Siedezustand. Man ist deshalb auf eine sehr große Temperaturspreizung (TE = 177 °C und TA = 302 °C bei p = 155 bar) angewiesen. Eine regenerative Speisewasservorwärmung ist praktisch ausgeschlossen. Das ganze ähnelt eher einer Dampflokomotive, als einem modernen Kraftwerk.

Das Brennstoffkonzept ist auch etwas ungewöhnlich. Es ist keine Borierung zur Kompensation der Überschußreaktivität vorgesehen. Das heißt, es muß alles über abbrennbare Gifte (Gd und Er) geschehen. Der gesamte Brennstoff soll sich in einer Kartusche aus nur 32 Brennelementen befinden. Bei einem so kleinen Core dürfte der Neutronenfluß nur sehr schwer in den Griff zu bekommen sein bzw. jeder Brennstab müßte eine individuelle Anreicherung erhalten. Man will die Kassette nach 100 h (Nachzerfallswärme) in einem Stück auswechseln. Ein Brennelementewechsel soll so weniger als eine Woche dauern. Gleichwohl, soll die Zykluszeit 42 Monate betragen. Wenn sich nicht einige revolutionäre Erfindungen dahinter verbergen, die bisher noch nicht öffentlich zugänglich sind, dürfte eher der Wunsch der Vater sein.

Bisher kooperiert Holtec mit Shaw und Areva. Ein Prototyp wäre auf der Savannah River Site des DoE’s geplant. Die Bauzeit wird mit nur 2 Jahren, bei Kosten von nur 675 Millionen US-Dollar angegeben. Man wird sehen.

Carem

Anfang Dezember 2013 wurde der Auftrag für das Reaktordruckgefäß des „Central Argentina de Elementos Modulares“ CAREM-Reaktor erteilt. Es handelt sich dabei um ein 200 to schweres, 11 m hohes Gefäß mit einem Durchmesser von 3,5 m. Es ist für den Prototyp eines argentinischen SMR mit einer Leistung von 25 MWel gedacht. Später soll dieser Reaktor eine Leistung von 100 bis 200 MWel. erreichen. Es handelt sich ebenfalls um eine voll integrierte Bauweise, mit ausschließlich passiven Sicherheitseinrichtungen.

Schwimmender SMR aus Russland

Der staatliche russische Hersteller Rosenergoatom baut in Petersburg eine Barge mit zwei Reaktoren, die nach Chukotka in Sibirien geschleppt werden soll, um dort Bergwerke mit Energie zu versorgen. Die Reaktoren sind eine zivile Abwandlung der KLT-40S Baureihe für Eisbrecher, mit einer Leistung von 35 MWel. Vorteil dieses „Kraftwerks“ ist, daß es auf einer seit Jahren erprobten Technik basiert. Die russische Eisbrecherflotte versieht zuverlässig ihren Dienst im nördlichen Eismeer. Ein nicht zu unterschätzender Vorteil bei der Versorgung entlegener Gegenden.

Sehr Interessant ist das Geschäftsmodell. Eine solche barge wird fix und fertig zum Einsatzort geschleppt. Der Kunde braucht nur für den Stromanschluss an Land zu sorgen. Weitere Investitionen oder Unterhaltskosten fallen für ihn nicht an. Nach drei Jahren wird die barge für einen Brennelementewechsel und notwendige Wiederholungsprüfungen abgeschleppt und durch eine andere barge ersetzt. Da bei einem Kernkraftwerk die Brennstoffkosten ohnehin eine untergeordnete Rolle spielen, kann der Kunde das Kraftwerk für eine pauschale Jahresgebühr mieten. Ob und wieviel Strom er verbraucht, braucht ihn nicht mehr zu kümmern. Eine feste Kalkulationsgrundlage, die für Öl- und Minengesellschaften höchst verlockend ist. Als einzige Hürde in westlichen Regionen erscheint lediglich (noch) das „Made in Russia“. Jedenfalls hat er keine Vorauszahlungen zu leisten, hat keinerlei Reparaturkosten und braucht sich nicht um die Entsorgung des „Atommülls“ zu kümmern. Russland kann seinen „Heimvorteil“ des geschlossenen Brennstoffkreislaufs voll ausspielen.

Parallel hat Russland noch ein größeres Modell mit 300 MWel auf der Basis des VBER-300 PWR Druckwasserreaktors in der Entwicklung.

Abschließender Hinweis

Dieser Artikel kann und soll nur einen Überblick über den Stand der internationalen Entwicklung geben. Wer bis hierhin nicht durch so viel Technik abgeschreckt worden ist, dem empfehle ich, einfach mal die Typen und Hersteller zu googeln. Besonders die Seiten der Hersteller verfügen über zahlreiche Zeichnungen und Animationen. Zwar ausnahmslos in Englisch, aber mit der Grundlage dieses Artikels lassen sie sich hoffentlich auch für nicht Techniker verstehen.