Atomwaffen als Preis für Klimaschutz?

Michael Shellenberger bezeichnet sich selbst als „Umweltaktivist“ der sich für „CO2 freie Energie“ zur „Klimarettung“ einsetzt. Er sagt von sich selbst, daß er ursprünglich ein Anhänger von „Atomkraft-Nein-Danke“ war und heute aktiv für die Erhaltung von Kernkraftwerken kämpft — vom Saulus zum Paulus sozusagen. Gerade deswegen genießt er hohes Ansehen unter Aktivisten für die Kernenergienutzung.

Nun hat er sich mit dem Artikel Wer sind wir, daß wir schwachen Nationen Kernwaffen vorenthalten, die sie für ihre Selbstverteidigung benötigen? und einer noch dolleren Fortsetzung Für Nationen die Kernenergie anstreben ist der Bau von Kernwaffen eine Fähigkeit und kein Fehler im Forbes-Magazin auf sehr abschüssiges Gelände begeben. In Anbetracht der großen Auflage und dem Bekanntheitsgrad des Autors kann man seine Thesen nicht unkommentiert lassen. Dafür wird einfach zu viel durcheinander gerührt. Der geübte Erzähler beginnt seinen Artikel mit der Schilderung einer Szene aus einem Hollywoodfilm, in der die SS brutal eine jüdische Familie im besetzten Frankreich abschlachtet. Er läßt seine Schilderung mit der selbst beantworteten Frage enden, warum sich die französische Familie überhaupt im Keller verstecken mußte: Sie hatten keine Abschreckung. Er spannt den erzählerischen Bogen weiter über den July 1942, in dem die kollaborierende französische Polizei fast 13000 Juden in einem Stadion zusammenpferchte und anschließend nach Deutschland deportieren ließ. Es folgt die Feststellung, daß von den fast 76000 französischen Juden die Gaskammern von Ausschwitz nur 2000 überlebt haben. Dramaturgisch geschickt, aber äußerst geschmacklos — wenn man erst einmal die spätere Gleichsetzung von Israel und Iran gelesen hat — kommt er zu seiner ersten These:

Die Atombombe als Waffe der Schwachen.

Wie hätte ein schwacher Staat wie Frankreich der 1930er Jahre die Ungleichheit gegenüber dem nationalsozialistischen Deutschland aufheben können? Durch den Besitz einer Waffe, mit der er ihre größten Städte hätte ausradieren können. Wow! Mal abgesehen, daß solche historischen Betrachtungen genauso sinnvoll sind, wie die Fragestellung, was wäre aus der Welt geworden, wenn die Saurier schon Konserven gehabt hätten, ist dies schon der erste Widerspruch in seiner gesamten Argumentation. Shellenberger hat die Nukleare-Abschreckung, wie sie z. B. im Kalten-Krieg vorlag, gar nicht verstanden: Sie funktioniert nur, wenn jeder genug Waffen hat, den Gegner auch dann sicher auszulöschen, wenn dieser bereits sein ganzes Arsenal abgefeuert hat (Zweitschlagfähigkeit). Nur in der Märchenwelt verfügt ausschließlich der Edle und Schwache über Schwert und Rüstung — was ihn automatisch nicht mehr schwach sein läßt. Solange also nicht jeder Staat über das Potential verfügt, die ganze Welt zu vernichten, gibt es keine funktionierende Abschreckung. Wer ist ernsthaft für solch einen Irrsinn?

Das ganze Vorspiel mit Frankreich bekommt plötzlich Sinn, wenn man die Überleitung mit Charles de Gaulle über die nukleare Bewaffnung von Frankreich liest. Shellenberger sieht sie als logische Konsequenz des Überfalls von Frankreich durch Deutschland. Aus dieser Position leitet er die vermeintlich unmoralische Haltung der USA 1962 ab: Das französische Ansinnen sei „töricht oder teuflisch — oder beides“ (frei nach Kennedy). Warum konnten die USA Frankreich den Wunsch absprechen, sich selbst zu verteidigen? Eine moralisch triefende rhetorische Frage, die er für seine weitere Argumentation braucht. Er blendet einfach die historischen Tatsachen aus: Die Panzer der Sowjetunion standen an der Elbe — also unmittelbar vor den Toren Frankreichs. Charles de Gaulle sprach in diesem Zusammenhang bewußt von Lyon und Hamburg. Er wollte das Europa der Vaterländer — zusammen mit dem „Erbfeind“ Deutschland — als Bollwerk gegen weitere innereuropäische Kriege und die äußere Bedrohung durch den Kommunismus. Demgegenüber stand die nordatlantische Wertegemeinschaft mit dem atomaren Schutzschirm der USA als Alternative.

Der nukleare Schutzschirm

Damit kommen wir zu seiner zweiten These, mit der er Kernwaffen für jeden Staat begründet: Kein Staat würde einen „Atomkrieg“ riskieren, wenn einer seiner Verbündeten durch einen anderen Staat mit Atomwaffen angegriffen würde. Ausgerechnet den deutschen Professor Christian Hacke führt er hierfür als Zeuge an. Ein Typ, die schon mal gerne Donald Trump in einem Interview mit dem Deutschlandfunk (Wo auch sonst, als im GEZ-Funk?) als „Kotzbrocken, der für die Unterseite der amerikanischen Zivilisation steht“ bezeichnet. Schlimmer noch, diese Lichtgestalt eines deutschen Politologen verbreitet seine kruschen Thesen auch noch international:

Germany is, for the first time since 1949, without nuclear protection provided by the United States, and thus defenseless in an extreme crisis. As such, Germany has no alternative but to rely on itself. A nuclear-armed Germany would be for deterrence only. A nuclear Germany would stabilize NATO and the security of the Western World, but if we cannot persuade our allies then Germany should go it alone.

Kurz und knapp: Wegen der neuerdings unzuverlässigen USA — die staatliche Propaganda des GEZ-Rundfunks zeigt zumindest bei diesem Herrn Früchte — braucht Deutschland eigene Kernwaffen!

Die Politik der USA hat sich bisher nicht verändert: Es sind zahlreiche US-Truppen in Deutschland stationiert. Zusätzlich wurde der Schutzschirm noch bis in die baltischen Staaten ausgedehnt. Dies ist der „Pearl-Harbor-Knopf“ der USA! Putin-Versteher bezeichnen das als Bedrohung Russlands durch die „Nato-Ost-Erweiterung“. Zum Glück ist Putin als KGB-Offizier in der dritten Generation nicht ein solcher Einfaltspinsel. Gleichwohl ist das Säen von Zwietracht ein ewiges Bemühen dieser Organisation und ihrer Helfer im Westen. Wer sich dafür interessiert, dem sei z. B. ein Studium des „NATO-Doppelbeschlusses“ empfohlen. Noch heute kämpft die SED-Nachfolgepartei gegen die Lagerung von US-Atombomben auf deutschem Grund. Sie sollten nach Freigabe durch die USA von Bundeswehrflugzeugen gegen die Sowjetarmee eingesetzt werden können. Nichts weiter, als ein deutliches Argument, daß das Spiel „New York gegen Berlin“ nicht funktioniert. Nukleare Abschreckung ist halt etwas komplexer als mancher Politologe glaubt zu wissen.

Alle Staaten sollen gleich sein

Staaten sind nicht gleich gefährlich. Es ist wie mit Messern, Schusswaffen und allem anderen auch: Es ist z. B. ein Unterschied, ob ein Pfadfinder ein Messer bei sich hat oder ein „männlicher unbegleiteter Migrant“ auf einem Volksfest. Insofern ist es bestenfalls naiv, alle Staaten in einen Topf zu werfen.

Man mag ja noch verstehen, daß in Nord Korea die Kernwaffen letztendlich nur zur Ausbeutung und Unterdrückung des eigenen Volkes durch seinen Diktator dienen sollen: Wenn ihr mir mein Volk wegnehmen wollt, beschmeiß ich euch mit Atombomben. Aber Iran und Israel in einen Topf zu schmeißen, ist schon nicht mehr unverständlich: Israel ist eine Demokratie — Iran ein antisemitisches Mullah-Regime, das immer wieder mit der Auslöschung Israels droht; Israel hat bisher ausschließlich unter großen Opfern lokale Verteidigungskriege führen müssen — Iran führt aus religiösem Antrieb Krieg in Jemen, Irak und Syrien und unterstützt aktiv Terroristen. Man hätte wirklich kein dämlicheres Beispiel für die Befriedung durch frei verfügbare Kernwaffen finden können. Iran ist erst durch sein Streben nach Kernwaffen zum Problem geworden. Mit Rationalität im Zusammenhang mit gläubigen Schiiten sollte man auch nicht zu erwartungsvoll sein: Was soll ein Gleichgewicht des Schreckens jemandem sagen, der davon überzeugt ist, 72 Jungfrauen zu bekommen, wenn er sich selbst in die Luft sprengt?

Libyen, Irak und die Ukraine sind ebenfalls schlechte Beispiele zur Untermauerung der These von „Frieden schaffen durch Kernwaffen“. Libyen und Irak hätten es aus eigener Kraft gar nicht geschafft Kernwaffenstaat zu werden. Dafür haben ihre technischen und finanziellen Möglichkeiten nicht ausgereicht. Die Ukraine hat lediglich die sowjetischen Kernwaffen, die auf ihrem Territorium stationiert waren, an den Nachfolgestaat Rußland zurück gegeben. Der Unterhalt hätte sie nur finanziell aufgefressen. Putin hätte sich von einer Destabilisierung auch durch ein paar olle Raketen nicht abhalten lassen. Auf Grund seiner praktischen Erfahrung als KGB-Offizier in der DDR, kann er einfach kein freies und wirtschaftlich erfolgreiches Land als Leuchtfeuer in seiner Nähe dulden.

Warum uns Kernwaffen friedlich machen sollen

Atomwaffen dienen nicht zur Verteidigung sondern als Strafe“. Wieder so ein markanter Irrtum. „Friedensbewegte“ würden lieber von der drohenden atomaren Apokalypse sprechen. Wieso eigentlich? Hiroshima und Nagasaki sind schon lange wieder belebte Städte. Einzig und allein die Fähigkeit einen Gegner mit Sicherheit auch im Zweitschlag zu vernichten, kann eine Abschreckung auslösen. Aber kann Korea die USA auslöschen oder China Indien? Für eine nukleare Strafaktion wäre es wohl viel zu spät. China und Pakistan haben daher ständig Grenzscharmützel, nur wird hier darüber kaum berichtet. Frieden jedenfalls, sieht anders aus.

Ferner sind Kernwaffen nicht alles. Da ist z. B. eine funktionierende Raketenabwehr, über die im Moment praktisch nur die USA und Israel verfügen. Glaubt jemand ernsthaft daran, daß es (zumindest heute und in naher Zukunft) Korea gelingen würde, eine Interkontinentalrakete zum amerikanischen Festland durchzubringen?

Selbst eine so simple Eigenschaft wie die Fläche eine Landes spielt eine Rolle: Für Breschnew war Deutschland stets ein Problem von drei Wasserstoffbomben. Israel könnte wohl kaum eine aushalten. Dem großen Führer von Nord Korea wäre es wohl egal, ob sein Land in einen Parkplatz umgewandelt würde, solange er in irgendeinem Bunker überleben könnte. Iran ist zwar ziemlich groß, aber seine Führungsclique erstrebt ohnehin einen Platz im eingebildeten Paradies.

Kernkraftwerke und die Bombe

Die abgedroschene Behauptung der Verknüpfung von Kernkraftwerken und nuklearer Aufrüstung ist schlicht weg Unsinn. Der einzige Fall einer Verknüpfung (über die Nutzung von Schwerwasserreaktoren zur Produktion von waffengrädigem Plutonium) war und ist Indien. Die Welt hat daraus gelernt (z. B. „123-Abkommen“ mit den Vereinigten Emiraten). Selbst Korea, Iran und vormals Süd-Afrika haben ein eigenes Waffenprogramm unterhalten. Eher das Gegenteil ist der Fall: Ein paralleles Programm zum Aufbau von friedlicher und militärischer Nutzung ist für die meisten Länder der Welt schlicht zu kostspielig. Auch Saddam Hussein, Muammar al-Gaddafi und Assad konnten nur an der Bombe basteln. Wie wichtig Geld ist, zeigt das Beispiel Vietnam, dort mußte man von dem geplanten Bau von Kernkraftwerken auf Kohlekraftwerke umschwenken. Wären die Theorien von Shellenberger zutreffend, hätte Vietnam alles daran setzen müssen Kernkraftwerke zu bauen, befindet es sich doch in einem latenten Kriegszustand mit China.

Der Brennstoffkreislauf

In der Tat ist der Aufbau eines Brennstoffkreislaufes wesentlich sensibler. Dies betrifft sowohl die Anreicherung von Uran auf Waffenfähigkeit (Pakistan) wie auch die Wiederaufbereitung (Indien). Sowohl die USA (Vereinigte Emirate), wie auch Rußland (Türkei, Ägypten) achten beim Verkauf von Kernkraftwerken durch die Lieferung und Rücknahme des benötigten Brennstoffs auf eine Einschränkung des Kreises.

Umgekehrt kann man nicht den Schluß ziehen, daß jedes Land mit einem Brennstoffkreislauf auch Kernwaffen anstrebt. Paradebeispiel dafür war gerade Deutschland. Wie unverantwortlich und dämlich daher beispielsweise das Politologengeschwafel eines Christian Hacke ist, zeigt bereits Shellenbergers Artikel: Er listet nur drei Staaten (Polen, Ungarn und Finnland) auf, denen er kein Streben nach Kernwaffen unterstellt.

Ebenso sollte man eigentlich denken, daß die Gleichsetzung von Plutonium und Kernwaffen langsam aus der Welt ist. Sehr ungerecht ist in diesem Zusammenhang gerade die Erwähnung von Japan. Japan hat sich für einen geschlossenen Brennstoffkreislauf entschieden. Hat aber bisher seine abgebrannten Brennelemente in Frankreich und GB aufarbeiten lassen. Diese beiden Länder sind die Garanten, daß es sich bei den zitierten 6000 to ausschließlich um Reaktorplutonium und keinesfalls um waffengrädiges Plutonium handelt.

Nachwort

Kernwaffen sind Massenvernichtungswaffen, deren militärischer Nutzen ohnehin eingeschränkt ist — Friedensstifter sind sie keineswegs. Sie gehören genauso geächtet wie Chemiewaffen. Da aber die reale Welt ist wie sie ist, können nur beharrliche Abrüstungsverhandlungen zum Ziel führen. Bis dahin ist konsequent die Weiterverbreitung zu verhindern oder wenigstens zu behindern. Es ist zumindest ein Zeitgewinn.

Was Michael Shellenberger anbetrifft: Man kann ja gerne glauben, daß CO2 zur „Klimakatastrophe“ führt. Es ist auch ein lobenswerter Entwicklungsschritt, wenn man zur Erkenntnis gekommen ist, daß man nicht mit Wind und Sonne die Welt mit ausreichend Energie versorgen kann. Insofern sei sein jahrelanger Einsatz für die Nutzung der Kernenergie keinen Millimeter geschmälert. Es ist aber schlichtweg nicht zulässig, wenn man zur „Klimarettung“ Kernwaffen als Friedensstifter glorifiziert.

Weitere Nutzung für „Atommüll“

Während in Deutschland weiterhin abgebrannte Brennelemente als „Atommüll“ verteufelt werden, hat China bereits einen weiteren Weg für deren Nutzung eingeschlagen. Zwischen dem Betreiber von zwei Candu 6 Reaktoren in Quinshan TQNPC (China National Nuclear Corporation subsidy Third Quinshan Nuclear Power Company) und der kanadischen SNC-Lavalin wurde ein Vertrag zur Lieferung von Brennelementen aus 37M NUE (Natural Uranium Equivalent) abgeschlossen. Dies ist das Ergebnis einer mehr als zehnjährigen gemeinsamen Forschung und Entwicklungsarbeit. Seit 2008 werden im Reaktor QP III immer wieder NUE-Brennelemente als Dauertest eingesetzt. Diese praktischen Versuche dienten der Anpassung einiger Sicherheitsparameter und der Durchführung des Genehmigungsverfahrens. Jetzt sind die Arbeiten abgeschlossen und der Betrieb mit recyceltem Uran kann beginnen.

Die Reaktoren

Bei den Candu Reaktoren in Quinshan handelt es sich um mit schwerem Wasser (D2O) gekühlte und moderierte Reaktoren. Dieser Reaktor hat im Gegensatz zu Leichtwasserreaktoren keinen Druckbehälter in dem sich die Brennelemente befinden, sondern viele Druckröhren in denen jeweils nur eine Reihe einzelner Brennelemente stecken. Die Druckröhren sind waagerecht und sitzen wiederum in einem mit Schwerwasser gefüllten drucklosen Tank. Vorteil dieser Konstruktion ist, daß man kein dickwandiges Druckgefäß benötigt, sondern lediglich druckfeste Röhren von etwa 10 cm Durchmesser. Druckbehälter können nur eine Handvoll Schmieden weltweit fertigen. Deshalb kann diesen Reaktortyp z. B. Indien selbst herstellen. Als Nachteil erkauft man sich dieses Prinzip mit einem Gewirr von Rohrleitungen: Jede Druckröhre muß mit Vorlauf- und Rücklaufleitung mit den Dampferzeugern verbunden werden. Insgesamt ist die Herstellung aufwendiger und damit teurer.

Durch den Einsatz von Schwerwasser als Kühlmedium und Moderator gehen wesentlich weniger Neutronen verloren als bei Leichtwasserreaktoren. Man kommt deshalb mit Natururan als Brennstoff aus. Eine Anreicherung ist nicht nötig. Darüberhinaus ist das Konzept so flexibel, daß auch andere Brennstoffe wie Thorium oder eben abgebrannte Brennelemente aus Leichtwasserreaktoren eingesetzt werden können. (Siehe hierzu auch den Artikel Reaktortypen in Europa – Teil6, CANDU in diesem Blog.)

Die Wiederaufbereitung

Wenn Brennelemente „abgebrannt“ sind, müssen sie entnommen werden und durch frische Brennelemente ersetzt werden. Sie sind aber keinesfalls Abfall, sondern können und sollten recycelt werden. Auch in Deutschland war deshalb eine eigene Wiederaufbereitungsanlage nach dem PUREX-Verfahren vorgesehen. Übergangsweise hat man Brennelemente in Frankreich und GB aufbereiten lassen. Aus bekannten ideologischen Gründen ist man davon abgegangen. Der Kampf gegen das Atom ist der zentrale Gründungsmythos von Bündnis 90 / Die Grünen.

Die Kerntechnik war der erste Industriezweig der nicht einfach Abfall produzieren wollte, sondern vielmehr der Begründer des industriellen Recyclings. In einem „abgebrannten“ — oder besser abgenutzten und für seinen ursprünglichen Verwendungszweck nicht mehr geeigneten — Brennelement sind lediglich rund 5 % Spaltprodukte. Das ist die „Asche“ der nuklearen Energieherstellung. Aber über 93% des Urans und zusätzlich rund 1% Plutonium sind für die Energiegewinnung wiederverwendbar!

Bei dem PUREX-Verfahren werden die Brennstäbe aufgelöst und anschließend durch eine mehrstufige flüssig-flüssig Extraktion in möglichst reines Uran und Plutonium zerlegt. Alles andere ist bei diesem Verfahren Abfall, wird in Glas eingeschmolzen und ist zur Endlagerung vorgesehen. Das Plutonium wird seit Jahrzehnten — auch in Deutschland — zusammen mit abgereichertem Uran zu sogenannten Mischoxid-Brennelementen verarbeitet und erneut in Leichtwasserreaktoren zur Energiegewinnung eingesetzt. Das zurückgewonnene Uran wird bisher fast ausschließlich eingelagert. Man kann es als „Ersatz“ für Natururan in Anreicherungsanlagen einsetzen. Es muß dazu aber in Uranhexafluorid umgewandelt werden. Ein, bei den heutigen Preisen für Natururan nicht wirtschaftlicher Weg.

Der NUE-Weg

Das Uran für Leichtwasserreaktoren hat eine ursprüngliche Anreicherung von 3% bis 5% U235. Im Reaktor wird sowohl U235 als auch Pu239 gespalten. Das Plutonium bildet sich kontinuierlich aus dem U238 durch das (parasitäre) Einfangen von Neutronen. Ein Teil davon, wird sofort wieder im Reaktor gespalten. Deshalb kann nicht alles U235 aufgebraucht werden bevor die zulässige Betriebsdauer des Brennelements erreicht ist. Oft hat das recycelte Uran noch einen höheren Anteil davon als das Natururan (0,7% U235). Es kann daher noch in Schwerwasserreaktoren eingesetzt werden. Allerdings ist die Natur immer etwas komplizierter als die Theorie. Nicht jeder U235 Kern wird auch gespalten, wenn er von einem Neutron getroffen wird. Es bildet sich auch U236 und sogar Spuren von U234. Alle diese Isotope haben ihre charakteristischen neutronenphysikalischen Eigenschaften. Es wird deshalb durch Verschneiden mit abgereichertem Uran ein dem „Natururan entsprechendes Äquivalent“ (NUE) hergestellt. Dies ist aber eine reine Frage der Analyse (welche Isotopenzusammensetzung?), der Rechnung (neutronenphysikalische Bestimmung) und der Mischung. Ein vergleichbar geringer Aufwand, verglichen z. B. mit einer Anreicherung.

Man kann etwa mit dem recycelten Uran aus vier Leichtwasserreaktoren einen zusätzlichen Schwerwasserreaktor betreiben. Die zusätzliche Energie wird ohne zusätzlichen Verbrauch von Natururan erzeugt — Energie aus „Atommüll“. China betrachtet ihr kerntechnisches Programm offensichtlich von Anfang an als System. Im Zentrum stehen die Leichtwasserreaktoren und eine Wiederaufbereitung des „Atommülls“. Nach dem Vorbild von Frankreich wird dadurch der endgültig zu lagernde Abfall beträchtlich entschärft und verringert. Das anfallende Plutonium wird über Mischoxid wieder den Leichtwasserreaktoren zugeführt. Das zurückgewonnene Uran den Schwerwasserreaktoren. Mittelfristig soll eine weitere Nutzung über natriumgekühlte Reaktoren mit schnellem Neutronenspektrum erfolgen. Beachtenswert ist die Vorgehensweise: Zwar in voller Breite aller am Weltmarkt erhältlichen Reaktortypen, aber stets in kleinen Schritten in enger Kooperation mit internationalen Partnern. Ganz nebenbei ist dadurch eine der bedeutendsten kerntechnischen Industrien der Welt aufgebaut worden. Ein nicht zu unterschätzender und bewußt angestrebter Nebeneffekt. Kerntechnik ist eine Schlüsseltechnologie, die weit in die industrielle Welt ausstrahlt. So war es einst auch in Deutschland, aber hier wird dieser Vorteil zusehends aufgebraucht. Manch ein Grüner wird sich noch die Augen reiben, wie schnell der „Exportweltmeister“ zu einem mittelmäßigen Industriestandort verkommen sein wird.

Neutronen als Spürhund

Neutronen sind schon seltsame Geschöpfe. Sie haben eine recht große Masse und keine elektrische Ladung. Sie sind deshalb in der Lage, viele Materialien nahezu ungehindert zu durchdringen. Ganz im Gegenteil zu den Protonen — ihren Gegenstücken im Kern — die eine positive Ladung besitzen. Sie haben zwar fast die gleiche Masse, werden aber wegen ihrer elektrischen Ladung stark beim Durchtritt durch Materie beeinflußt. Elektronen sind nur leicht und sind elektrisch negativ geladen. Wegen ihrer Ladung sind sie gut zu beschleunigen und auszurichten, dringen aber wegen ihrer geringen Masse nur wenig in Materialien ein. Sie werden deshalb z. B. zum Schweißen verwendet. Ein Partikelstrahl aus Neutronen würde den Stahl einfach durchdringen, ihn aber nicht zum Schmelzen bringen.

Da Neutronen keine Ladung besitzen, lassen sie sich nicht beschleunigen und in ihrer Flugrichtung beeinflussen. Sie lassen sich nur „mechanisch“ durch Zusammenstöße abbremsen. Sinnigerweise nur leicht, wenn sie mit schweren Kernen zusammenstoßen und sehr stark, wenn sie mit möglichst leichten Kernen zusammentreffen. Ihre „Reaktionsfreude“ hängt wiederum von ihrer Energie, d. h. ihrer Geschwindigkeit ab. Aufgrund dieses Zusammenhanges entsann der Mensch die Neutronenwaffe: Schnelle Neutronen sollten nahezu ungehindert Panzer durchdringen und erst mit den darin sitzenden Menschen (tödlich) reagieren.

Neutronen zur Analyse

Wenn Neutronen mit Atomkernen reagieren, entstehen immer irgendwelche charakteristischen γ-Quanten. Diese kann man recht einfach und sehr genau messen. Sprengstoffe bestehen wesentlich aus Wasserstoff, Stickstoff, Sauerstoff und Kohlenstoff in bestimmten chemischen Verbindungen. Wird ein solcher Stoff mit Neutronen beschossen, ergibt sich ein eindeutiger „Fingerabdruck“ in der Form des gemessenen γ-Spektrums. Sehr genau und sehr zuverlässig. Man kann nicht nur sagen, daß es Sprengstoff ist, sondern genau die Sorte angeben. Fehlalarme sind nahezu ausgeschlossen — wenn man genug Neutronen hat und über die erforderliche Meßtechnik verfügt.

In der Forschung — und teilweise der Forensik — ein seit Jahrzehnten erfolgreich angewendetes Verfahren. Man kann z. B. noch Gifte in Konzentrationen finden, bei denen chemische Analyseverfahren längst versagen. Solche Untersuchungen finden meist in kerntechnischen Einrichtungen statt, denn man benötigt neben der Meßtechnik Zeit und viele geeignete Neutronen — üblicherweise aus einem Forschungsreaktor.

Während des Irak-Krieges erlitten die Truppen die meisten Verluste durch „Eigenbau-Sprengfallen“ die unmittelbar neben den Straßen gelegt wurden. Wenn eine LKW-Kolonne vorbeifuhr, wurden sie (meist über Funk) ausgelöst. Schutz gegen solche Sprengfallen bieten nur gepanzerte Fahrzeuge. Die größten Verluste hatten deshalb nicht die kämpfenden Truppen an der Front, sondern die Versorgungseinheiten, die in Kolonnen durch endloses Feindesland fahren mußten. Nach amerikanischem Muster wurde deshalb richtig Geld in die Hand genommen, um dieses Problem zu lösen. Eine Lösung ist heute die Neutronenaktivierungsanalyse: Sie wirkt auch gegen versteckte und eingegrabene Sprengkörper aus schwer detektierbaren Materialien wie z. B. Kunststoff und Holz in einer vermüllten Umwelt. Für eine praktische Anwendung ist die sichere und schnelle Erkennung aus einem (langsam) fahrenden Fahrzeug und sicherer Entfernung von etlichen Metern erforderlich. In der Messdauer und der Entfernung liegt aber die Herausforderung.

Die „Neutronenkanone“

Will man größere Mengen Neutronen in einer möglichst kleinen Anlage erzeugen, bleibt praktisch nur die Kernfusion. Man schießt in einem Beschleuniger z. B. H2 – Kerne auf H3 – Kerne, wodurch ein Neutron mit hoher Energie freigesetzt wird. Das Problem solch einer Kernreaktion ist aber, daß die entstandenen Neutronen sich in einer beliebigen Richtung davonmachen. Ganz ähnlich wie die Lichtquanten einer Glühbirne. Es ist gleichmäßig hell im gesamten Raum um die Glühbirne. Diese großräumige Verteilung hat zur Folge, daß die Helligkeit sehr schnell mit dem Quadrat der Entfernung abnimmt. Will man eine bestimmte Stelle „ausleuchten“, muß man den Lichtstrahl darauf konzentrieren. Genau dies ist aber bei Neutronen nicht so einfach. Ein Spiegel funktioniert — anders als bei Licht — praktisch nicht. Eine Ablenkung durch Magnetfelder funktioniert wegen der nicht vorhandenen Ladung — anders als bei dem Elektronenstrahl einer Röhre — auch nicht. Eine solch einfache Neutronenquelle hätte nur eine sehr geringe Reichweite und wäre damit unbrauchbar.

Wenn es aber trotzdem gelänge den größten Teil der Neutronen gezielt auf ein Objekt zu lenken anstatt sie sinnlos im Raum zu verteilen, sehe die Sache anders aus. Je mehr Neutronen den Sprengkörper treffen, um so stärker sendet dieser seine charakteristischen γ-Quanten aus und die erforderliche Messdauer verkürzt sich, was dem Suchfahrzeug eine höhere Geschwindigkeit erlaubt. Neutronen sind zwar schwer auf Kurs zu bringen, dafür halten sie aber um so sturer ihren Kurs (große Masse und keine Ladung) und fliegen mit einer Geschwindigkeit von über 40 000 km/s davon.

Neutronen kann man praktisch nicht mehr beeinflussen. Dies ist ein Vorteil und Nachteil zugleich: Positiv ist, daß sie gegenüber allen anderen Partikeln eine außergewöhnliche Reichweite besitzen, da sie durch die Luftmoleküle nahezu unbeeinflußt hindurch fliegen. Neutronen sind gegenüber Atomen winzig klein, sodaß die Atmosphäre für sie ein nahezu leerer Raum ist. Die vielen Elektronen die um die Kerne schwirren, sind für sie kein Hindernis, da sie selbst keine elektrische Ladung besitzen und ihre Masse (Zusammenstoß) gegenüber den Elektronen riesig anmutet. Man muß sie nur einheitlich ausrichten um einen wirksamen Partikelstrahl zu erhalten.

Dies geht jedoch über einen Trick aus der Quantenphysik. Neutronen besitzen einen sog. Spin: Anschaulich gesagt, rotieren sie wie ein Kreisel um ihre Achse. Ein solcher Spin ist eine Erhaltungsgröße, d. h. der Spin eines Atomkerns überträgt sich nach dem Aussenden des Neutrons aus dem fusionierten Kern auf dieses Neutron. Normalerweise sind die Spins der Atomkerne nicht einheitlich. Deshalb schwirren die Neutronen normalerweise in alle Richtungen des Raumes davon. Wenn man jedoch vor der Fusion allen Atomkernen den gleichen Spin aufzwingt und sie wie eine Perlenkette ausrichtet, fliegen auch alle Neutronen wie ein Strahl von der Neutronenquelle davon. Dies alles gelingt inzwischen in so kleinen Gerätschaften, daß man sie einschließlich der nötigen Energieversorgung etc. auf einem Klein-LKW unterbringen kann. Diese „Neutronenkanonen“ erzeugen einen mehr als tausendfachen Neutronenfluß in eine Richtung.

Die Teilchenstrahlungswaffe

Momentan ist die „Neutronenkanone“ so klein und einsatzbereit, daß sie mit allem notwendigen Zubehör auf einen Kleinlastwagen zum Auffinden von Sprengfallen am Straßenrand in den Einsatz geht. Die Entwicklung wird aber massiv in die Richtungen: Kleiner, leistungsfähiger und billiger vorangetrieben. Der nächste Schritt ist ein Gerät, welches sich in ein Flugzeug einbauen läßt.

Vordringlich ist aber ein weiteres Einsatzfeld: Die Analyse von Kernwaffensprengköpfen. Eine einfache Maßnahme gegen die immer erfolgreichere Raketenabwehr ist das Ausstoßen von zusätzlichen Attrappen. Bei den bisherigen Raketenabwehrsystemen muß man sich noch auf das Erreichen des Scheitelpunktes einer ballistischen Rakete beschränken. Erst dann kann man erst sicher die Flugbahn berechnen und das Ziel voraussagen. Eine einfache Abwehrmaßnahme ist der gleichzeitige Ausstoß von mehreren Attrappen. Heute kann man noch nicht Sprengkopf und Attrappen unterscheiden. Man müßte also alle Objekte sicher abschießen, was schnell eine Raketenabwehr — zumindest wirtschaftlich — überfordern würde. Hier kommt wieder die „Neutronenkanone“ ins Spiel. Genau wie eine Sprengfalle könnte man den Sprengkopf sicher identifizieren.

An dieser Stelle drängt sich eine weitere Lösung auf. Ein Sprengkopf ist nicht einfach ein Klumpen aus Plutonium, sondern ist vollgestopft mit Elektronik (Zünder), Sprengstoff und sonstigen Hilfsmitteln. Wenn der Neutronenstrahl stark genug wäre, könnte er den Sprengkopf nicht nur identifizieren sondern sogar unbrauchbar machen.

Neutronen können gerade auf Halbleiter eine verheerende Wirkung haben. In moderne Phasenradargeräten (Raketen- und Flugabwehr) werden Halbleiter aus Galliumnitrid (GaN) verwendet. Ein Beschuß mit Neutronen kann diese Halbleiter schnell zerstören. Dies bezieht sich nicht nur auf das Rausschlagen von Elektronen, sondern Gallium hat auch recht große Einfangquerschnitte, was bedeutet, daß durch Kernumwandlung und Strahlung der Halbleiter dauerhaft zerstört wird.

Immobilisierung von Pu & Co

Alle radioaktiven Stoffe sind erst richtig gefährlich, wenn sie in den Körper aufgenommen werden. Solange sie sich außerhalb befinden, ist eine Abschirmung recht einfach möglich. Für eine „Inkorporation“ sind drei Wege ausschlaggebend: Über die Atemluft, Trinkwasser und Nahrung. Solange sie also gar nicht in die „Biosphäre“ gelangen, können sie auch keinen Menschen schädigen oder sich dort anreichern. Andersherum war dies der Grund, warum man sich recht früh auf ein „Teststoppabkommen“ in der Atmosphäre geeinigt hat. Es wurden über 2000 Kernwaffentests international durchgeführt. Durch die Zündung von Kernwaffen in der Atmosphäre wurden zig Tonnen Uran, Plutonium und Spaltprodukte über die gesamte Erde verteilt. Auch das wieder als Hinweis, wie schamlos die Propaganda von Greenpeace und Konsorten bezüglich „Atommüll“ ist, von denen ja wenige Gramm ausreichen sollen, die ganze Menschheit auszurotten.

Eine vorübergehende Lagerung

Plutonium wird z. B. in den USA in Fässern aus Edelstahl gelagert. Diese Fässer sind etwa 90 cm hoch und haben einen Durchmesser von 50 cm und beinhalten eine Portion von jeweils etwa 4,4 kg Plutonium. Wegen dessen hoher Dichte eine sehr „luftige“ Verpackung. Dies geschieht aus Sicherheitsgründen, damit auf jeden Fall eine Kettenreaktion verhindert wird. Diese Fässer stehen in ständig überwachten Bunkern. Selbst die kleinste Undichtigkeit würde sofort erkannt werden.

Alle Transurane sind nur schlecht wasserlöslich. Eine Verbreitung über große Strecken ist schon deshalb ausgeschlossen. Dies ist nicht nur eine theoretische Überlegung, sondern auch in unfreiwilligen Großversuchen betätigt: In den Anfangsjahren der Kernwaffenproduktion hat man die gesamte Brühe (Spaltprodukte, Minore Aktinoide usw.) einfach in unterirdischen Tanks (Abschirmung) gelagert. Teilweise sind diese undicht geworden und ein Teil der Ladung ist im Boden versickert. Man verfügt deshalb über jahrzehntelange Messreihen zur Ausbreitung aller Spaltprodukte und von Plutonium im Erdboden. Im Laufe der Jahrzehnte hat sich in diesen Tanks eine Schlammschicht aus „Atommüll“ abgelagert. Diese wird nun kostspielig beseitigt und für eine Endlagerung im WIPP umgeformt. Vor dem Transport zum WIPP werden sie verglast und in endlagerfähige Behälter aus Edelstahl abgegossen.

Die Verglasung

Glas ist ein sehr haltbarer Werkstoff. Wir finden heute noch Glasscherben aus der Antike, die aussehen, als wären sie erst gestern hergestellt worden. In der Fischerei werden deshalb z. B. Glaskugeln als Schwimmkörper eingesetzt. Sie halten Salzwasser und hohen Drücken über Jahrzehnte stand. Zudem ist Glas auch noch billig und einfach (Automatisierung) herstellbar. Jahrzehntelang hat man weltweit Spezialgläser entwickelt, die ein besonders hohes Rückhaltevermögen für Spaltprodukte und Transurane besitzen.

Der plutoniumhaltige Abfall wird kalziniert (bei hohen Temperaturen gebrannt um alle chemischen Verbindungen aufzubrechen und das Kristallwasser auszutreiben) und gemahlen. Parallel wird in einem Schmelzofen eine Glasfritte erzeugt, in die der Abfall eingestreut wird. Der Abfall löst sich wie Zucker im heißen Tee gleichmäßig im flüssigen Glas auf. Je nach Abfallzusammensetzung kann man etwa 20 bis 30% Abfall auflösen. Ist die Mischung homogen, wird sie in Edelstahlbehälter abgegossen. Da Glas eine „unterkühlte Flüssigkeit“ ist, erhält man auch im erkalteten Zustand einen homogenen „Abfallblock“.

Die Abfallmenge, die bisher verglast und bis 2009 in der WIPP eingelagert wurde, enthielt etwa 4,5 to Plutonium. Weitere 17 to stark verunreinigtes Plutonium sind ebenfalls zur direkten Endlagerung in der WIPP vorgesehen.

Bildung von synthetischem Gestein

Eine weitere Methode — die besonders für Plutonium — geeignet erscheint, geht genau einen anderen Weg: Man stellt einen synthetischen Stein her (SynRoc) in dessen Kristallgitter das Plutonium fest eingebaut ist. Diese künstlichen Steine sollen noch einmal um den Faktor eine Million weniger löslich sein als Glas. Man hat in verschiedenen Einrichtungen in den USA und in der Wiederaufbereitungsanlage in Sellafield (GB) mehrere to Plutonium mit dieser Methode eingeschlossen. Es handelt sich dabei um jeweils kleine Mengen Plutonium aus verschiedenen Forschungsprogrammen. Es lohnt nicht, diese „geringen Mengen“ aufwendig mit Spezialverfahren aufzubereiten. Es ist zumindest wirtschaftlicher, diese Mengen mit ins Endlager zu geben.

Bei dem SynRoc-Verfahren wird ein Gestein auf der Basis von ausgewählten Titanaten hergestellt. Diese werden in der richtigen Mischung mit Wasser vermahlen und das Plutonium (bis 30%Gew) zugesetzt. Dieser Schlamm wird getrocknet und bei 750°C kalziniert um ein feines Pulver zu erhalten. Dieses Pulver wird auf einer automatischen Abfüllanlage in kleine, hantelförmige Edelstahldosen abgefüllt, die sofort verschweißt werden. Der entscheidende Verfahrensschritt ist nun ein heißisostatisches Pressen: Die „Hanteln“ werden acht Stunden lang bei 1300°C und einem Druck von 1000 bar gesintert. Heraus kommen schwarze, gesteinsartige Zylinder.

Zurück zur Abrüstung

Wie schon ausgeführt, ist die Lagerung von Plutonium kein großartiges Problem. Das Problem bei reinem Pu239 ist vielmehr, daß man es jederzeit wieder zum Bau neuer Kernwaffen verwenden kann. Das Sicherheitsproblem ist also nicht der Strahlenschutz, sondern der „Diebstahlschutz“. Die National Academy of Sciences erschuf den „Selbstschutz-Standard durch γ-Strahlung“ auf der Basis von „abgebrannten Brennelementen“. Fast das gesamte Strahlungsfeld wurde auf den Zerfall von Cesium-137 mit einer Halbwertszeit von 30 Jahren bezogen.

Nachdem man langsam zu der Erkenntnis gelangte, daß das Mischoxid-Programm völlig aus dem Ruder lief, hat die Obama-Administration 2014 folgende Alternativen vorgeschlagen:

  1. Verdünnung des Plutoniums mit noch vorhandenem Restmüll und anschließende Einlagerung im WIPP.
  2. Der „can in canister“ Ansatz zur Einlagerung in hochaktivem Glas.
  3. Entsorgung in 5000 m tiefen Bohrlöchern, und
  4. Bestrahlung in einem natriumgekühlten Reaktor mit schnellem Neutronenspektrum.

Die Verdünnung

Die Verdünnung des Plutoniums durch die Auflösung in noch vorhandenem Restmüll aus der Wiederaufbereitung kann man wohl nur als Schnapsidee bezeichnen. Man erzeugt damit wieder besonders langlebigen „Atommüll“. Zum Glück hat man nur noch kleine Mengen unverglasten Restmüll in den Labors übrig, die nicht ausreichen werden um das „Überschuss Plutonium“ auf diese Art zu beseitigen. Allenfalls geringe Mengen — die auf irgendeine Art besonders schwer zu behandeln sind — sind so gegen Diebstahl zu schützen.

Eine Abwandlung dieses Weges hat das Energieministerium (DOE) schon 2011 beschritten: Über 580 kg Plutoniumoxid Pulver aus den Labors der Savannah River Site wurden mit einem geheimgehaltenen Stoff gemischt, der angeblich besonders schwer wieder zu trennen ist. Diese Mischung — mit einem Anteil von 10% Plutonium — wurde in Rohre von 15 cm Durchmesser abgefüllt, die wiederum einzeln in 200 l Fässern eingeschlossen wurden (“pipe-overpack containers”). Der Gehalt an Plutonium pro Faß wurde auf höchstens 175 gr begrenzt.

Würde man den Gehalt pro Faß auf 340 gr Plutonium erhöhen, wären für 50 to Plutonium rund 150 000 Fässer nötig. Eine — von derzeit sieben Kammern im WIPP Endlager— könnte 90 000 Fässer aufnehmen. Ursprünglich betrug das genehmigte Einlagerungsvolumen für das WIPP 176 000 m3 für Abfall mit Transuranen. Eine Genehmigung für eine Erweiterung ist in Arbeit.

Die Kritik von Sicherheitsexperten über diese Methode zur Einlagerung von waffengrädigem Plutonium ist nicht ganz von der Hand zu weisen: Für den Bau einer „Nagaski Bombe“ wären etwa 20 solcher „Rohre“ mit den Abmessungen von 15 cm Durchmesser und 60 cm Länge nötig. Bei einer Stückzahl von 150 000 Stück, mit diversen verteilten Produktions- und Lagerstätten eine extrem geringe Anzahl. Die bewegt sich schon in in der Größenordnung vorgekommener Buchung- und Bilanzierungsprobleme. Selbst ein reiner Papierverlust wäre eine Katastrophe in der öffentlichen Wahrnehmung.

Das Dose in Kanister Verfahren

Aus dem „Selbstschutz-Gedanken“ wurde das „can in canister“ Verfahren entwickelt. Man mischt etwa 10% Plutonium mit speziellen Stoffen, die besonders schwer trennbare chemische Verbindungen mit ihm eingehen, presst dieses Pulver in Scheiben und sintert diese zu Keramik. Das ergibt die „Immobilisierung“. Diese Scheiben werden in Dosen von etwa 6 cm Durchmesser und 25 cm Höhe gefüllt. Jede dieser Dosen enthält etwa 1 kg Plutonium. Jeweils 28 Dosen kommen in einen Kanister von etwa 3 m Kantenlänge und werden mit flüssigem, strahlenden Glas aus der Beseitigung von hochaktivem „Atommüll“ umgossen. Für die geplant 50 to „Überschussplutonium“ werden also 1800 solcher Kisten benötigt. Genau das ist aber das Problem: Die USA haben gar nicht mehr solche Mengen unbehandelten hochaktiven Müll zur Verfügung.

Das Energieministerium (DOE) hat als Standard für eine „Selbstsicherung“ bei solchen Kanistern eine Strahlendosis von 1 Sv pro Stunde in einem Abstand von einem Meter in 30 Jahren nach der Befüllung definiert. Man würde deshalb für die Kanister über 1,221×1018 Bq Cäsium-137 (rund 225 kg) benötigen. Zur Orientierung: Bei der Tschernobyl-Katastrophe soll eine Aktivität von etwa 8,5×1016 Bq Cs137 freigesetzt worden sein.

Bohrlöcher

Seit Jahrzehnten gibt es den Vorschlag „Atommüll“ in tiefen Bohrlöchern (ca. 3000 bis 5000 m tief) einzulagern. Dahinter steckt der Grundgedanke: Tiefe = langer Weg bis zur Oberfläche = lange Zeitdauer. Die angepeilte Tiefe ist etwa die zehnfache Tiefe von bergmännischen Endlagern. Diese große Tiefe stellt eine zusätzliche Sicherheit vor der „Wiedergewinnung“ des „Waffen-Plutoniums“ dar.

Es wurden bereits Demonstrations-Bohrungen durchgeführt und über 110 Standorte in den USA bewertet. Kriterien waren unter anderem: Entfernung zu Siedlungsgebieten, das Vorhandensein von kristallinem Grundgestein ab 2000 m Tiefe, flacher Verlauf der Schicht, geringer geothermischer Wärmestrom und geringer Vulkanismus.

Diese Form der Endlagerung geht davon aus, daß es mindestens drei Gründe gibt, warum ein natürlicher Transport durch Wasser bis an die Oberfläche nahezu ausgeschlossen ist — selbst wenn das Plutonium sich aufgelöst hat:

  1. Der gewaltige Gebirgsdruck in solchen Tiefen schließt etwaige Risse und Spalten sehr schnell, sodaß es nur zu sehr geringen Strömungen von Wasser kommt.
  2. Plutonium hat nur eine äußerst geringe Löslichkeit in solch sauerstoffarmen Tiefenwasser.
  3. Tiefenwasser ist meist mit Mineralien und Salzen gesättigt, was eine hohe Dichte zur Folge hat. Es gibt deshalb wenig Auftrieb, der es überhaupt mit eher oberflächennahem „Trinkwasser“ in Kontakt bringen könnte.

Die Bohrungen sollen auf die Mindesttiefe plus einem zusätzlichen Stück zur Einlagerung abgeteuft werden. Studien haben ergeben, daß so ein „Lagerraum“ von etwa 40 m3 pro Bohrung (Enddurchmesser ca. 16 cm) geschaffen werden kann. Nach Einlagerung wird die Bohrung wieder sorgfältig verfüllt. Ein erprobter Vorgang bei zig Tausend Bohrungen in der Öl- und Gasindustrie.

Bisher ist diese Methode an zu hohen Kosten gescheitert. Allerdings hat die Bohrtechnik in den letzten Jahren einen sehr rasanten Fortschritt erlebt. Inzwischen gibt es sogar schon Studien über horizontale Bohrungen in geeigneten Schichten. Man geht von einem dramatischen Verfall der Kosten aus. In Verbindung mit der ebenfalls rasanten Entwicklung von Robotern, ein durchaus vielversprechender Ansatz auch für die Endlagerung von besonders hochaktivem „Restmüll“.

Beseitigung in Reaktoren .

In diesem Blog ist schon vieles über Reaktoren mit schnellem Neutronenspektrum geschrieben worden. Man kann nur hoffen, daß auch die USA den Mut haben, diesen Weg einzuschlagen. Ein guter Start wäre der Bau z. B. eines PRISM als Demonstrationsreaktor für die Beseitigung von überschüssigem Waffen-Plutonium in der Hand des Energieministeriums. Vieles könnte unter den militärischen Bedingungen der Kernwaffenproduktion schnell und problemlos durchgeführt werden. Milliarden Dollar sind durch die ohnehin bereitzustellenden Beseitigungskosten unter dem politischen Druck der Abrüstungsverträge vorhanden. Der Demonstrationsreaktor wäre — ähnlich der Geschichte des Druckwasserreaktors als Antrieb für U-Boote — sehr schnell und kostengünstig in eine zivile Anwendung überführbar. Ist dies vielleicht der wahre Grund, warum „Atomkraftgegner“ so verbissen an der direkten Endlagerung fest halten?

Wie soll Plutonium beseitigt werden?

Durch den Baustopp der Mischoxid-Anlage zur Vernichtung von überschüssigem „Waffenplutonium“ in den USA, ist dort wieder eine Grundsatzdebatte losgetreten worden. Nach den Zahlen des International Panel on Fissile Materials (IPFM) gibt es zur Zeit etwa 216 to „Waffenplutonium“ (in Kernwaffen verbaut und als Reserve) und etwa 271 to „ziviles Plutonium“ aus der Wiederaufbereitung von Kernbrennstoffen weltweit. Das Ganze ist also beileibe kein rein akademisches Problem.

Die Kernwaffen-Frage

Wenn man wirkliche Abrüstung will und nicht nur das Einlegen einer Pause, dann muß man nicht nur Trägersysteme und Kernwaffen verschrotten, sondern auch das „Bombenmaterial“ vernichten. Gerade dessen Herstellung — ob Plutonium oder höchst angereichertes Uran — ist der zeit- und kostenaufwendigste Teil bei einer „atomaren Aufrüstung“. Insofern war der Vertrag zwischen den USA und Rußland ihr Überschussplutonium zu vernichten, der einzig richtige Weg. Die Russen gehen nun den Weg — mit vollerZustimmung der USA — ihren Anteil an Überschüssen in ihren schnellen, natriumgekühlten Reaktoren als Brennstoff zu verwenden. Ganz so einfach und schnell geht das aber auch nicht. Selbst der größte „Brüter“ mit 800 MWel braucht überschlägig weniger als 5 to Plutonium für seine Erstbeladung. Es wird deshalb auch dort noch einige Jahre bis Jahrzehnte dauern, bis zumindest der Überschuß soweit „denaturiert“ ist, daß man ihn nie mehr zur Produktion von Kernwaffen einsetzen kann.

Die zivile Herkunft

Für die zivile Produktion von Plutonium aus abgebrannten Brennstäben gab es drei Beweggründe:

  1. Als Erstbeladung für schnelle Brüter
  2. Zur Streckung des Uranverbrauchs über MOX-Elemente
  3. Um das Volumen des „Atommülls“ zu verringern und die „Endlager-Anforderungen“ drastisch zu senken.

Brüter

Noch in den 1960er Jahren ging man von sehr begrenzten Vorräten an förderbarem Natururan aus. Man befürchtete eine baldige Preisexplosion. Gerade „Atomkraftgegner“ haben immer wieder dieses Argument für ihre Propaganda mißbraucht. In Wirklichkeit hängen die förderbaren Vorräte — wie beim Öl — immer vom Uranpreis selbst und von der technologischen Entwicklung ab. Nach heutigen Erfahrungen sind die Natururanvorräte nahezu unendlich. Sehr viel wichtiger ist das Verhältnis zwischen „Strompreis“ und „Brennstoffpreis“. Je 100 $US pro kg Natururan schlägt es mit 0,002 $US pro kWh (!) auf die Stromerzeugungskosten nieder. Wenn schon die Sonne keine Rechnung schickt, tut es die Uranader auch nicht.

Jedenfalls haben wir schon heute mit über 271 to Plutonium aus der Wiederaufbereitung abgebrannter Brennelemente weltweit einen beachtlichen Vorrat für den Start in die Technologie mit schnellen Reaktoren. Wir könnten damit auf einen Schlag 30.000 MWel Schnelle-Brüter bauen.

MOX-Elemente

Die Verwendung von einer Mischung aus Uranoxid und Plutoniumoxid (MOX) in Leichtwasserreaktoren (LWR) kann nur eine Übergangslösung sein. Zwar kann man dadurch Natururan ersetzen, aber der Aufwand steht in keinem wirtschaftlichen Verhältnis zum Nutzen. Zur Verringerung der Plutonium Vorräte trägt es auch nur wenig bei, da in einem LWR etwa für 10 Kerne die gespalten werden, gleichzeitig 6 neue Plutoniumkerne gebildet werden.

Außerdem verschlechtert sich die Isotopenzusammensetzung: Es bilden sich immer mehr Minore Aktinoide, was sowohl die Verarbeitung erschwert, als auch den „Restmüll“ aus der Wiederaufbereitung immer langlebiger macht.

Schon bei der Herstellung von MOX-Brennstäben bleiben etwa 10 bis 15% nach der erforderlichen Reinigung des Eingangsmaterials übrig. Diese gehen meist direkt in den Abfallstrom zur Endlagerung. Es lohnt einfach nicht, aus diesem Abfall noch das Rest-Plutonium zu extrahieren.

Hier sieht man auch den Vorteil metallischen Brennstoffs als Uran-Plutonium-Zirconium-Legierung, wie sie z. B. in PRISM-Reaktoren verwendet werden soll: In ihr kann aller „Dreck“ mit verarbeitet werden und erneut dem Reaktor zur Behandlung zugeführt werden.

Wiederaufbereitung

Abgebrannte Brennelemente enthalten immer noch rund 95% Uran und etwa 1% Plutonium. Anders herum, sind im Sinne der Energieerzeugung nur etwa 4% Abfall. Dies ist die Asche der Kernenergie, die sicher deponiert werden muß. Durch das Recycling ergibt sich eine erhebliche Reduzierung des Abfalls. Man vergleiche dies einmal mit z. B. Altpapier oder gar Plastik.

Eine Wiederaufbereitung ist ein rein chemischer Prozeß. Es wird — anders als im Reaktor — keine Radioaktivität erzeugt, sondern schlimmstenfalls bereits vorhandene radioaktive Stoffe verschleppt. Dies kann aber durch Dekontamination wieder beseitigt werden. Wenn man früher alle Rohre, Schutzkleidung, Werkzeuge, Chemikalien etc. einfach weggeworfen hat, geschah dies aus Kostengründen.

„Atomkraftgegner“ versuchen diese Tatsachen immer noch zu leugnen. Ist doch die „angeblich ungelöste Atommüll-Frage“ ziemlich das letzte Argument, was ihnen gegen die friedliche Nutzung der Kernenergie geblieben ist. Wird dieser Schwindel auch in breiten Bevölkerungskreisen erkannt, ist es aus mit der Angstindustrie. Sie braucht dann dringend neue Phantome um ihre Einnahmen zu sichern.

Nachhaltigkeitsproblematik

In der Szene der „Atomkraftgegner“ ist das Neusprechwort „Nachhaltigkeit“ eine Grundvokabel der Propaganda. Zwar ist diese Försterweisheit [Wenn du mehr Bäume abholzt, als gerade nachwachsen, ist der Wald irgendwann futsch. Nur, gäbe es heute gar kein Deutschland, wenn die alten Germanen schon dem statischen Denken der Melonen-Partei verfallen gewesen wären] schon immer fragwürdig gewesen, hört sich aber gut an.

Wenn man 1 gr Plutonium spaltet, ist es nicht nur unwiederbringlich weg, sondern hat auch noch etwa 22800 kWh Energie geliefert. Wenn man also 70 to überflüssig gewordenes „Waffen-Plutonium“ in Kernreaktoren spaltet, entspricht das dem Energiegehalt von 210 Millionen to Kohle oder 910 Millionen barrel Öl. Damit ließen sich rund 630 TWh elektrische Energie erzeugen (mehr als ein Jahresverbrauch von Deutschland). Eine hübsche Friedensdividende, wenn nicht die verdammte „Grüne Ideologie“ davor stehen würde.

Geht nun Gefahr von Plutonium aus oder doch nicht?

Was „Waffen-Plutonium“ betrifft, ist die Frage eindeutig zu beantworten: Die Sicherheit — im Sinne von Diebstahl etc. — ist zwingend einzuhalten. Es ist ähnlich, wie mit Sprengstoffen: Sie sind an und für sich harmlos — wenn man damit nicht Menschen in die Luft sprengen könnte.

Wie verhält es sich aber mit Plutonium an sich? An den Lagerfeuern von Gorleben erzählt man sich die schaurigsten Geschichten von „wenigen Gramm, die die ganze Menschheit töten können“. Dies ist absoluter Blödsinn! Reines Plutonium ist ein α-Strahler, man kann es deshalb gefahrlos in die Hand nehmen. Dies geschah und geschieht in zahlreichen Labors und in der Waffenproduktion täglich. Schäden sind nicht bekannt. Solange man es nicht als Feinstaub einatmet oder mit der Nahrung zu sich nimmt, passiert rein gar nichts. Selbst bei einer Aufnahme in den Körper, spielt die chemische Verbindung eine große Rolle, in der es vorliegt. Seine (chemische) Wirkung als ein Schwermetall übertrifft meist sogar seine Strahlungswirkung.

Damit ergibt sich für „Atomkraftgegner“ ein schwierig zu lösendes Dilemma: Ist Plutonium ganz, ganz gefährlich, müßte man es zwingend aus der Welt schaffen. Dummerweise erzeugt aber Kernspaltung große Mengen an Energie. Ist es aber nicht so gefährlich, könnte man es problemlos lagern. Die „weltweit ungelöste Endlagerfrage“ — das zentrale Argument der Angstindustrie in Deutschland — platzt wie eine Seifenblase. Es bleibt daher nur der erprobte und erfolgreiche Weg, die Kosten in die Höhe zu treiben, um anschließend sagen zu können, die friedliche Nutzung der Kernenergie sei leider total unwirtschaftlich. Eigentlich ganz leicht zu durchschauen.

WIPP, das Gorleben der USA

In den USA gibt es überall große Mengen von „Atommüll“ aus den staatlichen Forschungslabors und der Kernwaffenproduktion. Manchmal sind ganze Landstriche noch Sperrgebiet. Es stand außer Frage, daß diese Gebiete nach und nach saniert werden müssen. Aber wohin mit dem Abfall? Ein Endlager mußte her, wollte man das Problem nicht den nachfolgenden Generationen aufbürden. Es entstand das Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. Ein Endlager, in dem der gesamte hochaktive Müll aus Forschung und (militärischer) Wiederaufbereitung verschwinden soll. Ausdrücklich auch Plutonium. Dies ist nicht ganz unwichtig, denn wir haben es damit mit wesentlich langlebigerem „Atommüll“ zu tun, als dem aus z. B. der französischen Wiederaufbereitung von Kernbrennstoffen. Auch dies wird in Deutschland gern verschwiegen. Ist doch hier aus ideologischen Gründen der „Ausstieg aus der Atomenergie“ gefordert. Diesem Diktat haben sich selbstverständlich Sicherheit und Kosten unter zu ordnen. Die Stützung einer kleinen Partei — als potentiellem Koalitionspartner zum Erhalt des Machtgefüges — hat absoluten Vorrang.

Die Ironie an der Geschichte ist, daß das WIPP ein Abbild des Endlagers in Gorleben ist. Man hat es in einem Salzstock in 655 m Tiefe als Kavernenfeld von 1,6 x 1,4 km angelegt. Es werden dort Kammern bergmännisch aus dem Salz aufgefahren, in denen die „Müllbehälter“ gestapelt werden. Wichtig ist, es handelt sich hier nicht um ein altes Salzbergwerk wie bei den Schachtanlagen Asse und Morsleben, sondern eine ausschließlich für die Endlagerung geplante und neu gebaute Anlage. Es ist aber auch kein Zufall, daß man einst in USA und Deutschland einen Salzstock als das ideale Wirtsgestein für ein Endlager angesehen hat. Salz ist plastisch und umschließt langfristig „selbstabdichtend“ den Atommüll. Außerdem ist es ein Rohstoff, der im Überfluß vorhanden ist, was eine etwaige spätere Nutzung ausschließt. Die Baukosten betrugen in den 1980er Jahren rund 700 Millionen $US. Ein geradezu lächerlicher Betrag, wenn man ihn mit der „Geldvernichtungsmaschine“ Gorleben vergleicht.

In Deutschland fängt man gerade an, „ergebnisoffen“ einen neuen Standort zu suchen: Alles außer Gorleben, den Wallfahrtsort der Öko-Sozialistischen Bewegung. Wie putzig dieses neue Suchverfahren abläuft, sieht man schon an dem geforderten „strikten Bohrverbot“ für Gebiete, die von der „Endlagerkommission“ für potentiell würdig erachtet werden. Fährt man auf der kilometerlangen Zufahrtsstraße zum WIPP, hat man tunlichst auf zwei Dinge zu achten: Die halbwilden Rinder, die links und rechts grasen und die LKW und Tanklaster, die in unendlichem Strom zu den Bohrstellen rasen. Der Salzstock liegt mitten in einem Ölfördergebiet — was für Geologen nicht weiter verwunderlich ist. In Sichtweite rund um das WIPP sieht man zahlreiche Bohrtürme. Kein Mensch stört sich daran. Auch nicht die Rancher, deren überlebenswichtige Wasservorräte (Wüstengebiet) durchbohrt oder mit Atommüll unterfüttert werden.

Ausblick

Die letzte Folge dieser kleinen Serie wird sich mit den verschiedenen „Immobilisierungen“ für Plutonium beschäftigen.

Notbremse gezogen?

Anfang Mai schrieb der „Energieminister“ (US Energy Secretary Rick Perry) der USA eine Mitteilung an sein Parlament (Congress), daß er im Grunde den Bau der Anlage zur Produktion von Mischoxid-Brennelementen (MOX) in Savannah River Site in South Carolina abgebrochen habe. Die Anlage ist bereits zu 70% fertiggestellt und sollte aus 34 to waffengrädigem Plutonium Brennstoff für Leichtwasserreaktoren herstellen.

Die Vorgeschichte

Bereits vor dem Zusammenbruch der Sowjetunion setzte ein gewaltiges Abrüstungsprogramm zwischen den USA und Russland ein. Letztendlich wurden im Rahmen des ersten Vertrages zur Verringerung strategischer Waffen (START I) tausende Raketen und Sprengköpfe auf beiden Seiten vernichtet. Damit saß jeder der beiden Vertragspartner auf zig Tonnen waffengrädigem Materials, aus dem man zehntausende von neuen Sprengköpfen hätte bauen können. Im Zeitalter des aufkeimenden Terrorismus eine äußerst unbehagliche Situation, zumal die Sowjetunion in Auflösung begriffen war.

Die Mengen an hochangereichertem Uran stellten nur ein kleines Problem dar: Sie wurden mit abgereichertem Uran auf die Gehalte für Brennstoff verschnitten und nach und nach in Kernkraftwerken zur Stromerzeugung verbraucht. Gleichwohl waren die Mengen so gewaltig, daß für Jahre der Markt für Natururan nahezu zusammenbrach. Für sich genommen schon ein gewaltiger Schaden für die Uranbergwerke.

Ganz anders verhielt es sich mit dem Plutonium. Jeder der beiden Vertragspartner verfügte nun über einen Überschuß von 34 to waffengrädigem Plutoniums, der irgendwie aus der Welt geschafft werden mußte. Um zu verstehen, warum das gar nicht so einfach ist, muß man sich etwas näher mit Plutonium beschäftigen.

Das besondere Plutonium

Plutonium ist ein chemisches Element mit der Ordnungszahl 94 (94 Protonen im Kern), welches faktisch nicht in der Natur vorkommt. Es kann zwar in verschiedene chemische Verbindungen mit verschiedenen chemischen Eigenschaften überführt werden, nicht aber auf chemischen Wegen wieder aus der Welt geschafft werden. Es kommt in zahlreichen Isotopen (unterschiedliche Anzahl von Neutronen im Kern) — von Pu236 bis Pu244 — mit jeweils eigener Halbwertszeit und eigenem Einfangquerschnitt für Neutronen vor. Die einzige Möglichkeit es wieder aus der Welt zu schaffen, ist es mittels Neutronen zu spalten oder wenigstens in andere Isotopen um zu formen.

Schon in den Anfängen der Entwicklung von Kernwaffen hat man erkannt, daß Pu239ein idealer Kandidat für den Bau von Kernwaffen ist. Es ist recht einfach und preiswert in „speziellen Reaktoren“ in beliebigen Mengen aus Natururan herstellbar und es besitzt ein Optimum aus „Lebensdauer“ und Einfangquerschnitt im auftretenden Energiespektrum einer Kernexplosion.

Jede Kernwaffe altert durch spontane Zerfälle. Je kürzer die Halbwertszeit des Materials ist, desto schneller ist die Kernwaffe unbrauchbar. Jeder Kern, der schon zerfallen ist, steht für die Kettenreaktion im Ernstfall nicht mehr zur Verfügung. Dies ist leicht einsichtig. Jeder Spontanzerfall löst aber eine ganze Kette weiterer radioaktiver Produkte aus. Jedes Glied hat eigene, energieabhängige Einfangquerschnitte. Vereinfachend gesagt, viele verbrauchen nur Neutronen, die für eine Kettenreaktion nicht mehr zur Verfügung stehen können. Im Extremfall bricht die „Explosion“ sehr schnell in sich zusammen.

Der Zweck einer Kernwaffe ist Zerstörung (Druckwelle, Feuerball und Strahlung). Dafür braucht man eine hohe Leistung (Energie pro Zeiteinheit). Mit einfachen Worten: Man muß möglichst viele Kerne (ungefähr 200 MeV pro Spaltung) in nahezu „Null Sekunden“ spalten. Das Geheimnis des Bombenbaues liegt nun in der Beherrschung der Kettenreaktion: Mit jeder Spaltung werden weitere Neutronen frei, die von Generation zu Generation (jeweils etwa Verdoppelung) immer noch mehr Kerne spalten könnten — wenn sie nicht parasitär weggefangen werden oder den Ort des Geschehens einfach mit hoher Geschwindigkeit verlassen würden ohne überhaupt jemals einem spaltbaren Kern begegnet zu sein. Insbesondere für diesen „Verlust von Neutronen durch Austritt“ ist die schnelle Ausdehnung des Spaltmaterials durch die entstehende Hitze verantwortlich.

Waffengrädiges- oder Reaktorplutonium?

Von „Atomkraftgegnern“ wird immer wieder behauptet, man könne auch aus Reaktorplutonium „Bomben bauen“. Man möchte damit Plutonium aus der Wiederaufbereitung von Brennelementen aus Leichtwasserreaktoren gefährlicher erscheinen lassen, als es in Wirklichkeit ist. Bestenfalls steckt dahinter Wortklauberei. Natürlich kann man mit großem Aufwand unter Laborbedingungen auch mit Reaktorplutonium eine Kettenreaktion auslösen — bloß bringt man damit keine Fensterscheibe zum wackeln. Deshalb ist auch noch keiner so bescheuert gewesen, mit gewaltigem Aufwand eine „Atombombe“ aus Reaktorplutonium zu bauen, die trotzdem nur einem Knallfrosch gleicht, wenn er mit geringstem Aufwand aus Natururan waffengrädiges Plutonium erzeugen kann.

Damit ist auch ein Weg aufgezeigt, wie man „altes Bombenplutonium“ dauerhaft und sicher beseitigen kann. Setzt man es als Brennstoff in Leistungsreaktoren ein, wird dadurch ein erheblicher Teil der Ursprungsmenge „verbrannt“ und gleichzeitig der Rest durch die Bildung von anderen Isotopen verdorben. Denn nicht jeder Kern Pu239 wird durch das Einfangen eines Neutrons gespalten, sondern wird teilweise bloß in ein anderes Isotop (Pu240, Pu241 usw.) umgewandelt. Man kann das mit dem vergällen von trinkbarem Alkohol vergleichen: Der Zusatz von geringen Mengen ähnlicher Stoffe macht aus einer großen Menge Genussmittel einen für Menschen giftigen Industriealkohol. Der Trick ist der Gleiche: Der Aufwand zur Trennung wäre um ein vielfaches höher, als die erneute Herstellung von Trinkalkohol.

Grundsätzlich kann man „überschüssiges Bombenplutonium“ in schnellen Reaktoren oder in konventionellen Leichtwasserreaktoren einsetzen. Effektiver ist der von Rußland eingeschlagene Weg der Herstellung von Brennstoff für einen natriumgekühlten Reaktor mit schnellen Neutronen: Man kann größere Anteile (schnelle Reaktoren über 20%, LW bis rund 8%) verwenden. Dies vereinfacht schon mal die notwendige Überwachung bei der Produktion. Durch eine angepaßte Fahrweise (nicht die Energieerzeugung steht im Vordergrund, sondern die Erzeugung ungeeigneter Isotope) kann man recht schnell große Mengen Plutonium für eine Waffenproduktion dauerhaft unbrauchbar machen. So gibt es beispielsweise ein Konzept — bestehend aus zwei PRISM-Reaktoren — innerhalb von nur zwei Jahren alle Überschussbestände in Großbritannien für eine Waffenproduktion unbrauchbar zu machen. Elektrische Energie könnten diese Reaktoren mit diesem Plutonium dann trotzdem noch viele Jahrzehnte weiter produzieren.

Der Weg über MOX

Üblicherweise setzt man in Kernkraftwerken einen Brennstoff aus (nur) angereichertem Uran ein. Man kann aber auch einen Brennstoff aus einer Mischung aus Uranoxid und Plutoniumoxid verwenden. Keine neue Erfindung. Bereits 1972 wurde in Deutschland (!) erfolgreich ein Mischoxid in einem Reaktor verwendet. Heute sind rund 5% aller verwendeten Brennelemente weltweit vom Typ MOX. Führend in dieser Technologie ist mit großem Abstand Frankreich. Ursprünglich wollte man damit den Verbrauch von Natururan strecken. Es war daher nicht abwegig, über diese Schiene auch das „Überschuß-Plutonium“ aus der Rüstung vernichten zu wollen. Nur mußte aus politischen Gründen (Proliferation und Verträge mit Rußland) in USA erst einmal eine neue Anlage gebaut werden. Und damit nahm das Verhängnis seinen Lauf…

Wenn man eine verfahrenstechnische Großanlage in Auftrag gibt, sollte man vorher wissen, welches Produkt man eigentlich herstellen will, welche Vorschriften im eigenen Land gelten und welchen Rohstoff man genau einsetzen muß. Ganz offensichtlich für Politiker (per Eigendefinition Alleskönner) und öffentliche Verwaltungsapparate (zumindest, wenn sie sich auf einem neuen Gebiet bewegen sollen) eine unlösbare Aufgabe. Wie immer, wurde erst einmal — im Bewußtsein kein eigenes Geld, sondern das Geld der Steuerzahler zu verschwenden — eine Anlage für den Durchsatz von 3,5 to Plutonium pro Jahr bei Areva für 2,7 Milliarden Dollar in Auftrag gegeben. Baubeginn war 2007 mit einer geplanten Fertigstellung im Jahr 2016.

Nachdem der Baubeginn bereits erfolgt war, stellte man fest, daß der spezielle Eingangsstoff — besagtes Waffenplutonium zur Vernichtung in Leichtwasserreaktoren — anders, als das übliche Plutonium — Plutonium aus französischer Wiederaufbereitung von Kernbrennstoff— war. Flugs mußte noch ein kompletter zusätzlicher Verfahrensschritt zur Entfernung von Verunreinigungen eingeführt werden. Die Anlage — fast genau so groß, wie die bereits im Bau befindliche — wurde verniedlichend „Aqueous Polishing“ genannt. Die geplante Fertigstellung verschob sich auf 2019 und die geplanten Kosten schossen auf 4,9 Milliarden Dollar hoch.

Im Jahre 2012 führte man eine Untersuchung durch und aktualisierte die Kostenschätzung auf 7,7 Milliarden. Eine weitere Untersuchung im Jahre 2016 ergab eine Kostenschätzung von 17,2 Milliarden und eine Inbetriebnahme nicht vor 2025. Wie bei öffentlichen Projekten üblich — wir kennen das vom Flughafen BER in Berlin — wurschtelt man weiter vor sich hin. Jährlich versickerten zwischen 350 und 500 Millionen Dollar aus diversen Haushaltstiteln in diesem Sumpf. Ein schönes Auftragsvolumen, für das man schon etwas für die Politik tun kann.

Die Programmkosten

Mit dem Bau der Anlage ist es aber noch nicht getan. In einer Marktwirtschaft muß man auch noch Kunden für das Produkt finden. In diesem Fall, wegen der geltenden Abrüstungsverträge, ausschließlich in den USA. Die Kernkraftwerke in den USA müssen aber Genehmigungen für den Betrieb mit MOX-Brennelementen besitzen. Sie müssen geprüft und umgebaut werden. Mit anderen Worten, im Moment würden die Betreiber die Brennelemente nicht einmal geschenkt nehmen. Lange Rede, kurzer Sinn, das Energieministerium schätzt die Gesamtkosten für das Programm auf 50 Milliarden Dollar. Das entspricht einem Preis von über 1,4 Millionen Dollar für jedes Kilogramm Waffenplutonium. Selbst wenn man die Anlagen noch für andere Zwecke nutzen kann, ist das ein Irrsinn.

Dieser Vorgang zeigt sehr schön, was geschieht, wenn man Politikern solche komplexen technischen Herausforderungen überläßt. Man muß nur so ein verrücktes Programm starten und erschließt sich damit eine sprudelnde Geldquelle: In diesem Fall mit ursprünglich „etwa 1 Milliarde für ein tolles Abrüstungsprogramm“ oder einer „Eiskugel für eine Energiewende“ bei uns. Sind erstmal genug Laiendarsteller auf den Zug aufgesprungen, kann man sie beliebig ausquetschen. Der Politiker steht vor der Alternative: Ich verbrenne weiterhin das Geld fremder Leute (sprich unsere Steuern) oder gebe zu, gar nicht allwissend zu sein, was das Ende der eigenen Karriere bedeutet. Solche „Steuergelder-Verbrennungsanlagen“ werden erst gestoppt, wenn Kräfte an die Regierung kommen, die bisher nicht im etablierten Machtapparat tätig waren. Dies geschah mit der Wahl von Donald Trump zum 45. Präsidenten der USA, der schon in seinem Wahlkampf lieber vom „Sumpf“ sprach und ungern das etablierte Synonym „Washington“ benutzte.

Wie geht’s weiter

Allerdings ist mit dem Baustopp der Anlage noch lange nicht das Problem beseitigt. Dabei ist das Plutonium selbst das geringste Problem: Es schlummert weiterhin in den Tresoren vor sich hin. Was drückt, sind die Abrüstungsverträge mit Russland. Im Moment herrscht ein seltsames gegenseitiges „Wegsehen“: Die USA kommen nicht mit der Vernichtung ihres „Überschussplutonium“ voran, dafür regt man sich nicht sonderlich über den Bruch des Abrüstungsabkommens über Mittelstreckenwaffen (Landgestützte Cruise missile mit „Atomsprengköpfen“) durch Putin auf.

Es muß also eine Lösung her. Zumindest über einen weiteren Ansatz, wird hier demnächst berichtet…

Reduktion langlebiger Spaltprodukte

Aktuell wird wieder einmal in der Fachliteratur die Beseitigung von langlebigen Spaltprodukten diskutiert.

Das Problem

Irgendwann ist jedes Brennelement erschöpft und muß erneuert werden. Die „abgebrannten“ Brennelemente werden von „Atomkraftgegnern“ gern als „Atommüll“ verunglimpft, obwohl sie recycelt werden können. Sie bestehen noch zu rund 96% aus Uran und Plutonium, die erneut als Brennstoff genutzt werden könnten. Sicherheitstechnisch betrachtet, stellt ihre ionisierende Strahlung ein – durchaus unterschiedliches – Problem dar. Es sind daher dauerhafte Abschirmungen in der Form von Wasserbädern, Sicherheitsbehältern etc. notwendig.

Der Faktor Zeit

Je länger die Halbwertszeit ist, um so länger dauert es, bis dieser Stoff verschwunden ist. Wenn man von einer Gefahr durch ionisierende Strahlung ausgeht, ist damit der Zeitraum bestimmt, in dem man den Stoff von der Biosphäre fern halten sollte:

  • Es gibt unterschiedliche Arten ionisierender Strahlung, die auch biologisch unterschiedlich wirken. Strahlung, die z. B. von Uran und Plutonium ausgeht, ist nur dann bedrohlich, wenn sie innerhalb des Körpers frei wird. Nimmt man sie nicht in den Körper auf (Nahrung, Atemluft), sind sie genauso harmlos, wie jedweder anderer Stoff auch.
  • Die Dosis macht’s“. Insofern ist die Konzentration eines radioaktiven Stoffes (z. B. im Trinkwasser) entscheidend.
  • Freigesetzte Stoffe können sich (z. B. über die Nahrungskette) anreichern. Dies gilt naturgemäß besonders für langlebige Stoffe. Insofern sollten sie möglichst gar nicht erst freigesetzt werden.

Der Endlager-Standpunkt

Überzeichnet man die Gefahr, die von radioaktiven Stoffen ausgeht, kommt man zu dem Schluß, man müßte sie quasi „für ewig“ sicher einschließen. Der Begriff des „Endlagers“ ist erschaffen. Ein hervorragender politischer Kampfbegriff, weil wie ein Gummiband dehnbar. Man muß nur die Gefährlichkeit – was auch immer darunter zu verstehen sei – ausdehnen und kommt schnell zu Zeiträumen, die nicht mehr als beherrschbar erklärt werden können. Gipfel dieser Gespensterdebatte ist die Erforschung irgendwelcher Piktogramme, die Außerirdischen oder sonst wie verblödeten Erdbewohnern die Lage eines „Endlagers“ in Millionen von Jahren näher bringen sollen. Interessant ist dabei nur, wie locker man beispielsweise den Fallout aus unzähligen Kernwaffenversuchen nicht gekennzeichnet hat. Wären die Stoffe auch nur annähernd so gefährlich, wie sich Ökoaktivisten gern an den Lagerfeuern im Wendland erzählen, müßte die gesamte Menschheit bereits ausgestorben sein. Aber es geht dabei ja auch weniger um Fakten, als um Gesellschaftsveränderung.

Gleichwohl sollte man mit radioaktiven Abfällen verantwortungsvoll umgehen. Es ist das Verdienst der Kerntechnik, der erste Industriezweig zu sein, der sich von Anfang an um seinen Abfall Gedanken gemacht hat: Wiederaufbereitung und geologische Tiefenlager waren erfunden. Letztere aus einem ethischen Anspruch heraus, den Abfall nicht den folgenden Generationen als Problem und Kosten zu hinterlassen. Immer noch revolutionär, wenn man es mit dem sonst voll akzeptierten Umgang mit Abfällen und Deponien vergleicht.

Die Art der Beseitigung

Wenn man gebrauchte Brennelemente aufarbeitet, können sie weiterhin zur Energiegewinnung verwendet werden: In konventionellen Reaktoren als Mischoxid und in schwerwassermoderierten Reaktoren sogar in ihrer ursprünglichen Zusammensetzung. Bedingung ist die Trennung von Uran und Plutonium von den Spaltprodukten.

Verwendet man diesen aufbereiteten Brennstoff in Reaktoren mit schnellem Neutronenspektrum (meist mit Natrium oder Blei als Kühlmittel), kann man damit sogar die minoren Aktinoide „verbrennen“. Sie bilden sich aus Uran- und Plutoniumkernen, die trotz Neutroneneinfang nicht gespalten worden sind. Sie sind besonders langlebig und müssen zusammen mit Plutonium als Argument für eine „sichere Endlagerung über Millionen von Jahren“ her halten.

Bleiben die Spaltprodukte übrig. Sie sind zumeist recht kurzlebig und strahlen deshalb sehr stark. So stark, daß sie sich aufheizen, deshalb gekühlt und sicher abgeschirmt werden müssen. Ein Problem, das sich nach einigen Jahrhunderten von selbst erledigt hat. Es wäre mit der Lagerung in simplen Bunkern technisch leicht beherrschbar, wenn es nicht einige wenige sehr langlebige Spaltprodukte geben würde. Hier setzt wieder die Ethik ein: Ist es zulässig, solche Stoffe unseren Nachfahren zu vererben? Es handelt sich um recht harmlose Stoffe (lange Halbwertszeiten bedeuten wenige Zerfälle pro Sekunde und damit grundsätzlich geringe Dosisleistungen) in sehr kleinen Mengen. Es geht hier um Halbwertszeiten von einigen Hunderttausend (Se79, Tc99) bis zu einigen Millionen (Zr93, Pd107, I129, Cs135) Jahren.

Man kann Atomkerne nur durch Neutronen in ein anderes Element umformen. Man benötigt also eine (möglichst starke) Neutronenquelle. Dieser Vorgang wird Transmutation genannt. Ein Favorit hierfür sind Spallationsquellen, bei denen Atomkerne beschossen werden und förmlich verdampfen. Sie sind sehr aufwendig, produzieren aber dafür auch große Mengen Neutronen. Grundsätzlich bleibt aber ein Problem: Die Stoffe existieren meist in einem Isotopengemisch. Man will aber eigentlich nur ein bestimmtes (besonders langlebiges) Isotop umwandeln. Alle anderen Kernreaktionen sind parasitär und kosten nur die teueren Neutronen. Ein Schlüssel hierfür, sind die energieabhängigen Einfangquerschnitte.

Beseitigung in schnellen Reaktoren

Reaktoren mit schnellen Neutronen sind hervorragend zur „Verbrennung“ von Plutonium und minoren Aktinoiden geeignet. Darüberhinaus benötigen sie nicht einmal Natururan, sondern geben sich sogar mit abgereichertem Uran als Brennstoff zufrieden. Allerdings sind sie nur schlecht zur Beseitigung der langlebigen Spaltprodukte geeignet. Diese besitzen nur sehr kleine Einfangquerschnitte für schnelle Neutronen. Es gibt aber einige Energiebereiche, in denen sie solche Neutronen begierig aufnehmen. Verzichtet man auf einige bei der Spaltung freigewordenen Neutronen – im statistischen Mittel auf 0,3 Neutronen pro Kernspaltung – kann man sie zur Umwandlung abzweigen. Man muß sie allerdings noch auf die ideale Geschwindigkeit abbremsen.

Damit ergibt sich folgendes Reaktorkonzept:

  • Man baut einen zentralen Kern, in dem die eigentliche Energieproduktion aus Uran und Plutonium durch Spaltung mit schnellen Neutronen stattfindet.
  • In einem „schnellen Brüter“ ist diese Zone von einer Schicht aus abgereichertem Uran umgeben. Die Neutronen, die aus dem Kern rausfliegen und nicht zur Aufrechterhaltung einer Kettenreaktion benötigt wurden, reagieren hier mit dem Uran und bilden zusätzliches Plutonium. Bei einem „Brüter“ ist hier die Produktion von Plutonium größer als gleichzeitig davon im Kern verbraucht wird.
  • Verzichtet man nun auf einen Teil der „Brutrate“, hat man Neutronen für eine Umwandlung von Spaltprodukten zur Verfügung. Man muß diese nur noch – möglichst an Ort und Stelle – auf die „richtige“ Geschwindigkeit abbremsen. Man kann in den „Brutmantel“ eine gewisse Anzahl von Brennstäben einfügen, die mit einem Gemisch aus den zu beseitigenden Spaltprodukten und einem geeigneten Moderator gefüllt sind. Ein solcher Moderator könnte z. B. Yttrium Deuterid (YD2) sein. Er erfüllt die Bedingungen, selbst kaum mit Neutronen zu reagieren und die richtige Masse für die notwendige Abbremsung zu besitzen.

Die notwendige Verfahrenstechnik

Die Wiederaufbereitung wird erheblich komplizierter. Bei dem klassischen PUREX-Verfahren – wie es z. B. in Frankreich angewendet wird – gewinnt man möglichst reines Uran und Plutonium. Alles andere ist Abfall, der verglast und später in einem geologischen Tiefenlager „endgelagert“ wird. Um diesen Abfall weiter zu entschärfen, müßte man in weiteren Schritten die Aktinoide und die langlebigen Spaltprodukte abtrennen. Beides ist sehr aufwendig und man sollte darüber nicht vergessen, daß es sich dabei nur um rund 4% des ursprünglichen Brennstoffs eines Leichtwasserreaktors handelt. Die zusätzliche Volumenverkleinerung ist somit äußerst gering.

Die langlebigen Spaltprodukte müssen nun noch in möglichst reiner Form gewonnen werden, um parasitäre Effekte zu vermeiden. Darüberhinaus muß ein eigener Wiederaufbereitungskreislauf eingerichtet werden, da nicht alle Spaltprodukte in einem Schritt beseitigt werden können. Ein gewaltiger Aufwand für so geringe Mengen. Darüberhinaus macht die ganze Sache nur wirklich Sinn, wenn mehr langlebige Spaltprodukte umgeformt werden, wie bei dem Betrieb dieses Reaktors wieder neu entstehen.

Schlußbemerkung

Der Aufwand für eine Transmutation ist sehr hoch. Gleichwohl erscheint der Erfolg durchaus verlockend. Wie Simulationen für den japanischen Monju-Reaktor zeigen, kann über einen Betrieb von 20 Jahren eine Reduktion der effektiven Halbwertszeit langlebiger Spaltprodukte von über 100.000 Jahren auf rund 100 Jahre erzielt werden.

Trotzdem darf die Frage erlaubt sein, ob der gewaltige (wirtschaftliche) Aufwand den (vermeintlichen) Sicherheitsgewinn aufwiegt. Andererseits wird Menschen mit Strahlenphobie auch dieser Aufwand nicht genügen. Es steht zu befürchten, daß das bekannte Rennen zwischen Hase und Igel der „Atomkraftgegner“ lediglich fortgesetzt wird.

TRISO

Tri-Isotropic (TRISO) Brennstoff wird immer im Zusammenhang mit Hochtemperaturreaktoren (HTR) erwähnt. Oft mit schönen Bildern. Es lohnt sich, sich etwas näher damit zu beschäftigen.

Geschichte

Seit etwa 1957 wurde der Gedanke propagiert, sehr kleine Brennstoffpartikel mit geeigneten Mitteln zu ummanteln und als „Mini-Brennelemente“ einzusetzen. Im Vordergrund stand dabei der Gedanke, unterschiedlichste Brennstoffkombinationen zu verwenden: Hoch angereichertes Uran (HEU), schwach angereichertes Uran (LEU), Uran mit Thorium (U, Th), Uran mit Plutonium (U, Pu) und Plutonium (Pu). Es wurden umfangreiche Testreihen in aller Welt durchgeführt. Im Prinzip geht tatsächlich alles. Es gibt aber unterschiedlich Vor- und Nachteile.

So hat man z. B. in Deutschland auf Thorium als Brennstoff gesetzt. Man wollte damit eine zweite Schiene von Brutreaktoren schaffen, die die – wie man damals glaubte – geringen Uranvorräte strecken sollte. Diese Entwicklungsrichtung mündete in den Thorium-Hochtemperaturreaktor (THTR) in Hamm-Uentrop als Demonstrationskraftwerk. Diese Schiene kann man heute nur als Sackgasse bezeichnen. Jedenfalls so lange, wie die heutigen Regeln zur Nichtverbreitung von Kernwaffen bestehen bleiben. Man benötigte dafür nämlich auf 93% hoch angereichertes Uran. Heute lagern aus dieser Demonstration noch etwa 900 kg dieses Materials in der Form von schwach abgebrannten Brennelementen in Deutschland. Ein Thema, über das nicht gern öffentlich geredet wird: Die Grünen klammern sich an jedes Gramm, um ihren Gründungsmythos von der ungeklärten Entsorgungsfrage aufrecht erhalten zu können. Eigentlich müßte das Zeug längst in die USA verbracht sein. Es ist geradezu peinlich, wenn man vergleicht, welchen Aufwand die USA und sogar Rußland betreiben, um wenige Kilogramm aus Forschungsreaktoren weltweit wieder einzusammeln und zurück zu führen. In Deutschland steht das Zeug in mäßig bewachten Zwischenlagern rum. Eine tolle Ausgangsposition für Verhandlungen mit Iran, Nord Korea etc. Manchmal stellt man sich schon die Frage, ob das alles nur mit der Bildungsresistenz deutscher Politiker und ihrer ausgesuchten „Atomexperten“ erklärbar ist.

Aus diesen kleinsten Mini-Brennelementen kann man anschließend technische Brennelemente formen. Dafür haben sich zwei Wege heraus kristallisiert: Etwa tennisballgroße Kugeln oder sechseckige „Bausteine“ aus denen man einen Kern aufbauen kann. Die erste Variante ist besonders einfach zu produzieren und ermöglicht einen Reaktor, den man kontinuierlich beladen kann. Frische Kugeln werden oben eingebracht und gleichzeitig unten gebrauchte Kugeln ausgeschleust. Der eher konventionelle Aufbau aus Brennelementen ist dafür flexibler und auch für große Reaktoren geeignet. Letztendlich beruhen aber beide Prinzipien auf den sandartigen Mini-Brennelementen.

In Deutschland wurde zur Herstellung dieser Mini-Brennelemente das sogenannte Sol-Gel-Verfahren entwickelt. Später entwickelte die deutsche Firma NUKEM ein Verfahren für die freie Erstarrung solcher Kügelchen. Dieses Verfahren wurde von den Chinesen übernommen. Wiederum ein krasses Beispiel für den Ausverkauf deutscher Hochtechnologie. Einzig allein aus ideologischer Verblendung.

Herstellung der Kerne

Uranpulver (U3 O8) wird in Salpetersäure (HNO3) aufgelöst. Es bildet sich eine Uranylnitrat Lösung die noch mit Salmiak neutralisiert werden muß. Ihr werden diverse Alkohole zugesetzt um die Zähigkeit und Oberflächenspannung optimal einzustellen.

Diese eingestellte Lösung wird nun aus Glasröhren vertropft. Um die Tröpfchenbildung zu unterstützen, werden diese Röhrchen in Schwingungen versetzt. Aus jedem Röhrchen tropfen etwa 100 Tröpfchen pro Sekunde. Im freien Fall bilden sich daraus kreisrunde Kügelchen von definiertem Durchmesser. Noch sind es unbeständige Flüssigkeitstropfen. Diese fallen deshalb anschließend durch eine Ammoniak Atmosphäre (NH3), welche mit dem Uranylnitrat chemisch reagiert. Es bildet sich um die Kügelchen eine stabile Haut, die ausreicht, damit sie in dem anschließenden Bad ihre kreisrunde Form behalten. Es haben sich – noch weiche und empfindliche – Kugeln von knapp zwei Millimetern Durchmesser gebildet.

Diese Kugeln werden mit Dampf in rotierenden Trommeln behandelt. Dadurch wachsen in dem Gel Kristalle und sie werden fest. Anschließend werden diese Kugeln in mehreren Schritten mit Wasser und verschiedenen Chemikalien gründlich gewaschen. Dies ist wichtig, damit in den weiteren Verfahrensschritten kein Uran in die Kohlenstoffschichten verschleppt wird. Unter ständiger Rotation werden die Urankügelchen im Vakuum getrocknet. Die Kugeln schrumpfen dadurch auf etwa einen Millimeter Durchmesser. Im nächsten Schritt werden die Kügelchen bei 430 °C kalziniert. Durch diese hohe Temperatur zerlegen sich die organischen Bestandteile und werden ausgetrieben. Es bleiben Kügelchen aus UO3 mit einem Durchmesser von nur noch einem Dreiviertel-Millimeter zurück. Damit sich das UO3 zu UO2reduziert, werden sie in einem weiteren Schritt in einer Wasserstoff-Atmosphäre bei rund 600 °C geröstet. Im letzten Verfahrensschritt werden diese Kügelchen bei 1600 °C gebacken, um eine optimale Dichte und Festigkeit zu erlangen. Das Endprodukt sind Kügelchen mit knapp einem Halben-Millimeter Durchmesser. Sie werden noch fein gesiebt (zu klein = zu wenig Brennstoff und zu groß = zu viel Brennstoff) und die unrunden Partikel aussortiert.

Die Ummantelung

Ganz entscheidend beim TRISO-Konzept ist die Ummantelung der Brennstoffkerne. Sie muß gleichermaßen mehrere Funktionen erfüllen:

  • Mechanischer und chemischer Schutz der Brennstoffkerne vor Einwirkungen von außen. Die Ummantelung ist so stabil, daß sie einerseits für die direkte Endlagerung geeignet ist, andererseits aber eine Wiederaufbereitung erschwert.
  • Zurückhaltung von Spaltprodukten und Brennstoff, damit das Kühlmittel Helium möglichst sauber bleibt.
  • Volumenausgleich. Bei der Kernspaltung entsteht praktisch das gesamte Periodensystem – diese Stoffe können untereinander und mit dem freigewordenen überschüssigen Sauerstoff reagieren. Es ergeben sich auf jeden Fall neue chemische Verbindungen mit unterschiedlichen Dichten. Etwaige Ausdehnungen müssen durch die Ummantelung abgepuffert werden, um ein Aufsprengen der Brennelementen zu vermeiden.

Es werden insgesamt vier Schichten aufgetragen:

  1. Als innerste Schicht (≈ 95 µm), eine Schicht aus porösem Kohlenstoff. Sie soll wie ein Schwamm aus dem Kern austretende Spaltprodukte (z.B. die Edelgase) aufnehmen und auf Volumenänderungen ausgleichend wirken.
  2. Als zweite Schicht (≈ 40 µm), ebenfalls eine Kohlenstoffschicht, aber diesmal von hoher Dichte.
  3. Als dritte Schicht (≈ 35 µm), eine Schicht aus chemisch sehr widerstandsfähigem Siliciumcarbid. Sie hält fast alle Spaltprodukte auch unter extremen Bedingungen (Störfall) nahezu vollständig zurück.
  4. Als äußere Schicht (≈ 40 µm), wird noch eine weitere Schicht aus besonders dichtem Kohlenstoff aufgebracht.

Die Schichten werden aus der Gasphase abgeschieden. Für die porösen Schichten wird Azetylen (C2 H2) und für die dichten Schichten zusätzlich Propylen (C3 H6) verwendet. Zur Erzeugung der Schicht aus Siliciumcarbid wird Methylchlorsilane (CH3 SiCl5) verwendet.

Die Bildung der Schichten erfolgt in einem zylindrischen Reaktor, in dem die Brennstoffkügelchen geschüttet werden und anschließend von unten die Reaktionsgase eingeblasen werden. Dabei werden die Gase in eine so hohe Strömungsgeschwindigkeit versetzt, daß die Kügelchen gerade schweben (Wirbelschicht). Über die Steuerung der Temperatur (1200 bis 1500 °C) wird die Zersetzung der Gase und die Abscheidung auf den Kügelchen gesteuert.

Die Brennelemente

Es wird ein Pulver aus 64% Naturgraphit, 16% Elektrographit und 20% Phenolharz hergestellt. Mit diesem Pulver werden die ummantelten Kerne in einer rotierenden Trommel etwa 200 µm überzogen und bei 80 °C getrocknet. Diese Grünlinge dürfen einen Durchmesser von 1,1 bis 1,5 mm haben. Sie werden bei Raumtemperatur mit einem Druck von 50 bar in Silikonformen zu den brennstoffhaltigen Kernen der Brennelemente gepreßt. Eine zweite Form wird mit Reaktorgraphit ausgekleidet, die grünen Kerne eingelegt und mit einem Druck von 3000 bar zusammengepreßt. Dies ergibt die charakteristischen Kugeln für einen Kugelhaufenreaktor.

Damit sich das Phenolharz in Graphit zersetzt, werden die Kugeln in einer Argonatmosphäre auf 800 °C erhitzt. Zur Härtung werden sie anschließend noch in einem Vakuum bei fast 2000 °C geglüht. Wenn sie alle Qualitätstest bestanden haben, sind sie nun für den Einsatz im Reaktor fertig.

Qualitätskontrolle

Die Verfahrensschritte sind nicht geheimnisvoll. Das eigentliche Wissen liegt in der erforderlichen Qualitätskontrolle. Alle Verfahren müssen bei jedem Zwischenschritt zerstörungsfrei erfolgen. Wird bei einem Fertigungsschritt ein Fehler gemacht, ist das gesamte Fertigprodukt Ausschuss. Es muß also sehr sorgfältig geprüft werden. Hinzu kommt die astronomische Anzahl von Brennstoffkernchen. Es mußten deshalb ganz neue statistische Verfahren entwickelt werden.

Mögliche Fehler im Betrieb

Die Brennelemente sollen im Idealfall alle Spaltprodukte vollständig zurückhalten. Gelangt keine Radioaktivität in das Kühlmittel Helium, kann auch keine Radioaktivität aus dem Kraftwerk austreten. Es lohnt sich also, mögliche Schäden etwas näher zu betrachten. Ganz, lassen sich Schäden in der Technik nie verhindern. Es ist vielmehr entscheidend, wieviel Radioaktivität – auch bei einem schwersten Störfall – das Kraftwerksgelände verlassen kann.

  • Überdruck in den Kernen. Es entstehen gasförmige Spaltprodukte, insbesondere Edelgase. Hinzu kommt ein Sauerstoffüberschuss durch die Kernspaltung, da nicht jedes Sauerstoffatom der chemischen Verbindung UOeinen neuen Partner findet. Es bildet sich Kohlenmonoxid aus der Ummantelung. Diese Gase sollen in der ersten, porösen Schicht zurückgehalten werden. Werden die Qualitätsrichtlinien eingehalten, ergibt sich daraus kein ernsthaftes Problem.
  • Durch die Neutronenstrahlung schrumpft und dehnt sich der Kohlenstoff der Ummantelungen aus. Durch diese Spannungen können Risse auftreten. In Deutschland konnte diese Fehlerquelle fast vollständig ausgeschaltet werden.
  • Durch die Temperaturunterschiede zwischen dem Kern und der Oberfläche können Teile des Kerns in die Umhüllung wandern. Auch dieses Problem kann durch eine konsequente Qualitätskontrolle klein gehalten werden.
  • Edelmetalle greifen die Siliciumcarbid-Schicht chemisch an. Insbesondere Silber kann diese Schichten passieren und bildet unerwünschte Ablagerungen im Reaktor. Generell gilt, daß in die Ummantelung gewanderte Spaltprodukte bei der erhöhten Temperatur eines Störfalls zu unerwarteten Freisetzungen führen können.

Zusammenfasend kann man feststellen, daß hochwertig produzierte Brennelemente der beste Schutz gegen Freisetzungen bei einem Störfall sind. Hinzu kommt eine (aufwendige) Überprüfung jeder ausgeschleusten Kugel auf Schäden und den erfolgten Abbrand. Je weniger Kugeln „am Limit“ sich im Reaktor befinden, je größer sind die Sicherheitsreserven für einen Störfall. Dies war eine Erkenntnis des Versuchsreaktors AVR in Jülich, der als Forschungsreaktor natürlich seine Grenzen erkunden mußte.

Brennstoffkreisläufe

Durch die sehr guten neutronenphysikalischen Eigenschaften und die extreme Temperaturbeständigkeit von Kohlenstoff ist das TRISO-Konzept sehr flexibel. Es ist gering angereichertes Uran verwendbar, aber auch Mischoxide oder sogar reines Plutonium, sowie Kreisläufe auf der Basis von Thorium.

Favorit ist derzeit die Verwendung von leicht angereichertem Uran. Allerdings muß die Anreicherung deutlich höher als bei Leichtwasserreaktoren sein. Ursache ist beim TRISO-Brennstoff die räumliche Verteilung, durch die eine Selbstabschirmung eintritt.

Gemische aus Plutonium und Uran können auch verwendet werden. Diese können als Karbide oder Nitrite eingesetzt werden. Favorit dürfte wegen der Erfahrungen in Leichtwasserreaktoren Mischoxide (MOX) sein.

Es wurden sogar reine Plutonium-Brennstoffe untersucht. Dies geschah aus dem Gedanken, insbesondere Plutonium aus einer Abrüstung zu verbrennen. Vielen Kritikern machen die weltweit ständig steigenden Plutoniumvorräte sorgen. Allerdings ist bis zu einem Prototyp noch sehr viel Forschung und Entwicklung nötig.

Das aus Thorium gebildete U-233 ist mit Abstand das beste Spaltmaterial für thermische Reaktoren. Aus diesem Grunde wurde in USA und Deutschland schon sehr früh das Thorium-Brutreaktor-Konzept favorisiert. Allerdings dürfte die Verwendung von hoch angereichertem Uran heute nicht mehr praktikabel sein. Für eine mittlere Anreicherung bzw. Verwendung von Plutonium als Ersatz, ist noch sehr viel Forschung nötig.

Entsorgung

Ein TRISO-Brennelement besteht aus 94% Graphit. Einerseits ist das für eine (auch sehr lange) Zwischenlagerung eine sehr gute Verpackung, andererseits muß man gewaltige Volumen lagern. Es empfiehlt sich daher eine Wiederaufbereitung um das Volumen zur Endlagerung klein zu halten. Leider gilt aber: Je (mechanisch und chemisch) stabiler ein Brennelement ist, je geringer ist (auch) im Störfall die Freisetzung von Spaltprodukten. Allerdings ist es dann auch um so aufwendiger an diese Spaltprodukte und Wertstoffe heranzukommen. Bei noch nicht bestrahlten Brennelementen ist das Stand der Technik. Der Ausschuss jeder Produktionsstufe wird wieder in die Ursprungsprodukte zerlegt und wiederverwendet.

Im Betrieb wird radioaktives C14 gebildet. Dieser Kohlenstoff bleibt in der Matrix gelöst. Insbesondere bei Feuchtigkeit kann dieses C14 in der Form von CO2 Gas austreten. Ähnliches gilt für radioaktives Tritium H3. Die auftretenden Mengen sind so gering, daß sie bei einer Wiederaufbereitung nach entsprechender Verdünnung in die Umwelt abgegeben werden könnten. Beide Stoffe kommen ohnehin in der Natur vor.

Die Mengen sind nicht sonderlich hoch. Bei einem Hochtemperaturreaktor dürften in seinem Leben von 60 Jahren rund 5000 bis 10000 to abgebrannter Brennelemente anfallen. Diese entwickeln nach etwa drei Jahren etwa 100 W Wärme pro Lagerkanne. Dieser Wert halbiert sich noch einmal nach 50 Jahren. Eine Lagerung ist also kein Problem.

Hat man erstmal die Kerne „zerstört“ – gemeint ist damit, die Kohlenstoffschichten mechanisch und/oder chemisch entfernt – ist die Wiederaufbereitung in leicht modifizierten PUREX-Anlagen möglich.

Die Kugelhaufen sind zurück

Weltweit tauchen Meldungen über Hochtemperaturreaktoren (HTR) mit Kugelhaufen als Kern auf. Es könnte eine Renaissance geben, wenn man es richtig anpackt.

Geschichte

Die Verwendung eines Gases als Kühlmittel geht bis auf die Anfänge der Kerntechnik zurück: 1956 ging in Calder Hall in Großbritannien das erste Magnox-Kraftwerk mit einer elektrischen Leistung von 50 MW ans Netz. Die Bezeichnung Magnox leitete sich aus dem Material für die Brennstabhüllen Magnesium und dem Kühlmittel Kohlendioxid ab. Bei dieser Werkstoffkombination ergab sich nur ein geringer Wirkungsgrad von rund 20%. Später ging man zu Brennstabhüllen aus Stahl, angereichertem Uran, höheren Drücken beim CO2 und höheren Betriebstemperaturen über. Dieser Advanced Gas Reactor (AGR) Typ ist teilweise heute noch in Betrieb, wird aber schon lange nicht mehr neu gebaut.

Das „Helium-Zeitalter“ begann 1965 in Großbritannien mit dem Dragon-Reaktor (20 MWth) und in Deutschland 1966 mit dem AVR Kugelhaufenreaktor in Jülich – eine 21 jährige Erfolgsgeschichte. Der AVR als Versuchskraftwerk ist weltweit die Mutter aller Kugelhaufen-Reaktoren bis zum heutigen Tag geblieben. Man kann mit Fug und Recht sagen, daß in Deutschland dieser mit Helium gekühlte Hochtemperaturreaktor bis zur Anwendungsreife entwickelt worden ist. Analog zu den Leichtwasserreaktoren in den USA. Ganz besonders betrifft dies die Forschung und Entwicklung der TRISO Brennelemente. Nicht auszudenken, wo der Entwicklungsstand heute wäre, wenn nicht die Wahnvorstellungen der Ökosozialisten aus SPD und Grünen über Deutschland hereingebrochen wären. Inhärent sichere Reaktoren, hohe Temperaturen auch zur Prozeßwärme, Trockenkühlung, kalte Fernwärme, Kohleveredelung: Alles deutsche Produkte, die heute weltweit (mühselig) nachvollzogen werden.

Der Unterschied

Bei Leichtwasserreaktoren (LWR) ist das Wasser Kühlmittel, Moderator („Neutronenbremse“) und Arbeitsmedium in einem. Dadurch kann man sehr kleine Kerne – nicht unbedingt Reaktoren – mit sehr hoher Leistungsdichte bauen. Genau diese hohe Leistungsdichte ist aber sicherheitstechnisch ein Problem bzw. Nachteil.

Bei den Hochtemperaturreaktoren ist das Gas ein reines Kühlmittel. Da es keinen Phasenübergang mehr gibt (vom Wasser als Flüssigkeit zum Dampf als Gas) ist der Temperatur- und Druckanstieg kontinuierlich und gemäßigt. Physikalische Explosionen sind damit ausgeschlossen. Verwendet man ein Edelgas wie Helium, sind auch chemische Reaktionen auszuschließen. Anders als bei den Störfällen von Harrisburg und Fukushima: Durch hohe Temperaturen und Trockenfallen der Brennstäbe kam es zur Wasserstoffbildung. Wie die Explosionen in Fukushima zeigten, ein ernsthaftes Sicherheitsrisiko.

Da Helium kaum mit Neutronen reagiert, wird es auch nicht aktiviert. Anders als z. B. die Kühlmittel CO2 und Wasser. Man braucht allerdings einen zusätzlichen Moderator. In diesem Falle das Reaktorgraphit der Brennelemente. Da das Bremsvermögen kleiner ist, benötigt man entsprechend mehr Volumen. Sicherheitstechnisch ist dies wiederum ein Vorteil: Man gewinnt bei einem Störfall wegen der Speicherfähigkeit wertvolle Zeit. Reaktorgraphit verträgt sehr hohe Temperaturen, ohne sich wesentlich zu verändern. Die möglichen hohen Temperaturen sind ein weiterer Sicherheitsgewinn durch passive Kühlung. Die unmittelbar nach einer Schnellabschaltung entstehende große Wärmeleistung durch den Zerfall der kurzlebigen Spaltprodukte, kann im Graphit zwischengespeichert werden. Die hohen – ohne Festigkeitseinbußen, Druckanstiege etc. – möglichen Temperaturen ergeben zur Umwelt eine große treibende Temperaturdifferenz. Die Wärmeabgabe durch Konvektion erfolgt proportional zur Temperaturdifferenz. Die Wärmeabgabe durch Strahlung sogar mit der vierten Potenz. Bei kleinen Reaktoren (Verhältnis von Oberfläche zu Volumen) ist dies ohne zusätzliche Sicherheitseinrichtungen beherrschbar. Können Brennelemente, Einbauten und Kühlmittel eine hohe Temperatur vertragen, kommt man damit automatisch zu einer inhärenten Sicherheit auch nach der Abschaltung. Ein Störfall wie in Fukushima ist – auch ohne Nachkühlung – ausgeschlossen. Es gibt keine – nicht einmal eine theoretische – Kernschmelze.

Das Arbeitsmedium

Grundsätzlich gibt es zwei Wege zur Erzeugung mechanischer Energie aus der Reaktorwärme: Über eine Heliumturbine oder eine Dampfturbine. Auch die Chinesen haben sich wie einst die Deutschen, zu einem konventionellen Dampfkreislauf entschieden. Man verfügt damit ab dem Wärmeübertrager über eine konventionelle und erprobte Kraftwerkstechnik. Wenn man unbedingt will, kann man damit einen Wirkungsgrad von nahezu 50% erzielen, wie es in modernsten Kohlekraftwerken üblich ist. Ein reines Optimierungsproblem, was bei den geringen Brennstoffpreisen eines Kernkraftwerks nicht unbedingt erforderlich ist. Wenn man bewußt auf etwas elektrischen Wirkungsgrad verzichtet, kann man Abwärme mit höherer Temperatur auskoppeln zur Verwendung in Fernwärmenetzen oder einen Trockenkühlturm verwenden. Dies wurde bereits beim THTR in Hamm-Uentrop erfolgreich vorgeführt. Die Stromerzeugung in ariden Gebieten ist ein nicht zu unterschätzender Markt. Aktuell ist z. B. Saudi Arabien und Südafrika brennend an Hochtemperaturreaktoren interessiert.

Südafrika ist bei dem Versuch einer Heliumturbine gescheitert. Zumindest die Lösung einer doppelten Aufgabe: Neuer Reaktor und neues System zur Energiewandlung, war absehbar eine Überforderung. Die unvermeidbare Verunreinigung des Heliums durch Graphitabrieb und Spaltprodukte führt zu dauerhaften Wartungsproblemen. Es sprechen aber auch grundsätzliche thermodynamische Überlegungen gegen eine Heliumturbine. Helium hat eine sehr geringe Dichte bei hoher Schallgeschwindigkeit. Bei der Entspannung in einer Düse ergeben sich sehr hohe Strömungsgeschwindigkeiten bzw. sehr hohe Schaufelgeschwindigkeiten im Verdichter. Beides führt zu notwendig hohen Drehzahlen. Ferner benötigt man bei Helium für ein vorgegebenes Druckverhältnis wesentlich mehr Stufen und Zwischenkühler als z. B. bei Luft. Zusätzlich muß man wegen der geringeren spezifischen Wärmekapazität des Heliums auch noch wesentlich größere Volumenströme umwälzen. (Hinweis für Thermodynamiker: Abschätzung über die Adiabatengleichung unter Berücksichtigung der unterschiedlichen Exponenten vornehmen.) Vermeintliche Vorteile hoher Temperaturen und Einkreissysteme werden so schnell wieder aufgefressen.

Der Brennstoff

Wie schon die Bezeichnung Kugelhaufenreaktor vermuten läßt, besteht der Kern aus Kugeln. Basis dieser Kugeln sind die TRISO (Tri-coated Isotropic) Elemente. Ein winzig kleiner Kern aus Brennstoff ist von mehreren Schichten Reaktorgraphit und einer Schutzschicht aus Siliciumcarbid ummantelt. Dies ist ein sehr flexibles Konzept. Das Brennstoffpartikel hat einen Durchmesser von weniger als einem halben Millimeter und besteht chemisch aus Oxiden oder Karbiden. Es kann aus Uran-, Plutonium- oder Thoriumisotopen im geeigneten Mischungsverhältnis bestehen. Die Kohlenstoffschichten dienen als Moderator und als Puffer für Spaltgase. Die Siliciumcarbid-Schicht dient als „Brennstoffhülle“ zur Zurückhaltung der Spaltprodukte. Das fertige TRISO-Element ist ein Kügelchen von etwa einem Millimeter Durchmesser. Aus diesen Kügelchen preßt man nun Kugeln von 50 mm Durchmesser, die noch mit einer weiteren Schutzschicht aus Graphit überzogen werden. Es ergeben sich – chemisch wie mechanisch – sehr widerstandsfähige, tennisballgroße Brennelemente.

An dieser Stelle sei vermerkt, daß man diese TRISO-Elemente auch zu Brennstäben pressen kann. Diese werden in hexagonale „Bausteine“ aus Graphit eingesetzt, aus denen man einen Kern „aufmauern“ kann. Diese Bausteine enthalten Kanäle in denen das Gas gerichtet strömen kann und auch Kontrollstäbe etc. eingesetzt werden können. Das ist das andere derzeit verfolgte Konzept für gasgekühlte Hochtemperaturreaktoren. Mit ihm lassen sich auch größere Reaktoren bauen.

Ein Haufen ist ein Haufen

Die Idee, einen schlanken Silo zu bauen und den von oben kontinuierlich mit Kugeln zu befüllen, erscheint als eine verblüffend einfache Idee. Die sich ergebenden Hohlräume zwischen den Kugeln dienen dabei dem Kühlmittel Helium zur Durchströmung. Aber wo Licht ist, ist auch Schatten. Jeder Kern eines Reaktors hat unterschiedliche Zonen mit unterschiedlichem Neutronenfluß und damit unterschiedlicher Leistung. Bei ortsfesten Brennelementen kann man z. B. über eine unterschiedliche Anreicherung diese Effekte ausgleichen. Bei einem stetig rutschenden Kugelhaufen geht das nicht.

  • Die Wege und die Durchlaufzeit einer einzelnen Kugel sind nicht vorhersagbar.
  • Man kann in dieser Schüttung praktisch keine Regelstäbe oder Meßsonden einbauen.
  • Die Strömungsverhältnisse des Kühlgases sind unbestimmt.

Dies führt alles zu stark unterschiedlichen Temperaturen, der eine Kugel bei einem Durchlauf ausgesetzt war. Auch wenn die Austrittstemperatur stets im grünen Bereich war, sind einzelne Kugeln sehr stark erwärmt worden. Je höher die gewünschte Austrittstemperatur, um so höher auch die Anzahl überlasteter Kugeln und dadurch in das Kühlmittel freigesetzte Spaltprodukte.

Nur bei kleinen Kernen kann man die unterschiedliche Leistungsverteilung durch Reflektoren an den Behälterwänden ausreichend kompensieren. In diese Reflektorschicht kann man auch Regelstäbe zur sicheren Abschaltung einführen. Zwar braucht ein Kugelhaufen nicht so viele Regelstäbe, da er ja kontinuierlich mit frischen Elementen beschickt wird und nicht den gesamten Brennstoff für den Zyklus schon am Anfang in sich haben muß (Überschußreaktivität), aber ganz kann man nicht darauf verzichten. An dieser Stelle wird klar, daß Kugelhaufenreaktoren nur als Kleinreaktoren (SMR) geeignet sind. Mit zunehmender Größe, kehren sich die Vorteile schnell in Nachteile um. Deshalb auch die andere Entwicklungsschiene, aus TRISO-Kügelchen Brennelemente als Bausteine herzustellen.

Die Sicherheit

Wenn man sich auf kleine Leistungen und moderate Austrittstemperaturen beschränkt, erhält man einen nahezu „unkaputtbaren“ Kernreaktor. Der Versuchsreaktor AVR hatte eine Leistung von 46 MWth und eine elektrische Leistung von 15 MWel. Die in China in Bau befindliche Weiterentwicklung eine thermische Leistung von 250 MWth pro Modul bei noch vernünftigen Austrittstemperaturen von 750 °C. Was spricht eigentlich wirklich gegen diese Bandbreite? Es gibt zwei riesige Märkte für „kleine“ Reaktoren: Alle dünn besiedelten Gebiete von Alaska bis Afrika und den Markt der Kraft-Wärme-Kopplung (einschließlich Fernkälte) in Ballungsgebieten. Hier kommt es auf geringen Personalaufwand für den Betrieb (möglichst automatisch) und Robustheit (Sicherheit, Zuverlässigkeit und geringe Wartung) an. Wer ein Kernkraftwerk, wie einen Schiffsdiesel baut, dem stehen hier alle Türen offen. Es ist kein Zufall, daß sich gerade Saudi Arabien für den chinesischen HTR interessiert: Ein riesiges Land, was konventionelle Stromnetze sehr teuer macht. Lokaler Bedarf nicht nur an elektrischer Energie, sondern immer auch gleichzeitig an Kälte (Klimatisierung) und Trinkwasser, bei gleichzeitigem Mangel an Kühlwasser für konventionelle Kraftwerke. Ähnliches gilt für Südafrika: Es mangelt nicht an Energie (riesige Kohlevorräte), sondern an Kühlwasser für Kraftwerke.

Die Temperaturfrage

Wir verfügen noch mindestens für Jahrhunderte über ausreichend billige fossile Energien. Je weniger man davon für Stromerzeugung und Heizung verfeuert, je länger kann man die Preise stabil halten. Es besteht also für Jahrzehnte gar keine Notwendigkeit für nukleare Prozeßwärme mit hohen Temperaturen und damit auch kein Markt! Schon allein, wenn man das Erdgas, was man heute in Kraftwerken verfeuert, zur (billigen) Wasserstoffproduktion verwendet, kann man damit die Weltmärkte überschwemmen.

Mit der Temperatur steigt der technische Aufwand exponentiell an. Temperatur ist in der Kraftwerkstechnik der Kostentreiber Nummer eins. Die Kerntechnik leidet aber bereits unter den Investitionskosten. Es ist dringend ein umlenken in die andere Richtung notwendig. Keine exotischen Experimente (Heliumturbine), sondern Einsatz erprobter Technik. Dampfturbinen mit unter 600 °C Eintrittstemperaturen um bei handhabbaren Werkstoffen zu bleiben.

Nimmt man dies als Richtwert, kommt man beim Reaktor deutlich unter 800 °C Austrittstemperatur an. Bei TRISO-Elementen ist die im Störfall freigesetzte Menge an Spaltprodukten stark temperaturabhängig. Nicht nur die maximale Temperatur im Störfall, sondern auch durchaus der Temperaturverlauf im Betrieb sind bestimmend. Je weiter man von den Grenzwerten Abstand hält, um so geringer ist die Freisetzung ins Helium. Je sauberer das Helium ist, je kleiner die potentielle Strahlenbelastung der unmittelbaren Umgebung.

Dies muß ja niemanden von der Jagd nach Temperaturrekorden abhalten. Es wird hier nur für einen ingenieurmäßigen, evolutionären Weg plädiert. Kein Ingenieur hat bei der Entwicklung der Verkehrsflugzeuge gleich Schallgeschwindigkeit gefordert. Vielleicht von geträumt, aber realistischer Weise nicht unmittelbar angestrebt.

Zusammenfassung

Wenn man konsequent die (derzeitigen) Grenzen der Technik akzeptiert und sich auf die Vorteile der Kugelhaufenreaktoren besinnt, kann man sehr schnell einen Durchbruch erzielen. Der PC hat seinen Siegeszug nicht angetreten, weil er in Konkurrenz zu Großrechnern angetreten ist, sondern weil er das „persönliche“ in den Vordergrund gestellt hat. Rausgekommen sind heute Rechner, die mehr leisten, als Großrechner in den 1960er Jahren und das zu einem „Mitnahmepreis“.

Für die Kugelhaufenreaktoren heißt das:

  • Konsequente Betonung der Sicherheit. Es ist möglich einen Rektor zu bauen, der so sicher ist, daß man ihn in einem Wohngebiet bedenkenlos aufstellen könnte.
  • Schwerpunkt auf einen automatischen Betrieb mit Fernüberwachung und geringem Wartungsaufwand.
  • Senkung der Investitionskosten durch Besinnung auf handelsübliche Technik.

Für die öffentliche Akzeptanz sind medienwirksame Vorführungen an Demonstrationskraftwerken notwendig: Trennung bei voller Last vom Netz, völliger Verlust des Kühlgases usw. Nachweis ist dabei, daß nicht mehr an Strahlung als aus einem konventionellen Kraftwerk die Grundstücksgrenze übertritt. Nur so, kann der Angstindustrie und ihrer Propaganda wirksam entgegen getreten werden.

Für die Fachwelt der Kunden (Stadtwerke, Industrie, usw.) steht die Bedienbarkeit und die Kosten im Vordergrund. Nichts ist vertrauenserweckender, als eine vertraute Technik (z. B. konventionelle Dampfturbine), mit der man sich auskennt und Erfahrung (Werkstofftechnik, Schweißtechnik etc.) hat. In diesem Sinne, kann man den Kollegen in China nur viel Erfolg auf ihrem eingeschlagenen Weg wünschen.

Das nationale Begleitgremium stellt sich vor

Am Samstag fand im „Tagungswerk Jerusalemkirche in Berlin“ eine Veranstaltung zum „Standortauswahlgesetz“ statt.

Was verbirgt sich dahinter?

Wer bisher noch nicht von dieser Institution gehört hat, sollte vielleicht mal deren Internetauftritt besuchen. Mal ehrlich, wer hat überhaupt von dieser Tagung gewußt oder gar eine Einladung erhalten? Dafür war Funk, Fernsehen und Presse reichlich vertreten. Ist ja bald wieder Wahlkampf. Erstaunlich oder eher erschreckend ist auch hier wieder, das neue deutsche Blockparteiensystem. Alle Parteien vereint – unter Führung der Grünen – im Kampf gegen das „Teufelszeug“ und den zahlenden Bürger. Ein Lehrstück über gelenkte Demokratie. Man bestimmt ein Gremium aus gleichgesinnten Laien und nennt das „Bürgerbeteiligung“. Sachverstand ist ausdrücklich nicht gewünscht, er stört nur die Politik bei ihrer „großen Transformation“.

Was soll das Standortauswahlgesetz bewirken?

Zumindest eine Partei sieht ihre Wurzeln und ihre Kernkompetenz im „Kampf gegen das Atom“. Zieht man dieses Thema ab, verbleibt nur noch ein bischen (austauschbarer) Sozialismus. Die Transsexualität und die vegetarische Zwangsernährung hat sich bereits in den letzten Wahlkämpfen nicht als der Wahlkampfschlager erwiesen. Also zurück zum Geschäft mit der Angst. Nur ist auch das nicht mehr so einfach zu betreiben wie früher. Durch den „Atomausstieg“ und die „Energiewende“ ist „Atomkraft-Nein-Danke“ auch für wohlwollende Linke nicht mehr so der Aufreger. Also schnell vor der Bundestagswahl noch ein paar Kohlen für die eigene Klientel aufgelegt, indem man ein „Standortauswahlgesetz“ im Schweinsgalopp durch die Parlamente treibt. Da alle etablierten Parteien auf den potentiellen Koalitionspartner zum eigenen Machterhalt oder Machterwerb angewiesen scheinen, mit voller Unterstützung der anderen Parteien. Es gibt im Bundestag offensichtlich keine Opposition – und was weit folgenschwerer ist – keinen Sachverstand mehr.

Nachdem wir bereits Milliarden in die Erkundung der Standorte Gorleben und Schacht Konrad investiert haben, soll jetzt noch einmal alles von Neuem gestartet werden. Wohl gemerkt, nicht weil sich diese Standorte als gänzlich ungeeignet erwiesen haben, sondern um die gesamte Republik wieder mit „einem Kampf gegen das Atom“ zu überziehen. Wir gönnen uns ja sonst nichts. In diesem Punkt schweigen sogar die Politiker, die sonst ständig von „Kinderarmut“, drohender „Altersarmut“ etc. reden.

Was ist das eigentliche Problem?

Wir verfügen an zahlreichen Standorten über unterschiedlichste Stoffe, die ionisierende Strahlung aussenden. Sie stammen aus unterschiedlichsten Quellen: Energieerzeugung, Forschung, Medizin, Produktion und Bergbau (Öl, Gas, Kohle usw.). Damit muß verantwortungsvoll umgegangen werden. Das ist die eigentliche politische Frage, die in den Parlamenten diskutiert und beschlossen werden muß:

  • Was ist Wertstoff und was ist Abfall?
  • Was wird als gefährlich angesehen? Dies betrifft nicht nur die Radioaktivität, sondern auch den chemischen Zustand.
  • Wie hoch sollen die Grenzwerte sein?
  • Sollen die Stoffe „vernichtet“ werden und damit dauerhaft aus der Welt geschafft werden oder sollen sie „sicher gelagert“ werden?
  • Was ist eine als sicher angesehene Lagerung: Technische Barrieren oder geologische Barrieren oder eine Mischform?

Erst wenn über diese Fragen Einigung erzielt worden ist, kann sachlich fundiert über Standorte entschieden werden. Dieser Prozeß muß in einer Demokratie über die Parlamente geschehen. Die Politiker – da grundsätzlich Laien – haben vorher den Sachverstand der Wissenschaft zu konsultieren. Die Entscheidung jedoch, kann ihnen keiner abnehmen.

Ganz nebenbei, die „Endlagerfindung“ ist mitnichten die endgültige Lösung. Auch bei einem kompletten Ausstieg aus der Kernenergie und Forschung wird weiterhin mit radioaktiven Stoffen in Medizin und Fertigung umgegangen werden. Radioaktiver Abfall wird weiterhin entstehen.

Die moralische Überhöhung

„Atommüll“ sei Teufelszeug, für das die heutige Generation die Verantwortung tragen müßte, da sie auch den Nutzen davon gehabt hätte. Abgesehen davon, daß dies eine eigenartige Auffassung von der Entwicklung der Menschheit ist, ist diese Aussage auch in höchstem Maße zynisch. Diese Denkweise gipfelt in der Forderung eines generellen Exportverbotes für radioaktive Stoffe. Man will die abgebrannten Brennelemente unwiederbringlich verbuddeln. Deutschland will aus der Kernenergie aussteigen, gut, das ist sein Recht. Aber woher nimmt dieses grün-alternative Milieu eigentlich das Recht, dem Rest der Welt seine Sichtweise aufzuzwingen? Für den überwiegenden Teil der Menschheit sind Brennelemente kein Müll, sondern Rohstoff für die Energiegewinnung. Das Recycling ist erprobte Praxis. Wo bleibt da eigentlich die „Nachhaltigkeit“, die sonst immer, wie eine Monstranz vor sich her getragen wird. Allein China baut alle drei Monate einen neuen Kernreaktor. Der Uranbedarf wird entsprechend steigen. Die Urangewinnung erfordert viele menschliche und materielle Ressourcen, aber wir maßen uns an, Wertstoffe durch vergraben dem Weltmarkt zu entziehen. Am Deutschen Wesen, wird die Welt genesen.

Wie in sich unlogisch die Argumentation ist, zeigt sich daran, daß ein grüner Umweltminister sogar fordert, man müsse für die Endlagerung auch ausdrücklich das tail-end (abgereicherter Teilstrom bei der Urananreicherung) aus deutschen Urananreicherungsanlagen einbeziehen. Was bitte, strahlt denn mehr: Uran-235 oder Uran-238? Das abgereicherte Uran strahlt daher weniger als Natururan. Bisher ist es ein frei handelbares Wirtschaftsgut. Wenn wir die Grenzwerte so tief nach unten schrauben, sollten wir schleunigst Zwischenlager für Kohlenasche (aus der wird gerne Zement und Pflastersteine gemacht), Rückstände aus der heimischen Öl- und Gasförderung usw. anlegen. Außerdem müßten wir schleunigst alle Panzer, panzerbrechende Munition und Ausgleichsgewichte in diversen Flugzeugen mit Aufklebern zur Warnung vor Radioaktivität versehen und das Personal mit Dosimetern ausrüsten. Schöne Grüße aus Absurdistan.

Der Müll geht aus

Der bisherige Gesetzentwurf lautet im Untertitel …ein Endlager für Wärme entwickelnde radioaktive Abfälle…. Wahrscheinlich der kleinste gemeinsame Nenner zwischen den Parteien. Durchaus sinnvoll, denn es gibt ja bereits den Standort Konrad für mittelaktiven Abfall. Wenn man nun aber alle Kernkraftwerke abgeschaltet hat, kommt kein neuer (hochaktiver) Müll mehr hinzu. Der bereits zwischengelagerte Abfall aus der Wiederaufbereitung ist schon recht alt. Bis ein Endlager betriebsbereit ist und die erste Einlagerung möglich wird, werden mindestens noch weitere 50 Jahre vergehen. Je länger der Abfall lagert, um so mehr radioaktive Stoffe sind zerfallen. Es bleiben nur die langlebigen über, die aber gerade wegen ihrer Langlebigkeit wenig Wärmeleistung produzieren. Deshalb ist es z.B. kein Problem, eine Oberflächentemperatur von 90°C (z. B. französische Vorschrift für deren Endlager) bei den Gebinden einzuhalten. Der deutsche Gesetzentwurf schweigt sich bisher dazu aus, was durchaus sinnvoll ist, da ja noch keine konkreten geologischen Verhältnisse vorliegen sollen (Entscheidungsfreiheit).

Damit die „Atommüll-Story“ weiter am Laufen gehalten werden kann, muß man virtuellen Müll erschaffen. Man redet gewaltige Mengen aus der Asse herbei, die angeblich wieder vollständig ausgebaggert werden muß. Hinzu kommen die Mengen an leicht radioaktiven Abfällen aus den Kernkraftwerken und dem Abbruch der kerntechnischen Anlagen. Es wird dabei tunlichst verschwiegen, daß das Volumen von radioaktivem Müll vollkommen beliebig ist. Man kann durch Nachbehandlung (Dekontaminierung, Verbrennung etc.) und Sortierung das Volumen beliebig verringern. Alles nur eine Frage der Kosten. Die jetzt aufgeworfene Forderung der grünen Problemerschaffungs-Partei, auch dieser Müll müßte in dem geologischen Tiefenlager eingelagert werden, setzt dem Ganzen die Krone auf. Müll, der weltweit auf normalen oberirdischen Sondermülldeponien gelagert wird. Dies nur um den Popanz eines nicht vorhandenen Endlagers aufrecht erhalten zu können. Dieses muß natürlich möglichst groß sein, um den Widerstand in der Region anfachen zu können und gleichzeitig möglichst teuer, um das Märchen von der viel zu teuren Kernenergie erfüllen zu können. Als Nebenprodukt kann man noch ein Endlager erschaffen, das sicherheitstechnisch deutlich hinter internationalen Standards zurückbleibt. Nach dem Murks der Energiewende, noch ein Murks mit radioaktiven Stoffen.

Das erschaffene Endlagerproblem

Das größte Bubenstück der Grünen war jedoch das Verbot einer Wiederaufbereitung, das jetzt noch einmal durch das Exportverbot für Kernbrennstoffe verschärft werden soll. Man muß es immer wieder betonen, der verglaste Abfall aus der Wiederaufbereitung in Frankreich und England ist nach maximal 100 000 Jahren auf das Niveau von Natururan abgeklungen. Man kann ihn bereits nach wenigen hundert Jahren in die Hand nehmen, wenn man keine Strahlenphobie hat. Genau das, war der sicherheitstechnische Sinn der Wiederaufbereitung: Verkleinere drastisch das Volumen und entschärfe den Abfall durch die Entfernung des Plutoniums.

Durch die jetzt geplante Endlagerung der unbehandelten Brennstäbe hat man wegen des hohen Plutoniumgehaltes einen wesentlich problematischeren Abfall erschaffen. Man kann nicht einfach die Castoren verbuddeln, sondern die Brennelemente müssen aufwendig neu verpackt werden. Verfahren hierfür, die auch nur ansatzweise die gleiche Sicherheit bieten wie der verglaste Abfall, gibt es nicht. Wer soll die eigentlich entwickeln und wo wird später die Anlage hierfür errichtet?

Zusammenfassung

Es ist der klassische Politikablauf: Erschaffe ein Problem, das du anschließend vorgibst zu lösen. Halte Fachleute fern und laß nach dem Prinzip des Berliner Willi Brand Flughafens Laien vor sich hin wurschteln. Je länger die Sache dauert, je höher sind die Pfründe für alle Günstlinge. Tarne die Angelegenheit über eine „Bürgerbeteiligung“. Gleichzeitig schaffst du dadurch Arbeitsplätze für nicht vom Arbeitsmarkt nachgefragte Akademikergruppen. Diese sind dir deshalb treu ergeben und werden dir den Rücken frei halten. Je besser du die Verantwortungslosigkeit organisiert, je besser ist die Chance wiedergewählt zu werden.

Es wird eine endlose Geschichte inszeniert. Jetzt, wo man sich die Rücklagen für die Entsorgung einverleibt hat, hat man alle Zeit der Welt, das Geld für andere Dinge auszugeben. Politiker als Vermögensverwalter ist genauso, wie gierige Hunde zur Bewachung von Steaks. Ist das Geld weg, wird man die Gesetze ändern. Schacht Konrad und Gorleben laufen ja nicht weg.