Bestellung 5 bis 8

Türkei, wer denkt da nicht an Sonne bis zum Abwinken oder Segelurlaub im Mittelmeer? Wahrscheinlich haben unsere Politiker ein wenig geträumt, als sie in ihrer unendlichen Weisheit den Ausstieg aus der Kernenergie beschlossen haben. Sollte Deutschland nicht vorangehen, damit uns die anderen folgen können? Nun, die Türkei als Schwellenland ist offensichtlich nicht bereit, in die Abgründe der „Energiewende“ abzutauchen. Am 3. Mai wurde auf höchster Ebene ein Abkommen zwischen Japan, Frankreich und der Türkei zum Bau und Betrieb von vier Kernreaktoren (Typ ATMEA1 mit je 1200 MWe) in Sinop an der Schwarzmeerküste geschlossen. Der erste Reaktor soll 2023 und der vierte 2028 den Betrieb aufnehmen. Errichtet wird das Kraftwerk von Mitsubishi Heavy Industries und betrieben von einem Konsortium aus GDF Suez (geplant 75% Anteil) und dem staatlichen Energieversorger Turkish Electricity Generation Corporation (geplant 20 bis 45% Anteil). Ganz neben bei, ist das der erste Auftrag über einen Neubau eines Kernkraftwerks für ein japanisches Unternehmen nach dem Fukushima Desaster. Auftragswert 22 Milliarden US$. Dafür müssten die Sonnenmännchen eine ganze Menge Windmühlen oder Sonnenkollektoren verkaufen. Macht aber nix, der Deutsche Michel wird weiterhin fest an die Schaffung von Arbeitsplätzen durch Wind und Sonne glauben.

Bestellung 1 bis 4

Begonnen hat das türkische Kernenergieprogramm im Mai 2010 mit dem Auftrag für vier Gidropress AES-2006 Reaktoren (mit je 1200 MWe) in Akkuyu am Mittelmeer. Mit der Baustellenvorbereitung wurde bereits begonnen und der offizielle Baubeginn ist für Ende 2013 vorgesehen. Das Kraftwerk soll 2019–2022 in Betrieb gehen. Ganz interessant ist das Finanzierungsmodell: Das Kraftwerk wird schlüsselfertig und zum Festpreis (über 15 Milliarden EUR) von Rosatom für eine Zweckgesellschaft errichtet. In dieser Zweckgesellschaft besitzt Rosatom mit 51% die Mehrheit. Bis zu 49% sollen von türkischen Gesellschaften gehalten werden. Diese Gesellschaft übernimmt für 60 Jahre den Betrieb des Kraftwerks. Zur Refinanzierung der langfristigen russischen Investitionen garantiert die Turkish Electricity Trade and Contract Corporation (TETAS) die Abnahme von 70% der Stromproduktion der Blöcke 1 und 2 und 30% der Produktion der Blöcke 3 und 4 zu einem garantierten Festpreis von 12,35 US-Cent pro kWh über 15 Jahre. Der Rest soll frei am Markt verkauft werden. Bei diesem Modell wird die Kreditlinie der Türkei kaum belastet, da Russland maßgeblich die Finanzierung übernimmt. Für Russland stellt sich die Investition wie eine langfristige Anleihe mit stetigem Zahlungsstrom aus der Türkei dar. Gleichzeitig ergibt sich jedoch eine enge unternehmerische Verknüpfung beider Länder. Anders – als beim deutschen EEG-Modell – wird nicht die volle Energiemenge über die gesamte Lebenszeit, zu einem Festpreis garantiert abgenommen, sondern lediglich eine (auch noch abnehmende) Teilmenge. Der Betreiber muß sich von Anfang an, an dem üblichen Risiko von Absatzmenge und erzielbaren Preisen beteiligen. Andererseits hat er aber auch die Chance auf zusätzlichen Erfolg.

Darüber hinaus, kann die Türkei „sanft“ in eine neue Zukunftstechnologie hineinwachsen. Zu diesem Konzept passt auch die Vergabe des ersten Kraftwerks an den (ehemaligen) „Ostblock“ und die Vergabe des zweiten Kraftwerks an den „Westen“. So kann von beiden Denkschulen der Kerntechnik gelernt werden. Ausdrücklich gewünscht, ist die Entwicklung des bereits geplanten dritten Kraftwerks (ab etwa 2020) durch türkische Ingenieurbüros. Das Modell erscheint ein wenig als Kopie des koreanischen Wegs. Bedenkt man das Selbstverständnis der Türkei als Beispiel für einen modernen islamischen Staat mit Vorbildfunktion, erscheint das durchaus nicht abwegig. Jedenfalls kann man die Türkei nicht als technikfeindlich bezeichnen. Sie hat klar die Bedeutung der Kerntechnik als Triebfeder einer modernen Industriegesellschaft erkannt. Die Beschäftigung mit „angepasster Technologie“ (so hieß Sonne, Wind und Bio noch vor 20 Jahren) überlässt man getrost saturierten Gesellschaften wie Deutschland.

Randbedingungen

Was treibt die Türkei zum Bau von zwölf Reaktoren? Die Frage ist recht leicht zu beantworten: Der Energiehunger eines aufstrebenden Landes. Im ersten Jahrzehnt des 21. Jahrhunderts betrug das jährliche Wirtschaftswachstum etwa sechs Prozent. Durch die zunehmende Industrialisierung und den wachsenden Wohlstand hat sich der pro Kopf Verbrauch an elektrischer Energie fast verdoppelt. Es ist das Dilemma aller Schwellenländer: Ohne ausreichend elektrische Energie, kein angestrebtes Wirtschaftswachstum; durch den dringend benötigten steigenden Wohlstand eine zusätzlich angeheizte Nachfrage nach Energie. Dagegen ist ein Rückgang im Primärenergieverbrauch ein typisches Anzeichen stagnierender Volkswirtschaften. Man kann es zwar politisch korrekt als „Energieeffizienz“ verbrämen, aber am Ende ist es nichts anderes als Wohlstandsverlust.

Für die Türkei stellt sich daher die gleiche Frage, wie für China, Brasilien etc.: Wie kann der zusätzliche Energiebedarf kostengünstig gedeckt werden? Öl und Gas sind bereits heute sehr teuer und für eine Stromerzeugung schlicht weg zu schade. Ihr Verbrauch wird durch zunehmenden Verkehr und Industrialisierung ohnehin weiter ansteigen. Eher muß der Mehrverbrauch in diesen Sektoren durch elektrische Energie ersetzt werden. Letztendlich bleibt nur Kohle und Kernenergie. Will man Kohle umweltfreundlich verstromen, wird dies sehr viel teurer, wie man auch dies hervorragend in Deutschland studieren kann.

In allen Mittelmeerländern kommt mit steigendem Wohlstand und steigenden Bevölkerungszahlen noch ein weiteres Problem hinzu: Ausreichend Süßwasser für Mensch, Landwirtschaft und Industrie. Als Ausweg bleibt nur die Meerwasserentsalzung, die aber viel (billige) Energie benötigt. Man kann es deshalb drehen und wenden wie man will: Der Bau von zwölf Reaktoren allein in der Türkei, erscheint sehr sinnvoll – um nicht zu sagen alternativlos.

Wie tödlich ist ihre kWh?

Diese makaber anmutende Frage stellte das Forbes-Magazin seinen Lesern schon vor geraumer Zeit (http://www.forbes.com/sites/jamesconca/2012/06/10/energys-deathprint-a-price-always-paid/) und fügte folgende Tabelle hin zu:

Energiequelle Tote pro Billion kWh Anteil an der Stromerzeugung
Kohle (weltweit) 170.000 50% weltweit
Kohle (China) 280.000 75% in China
Kohle (USA) 15.000 44% in USA
Öl 36.000 36% Energie, 8% Elektro
Erdgas 4.000 20% weltweit
Biomasse 24.000 21% Energie weltweit
Solar (PV) 440 1% weltweit
Wind 150 1% weltweit
Wasserkraft 1.400 15% weltweit
Kernenergie 90 17% weltweit

Die Redaktion hat diese Tabelle aus verschiedenen Quellen, wie z. B. der WHO zusammengetragen. Es lohnt nicht, die Zahlen im einzelnen diskutieren zu wollen. Man versinkt zu schnell in dem Sumpf der Statistik: Unterschiedliche Zugänglichkeit von Daten (z. B. China oder USA) und unterschiedliche Ansichten über Langzeitwirkungen. Besonders deutlich wird dies z. B. an den Opfern der Kernenergie. Hier wurden die Schätzungen von potentiellen Krebsopfern infolge der Reaktorunglücke in Tschernobyl und Fukushima eingearbeitet. Tatsache ist jedoch, in Fukushima ist bisher kein Opfer und in Tschernobyl sind zwischen 20 und 200 – je nach Zählweise – Strahlentote zu verzeichnen. Die Zukunft wird zeigen, welche Zahlen realistisch sind.

Trotzdem ist eine solche Tabelle als Denkanstoß (aber bitte nicht mehr!) sinnvoll. Sie macht auf den ersten Blick klar: Es gibt keine Energieerzeugung ohne Opfer. Energiegewinnung fordert wie alle anderen menschlichen Tätigkeiten immer auch Todesopfer. Wir gehen individuell völlig selbstverständlich mit einer Risiko/Nutzen – Abwägung um. Jeder, der in den Urlaubsflieger steigt, tut dies in vollem Bewußtsein, daß es sein absolut letzter Flug sein könnte. Nur bei der Energieversorgung kommt es plötzlich zu völlig irrationalen Reaktionen. Es wird nur noch das (vermeintliche) Risiko gesehen. Der Nutzen wird völlig verdrängt. Kann es sein, daß dies maßgeblich auf eine politisch gewollte und geförderte Sichtweise zurückzuführen ist? Der gesunde Menschenverstand reagiert anders. Würde man eine Umfrage unter Hausfrauen und Hausmännern machen, ob sie sich einen Haushalt ohne jeden elektrischen Strom vorstellen könnten, wäre das Ergebnis wohl eindeutig: Die Waschmaschine und der Staubsauger erscheinen nicht nur als unentbehrlich.

Selbstverständlich wünschen wir uns alle eine Energieversorgung, die möglichst wenige Opfer fordert. Wir sollten jedoch nie vergessen, daß auch immer Dachdecker bei der Installation eines Sonnenkollektors vom Dach fallen werden, genauso wie es Unfälle in Kernkraftwerken geben wird. Wer jetzt gleich wieder in seinen Reflex verfällt, „aber Atomkraftwerke haben ein Restrisiko von Millionen Toten und zehntausende Jahre unbewohnbaren Landstrichen“ sollte einfach zur Kenntnis nehmen, daß das nichts weiter als schlechte Propaganda ist. Die Betonung liegt dabei auf „schlecht“, wie die Reaktorunfälle von Tschernobyl und Fukushima gezeigt haben. Parallel zum Reaktorunglück in Fukushima brannte zwei Wochen lang in der Bucht von Tokio eine Raffinerie. Bei den Löscharbeiten sind mehr als ein Dutzend Feuerwehrleute getötet worden und eine riesige Umweltverschmutzung ergoss sich über das Meer. Das hält aber bis heute, keinen der „Berufenen“ davon ab, der Bevölkerung immer wieder etwas von den „tollen Gaskraftwerken“ als Alternative zur bösen Kernenergie ins Ohr zu säuseln. Erst recht wird nicht hinterfragt, wie viele Menschenleben man pro Jahr mit den Milliarden Mehrkosten für fossile Brennstoffe in Japan (infolge der vorübergehenden Reaktorstilllegungen) retten könnte. Plötzlich sind all die Kreise, die stets mit ein paar Milliarden mehr für Bildung, Gesundheit und „soziales“, alles Elend der Welt glauben beseitigen zu können, ganz still.

Die Tabelle gibt uns aber noch einen weiteren wertvollen Hinweis: Den Zusammenhang zwischen Wohlstandsniveau und Arbeitssicherheit und Umweltschutz. Es ist kein Zufall, daß die Anzahl der Opfer pro Einheit Energie in China höher, als in den USA ist. Es gibt in China (noch nicht) einen vergleichbaren Arbeitsschutz, wie in den Bergwerken der USA. Auch die Rauchgasreinigung ist in China (noch nicht) auf dem gleichen Niveau, wie z. B. in Deutschland. Folgerichtig sind die Atemwegserkrankungen durch Abgase entsprechend höher. Und nicht zuletzt hat in diesem Zusammenhang auch der massive und konsequente Ausbau der Kernenergie in China seine Begründung. Es ist nicht abwegig, wenn andere Entwicklungsländer diesen Weg als vorbildlich ansehen. Vor allem, wenn die Konsequenzen der Deindustriealisierung im „energiegewendeten“ Deutschland erst voll sichtbar werden.

Zentral, Dezentral, …egal?

Heute reicht die Bandbreite bei der Stromerzeugung von der Photovoltaik auf dem Dach oder dem „Mini-BHKW“ im Keller des Einfamilienhauses bis zum Windpark in der Nordsee oder gar der Solarfarm in der Sahara. Die konventionelle Stromversorgung liegt irgendwo dazwischen. In Deutschland ist die Diskussion darüber hoch emotional und ideologisch aufgeladen. Wenn man jedoch ein wenig darüber nachdenkt, kann man durchaus Kriterien für eine Entscheidung finden.

Energienachfrage

Betrachtet man ein Versorgungsgebiet, wie z. B. Deutschland, so erkennt man eine höchst ungleiche Nachfrage nach elektrischer Energie: Es gibt Verbrauchsschwerpunkte und Regionen mit weit unterdurchschnittlicher Nachfrage. Man verwendet in der Energiewirtschaft nicht ohne Grund die Kennzahl Energieverbrauch pro Kopf. Sie wird für alle möglichen Energieformen ermittelt. In Städten ist die Bevölkerungsdichte und damit der Energiebedarf sehr hoch. Unsere Urgroßväter haben dies schon erkannt und Kraftwerke mitten in der Stadt gebaut (Berlin, Hamburg, München etc.). Lange vor der Erfindung der Ökologie haben sie bereits ihre Abwärme zur Heizung von Gebäuden genutzt. Umgekehrt ist der Verbrauch an elektrischer Energie in ländlichen Regionen nur gering und dünn gestreut. Eine Elektrifizierung ist hier auch in Deutschland wesentlich später erfolgt. Diese Entwicklung kann man auch heute noch in den Entwicklungsländern beobachten.

Energievorkommen

Elektrische Energie kommt leider nicht in verwertbaren Mengen in der Natur vor. Man kann deshalb die Frage „woher“ nicht vom „wie“ trennen. Will man man die Art der Erzeugung vorschreiben, muß man sich geeignete Vorkommen suchen. Mögen sie auch noch so weit entfernt sein. Das ist die Realität der Energiewende!

Energieart

Elektrische Energie muß erst durch Umwandlung aus anderen Energieformen gewonnen werden. Man steht damit vor der Wahl: Transportiert man den Primärenergieträger oder die elektrische Energie? Letztendlich, ist das auch nur eine Frage der Wirtschaftlichkeit. Man kann aber schon mit Physik und Technik eine Tendenz erkennen. Sind die Primärenergieträger gar nicht transportierbar (Wind, Sonne, Wasserkraft), bleibt nur der Transport der elektrischen Energie. Dies ist der einzige Grund, warum für die „Energiewende“ das Leitungsnetz drastisch ausgebaut werden muß. Ohne die ideologische Festlegung auf Sonnenenergie und ihre Ableger, wäre eine Verdrahtung der Landschaft in bisher unvorstellbarem Ausmaß gar nicht nötig. Haben die Energieträger nur einen geringen Heizwert, wie Biomasse oder auch Braunkohle, müssen sie vorher veredelt werden. Wer will schon Sand und Wasser transportieren? Das Zauberwort hieß früher Brikett und heute Biogas. Leider kostet jede Veredelung auch Energie, die man anschließend leider nicht mehr verkaufen kann. Deshalb ist auch hier meist der Transport der elektrischen Energie die wirtschaftlichere Lösung.

Energiedichte

Die Energiedichte ist der Dreh- und Angelpunkt in der Energiewirtschaft. Schon die antike Stadt war nicht in der Lage, die benötigte Energie innerhalb ihrer Stadtmauern zu erzeugen. Die Bevölkerungsdichte war einfach zu hoch. Wollte man heutige Metropolen mit ihrer Industrie ausschließlich durch Wind, Sonne und Biomasse versorgen, müsste man auch noch auf die letzten unbewohnten Gebiete der Erde zurückgreifen. Will man den Windpark im heimischen Landschaftsschutzgebiet nicht haben, bleibt eben nur die Palmölplantage im Regenwald oder die Sonnenfarm in der Sahara.

Die Transportfrage

Man kann es drehen und wenden wie man will: Die Energie muß immer von der Förderstelle zum Verbraucher transportiert werden. Jeder Transport erfordert Energie und kostet Geld. Förderstellen und Verbraucher müssen durch Transportsysteme miteinander verbunden sein. Das können Straßen, Eisenbahnen, Rohrleitungen oder elektrische Netze sein. Die vorhandene Infrastruktur beeinflußt maßgeblich die Auswahl des Kraftwerktyps. Ein Kohlekraftwerk erfordert einen leistungsfähigen Eisenbahnanschluß, ein Gaskraftwerk eine Hochdruckleitung entsprechender Kapazität und ein Wasserkraftwerk geeignete geologische Verhältnisse. Einzige Ausnahme bildet ein Kernkraftwerk: Wegen der ungeheuren Energiedichte, reichen einige LKW-Ladungen im Jahr aus. Ein Vorteil, der zukünftig immer größere Bedeutung gewinnen wird. So hat z. B. der Ballungsraum Shanghai heute schon mehr Einwohner als Österreich. Die Infrastruktur ist chronisch überlastet. Baugrund ist viel zu kostbar, um ihn für zusätzliche Eisenbahnstrecken für Kohlenzüge zu verwenden.

Stromnetze

Jeder Erzeuger muß mit jedem Verbraucher durch Leitungen verbunden sein. Es entsteht ein Stromnetz. Jede Minderproduktion oder jeder Mehrverbrauch wirkt sich sofort im ganzen Netz aus. Ein Stromnetz ist deshalb viel mehr als nur ein Gewirr von Drähten. Je mehr Störungen auf ein Netz wirken, um so komplizierter und teurer wird es. Ein weiterer Fluch der „Energiewende“. Früher brauchte der Kraftwerkseinsatz nur nach den Verbrauchsgewohnheiten geplant zu werden. Heute müssen die Störgrößen Wind- und Sonnenenergie zwangsweise aufgenommen werden. Man muß sich die Konsequenz so veranschaulichen: Verschiedene Fluggesellschaften entwickeln gemäß der Verbrauchernachfrage feste Flugpläne, die notwendigerweise sehr eng mit den Flugplätzen und der Luftverkehrsüberwachung abgestimmt sind. Ein sehr komplexes und langwieriges Verfahren. Jetzt macht der Staat ein Gesetz zur Förderung nahestehender Flugzeugbesitzer. Grün angestrichene Flugzeuge dürfen ab sofort starten und landen wann und wo sie wollen. Flughäfen müssen ausdrücklich nicht grün angestrichene Flugzeuge so lange am Boden warten lassen oder in der Luft kreisen lassen, bis kein grün angestrichenes Flugzeug mehr starten oder landen will. Dieses Recht gilt stets und ausnahmslos. Wenn die Kapazität eines Flughafens nicht mehr ausreicht, muß er sofort erweitert werden. Zur Beschleunigung des Ausbaues wird das geltende Verwaltungsrecht stark eingeschränkt. Die Kosten werden unmittelbar auf alle Fluggäste umgelegt. Die Luftverkehrsüberwachung muß sehen, wie sie mit dem neuen Chaos fertig wird. Selbstverständlich werden vom fürsorglichen Staat keine Sicherheitseinbußen tolleriert. Wenn sie meinen, daß diese Darstellung überzogen sei, haben sie sich noch nicht mit dem „EEG“ und den einschlägigen Vorschriften zum Netzausbau beschäftigen müssen.

Aber zurück zum Problem der Entfernung. Es macht einen sehr großen Unterschied, ob die Kraftwerke möglichst nahe bei den Verbrauchern errichtet werden oder weit davon entfernt. Es seien hier nur die wichtigsten Gründe erwähnt:

  • Mit jedem Meter Leitungslänge steigen die Verluste.
  • Je größer die über weite Entfernungen zu transportierende Leistung ist, um so mehr steigen die Kosten und um so höher wird deshalb die Spannung gewählt. Jedes mal, wenn die Spannungsebene geändert werden muß, ist eine Transformation mit zusätzlichen Verlusten nötig.
  • Je mehr elektrische Energie hin und her geschoben wird, um so mehr Verluste treten auf und erhöhen sich die Investitionen: Wegen der geringen Energiedichte müssen viele Leitungen erstmal die Energie von den unzähligen Windmühlen und Sonnenkollektoren einsammeln. Weil die Energie am Entstehungsort gar nicht gebraucht wird, wird sie nach der Sammlung hochtransformiert (bei Photovoltaik über alle Spannungsebenen) um diesen Vorgang weit entfernt wieder rückwärts ablaufen zu lassen.
  • Jedes Drehstromnetz überträgt nicht nur Wirkleistung (das ist das, was der Kunde eigentlich haben will), sondern auch Blindleistung. Je länger die Kabel, um so größer die erforderliche Kompensation. Diese Kompensation haben bisher die konventionellen Kraftwerke übernommen. Ziel ist aber gerade deren Stilllegung mit wachsendem Anteil der „Erneuerbaren“. Der Windpark in der Nordsee wirkt daher doppelt auf die zukünftigen Netzkosten.
  • Manche sehen ihr Heil in Höchstspannugs-Gleichstrom-Übertragung. Diese kann aber nur Strom von Punkt zu Punkt transportieren. Dies ist ungefähr so, als ob die Bahn zur Entlastung ihres Netzes neue Breitspurtrassen von Norddeutschland nach Süddeutschland bauen würde. Die Güter würden dann in Norddeutschland mit der vorhandenen Eisenbahn eingesammelt, am Kopfbahnhof umgeladen, nach Süddeutschland mit der Breitspurbahn zum dortigen Kopfbahnhof gefahren, dort wieder umgeladen und mit der vorhandenen Eisenbahn in Bayern feinverteilt. Für ein so kleines Land wie Deutschland, erscheint mir das keine sinnvolle Lösung.

Fazit

Das Stromnetz und der Kraftwerkspark, den wir bisher in Deutschland hatten, ist nicht zufällig entstanden, sondern das Ergebnis eines rund hundert Jahre alten Entwicklungsprozesses. Dieses System verkörpert das Gehirnschmalz einer Legion von Ingenieuren. Stromnetze sind nicht zufällig überall auf der Welt recht ähnlich. Es gilt halt überall die gleiche Physik. Es gibt in der Energietechnik auch keine allein selig machende Lösung. Jeder Energieträger und jedes Versorgungsprinzip hat seine ganz speziellen Vor- und Nachteile. Es kann stets nur eine optimierte Lösung für das gesamte System aus Netz, Erzeuger und Verbraucher gefunden werden. Für Ideologien ist kein Platz vorhanden.