Reaktortypen in Europa – Teil4, ABWR

Der ABWR (Advanced Boiling Water Reactor) ist eine Entwicklung von Hitachi und Toshiba in Zusammenarbeit mit General Electric. Er ist der einzige Reaktor der Generation III, der bereits über mehr als zehn Jahre Betriebserfahrung verfügt.

Geschichte

Es befinden sich bereits vier Reaktoren in Japan in Betrieb (Kashiwazaki-Koriwa 5+6, Hamaoka 5 und Shika 2), und drei weitere in Bau (Shimane und Langmen 1+2 in Taiwan). Die beiden ersten Reaktoren Kashiwazaki gingen 1996 und 1997 nach nur 36 Monaten Bauzeit (vom ersten Beton bis zur Beladung) ans Netz. Es ist in Anbetracht der vertrackten Situation in Grossbritannien daher nicht verwunderlich, daß man sich für den Bau von je drei Reaktoren in Wylfa Newyd und Oldbury-on-Severn durch das Horizon-Konsortium stark macht. Allerdings ist das Genehmigungsverfahren noch nicht abgeschlossen, sodaß man erst von einer Inbetriebnahme in der ersten Hälfte des nächsten Jahrzehntes ausgehen kann. Gleichwohl ist der Zeitdruck für erforderliche Neubauten scheinbar so groß geworden, daß man noch dieses Jahr mit der Baustellenvorbereitung beginnen will, damit man nach Erhalt aller Genehmigungen (erwartet 2018/2019) unverzüglich mit dem nuklearen Teil beginnen kann. Grundsätzliche Schwierigkeiten werden nicht gesehen, da die Genehmigungen für die USA, Japan und Taiwan bereits vollständig vorliegen und auf praktische Betriebserfahrungen seit 1996 in Japan verwiesen werden kann. Es sind lediglich die besonderen Erfordernisse der EU (insbesondere Flugzeugabsturz) einzuarbeiten und die „Post-Fukushima-Erfordernisse“ nachzuweisen. Es könnte durchaus sein, daß dieser Reaktortyp (UK-ABWR) noch in ganz Europa auf die Überholspur geht.

Warum Siedewasserreaktoren?

Wenn man ein großes Kraftwerk bauen will, bleibt praktisch nur der Dampfkreislauf. Wasser wird unter hohem Druck verdampft und verrichtet in einer Turbine Arbeit, durch die ein Generator angetrieben wird. Wenn man ohnehin Wasser als Arbeitsmittel für die Turbine braucht, warum nicht auch gleich als Arbeitsmittel (Kühlung und Moderator) im Reaktor einsetzen? Wenn man nun noch den Dampf in einem „einfachen Kessel“ durch Kernspaltung erzeugt, hat man einen Siedewasserreaktor. Einfacher geht nicht. Allerdings ist eine solche Konstruktion wegen der großen freien Flächen als Schiffsantrieb gänzlich ungeeignet. Bei einem stampfenden und rollenden Schiff im Seegang, hätte man bereits Probleme überhaupt eine vernünftige Regelung zu konzipieren. Zuerst war aber der Drang nach einem U-Boot, für das man den Druckwasserreaktor erschaffen mußte. Einmal fertig entwickelt – staatliche Förderung oder der Krieg ist der Vater aller Dinge – konnte man ihn schnell zu einem konventionellen Kraftwerk umstricken.

Bei der Diskussion von Vor- und Nachteilen beider Konzepte, wird von Laien oft der „nicht radioaktive Sekundärkreislauf“ als zusätzlicher Sicherheitsvorteil des Druckwasserreaktors angeführt. Beide Kreisläufe sind durch die Rohre in den Dampferzeugern physikalisch voneinander getrennt. Wasser – als H2 O – wird durch die Neutronen im Reaktor angegriffen: Teilweise zerschlagen sie die Moleküle in Wasserstoff und Sauerstoff (Wasserchemie und Korrosion) und teilweise fangen die Atome mit den ihnen charakteristischen Wahrscheinlichkeiten auch Neutronen ein und wandeln sich dadurch um. Unter den Gesichtspunkten des Strahlenschutzes ist hierbei die Umwandlung von Sauerstoff in radioaktiven Stickstoff die übelste Variante. Die gebildeten N16 – Atome zerfallen mit einer Halbwertszeit von 7,13 s wieder in Sauerstoff und senden dabei eine γ.-Strahlung von 10,4 MeV aus. Für den Arbeitsschutz ist das jedoch kein besonderes Problem, wenn man die Dampfleitungen und die Turbine mit einer entsprechenden Abschirmung versieht. Selbst bei einem Schaden an den Brennelementen können nur gasförmige Spaltprodukte in den Dampf gelangen – ist doch gerade die Verdampfung ein probates Mittel zur Reinigung von Flüssigkeiten. Aus den Jahrzehnten Betriebserfahrung weltweit, hat man genug Erfahrungen gesammelt und Gegenmaßnahmen entwickelt. So ist beispielsweise das Spülen der Kondensatoren mit Frischluft vor Wartungsarbeiten ein Mittel, die Belastung der Arbeiter z. B. durch radioaktives Jod drastisch zu senken. Heute liegen Siedewasserreaktoren auf den untersten Plätzen bei der gemessenen Strahlenbelastung. Schließlich gilt auch hier wieder der Grundsatz: Je weniger vorhanden ist, desto weniger muß repariert und gewartet werden.

Der ABWR ist der Porsche unter den Kraftwerken

Die momentane Leistung eines Leichtwasserreaktors hängt im Betrieb von der Dichte des Wassers ab. Je höher die Dichte ist, um so mehr nimmt die Wahrscheinlichkeit für einen Zusammenstoß der Neutronen mit einem Wasserstoffatom zu. Die sich dadurch ergebende Abbremsung ist aber die entscheidende Voraussetzung für eine weitere Spaltung (sog. Moderation). Bei dem Sättigungszustand im ABWR (70,7 bar) beträgt der Dichteunterschied zwischen Wasser und Dampf rund 0,05. Mit anderen Worten: Sind ungefähr erst 5% der Wassermasse in einem Kanal verdampft, ist dieser praktisch schon vollständig mit Dampf gefüllt. Damit man überhaupt eine ausreichende Moderation erzielen kann – gemeint ist, genug flüssiges Wasser im Kanal vorhanden ist – sind nahezu 20 Umläufe erforderlich. Hier kommen die internen Umwälzpumpen ins Spiel: Der ABWR hat davon 10 Stück mit je 8300 m3/h Förderleistung. Sie können die Dampfblasen förmlich aus den Kanälen herausspülen und sind somit das „Gaspedal“ des Siedewasserreaktors. Im Bereich von ca. 65% bis 100% übernehmen nur sie die Leistungsregelung. Die Leistung des Reaktors hängt quasi an der Pumpendrehzahl. Der ABWR ist für Leistungsänderungen von 1% pro Sekunde zugelassen. Ein Gas und Dampf Kombikraftwerk wirkt dagegen wie ein alter Trabant. Es ist lustig zu beobachten, wie manche „Umweltschützer“ schon die Zukunft ihrer „CO2-freien Stromwirtschaft“ in der Kombination aus Kernkraftwerken und Windmühlen auf dem Meer sehen. Die Propaganda von den notwendigen „flexiblen Gaskraftwerken“ wird jedenfalls nur noch von bildungsfernen Kreisen nachgeplappert. In GB sieht umgekehrt die Wind-auf-dem-Meer-Lobby in neuen Kernkraftwerken bereits die einzige Überlebenschance. Deutschland demonstriert ja gerade eindrucksvoll, wie hoch die Folgekosten (Regelung, Netzausbau, Speicher usw.) sind, wenn man sich als „Windpark in der Nordsee“ nicht schmarotzend an ein Kernkraftwerk anhängen kann. Bleibt nur abzuwarten, bis die Kapitalgeber erkannt haben, wieviel Uranbrennstoff man für die Baukosten eines Windparks kaufen könnte…

Der Reaktordruckbehälter

Der ABWR ist das vorläufige Endstadium einer jahrzehntelangen Evolution der Siedewasserreaktoren: Es ist gelungen, alle zur Dampferzeugung notwendigen Baugruppen in einen Behälter mit einem Durchmesser von 7,4 m und einer Höhe von 21 m unter zu bringen. Dies erlaubt nicht nur die Fertigung in einer Fabrik, sondern ist auch ein wesentlicher Grund für den enormen Sicherheitsgewinn. Mußte man bei der „Fukushima-Generation“ noch von etwa einer Kernschmelze in 20.000 Betriebsjahren ausgehen, beträgt die Häufigkeit beim ABWR nur noch eine Kernschmelze in über sechs Millionen Betriebsjahren. Damit kein Mißverständnis entsteht: Wahrscheinlichkeit heißt nichts anderes als, es kann – wie beim Lotto – schon morgen oder auch nie passieren. Lediglich bei sehr großen Stückzahlen (Betriebsjahre, nicht Kalenderjahre) ergibt sich der Durchschnittswert. Gleichwohl bilden solche Berechnungen den Sicherheitsgewinn zwischen zwei Anlagen sehr genau ab. Außerdem ist eine Kernschmelze – wie Harrisburg und Fukushima gezeigt haben – zwar eine sehr teure, aber relativ harmlose (keine Todesopfer!) Angelegenheit.

Je weniger Bauteile (Pumpen, Rohrleitungen, Ventile, Dampferzeuger etc.) man hat, je weniger kann kaputt gehen. Je weniger dieser Bauteile räumlich verteilt sind, je geringer ist außerdem die Strahlenbelastung für das Personal.

Der Reaktordruckbehälter ist für alle Einbauten ein sehr sicherer Aufbewahrungsort. Um die Sicherheit zu steigern, ist das Mittelteil, in dem sich der Reaktorkern befindet, aus einem Stück geschmiedet (keine Schweißnähte). Alle Anschlüsse (Speisewasser, Dampf, Notkühlung) befinden sich oberhalb des Reaktorkerns, damit der Kern immer unter Wasser bleibt, auch wenn schwere Leckagen in anderen Baugruppen auftreten.

Der Reaktorkern

Der Reaktorkern bei einem ABWR mit einer Leistung von 1350 MWel besteht aus 872 Brennelementen in einer 10 x 10 Anordnung der Brennstäbe. Jedes Brennelement ist ein viereckiges Rohr von 4,2 m Länge. Das Wasser kann nur von unten nach oben strömen und jedes Brennelement ist für sich wärmetechnisch ein abgeschlossenes System. Der Kasten aus Zircaloy ist allerdings für Neutronen nahezu vollkommen durchlässig. Dadurch ergibt sich neutronenphysikalisch die Verknüpfung mit allen Nachbarelementen.

Jedes Brennelement in 10 x 10 = 100 Anordnung besitzt 78 Brennstäbe von ganzer Länge, 14 teilgefüllte Brennstäbe und 2 dicke Wasserstäbe. Berücksichtigt man noch eine unterschiedliche Anreicherung bzw. Vergiftung der einzelnen Brennstofftabletten aus denen die Brennstäbe zusammengefügt werden, sowie den unterschiedlichen Abbrand im Betrieb, ergibt sich eine schier unendliche Kombinationsmöglichkeit. Sinn und Zweck ist eine möglichst gleichmäßige radiale und axiale Belastung über die gesamte Betriebszeit. Durch geschickte Ausnutzung des Neutronenspektrums während des Betriebs, kann man heute in einem Siedewasserreaktor gegenüber einem Druckwasserreaktor mit rund 15% weniger Verbrauch an Natururan auskommen. Lastfolgebetrieb ist mit beliebigen Tagesprofilen möglich. Die Ladezyklen der Brennelemente können flexibel zwischen 18 und 24 Monaten auf die Bedürfnisse des jeweiligen Energieversorgers abgestimmt werden. Es kann sowohl Plutonium als Mischoxid eingesetzt werden, wie auch die Konversionsrate („brüten“ von Plutonium aus Uran) auf Werte von nahezu 1 (Druckwasserreaktor rund 0,6) getrieben werden.

Die Steuerstäbe

Die Brennelemente sind nicht dicht nebeneinander gestapelt, sondern zwischen ihnen befindet sich ein genau definierter Wasserspalt. In diesen Spalten fahren die Steuerstäbe nach oben. Die 205 Steuerstäbe sind kreuzförmig, sodaß jeweils vier Brennelemente mit ihnen eine Einheit bilden. Sie bestehen aus Edelstahl. In ihnen sind mit Borkarbid oder Hafnium (Neutronengifte) gefüllte und gasdicht verschweißte Röhren eingelassen.

Die Steuerstäbe können vollständig ausgefahren werden. Sie ziehen sich dann in den Raum unterhalb des Kerns, aber innerhalb des Reaktordruckgefässes zurück. Jeder Steuerstab wird durch einen elektrischen Schrittmotor unterhalb des Reaktordruckbehälters angetrieben. Jeder Steuerstab kann damit einzeln und zentimetergenau verfahren werden. Steuerungstechnisch sind die einzelnen Stäbe zusätzlich in Gruppen zusammengefaßt. Ihre Stellung kann damit allen Betriebszuständen und den momentanen Neutronenflüssen angepaßt werden. Hierfür sind 52 feste Messeinrichtungen im Reaktorkern vorhanden. Zusätzlich wird der Abbrand noch auf einem Computer mitgerechnet.

Wird eine Schnellabschaltung ausgelöst, werden alle Steuerstäbe in höchstens 1,7 Sekunden vollständig von unten in den Kern eingeschossen. Zu diesem Zweck werden die elektrischen Antriebe durch hydraulische überbrückt. Die Energie wird aus ständig geladenen Wasser/Stickstoff-Druckspeichern bezogen.

Die Dampftrocknung

Aus den Brennelementen tritt oben ein Gemisch aus Wasser und Dampf im Sättigungszustand aus. Bei diesem Druck ist zwar weniger als 15% der Masse des unten in die Brennelemente eingetretenen Wassers verdampft, dies führt aber zu einem Volumenanteil des Dampfes von über 40%. Dieser Dampf muß abgeschieden werden und das Wasser über den Ringraum des Kerns wieder zum Eintritt zurückgeleitet werden. Zusätzlich wird der entzogene Dampf noch durch „kaltes“ Speisewasser ersetzt.

Die Wasserabscheider bestehen aus dreifach hintereinander geschalteten Elementen. In ihnen wird das Wasser rausgeschleudert und fällt durch sein Gewicht nach unten zurück. Der Dampf strömt weiter nach oben.

Ganz oben im Druckbehälter, befinden sich die Dampftrockner. In ihnen wird der Sattdampf durch Blechpakete umgeleitet. Hier werden nicht nur feinste Tröpfchen aufgehalten, sondern durch die Reibung entsteht zusätzliche Wärme, die den Dampf geringfügig überhitzt. Als Nebeneffekt verlängert sich die Verweilzeit des Dampfes im Reaktordruckgefäß durch die langen Wege. Ein beträchtlicher Teil des gebildeten radioaktiven Stickstoffs (N16. mit t ½ = 7,13 s) kann bereits dort zerfallen.

Die Notkühlung

Der ABWR verfügt über drei redundante und räumlich voneinander getrennte Notkühlsysteme. Dadurch steigt nicht nur die Sicherheit, sondern auch die Verfügbarkeit: Wenn während des Betriebs ein Notkühlsystem gewartet wird, stehen immer noch zwei zur Verfügung.

Ein Siedewasserreaktor ist eine robuste Konstruktion:

  • Der Wasserinhalt im Reaktordruckgefäß ist größer als bei einem Druckwasserreaktor. Dies verschafft Reaktionszeit.
  • Die Brennelemente sind für einen dauerhaften Siedezustand geschaffen. Die Gefahr in den Zustand des Filmsiedens – dabei entsteht eine isolierende Dampfchicht auf dem Brennstab – zu gelangen, ist wesentlich geringer und damit eine Überhitzung (z. B. Teilschmelze von Brennstäben) unwahrscheinlicher.
  • Da die Dampferzeugung bereits im Reaktor stattfindet, entfallen eine Menge potentieller Leckstellen. Die Gefahr eines größeren Kühlmittelverlustes reduziert sich auf die Frischdampf- und Speisewasserleitungen.

Die Notkühlung vollzieht sich in der Nachspeisung von ausreichend Kühlwasser. Der Wasserstand muß stets oberhalb des Reaktorkerns liegen. Ist ein auftretendes Leck nur klein, bleibt der Druck im Reaktordruckgefäß noch relativ hoch. Jede Notkühlung verfügt deshalb über eine Hochdruck-Einspeisung. Sollte diese Versagen, kann eine Druckabsenkung auch bewußt über die Abblaseventile herbeigeführt werden. Ist der Druck – aus welchen Gründen auch immer – weit genug abgefallen, erfolgt die Nachspeisung aus dem Niederdrucksystem. Damit der Druck im Containment nicht unnötig ansteigt, wird der Dampf in Kondensationskammern niedergeschlagen. Das sind große, mit kaltem Wasser gefüllte Kammern. Die Wasserfüllung wird durch eine Wasseraufbereitung stets auf Speisewasserqualität gehalten, sodaß das Kühlwasser gleichzeitig zur Nachspeisung dienen kann. Da sich diese Kammern innerhalb des Containment befinden, ist diese Wasserreserve sehr gut geschützt. Das Wasser wird beständig über die Kühlkreisläufe des Kraftwerks auf einer niedrigen Temperatur gehalten.

Die Eigenversorgung

Solange alles normal läuft, wird die gesamte vom Kraftwerk benötigte elektrische Energie von der eigenen Produktion abgezweigt. Wenn das Netz kurzfristig zusammenbricht – Blitzschlag, Sturmschaden, Schaltfehler etc. – kann die Regelung dies ohne Schnellabschaltung beherrschen: Der Dampf wird an der Turbine vorbei, direkt in die Kondensatoren geleitet. Gleichzeitig nimmt die Regelung die Leistung des Reaktors über die Umwälzpumpen und die Steuerstäbe sanft zurück. Das Kraftwerk läuft nun im Leerlauf und erzeugt nur noch Strom für den Eigenbedarf. Kann das Netz schnell wieder hergestellt werden, kann der Betrieb ohne große Verzögerung wieder aufgenommen werden.

Liegt der Schaden beispielsweise im Generator, kann die Stromversorgung aus dem Netz aufrecht erhalten werden. Ist das Netz ebenfalls zusammengebrochen (Fukushima) müssen die Notstromdiesel übernehmen. Hierfür gibt es drei Notstromdiesel in drei voneinander hermetisch getrennten (Feuerschutz und wasserdicht gegen Wasser von außen und innen) Bereichen innerhalb des Reaktorgebäudes (Schutz gegen z. B. Flugzeugabsturz, Erdbeben etc.). Versagen auch diese, gibt es noch eine Gasturbine im separaten „Notstandsgebäude“ (Post-Fukushima). Für alle Gleichstromverbraucher (z. B. Regelung, Computer etc.) gibt es eine überdimensionierte (Post-Fukushima) Batterieanlage zur unterbrechungsfreien Stromversorgung.

Sollten alle Sicherheitssysteme versagen, gibt es noch eine weitere Ebene für alle nicht vorhersehbaren Ereignisse. Unterhalb des Reaktordruckbehälters gibt es einen sog. „Core-Catcher“ auf dem sich ein eventuell austretendes Corium ausbreiten könnte (UK-ABWR). Der gesamte Raum unterhalb des Reaktors könnte durch das Wasser aus den Kondensationskammern zusätzlich geflutet werden. Sollte der Druck im Sicherheitsbehälter unzulässige Werte erreichen, kann das Gas kontrolliert und gefiltert über den Schornstein abgelassen werden. Dies ist für alle Menschen, die von einem nicht kalkulierbaren „Restrisiko“ ausgehen. Allerdings darf nicht erwartet werden, daß dadurch rechtgläubige „Atomkraftgegner“ von ihrem Kampf abgehalten werden. Schließlich hat in Fukushima eine der schwersten Naturkatastrophen in der Menschheitsgeschichte nur zum Totalschaden von vier Reaktoren aus den Anfängen der Kerntechnik geführt – ohne ein einziges zusätzliches Todesopfer zu verursachen. Genau die ABWR hingegen, haben durch dieses außergewöhnlich schwere Erdbeben keinen Schaden genommen. Ein schlimmer, aber bestens bestandener Praxistest. Wer also immer noch glaubt, in Deutschland ginge es bei Fragen der Kerntechnik nicht um vorgeschobene politische Interessen, dem ist nicht zu helfen.

Ausblick

Im nächsten Teil wird der ESBWR als bisher sicherheitstechnisches „High Light“ der Leichtwasserreaktoren behandelt. Er ist in Europa noch nicht in der Diskussion, weil er gerade erst den „Goldstandard der Genehmigungsverfahren“ – eine Zulassung durch die US-Behörden – erlangt. Dies kann sich aber sehr schnell ändern, wie die neusten Entwicklungen z. B. in Indien zeigen.

Reaktortypen in Europa – Teil1, Einleitung

In Europa werden bereits einige Kernkraftwerke neu errichtet bzw. stehen kurz vor einer Auftragsvergabe. Es scheint daher angebracht, sich ein bischen näher mit den unterschiedlichen Typen zu befassen und deren (technische) Unterschiede zu erläutern.

Warum überwiegend Leichtwasserreaktoren?

Es dreht sich um größere Kraftwerke. Oberhalb von etlichen hundert Megawatt ist für Wärmekraftwerke nur ein Dampfkreislauf möglich – egal, ob mit Kohle, Gas oder Kernspaltung als Wärmequelle. Dieselmotoren (bis max. 70 MW) oder Gasturbinen (bis max. 350 MW) sind für solche Blockgrößen ungeeignet. Selbst bei gasgekühlten oder mit Flüssigmetallen gekühlten Reaktoren, besteht der eigentliche Arbeitsprozess aus einem Wasserdampfkreisprozeß: Wasser wird unter hohem Druck verdampft und treibt anschließend eine Turbine mit Generator an. Wenn man also ohnehin Dampf braucht, warum nicht gleich damit im Reaktor anfangen?

Es muß allerdings eine Voraussetzung erfüllt sein: Man muß über Uran mit einem Anteil von etwa 2 bis 5% Uran-235 bzw. Plutonium (MOX) verfügen. Beides kommt in der Natur nicht vor. Will man Natururan verwenden, ist man auf schweres Wasser (Deuterium) oder Kohlenstoff (Reaktorgraphit) angewiesen, um überhaupt eine selbsterhaltende Kettenreaktion zu erhalten. Will man andererseits die schwereren Urankerne bzw. Minoren Aktinoide direkt spalten, darf man die bei der Spaltung freigesetzten Neutronen möglichst gar nicht abbremsen und muß deshalb zu Helium oder flüssigen Metallen als Kühlmittel übergehen. Noch ist dieser Schritt nicht nötig, da es genug billiges Natururan gibt und andererseits (noch nicht) die Notwendigkeit zur Beseitigung der langlebigen Bestandteile des sog. „Atommülls“ besteht. Das zweite ist ohnehin eine rein politische Frage. Die sog. Leichtwasserreaktoren werden deshalb auch in den kommenden Jahrhunderten der bestimmende Reaktortyp bleiben.

Die Temperaturfrage

Je höher die Betriebstemperaturen sind, um so höher die Kosten und Probleme. Dieser Grundsatz gilt ganz allgemein. Bis man auf Kernenergie in der chemischen Industrie z. B. zur „Wasserstoffgewinnung“ angewiesen sein wird, wird noch eine sehr lange Zeit vergehen. Solche Anwendungen lassen sich einfacher und kostengünstiger mit fossilen Brennstoffen realisieren. Abgesehen davon, daß die Vorräte an Kohle, Gas und Öl noch für Jahrhunderte reichen werden, kann man beträchtliche Mengen davon frei setzen, wenn man bei der Stromerzeugung auf Kernenergie übergeht. Diesen Weg hat China bereits angefangen.

Ein oft gehörtes Argument ist der angeblich geringe Wirkungsgrad von Leichtwasserreaktoren. Richtig ist, daß der thermodynamische Wirkungsgrad um so besser ist, je höher die Betriebstemperatur ist. Er liegt bei den heute modernsten Steinkohlekraftwerken bei etwa 46% und bei Braunkohlekraftwerken bei 43%. Demgegenüber erscheint der Wirkungsgrad eines modernen Druckwasserreaktors mit 37% als gering. Es gibt jedoch zwei wichtige Aspekte zu berücksichtigen:

  • Die hohen Wirkungsgrade der Kohlekraftwerke erfordern solche Drücke und Temperaturen, daß die (derzeitigen) technologischen Grenzen erreicht, wenn nicht sogar überschritten sind. Der noch vor wenigen Jahren propagierte Wirkungsgrad von 50% ist in weite Ferne gerückt. Die Werkstoff- und Fertigungsprobleme – und damit die Kosten – nehmen mit jedem weiteren Grad überproportional zu. Kombiprozesse (z. B. Gasturbine mit Abhitzekessel) erfordern hochwertige Brennstoffe, wie Erdgas oder Mineralöle. Will man solche erst aus Kohle gewinnen (Kohlevergasung), sackt der Gesamtwirkungsgrad wieder auf die alten Werte ab.
  • Der thermodynamische Wirkungsgrad ist ohnehin nur für Ingenieure interessant. Entscheidend sind im wirklichen Leben nur die Herstellungskosten des Produktes. Hier gilt es verschiedene Kraftwerke bezüglich ihrer Bau- und Betriebskosten zu vergleichen. Es lohnt sich nur eine Verringerung des Brennstoffverbrauches, wenn die dadurch eingesparten Kosten höher als die hierfür nötigen Investitionen sind. Bei den geringen Uranpreisen ein müßiges Unterfangen. Gleiches gilt für die ohnehin geringen Mengen an Spaltprodukten („Atommüll“) als Abfall, der langfristig (nicht Millionen Jahre!) gelagert werden muß.

Der Betriebsstoff Wasser

Wasser erfüllt in einem Kernkraftwerk drei Aufgaben gleichzeitig: Moderator, Kühlmittel und Arbeitsmedium. Es bremst die bei der Kernspaltung frei werdenden Neutronen auf die erforderliche Geschwindigkeit ab, führt in nahezu idealer Weise die entstehende Wärme ab und leistet als Dampf in der Turbine die Arbeit. Vergleicht man die Abmessungen gasgekühlter Reaktoren mit Leichtwasserreaktoren, erkennt man sofort die überragenden Eigenschaften von Wasser. Es ist kein Zufall, daß heute z. B. alle Reaktoren in Atom-U-Booten ausnahmslos Druckwasserreaktoren sind. Je kompakter ein Reaktor ist, um so kleiner ist das notwendige Bauvolumen. Je kleiner ein Gebäude sein muß, desto geringer können die Baukosten sein.

Der Reaktorkern

Der Kern (Core) ist der eigentliche nukleare Bereich in einem Kernkraftwerk, in dem die Kernspaltung statt findet. Er sollte möglichst kompakt sein. Er besteht aus hunderten von Brennelementen, die wiederum aus jeweils hunderten von Brennstäben zusammengesetzt sind. Ein Brennstab ist ein mit Uranoxid gefülltes, bis zu fünf Meter langes, dabei aber nur etwa einen Zentimeter dickes Rohr. Ein solcher Spagetti besitzt natürlich kaum mechanische Stabilität (z. B. bei einem Erdbeben) und wird deshalb durch diverse Stützelemente zu einem Brennelement zusammengebaut. Erst das Brennelement ist durch die genaue Dimensionierung und Anordnung von Brennstäben und wassergefüllten Zwischenräumen das eigentliche Bauelement zur Kernspaltung. Die einzuhaltenden Fertigungstoleranzen stehen bei einem solchen Brennelement einer mechanischen „Schweizer Uhr“ in nichts nach.

Der Brennstab ist das zentrale Sicherheitselement – gern auch als erste von drei Barrieren bezeichnet – eines Kernreaktors. Der Brennstoff (angereichertes Uran oder Mischoxid) liegt in einer keramischen Form als Uranoxid vor. Dies ist eine chemisch und mechanisch äußerst stabile Form. Der Brennstab soll alle „gefährlichen“ Stoffe von der ersten bis zur letzten Stunde seiner Existenz möglichst vollständig zurückhalten. Er ist chemisch so stabil, daß er in der Wiederaufarbeitungsanlage nur in heißer Salpetersäure aufzulösen ist. Grundsätzlich gilt: Je besser er die Spaltprodukte und den Brennstoff zurückhält, um so geringer ist bei einem Störfall die Freisetzung. Wohl gemerkt, Freisetzung innerhalb des Druckgefäßes, noch lange nicht in die Umwelt! Deshalb bezeichnet man den Brennstab auch als erste Barriere, die Schadstoffe auf ihrem langen Weg in die Umwelt überwinden müßten.

In dem Brennstab findet die eigentliche Kernspaltung statt. Fast die gesamte Energie wird genau an diesem Ort frei. Die bei der Spaltung frei werdenden Neutronen müssen nun (fast) alle aus dem Brennstab raus, rein in den genau definierten Wasserspalt zwischen den Brennstäben um dort abgebremst zu werden und wieder zurück in einen Brennstab, um dort die nächste Spaltung auszulösen. Es geht für die Neutronen (fast) immer mehrere Male durch die Brennstabhülle. Sie darf deshalb möglichst keine Neutronen wegfangen. Zirkalloy hat sich zu diesem Zweck als idealer Werkstoff für die Hüllrohre erwiesen. Diese Rohre haben jedoch bei einem schweren Störfall (TMI und Fukushima) eine fatale Eigenschaft: Sie bilden bei sehr hohen Temperaturen im Kontakt mit Wasserdampf Wasserstoffgas, der zu schweren Explosionen führen kann. Wohl jedem, sind die Explosionen der Kraftwerke in Fukushima noch in Erinnerung.

Bei einem Reaktorkern hat die Geometrie entscheidende Auswirkungen auf die Kernspaltung. Bei einer Spaltung im Zentrum des Kerns haben die frei werdenden Neutronen einen sehr langen Weg im Kern und damit eine hohe Wahrscheinlichkeit, eine weitere Spaltung auszulösen. Neutronen, die am Rand entstehen, haben demgegenüber eine hohe Wahrscheinlichkeit einfach aus dem Kern heraus zu fliegen, ohne überhaupt auf einen weiteren spaltbaren Kern zu treffen. Sie sind nicht nur für den Reaktor verloren, sondern können auch schädlich sein (z. B. Versprödung des Reaktordruckgefäßes oder zusätzlicher Strahlenschutz). Es gibt hierfür zahlreiche Strategien, dem entgegen zu wirken: Unterschiedliche Anreicherung, Umsetzung im Reaktor, abbrennbare Neutronengifte, Reflektoren etc. Verschiedene Hersteller bevorzugen unterschiedliche Strategien.

Brennstäbe

Die Brennstäbe müssen einige sich widersprechende Anforderungen erfüllen:

  • Je dünnwandiger die Hüllrohre sind, desto weniger Neutronen können dort eingefangen werden und je kleiner muß die treibende Temperaturdifferenz innen zu außen sein, damit die enormen Wärmemengen an das Kühlwasser übertragen werden können. Je dünner aber, je geringer die Festigkeit und die Dickenreserve gegen Korrosion.
  • Der Brennstoff selbst soll möglichst stabil sein. Uranoxid erfüllt diesen Anspruch, hat aber eine sehr schlechte Wärmeleitfähigkeit. Die Brennstäbe müssen deshalb sehr dünn sein, was nachteilig für ihre mechanische Stabilität ist. Es kann bei Leistungssprüngen sehr schnell zum Aufschmelzen im Innern des Brennstoffes kommen, obwohl es am Rand noch recht kalt ist. Dadurch kommt es zu entsprechenden Verformungen und Ausgasungen, die sicher beherrscht werden müssen.
  • Das umgebende Wasser ist nicht nur Moderator, sondern auch Kühlung für den Brennstab. Eine ausreichende Kühlung ist nur durch eine Verdampfung auf der Oberfläche möglich. Kernreaktoren sind die „Maschinen“ mit der höchsten Leistungsdichte pro Volumen überhaupt. Das macht sie so schön klein, verringert aber auch die Sicherheitsreserve bei einem Störfall. Fallen sie auch nur einen Augenblick trocken, reicht selbst bei einer Schnellabschaltung die Nachzerfallswärme aus, um sie zum Glühen oder gar Schmelzen zu bringen. In dieser Hitze führt die Reaktion der Brennstoffhülle mit dem vorhandenen Dampf zur sofortigen Zersetzung unter Wasserstoffbildung. Beides geschah in den Reaktoren von Harrisburg und Fukushima.
  • Der Zwischenraum mit seiner Wasserfüllung als Moderator erfüllt eine wichtige Selbstregelfunktion. Damit überhaupt ausreichend Kerne gespalten werden können, müssen die Neutronen im Mittel die „richtige“ Geschwindigkeit haben. Diese wird durch den Zusammenstoß mit einem Wasserstoffatom erreicht. Damit dies geschehen kann, müssen sie eine gewisse Anzahl von Wassermolekülen auf ihrem Weg passiert haben. Da die Spalte geometrisch festgeschrieben sind, hängt die Anzahl wesentlich von der Dichte ab. Mit anderen Worten: Vom Verhältnis zwischen Dampf und Wasser im Kanal. Macht die Leistung einen Sprung, verdampft mehr Wasser und die Dichte nimmt ab. Dadurch werden weniger Neutronen abgebremst und die Anzahl der Spaltungen – die der momentanen Leistung entspricht – nimmt wieder ab.
  • Der Brennstoff wird bei Leichtwasserreaktoren nur in der Form kompletter Brennelemente gewechselt. Da aber kontinuierlich Spaltstoff verbraucht wird, muß am Anfang eine sog. Überschußreaktivität vorhanden sein. Wenn am Ende des Ladezyklus noch so viel Spaltstoff vorhanden ist, daß eine selbsterhaltende Kettenreaktion möglich ist, muß am Anfang zu viel davon vorhanden gewesen sein. Dieses zu viel an Spaltstoff, muß über sog. Neutronengifte kompensiert werden. Das sind Stoffe, die besonders gierig Neutronen einfangen und sie somit einer weiteren Spaltung entziehen. Je nach Reaktortyp kann das durch Zusätze im Brennstoff oder Kühlwasser geschehen.
  • Die Leistungsregelung eines Reaktors geschieht hingegen über Regelstäbe, die in Leerrohre in den Brennelementen eingefahren werden können. Die Regelstäbe bestehen ebenfalls aus Materialien, die sehr stark Neutronen einfangen. Fährt man sie tiefer ein, fangen sie mehr Neutronen weg und die Anzahl der Spaltungen und damit die Leistung, wird geringer. Zieht man sie heraus, können mehr Neutronen ungestört passieren und die Leistung steigt. Bei einer Schnellabschaltung werden sie alle – möglichst schnell – voll eingefahren.

Die eigentliche Stromerzeugung

In einem Kernkraftwerk wird – wie in jedem anderen Kraftwerk auch – die elektrische Energie durch einen Generator erzeugt. Dieser Generator wird in einem Kernkraftwerk durch eine sogenannte Nassdampfturbine angetrieben. Das ist ein wesentlicher Unterschied zu einem fossil befeuerten Kraftwerk. Bei denen wird möglichst heißer Dampf (bis 580 °C) auf die Turbine geschickt. Dieser wird nach einer gewissen Arbeitsleistung sogar wieder entnommen und noch einmal im Kessel neu erhitzt (z. B. Zwischenüberhitzung bei 620 °C). Prinzipiell erhöhen diese Maßnahmen den Wirkungsgrad und machen vor allem die Turbine kleiner und preiswerter.

Das Hauptproblem einer Nassdampfmaschine sind die großen Dampfvolumina und der Wassergehalt des Dampfes. Turbinen von Leichtwasserreaktoren haben üblicherweise einen Hochdruck und drei doppelflutige Niederdruckstufen auf einer gemeinsamen Welle. Trotzdem sind die Endstufen damit über 2 m lang und drehen sich mit Überschallgeschwindigkeit. Dadurch wirken auf jedes Blatt Fliehkräfte von über 500 to. In den Kondensatoren herrscht Hochvakuum, wodurch der Dampf mit der zugehörigen Schallgeschwindigkeit strömt. Die sich bereits gebildeten Wassertröpfchen wirken wie ein Sandstrahlgebläse auf die Turbinenschaufeln. Grundsätzlich gilt, je „kälter“ man mit dem Dampf in die Turbinenstufe rein geht, desto höher wird der Wasseranteil bei vorgegebenem Enddruck.

Die Entwässerung ist bei einer Nassdampfmaschine sehr aufwendig und damit teuer. Man versucht möglichst viel Wasser aus den Leitstufen abzusaugen und verwendet auch noch zusätzliche Tröpfchenabscheider außerhalb der Turbine. Vor den Niederdruckstufen überhitzt man den Dampf noch durch Frischdampf. All diese Maßnahmen verursachen aber Druckverluste und kosten nutzbares Gefälle.

Instrumentierung

Es ist von entscheidender Bedeutung, daß das Bedienungspersonal in jedem Augenblick einen möglichst genauen und detaillierten Überblick über die Zustände im Kraftwerk hat. Nur bei genauer Kenntnis der tatsächlichen Lage, können die richtigen Schlüsse gezogen werden und wirksame Gegenmaßnahmen eingeleitet werden. Dies ist die leidige Erfahrung aus allen Störfällen. Der Meßtechnik kommt deshalb große Bedeutung zu. Sie muß in ausreichender Auflösung (Stückzahl) vorhanden sein und zuverlässige Informationen in allen Betriebszuständen liefern.

In diesem Sinne spielen die Begriffe „Redundanz“ und „Diversität“ eine zentrale Rolle:

  • Alle wichtigen Betriebsgrößen werden mehrfach gemessen. Dies gibt Sicherheit gegen Ausfälle. Zusätzlich kann man bei einer mehrfachen – üblicherweise 4-fachen – Messung, Vertrauen zu den Meßwerten herstellen. Bei sicherheitsrelevanten Meßwerten (z. B Druck und Temperatur im Reaktordruckgefäß), die über eine Schnellabschaltung entscheiden, gilt das 3 von 4 Prinzip: Jede Größe wird gleichzeitig 4-fach gemessen. Anschließend werden die Meßwerte verglichen und es werden nur die drei ähnlichsten als Grundlage weiterer Auswertungen verwendet. Man erkennt damit augenblicklich, welche Meßstelle gestört ist und an Hand der Abweichungen untereinander, wie glaubwürdig die Messung ist.
  • Jedes Meßverfahren liefert nur in bestimmten Bereichen Ergebnisse mit hinreichender Genauigkeit. Dies ist eine besondere Herausforderung in einer Umgebung, die sich ständig verändert. So sind z. B. bestimmte Meßverfahren für den Neutronenfluß stark temperaturabhängig. Es ist deshalb üblich, unterschiedliche physikalische Methoden gleichzeitig für dieselbe Messgröße anzuwenden. Damit sind einfache Plausibilitätskontrollen möglich. Dies ist besonders bei Störfällen wichtig, bei denen die üblichen Bereiche schnell verlassen werden.

Digitalisierung und Sicherheit

Es gibt bei einem Kernkraftwerk alle möglichen Grenzwerte, die nicht überschritten werden dürfen. Wird ein solcher Grenzwert erreicht, wird vollautomatisch eine Schnellabschaltung ausgelöst. Jede Schnellabschaltung ergibt nicht nur einen Umsatzausfall, sondern ist auch eine außergewöhnliche Belastung mit erhöhtem Verschleiß. Das Problem ist nur, daß die Vorgänge in einem solch komplexen System extrem nichtlinear sind. Gemeint ist damit, daß „ein bischen Drehen“ an einer Stellschraube, einen nicht erwarteten Ausschlag an anderer Stelle hervorrufen kann.

Die moderne Rechentechnik kann hier helfen. Wenn man entsprechend genaue mathematische Modelle des gesamten Kraftwerks besitzt und entsprechend leistungsfähige Rechner, kann man jede Veränderung in ihren Auswirkungen voraussagen und damit anpassen bzw. gegensteuern. Nun haben aber auch Computerprogramme Fehler und sind schwer durchschaubar. Es tobt deshalb immer noch ein Glaubenskrieg zwischen „analog“ und „digital“. Dies betrifft insbesondere die geforderte Unabhängigkeit zwischen der Regelung und dem Sicherheitssystem.

Seit Anbeginn der Reaktortechnik ist die Aufmerksamkeit und Übung des Betriebspersonals ein dauerhaftes Diskussionsthema. Insbesondere im Grundlastbetrieb ist die Leitwarte eines Kernkraftwerks der langweiligste Ort der Welt: Alle Zeiger stehen still. Passiert etwas, verwandelt sich dieser Ort augenblicklich in einen Hexenkessel. Die Frage ist, wie schnell können die Menschen geistig und emotional Folgen? Wie kann man sie trainieren und „aufmerksam halten“? Die allgemeine Antwort lautet heute: Ständiges Üben aller möglichen Betriebszustände und Störfälle im hauseigenen Simulator. Das Schichtpersonal eines Kernkraftwerks verbringt heute wesentlich mehr Stunden im Simulator, als jeder Verkehrspilot. Die zweite „Hilfestellung“ ist im Ernstfall erst einmal Zeit zu geben, in der sich das Personal sammeln kann und sich einen Überblick über die Lage verschafft. Dies sind die Erfahrungen aus den Unglücken in Harrisburg und Tschernobyl. Dort haben Fehlentscheidungen in den ersten Minuten die Lage erst verschlimmert. Eine ganz ähnliche Fragestellung, wie bei Flugzeugen: Wer hat das sagen, der Pilot oder die Automatik? Eine Frage, die nicht eindeutig beantwortet werden kann, sondern immer zu Kompromissen führen muß.

Ausblick

Wer bis hier durchgehalten hat, hat nicht vergebens gelesen. Ganz im Gegenteil. In den folgenden Beiträgen werden die Reaktoren jeweils einzeln vorgestellt. Um die Unterschiede klarer zu machen, wurden hier vorab einige grundlegende Eigenschaften behandelt. Zuerst werden die Druckwasserreaktoren EPR von Areva und AP-1000 von Westinghouse behandelt und dann die Siedewasserreaktoren ABWR und der ESBWR von GE-Hitachi. Das entspricht in etwa dem derzeitigen Ausbauprogramm in Großbritannien. Soweit Zeit und Lust des Verfassers reichen, werden noch die russischen (Türkei, Finnland, Ungarn) und die chinesisch/kanadischen Schwerwasserreaktoren (Rumänien) folgen.