Reaktortypen in Europa – Teil3, AP1000

AP1000 ist die Warenmarke eines Druckwasserreaktors der Generation III+ des Herstellers Westinghouse. Westinghouse ist die Mutter aller Druckwasserreaktoren. Sie erschuf 1954 unter Hyman G. Rickover und Alvin M. Weinberg diesen Reaktortyp für den Antrieb des ersten Atom-U-Boots USS Nautilus (SSN-571).

Geschichte

Der AP1000 entwickelt sich zum „Golf“ der Kernkraftwerke. Inzwischen sind acht Reaktoren in Bau: Je zwei in Sanmen und Haiyang in China und in Vogtle (Georgia) und Summer (South Carolina) in USA. Zahlreiche andere befinden sich weltweit im Vergabeverfahren. So sind drei Reaktoren in Moorside (West Cumbria, nordwestlich von Sellafield, UK) in Vorbereitung. Sie sollen durch NuGen, ein Joint Venture aus Toshiba (Westinghouse gehört zu Toshiba) und GDF SUEZ errichtet und betrieben werden.

Ständig steigende Investitionskosten und steigende Sicherheitsanforderungen zwangen Westinghouse das Konzept grundlegend zu überarbeiten. Über 50 Jahre Betriebserfahrung gipfelten in einer völlig neuen Konstruktion mit vier zentralen Anforderungen:

  • Vereinfachte Konstruktion: Was man nicht hat, kostet auch nichts und kann nicht versagen,
  • Übergang von aktiven auf passive Sicherheitssysteme,
  • modularer Aufbau und
  • parallele Errichtung von Bau und Anlagentechnik.

Der AP1000 ist ein schönes Beispiel dafür, was man erreichen kann, wenn man den Mut hat, eine Konstruktion noch einmal mit einem weißen Blatt Papier von Anfang an zu beginnen. Vorgabe war ein Druckwasserreaktor mit einer mittleren Leistung von rund 1000 MWel. Schon damit setzte man sich ab. Man versuchte gar nicht erst eine Kostensenkung über eine Leistungssteigerung zu erzielen, sondern setze lieber auf die Nachfrage des Weltmarktes. Die Größe entsprach nur etwa 2/3 der letzten Typen der zweiten Generation. Dieser Rückschritt sollte dafür die Märkte der Schwellenländer mit noch kleinen Netzen einschließen.

Durch die „geringe“ Leistung kommt man mit nur zwei modernen Dampferzeugern gegenüber üblicherweise vier aus. Dies spart schon mal beträchtlich umbauten Raum, der bei Kernkraftwerken besonders teuer ist (Sicherheitsbehälter, Betonbunker etc.). Durch weiteres, konsequentes „weglassen“ ergibt sich der Druckwasserreaktor mit dem geringsten Beton- und Stahleinsatz pro MWel.

Ein weiterer Ansatz zur Senkung der Stromerzeugungskosten ist die Verlängerung der Nutzungsdauer: Die Ausdehnung auf genehmigte 60 Jahre verteilt die Kapitalkosten auf wesentlich mehr produzierte KWh. Weniger sicherheitsrelevante Teile (z. B. Noteinspeisepumpen mit zugehörigen Ventilen und Rohrleitungen) oder robustere Konstruktionen (z. B. dichtungslose Hauptkühlmittelpumpen) verringern die Wartungskosten und die notwendigen Wiederholungsprüfungen. Eine nicht zu vernachlässigende Einsparung über die Lebensdauer eines Kraftwerks.

Pumpen

Üblicherweise stehen die Hauptkühlmittelpumpen zwischen den Dampferzeugern. Sie sind mit diesen und dem Reaktordruckgefäß über Rohrleitungen verbunden. Die Pumpen saugen das abgekühlte Wasser aus den Dampferzeugern an und drücken es zurück durch den Kern. Beim AP1000 haben sie die gleiche Aufgabe. Sie sind aber paarweise direkt an den Dampferzeugern angeflanscht. Dies erspart nicht nur Rohrleitungen, sondern vereinfacht diese erheblich. Es sind weniger Formstücke und Schweißnähte erforderlich und der Schutz gegen Erdbeben gestaltet sich wesentlich einfacher.

Die Pumpen selbst, sind für zivile Druckwasserreaktoren ungewöhnlich. Sie verfügen über mit Wasser geschmierte Gleitlager und sind voll gekapselt. Der Läufer und der Stator sind in wasserdichte Hüllen eingeschweißt. Das Pumpenrad sitzt direkt auf der Welle des Antriebsmotors. Sie benötigen damit keine Wellendichtungen und sind somit extrem wartungsarm. Sie sind für eine Betriebsdauer von 60 Jahren ausgelegt und zugelassen. Dieser Pumpentyp ist sehr anspruchsvoll in der Fertigung. Die USA verfügen jedoch über eine jahrzehntelange Erfahrung mit diesem Pumpentyp in ihrer Marine.

Passive Sicherheit

Unter „Passiver Sicherheit“ versteht man, daß bei keinem Störfall Pumpen, Diesel etc. benötigt werden um den Reaktor in einen sicheren Zustand zu überführen und zu halten. Alle Armaturen müssen nur einmal ausgelöst werden (voll offen oder voll geschlossen) und nach Auslösung ohne Hilfsenergie auskommen. Es sollten keine Eingriffe durch das Personal nötig sein.

Hinter dieser Definition verbirgt sich noch ein weiterer Ansatz zur Kostensenkung: Man kann „Sicherheit“ oder „Verteidigung“ in mehreren Stufen definieren. Bevor ein Ereignis zu einem Störfall wird, kann man durch automatische Stellglieder die Folgen abwenden. So kann man z. B. bei einem Generatorschaden den Dampf direkt in den Kondensator leiten und dadurch eine Notkühlung verhindern. Alle für diese Umleitung notwendigen Komponenten bräuchten nur den bei konventionellen Kraftwerken üblichen Qualitätsstandard besitzen, da sie das eigentliche Sicherheitssystem (gemeint ist damit das passive Notkühlsystem) nicht berühren. Nur die Komponenten des passiven Sicherheitssystems müssten den Stempel „nuclear grade“ tragen. Oft sind solche Teile völlig identisch mit dem „Industriestandard“ – unterscheiden sich lediglich im bürokratischen Aufwand und im Preis.

Man kann die Sicherheit – bezogen auf eine eventuelle Freisetzung von radioaktiven Stoffen in die Umwelt – noch steigern, indem man eine konsequente Diversifizierung betreibt. Ferner sieht man für wahrscheinlichere Ereignisse eine höhere Anzahl von Verteidigungsstufen vor.

Der Station Blackout

Vor Fukushima war der größte anzunehmende Unfall (GAU) der entscheidende Sicherheitsmaßstab. Man ging von einem plötzlichen Verlust der Reaktorkühlung infolge einer abgerissenen Hauptkühlmittelleitung aus. Um ein solches Ereignis zu beherrschen – ohne Freisetzung nennenswerter Radioaktivität in die Umwelt – muß bei Reaktoren mit aktivem Sicherheitskonzept auf jeden Fall ausreichend elektrische Energie vorhanden sein. Mindestens ein Notstromdiesel muß starten und die entsprechenden Schaltanlagen müssen funktionstüchtig sein. In Fukushima hat beides ein Tsunami außer Gefecht gesetzt.

Seit Fukushima ist der „station blackout“ ins öffentliche Interesse geraten. Gemeint ist damit der völlige Verlust von Wechselstrom (Kraftstrom) im Kraftwerk. Es ist nur noch Gleichstrom aus Batterien für Steuerung und Notbeleuchtung vorhanden. Es ist daher interessant, wie der AP1000 auf solch eine Situation reagieren würde:

Durch den Stromausfall fallen die Regelstäbe durch ihr Eigengewicht in den Reaktorkern ein und unterbrechen jede Kettenreaktion. Allerdings beträgt in diesem Moment die Nachzerfallswärme noch rund 6% der thermischen Leistung (ungefähr 200 MW), die sicher abgeführt werden müssen. Durch den Stromausfall, fallen alle Pumpen aus. Durch die in den Schwungrädern der Hauptkühlmittelpumpen gespeicherte Energie, laufen diese noch geraume Zeit nach und halten den Primärkreislauf aufrecht. Allerdings ist nach etwa zwei Minuten der Wasserstand auf der Sekundärseite der Dampferzeuger auf sein zulässiges Minimum gefallen, da die Speisepumpen auch nicht mehr laufen können. Dieser Zustand öffnet automatisch die beiden Ventile zur Notkühlung (die Ventile sind im Betrieb elektromagnetisch geschlossen, d. h. Strom weg = Ventil offen). Nur ein Ventil müßte öffnen (Redundanz), um die volle Wärmeleistung abzuführen. Das Wasser strömt nun vom Reaktorkern zu einem Wärmeübertrager (PRHR HX) in dem Wassertank innerhalb der Sicherheitshülle (PRHR). Dieser Tank liegt deutlich oberhalb des Reaktordruckgefässes, wodurch sich ein Naturumlauf ergibt. Nach rund zwei Stunden ist die Nachzerfallswärme auf rund ein Prozent (immerhin noch rund 34 MW) abgefallen. Nach ungefähr fünf Stunden wäre der Tank soweit aufgeheizt, daß das Wasser zu sieden beginnt. Der Sicherheitsbehälter ist ein Zylinder aus 45 mm dickem Stahlblech (bessere Wärmeleitung als Beton). Der Dampf würde an den Wänden kondensieren und über ein Auffangsystem zurück in den Tank laufen. Der Sicherheitsbehälter wiederum, würde seine Wärme an die Umgebungsluft abgeben. Die Umgebungsluft steigt wie in einem Kamin im Zwischenraum zwischen Sicherheitshülle und Betonwand der Schutzhülle (gegen Flugzeugabsturz usw.) auf. Steigt der Druck im Sicherheitsbehälter über einen Grenzwert an, werden zur Steigerung der Kühlung die pneumatisch betätigten Ventile der Beregnungsanlage geöffnet. Ganz oben, auf dem Dach des Reaktors befindet sich ein charakteristischer, ringförmiger Wassertank. Aus ihm würde nun Wasser durch Schwerkraft auf die äußere Seite des Sicherheitsbehälters „regnen“ und diesen stärker kühlen. Der Inhalt des Tanks reicht für 72 Stunden Beregnung.

Durch die (gewollte) Abkühlung des Reaktors zieht sich das gesamte Wasser des Primärkreislaufes wieder zusammen. Der Wasserstand im Druckhalter sinkt. Genauso würde er sinken, wenn der klassische GAU – irgendein Leck im Primärkreis – eingetreten wäre. Damit ein zeitweiliges „trocken fallen“ der Brennelemente (Harrisburg und Fukushima) sicher verhindert werden kann, wird rechtzeitig Wasser nachgespeist. Hierfür gibt es sog. Akkumulatoren. Das sind Behälter, die teilweise mit Wasser gefüllt sind und durch ein Stickstoffpolster unter Druck gehalten werden. Aus diesen strömt automatisch (Rückschlagventile, die durch den Druck im Primärkreis geschlossen gehalten werden, Druck zu klein = Ventil offen) Wasser in den Reaktordruckbehälter nach.

Ist der Druck – egal ob durch ein Leck oder Abkühlung – bis auf Umgebungsdruck abgebaut, kann die Kühlung direkt über die Verdampfung des Wassers im Druckbehälter endlos weiter erfolgen. Dieser Zustand kann auch gewollt oder automatisch angestrebt werden. Würde die Kühlung – aus welchen Gründen auch immer – versagen, würde der Druck im Reaktorbehälter immer weiter ansteigen. Um dies zu verhindern, kann man den Druck über ein Abblasen des Druckhalters abbauen. Dies ist ein Beispiel, wie man durch den geschickten Aufbau einer Sicherheitskette das eventuelle Versagen einzelner Glieder überbrücken kann: Würden tatsächlich beide Ventile (2 x 100%) des Notkühlkreislaufes versagen (siehe weiter oben) müßte trotzdem nicht die Kühlung ausfallen, sondern es würde lediglich ein anderer Weg beschritten.

Die 72 h Regel

Beim AP1000 bezieht sich die passive Sicherheit nicht nur auf die Anlagentechnik, sondern auch auf das Personal. Seit den Störfällen von Harrisburg und Tschernobyl weiß man um die Bedeutung von Bedienungsfehlern. Gerade in der Zeit unmittelbar nach der Störung ist die Wahrscheinlichkeit dafür besonders hoch: Das Schichtpersonal muß erst seinen Schock überwinden, eine wahre Informationsflut muß erst einmal verarbeitet werden damit man sich überhaupt einen Überblick verschaffen kann und dann müssen die richtigen Maßnahmen auch noch erkannt und eingeleitet werden. Andererseits sind drei volle Tage eine recht lange Zeit, um etwas zu reparieren, Fachleute außerhalb des Kraftwerks hinzu zu ziehen oder sogar Ersatzgerät herbeizuschaffen. Dies gilt selbst bei schwersten Naturkatastrophen wie in Fukushima.

Dabei sind die 72 Stunden als Mindestwert bei ungünstigsten Bedingungen zu verstehen. Nach Ablauf dieser Zeitspanne sind weitere Auffanglinien vorgesehen. So können z. B. die Kühlwasserbehälter auch von außen über die Feuerlöschtanks auf dem Gelände nachgefüllt werden. Hierfür ist allerdings wenigstens ein kleiner Hilfsdiesel, der zusätzlich zu den eigentlichen Notstromdieseln vorhanden ist, nötig. Der Treibstoffvorrat beträgt vier Tage. Inzwischen dürften längst Hilfskräfte und Material aus den Notfallcentern eingetroffen sein.

Die Strategie zur Kostensenkung

So makaber es klingen mag, aber die Unglücke von Tschernobyl (vollkommen explodierter Reaktor) und Fukushima (in drei Reaktoren gleichzeitige Kernschmelze) haben den „Atomkraftgegnern“ ihr stärkstes Argument von dem „unkalkulierbaren Restrisiko“ bei Kernkraftwerken entzogen. Nur noch sehr schlichte Gemüter glauben das Märchen „Millionen-Tote-für-10000-Jahre-unbewohnbar“. Es ist also kein Zufall, daß sich die „Bewegung“ nun auf angeblich „zu teuer“, konzentriert. Für die Investitionskosten sind folgende Faktoren ausschlaggebend:

  • Unnötig kompliziert: Doppelte Betonbunker, Core catcher, weitere Notstromdiesel, Pumpen etc.
  • Bürokratismus: „Nuclear grade“ erfordert einen – teilweise absurden – bürokratischen Aufwand. Oft kostet das gleiche Bauteil als „nuclear grade“ geadelt, den vier bis fünffachen Preis. Um eine Diskussion über Sinn und Zweck zu vermeiden, sollte dieser Standard nur noch für echte Sicherheitstechnik verlangt sein. So könnte man beispielsweise bei einem Reaktor mit passiver Sicherheit, die Notstromdiesel aus diesem Verfahren entlassen – als wenn es in anderen Bereichen (IT, Luftfahrt, Seefahrt etc.) keine Sicherheitsnormen gäbe.
  • Bauzeit: Je länger die Bauzeit dauert, desto höher sind automatisch die Baukosten (Verzinsung), das Risiko (z. B. Inflation) und der ausgefallene Gewinn (z. B. Zukauf von Strom). Eine Verkürzung läßt sich grundsätzlich nur durch parallele Abläufe erzielen.
  • Baustelle: Arbeiten auf Baustellen sind grundsätzlich teurer, als eine Fertigung in einer Fabrik. Hinzu kommt meist noch ein schwer zu kalkulierendes Witterungsrisiko.
  • Serien: Jeder „first of a kind“ ist teurer als die Nachfolgemodelle. Hat man erst einmal die „Konstruktionsfehler“ behoben und das Personal seine Erfahrungen gesammelt, geht die Arbeit wesentlich flotter. Dies hat sich auch jetzt beim Bau der ersten AP1000 in China und USA wieder gezeigt.

Westinghouse hat konsequent auf eine Modularisierung bei paralleler Fertigung gesetzt. Im Schiffbau nennt man das „Sektionsbauweise“. Ziel ist die Errichtung eines Kernkraftwerks in 36 Monaten. Diesen sind noch der Vorlauf für die Baustelleneinrichtung und die Inbetriebnahme hinzu zu rechnen, sodaß ein Zeitraum von rund fünf Jahren zwischen Auftragserteilung und Übergabe an den Kunden liegt.

Der Rohbau

Üblich ist es schon immer, alle großen Bauteile: Reaktordruckgefäß, Dampferzeuger, Druckhalter, Turbine und Generator, Kühlmittelpumpen etc. möglichst schnell zu vergeben. Diese Aggregate werden von Spezialfirmen gefertigt und getestet und kommen möglichst komplett auf die Baustelle.

Gänzlich anders verhielt es sich bisher mit dem baulichen Teil: Der Hochbau wurde ganz konventionell in Ortbeton hergestellt. Dabei arbeitete man sich, wie bei jedem anderen Gebäude auch, vom Keller bis zum Dach stückweise voran. Wie auf jeder anderen Baustelle auch, konnte man mit dem Innenausbau erst beginnen, wenn der Rohbau fertig war.

Beim AP1000 hat man konsequent mit dieser Tradition gebrochen. Hier gilt: Möglichst wenig Arbeiten auf der unmittelbaren Baustelle und weitgehendste Fertigung in den Fabriken der Zulieferer. Um möglichst parallel arbeiten zu können, werden die Sektionen auf dem Baustellengelände aus den gelieferten Modulen zusammengebaut und die Sektionen termingerecht mit einem Schwerlastkran (3200 to) zu dem eigentlichen Reaktor zusammengefügt.

Konventionell (Schalung aus Holz, Eisengeflecht vor Ort und mit Beton ausgegossen) gebaut, wird nur noch die Grundplatte, auf der die gesamte „nukleare Insel“ steht. Schon die sich anschließende „Reaktorgrube“ ist eine komplette Sektion in Sandwich-Bauweise. So geht es Sektion für Sektion nach oben. Der Schwerlastkran stapelt alle wie auf einer Werft über- und nebeneinander. Dazu gehören auch ganze Baugruppen aus Rohrleitung, Pumpen, Ventilen usw., fertig lackiert, in Stahlgestellen. Die eigentliche Montage vollzieht sich in der erdbebenfesten Verbindung der Gestelle mit dem Baukörper und dem Anschluß an die Versorgungsleitungen etc. Da diese Module schon bei ihren Herstellern vollständig getestet und abgenommen worden sind, verkürzt sich auch die spätere Inbetriebnahme erheblich.

Das Sandwich

Für eine konventionelle Betonwand muß der Zimmermann eine Schalung aus Holz bauen und die Eisenflechter die Moniereisen einbringen. Nach dem Aushärten des Beton muß alles noch mühselig ausgeschalt und meist auch noch nachgearbeitet werden. Eine kosten- und vor allem zeitaufwendige Arbeit. Außerdem sind Zimmerleute keine Feinmechaniker.

Ein Sandwich besteht aus zwei Stahlplatten, die später mit Beton ausgegossen werden. Die Stahlplatten-Konstruktion übernimmt die Funktion einer verlorenen Schalung und enthält auch noch das „notwendige Eisen“, was die Festigkeit eines Stahlbeton ausmacht. Auf den ersten Blick keine revolutionäre Erfindung. Nur sind die Wände und Decken in einem Kraftwerk meist nicht massiv, sondern haben unzählige Durchbrüche und Einbauten. Wenn man die Anlagentechnik auch in Modulen vorfertigen will, müssen diese in der Toleranz von Maschinenbauern und nicht von Zimmerleuten ausgeführt werden. Wenige Millimeter Versatz, enden in einer teuren Katastrophe. Die einzelnen Platten werden nun – wie auf einer Werft – vollautomatisch aus- und zugeschnitten. Die Verstärkungen (die das Eisengeflecht bei konventionellem Beton ersetzen) werden auf Schweißmaschinen angebracht und die Platten zu Modulen zusammengeschweißt. Die Größe der Module ist dabei maßgeblich durch den Transportweg begrenzt. Die größte Sektion besteht z. B. in Vogtle aus 72 Modulen, die auf der Baustelle zusammengeschweißt werden und mittels eines Schwerlasttransporters und des Schwerlastkranes in den Sicherheitsbehälter eingesetzt wurde. Diese Sektion wiegt ohne Betonfüllung rund 1000 to.

Neue Herausforderungen

Die Aufteilung in drei Bauphasen: Fertigung von Modulen bei den Herstellern, zusammenfügen der Module zu Sektionen auf separaten Vormontageplätzen und der Zusammenbau der Sektionen zum eigentlichen Reaktor, erfordert eine besonders ausgefeilte Planung und Logistik.

Ein solches Vorhaben kann nur gelingen, wenn man von Anfang an, wirklich alle Elemente auf einem entsprechenden Rechner in vierdimensionaler (drei Orts- und eine Zeitachse) Abbildung zur Verfügung hat. Solche Werkzeuge gibt es noch nicht sehr lange. Zum Werkzeug gehören aber noch die entsprechend qualifizierten Konstrukteure mit praktischer Erfahrung und eine Lernkurve. So waren z. B. bei den ersten Reaktoren in China einige Abstände zwischen den Kabelbahnen und den Decken des nächsten Moduls zu knapp bemessen. Es ergaben sich tote Ecken bezüglich der Lackierung, usw. Alles Dinge, die zu Zeitverzug und ungeplanter Nacharbeit geführt haben.

Es ist eine ungeheure Disziplin und straffe Organisation über die gesamte Laufzeit eines Projekts erforderlich: Jede Änderung bei einem Zulieferer – irgendwo auf der Welt – kann dutzende Änderungen, zusätzliche Prüfungen usw. bei anderen Zulieferern auslösen. Gerade Dokumentation und Prüfungen sind in der kerntechnischen Industrie eine besondere Herausforderung. In den USA hat letzteres zu erheblichen Verzögerungen beim Bau des Kraftwerks Vogtle geführt. Ein Hersteller aus Louisiana – der seit Jahrzehnten erfolgreich im Bau von Ölförderanlagen etc. tätig war – war mit diesen „Gepflogenheiten der Kerntechnik“ nicht hinreichend vertraut. Im Endergebnis mußten etliche Module aus China nachbestellt werden.

Die Sektionsbauweise ist auch nicht ohne Tücken und erfordert entsprechendes Fachpersonal auf der Baustelle. Es müssen komplizierte und stabile Leergerüste gebaut werden, um die Sektionen aus Modulen passgerecht zusammen zu bauen. Der Verzug beim Schweißen und die Temperaturschwankungen sind bei so großen Bauteilen eine weitere Herausforderung. Der Schwerpunkt ist ebenfalls nicht immer genau festgelegt, was das Anheben ohne zusätzliche Belastungen nicht einfacher macht. Für Sektionen bis zu 1000 to müssen entsprechende Kräne und Transporter bereitgehalten werden. Für diese selbst, muß die Infrastruktur (Schwerlaststraßen, Bewegungsräume, Energieversorgung etc.) geschaffen werden.

Ausblick

Der AP1000 setzt die Maßstäbe für den Bau moderner Druckwasserreaktoren. Seine Weichen werden z. Zt. in China gestellt. Er kann seine wirtschaftlichen Vorteile erst in einer größeren Serie voll ausspielen. Die Lernkurve zeichnet sich bereits in USA und China deutlich ab. Es ist nur eine Frage der Stückzahl, wann die Investitionskosten für ein solches Kernkraftwerk unter das Niveau eines Kohlekraftwerks nach deutschen Standards (Wirkungsgrad 46%, mit Entstickung und Rauchgasentschwefelung, zugehörige Entsorgungsanlagen etc.) gesunken sind. Genau diese Frage, stellt sich aber bereits heute – wie schon in den 1970er Jahren in Deutschland –, wenn man die Luftverschmutzung in Peking betrachtet. Anschließend steht für China ein gigantischer Weltmarkt offen. Wir sprechen bereits in Europa nicht nur über Moorside, sondern auch über Polen, Tschechien und Bulgarien.

Im nächsten Teil4 geht es um die Siedewasserreaktoren, wie sie z. B. für den Standort Wylfa Newydd (Insel Anglesey in Nord Wales, GB) vorgesehen sind.

 

Reaktortypen in Europa – Teil2, EPR

EPR ist eine Warenmarke des französischen Herstellers Areva für einen Druckwasserreaktor der dritten Generation. Interessant ist schon die unterschiedliche Herleitung der drei Buchstaben EPR: European oder Evolutionary Pressurized Water Reactor. Beides ist angebracht.

Die Geschichte

Inzwischen sind von diesem Typ vier Reaktoren in Bau: Olkiluoto 3 in Finnland (seit Oktober 2005), Flamanville 3 in Frankreich (seit Dezember 2007) und Taishan 1 und 2 in China (seit Oktober 2009). Wahrscheinlich wird in den nächsten Jahren mit dem Bau zweier weiterer Reaktoren in Hinkley Point in Großbritannien begonnen werden.

Auf den ersten Blick eine Erfolgsbilanz. Wie kam es dazu? Ende der 1990er Jahre kam in Deutschland die Rot/Grüne-Koalition an die Macht. Die Kombinatsleitung von Siemens läutete in gewohnter Staatstreue den sofortigen und umfassenden Ausstieg aus der Kernenergie ein. Eine unternehmerische Fehlentscheidung. Heute sind die ganzen Staatsaufträge an Telefonen, Eisenbahnzügen etc. zu „besonders auskömmlichen Preisen“ längst Geschichte. Noch kann man ein paar Windmühlen nach altem Muster „an den Mann bringen“. Aber die einzige Zukunftstechnologie, in der Siemens wirklich einmal zur Weltspitze gehörte, ist unwiederbringlich und ohne Not „abgewickelt“ worden. Siemens fand in Framatome (Vorläufer von Areva) einen dankbaren Abnehmer. Die Franzosen konnten nach ihrem beispielhaften Ausbauprogramm von 57 Reaktoren ihre Kapazitäten nur durch den Ausbau des Auslandsgeschäftes aufrecht erhalten. Ein „Made in Germany“ kam ihnen dabei sicherlich nicht ungelegen. Siemens reichte der Einfuß von 34% der Aktien an dem neuen Gemeinschaftsunternehmen. Kernenergie war ja nicht mehr politisch korrekt und man wollte seinen (damals) lukrativen Kunden – die Öffentliche Hand – nicht verärgern. Man glaubte damals wohl auch noch, seinen überlegenen Turbinenbau allein weiter führen zu können. So als ob Daimler sein Autogeschäft verkaufen würde um zukünftig nur noch mit dem Reifengeschäft zu überleben. Jedenfalls ist Olkiluoto wohl das letzte Kernkraftwerk mit einer deutschen Turbine. Alle weiteren EPR haben natürlich französische Turbosätze der Marke Arabella. Dies gilt selbstverständlich auch für alle weiteren Geschäfte mit China. Ob die Kombinatsleitung den Chinesen ersatzweise politisch korrekte Windmühlen angeboten hat, weiß man nicht. Es gab ja mal eine Zeit lang in bildungsfernen Kreisen den festen Glauben, Deutschland würde „vorweg gehen“ mit seiner Energiepolitik.

Die Mitarbeiter in Frankreich und Deutschland waren jedenfalls redlich bemüht, das beste aus beiden Welten zu erschaffen. Grundlage des EPR sind die französische Baureihe N4 (Kraftwerke Chooz 1+2, Civaux 1+2) und die deutsche Konvoi Baureihe (Neckar 2, Emsland, Isar 2). Es war von Anfang an eine evolutionäre und ausdrücklich keine revolutionäre Entwicklung geplant. Außerdem nahm man nicht nur die Genehmigungsbehörden in beiden Ländern mit ins Boot, sondern auch 12 europäische Energieversorgungsunternehmen. Es sollte ein Reaktor entstehen, der europaweit genehmigungsfähig war. Heute ist er auch in China und USA geprüft und grundsätzlich zugelassen worden.

Das Problem der Größe

Jedes elektrische Netz kann nur eine gewisse Blockgröße vertragen. Über den Daumen gilt immer noch die Regel von maximal zehn Prozent der Leistung, die im Netz anliegt. Ist der Reaktor zu groß, scheiden weltweit eine Menge Netze aus. Das ist ein Problem bei der Vermarktung des EPR. Areva hat bereits schon länger die Problematik erkannt und bietet nun in Kooperation mit Mitsubishi auch einen kleineren Druckwasserreaktor (ATMEA mit ca. 1100 MWel) an. Wahrscheinlich werden die ersten Anlagen in der Türkei errichtet. Demgegenüber sollen die vier EPR von Olkiluoto bis Taishan eine Leistung zwischen 1600 und 1660 MWel erreichen. Die Vorläufer – z. B. das größte deutsche Kernkraftwerk Isar 2 – hatten eine Leistung von etwa 1400 MWel..

Bei Kraftwerken gibt es eine bedeutende Kostendegression. Je mehr man einen gegebenen Entwurf vergrößert, um so kleiner werden die spezifischen Investitions- und Betriebskosten. Man wollte ja ausdrücklich eine evolutionäre Entwicklung. Jetzt steckt man dafür in einer Größenfalle – und was fast noch schlimmer ist – die Kosten sind trotzdem viel zu hoch. Der EPR ist in diesem Sinne kein glücklicher Entwurf.

Die grünen Phantasien

Besonders von den deutschen Genehmigungsbehörden wurden die beiden Sicherheitsanforderungen „Absturz eines Jumbo“ und das „China Syndrom“ aus Hollywood eingebracht. Man glaubte in Deutschland lange genug, man müsste nur über jedes Stöckchen springen, das einem „Atomkraftgegner“ hin halten und dann würden sie auch irgendwann Kernkraftwerke ganz toll finden. Die simple Strategie, die Kosten durch immer neue Ideen immer weiter in die Höhe zu treiben, wurde nicht erkannt. Jetzt steht man mit einer millionenteuren doppelten Sicherheitshülle aus Beton und dem Gimmick eines „core catcher“ da und die „Atomkraftgegner“ lieben den EPR immer noch nicht.

Der Flugzeugabsturz

Solange es Kernkraftwerke gibt, hat man sich über „Einwirkungen von außen (EVA)“ Gedanken gemacht. Schon immer gehörte ein Flugzeugabsturz dazu. Frühzeitig bekamen deshalb die Reaktoren eine entsprechende Betonhülle als Schutz. Die vier Unglücksreaktoren in Fukushima hatten noch keine – mit den bekannten Konsequenzen. Bei ihnen war nur der unmittelbare Bereich um das Reaktordruckgefäß durch dicke Betonabschirmungen geschützt. Von Anfang an stellte sich die Frage, wie dick eine Betonhülle als Bunker sein müßte. In Deutschland ging man vom Absturz eines Militärjets vom Typ Phantom F4 aus. Eine heute noch sinnvolle Annahme – selbst nach den Ereignissen des 11. September. Die Phantom ist bis heute das Flugzeug mit der „größten Dichte“. Ein Militärjet noch aus dem „Stahlzeitalter“. Die Triebwerke einer im Tiefflug dahin rasenden Phantom, würden wie Rammböcke auf die Schutzhülle eines Reaktors wirken. Dahingegen entspricht die Wirkung einer abstürzenden A380 oder eines Jumbojets eher einer Bierdose. Die Terrorflieger des 11. September konnten selbst ein filigranes Hochhaus bzw. das Pentagon nur zum Wackeln bringen. Etwas anderes ist die ungeheure Brandlast eines voll betankten Großraumflugzeuges, aber gegen die hilft Beton nur bedingt.

Jedenfalls steht der EPR heute mit einer doppelten Betonhülle dar. Der innere Teil – das Containment – besteht aus ca. 1,3 m dickem Spannbeton und die äußere Schutzhülle aus einer weiteren ca. 1,8 m dicken Betonhülle. Zusätzlich verschwinden alle nuklearen Komponenten (Dampferzeuger, Reaktordruckgefäß usw.) hinter weiteren Betonmauern, die als Abschirmung gegen Strahlung dienen. Dieses „Bunkersystem“ ist mit Sicherheit stark genug, um jedem Flugzeugabsturz oder einem Terroranschlag zu widerstehen. Wir erinnern uns: Tschernobyl hatte nicht einmal ein Containment und in Fukushima waren nur die Reaktoren geschützt. Das Brennelementebecken stand in einer normalen Industriehalle. Anders als beim ERP, bei dem sogar das Lagergebäude für die Brennelemente und diverse Sicherheitsanlagen mit einer Betonhülle verbunkert sind.

Beton kann nicht schaden, er ist nur sehr teuer. Erschwerend kommt beim EPR die lohnintensive und zeitraubende Ausführung als Ortbeton hinzu. Dies wurde zumindest in Olkiluoto völlig unterschätzt.

Grundsätzlich ist die Konstruktion aus zwei Hüllen mit Zwischenraum sicherheitstechnisch zu begrüßen. Wird das Containment durch eine Explosion (Fukushima) oder was auch immer beschädigt, kann die äußere Hülle ihre Funktion wenigstens zum Teil übernehmen. Der Zwischenraum wird ständig abgesaugt und in leichtem Unterdruck gehalten. Die „radioaktiv belastete Luft“ wird vor der Abgabe über den Kamin gefiltert. Durch eine solche Maßnahme kann selbst, wenn die gasförmigen Spaltprodukte im Reaktor freigesetzt werden sollten, der größte Teil zurück gehalten bzw. auf ein erträgliches Maß verdünnt werden.

Der core catcher

Dank Hollywood ist jeder „Atomkraftgegner“ mit dem „China Syndrom“ vertraut: Eine einmal eingetretene Kernschmelze soll endlos andauern. Selbst die unfreiwilligen Großversuche von Harrisburg, Tschernobyl und Fukushima können einen rechtgläubigen „Atomkraftgegner“ nicht von diesem Irrglauben abbringen.

Fangen wir mal mit dem Schlimmsten an:

  • Der Reaktor in Tschernobyl stand in einer einfachen Industriehalle. Nachdem eine Kernschmelze stattgefunden hatte, verabschiedete sich der Reaktor durch eine physikalische Explosion. Er spie wie ein Vulkan den größten Teil seines radioaktiven Inhalts in die Umwelt aus. Dies ist der schlimmste – überhaupt vorstellbare – Unfall.
  • In Fukushima trat in mehreren Reaktoren (zumindest teilweise) eine Kernschmelze ein. Ursache war hierfür der zeitweise Ausfall der Stromversorgung und dadurch ein Mangel an Kühlwasser. Die Nachzerfallswärme konnte die Brennelemente (teilweise) schmelzen lassen. Die Nachzerfallswärme nimmt aber sehr schnell ab und die Kühlung konnte – wenn auch verspätet – wieder aufgenommen werden. Wieviel Corium sich tatsächlich durch die Reaktorgefäße gefressen hat, wird erst eine genaue Untersuchung zeigen können. Jedenfalls hat die Menge nicht einmal gereicht, um den Betonboden der Reaktorgrube zu durchschmelzen. Ursache für die Freisetzung von Radioaktivität sind schlicht weg Konstruktionsfehler: Die Wasserstoffexplosion und die „Untertunnelung“ des Kraftwerks.
  • Bei dem TMI-Reaktor in Harrisburg hatte man wenigstens alles grundsätzlich richtig konstruiert, obwohl dann später alles schief lief. Maßgeblich durch Bedienungsfehler fiel ein Teil des Kerns unbemerkt trocken. Es entstand Wasserstoff, welcher aber nicht zu einer heftigen Explosion führte. Das Reaktordruckgefäß blieb ganz und in ihm sammelten sich Bruchstücke und Schmelze. Es gelangte praktisch keine unzulässig hohe Radioaktivität in die Umwelt.

Anstatt durch Aufklärung entgegen zu wirken, versuchte man den Segen der „Atomkraftgegner“ durch die Erfindung des core catcher zu erlangen. Ein von Anfang an sinnloses Unterfangen. Die Strategie der „Atomkraftgegner“ ging vielmehr auf: Die Kosten wurden weiter in die Höhe getrieben um mit einer vorgeblich „unwirtschaftlichen Atomkraft“ argumentieren zu können.

Wie sieht dieses Ding nun beim EPR aus? Man pflastert den Boden unterhalb des Reaktordruckgefäßes mit Steinen aus einer feuerfesten Keramik. Gemäß den Vorstellungen aus Hollywood frisst sich das Corium als glühende Schmelze durch das Reaktordruckgefäß und sammelt sich in der feuerfesten Wanne. In der Realität nimmt die Nachzerfallswärme zwar exponentiell ab, nach Drehbuch natürlich nicht, sondern der Boden der Wanne aus einem Spezialbeton schmilzt langsam auf und die Schmelze rinnt anschließend über eine Schräge in eine großflächige Vertiefung. Diese soll dauerhaft und automatisch durch Wasser gekühlt werden. Dort soll die Schmelze dann dauerhaft erstarren. Man könnte dieses Konzept auch mit: „Richtige Antworten auf falsche Fragestellungen umschreiben.“ Jedenfalls kostet allein der umbaute Raum für diese technische Glanzleistung zig Millionen.

Die magische Zahl vier

Der EPR hat vier Primärkreise: Um das Druckgefäß im Zentrum stehen kreisförmig angeordnet vier Dampferzeuger. Zwischen ihnen stehen die vier Hauptkühlmittelpumpen für die Umwälzung des Wassers durch den Reaktorkern und die Wärmeübertrager. All diese Komponenten stehen in Betonkammern, die der Abschirmung der Strahlung dienen. Damit ist der Sicherheitsbehälter auch während des Betriebes begehbar.

Dieser Grundanordnung folgend, gibt es auch vier vollständige Sicherheitseinrichtungen, deren Komponenten in vier voneinander völlig getrennten Gebäuden um den Sicherheitsbehälter angeordnet sind. Diese vier Sicherheitsabschnitte, sowie die Bedienungszentrale und das Gebäude für die Brennelemente, sind ebenfalls (wie das zylindrische Reaktorgebäude) gegen Flugzeugabstürze verbunkert.

Etwas abseits liegen zwei Gebäude, die die Notstromversorgung enthalten. Sie befinden sich jeweils in Deckung durch den eigentlichen Reaktorbau. Da sie ebenfalls vollständig redundant sind, geht man nur von höchstens einem Schaden bei einem Flugzeugabsturz aus. Die Gebäude sind mit wasserdichten Türen verschlossen. Ein Auslöschen durch eine Flutwelle (Fukushima) wäre ausgeschlossen.

Jedes, der vier Notkühlsysteme, kann allein die gesamte Wärme abführen (4 x 100%). In erster Linie dient das zur Verbesserung der Verfügbarkeit. Da alle vier Züge völlig voneinander unabhängig sind, kann man Wartungsarbeiten im laufenden Betrieb ausführen. Wenn ein System gewartet wird, stehen immer noch drei zur Verfügung.

Die Nachzerfallswärme

Bei einem Störfall wird das Kernkraftwerk durch eine Unterbrechung der Kettenreaktion abgeschaltet. Das Einfahren der Steuerstäbe entspricht z. B. dem Ausschalten der Feuerung bei einem konventionellen Kraftwerk. Bei beiden muß nun noch die im System gespeicherte Wärme abgeführt werden. Es gibt bei einem Kernkraftwerk aber zusätzlich den physikalischen Effekt der Nachzerfallswärme: Der radioaktive Zerfall der Spaltprodukte läßt sich durch nichts aufhalten. Es wird also auch nach der Abschaltung noch Wärme produziert! Die freiwerdende Wärme hängt von verschiedenen Umständen ab. In den ersten Sekunden können es über 5% der thermischen Leistung sein. Die Nachzerfallswärme nimmt sehr schnell ab und es sind nach einer Stunde nur noch rund 1%. Gleichwohl handelt es sich um gewaltige Leistungen. Ist ein EPR längere Zeit mit Höchstlast im Netz gewesen, sind das entsprechend 225 MW bzw. noch 45 MW nach einer Stunde. Diese Wärme muß auf jeden Fall – auch bei widrigsten äußeren Umständen (Fukushima) – abgeführt werden, da sonst der Kern schmilzt.

Praktisch ist die einzige Möglichkeit solche Leistungen sicher abzuführen, die Verdampfung. Ist die äußere Wärmesenke (Fluß, Meer oder Kühlturm) nicht mehr nutzbar, muß dies ausschließlich über die Notkühlung möglich sein. Zuerst baut man über Ventile am Druckhalter den Druck im Primärkreis ab. Schon durch dieses „auskochen“ tritt eine merklich Kühlung ein. Allerdings muß die abgelassene Wassermenge möglichst schnell ersetzt werden, da sonst das Reaktordruckgefäß ausdampft und der Kern (teilweise, wie in Harrisburg) trocken fällt. Ist der Druck auf ein gewisses Niveau abgefallen (ungefähr 100 bar) setzt eine Nachspeisung von Kühlwasser ein. Für den Antrieb der Pumpen ist aber elektrische Energie nötig. Würde die Notstromversorgung – wie in Fukushima – versagen, würde die Überhitzung des Kerns eher noch schneller eintreten. Das Reaktormodell aus den 1960er Jahren hatte bereits eine pfiffigere Idee: Der abgelassene Dampf wurde vor der Kondensation in der wassergefüllten Ringkammer über eine kleine Turbine geleitet. Diese Turbine treibt eine kleine Speisepumpe, die Wasser aus dem Ringraum zurück in das Druckgefäß speist. Dies funktioniert bis zu einem gewissen Temperaturausgleich recht gut. Eine Notmaßnahme, die zumindest in den ersten Minuten ohne jede Hilfsenergie sehr gut funktioniert hat.

Gegenüber seinen Vorläufern hat der EPR durch das Wasserbecken am Boden einen Sicherheitsgewinn: Das Wasser dient nicht nur zur Noteinspeisung, sondern stellt auch eine Wärmesenke innerhalb des Sicherheitsbehälters dar. Das Wasser kann durch Wärmeübertrager gepumpt werden, um es „kühl“ zu erhalten. Die Lagerung am Boden kommt der statischen Belastung bei Erdbeben entgegen, vergibt aber die Chance einer passiven Nachspeisung durch Schwerkraft.

Bei dem EPR ergibt sich kein grundsätzlicher Sicherheitsgewinn gegenüber seinen Vorgängern des Konvoi. Er arbeitet nach den gleichen Prinzipien: Lediglich die Stückzahl und Aufstellung der Sicherheitseinrichtungen wurde erhöht: Je zwei Notstromdiesel in zwei verschiedenen Gebäuden (2 x 2 x 8 MW Redundanz) und je ein Notstromaggregat zusätzlich im Gebäude (2 x 1 MW Diversität). Es bleibt aber das alte Problem aktiver Sicherheitssysteme: Strom weg, Wasser weg! Die vorgeblich um den Faktor zehn erhöhte Sicherheit, ergibt sich rechnerisch hauptsächlich aus dem Core Catcher.

Der Zugewinn an Lebensdauer

Beim EPR ist die konstruktive Nutzungsdauer von 40 auf 60 Jahre erhöht. Dies ist durch eine konsequente Überarbeitung aller Bauteile geschehen. So ist man z. B. beim Druckgefäß und den Hauptkühlmittelleitungen auf den Werkstoff Alloy 690 (59,5% Nickel, 30% Chrom, 9,2% Eisen etc.) übergegangen. Er besitzt bessere Korrosionsbeständigkeit und bildet nicht soviel „Atommüll“ durch Neutroneneinfang. Zusätzlich hat man das Druckgefäß mit einem Reflektor aus Stahl ausgestattet. Durch das Zurückstreuen von Neutronen in den Kern kann man den Brennstoff besser ausnutzen und gleichzeitig den Druckbehälter weniger belasten (Versprödung durch Neutronen).

Sicherheit und Wartung stehen in enger Beziehung. Schweißnähte weisen immer Fehler auf, die in regelmäßigen Abständen überprüft werden müssen. Solche Wiederholungsprüfungen sind zeitaufwendig (Verfügbarkeit) und kostspielig. Je weniger Schweißnähte, desto besser. Wenn schon Schweißnähte, dann an gut zugänglichen Stellen. Man hat deshalb beim EPR wesentlich komplizierter geschmiedete Formstücke (hohe Investitionskosten) für die Hauptkühlmittelleitungen verwendet bzw. durch Aushalsungen beim Druckbehälter die Anschlüsse vorverlegt.

Schlusswort

Ohne jede Frage hat man in hunderten von Betriebsjahren eine Menge Erfahrungen gesammelt. Hinzu kamen die realen „Großversuche“ aus Harrisburg und Fukushima. Insofern ist der EPR nicht mehr mit den ersten Druckwasserreaktoren vergleichbar. Als Ersatz für gasgekühlte Reaktoren (Hinkley Point) oder als Zubau (Olkiluoto, Taishan) ist er sicherlich eine gute Lösung. Aber ist der Sicherheitsgewinn beispielsweise gegenüber einer Konvoi-Anlage so viel höher, daß ein Ersatz durch einen EPR zu rechtfertigen wäre? Zumal man mit wenigen Nachrüstungen bzw. Ersatzteilen (z. B. Dampferzeuger) sehr kostengünstig eine Betriebsdauer von 80 und mehr Jahren erreichen könnte. Genug Zeit jedenfalls, um auf fortschrittlichere Konzepte umzusteigen.

Im nächsten Teil geht es um den APR-1000 von Westinghouse, der in Moore Side (und anderswo) geplant ist.