Robuste Kraftwerke für robuste Netze

Für eine robuste Stromversorgung („Grid Resilience“) unter den erschwerten Bedingungen von Wind- und Sonnenenergie ergeben sich auch besondere Anforderungen an die Kraftwerke. Wind und Sonneneinstrahlung sind Wetterphänomene und damit nicht vom Menschen beeinflußbar. Sie sind mehr (Wind) oder weniger (Sonne) zufällig. Sie widersprechen dadurch allen Anforderungen an eine zivilisierte Gesellschaft. Will man sie aus (ideologischen Gründen) trotzdem zur Erzeugung elektrischer Energie heranziehen, ergeben sich drei Notwendigkeiten:

  1. Der Einspeisevorrang: Die Sonne scheint bei uns nur selten (nachts ist es dunkel, tagsüber oft schlechtes Wetter) und der Wind weht in der überwiegenden Zeit nur schwach. Man kann deshalb nicht auch noch auf den Bedarf Rücksicht nehmen (negative Börsenpreise), sondern muß produzieren wenn es der Wettergott gestattet. Ganz genau so, wie schon der Müller und die Seefahrer im Altertum ihr Leben fristen mußten.
  2. Man muß ein komplettes Backup System für die Zeiten der Dunkelflaute bereithalten. Wirtschaftlich ein absolut absurder Zustand. Es ist ein komplettes System aus Kraftwerken und Stromleitungen vorhanden — man darf es plötzlich nur nicht mehr benutzen! In der Stromwirtschaft sind aber die Kapitalkosten der mit Abstand dickste Brocken. Weit vor den Personalkosten und meist sogar den Brennstoffkosten. Wenn man ausgerechnet die Nutzungsdauer verringert, treibt man damit die spezifischen Energiekosten (€/kWh) in die Höhe. Umgekehrt kann man sagen, der maximal mögliche Wert elektrischer Energie aus „regenerativen Quellen“ kann immer nur den Brennstoffkosten entsprechen.
  3. „Regenerative Energien“ besitzen nur eine sehr geringe Energiedichte und benötigen deshalb riesige Flächen. Diese Flächen sind nicht an den Verbrauchsschwerpunkten (Städte, Industriegebiete) bereitzustellen. Heute muß man bereits auf das offene Meer ausweichen. Es sind deshalb riesige Netze zum Einsammeln der elektrischen Energie und anschließend noch die berüchtigten „Stromautobahnen“ für den Ferntransport nötig. Alles sehr kapitalintensiv, pflegebedürftig und verwundbar. Oft wird auch noch vergessen, daß diese Anlagen selbstverständlich nur die gleiche geringe Auslastung, wie die Windmühlen und Sonnenkollektoren besitzen können.

Das Speicherdrama

Wind und Sonne können nur die Schildbürger speichern. Elektrische Energie ist die verderblichste Ware überhaupt (Kirchhoffsche Gesetze). Wer also von Speichern faselt, meint in Wirklichkeit Speicher für chemische (Batterien, Power to Gas etc.) oder mechanische Energie (Schwungräder, Pump-Speicher usw.). Es ist also immer eine zweifache Umformung — elektrische Energie in das Speichermedium und anschließend wieder das Speichermedium zurück in elektrische Energie — mit den jeweiligen Verlusten erforderlich. Es geht bei diesen Umformungen mindestens 50% des ohnehin sehr teuren Sonnen- bzw. Windstromes unwiederbringlich verloren. Mit anderen Worten, der Strom der aus dem Speicher kommt, ist dadurch schon mal doppelt so teuer, wie der vor dem Speicher. Das wäre aber nicht einmal der Bruchteil der Kosten: Die „Chemieanlagen“ oder „Speicherseen“ müßten gigantisch groß sein. Sie müssen ja schließlich in der kurzen Zeit, in der sie wetterbedingt überhaupt nur produzieren können (<15%), die elektrische Energie für die gesamte Zeit (100%) herstellen können. Betriebswirtschaftlich eine Katastrophe. Niemand wird eine solch absurde Investition tätigen. Die Schlangenölverkäufer setzen auch hier wieder auf den Staat. Das bekannte „Windhundrennen“ setzt ein: Wer pumpt am schnellsten die „Staatsknete“ ab, bis das System unweigerlich in sich zusammenbricht. Selbstverständlich ist auch hier für einige wenige wieder ein Schlösschen drin.

Auch Wasserkraft ist wetterabhängig. Die Trockenphasen wechseln sich mit Hochwassern ab. Fast alle Staudämme sind deshalb zur Flussregulierung gebaut worden. Selbst das gigantische Drei-Schluchten-Projekt in China. Die Vorstellung, man könnte Wasserkraftwerke wie Gasturbinen nach Bedarf an und abstellen, ist absurd. Abgesehen von technischen Restriktionen sprechen Sicherheitsbelange (Schifffahrt, Wassersportler etc.) und der Umweltschutz dagegen. Ein Fluß ist keine technische Batterie, sondern ein sensibles Ökosystem. Genau aus diesen Gründen werden die Speicherkraftwerke in den Alpen — wie alle konventionellen Kraftwerke — durch die Windenergie aus Deutschland in die roten Zahlen getrieben. Man kann eben nicht immer den Stausee in den Stunden negativer Börsenpreise (Entsorgungsgebühren) schlagartig für die Dunkelflaute befüllen. Im Gegenteil, oft muß man gerade dann den eigenen Strom verkaufen. Und noch einmal für alle Milchmädchen: In den wenigen Stunden, in denen der Wind im Überfluß weht, müßte man die gesamte Energie für die überwiegenden Schwachwindzeiten einspeichern — ein betriebswirtschaftlicher Albtraum.

Die Frage des Brennstoffs

Wenn man ein Kraftwerk benutzen will, muß man Brennstoff am Ort zur Verfügung haben. Alles andere als eine triviale Frage. Alte West-Berliner kennen noch die Tanklager und die sich ständig selbst entzündenden Kohlenhalden gegen eine etwaige „Russenblockade“. Jedenfalls sind Tanklager und Halden noch relativ billig anzulegen.

Bei Erdgas stellt sich die Sache schon ganz anders dar. Ein Gaskraftwerk ist auf eine ziemlich dicke Rohrleitung angewiesen. Das gesamte System vom Bohrloch, über die Aufbereitung, bis zum Endkunden ist nicht viel weniger Komplex als die Stromversorgung. In unseren Breiten wird das meiste Erdgas zur Beheizung unserer Gebäude verwendet. Die Winterspitze ist maßgeblich für die Dimensionierung. Zum Ausgleich setzt man unterirdische Speicher ein. Diese sind aber (bezogen auf den Jahresverbrauch) relativ klein. Jeder eingelagerte Kubikmeter Gas ist totes Kapital. Man steuert deshalb den Absatz über den Preis. Im Sommer ist der Großhandelspreis gering — damit die Gaskraftwerke verstärkt produzieren — und im Winter — wenn es kalt ist und die Nachfrage nach Heizgas ansteigt — hoch. Die Gaskraftwerke ziehen sich dann wieder zurück und überlassen den Kohlekraftwerken die Produktion. Dieses Zusammenspiel hat bis zur Energiewende zu aller Zufriedenheit funktioniert. Man konnte im Sommer sehr gut Revisionen bei den Kohle- und Kernkraftwerken durchführen. Bis die Laiendarsteller kamen und etwas von notwendigen flexiblen Gaskraftwerken für die Energiewende geschwafelt haben. Heute kann man die Investitionsruinen an verschiedenen Standorten besichtigen. Man muß es eigentlich nicht besonders erwähnen, daß die grünen Fachpersonen der Stadtwerke (es haftet ja der Steuerzahler) besonders eifrig auf den Leim gekrochen sind. Um ihre Missetaten zu vertuschen, krähen sie heute besonders laut über die „Klimakatastrophe“ und das „klimafreundliche“ Erdgas.

Das Kraftwerk der großen Transformation

Je länger der Wahnsinn der „Energiewende“ anhält, um so mehr wird der Wettergott das Kommando übernehmen. Prinzipiell nimmt in einem technischen System mit der Häufigkeit der Störungen und der Größe einzelner Störungen die Wahrscheinlichkeit eines Ausfalls zu. Will man ein solchermaßen malträtiertes Stromnetz wieder robust machen, stellen sich in diesem Sinne („Grid Resilience“) zwei Anforderungen an die Kraftwerke:

  1. Die Kraftwerke müssen von der Konstruktion (z. B. Brennstoffe) her und bezüglich der Fahrweise (z. B. angedrosselt) robust gebaut und betrieben werden. Beides verursacht erhebliche Kosten, die ohne die „Energiewende“ gar nicht entstanden wären. Hinzugerechnet werden muß noch der Umsatzausfall durch den Einspeisevorrang. Werden diese Zusatzkosten nicht vergütet, müssen die Kraftwerke geschlossen werden. Mit jedem konventionellen Kraftwerk das vom Netz geht, wird das gesamte Stromnetz instabiler, was den Aufwand weiter in die Höhe treibt.
  2. Das Netz muß nach schweren Störungen (Brown oder Black Out) möglichst schnell wieder hochgefahren und in einen neuen stabilen Zustand versetzt werden. Dafür müssen die Kraftwerke technisch (z. B. Schwarzstartfähigkeit) und personell jederzeit in der Lage sein. Die Wiederinbetriebnahme muß nach den Anforderungen der Netzleitzentrale erfolgen. Etwaige Überprüfungen, Wartungen oder gar Reparaturen müssen selbstverständlich vorher erfolgt sein. Dies gilt insbesondere für Schäden, die durch den außergewöhnlichen Netzzustand entstanden sind.

Es ist daher nichts weiter als bösartige und schlechte Propaganda, wenn Scharlatane von dem „Kohlestrom, der die Netze verstopft“ erzählen. Je mehr konventionelle Kraftwerke stillgelegt werden (müssen), desto weniger notwendige Reserven gibt es. Schon jetzt verlassen wir uns auf Kraftwerke im benachbarten Ausland. Man kann nicht erwarten, daß das kostenlos erfolgt. Je mehr wir das System komplizieren und ausweiten, um so mehr koppeln unerwartete Ereignisse auf das Stromnetz zurück: Es gab schon Brände in Erdgasspeichern, die diese für Monate lahmlegten oder Engpässe durch Drosselung in den niederländischen Erdgasfeldern (Mikrobeben) oder Pipelinebrüche. Ganz zu schweigen von der politischen Abhängigkeit gegenüber ausländischen Lieferanten. Kohle und Kernenergie besitzen schon durch ihre einfache Lagerung einen entscheidenden Trumpf.

Das robuste Kernkraftwerk für ein „nervöses Netz“

Kernkraftwerke besitzen eine Reihe von Eigenschaften, die besonders wertvoll für „nervöse Stromnetze“ mit einem hohen Anteil von wetterabhängigen Energien sind. Dies mag „Atomkraftgegner“ erschüttern, aber nur Reaktoren können die extremen Lastschwankungen (z. B. 3. Potenz von der Windgeschwindigkeit) sicher verkraften. Nur sie können extremen Wettersituationen sicher widerstehen. Es waren immer die Kernkraftwerke, die als letzte vom Netz mußten (Tsunami und Erdbeben in Japan, Wirbelstürme in den USA, Eiseskälte in Rußland). Es ist allerdings unverständlich, warum man bei den geringen Urankosten die Kernkraftwerke überhaupt drosseln soll, wenn mal die Sonne scheint oder der Wind in der richtigen Stärke weht…

Für Kernkraftwerke, die in einem „nervösen Netz“ zur Stabilisierung betrieben werden, ergeben sich folgende Anforderungen:

Robuste Lastfolge

Je schneller und erfolgreicher (noch) kleine Störungen ausgeregelt werden, um so besser für das Netz. Heutige Leichtwasserreaktoren haben große Leistungen. Der im Bau befindliche Turbosatz des Kraftwerks Hinkley Point in GB mit 2 x 1770 MWel hat eine gewaltige Schwungmasse, die zur Frequenzstabilisierung mehrerer Windparks dienen kann und soll. Hinzu kommen die gespeicherten Wärmemengen im Wasser-Dampf-Kreislauf. Automatisch greift bei einem Leichtwasserreaktor die Selbstregulierung über den Zusammenhang von Dichte des Kühlwassers und Moderation der Neutronen. Zusammengenommen ergibt das die steilsten Leistungstransienten aller Kraftwerkstypen. Die alte Greenpeace Propaganda von den „viel zu starren Atomkraftwerken“ beruhte bestenfalls auf der Verwechslung von Technik mit Betriebswirtschaft. Mit anderen Worten: Frankreich kann sich ruhig noch ein paar Windmühlen für das bessere Gewissen erlauben, Deutschland hingegen, geht mit der weiteren Abschaltung immer unruhigeren Zeiten entgegen. Fatal wird es in dem Moment, wenn unsere Nachbarn nicht mehr bereit sind, die Kosten für die Stabilisierung unseres nationalen Stromnetzes zu bezahlen.

Abwehr äußerer Einflüsse

Fukushima hat eindrucksvoll gezeigt, wie zerstörerisch Naturgewalten sein können. Eine weltweite Überprüfung aller Kernkraftwerke gegen jegliche Wasserschäden (Starkregen, Überflutungen etc.) war die Folge. Eine Nachrüstung in Richtung „U-Boot“ wurde durchgeführt. Seit dem, haben bereits mehrere Reaktoren einen Betrieb „inmitten von Wasser“ unter Beweis gestellt. Oft waren sie die einzigen noch betriebsbereiten Kraftwerke: Kohlenhalden hatten sich in Schlamm verwandelt, Gaspipelines waren durch die Wassermassen ausgefallen.

Gerade auch Netzstörungen (Sturmschäden, Blitzschlag etc.) wirken oft auf ein Kraftwerk von außen ein. Ein Kraftwerk ohne Netz kann noch so gut funktionieren, aber es kann seine elektrische Energie nicht mehr ausliefern. Oft lösen die Netzstörungen auch Schäden in der Kraftwerksanlage aus. Bei einem Kernkraftwerk sollte keine Schnellabschaltung durch solche Ereignisse ausgelöst werden.

Sicherer Inselbetrieb

Egal was mit dem Netz passiert, das Kernkraftwerk sollte automatisch in den Inselbetrieb übergehen. Nur so kann bei einer schnellen Reparatur die Produktion unverzüglich wieder aufgenommen werden. Dies erfordert, daß wirklich alle elektrischen Verbraucher des Kraftwerks (verschiedene Spannungsebenen) dauerhaft über den eigenen Generator versorgt werden können.

Unendliche Notkühlung

Die Besonderheit eines Kernreaktors ist die anfallende Nachzerfallswärme auch nach vollständiger Abschaltung. Die mangelnde Wärmeabfuhr (Ausfall der Kühlmittelpumpen) war die Ursache für den Totalschaden in den Reaktoren von Fukushima. Neuere Reaktoren mit passiven Notkühlsystemen bieten hierfür einen unschätzbaren Vorteil. Alte Kraftwerke müssen mit ausreichender Eigenstromversorgung (mehrfache Notstromaggregate mit ausreichendem Tanklager) nachgerüstet werden. Die eigenen Schaltanlagen für den Notbetrieb müssen — im Gegensatz zu Fukushima — entsprechend geschützt werden.

Schwarzstartfähigkeit

Ein Kernkraftwerk benötigt für die Inbetriebsetzung eine gewaltige Menge elektrischer Energie. Üblicherweise wird diese dem Netz entnommen. Ist ein Netz im Katastrophenfall schon überlastet, dürfte dies kaum möglich sein. Es müßte also eine Eigenstromversorgung (z. B. Gasturbine) vorhanden sein, wenn ein Schwarzstart für die Robustheit eines Teilnetzes gefordert ist.

Normalerweise ist das Anfahren eines Kernkraftwerkes ein streng reglementierter und langwieriger Vorgang. Unzählige Prüfungen müssen durchgeführt, bestimmte Haltepunkte eingehalten werden. Immer nach dem Grundsatz „Safety First“. Alles andere als ideal für die Wiederherstellung eines Netzes nach einem „Blackout“. Deshalb sollte die Schnellabschaltung unbedingt vermieden werden. Gegebenenfalls ein Schnellverfahren für Notfälle geschaffen werden. Jedenfalls kommt noch eine Menge Arbeit auf die Überwachungs- und Genehmigungsbehörden zu. Aber es ist uns ja nichts zu schwer und zu teuer um wenigstens teilweise wieder ins Mittelalter zurückzukehren.

Müssen alle KKW sofort abgeschaltete werden?

Am 1. März 2016 titelte REUTERS NRC-Ingenieure fordern Reparatur von Kernkraftwerken und am 4. März setzte HUFFPOST noch eins drauf: Gefährlicher Konstruktionsfehler droht die Flotte der KKW abzuschalten. Was verbirgt sich hinter diesen Tatarenmeldungen?

Public petition under section 2.206

Für einen solchen Vorgang läßt sich nur schwer eine deutsche Übersetzung finden, weil er uns kulturell eher fremd ist. In den USA geht man selbstverständlich davon aus, daß in allen Behörden Dienstwege außerordentlich verschlungen sind. Der normale Weg von unten bis oben ist nicht nur lang, sondern kann auch schnell in eine Sackgasse führen. Dies muß nicht einmal aus „Boshaftigkeit“ geschehen, sondern immer neue „Gesichtspunkte“ erzeugen auch immer neue Fragen. Deshalb gibt es in der amerikanischen Atomaufsicht – Nuclear Regulatory Commission (NRC) – eine Überholspur in der Form einer Petition.

Jeder Mitarbeiter – in diesem Fall war es eine Gruppe aus sieben Ingenieuren – kann eine (formalisierte) Stellungnahme abgeben. Diese muß dann innerhalb von 30 Tagen beantwortet werden. Das Besondere daran ist, daß diese Eingabe und die Antwort öffentlich sind. Es ist damit ein sehr scharfes Schwert in den Händen der „einfachen Mitarbeiter“. Gerade ausgewiesene Spezialisten mit anerkannten Fachkenntnissen, haben oft keine einflußreichen Positionen in der Hierarchie einer Behörde. Solch eine Petition wirbelt natürlich innen wie außen eine Menge Staub auf. Insofern wird sie nur bei schwerwiegenden Sicherheitsbedenken sinnvoll angewandt.

Um es gleich vorweg zu nehmen: Diese Gruppe hat nach eigenem Bekunden nie die Abschaltung aller Reaktoren in den USA im Sinn gehabt. Gleichwohl hat sie (begründete) Bedenken. Sie meint einer bedeutenden Sicherheitslücke auf die Spur gekommen zu sein und meint, daß nicht genug getan worden ist, um die Mängel zu beseitigen. Ungeduld und vorschnelles Handeln kann man ihnen sicherlich nicht unterstellen, da es sich um vier Jahre alte Vorkommnisse handelt.

Was war passiert?

Am 30.1.2012 war es im Kernkraftwerk Byron zu einer Schnellabschaltung gekommen. Ein solches Ereignis ist meldepflichtig und es setzt eine umfangreiche Untersuchung aller Ereignisse ein. Ziel ist es dabei immer, Schwachstellen herauszufinden, diese gegebenenfalls zu beseitigen und anderen Betreibern die Möglichkeit zu bieten daraus zu lernen.

Wie man bald herausfand, war die Ursache ein Bruch eines Isolators an der 345 kV Leitung des Kraftwerks. Der Isolator gehörte zu einer Serie, die falsch gebrannt worden war und somit in ihrem Kern starke Fehler aufwies. Inzwischen gab es einen Rückruf und die fehlerhafte Serie wurde ausgetauscht. Soweit nichts besonderes. Brüche von Isolatoren an Hochspannungsleitungen kommen immer mal wieder vor. Was macht die Angelegenheit aber trotzdem zu einem Sicherheitsproblem?

Dieser Isolator hat eine der drei Phasen gehalten, mit denen einer der Transformatoren zur Eigenversorgung des Kraftwerks verbunden war. Nun sind solche Anschlüsse wegen der erforderlichen Leistungen eher „Stangen“ als „Drähte“. Die Phase riß zwar ab, fiel aber nicht auf den Boden und löste somit keinen Kurzschluss aus. Die Sicherung löste nicht aus. Es gab auch kaum einen Spannungsunterschied zwischen den Phasen. Der Fehler wurde dadurch gar nicht bemerkt und es erfolgte keine automatische Umschaltung auf einen anderen Weg zur Energieversorgung.

Normalerweise ist ein solcher Vorfall nichts ernstes: Man schaltet die Komponente frei, setzt einen anderen Trafo zur Versorgung ein und repariert den Schaden schnellstmöglich. Allerdings muß man dafür den Leitungsbruch bemerken. Hier setzt die berechtigte Kritik ein. Die Unterzeichner der Petition haben systematisch alte Störfälle noch einmal untersucht und dabei festgestellt, daß so etwas bereits häufiger passiert ist. Teilweise wurden solche Fehler erst nach Tagen bei Kontrollgängen bemerkt oder erst infolge von Anfragen des Netzbetreibers „gesucht“. Diesem Problem wurde keine besondere Dringlichkeit beigemessen, da es durchweg nicht zu Schnellabschaltungen kam. Es war einfach nur ein typischer Schaden im nicht-nuklearen Teil des Kraftwerks.

Sicherheitsrelevant oder nicht?

Die Stromversorgung von außen, sollte bei einem Kernkraftwerk immer funktionieren. Deshalb wird sie auch ständig überwacht. Das Tückische an diesem Schadensbild ist jedoch, daß sie eben nicht unterbrochen, sondern nur gestört war. Wenn bei einer Drehstromversorgung nur eine Phase unterbrochen ist, fließt trotzdem noch weiterhin Strom, aber mit geringerer Spannung. Dies wurde von der Meßtechnik auch richtig erfaßt, aber von der Auswerte-Logik falsch interpretiert. Es wurde die Spannungsdifferenz zwischen den Phasen A und B gebildet (die in Ordnung war) und zwischen den Phasen B und C (die geringe Abweichungen hatte, weil Phase C abgerissen war, aber frei in der Luft hing). Wenn die Stromversorgung nicht richtig funktioniert, soll automatisch auf eine andere Strecke umgeschaltet werden oder die Notstromdiesel gestartet werden.

Die Schnellabschaltung ist sicherheitstechnisch der letzte Rat. Um den Reaktor zu schonen, sollte sie so selten wie möglich erfolgen. In der Sicherheitskette ist deshalb eine solche Spannungsüberwachung ein 2-von-2-Kriterium – nur wenn beide Differenzen eine bedeutende Abweichung ergeben, wird von einem schwerwiegenden Fehler ausgegangen. Wenn – wie in diesem Störfall – nur eine Differenzmessung abweicht (weil nur ein Kabel von dreien gebrochen war), wird eher ein Messfehler unterstellt. Die Umschaltung erfolgte später erst durch einen Mitarbeiter, der sich ca. 8 Minuten nach der Schnellabschaltung von der Funktionstüchtigkeit der Schaltanlage vor Ort überzeugte. Er löste die „Sicherung“ von Hand aus, nachdem er die abgerissene Leitung sah und damit seinen Verdacht für den Spannungsabfall bestätigt sah. Ein deutlicher Hinweis, warum man Kernkraftwerke nicht vollautomatisch betreibt!

Kleine Ursache, große Wirkung

Man hat in jedem Kraftwerk intern verschiedene Spannungsebenen um die großen Antriebsleistungen von Pumpen etc. überhaupt bereitstellen zu können. In Byron hingen zwei Hauptkühlmittelpumpen an der „Aussenversorgung“ und zwei an dem eigenen „Generatorsystem“. Zum Anlagenschutz hat jede Pumpe ihr eigenes Überwachungssystem, welches bei einer Überschreitung von Grenzwerten die Pumpe abschaltet. Die zwei Pumpen, die an der „Aussenversorgung“ hingen, haben die Spannungsunterschreitung und die Stromüberschreitung infolge der verlorenen Phase richtig erkannt und sich automatisch abgeschaltet. Die anderen zwei, die am „Generatorsystem“ hingen, waren davon nicht betroffen. Jetzt griff aber die Sicherheitskette ein: Ein Ausfall von zwei Hauptkühlmittelpumpen ist ein nicht zu überbrückendes Abschaltkriterium. Der SCRAM – die Schnellabschaltung – wird unweigerlich und unbeeinflußbar ausgelöst.

Durch die Schnellabschaltung ging die Dampfproduktion und damit die Eigenversorgung in die Knie. Man war damit noch abhängiger von der Außenversorgung. Der Spannungsabfall fraß sich weiter durchs Kraftwerk und setzte nacheinander weitere Großverbraucher außer Gefecht. Plötzlich befand man sich in einer Situation, ähnlich wie in Fukushima: Man hing nur noch von einer „Notkühlung“ über die Notstromdiesel ab. Hier hat zwar alles einwandfrei funktioniert und es sind keinerlei Schäden aufgetreten, aber eigentlich will man nicht so viele „Verteidigungslinien“ durchbrechen.

Die unterschiedlichen Interpretationen

Wie gesagt, der Vorfall liegt vier Jahre zurück. Passiert ist nichts. Das Kraftwerk konnte – nach den üblichen umfangreichen Überprüfungen – wieder angefahren werden. Inzwischen gibt es einige Kilogramm Fachaufsätze, die sich mit dem Problem beschäftigen. Zahlreiche Veranstaltungen sind durchgeführt worden.

Schnell und einfach geht in der (heutigen) Kerntechnik gar nichts mehr. Jede Maßnahme muß genauestens untersucht und kommentiert werden – letztendlich sogar von Juristen. Es gibt inzwischen sogar verschiedene technische Lösungsansätze für das Problem. Alle haben ihre Vor- und Nachteile. Man muß höllisch aufpassen, daß man durch Veränderungen an einer Stelle, nicht neue Probleme an anderer Stelle schafft.

Es geht bei der ganzen Angelegenheit weniger um Technik als um Juristerei. Inzwischen sind alle Kraftwerke und alle Hersteller informiert und arbeiten eng zusammen. Jedes Kernkraftwerk ist ein individuelles Produkt und erfordert damit auch eine spezielle Lösung des Problems. Jeder Einzelfall muß auf seine Auswirkungen bezüglich des Gesamtsystems hin überprüft werden. Eine sehr arbeitsintensive Angelegenheit. Letztendlich streitet man sich um die ewige Frage: Was soll automatisch geschehen und was macht der Mensch? Sollen solche Randbereiche wie ein einzelnes Kabel eines Hilfstransformators in automatische Sicherheitsketten eingearbeitet werden? Wird dadurch die Sicherheit erhöht oder gar verringert? Kann man oder soll man sogar – wegen der Beschäftigung mit solchen Problemen –. ganze Kraftwerksflotten stilllegen? Wie lange ist der angemessene Zeitraum, um eine etwaige Verbesserung umzusetzen?

Langsam bildet sich in der kerntechnischen Industrie ein absurd anmutender Drang nach Perfektionismus heraus. Die Abwägung von Risiko und Nutzen geht immer mehr zu Lasten des Nutzens. Was wäre, wenn man jedesmal gleich die Hauptmaschine abstellen würde, weil irgendwo im Maschinenraum ein Teil versagt? Unsere Küsten wären wahrscheinlich längst mit Schiffswracks (auch nuklearen!) gepflastert. Noch absurder wäre die ständige Forderung nach sofortiger Stilllegung der gesamten Flotte. Ganz offensichtlich geht es hier um ganz andere Dinge. Nur konsequente Aufklärung und Transparenz kann die Kerntechnik wieder auf ein Normalmaß zurückholen. Wie wäre es mit der Flugzeugindustrie als Vorbild? Dort wird auch nicht nach jedem Absturz – jedes mal – das gesamte System in Frage gestellt.

Gleichwohl ist das Vorgehen gewisser Presseorgane immer gleich: Man greift Jahre zurückliegende Ereignisse (erinnert sei nur an die Druckbehälter in Tihange und Doel) auf, die längst in der Fachwelt abgehakt, weil vollständig ausdiskutiert sind. Gierig werden einzelne, meist singuläre Ansichten aufgegriffen und daraus vermeintliche Skandale und Vertuschungen konstruiert. Dies alles, obwohl es im Internetzeitalter weniger Klicks bedarf, um sich zu informieren. Ist das Selbststudium zu anstrengend, könnte man ja mal ein paar Fachleute befragen. In wie weit man das noch als „schlampigen Journalismus“ oder schon als „Lügenpresse“ einordnet, muß jeder für sich selbst entscheiden.

PRISM das moderne Entsorgungszentrum? Teil 1

Von den populistischen „Argumenten“ gegen die Kernenergie, ist praktisch nur noch eines öffentlichkeitswirksam: Die „ungelöste Entsorgungsfrage“. Aus diesem Grunde, wird in den Medien – zumindest in Deutschland – nur äußerst zurückhaltend über Entwicklungen berichtet, die über das bloße Vergraben hinausgehen.

In England wird seit einigen Jahren ernsthaft über den Bau des sogenannten Power Reactor Innovative Small Module (PRISM) von GE-Hitachi diskutiert. Hintergrund ist der stetig wachsende Plutoniumberg aus der Wiederaufbereitungsanlage. Inzwischen lagern zwischen 100 und 150 Tonnen auf der Insel. Es geht dabei um die sinnvollste Verwendung. Ein „verbuddeln und vergessen“ nach deutschen Vorstellungen, scheidet für GB ohnehin aus. Vielmehr ist man bestrebt, das Gefahrenpotential des „Atommülls“ auf einige hundert Jahre zu begrenzen. Ein Zeitraum, den man unstrittig durch technische Bauten sicher beherrschen kann. Man holt dadurch das Problem von der wenig fassbaren moralischen Ebene – irgendwelcher „Ethikkommissionen“ – auf die berechenbare Ebene der Ingenieurwissenschaften zurück.

Ein Weg – und beileibe nicht der einzige – ist die Nutzung und Beseitigung abgebrannter Brennelemente durch einen mit Natrium gekühlten Reaktor mit schnellem Neutronenspektrum und metallischem Brennstoff: Dem PRISM. Nichts von der Erfindermesse, sondern ein Stück erprobter Technik. Sein unmittelbarer Vorläufer, der EBR II, war 30 Jahre erfolgreich in Betrieb (bis 1994). Ein PRISM-Kraftwerk mit 1866 MWel würde rund zwei Tonnen abgebrannter Brennelemente pro Jahr verbrauchen und damit die gleiche Menge Strom erzeugen, wie Kohlekraftwerke durch die Verbrennung von sechs Millionen Tonnen Steinkohle.

Warum schnelle Neutronen?

Mit hinreichend schnellen Neutronen kann man alle schweren Kerne spalten. Ausdrücklich auch U238, alle Plutoniumisotope und die minoren Aktinoiden (Americium, Curium, Neptunium usw.). Letztere sind für die Langlebigkeit des Atommülls verantwortlich. Gelingt es sie zu spalten, bleiben nur noch Spaltprodukte mit einer Halbwertszeit von unter 30 Jahren übrig. Allerdings hat die Sache einen entscheidenen Harken: Die Reaktionsquerschnitte sind nicht nur stoffabhängig, sondern auch sehr stark energieabhängig. Mit anderen Worten, nimmt die Wahrscheinlichkeit für eine Spaltung mit schnellen Neutronen stark ab.

Eine selbsterhaltende Kettenreaktion läßt sich nur mit U235 (in der Natur vorkommend) und U233. (aus Thorium erbrütet), sowie Pu239 (aus Uran erbrütet) aufrecht erhalten. Auch deren Spaltquerschnitte sind für langsame thermische Neutronen um Größenordnungen geeigneter. Will man also einen schnellen Reaktor bauen, braucht man wesentlich höhere Anteile an Spaltmaterial. Allerdings steigt auch die Anzahl der freigesetzten Neutronen mit der Energie der spaltenden Neutronen an.

An dieser Stelle ergeben sich die drei Varianten des PRISM-Reaktors, die sich nur durch die Zusammensetzung des Kerns unterscheiden:

  1. Der Brenner. Er verbraucht – wie ein Leichtwasserreaktor – mehr Spaltstoff als beständig neu entsteht. Man muß diese Verluste stetig aus abgebrannten Brennelementen ersetzen. Dies wäre eine reine „Abfallverbrennungsanlage“.
  2. Der Selbsterhalter. Er stellt ziemlich genau so viel Pu239 beim Betrieb gleichzeitig her, wie er auch verbraucht. Die Spaltungen müssen nur durch U238– z. B. aus dem Abfall der Anreicherungsanlagen – ergänzt werden.
  3. Der Brüter. Dies ist die wohl bekannteste Variante. Ein solcher Kern erzeugt mehr Pu239., als er selbst verbraucht. Entscheidendes Maß ist bei diesem Typ die sogenannte Verdoppelungszeit. Damit ist die Zeitdauer gemeint, in der ein Reaktor so viel Überschussplutonium produziert hat, wie man braucht, um damit einen zweiten Reaktor in Betrieb nehmen zu können. Diese Variante wird erst attraktiv, wenn die Preise für Natururan explodiert sind. Also erst in sehr ferner Zukunft.

Es ist bei allen drei Varianten sinnvoll, die Spaltprodukte von Zeit zu Zeit abzutrennen. Allerdings haben sie nicht die Bedeutung, die sie bei Leichtwasserreaktoren haben, da ihre Einfangquerschnitte (und dadurch verursachte Neutronenverluste) für hohe Energien recht klein sind. Der Abbrand kann bei schnellen Reaktoren rund fünfmal so hoch sein, wodurch sich eine Wiederaufbereitung wesentlich vereinfacht und nicht so oft geschehen muß (Kosten).

Warum Natrium als Kühlmittel?

Wenn man einen schnellen Reaktor bauen will, muß man ein Kühlmittel verwenden, das Neutronen praktisch nicht abbremst. In diesem Sinne, kommen praktisch nur drei Stoffe in Frage: Natrium, Blei und Helium. Natrium besitzt in allen relevanten Eigenschaften klare Vorteile, sodaß es nicht verwunderlich ist, daß praktisch alle schnellen Reaktoren (über 20 in 8 Ländern) mit Natrium gekühlt wurden. Einzige Ausnahme bilden die sieben Blei-Wismut-Reaktoren der U-Boote der Alpha-Klasse in der Sowjetunion. Sie sind gerade an den Eigenschaften des Blei gescheitert (hohe Schmelztemperatur, die eine ständige Beheizung erfordert; große Korrosionsprobleme; hohe Pumpleistung; starke Aktivierung durch die Bildung von Po210. Je eingehender man sich mit Kühlmitteln beschäftigt, gibt es für ein Kernkraftwerk (zur reinen Stromerzeugung) lediglich zwei optimale Kühlmittel: Wasser für thermische und Natrium für schnelle Reaktoren.

Natrium ist wegen seines elektrischen Widerstandes hervorragend für den Bau von elektromagnetischen Pumpen ohne bewegliche Teile und damit ohne Dichtungsprobleme geeignet.

Bei Natrium braucht man immer einen zusätzlichen Zwischenkreislauf. Der Neutronenfluß bildet Na24, welches ein harter γ.-Strahler ist. Das primäre Natrium muß deshalb gut abgeschirmt werden. Außerdem besteht bei Leckagen im Dampferzeuger die Gefahr der Wasserstofferzeugung und der Bildung von NaOH. Wasserstoff ist ein guter Moderator, der zu einer Beschädigung des Kerns durch einen Reaktivitätssprung führen könnte.

Die Gefahr von Natriumbränden wird meist überschätzt. Natrium hat eine hohe Verdampfungswärme bei hoher Verdampfungstemperatur. Dies führt zu einer geringen Verdampfungsrate während der Verbrennung – dem Feuer mangelt es an Nahrung. Die Verbrennung von Natrium in Luft setzt nur etwa ein Viertel der Energie, wie Benzin frei. Bei dem klassischen Brandversuch in einer offenen Wanne, bilden sich nur wenige Zentimeter hohe Flammen und in einem Meter über den Flammen herrscht nur eine Temperatur von rund 100 °C. Die bei der Verbrennung entstehenden Na2 O und Na O – Aerosole reagieren in Luft unter Anwesenheit von Wasserdampf und Kohlendioxid weiter zu Na OH und Na2 CO3. Diese Aerosole erfordern anschließend gründliche Reinigungsarbeiten, da sie elektrische Anlagen zerstören können und giftig sind.

Natrium besitzt sehr gute Korrosionsschutzeigenschaften, da es leicht mit Sauerstoff reagiert. Erst oberhalb von 50 ppm besteht für gewisse Stähle eine Korrosionsgefahr im flüssigen Natrium. Dieser Wert ist problemlos über eine Kältefalle (Im Prinzip ein Topf, durch den ein Teilstrom von weniger als 5% des Kreislaufes sehr langsam hindurch strömt) auf 10 bis 25 ppm zu halten. In der Kältefalle kristallisiert das Na2Oa bei unter 200 °C aus.

Warum metallischer Brennstoff?

Metallische Brennstoffe ermöglichen die höchsten Brutraten, da sie vollständig aus spaltbarem und brutfähigen Material bestehen könnten. Sie liefern das härteste Neutronenspektrum, da sie nur aus den schwersten Kernen bestehen. Die Folge ist, daß rund 25% der erzeugten Energie aus der direkten Spaltung von U238. stammen können.

Metalle sind ausgezeichnete Wärmeleiter und vertragen sehr schnelle Temperaturänderungen. Im Gegensatz dazu sind Uranoxide – wie sie in allen Leichtwasserreaktoren verwendet werden – Keramiken, mit bekannt schlechter Wärmeleitung und Sprödigkeit. Sie können im Inneren bereits aufschmelzen, wenn sich ihre Randtemperatur noch kaum geändert hat und können bei schockartiger Abkühlung wie eine Teetasse zerspringen.

Metallische Brennstoffe vertragen sich ausgezeichnet mit dem flüssigen Natrium. Chemische Reaktionen, wie zwischen den Brennstabhüllen aus Zr bei Leichtwasserreaktoren und Wasserdampf gibt es nicht (Wasserstoffexplosionen in Fukushima).

Metallischer Brennstoff schwillt durch die Strahlenbelastung um bis zu 30% an. Die Brennstäbe müssen deshalb sehr viel Raum für Spaltgase besitzen. Der notwendige Anfangsspalt zwischen Hüllrohr und Brennstoff wird mit Natrium als Wärmebrücke ausgefüllt.

Man kann bei Metallen die Eigenschaften durch Legierung gezielt verändern. Plutonium hat eine zu geringe Schmelztemperatur. Der Brennstoff kann mit den Legierungsbestandteilen der Stahlhülle schädliche Eutektika bilden usw. Dies alles, hat in den USA Jahrzehnte Forschung und Entwicklung und den Test von hunderttausenden von Brennstäben erfordert. Als Optimal hat sich eine Brennstofflegierung aus Uran und Plutonium mit etwa 10% Zr in einer Hülle aus austenitischem Stahl herausgestellt.

S wie small

Von Anfang an, stand bei der Entwicklung die geometrische Größe des Reaktors im Vordergrund: Man wollte den kompletten nuklearen Teil in einer Fabrik fertigen und testen und anschließend (möglichst) mit der Eisenbahn zum Standort transportieren. Alle Einbauten, der Kern, die Pumpen, die Zwischen-Wärmeübertrager, die Lademaschine mit dem Zwischenlager und die Regelstäbe werden in einen Topf aus Edelstahl eingebaut und mit dem Deckel gasdicht verschweißt. Diesen Reaktorbehälter umschließt noch ein zweiter Sicherheitsbehälter und die Luftkühlung. All das, wird in einer Fabrik zusammengebaut und getestet und anschließend zur Baustelle transportiert und dort in das örtlich gefertigte Betonsilo eingesetzt. Damit ist die geplante Leistung auf etwa 840 MWth. begrenzt. Durch die Serienfertigung in einer spezialisierten Fabrik verspricht man sich einen bedeutenden Kostenvorteil.

M wie modular

Die Modularität bezieht sich sowohl auf einen Block selbst, wie auch auf ein Kraftwerk:

  • Jeder Block besteht aus dem nuklearen Teil in einem unterirdischen Betonsilo, der oberirdischen Dampferzeuger-Anlage und den konventionellen Stromerzeugungsanlagen.
  • Ein komplettes Kernkraftwerk könnte z. B. eine elektrische Leistung von 1866 MWel haben und müßte dann aus sechs Reaktoren (je 840 MWth) bestehen, die jeweils paarweise auf eine Turbine (je 622 MWel.) wirken und insgesamt drei Turbinen haben. Alle sonstigen Einrichtungen (Werkstatt, Sozialgebäude usw.) würden gemeinsam genutzt. Ein solches Kraftwerk könnte auch eine integrierte Wiederaufbereitungsanlage beinhalten.

Die interne Unterteilung zielt auf eine potentielle Kosteneinsparung ab: Lediglich der Reaktor in seinem Betonsilo müßte dem Sicherheitsstandard „nuclear grade“ entsprechen. Bereits die Dampferzeugungsanlage in ihrem separaten Gebäude sollte – nach Meinung von GE – nur einen „gehobenen Industriestandard“ haben. In wie weit die Genehmigungsbehörden dieser Argumentation folgen werden, ist noch nicht ganz eindeutig zu beantworten.

Die Zusammenfassung von zwei Reaktoren mit Dampferzeuger und einer Turbine zu jeweils einer Einheit, zielt auf eine hohe Verfügbarkeit und einen kostengünstigen Ausbau eines Standortes ab. Sobald eine Einheit fertig ist, kann diese bereits Geld verdienen, während der Ausbau des Kraftwerkes weiter läuft. Die heute übliche Vorfinanzierung der gesamten Summe entfällt. Später, hat das Kraftwerk eine sehr hohe Verfügbarkeit bei guten Wirkungsgraden. Letztendlich muß die Praxis zeigen, welcher Weg der günstigere ist. Rußland beispielsweise, versucht es über möglichst große Blöcke.

Das Sicherheitskonzept

PRISM setzt konsequent auf eine passive oder inhärente Sicherheitstechnik. Der völlige Stromausfall (Station-Blackout) ist kein Problem mehr. Es wird lediglich eine elektrische Leistung von weniger als 200 kW für Instrumentierung, Notbeleuchtung, Rechner und Bildschirme usw. benötigt. Diese kann problemlos über Batterien bereitgestellt werden. Notstromdiesel (als Sicherheitstechnik) sind nicht mehr nötig. Die Nachzerfallswärme wird ausschließlich über eine Luftkühlung mit Naturzug abgeführt. Dazu wird die Wärme über das Reaktorgefäß und den Sicherheitsbehälter an einen umgebenden Luftspalt abgegeben. Die erwärmte Luft steigt über vier Kamine auf. Das System ist so bemessen, daß auch bei erheblichen Verstopfungen (z. B. durch Erdbeben oder Anschläge) oder dem kompletten Ausfall von zwei Kaminen oder einem völligen Verschluß der Zuluftöffnungen die Kühlung stets gewährleistet ist. Selbst bei einem völligen Ausfall von 36 Stunden tritt noch keine Kernschmelze auf. Ein Unfall wie in Fukushima, wäre damit ausgeschlossen.

Der gesamte Reaktor ist elastisch auf Federn und Dämpfern gelagert. Da sich alle Rohrleitungen und Pumpen etc. in dem Reaktorgefäß befinden, ergibt sich ein optimaler Erdbebenschutz. Dies gilt auch für Flugzeugabstürze und sonstige Einwirkungen von außen, da sich der Reaktor in einem unterirdischen Betonsilo befindet. Die Verbindung zum Dampferzeuger besteht aus Vor- und Rücklauf des Natrium-Zwischen-Kreislaufes, die ebenfalls in einem Betongraben verlegt sind. Diese Leitungen sind als Rohr in Rohr Konstruktion ausgeführt, um Natrium-Leckagen zu verhindern.

Der Dampferzeuger ist ebenfalls mit einem Mantel zur Luftführung umgeben. Wenn die eigentliche Kühlung des Kraftwerks ausfällt, kann die Wärme auch darüber abgeführt werden. Dies ist jedoch kein nukleares Sicherheitssystem im engeren Sinne, sondern dient dem Anlagenschutz.

Die Lagerung der Brennelemente

Die Handhabung der Brennelemente verläuft bei diesem Reaktor gänzlich anders als bei Leichtwasserreaktoren. Der Reaktor kann wegen des flüssigen Natriums mit seiner hohen Temperatur und Brandgefahr nicht einfach geöffnet werden. Zuerst wird das Helium als Schutzgas und Ausgleichsraum abgesaugt und durch frisches Gas ersetzt. Damit soll die Gefahr der Freisetzung radioaktiver Gase in den Sicherheitsbehälter vermieden werden. Die fest im Reaktor installierte Lademaschine entnimmt abgebrannte Brennelemente und lagert sie oberhalb des Kerns in ein Lagergestell ein. Anders als bei Leichtwasserreaktoren, verbleiben sie für mindestens 20 weitere Monate zur Abkühlung im Reaktor. Ihre Wärmeentwicklung durch den radioaktiven Zerfall ist dann soweit abgeklungen, daß sie auch ohne spezielle Kühlung keine Temperatur von 400 °C mehr überschreiten können. Dies ist für ihren metallischen Kern und die Hüllrohre aus Stahl kein Problem. Ein Brennelemente-Lagerbecken ist nicht nötig.

Ein vollautomatisches Transportfahrzeug dockt an den Reaktordeckel an, entnimmt die zu entladenden Brennelemente und fährt sie anschließend zum zentralen Lagergebäude.

All das, geschieht vollautomatisch und unter Schutzgas. Trotzdem ist ein Auslegungsstörfall der Brand des Natriums im Reaktor. Der Sicherheitsbehälter oberhalb des Reaktors ist so bemessen, daß er die freigesetzte Energie und die Temperaturen aushält. Automatische Löschanlagen mit Schutzgasen sind vorhanden.

Die Auslegungsstörfälle

Schnelle Reaktoren (SR) und Leichtwasserreaktoren (LWR) unterscheiden sich stark in ihrem Unfallverhalten. LWR stehen unter hohem Druck und werden nahe dem Verdampfungspunkt betrieben. Schon bei einem relativ kleinem Leck baut sich der Druck stark ab und das „Kühlwasser“ verdampft. Die Temperatur im Kern steigt damit steil an und nähert sich schnell den Grenzwerten. Gelingt es nicht, das Kühlwasser schnell zu ersetzen, wird der Kern zerstört (Unfall in Harrisburg). Auch nach erfolgreicher Abschaltung, kann die Nachzerfallswärme noch zur Kernschmelze führen (Unfall in Fukushima). Es kommt im weiteren Verlauf dann zur Reaktion zwischen Wasserdampf und den Brennstabhüllen mit starker Wasserstoffproduktion (zerstörende Explosionen in Fukushima).

Bei einem SR sieht der Ablauf gänzlich anders aus. Die Kombination aus metallischem Brennstoff, Brennstabhüllen aus Edelstahl und Natrium als Kühlmittel ergibt eine sehr gute Wärmeübertragung mit hoher Temperaturbeständigkeit. Chemische Reaktionen zwischen den Unfallbeteiligten sind praktisch nicht vorhanden. Mit anderen Worten: Es wird recht schnell und gleichmäßig heißer im Reaktor. Wegen der hohen Verdampfungstemperatur kann es deutlich heißer werden, ohne daß sich wesentliches ändert. Bei einem LWR reicht selbst die Nachzerfallswärme aus, den Kern zum Schmelzen zu bringen, wenn er nicht mehr mit flüssigem Wasser bedeckt ist. Bei einem SR führt die starke Temperaturerhöhung lediglich zu einem neuen Gleichgewicht zwischen „Notkühlluft“ und Reaktorgefäß. Die neue Gleichgewichtstemperatur ist so bemessen, daß sie sich noch weit von Materialgrenzwerten entfernt einstellt. Der Reaktor ist „inhärent sicher“.

Bei jedem Reaktor führen gewisse Grenzwerte zur sofortigen und automatischen Abschaltung. Beim PRISM fallen zu diesem Zweck sechs Regelstäbe in den Kern ein. Die Kettenreaktion wird dadurch in Sekundenbruchteilen unterbrochen. Zur dauerhaften Abschaltung gibt es noch ein zweites System, das Kugeln aus Borkarbid in den Kern einführt. Insofern unterscheiden sich LWR und SR kaum.

Man geht aber beim PRISM-Reaktor noch einen Schritt weiter, in dem man sich den starken Temperaturanstieg nutzbar macht. Dieser führt zu einer Reihe von Auswirkungen, die neutronenphysikalisch wirken (Dopplereffekt, Dichteänderung des Natrium, Axiale und radiale Ausdehnungen des Brennstoffs, usw.). Wichtig ist die konstruktive Gestaltung, damit der Temperaturkoeffizient der Reaktivität immer negativ bleibt (In Tschernobyl war er positiv!). In Alltagssprache: Je heißer der Reaktor wird, um so schneller bricht die Kettenreaktion von selbst zusammen. Wird die Kühlung – aus welchen Gründen auch immer – unterbrochen, schaltet sich der Reaktor von selbst ab. Er ist also auch im Betrieb „inhärent sicher“.

Der Ausfall der Umwälzpumpen im Reaktor (vier Stück) kann zu einer lokalen Überhitzung führen, die örtlich sogar zu einem Verdampfen des Natriums führen könnte. Dadurch könnte der Neutronenfluß lokal weiter ansteigen und Teile des Kerns beschädigen. Ursache sind die elektromagnetischen Pumpen, die keine rotierenden Massen haben und somit sofort ausfallen, wenn der Strom weg ist (Station-Blackout). Sie werden deshalb mit Synchronmotoren, mit extra großen Schwungmassen, parallel betrieben. Die Synchronmaschinen erzeugen im Normalbetrieb Blindleistung und schalten bei Stromausfall automatisch in den Generatorbetrieb um. So entsteht ein mehrere Minuten dauernder Auslauf der Pumpen, der lokale Überhitzungen verhindert und sanft in einen Naturumlauf überführt.

Versagt auch dieses System, werden die Gasraum-Ausdehner wirksam. Sie funktionieren nach dem Prinzip eines umgedrehten Glas im Spülbecken: Je weiter man es eintaucht, um so kleiner wird das Luftpolster infolge des steigenden Wasserdrucks. Im PRISM spielt nun der Pumpendruck auf das Natrium mit einem Gaspolster aus Argon zusammen. So wie der durch die Pumpen erzeugte Druckanstieg kleiner wird, dehnt sich das Argonpolster aus. Da das Gas eine wesentlich geringere Dichte als das flüssige Natrium hat, kann es auch weniger Neutronen in den Kern zurück streuen. Der Ausfluß erhöht sich und die Kettenreaktion bricht zusammen. Ein weiteres, völlig passives, Sicherheitssystem.

Natriumbrand im Dampferzeuger

Ein spezielles Sicherheitsproblem ist die Reaktion zwischen Wasser und Natrium. Bei ihr wird neben Energie auch Wasserstoff frei bzw. es entstehen Reaktionsprodukte, die Wasserstoff enthalten. Daraus ergeben sich folgende Ansprüche:

  • Der Dampferzeuger sollte in einem separaten Gebäude – streng getrennt vom Reaktor – stehen. Da es nur hier eine Schnittstelle zwischen Wasser und Natrium gibt, können alle Auswirkungen besser beherrscht und lokal begrenzt werden.
  • Es sollte eine Isolierung zwischen Dampferzeuger und Reaktorteil geben, um Rückwirkungen auf die Wärmetauscher im Reaktor zu verhindern.
  • Es müssen ausreichend große Abblasetanks vorhanden sein, um Natrium und Wasser möglichst schnell voneinander zu trennen, damit die Brandlasten klein bleiben. Entstandener Wasserstoff muß rekombiniert bzw. sicher abgeleitet werden, um Explosionen zu verhindern (nicht wie in Fukushima, auch noch benachbarte Gebäude zerstören.)

Der Dampferzeuger des PRISM ist ein schlanker, aufrecht stehender Behälter. Er ist nicht vollständig mit Natrium gefüllt, sondern besitzt oben einen mit Argon gefüllten Raum. Dieses Gaspolster, kann bei Störfällen etwaige Druckwellen bereits erheblich mindern. In dieses Natriumbad tauchen, zu einer Spirale gewickelte Rohre ein. In diesen strömt das Wasser und verdampft. Würde ein Rohr undicht werden, strömt Wasser bzw. Dampf unter hohem Druck in das Natrium ein und reagiert dort sofort. Die zusätzliche Energieproduktion kann zu einem Temperaturanstieg im Dampferzeuger führen. Wichtigste Gegenmaßnahme ist nun die Absperrung sowohl der Wasser- und Dampfleitungen wie auch der Natriumleitungen. Dabei sind kleine Leckagen kein Problem, da sie ein langsames Abfahren der Anlage ermöglichen.

Kommt es hingegen zu massiven Wassereinbrüchen, kann es zu einer stärkeren Temperaturerhöhung und einem steilen Druckanstieg führen. Wichtigstes Ziel ist nun, die Druckspitze zu begrenzen und die Druckwelle möglichst von den Zwischenwärmetauschern im Reaktor fern zu halten. Zur Dämpfung dient bereits das Gaspolster im Dampferzeuger. Wird der vorgesehene Druck überschritten, bersten zwei Scheiben in der Verbindungsleitung zum Abblasetank. Der Abblasetank trennt die Gase (insbesondere den entstandenen Wasserdampf) vom flüssigen Natrium. Das Natrium strömt dann weiter in Reservetanks. Bereits gebildeter Wasserstoff wird rekombiniert, um etwaige Explosionen zu vermeiden. Die Restwärme wird über die Außenluft abgeführt.

Unmittelbar hinter dem Sicherheitsbehälter des Reaktorgebäudes befinden sich Isolierventile, die sofort und automatisch schließen. Dadurch wird verhindert, daß überhaupt Reaktionsprodukte zum Reaktor gelangen können.

Schlußbetrachtung

Es gibt international viel Erfahrung aus einigen hundert Betriebsjahren mit natriumgekühlten schnellen Reaktoren. Allein in den USA ist der EBR II über 30 Jahre erfolgreich gelaufen. Man hat in ihm über 100000 Brennelemente getestet und umfangreiche Experimente der Sicherheitssysteme durchgeführt. Mehrfach wurde bei voller Leistung die Wärmesenke einfach abgestellt, um beispielsweise die Richtigkeit der Rechenprogramme zu überprüfen. Die Entwicklung ist seit dem – wenn auch stark reduziert – kontinuierlich weitergeführt worden. Bereits 1994 wurde das eingereichte Konzept von der NRC in einem 400seitigen Abschlussbericht positiv beurteilt. Seit dem, könnte eigentlich ein Kraftwerk als Demonstrationsanlge gebaut werden – wenn der politische Wille vorhanden wäre. Ob auch hier wieder China voranschreiten wird oder kann Europa (GB) noch den Anschluß halten?

Ausblick

Der zweite Teil wird sich mit der Wiederaufbereitung und der Herstellung der metallischen Brennelemente beschäftigen.

Reaktortypen in Europa – Teil6, CANDU

Der CANDU (Canada Deuterium Uranium) Reaktor ist der einzige Schwerwasserreaktor, der sich weltweit durchgesetzt hat. Er ist in seiner neuesten Ausführung ein echter Gen III+ Reaktor mit passiver Sicherheit. Für manche mutet er vielleicht etwas exotisch an, besitzt aber sehr viel Potential für die Nutzung von Thorium und die Weiterverwendung ausgedienter Brennelemente von Leichtwasserreaktoren – gerne auch als „Atommüll“ verunglimpft.

Geschichte

SNC-Lavalin und China Nuclear Power Engineering Company wollen zusammen zwei weitere Reaktoren dieses Typs in Rumänien errichten. Bereits seit 1997 und 2007 laufen dort sehr erfolgreich zwei solche Reaktoren. Wie in zahlreichen anderen Ländern auch: Indien, Südkorea, Rumänien, Pakistan, Argentinien und China. Insgesamt wurden 47 CANDU-Reaktoren gebaut, davon bilden 22 Reaktoren das Rückgrat der kanadischen Stromversorgung. Keine schlechte Bilanz, wenn man bedenkt, wie viele Totgeburten es seit den 1940er Jahren gegeben hat.

In Kanada begann die Entwicklung von Schwerwasserreaktoren bereits während des zweiten Weltkrieges. Es war ein etwas ungeliebter Seitenarm des Manhattan-Projekts unter maßgeblichem Einfluß des französischen Wissenschaftlers Joliot, der wegen seiner politischen Ansichten in den USA als potentielles Sicherheitsrisiko eingestuft war. In den 1960er Jahren wurde die kommerzielle Entwicklung von der kanadischen Regierung forciert: Kanada verfügte über keine Anreicherung und keine Schwerindustrie, die in der Lage war, Reaktordruckgefäße zu schmieden. Beide Argumente besitzen heute noch für viele Entwicklungs- und Schwellenländer Gültigkeit. Man kann sich nahezu aus allen Ecken der Welt mit Natururan versorgen, während man bei der Anreicherung nach wie vor, maßgeblich auf die „Atommächte“ angewiesen ist. Wegen des einfachen Aufbaues ist ein Übergang auf nationale Fertigung in relativ kurzer Zeit und kleinen Stückzahlen möglich.

Allerdings besitzt der CANDU einen entscheidenden (politischen) Nachteil: Mit ihm läßt sich hervorragend waffengrädiges Plutonium und Tritium herstellen. Diesen Weg hat Indien mit seiner ersten Bombe „Smiling Buddha“ vorgemacht, dessen Plutonium aus dem Schwerwasser-Forschungsreaktor „CIRUS“ stammte.

Aufbau

Bei den CANDU-Reaktoren handelt es sich um Druckwasserreaktoren mit schwerem Wasser (D2 O.) als Moderator und Kühlmittel. Das schwere Wasser wird durch Pumpen zwischen dem Kern und den Dampferzeugern umgewälzt. In den Dampferzeugern wird der Dampf für die Turbine erzeugt. Man könnte also sagen, ab dem Reaktorgefäß handelt es sich um einen „ganz normalen Druckwasserreaktor“.

Er besitzt jedoch kein Druckgefäß, sondern zahlreiche Druckröhren. Bei einem EC6 sind es 380 horizontale Röhren, in denen sich jeweils 12 Brennelemente befinden. Die Brennelemente sind rund und nicht rechteckig (wie bei Leichtwasserreaktoren), sodaß sie die Druckröhren optimal ausfüllen. Sie sind auch wesentlich kleiner (etwa 50 cm lang und 10 cm im Durchmesser) und bestehen aus nur 37 Brennstäben. Durch die Abmessungen und ihr geringes Gewicht (rund 25 kg) sind sie optimal für eine vollautomatische Handhabung geeignet. Durch die hohe Anzahl (37 Stück x 12 Brennelemente x 380 Brennstoffkanäle) ergibt sich eine sehr flexible Anordnung und Materialausstattung, auf die später noch eingegangen wird. Durch die vollautomatischen Lademaschinen, die unter voller Last eingesetzt werden können, ergibt sich stets eine optimale Durchmischung und Anordnung. Es ist kaum Überschußreaktivität nötig, die bei Leichtwasserreaktoren am Anfang des Ladezyklus durchVergiftung (z. B. Borsäure, Gadolinium etc.) abgebaut werden muß.

Die Brennstoffkanäle sind schachbrettartig, horizontal in einem Wassertank – der sog. Calandria – angeordnet. Dieser Tank ist vollständig mit schwerem Wasser gefüllt und bildet den eigentlichen Moderator und Reflektor. Die Calandria befindet sich in einem weiteren Wassertank zur Abschirmung, der mit normalem Wasser gefüllt ist. Dieses System ist von einem Tresor aus Stahlbeton umgeben. Oberhalb befinden sich die vier Umwälzpumpen und die vier Dampferzeuger. Zusätzlich ist der gesamte Reaktor von einer Stahlbetonhülle (Containment) umgeben. Äußerlich ist deshalb ein EC6-CANDU kaum von einem üblichen Druckwasserreaktor zu unterscheiden.

Sicherheitskonzept

Jeder Brennstoffkanal ist von einem zweiten Rohr umgeben. Der sich ergebende Spalt dient zur Wärmeisolierung. Das schwere Wasser der Calandria ist kalt und wird auch ständig über eigene Wärmeübertrager kalt gehalten. Zusammen mit dem Wasser der Abschirmung ergibt sich ein großer Wärmespeicher für die Abfuhr der Nachzerfallswärme. Geht Kühlwasser durch Leckagen verloren, kann dieses aus einem großen Wassertank auf dem Dach des Sicherheitsbehälters ersetzt werden. Dafür sind keine Pumpen, sondern nur die Schwerkraft nötig.

Als einziger Reaktortyp verfügt der CANDU über zwei vollständig voneinander unabhängige Schnellabschaltungssysteme: Oberhalb der Calandria befinden sich von Elektromagneten gehaltene Regelstäbe. Bei einer Schnellabschaltung fallen sie durch die Schwerkraft getrieben in die Calandria ein. Seitlich befinden sich Druckbehälter mit Gadoliniumnitrat, die durch das Gaspolster aus Helium angetrieben, ihre Flüssigkeit zur Vergiftung in die Calandria einspritzen.

Warum überhaupt schweres Wasser?

Deuterium ist Wasserstoff, dessen Kern nicht nur aus einem Proton besteht, sondern zusätzlich noch ein Neutron enthält. Es verbindet sich mit Sauerstoff zu schwerem Wasser. Es kommt daher überall auf der Erde in unerschöpflicher Menge vor. Allerdings in nur sehr geringer Konzentration von 0,000018%. Die Anreicherung ist wegen des relativ großen Massenunterschieds zwar relativ einfach, erfordert gleichwohl viel Energie und Apparatur. Mit anderen Worten, es ist recht teuer. Die hohen Investitionskosten sind deshalb der Hauptnachteil beim CANDU. Enthält doch ein EC6 über 472 to davon, bei nur etwa 700 MWel. Leistung. Der laufende Verbrauch ist nur sehr gering. Ein weiterer Nachteil ist die erhöhte Produktion von Tritium. Da Deuterium bereits ein Neutron enthält, ist die Aufnahme eines weiteren sehr viel wahrscheinlicher, als bei normalem Wasser.

Ausschlaggebend sind die überragenden neutronenphysikalischen Eigenschaften. Die Wahrscheinlichkeit für eine Spaltung steigt umgekehrt proportional mit der Geschwindigkeit der Neutronen. Abgebremst werden die Neutronen durch Zusammenstöße mit dem Moderator. Je kleiner die Kerne sind, je mehr Energie geht bei einem einzelnen Stoß verloren – dies spricht für Wasserstoff als Moderator. Leider gibt ein Kern nicht jedes Neutron wieder her. Jedes absorbierte Neutron ist aber für eine weitere Spaltung verloren. Je größer die Wahrscheinlichkeit für eine Streuung ist und um so kleiner die Wahrscheinlichkeit für eine Absorption, desto besser ist das Material als Moderator geeignet. Man mißt dies mit der „Moderating Ratio“ MR. Sie beträgt bei H2 O nur 62. Im Gegensatz dazu, ist sie bei D2O. mit 4830 fast 78 mal so gut. Zusätzlich kann man den Bremseffekt noch verbessern, wenn man den Moderator möglichst kühl hält. Dies ist der Grund für die kalte Calandria.

Alles zusammen, führt dazu, daß man bei einem CANDU mit Natururan auskommt und trotzdem mittlere Abbrände von 7500 MWd/toU erzielt. Dies ergibt nicht nur die beste Ausnutzung von Natururan, sondern eröffnet noch ganz andere Brennstoffkreisläufe.

CANDU und Leichtwasserreaktoren im Verbund

In jedem Reaktor werden nicht nur Kerne gespalten, sondern auch immer neue Kerne durch das Einfangen von Neutronen gebildet. Allerdings ist die Nutzungsdauer der Beladung immer zeitlich begrenzt – egal in welcher Form der Brennstoff vorliegt. Es verhält sich mit dem Brennelement wie mit einer Weinflasche: Nach dem Gebrauch ist sie für den Nutzer Abfall, aber deshalb noch kein Müll. Man kann auch die leere Flasche vielfältig weiter nutzen oder sie recyceln.

Auch wenn die Brennstäbe in den Leichtwasserreaktoren nicht mehr nutzbar sind, enthalten sie doch noch unzählige Wertstoffe. In diesem Zusammenhang sind Uran und Plutonium von Interesse. Man kann diese beiden auf verschiedene Art und Weise nutzen:

  • Zuerst sollte man sie so lange – wie wirtschaftlich vertretbar – lagern. Genau das, geschieht im Moment weltweit. Radioaktive Stoffe besitzen die angenehme Eigenschaft, daß sie nur zerfallen können, also stetig weniger werden. Je mehr Spaltprodukte aber zerfallen sind, desto geringer ist die Strahlungsleistung geworden. Ein enormer Vorteil bei der weiteren Verarbeitung.
  • Man kann diese Brennelemente z. B. nach dem Purex-Verfahren wieder aufbereiten. Man erhält als Produkt hochreines Uran und Plutonium. Das Uran ist aber ohne eine weitere Anreicherung nicht wieder in einem Leichtwasserreaktor verwendbar. Hier kommen die CANDU’s ins Spiel:
  • Das Uran aus der Wiederaufbereitung hat einen etwas höheren Gehalt an U235 (ungefähr 0,9% plus 0,6% Pu) als Natururan. Man kann nun dieses Uran mit abgereichertem Uran aus Anreicherungsanlagen zu synthetischem Natururan verschneiden. Man spart also den Aufwand für eine weitere Anreicherung.
  • Viel sinnvoller ist es, das Uran aus der Wiederaufbereitung im ursprünglichen Zustand zu verwenden. Man muß es nicht verschneiden, sondern kann es durch die unzählige Kombination von Brennstäben aus unterschiedlichen Materialien als sehr viel effektivere Neutronenquelle einsetzen.
  • Es ist sogar möglich, die abgebrannten Brennelemente aus Leichtwasserreaktoren in CANDU-Reaktoren ein weiteres mal zu nutzen: Man müßte sie lediglich auf Länge schneiden und erneut in eine Hülle einschweißen. Allerdings bräuchte man hierfür wegen der hohen Strahlenbelastung eine fernbediente Herstellung und Handhabung. China führt bereits in seinen laufenden Reaktoren Versuche aus. Es wurde in Zusammenarbeit mit den Kanadiern ein umfangreiches Entwicklungsprogramm gestartet.
  • Man kann aber auch die abgebrannten Brennstäbe vorher pulverisieren und erhitzen. Da der größte Teil der Spaltprodukte (z. B. die Edelgase und Jod) schon bei relativ geringen Temperaturen ausgasen, können sie einfach abgeschieden werden. Man erhält nach dem Sintern „neue“ Brennelemente, mit wesentlich geringerer Strahlenbelastung (als die unbehandelten Brennelemente) und weniger parasitärem (bezüglich der Neutronen) Inhalt. Diese Schiene – mit teilweiser Wiederaufbereitung – wird in Korea verfolgt und als DUPIC-Verfahren (Direct Use of spent PWR fuel In Candu) bezeichnet.

Es gibt also zahlreiche Wege, aus Leichtwasser- und Schwerwasserreaktoren einen Energieverbund herzustellen. Man kann in etwa sagen, daß vier Leichtwasserreaktoren mit ihren abgebrannten Brennelementen einen Schwerwasserreaktor versorgen können. Dies könnte das evolutionäre Glied zur Nutzung – und damit Beseitigung – von „Atommüll“ sein: Man ersetzt das kostspielige PUREX-Verfahren durch „Neuverpackung“ oder „Teilreinigung“. Diese Verfahrensschritte sind sicherlich wesentlich eher mit der Gewinnung von Natururan wirtschaftlich konkurrenzfähig.

Thorium

Neben Uran, kann man auch mit Thorium Reaktoren betreiben. Thorium ist in manchen Ländern (z. B. Indien) leicht zu fördern oder fällt sogar als Abfall an (z. B. Produktion seltener Erden in China). Allerdings kann man mit Thorium keine selbsterhaltende Kettenreaktion erzeugen. Vorher muß man daraus U233 erbrüten. Anders als bei Uran, funktioniert das Brüten bei Thorium auch sehr gut mit thermischen Neutronen. Es war daher schon frühzeitig ein Gedanke, Thorium als Brennstoff in Schwerwasserreaktoren einzusetzen.

Aus der Konstruktion von Brennstoffkanälen, die mit Brennelementen gefüllt sind, die sich wiederum aus Brennstäben zusammensetzen, ergeben sich beim CANDU zwei grundsätzliche Varianten: Der gemischte Kern (mixed-core) und das gemischte Brennelement (mixed-fuel-bundle).

Bei einem gemischten Kern, verwendet man Brennelemente aus reinem Thorium, die zum Erbrüten von U233 dienen. Die hier verschluckten Neutronen müssen an anderer Stelle im Reaktor erzeugt werden. Dafür verwendet man Brennelemente mit leicht angereichertem Uran oder aus Mischoxid. Hierfür bietet sich – wie weiter oben schon beschrieben – idealerweise der „Abfall“ aus Leichtwasserreaktoren an. Diese Strategie erfordert – wegen der wechselnden Orte und der unterschiedlichen Verweilzeiten in den Kanälen – eine komplexe Steuerung der Lademaschinen. Wenn man nur reines Thorium in einem Brennelement einsetzt, kommt man zu einer besonders eleganten „Einfach-Nutzung“. Aus Thorium bilden sich durch das Einfangen von Neutronen weit weniger langlebige Aktinoiden, als aus Uran. Da man es im wesentlichen nur mit (kurzlebigen) Spaltprodukten zu tun hat, ergibt sich ein „Atommüll“, der besonders gut für eine „Endlagerung“ geeignet ist. Diese Beschränkung auf eine technische Zwischenlagerung – ohne Wiederaufbereitung und/oder geologisches „Endlager“ – ist ein weiterer Anreiz für Länder mit großen Thoriumvorkommen (z. B. Norwegen).

Der andere Weg sind die gemischten Brennelemente. Dort wird bevorzugt der mittlere Brennstab aus reinem Thorium hergestellt und die ihn konzentrisch umgebenden Stäbe aus leicht angereichertem Uran. Dies vereinfacht das Umsetzen, hat aber eine schlechtere Ausnutzung der Neutronen zur Folge. Wenn man bereits gebrütete Brennelemente verwendet, um deren Stäbe in gemischten Brennelementen weiterzuverwenden, benötigt man keinerlei Wiederaufbereitung. Dieser Brennstoffkreislauf bietet sich besonders für Länder an, die unbedingt und nachweisbar auf Kernwaffen verzichten wollen.

Man kann mit Schwerwasserreaktoren Konversionsraten von nahezu eins erreichen. Wenn man über mehrere CANDU-Reaktoren verfügt, kann man einige davon vollkommen mit Thorium betreiben. Lediglich einige müssen zusätzlich leicht angereichertes Uran bzw. Mischoxid verwenden um den Fehlbedarf an U233abzudecken. Ein Land wie z. B. Indien, mit großen Mengen eigenem Thorium, aber kaum eigenem (wirtschaftlichem) Uran, kann so einen beträchtlichen Anteil aus heimischen Energieträgern abdecken.

Neben der Streckung von Uranvorräten bietet die Verwendung von Thoriumoxid noch eine Reihe anderer Vorteile: Bessere Wärmeleitung, höherer Schmelzpunkt, sehr gute chemische Stabilität und weniger Bildung von Aktinoiden.

Schlußwort

Mit diesem Beitrag, soll die Serie über die Reaktortypen in Europa vorläufig abgeschlossen werden. Eigentlich fehlen hier noch die russischen Druckwasserreaktoren wie sie in Finnland und der Türkei gebaut werden sollen. Bisher mangelt es aber nach wie vor an frei zugänglichen Informationen.

Sinn dieser Serie sollte es sein, interessierten Menschen einen Überblick darüber zu verschaffen, was geht, was man morgen bestellen und bauen könnte, was genehmigt und erprobt ist. Forschung und Entwicklung stehen auf einem anderen Blatt. Man kann – wenn man politisch will – sofort mit dem Ausbau der Kernenergie beginnen bzw. fortschreiten. China macht es eindrucksvoll vor: Den Einstieg in das Zeitalter der Kerntechnik auf breiter Front durch Nutzung von allem, was der Weltmarkt hergibt. Ein gigantischer Vergleich unter gleichen Rahmenbedingungen. Bisher gab es das nur in den USA – und man erinnert sich kaum, in Deutschland. Vielleicht muß man wirklich schon daran erinnern. Es gab einmal deutsche Siedewasser-, Druckwasser-, Schwerwasser-, Thorium-Hochtemperaturreaktoren und natriumgekühlte schnelle Reaktoren. Alle gebaut und mit besten Betriebserfahrungen und ganz ohne schwere Unfälle. Wenn es dem Esel zu gut geht, geht er aufs Eis tanzen, sagt ein altes Sprichwort. Jedenfalls reist heute eine ehemalige Pionierleiterin nach Japan, um der dortigen Regierung deutsche Wind- und Sonnentechnik schmackhaft zu machen. Selbstverständlich bei ausdrücklicher Verweigerung eines Besuchs in Fukushima. Zu viel Realität, konnte man im Politbüro noch nie ertragen. Das Ergebnis ist bekannt.

Reaktortypen in Europa – Teil5, ESBWR

Der ESBWR (Economic Simplified Boiling Water Reactor) ist die bisherige Krönung in der Evolution der Leichtwasserreaktoren. Es ist ein Reaktor der Generation III+ und erfüllt sicherheitstechnisch bereits die Ziele der vierten Generation: Passive und inhärente Sicherheit, die die Anlage stets selbstständig in einen sicheren Zustand überführt.

Geschichte

Bereits nach dem Reaktorunglück von TMI in Harrisburg begann man in den USA das Genehmigungsverfahren für einen stark vereinfachten Reaktor, den SBWR (Simplified Boiling Water Reactor). Nachdem man über eine halbe Milliarde Dollar Entwicklungs- und Genehmigungskosten investiert hatte, mußte man erkennen, daß dieser Reaktor mit 670 MWel schlicht zu klein und damit unverkäuflich war. Im nächsten Schritt legte man mehr Wert auf die „Wirtschaftlichkeit (Economic)“ und erhöhte die Leistung auf 1600 MWel. Ein weiteres Jahrzehnt mit unzähligen Prüfungen verging. Seit letztem Jahr liegen endlich alle Genehmigungen für den Typ vor. Es fehlt nur noch ein Kunde mit einem konkreten Bauauftrag. Inzwischen gibt es auch dazu Verhandlungen in USA, Polen und Indien. Wie immer, wird der „mutige Investor“ gesucht, der bereit ist in eine neue Technik (first of a kind) zu investieren. Dabei ist die Technik alles andere als revolutionär, sondern im Gegenteil strikt evolutionär. Man hat Schritt für Schritt auf in der Praxis bewährte Bauteile zurückgegriffen. Dies sei nur am Rande bemerkt, für all die Erfinder, die immer nach revolutionären Konzepten schreien. Erfinden und in allen Details den Nachweis der Funktionstüchtigkeit erbringen, sind zwei völlig verschiedene Dinge. Zumindest der Nachweis der Funktionstüchtigkeit – nach den Maßstäben der Kerntechnik – erfordert Jahrzehnte und verschlingt somit immense Summen. Vergleichbares gibt es nur in der zivilen Luftfahrt. Auch dort sind revolutionäre Flugzeugentwürfe nur etwas für Universitäten und Medien.

Anforderungen

Alle bisherigen Erfahrungen mit Kernkraftwerken – insbesondere die Unglücke in Harrisburg, Tschernobyl und Fukushima – haben zu folgenden Anforderungen für einen sicheren und wirtschaftlichen Betrieb geführt:

  • Je weniger Bauteile man hat, je weniger kann kaputt gehen (Schaden) und je weniger muß gewartet und überwacht werden (Wirtschaftlichkeit).
  • Je einfacher („kiss = keep it simple stupid“) das Kraftwerk ist, je einfacher ist es auch zu bedienen – dies gilt für die Automatik, wie auch für das Personal.
  • Je mehr man auf Naturkräfte (Schwerkraft, Speicherung etc.) bei der Sicherheitstechnik setzt, um so sicherer ist ihre Verfügbarkeit im Ernstfall.
  • Je unabhängiger man von äußeren Einflüssen ist (Netzanschluss, Kühlwasser etc.), je weniger können solche „Einwirkungen von außen“ (Tsunami, Wirbelsturm, aber auch Flugzeugabsturz, Terror etc.) zu Schäden beim Kraftwerk führen.
  • Je passiver die Sicherheitsketten sind, je weniger muß man sich auf eine hohe Bereitschaft des Schichtpersonals verlassen. Gerade in Ausnahmesituationen (Erdbeben mit Tsunami) brauchen Menschen Zeit sich darauf umzustellen.
  • Wenn man bewußt von dem Versagen aller Sicherheitssysteme ausgeht und offensiv solche Ereignisse durchspielt, kann man trotzdem die Schäden für die Umwelt noch weiter mindern.

Nur die konsequente Umsetzung der vorausgehenden Punkte hat zu der gewaltigen Steigerung der Sicherheit beim ESBWR geführt. Hatte die „Fukushima-Generation“ noch eine Wahrscheinlichkeit von einer Kernschmelze in 100.000 Betriebsjahren, so liegt diese Wahrscheinlichkeit beim ESBWR bei etwa einer Kernschmelze in 170.000.000 Betriebsjahren. Spätestens nach den Ereignissen von Tschernobyl und Fukushima legt man großen Wert auf die Freisetzung von Radioaktivität nach dem Versagen aller Sicherheitseinrichtungen (z. B. Beschädigung des Containment etc.). Man kann durch geeignete Maßnahmen auch in einem solchen schweren – und unwahrscheinlichen – Unfall, die Freisetzung von radioaktiven Stoffen erheblich verringern. Simulationen für Standorte in USA haben ergeben, daß selbst in Betrachtungszeiträumen von einer Milliarde Jahren (berücksichtigt die geringe Wahrscheinlichkeit der Ereignisse) in einer Entfernung von 800 m (!) keine Dosen über 1 Sv auftreten würden. Natürlich können solche Berechnungen „Atomkraftgegner“ nicht überzeugen. Sie halten auch nach Tschernobyl und Fukushima tapfer an ihrem Glauben von Millionen-Tote-für-zehntausende-Jahre-unbewohnbar fest. Was soll’s, es gibt auch heute noch Menschen, die an Hexen glauben.

Der Naturumlauf

Die Idee einen Siedewasserreaktor ohne Umwälzpumpen zu bauen, ist keinesfalls neu. Allerdings waren die ursprünglichen Modelle, wie z. B. Dodewaard (183 MWth) und Humboldt Bay (165 MWth) geradezu winzig gegenüber einem ESBWR (4500 MWth). Gleichwohl haben sie in den Jahrzehnten ihres Betriebs wertvolle Erkenntnisse und Messreihen geliefert, die als Referenz für die Auslegungsprogramme des ESBWR dienen. Dodewaard war von 1969 bis 1997 am Netz und hat trotz seiner bescheidenen Leistung von 55 MWel fast 11000 GWhelStrom produziert.

Wenn man einen Reaktor mit Naturumlauf bauen will, muß man die treibende Kraft der Umwälzpumpen durch einen Kamineffekt ersetzen: Es steht nur die Dichtedifferenz zwischen kaltem Abwärtsstrom und dampfhaltigem Aufwärtsstrom zur Verfügung. Um überhaupt genug Druck erzeugen zu können, damit man die Reibung in den Bauteilen überwinden kann, ist eine erhebliche Bauhöhe erforderlich. Genau das war aber in den Anfangsjahren das Problem. Man konnte solch große Druckgefäße – zumindest wirtschaftlich – nicht herstellen. Es bot sich deshalb an, besser Umwälzpumpen zu verwenden. Heute haben sich die Verhältnisse umgekehrt. Es gelang praktisch das im ABWR verwendete Druckgefäß auch im ESBWR zu verwenden. Es mußte allerdings für den Kamin oberhalb des Reaktorkerns, von 21,7 auf 27,6 m verlängert werden. Solch schlanke Behälter haben Vor- und Nachteile. Für die Gebäudehöhe und den Erdbebenschutz ist eine solche Länge eher nachteilig. Allerdings ergibt sich auch ein sehr großes Wasservolumen, was sich positiv bei Störfällen auswirkt.

Der Kern des ESBWR ist gegenüber dem ABWR größer (1590 gegenüber 1350 Brennelemente) und flacher (3,0 m gegenüber 3,7 m aktive Brennstablänge). Dies ist auf die höhere Leistung (4500 gegenüber 3926 MWth.) und die anderen thermohydraulischen Bedingungen zurückzuführen. Wegen der höheren Anzahl der Brennelemente erhöht sich auch die Anzahl der Regelstäbe (269 gegenüber 205). Diesem Mehraufwand ist die Einsparung von zehn internen Umwälzpumpen gegen zu rechnen.

Der Rechenaufwand

Einfach anmutende natürliche Systeme, sind meist wesentlich schwieriger zu beschreiben, als technische Systeme. Technische Anlagen, wie z.B. Pumpen, können definierte Randbedingungen schaffen, die eine Berechnung oft stark vereinfachen. Nur auf Naturkräfte beruhende Systeme sind die hohe Schule der Simulation. Schnell stößt man bei der notwendigen räumlichen und zeitlichen Auflösung an die Grenzen heutiger Rechner. Hinzu kommt hier eine sehr große Anzahl von Gleichungen, da die Thermohydraulik und die Neutronenphysik sich sehr stark gegenseitig beeinflussen.

Man muß es eigentlich nicht besonders erwähnen, hier hat man es mit einer Genehmigungsbehörde zu tun und bewegt sich nicht als freischaffender Künstler in der Welt von Klimamodellen oder Wirtschaftsprognosen. Hier muß man nicht nur sein Programm offen legen, sondern auch noch nachweisen, daß es richtig rechnet. Dazu müssen zahlreiche Messreihen an 1:1 Modellen nachgerechnet werden, um Unterprogramme (z. B. Druckverlust in einem Brennelement) zu testen. Ist diese Hürde – zur Zufriedenheit der Genehmigungsbehörde – erfolgreich genommen, geht es daran, Versuche an bereits gebauten Reaktoren nachzurechnen. Erst wenn der Genehmigungsbehörde kein Testfall mehr einfällt, ist das Programm zugelassen. So etwas kann dauern, schließlich arbeitet die Behörde im Stundenlohn für einen Stundensatz von 280 US-Dollar. So viel zum Thema: Junge Unternehmen entwickeln einen innovativen Reaktor. Die alten Zeiten eines Admiral Hyman G. Rickover, für den der Reaktor der USS Nautilus noch mit Rechenschieber, Bleistift und ganz viel Hirn ausgelegt wurde, sind lange vergangen.

Allein die Anpassung des vorhandenen Programms an die Besonderheiten des ESBWR soll bei GE mehr als 100 Mann-Jahre gedauert haben. Erst dann konnten für alle möglichen geforderten Zustände, die Leistungen, Durchflüsse, Dampfzustände und Dampfanteile, Blasenkoeffizienten, die Leistungsdichte und -verteilung, sowie die Stabilität (z.B. Xenon-Schwingungen) nachgewiesen werden.

Führt man sich diesen Aufwand vor Augen, wird einsichtig, warum die Entwicklung evolutionär verläuft. Man hat versucht, soviel wie möglich vom ABWR beim ESBWR weiter zu verwenden. Nicht einmal ein Verbund von internationalen Konzernen aus GE, Hitachi und Toshiba kann es sich heute noch erlauben, die Entwicklung eines kommerziellen Reaktors mit einem weißen Blatt Papier zu beginnen. Ob das nun gut oder eher schlecht ist, mag jeder für sich selbst entscheiden.

Die Notkühlung

Nach dem Unglück in Fukushima sind zwei Ereignisse in den Mittelpunkt der Sicherheitsüberlegungen gerückt:

  1. Der Verlust der Hauptwärmesenke. In Fukushima wurden durch die Flutwelle die Kühlwasserpumpen und Einlaufbauwerke zerstört. Damit ging die Fähigkeit zur Abfuhr der Nachzerfallswärme verloren. Für sich genommen, schon ein wesentlicher Schritt zur Kernschmelze.
  2. Verlust (nahezu) jeglicher Stromversorgung. Durch die Schnellabschaltung infolge der Erdstöße war die Eigenversorgung weg, durch die großräumigen Verwüstungen durch die Naturkatastrophe, die Stromversorgung über das Netz und durch die Flutwelle wurden die Schaltanlagen und Notstromdiesel zerstört.

Wie hätte sich nun ein ESBWR in einer solchen Ausnahmesituation verhalten? Er verfügt über eine zusätzliche Wärmesenke für den Notfall, die vollständig unabhängig vom normalen Kühlwassersystem funktioniert: Die Außenluft. Der Auslegungsphilosophie folgend, sich nur auf Naturkräfte zu verlassen, handelt es sich dabei um offene „Schwimmbecken“ oberhalb des Sicherheitsbehälters. Das Volumen ist so bemessen, daß es für mindestens 72 Stunden reicht. Die Temperatur ist – unabhängig von den Umweltbedingungen – durch die Verdampfung auf maximal 100 °C begrenzt. Es kann jederzeit – auch von außen durch die Feuerwehr – aus verschiedenen Tanks nachgefüllt werden.

Das nur mit der Schwerkraft betriebene Notkühlsystem ECCS (Emergency Core Cooling System) besteht aus vier voneinander unabhängigen Zügen. In jeweils einem „Schwimmbecken“ oberhalb des Sicherheitsbehälters befinden sich zwei Kondensatoren. Diese bestehen aus je zwei übereinander angeordneten Sammlern, die durch zahlreiche dünne Rohre verbunden sind. Von dem Reaktordruckgefäß steigt eine Leitung zu den Sammlern auf. Im Kondensator kühlt sich das entweichende Dampf/Wassergemisch ab und strömt über den (kalten) Rücklauf wieder dem Reaktordruckgefäß zu. Es entsteht ein natürlicher Kreislauf, der sich selbst antreibt. Im Normalbetrieb ist die „warme“ Dampfleitung stets offen. Jede „kalte“ Rückleitung ist durch je zwei parallele Ventile verschlossen. Aus Gründen der Diversität ist ein Ventil elektrohydraulisch und das jeweils andere pneumatisch über einen Druckgasspeicher betrieben. Die Ventile befinden sich in einer „fail-safe“ Stellung: Während des Betriebs werden sie durch die Kraft der Hydraulik oder des Gases geschlossen gehalten. Geht der Druck weg – aus welchen Gründen auch immer, gewollt oder nicht – geben die Ventile den Weg frei. Wegen der Redundanz, reicht ein Ventil aus, um den gesamten Strom durchzulassen. Da die Kondensatoren und die Rückleitung vollständig mit „kaltem“ Wasser gefüllt sind, rauscht dieses Wasser infolge der Schwerkraft in den Reaktordruckbehälter und der Kondensator saugt dadurch ein „warmes“ Gas- und Dampfgemisch aus dem Reaktorgefäß nach. Ein Naturumlauf ist entfacht. Dieser läuft solange, wie der Kern Nachzerfallswärme produziert und die Außenluft diese Wärme abnimmt.

Wenn das nukleare System irgendwo ein Leck hat, würde irgendwann der Kern trocken fallen. Das entweichende Wasser muß sofort ersetzt werden. Zu diesem Zweck gibt es innerhalb des Sicherheitsbehälters große Wassertanks. Damit aber das Wasser in freiem Fall nachströmen kann, muß zuerst der Druck im System abgebaut werden. Hierfür gibt es 8 Sicherheitsventile, 10 Abblaseventile (die zeitweilig durch pneumatische Antriebe geöffnet werden können) und 8 Druckentlastungsventile unmittelbar am Reaktordruckgefäß. Letztere enthalten verschweißte Membranen, durch die sie dauerhaft dicht und wartungsfrei sind. Wenn sie öffnen müssen, „durchschneidet“ ein Kolben die Dichtung. Dieser Kolben wird durch Gas, welches pyrotechnisch in einem Gasgenerator erzeugt wird, bewegt. Es ist das gleiche Prinzip, wie bei einem „Airbag“ im Auto – ein sehr kleiner „Signalstrom“ reicht zur Zündung aus und erzeugt über die „Sprengkraft“ eine sehr große Gasmenge. Diese Ventile sind so gebaut, daß sie den Weg vollständig frei geben, nicht verstopfen können und sich nicht wieder schließen lassen.

Der Energieabbau und die Kühlung geschieht in mehreren miteinander verknüpften Schritten:

  1. Aus den diversen Abblaseventilen strömt (zumindest am Anfang) ein Dampfstrahl mit hoher Energie und Geschwindigkeit. Dieser wird feinverteilt in Wasserbecken eingeblasen. Diese sog. Kondensationskammern befinden sich unten im Sicherheitsbehälter.
  2. Durch die Kondensation fällt der Dampf in sich zusammen und bildet wieder Wasser. Die Verdampfungswärme geht dabei an das Wasser der Kondensationskammer über. Würde man das Wasser nicht kühlen, wäre irgendwann Schluß damit. Der Zeitraum hängt von der Nachzerfallswärme und dem Wasservolumen ab.
  3. Das Wasser in den Kondensationskammern kann auf verschiedenen Wegen gekühlt werden. Der wichtigste Weg ist über die weiter oben beschriebenen Kondensatoren.
  4. Damit der Reaktorkern stets sicher gekühlt ist, sind die Wasservolumina in den Kondensationskammern und Speichern so bemessen, daß der Kern auch dann unter Wasser bleibt, wenn sich das Wasser im Sicherheitsbehälter ausbreitet. Dieser Zustand kann auch absichtlich herbeigeführt werden.
  5. Um eine Kettenreaktion sicher und dauerhaft zu verhindern, wird zusätzlich aus Speichern borhaltiges (Neutronengift) Wasser eingesprüht.

Der „Supergau“

Im Gegensatz zu den Anfängen der Kernkraftwerkstechnik diskutiert man schon heute im Zulassungsverfahren ganz offensiv das Versagen aller Sicherheitseinrichtungen: Einerseits setzt man sich dabei mit den Auswirkungen der dadurch freigesetzten Radioaktivität auf die Umgebung auseinander und andererseits beschäftigt man sich mit Möglichkeiten diese Auswirkungen trotzdem abzumildern.

Ein typischer Fall ist das Versagen des Sicherheitsbehälters. Man versucht alles erdenkliche zu tun um dies zu verhindern, beschäftigt sich aber trotzdem mit diesem Ereignis. Ein Schritt diesen Unfall abzumildern, ist die gesteuerte Ableitung über Filter und den Abgaskamin. Durch die Kaminhöhe verdünnt sich die Abgaswolke beträchtlich. Durch das Vorschalten von geeigneten Filtern kann die Schadstoffmenge zusätzlich gemindert werden.

Ähnlich verhält es sich mit dem Kern: Durch redundante, passive Kühlsysteme versucht man den Brennstoff und die Spaltprodukte im Reaktordruckgefäß zu halten. Trotzdem untersucht man auch ein Versagen des Druckbehälters. Wie Fukushima gezeigt hat, ist auch beim Versagen der Notkühlung nicht mit einem „China Syndrom“ (Hollywood Phantasie, nach der sich der schmelzende Kern immer weiter in den Untergrund frisst) zu rechnen. Trotzdem geht man von einem Schmelzen des Stahlbehälters wie bei einem Hochofenabstich aus. Die Grube des Reaktorgefässes ist deshalb als „feuerfester Fußboden“ (BiMAC, Basemat Internal Melt Arrest and Coolability device) ausgeführt. Unterhalb einer feuerfesten Schicht befindet sich ein Rohrleitungssystem, welches – quasi wie bei einer Fußbodenheizung – diese Schicht kühlt. Dieser „Fußboden“ ist bezüglich seiner Konstruktion und Leistung für den 4-fachen Kerninhalt ausgelegt. Zusätzlich könnte die Grube mit dem im Sicherheitsbehälter vorhandenem Wasser vollständig geflutet werden, um die Spaltprodukte größtenteils darin zurückzuhalten.

Leistungsregelung

Normalerweise geschieht die Leistungsregelung bei Siedewasserreaktoren über die Steuerstäbe und die Umwälzpumpen. Die Steuerstäbe dienen nur zum Anfahren und bis etwa 50% der Auslegungsleistung. Im Bereich oberhalb 60% wird die Leistung nur noch über die Umwälzpumpen durchgeführt. Die Steuerstäbe dienen dann nur noch zur Kompensation des Abbrands.

Beim ESBWR kann der Reaktor durch langsames ziehen der Steuerstäbe auf Temperatur gebracht werden. Da im Siedebereich Temperatur und Druck miteinander gekoppelt sind, steigt auch der Druck im nuklearen System entsprechend an. Würde man keinen Dampf entnehmen, würde der Druck im „Kessel“ immer weiter ansteigen bis die Sicherheitsventile ansprechen. Natürlich wird so bald wie möglich Dampf entnommen, um die Turbine und das gesamte nukleare System damit aufzuwärmen. Wenn man aber Dampf entnimmt, muß die gleiche Menge durch Speisewasser ersetzt werden. Das Speisewasser wird im Betriebszustand auf 216°C vorgewärmt. Dies geschieht in sechs Stufen. Man entnimmt dazu an bestimmten Stellen der Turbine eine gewisse Menge Dampf. Dies ist sinnvoll, da der jeweils entnommene Dampf bereits Arbeit geleistet hat und sich somit der Wirkungsgrad verbessert. Man nennt diese Strategie „Carnotisierung“.

Der ESBWR hat gegenüber einem normalen Siedewasserreaktor (z. B. ABWR) eine siebte Vorwärmstufe, die mit frischem Dampf aus dem Reaktor beheizt wird. Normalerweise wird sie deshalb umgangen. Wenn man beispielsweise mit dieser Stufe die Speisewassertemperatur auf 252°C erhöht, geht die Leistung des Reaktors – bei gleicher Position der Steuerstäbe – auf 85% zurück. Umgekehrt könnte man die Steuerstäbe etwa so weit einfahren, daß nur noch rund 50% der Auslegungsleistung erzeugt wird. Würde man nun die Speisewassertemperatur auf 180°C absenken, würde sich wieder die ursprüngliche Leistung einstellen. Es ergibt sich somit im Bereich zwischen 50% bis 100% Leistung ein umfangreiches Feld, in dem sich die Leistung durch Kombination von Steuerstabstellungen und Speisewassertemperatur regeln läßt.

Die physikalische Ursache ist bei allen Siedewasserreaktoren die Abhängigkeit der Abbremsung der Neutronen von der Dichte des Moderators. Bei Reaktoren mit Umwälzpumpen wird die Dichte durch „ausspülen“ von Dampfblasen aus den Brennelementen erhöht, bei Naturumlauf durch das Absenken der mittleren Temperatur.

Wegen seiner Leistung von 1600 MWel. dürfte dieser Reaktor eher in der Grundlast eingesetzt werden. Gleichwohl ist ein täglicher Lastfolgebetrieb vorgesehen und genehmigt. So sind z. B. die Steuerstäbe für eine Betriebsdauer von 10 Jahren bei täglichem Lastwechsel zugelassen. Idealerweise fährt man mit diesem Reaktor aber mit konstant volle Leistung. Wegen seiner Stabilität und seiner passiven Notkühlung ist er sogar für den Betrieb durch nur einen Bediener konstruiert und zugelassen!

Ausblick

Im nächsten Teil werden die Schwerwasserreaktoren vorgestellt. Es ist bereits beschlossen, einen weiteren solchen Reaktor in Kooperation mit China, in Rumänien zu errichten.

Reaktortypen in Europa – Teil4, ABWR

Der ABWR (Advanced Boiling Water Reactor) ist eine Entwicklung von Hitachi und Toshiba in Zusammenarbeit mit General Electric. Er ist der einzige Reaktor der Generation III, der bereits über mehr als zehn Jahre Betriebserfahrung verfügt.

Geschichte

Es befinden sich bereits vier Reaktoren in Japan in Betrieb (Kashiwazaki-Koriwa 5+6, Hamaoka 5 und Shika 2), und drei weitere in Bau (Shimane und Langmen 1+2 in Taiwan). Die beiden ersten Reaktoren Kashiwazaki gingen 1996 und 1997 nach nur 36 Monaten Bauzeit (vom ersten Beton bis zur Beladung) ans Netz. Es ist in Anbetracht der vertrackten Situation in Grossbritannien daher nicht verwunderlich, daß man sich für den Bau von je drei Reaktoren in Wylfa Newyd und Oldbury-on-Severn durch das Horizon-Konsortium stark macht. Allerdings ist das Genehmigungsverfahren noch nicht abgeschlossen, sodaß man erst von einer Inbetriebnahme in der ersten Hälfte des nächsten Jahrzehntes ausgehen kann. Gleichwohl ist der Zeitdruck für erforderliche Neubauten scheinbar so groß geworden, daß man noch dieses Jahr mit der Baustellenvorbereitung beginnen will, damit man nach Erhalt aller Genehmigungen (erwartet 2018/2019) unverzüglich mit dem nuklearen Teil beginnen kann. Grundsätzliche Schwierigkeiten werden nicht gesehen, da die Genehmigungen für die USA, Japan und Taiwan bereits vollständig vorliegen und auf praktische Betriebserfahrungen seit 1996 in Japan verwiesen werden kann. Es sind lediglich die besonderen Erfordernisse der EU (insbesondere Flugzeugabsturz) einzuarbeiten und die „Post-Fukushima-Erfordernisse“ nachzuweisen. Es könnte durchaus sein, daß dieser Reaktortyp (UK-ABWR) noch in ganz Europa auf die Überholspur geht.

Warum Siedewasserreaktoren?

Wenn man ein großes Kraftwerk bauen will, bleibt praktisch nur der Dampfkreislauf. Wasser wird unter hohem Druck verdampft und verrichtet in einer Turbine Arbeit, durch die ein Generator angetrieben wird. Wenn man ohnehin Wasser als Arbeitsmittel für die Turbine braucht, warum nicht auch gleich als Arbeitsmittel (Kühlung und Moderator) im Reaktor einsetzen? Wenn man nun noch den Dampf in einem „einfachen Kessel“ durch Kernspaltung erzeugt, hat man einen Siedewasserreaktor. Einfacher geht nicht. Allerdings ist eine solche Konstruktion wegen der großen freien Flächen als Schiffsantrieb gänzlich ungeeignet. Bei einem stampfenden und rollenden Schiff im Seegang, hätte man bereits Probleme überhaupt eine vernünftige Regelung zu konzipieren. Zuerst war aber der Drang nach einem U-Boot, für das man den Druckwasserreaktor erschaffen mußte. Einmal fertig entwickelt – staatliche Förderung oder der Krieg ist der Vater aller Dinge – konnte man ihn schnell zu einem konventionellen Kraftwerk umstricken.

Bei der Diskussion von Vor- und Nachteilen beider Konzepte, wird von Laien oft der „nicht radioaktive Sekundärkreislauf“ als zusätzlicher Sicherheitsvorteil des Druckwasserreaktors angeführt. Beide Kreisläufe sind durch die Rohre in den Dampferzeugern physikalisch voneinander getrennt. Wasser – als H2 O – wird durch die Neutronen im Reaktor angegriffen: Teilweise zerschlagen sie die Moleküle in Wasserstoff und Sauerstoff (Wasserchemie und Korrosion) und teilweise fangen die Atome mit den ihnen charakteristischen Wahrscheinlichkeiten auch Neutronen ein und wandeln sich dadurch um. Unter den Gesichtspunkten des Strahlenschutzes ist hierbei die Umwandlung von Sauerstoff in radioaktiven Stickstoff die übelste Variante. Die gebildeten N16 – Atome zerfallen mit einer Halbwertszeit von 7,13 s wieder in Sauerstoff und senden dabei eine γ.-Strahlung von 10,4 MeV aus. Für den Arbeitsschutz ist das jedoch kein besonderes Problem, wenn man die Dampfleitungen und die Turbine mit einer entsprechenden Abschirmung versieht. Selbst bei einem Schaden an den Brennelementen können nur gasförmige Spaltprodukte in den Dampf gelangen – ist doch gerade die Verdampfung ein probates Mittel zur Reinigung von Flüssigkeiten. Aus den Jahrzehnten Betriebserfahrung weltweit, hat man genug Erfahrungen gesammelt und Gegenmaßnahmen entwickelt. So ist beispielsweise das Spülen der Kondensatoren mit Frischluft vor Wartungsarbeiten ein Mittel, die Belastung der Arbeiter z. B. durch radioaktives Jod drastisch zu senken. Heute liegen Siedewasserreaktoren auf den untersten Plätzen bei der gemessenen Strahlenbelastung. Schließlich gilt auch hier wieder der Grundsatz: Je weniger vorhanden ist, desto weniger muß repariert und gewartet werden.

Der ABWR ist der Porsche unter den Kraftwerken

Die momentane Leistung eines Leichtwasserreaktors hängt im Betrieb von der Dichte des Wassers ab. Je höher die Dichte ist, um so mehr nimmt die Wahrscheinlichkeit für einen Zusammenstoß der Neutronen mit einem Wasserstoffatom zu. Die sich dadurch ergebende Abbremsung ist aber die entscheidende Voraussetzung für eine weitere Spaltung (sog. Moderation). Bei dem Sättigungszustand im ABWR (70,7 bar) beträgt der Dichteunterschied zwischen Wasser und Dampf rund 0,05. Mit anderen Worten: Sind ungefähr erst 5% der Wassermasse in einem Kanal verdampft, ist dieser praktisch schon vollständig mit Dampf gefüllt. Damit man überhaupt eine ausreichende Moderation erzielen kann – gemeint ist, genug flüssiges Wasser im Kanal vorhanden ist – sind nahezu 20 Umläufe erforderlich. Hier kommen die internen Umwälzpumpen ins Spiel: Der ABWR hat davon 10 Stück mit je 8300 m3/h Förderleistung. Sie können die Dampfblasen förmlich aus den Kanälen herausspülen und sind somit das „Gaspedal“ des Siedewasserreaktors. Im Bereich von ca. 65% bis 100% übernehmen nur sie die Leistungsregelung. Die Leistung des Reaktors hängt quasi an der Pumpendrehzahl. Der ABWR ist für Leistungsänderungen von 1% pro Sekunde zugelassen. Ein Gas und Dampf Kombikraftwerk wirkt dagegen wie ein alter Trabant. Es ist lustig zu beobachten, wie manche „Umweltschützer“ schon die Zukunft ihrer „CO2-freien Stromwirtschaft“ in der Kombination aus Kernkraftwerken und Windmühlen auf dem Meer sehen. Die Propaganda von den notwendigen „flexiblen Gaskraftwerken“ wird jedenfalls nur noch von bildungsfernen Kreisen nachgeplappert. In GB sieht umgekehrt die Wind-auf-dem-Meer-Lobby in neuen Kernkraftwerken bereits die einzige Überlebenschance. Deutschland demonstriert ja gerade eindrucksvoll, wie hoch die Folgekosten (Regelung, Netzausbau, Speicher usw.) sind, wenn man sich als „Windpark in der Nordsee“ nicht schmarotzend an ein Kernkraftwerk anhängen kann. Bleibt nur abzuwarten, bis die Kapitalgeber erkannt haben, wieviel Uranbrennstoff man für die Baukosten eines Windparks kaufen könnte…

Der Reaktordruckbehälter

Der ABWR ist das vorläufige Endstadium einer jahrzehntelangen Evolution der Siedewasserreaktoren: Es ist gelungen, alle zur Dampferzeugung notwendigen Baugruppen in einen Behälter mit einem Durchmesser von 7,4 m und einer Höhe von 21 m unter zu bringen. Dies erlaubt nicht nur die Fertigung in einer Fabrik, sondern ist auch ein wesentlicher Grund für den enormen Sicherheitsgewinn. Mußte man bei der „Fukushima-Generation“ noch von etwa einer Kernschmelze in 20.000 Betriebsjahren ausgehen, beträgt die Häufigkeit beim ABWR nur noch eine Kernschmelze in über sechs Millionen Betriebsjahren. Damit kein Mißverständnis entsteht: Wahrscheinlichkeit heißt nichts anderes als, es kann – wie beim Lotto – schon morgen oder auch nie passieren. Lediglich bei sehr großen Stückzahlen (Betriebsjahre, nicht Kalenderjahre) ergibt sich der Durchschnittswert. Gleichwohl bilden solche Berechnungen den Sicherheitsgewinn zwischen zwei Anlagen sehr genau ab. Außerdem ist eine Kernschmelze – wie Harrisburg und Fukushima gezeigt haben – zwar eine sehr teure, aber relativ harmlose (keine Todesopfer!) Angelegenheit.

Je weniger Bauteile (Pumpen, Rohrleitungen, Ventile, Dampferzeuger etc.) man hat, je weniger kann kaputt gehen. Je weniger dieser Bauteile räumlich verteilt sind, je geringer ist außerdem die Strahlenbelastung für das Personal.

Der Reaktordruckbehälter ist für alle Einbauten ein sehr sicherer Aufbewahrungsort. Um die Sicherheit zu steigern, ist das Mittelteil, in dem sich der Reaktorkern befindet, aus einem Stück geschmiedet (keine Schweißnähte). Alle Anschlüsse (Speisewasser, Dampf, Notkühlung) befinden sich oberhalb des Reaktorkerns, damit der Kern immer unter Wasser bleibt, auch wenn schwere Leckagen in anderen Baugruppen auftreten.

Der Reaktorkern

Der Reaktorkern bei einem ABWR mit einer Leistung von 1350 MWel besteht aus 872 Brennelementen in einer 10 x 10 Anordnung der Brennstäbe. Jedes Brennelement ist ein viereckiges Rohr von 4,2 m Länge. Das Wasser kann nur von unten nach oben strömen und jedes Brennelement ist für sich wärmetechnisch ein abgeschlossenes System. Der Kasten aus Zircaloy ist allerdings für Neutronen nahezu vollkommen durchlässig. Dadurch ergibt sich neutronenphysikalisch die Verknüpfung mit allen Nachbarelementen.

Jedes Brennelement in 10 x 10 = 100 Anordnung besitzt 78 Brennstäbe von ganzer Länge, 14 teilgefüllte Brennstäbe und 2 dicke Wasserstäbe. Berücksichtigt man noch eine unterschiedliche Anreicherung bzw. Vergiftung der einzelnen Brennstofftabletten aus denen die Brennstäbe zusammengefügt werden, sowie den unterschiedlichen Abbrand im Betrieb, ergibt sich eine schier unendliche Kombinationsmöglichkeit. Sinn und Zweck ist eine möglichst gleichmäßige radiale und axiale Belastung über die gesamte Betriebszeit. Durch geschickte Ausnutzung des Neutronenspektrums während des Betriebs, kann man heute in einem Siedewasserreaktor gegenüber einem Druckwasserreaktor mit rund 15% weniger Verbrauch an Natururan auskommen. Lastfolgebetrieb ist mit beliebigen Tagesprofilen möglich. Die Ladezyklen der Brennelemente können flexibel zwischen 18 und 24 Monaten auf die Bedürfnisse des jeweiligen Energieversorgers abgestimmt werden. Es kann sowohl Plutonium als Mischoxid eingesetzt werden, wie auch die Konversionsrate („brüten“ von Plutonium aus Uran) auf Werte von nahezu 1 (Druckwasserreaktor rund 0,6) getrieben werden.

Die Steuerstäbe

Die Brennelemente sind nicht dicht nebeneinander gestapelt, sondern zwischen ihnen befindet sich ein genau definierter Wasserspalt. In diesen Spalten fahren die Steuerstäbe nach oben. Die 205 Steuerstäbe sind kreuzförmig, sodaß jeweils vier Brennelemente mit ihnen eine Einheit bilden. Sie bestehen aus Edelstahl. In ihnen sind mit Borkarbid oder Hafnium (Neutronengifte) gefüllte und gasdicht verschweißte Röhren eingelassen.

Die Steuerstäbe können vollständig ausgefahren werden. Sie ziehen sich dann in den Raum unterhalb des Kerns, aber innerhalb des Reaktordruckgefässes zurück. Jeder Steuerstab wird durch einen elektrischen Schrittmotor unterhalb des Reaktordruckbehälters angetrieben. Jeder Steuerstab kann damit einzeln und zentimetergenau verfahren werden. Steuerungstechnisch sind die einzelnen Stäbe zusätzlich in Gruppen zusammengefaßt. Ihre Stellung kann damit allen Betriebszuständen und den momentanen Neutronenflüssen angepaßt werden. Hierfür sind 52 feste Messeinrichtungen im Reaktorkern vorhanden. Zusätzlich wird der Abbrand noch auf einem Computer mitgerechnet.

Wird eine Schnellabschaltung ausgelöst, werden alle Steuerstäbe in höchstens 1,7 Sekunden vollständig von unten in den Kern eingeschossen. Zu diesem Zweck werden die elektrischen Antriebe durch hydraulische überbrückt. Die Energie wird aus ständig geladenen Wasser/Stickstoff-Druckspeichern bezogen.

Die Dampftrocknung

Aus den Brennelementen tritt oben ein Gemisch aus Wasser und Dampf im Sättigungszustand aus. Bei diesem Druck ist zwar weniger als 15% der Masse des unten in die Brennelemente eingetretenen Wassers verdampft, dies führt aber zu einem Volumenanteil des Dampfes von über 40%. Dieser Dampf muß abgeschieden werden und das Wasser über den Ringraum des Kerns wieder zum Eintritt zurückgeleitet werden. Zusätzlich wird der entzogene Dampf noch durch „kaltes“ Speisewasser ersetzt.

Die Wasserabscheider bestehen aus dreifach hintereinander geschalteten Elementen. In ihnen wird das Wasser rausgeschleudert und fällt durch sein Gewicht nach unten zurück. Der Dampf strömt weiter nach oben.

Ganz oben im Druckbehälter, befinden sich die Dampftrockner. In ihnen wird der Sattdampf durch Blechpakete umgeleitet. Hier werden nicht nur feinste Tröpfchen aufgehalten, sondern durch die Reibung entsteht zusätzliche Wärme, die den Dampf geringfügig überhitzt. Als Nebeneffekt verlängert sich die Verweilzeit des Dampfes im Reaktordruckgefäß durch die langen Wege. Ein beträchtlicher Teil des gebildeten radioaktiven Stickstoffs (N16. mit t ½ = 7,13 s) kann bereits dort zerfallen.

Die Notkühlung

Der ABWR verfügt über drei redundante und räumlich voneinander getrennte Notkühlsysteme. Dadurch steigt nicht nur die Sicherheit, sondern auch die Verfügbarkeit: Wenn während des Betriebs ein Notkühlsystem gewartet wird, stehen immer noch zwei zur Verfügung.

Ein Siedewasserreaktor ist eine robuste Konstruktion:

  • Der Wasserinhalt im Reaktordruckgefäß ist größer als bei einem Druckwasserreaktor. Dies verschafft Reaktionszeit.
  • Die Brennelemente sind für einen dauerhaften Siedezustand geschaffen. Die Gefahr in den Zustand des Filmsiedens – dabei entsteht eine isolierende Dampfchicht auf dem Brennstab – zu gelangen, ist wesentlich geringer und damit eine Überhitzung (z. B. Teilschmelze von Brennstäben) unwahrscheinlicher.
  • Da die Dampferzeugung bereits im Reaktor stattfindet, entfallen eine Menge potentieller Leckstellen. Die Gefahr eines größeren Kühlmittelverlustes reduziert sich auf die Frischdampf- und Speisewasserleitungen.

Die Notkühlung vollzieht sich in der Nachspeisung von ausreichend Kühlwasser. Der Wasserstand muß stets oberhalb des Reaktorkerns liegen. Ist ein auftretendes Leck nur klein, bleibt der Druck im Reaktordruckgefäß noch relativ hoch. Jede Notkühlung verfügt deshalb über eine Hochdruck-Einspeisung. Sollte diese Versagen, kann eine Druckabsenkung auch bewußt über die Abblaseventile herbeigeführt werden. Ist der Druck – aus welchen Gründen auch immer – weit genug abgefallen, erfolgt die Nachspeisung aus dem Niederdrucksystem. Damit der Druck im Containment nicht unnötig ansteigt, wird der Dampf in Kondensationskammern niedergeschlagen. Das sind große, mit kaltem Wasser gefüllte Kammern. Die Wasserfüllung wird durch eine Wasseraufbereitung stets auf Speisewasserqualität gehalten, sodaß das Kühlwasser gleichzeitig zur Nachspeisung dienen kann. Da sich diese Kammern innerhalb des Containment befinden, ist diese Wasserreserve sehr gut geschützt. Das Wasser wird beständig über die Kühlkreisläufe des Kraftwerks auf einer niedrigen Temperatur gehalten.

Die Eigenversorgung

Solange alles normal läuft, wird die gesamte vom Kraftwerk benötigte elektrische Energie von der eigenen Produktion abgezweigt. Wenn das Netz kurzfristig zusammenbricht – Blitzschlag, Sturmschaden, Schaltfehler etc. – kann die Regelung dies ohne Schnellabschaltung beherrschen: Der Dampf wird an der Turbine vorbei, direkt in die Kondensatoren geleitet. Gleichzeitig nimmt die Regelung die Leistung des Reaktors über die Umwälzpumpen und die Steuerstäbe sanft zurück. Das Kraftwerk läuft nun im Leerlauf und erzeugt nur noch Strom für den Eigenbedarf. Kann das Netz schnell wieder hergestellt werden, kann der Betrieb ohne große Verzögerung wieder aufgenommen werden.

Liegt der Schaden beispielsweise im Generator, kann die Stromversorgung aus dem Netz aufrecht erhalten werden. Ist das Netz ebenfalls zusammengebrochen (Fukushima) müssen die Notstromdiesel übernehmen. Hierfür gibt es drei Notstromdiesel in drei voneinander hermetisch getrennten (Feuerschutz und wasserdicht gegen Wasser von außen und innen) Bereichen innerhalb des Reaktorgebäudes (Schutz gegen z. B. Flugzeugabsturz, Erdbeben etc.). Versagen auch diese, gibt es noch eine Gasturbine im separaten „Notstandsgebäude“ (Post-Fukushima). Für alle Gleichstromverbraucher (z. B. Regelung, Computer etc.) gibt es eine überdimensionierte (Post-Fukushima) Batterieanlage zur unterbrechungsfreien Stromversorgung.

Sollten alle Sicherheitssysteme versagen, gibt es noch eine weitere Ebene für alle nicht vorhersehbaren Ereignisse. Unterhalb des Reaktordruckbehälters gibt es einen sog. „Core-Catcher“ auf dem sich ein eventuell austretendes Corium ausbreiten könnte (UK-ABWR). Der gesamte Raum unterhalb des Reaktors könnte durch das Wasser aus den Kondensationskammern zusätzlich geflutet werden. Sollte der Druck im Sicherheitsbehälter unzulässige Werte erreichen, kann das Gas kontrolliert und gefiltert über den Schornstein abgelassen werden. Dies ist für alle Menschen, die von einem nicht kalkulierbaren „Restrisiko“ ausgehen. Allerdings darf nicht erwartet werden, daß dadurch rechtgläubige „Atomkraftgegner“ von ihrem Kampf abgehalten werden. Schließlich hat in Fukushima eine der schwersten Naturkatastrophen in der Menschheitsgeschichte nur zum Totalschaden von vier Reaktoren aus den Anfängen der Kerntechnik geführt – ohne ein einziges zusätzliches Todesopfer zu verursachen. Genau die ABWR hingegen, haben durch dieses außergewöhnlich schwere Erdbeben keinen Schaden genommen. Ein schlimmer, aber bestens bestandener Praxistest. Wer also immer noch glaubt, in Deutschland ginge es bei Fragen der Kerntechnik nicht um vorgeschobene politische Interessen, dem ist nicht zu helfen.

Ausblick

Im nächsten Teil wird der ESBWR als bisher sicherheitstechnisches „High Light“ der Leichtwasserreaktoren behandelt. Er ist in Europa noch nicht in der Diskussion, weil er gerade erst den „Goldstandard der Genehmigungsverfahren“ – eine Zulassung durch die US-Behörden – erlangt. Dies kann sich aber sehr schnell ändern, wie die neusten Entwicklungen z. B. in Indien zeigen.

Reaktortypen in Europa – Teil1, Einleitung

In Europa werden bereits einige Kernkraftwerke neu errichtet bzw. stehen kurz vor einer Auftragsvergabe. Es scheint daher angebracht, sich ein bischen näher mit den unterschiedlichen Typen zu befassen und deren (technische) Unterschiede zu erläutern.

Warum überwiegend Leichtwasserreaktoren?

Es dreht sich um größere Kraftwerke. Oberhalb von etlichen hundert Megawatt ist für Wärmekraftwerke nur ein Dampfkreislauf möglich – egal, ob mit Kohle, Gas oder Kernspaltung als Wärmequelle. Dieselmotoren (bis max. 70 MW) oder Gasturbinen (bis max. 350 MW) sind für solche Blockgrößen ungeeignet. Selbst bei gasgekühlten oder mit Flüssigmetallen gekühlten Reaktoren, besteht der eigentliche Arbeitsprozess aus einem Wasserdampfkreisprozeß: Wasser wird unter hohem Druck verdampft und treibt anschließend eine Turbine mit Generator an. Wenn man also ohnehin Dampf braucht, warum nicht gleich damit im Reaktor anfangen?

Es muß allerdings eine Voraussetzung erfüllt sein: Man muß über Uran mit einem Anteil von etwa 2 bis 5% Uran-235 bzw. Plutonium (MOX) verfügen. Beides kommt in der Natur nicht vor. Will man Natururan verwenden, ist man auf schweres Wasser (Deuterium) oder Kohlenstoff (Reaktorgraphit) angewiesen, um überhaupt eine selbsterhaltende Kettenreaktion zu erhalten. Will man andererseits die schwereren Urankerne bzw. Minoren Aktinoide direkt spalten, darf man die bei der Spaltung freigesetzten Neutronen möglichst gar nicht abbremsen und muß deshalb zu Helium oder flüssigen Metallen als Kühlmittel übergehen. Noch ist dieser Schritt nicht nötig, da es genug billiges Natururan gibt und andererseits (noch nicht) die Notwendigkeit zur Beseitigung der langlebigen Bestandteile des sog. „Atommülls“ besteht. Das zweite ist ohnehin eine rein politische Frage. Die sog. Leichtwasserreaktoren werden deshalb auch in den kommenden Jahrhunderten der bestimmende Reaktortyp bleiben.

Die Temperaturfrage

Je höher die Betriebstemperaturen sind, um so höher die Kosten und Probleme. Dieser Grundsatz gilt ganz allgemein. Bis man auf Kernenergie in der chemischen Industrie z. B. zur „Wasserstoffgewinnung“ angewiesen sein wird, wird noch eine sehr lange Zeit vergehen. Solche Anwendungen lassen sich einfacher und kostengünstiger mit fossilen Brennstoffen realisieren. Abgesehen davon, daß die Vorräte an Kohle, Gas und Öl noch für Jahrhunderte reichen werden, kann man beträchtliche Mengen davon frei setzen, wenn man bei der Stromerzeugung auf Kernenergie übergeht. Diesen Weg hat China bereits angefangen.

Ein oft gehörtes Argument ist der angeblich geringe Wirkungsgrad von Leichtwasserreaktoren. Richtig ist, daß der thermodynamische Wirkungsgrad um so besser ist, je höher die Betriebstemperatur ist. Er liegt bei den heute modernsten Steinkohlekraftwerken bei etwa 46% und bei Braunkohlekraftwerken bei 43%. Demgegenüber erscheint der Wirkungsgrad eines modernen Druckwasserreaktors mit 37% als gering. Es gibt jedoch zwei wichtige Aspekte zu berücksichtigen:

  • Die hohen Wirkungsgrade der Kohlekraftwerke erfordern solche Drücke und Temperaturen, daß die (derzeitigen) technologischen Grenzen erreicht, wenn nicht sogar überschritten sind. Der noch vor wenigen Jahren propagierte Wirkungsgrad von 50% ist in weite Ferne gerückt. Die Werkstoff- und Fertigungsprobleme – und damit die Kosten – nehmen mit jedem weiteren Grad überproportional zu. Kombiprozesse (z. B. Gasturbine mit Abhitzekessel) erfordern hochwertige Brennstoffe, wie Erdgas oder Mineralöle. Will man solche erst aus Kohle gewinnen (Kohlevergasung), sackt der Gesamtwirkungsgrad wieder auf die alten Werte ab.
  • Der thermodynamische Wirkungsgrad ist ohnehin nur für Ingenieure interessant. Entscheidend sind im wirklichen Leben nur die Herstellungskosten des Produktes. Hier gilt es verschiedene Kraftwerke bezüglich ihrer Bau- und Betriebskosten zu vergleichen. Es lohnt sich nur eine Verringerung des Brennstoffverbrauches, wenn die dadurch eingesparten Kosten höher als die hierfür nötigen Investitionen sind. Bei den geringen Uranpreisen ein müßiges Unterfangen. Gleiches gilt für die ohnehin geringen Mengen an Spaltprodukten („Atommüll“) als Abfall, der langfristig (nicht Millionen Jahre!) gelagert werden muß.

Der Betriebsstoff Wasser

Wasser erfüllt in einem Kernkraftwerk drei Aufgaben gleichzeitig: Moderator, Kühlmittel und Arbeitsmedium. Es bremst die bei der Kernspaltung frei werdenden Neutronen auf die erforderliche Geschwindigkeit ab, führt in nahezu idealer Weise die entstehende Wärme ab und leistet als Dampf in der Turbine die Arbeit. Vergleicht man die Abmessungen gasgekühlter Reaktoren mit Leichtwasserreaktoren, erkennt man sofort die überragenden Eigenschaften von Wasser. Es ist kein Zufall, daß heute z. B. alle Reaktoren in Atom-U-Booten ausnahmslos Druckwasserreaktoren sind. Je kompakter ein Reaktor ist, um so kleiner ist das notwendige Bauvolumen. Je kleiner ein Gebäude sein muß, desto geringer können die Baukosten sein.

Der Reaktorkern

Der Kern (Core) ist der eigentliche nukleare Bereich in einem Kernkraftwerk, in dem die Kernspaltung statt findet. Er sollte möglichst kompakt sein. Er besteht aus hunderten von Brennelementen, die wiederum aus jeweils hunderten von Brennstäben zusammengesetzt sind. Ein Brennstab ist ein mit Uranoxid gefülltes, bis zu fünf Meter langes, dabei aber nur etwa einen Zentimeter dickes Rohr. Ein solcher Spagetti besitzt natürlich kaum mechanische Stabilität (z. B. bei einem Erdbeben) und wird deshalb durch diverse Stützelemente zu einem Brennelement zusammengebaut. Erst das Brennelement ist durch die genaue Dimensionierung und Anordnung von Brennstäben und wassergefüllten Zwischenräumen das eigentliche Bauelement zur Kernspaltung. Die einzuhaltenden Fertigungstoleranzen stehen bei einem solchen Brennelement einer mechanischen „Schweizer Uhr“ in nichts nach.

Der Brennstab ist das zentrale Sicherheitselement – gern auch als erste von drei Barrieren bezeichnet – eines Kernreaktors. Der Brennstoff (angereichertes Uran oder Mischoxid) liegt in einer keramischen Form als Uranoxid vor. Dies ist eine chemisch und mechanisch äußerst stabile Form. Der Brennstab soll alle „gefährlichen“ Stoffe von der ersten bis zur letzten Stunde seiner Existenz möglichst vollständig zurückhalten. Er ist chemisch so stabil, daß er in der Wiederaufarbeitungsanlage nur in heißer Salpetersäure aufzulösen ist. Grundsätzlich gilt: Je besser er die Spaltprodukte und den Brennstoff zurückhält, um so geringer ist bei einem Störfall die Freisetzung. Wohl gemerkt, Freisetzung innerhalb des Druckgefäßes, noch lange nicht in die Umwelt! Deshalb bezeichnet man den Brennstab auch als erste Barriere, die Schadstoffe auf ihrem langen Weg in die Umwelt überwinden müßten.

In dem Brennstab findet die eigentliche Kernspaltung statt. Fast die gesamte Energie wird genau an diesem Ort frei. Die bei der Spaltung frei werdenden Neutronen müssen nun (fast) alle aus dem Brennstab raus, rein in den genau definierten Wasserspalt zwischen den Brennstäben um dort abgebremst zu werden und wieder zurück in einen Brennstab, um dort die nächste Spaltung auszulösen. Es geht für die Neutronen (fast) immer mehrere Male durch die Brennstabhülle. Sie darf deshalb möglichst keine Neutronen wegfangen. Zirkalloy hat sich zu diesem Zweck als idealer Werkstoff für die Hüllrohre erwiesen. Diese Rohre haben jedoch bei einem schweren Störfall (TMI und Fukushima) eine fatale Eigenschaft: Sie bilden bei sehr hohen Temperaturen im Kontakt mit Wasserdampf Wasserstoffgas, der zu schweren Explosionen führen kann. Wohl jedem, sind die Explosionen der Kraftwerke in Fukushima noch in Erinnerung.

Bei einem Reaktorkern hat die Geometrie entscheidende Auswirkungen auf die Kernspaltung. Bei einer Spaltung im Zentrum des Kerns haben die frei werdenden Neutronen einen sehr langen Weg im Kern und damit eine hohe Wahrscheinlichkeit, eine weitere Spaltung auszulösen. Neutronen, die am Rand entstehen, haben demgegenüber eine hohe Wahrscheinlichkeit einfach aus dem Kern heraus zu fliegen, ohne überhaupt auf einen weiteren spaltbaren Kern zu treffen. Sie sind nicht nur für den Reaktor verloren, sondern können auch schädlich sein (z. B. Versprödung des Reaktordruckgefäßes oder zusätzlicher Strahlenschutz). Es gibt hierfür zahlreiche Strategien, dem entgegen zu wirken: Unterschiedliche Anreicherung, Umsetzung im Reaktor, abbrennbare Neutronengifte, Reflektoren etc. Verschiedene Hersteller bevorzugen unterschiedliche Strategien.

Brennstäbe

Die Brennstäbe müssen einige sich widersprechende Anforderungen erfüllen:

  • Je dünnwandiger die Hüllrohre sind, desto weniger Neutronen können dort eingefangen werden und je kleiner muß die treibende Temperaturdifferenz innen zu außen sein, damit die enormen Wärmemengen an das Kühlwasser übertragen werden können. Je dünner aber, je geringer die Festigkeit und die Dickenreserve gegen Korrosion.
  • Der Brennstoff selbst soll möglichst stabil sein. Uranoxid erfüllt diesen Anspruch, hat aber eine sehr schlechte Wärmeleitfähigkeit. Die Brennstäbe müssen deshalb sehr dünn sein, was nachteilig für ihre mechanische Stabilität ist. Es kann bei Leistungssprüngen sehr schnell zum Aufschmelzen im Innern des Brennstoffes kommen, obwohl es am Rand noch recht kalt ist. Dadurch kommt es zu entsprechenden Verformungen und Ausgasungen, die sicher beherrscht werden müssen.
  • Das umgebende Wasser ist nicht nur Moderator, sondern auch Kühlung für den Brennstab. Eine ausreichende Kühlung ist nur durch eine Verdampfung auf der Oberfläche möglich. Kernreaktoren sind die „Maschinen“ mit der höchsten Leistungsdichte pro Volumen überhaupt. Das macht sie so schön klein, verringert aber auch die Sicherheitsreserve bei einem Störfall. Fallen sie auch nur einen Augenblick trocken, reicht selbst bei einer Schnellabschaltung die Nachzerfallswärme aus, um sie zum Glühen oder gar Schmelzen zu bringen. In dieser Hitze führt die Reaktion der Brennstoffhülle mit dem vorhandenen Dampf zur sofortigen Zersetzung unter Wasserstoffbildung. Beides geschah in den Reaktoren von Harrisburg und Fukushima.
  • Der Zwischenraum mit seiner Wasserfüllung als Moderator erfüllt eine wichtige Selbstregelfunktion. Damit überhaupt ausreichend Kerne gespalten werden können, müssen die Neutronen im Mittel die „richtige“ Geschwindigkeit haben. Diese wird durch den Zusammenstoß mit einem Wasserstoffatom erreicht. Damit dies geschehen kann, müssen sie eine gewisse Anzahl von Wassermolekülen auf ihrem Weg passiert haben. Da die Spalte geometrisch festgeschrieben sind, hängt die Anzahl wesentlich von der Dichte ab. Mit anderen Worten: Vom Verhältnis zwischen Dampf und Wasser im Kanal. Macht die Leistung einen Sprung, verdampft mehr Wasser und die Dichte nimmt ab. Dadurch werden weniger Neutronen abgebremst und die Anzahl der Spaltungen – die der momentanen Leistung entspricht – nimmt wieder ab.
  • Der Brennstoff wird bei Leichtwasserreaktoren nur in der Form kompletter Brennelemente gewechselt. Da aber kontinuierlich Spaltstoff verbraucht wird, muß am Anfang eine sog. Überschußreaktivität vorhanden sein. Wenn am Ende des Ladezyklus noch so viel Spaltstoff vorhanden ist, daß eine selbsterhaltende Kettenreaktion möglich ist, muß am Anfang zu viel davon vorhanden gewesen sein. Dieses zu viel an Spaltstoff, muß über sog. Neutronengifte kompensiert werden. Das sind Stoffe, die besonders gierig Neutronen einfangen und sie somit einer weiteren Spaltung entziehen. Je nach Reaktortyp kann das durch Zusätze im Brennstoff oder Kühlwasser geschehen.
  • Die Leistungsregelung eines Reaktors geschieht hingegen über Regelstäbe, die in Leerrohre in den Brennelementen eingefahren werden können. Die Regelstäbe bestehen ebenfalls aus Materialien, die sehr stark Neutronen einfangen. Fährt man sie tiefer ein, fangen sie mehr Neutronen weg und die Anzahl der Spaltungen und damit die Leistung, wird geringer. Zieht man sie heraus, können mehr Neutronen ungestört passieren und die Leistung steigt. Bei einer Schnellabschaltung werden sie alle – möglichst schnell – voll eingefahren.

Die eigentliche Stromerzeugung

In einem Kernkraftwerk wird – wie in jedem anderen Kraftwerk auch – die elektrische Energie durch einen Generator erzeugt. Dieser Generator wird in einem Kernkraftwerk durch eine sogenannte Nassdampfturbine angetrieben. Das ist ein wesentlicher Unterschied zu einem fossil befeuerten Kraftwerk. Bei denen wird möglichst heißer Dampf (bis 580 °C) auf die Turbine geschickt. Dieser wird nach einer gewissen Arbeitsleistung sogar wieder entnommen und noch einmal im Kessel neu erhitzt (z. B. Zwischenüberhitzung bei 620 °C). Prinzipiell erhöhen diese Maßnahmen den Wirkungsgrad und machen vor allem die Turbine kleiner und preiswerter.

Das Hauptproblem einer Nassdampfmaschine sind die großen Dampfvolumina und der Wassergehalt des Dampfes. Turbinen von Leichtwasserreaktoren haben üblicherweise einen Hochdruck und drei doppelflutige Niederdruckstufen auf einer gemeinsamen Welle. Trotzdem sind die Endstufen damit über 2 m lang und drehen sich mit Überschallgeschwindigkeit. Dadurch wirken auf jedes Blatt Fliehkräfte von über 500 to. In den Kondensatoren herrscht Hochvakuum, wodurch der Dampf mit der zugehörigen Schallgeschwindigkeit strömt. Die sich bereits gebildeten Wassertröpfchen wirken wie ein Sandstrahlgebläse auf die Turbinenschaufeln. Grundsätzlich gilt, je „kälter“ man mit dem Dampf in die Turbinenstufe rein geht, desto höher wird der Wasseranteil bei vorgegebenem Enddruck.

Die Entwässerung ist bei einer Nassdampfmaschine sehr aufwendig und damit teuer. Man versucht möglichst viel Wasser aus den Leitstufen abzusaugen und verwendet auch noch zusätzliche Tröpfchenabscheider außerhalb der Turbine. Vor den Niederdruckstufen überhitzt man den Dampf noch durch Frischdampf. All diese Maßnahmen verursachen aber Druckverluste und kosten nutzbares Gefälle.

Instrumentierung

Es ist von entscheidender Bedeutung, daß das Bedienungspersonal in jedem Augenblick einen möglichst genauen und detaillierten Überblick über die Zustände im Kraftwerk hat. Nur bei genauer Kenntnis der tatsächlichen Lage, können die richtigen Schlüsse gezogen werden und wirksame Gegenmaßnahmen eingeleitet werden. Dies ist die leidige Erfahrung aus allen Störfällen. Der Meßtechnik kommt deshalb große Bedeutung zu. Sie muß in ausreichender Auflösung (Stückzahl) vorhanden sein und zuverlässige Informationen in allen Betriebszuständen liefern.

In diesem Sinne spielen die Begriffe „Redundanz“ und „Diversität“ eine zentrale Rolle:

  • Alle wichtigen Betriebsgrößen werden mehrfach gemessen. Dies gibt Sicherheit gegen Ausfälle. Zusätzlich kann man bei einer mehrfachen – üblicherweise 4-fachen – Messung, Vertrauen zu den Meßwerten herstellen. Bei sicherheitsrelevanten Meßwerten (z. B Druck und Temperatur im Reaktordruckgefäß), die über eine Schnellabschaltung entscheiden, gilt das 3 von 4 Prinzip: Jede Größe wird gleichzeitig 4-fach gemessen. Anschließend werden die Meßwerte verglichen und es werden nur die drei ähnlichsten als Grundlage weiterer Auswertungen verwendet. Man erkennt damit augenblicklich, welche Meßstelle gestört ist und an Hand der Abweichungen untereinander, wie glaubwürdig die Messung ist.
  • Jedes Meßverfahren liefert nur in bestimmten Bereichen Ergebnisse mit hinreichender Genauigkeit. Dies ist eine besondere Herausforderung in einer Umgebung, die sich ständig verändert. So sind z. B. bestimmte Meßverfahren für den Neutronenfluß stark temperaturabhängig. Es ist deshalb üblich, unterschiedliche physikalische Methoden gleichzeitig für dieselbe Messgröße anzuwenden. Damit sind einfache Plausibilitätskontrollen möglich. Dies ist besonders bei Störfällen wichtig, bei denen die üblichen Bereiche schnell verlassen werden.

Digitalisierung und Sicherheit

Es gibt bei einem Kernkraftwerk alle möglichen Grenzwerte, die nicht überschritten werden dürfen. Wird ein solcher Grenzwert erreicht, wird vollautomatisch eine Schnellabschaltung ausgelöst. Jede Schnellabschaltung ergibt nicht nur einen Umsatzausfall, sondern ist auch eine außergewöhnliche Belastung mit erhöhtem Verschleiß. Das Problem ist nur, daß die Vorgänge in einem solch komplexen System extrem nichtlinear sind. Gemeint ist damit, daß „ein bischen Drehen“ an einer Stellschraube, einen nicht erwarteten Ausschlag an anderer Stelle hervorrufen kann.

Die moderne Rechentechnik kann hier helfen. Wenn man entsprechend genaue mathematische Modelle des gesamten Kraftwerks besitzt und entsprechend leistungsfähige Rechner, kann man jede Veränderung in ihren Auswirkungen voraussagen und damit anpassen bzw. gegensteuern. Nun haben aber auch Computerprogramme Fehler und sind schwer durchschaubar. Es tobt deshalb immer noch ein Glaubenskrieg zwischen „analog“ und „digital“. Dies betrifft insbesondere die geforderte Unabhängigkeit zwischen der Regelung und dem Sicherheitssystem.

Seit Anbeginn der Reaktortechnik ist die Aufmerksamkeit und Übung des Betriebspersonals ein dauerhaftes Diskussionsthema. Insbesondere im Grundlastbetrieb ist die Leitwarte eines Kernkraftwerks der langweiligste Ort der Welt: Alle Zeiger stehen still. Passiert etwas, verwandelt sich dieser Ort augenblicklich in einen Hexenkessel. Die Frage ist, wie schnell können die Menschen geistig und emotional Folgen? Wie kann man sie trainieren und „aufmerksam halten“? Die allgemeine Antwort lautet heute: Ständiges Üben aller möglichen Betriebszustände und Störfälle im hauseigenen Simulator. Das Schichtpersonal eines Kernkraftwerks verbringt heute wesentlich mehr Stunden im Simulator, als jeder Verkehrspilot. Die zweite „Hilfestellung“ ist im Ernstfall erst einmal Zeit zu geben, in der sich das Personal sammeln kann und sich einen Überblick über die Lage verschafft. Dies sind die Erfahrungen aus den Unglücken in Harrisburg und Tschernobyl. Dort haben Fehlentscheidungen in den ersten Minuten die Lage erst verschlimmert. Eine ganz ähnliche Fragestellung, wie bei Flugzeugen: Wer hat das sagen, der Pilot oder die Automatik? Eine Frage, die nicht eindeutig beantwortet werden kann, sondern immer zu Kompromissen führen muß.

Ausblick

Wer bis hier durchgehalten hat, hat nicht vergebens gelesen. Ganz im Gegenteil. In den folgenden Beiträgen werden die Reaktoren jeweils einzeln vorgestellt. Um die Unterschiede klarer zu machen, wurden hier vorab einige grundlegende Eigenschaften behandelt. Zuerst werden die Druckwasserreaktoren EPR von Areva und AP-1000 von Westinghouse behandelt und dann die Siedewasserreaktoren ABWR und der ESBWR von GE-Hitachi. Das entspricht in etwa dem derzeitigen Ausbauprogramm in Großbritannien. Soweit Zeit und Lust des Verfassers reichen, werden noch die russischen (Türkei, Finnland, Ungarn) und die chinesisch/kanadischen Schwerwasserreaktoren (Rumänien) folgen.

Fukushima Block IV

Die Geschichte

Das Kernkraftwerk Fukushima gehörte einst zu den größten Kernkraftwerken weltweit. Es besteht aus zehn Blöcken in zwei Gruppen (Fukushima Dai-ichi mit den Blöcken I1 bis I4 und I5 bis I6 und Fukushima Daini mit den Blöcken II1 bis II4). Beide Einheiten wurden von den selben Erdbeben und dem selben Tsunami im März 2011 getroffen. Warum aber, mit völlig unterschiedlichem Ausgang? Dai-ichi ist Totalschaden, Daini könnte man morgen wieder in Betrieb nehmen – sofern man wollte. Der Hauptgrund ist simpel: Fukushima II ist einige Meter höher gelegen, als Fukushima I. Die gleiche Flutwelle konnte damit nicht so verheerend wirken, wie auf dem Gelände I. Damit ist bereits die erste und wichtigste Erkenntnis gewonnen: Ein Standort muß gegen die – auch hier – bekannten Naturkatastrophen gesichert sein. Ein Verdrängen kann zur Katastrophe führen. Die Statistik ist gnadenlos: Ein Jahrtausendereignis kann schon morgen eintreten. Andererseits ist es wenig hilfreich, einen Tsunami auch in Bayern als potentielle Gefahr zu sehen.

Die zweite wichtige Erkenntnis ergibt sich aus der Anordnung der Blöcke im Kraftwerk Daichi. Dort sind die Blöcke 1 bis 4 praktisch „Wand an Wand“ mit vielen gemeinsamen Gängen und Leitungen gebaut. Die Blöcke 5 und 6 stehen einige hundert Meter weiter entfernt. Auch hier ist die Erkenntnis geradezu trivial: Wenn man Reaktorblöcke unmittelbar nebeneinander baut und sogar miteinander verbindet, besteht die Gefahr, daß sich Ereignisse (Feuer, explosive Gase etc.) wie bei Dominosteinen weiter ausbreiten. Ja, die Problematik geht sogar über das eigentlichen Ereignis hinaus. Die Intervention durch Menschen wird auf lange Zeit durch großräumige Kontamination verhindert. Deutlicher, als im Falle des Reaktors 4, kann man das gar nicht aufzeigen: Der Reaktor 4 war zum Zeitpunkt des Ereignisses gar nicht in Betrieb und vollständig entladen. Es wäre also gar nichts passiert, weder durch die starken Erdstöße noch durch die Flutwelle! Erst das in den anderen Reaktoren entstandene Knallgas wurde ihm zum Verhängnis. Es hat sich über das gemeinsame Lüftungssystem ausgebreitet. Die Explosion brachte das obere Geschoß des Reaktorgebäudes zum Einsturz.

Die Sonderrolle der Blöcke 5 und 6

Die Blöcke 5 und 6 befinden sich einige hundert Meter nördlich von den Blöcken 1 bis 4 auf dem gleichen Gelände. Der Block 5 entspricht den Blöcken 2 bis 4 (Siede­wasser­reaktor BWR/4 (Mark I) mit 760 MWe) und ging zwei Jahre später als Block 3 (ebenfalls von Toshiba) in Betrieb. Bei Block 6 handelt es sich um eine modernere Version (BWR/5 (Mark II) mit 1069 MWe) ebenfalls von Toshiba errichtet und 1979 in Betrieb gegangen.

Im Zusammenhang mit dem Tsunami ist festzustellen, daß diese beiden Reaktoren praktisch nicht beschädigt wurden. Sie befanden sich zum Zeitpunkt des Unglücks gar nicht in Betrieb, sondern waren planmäßig für Wartungsarbeiten abgeschaltet. Beide Reaktoren waren frisch nachgeladen und bereits wieder vollständig verschlossen und zur Wiederinbetriebnahme bereit. Im Block 5 fand während des Unglücks gerade eine Druckprobe statt. Bei Wartungsarbeiten am Aufzug des Schornsteins kam ein Arbeiter durch das Erdbeben zu Tode. Der einzige Tote infolge des schweren Erdbebens und des Tsunami im Kraftwerk; obwohl sich während des Unglücks über 500 Arbeiter auf der Schicht befanden.

Die Flutwelle richtete nicht so schweren Schaden, wie bei den benachbarten vier Reaktoren an. Hauptgrund dürfte gewesen sein, daß das Gelände rund drei Meter höher gelegen ist. Da die Reaktoren während der Naturkatastrophe abgeschaltet waren, war der Eigenstrombedarf kleiner: Es mußte nur die sehr viel geringe Nachzerfallswärme abgeführt werden. Ein Reaktor nach einem Brennelementewechsel, setzt aber nur wenig Wärme frei, da die sehr kurzlebigen (und damit sehr viel Zerfallswärme produzierenden) Elemente bereits während der Zwischenlagerung im Abklingbecken zerfallen sind. Entsprechend gering ist auch die benötigte elektrische Leistung für die Kühlmittelpumpen. Ein entscheidender Unterschied zu der Situation in den Reaktoren 1 bis 3.

Technisch gesehen, könnten die Blöcke 5 und 6 wieder den Betrieb aufnehmen. Derzeit erscheint das aber politisch nicht gewünscht. Eine endgültige Stilllegung erscheint wahrscheinlicher. Es gibt bereits den Vorschlag, diese Reaktoren als „Übungsgelände“ für den komplizierteren Abriss der Ruinen 1 bis 4 zu nutzen.

Der Wert gemeinsamer Baugruppen

Fukushima Daiichi hatte eine elektrische Nettoleistung von 4546 MW. Entsprechend stark und vielfältig waren die Verbindungen mit dem Netz. Trotzdem wurden praktisch alle Leitungen und Schaltanlagen großräumig zerstört: Das Kraftwerk war auf seine Eigenversorgung angewiesen. Da wegen der schweren Erdstöße eine vollautomatische Schnellabschaltung ausgelöst wurde, war auch keine Eigenstromerzeugung mehr möglich. Als einzige Quelle blieben die Notstromdiesel. Die Blöcke 2, 4 und 6 verfügten jeweils über luftgekühlte Notstromdiesel. Allerdings wurden durch die Flutwelle alle Schaltanlagen der Blöcke 1 bis 4 zerstört, sodaß nur noch der Diesel von Block 6 einsatzbereit war. Ihm ist es zu verdanken, daß die Blöcke 5 und 6 planmäßig in einen sicheren Zustand überführt werden konnten. Wären die Diesel und ihre Schaltanlagen gegen Hochwasser gesichert gewesen (hochgestellt oder wasserdichte Gebäude), wäre praktisch nichts passiert!

Da bei diesen älteren Reaktoren, keine passiven Notkühlsysteme vorhanden sind, führt ein (längerer) Ausfall der Stromversorgung zwangsläufig zu einer teilweisen Schmelze von Brennelementen und damit zum Totalschaden. Genau diese passiven Kühleinrichtungen, die kein Eingreifen in den ersten 72 Stunden erforderlich machen, sind der entscheidende Sicherheitsgewinn der sogenannten Generation III+. Auch bei dem Tsunami hätte diese Zeitspanne ausgereicht, um Notstromaggregate von weit entfernt „einzufliegen“. Als Konsequenz der Naturkatastrophe von Fukushima, richtet man nun überall überregionale Zentren mit zusätzlicher Sicherheitstechnik (Pumpen, Notstromaggregate, Werkzeuge etc.) ein. Sie übernehmen die (zusätzliche) Rolle von Feuerwehr-Wachen. Auch bei schweren lokalen Zerstörungen infolge Naturkatastrophen etc. kann dadurch sehr schnell eine Unterstützung mit Material und Fachpersonal erfolgen.

Als besonders gefährlich hat sich die Bauweise „Wand an Wand“ erwiesen. In Deutschland waren solche Entwürfe von Anfang an ausgeschlossen. In Japan – und insbesondere im Ostblock – hat man die Sache offensichtlich etwas anders gesehen. Der Gewinn durch geringere Investitionskosten wurde durch die angebliche, gegenseitige Nutzungsmöglichkeit von Sicherheitseinrichtungen meist noch verklärt. Imposant oder gruselig – je nach Standpunkt des Betrachters – sind die gigantischen Turbinenhallen sowjetischer Kraftwerke. Nach Tschernobyl und Fukushima sind solche Konstruktionen international Geschichte. Ganz nebenbei, ist dies ein Beispiel dafür, daß man die technische Lebensdauer von Kernkraftwerken nicht beliebig ausdehnen sollte. Es gibt durchaus Kraftwerke, die so grundsätzliche Schwachstellen haben, daß man sie besser außer Betrieb nimmt und durch neue (sicherheitstechnisch überlegene) Konstruktionen ersetzt.

Besonders fatal ist es, wenn gemeinsame Lüftungssysteme und Kanäle vorhanden sind. Der Block 4 war zum Zeitpunkt des Unglücks abgeschaltet und vollständig entladen. Ein Unglück wäre praktisch ausgeschlossen gewesen, wenn nicht Wasserstoffgas von außen über das Lüftungssystem in das Gebäude hätte eindringen können. Ein eher klassisches Unglücks-Szenario einer Raffinerie oder einer chemischen Anlage. Block 4 würde heute noch genauso unversehrt dastehen, wie die Blöcke 5 und 6, wenn er nicht über das Lüftungssystem mit seinem „verunglückten Nachbarn“ verbunden gewesen wäre!

Damit wären wir beim zweiten grundsätzlichen Konstruktionsfehler dieses Reaktors. Das Gebäude war vertikal zweigeteilt. Im unteren Teil befand sich der Reaktor mit seinem Sicherheitsbehälter. Dieser Teil war durch dicke Betonwände geschützt. Diese Betonwände dienten primär der Abschirmung von Strahlung. Der obere Teil hingegen, war eine einfache Stahlträger-Konstruktion, die gegen Wind und Wetter mit Blech verkleidet war. Diese „Stahlbau-Halle“ ist durch die (chemische) Wasserstoffexplosion eingestürzt und hat auch alle Krananlagen mit sich gerissen. Ein solches Unglück ist bei Kraftwerken, die gegen Flugzeugabstürze gesichert sind (also bei allen deutschen Reaktoren!) ausgeschlossen, da der erforderliche „Betonpanzer“ natürlich auch gegen inneren Explosionen wirkt. Um es noch mal deutlich zu sagen: Alle modernen Reaktoren (auch heutige russische Anlagen) befinden sich in einem Betonbunker mit meterdicken Stahlbetonwänden, um sie gegen Einwirkungen von Außen („EVA“, Flugzeugabsturz, Terrorismus etc.) zu schützen. Eine solche Konstruktion kann (praktisch) nicht zum Einsturz gebracht werden.

Abbruch von Block 4

Die Beseitigung von Block 4 ist die einfachste Aufgabe der Aufräumarbeiten. Alle Brennelemente haben sich zum Zeitpunkt des Unglücks außerhalb des Reaktors im Brennelementebecken befunden. Räumt man das Brennelementebecken aus, befindet man sich kurz vor dem sog. „gesicherten Einschluß“. Darunter versteht man die Entfernung aller Flüssigkeiten und möglichst aller brennbaren Materialien. Anschließend „mauert“ man die restlichen (strahlenden) Teile ein und läßt die Strahlung erst einmal abklingen. Ein in den USA und Großbritannien vielfach erprobtes und in großem Maßstab angewendetes Verfahren. Das schöne am radioaktiven Zerfall ist ja, daß er immer nur abnimmt. Ganz im Gegenteil z. B. zu Quecksilber oder Asbest, die nie von allein weniger werden. Man muß nur lange genug warten (einige Jahrzehnte), bis die Radioaktivität so weit abgeklungen ist, daß man den restlichen Abriss ohne große Schutzmaßnahmen vornehmen kann. Allerdings wäre es bei der derzeitigen „Gemütslage“ in Japan auch nicht überraschend, wenn man den Abriss unter großem Kostenaufwand „in einem Rutsch“ durchführen würde.

Ein Lagerbecken für Brennelemente ist nichts weiter, als ein großes Schwimmbecken. In Großbritannien gibt es immer noch solche Becken – seit den frühen fünfziger Jahren – als „Freibäder“. Bisher ist nichts passiert. Allerdings ist das starke Algenwachstum und der Staubeintrag ein ständiges Problem: Die Becken verschlammen mit der Zeit immer mehr und die Wartung wird immer aufwendiger. Man ist deshalb von dieser Methode abgekommen. Insofern ist die „Leichtbauhalle“ oberhalb der Reaktoren von Fukushima eher dem damaligen Zeitgeist entsprechend gewesen.

Das Geheimnis solcher Lagerbecken ist ihre Tiefe. Das Wasser dient weniger der Kühlung, als der Abschirmung gegen Strahlung. Man braucht oberhalb der abgestellten Brennelemente noch einen Arbeitsraum und darüber muß noch so viel Wasser vorhanden sein, daß die erforderliche Abschirmung gewährleistet ist. Andererseits ist diese Wassertiefe die ideale „Schutzschicht“ für die am Boden stehenden Brennelemente. Sie hat den Schwung der rein gekrachten Teile (komplette Kranbahn mit Stahlträgern) so weit abgebremst, daß sie letztendlich „sanft“ auf die Brennelemente herabgesunken sind. Die Brennelemente eines Siedewasserreaktors sind auch nicht gerade zerbrechlich, sodaß es wenig Schäden gegeben hat. Diese sind seit Monaten durch Unterwasserkameras genau dokumentiert.

Das Lagerbecken ist eine sehr stabile Konstruktion. Es besteht aus 140 bis 185 cm dicken massiven (ohne Durchbrüche für Rohrleitungen etc.) Stahlbetonwänden und ist komplett mit 6 cm Edelstahl ausgekleidet. Trotzdem hat man es nach der Explosion unterhalb durch eine zusätzliche Stahlkonstruktion verstärkt. Man wollte sicher sein, daß die Statik auch nach dem zusätzlichen Gewicht der Trümmer ausreichend ist. Inzwischen haben Neuberechnungen und umfangreiche Simulationen ergeben, daß es auch ohne Verstärkung schwersten Erdbeben standgehalten hätte. Eine ständige Vermessung zeigt, daß es sich auch durch alle Nachbeben und Taifune nicht bewegt hat.

Der schwierigste und gefährlichste Teil der Arbeit ist bereits erledigt: Das Abräumen des Trümmerhaufens auf dem Reaktor. Um das komplette Reaktorgebäude herum, hat man – weitestgehend ferngesteuert – eine gewaltige Stahlkonstruktion aufgebaut. Diese mußte so stabil sein, daß sie gleichzeitig als Kranbahn für einen Deckenkran und eine komplette Lademaschine dient und eine Schutzhülle für die „Baustelle“ darstellt. Die gesamte Konstruktion steht auf eigenen Fundamenten neben dem ursprünglichen Reaktorgebäude und kragt freitragend über dieses hinweg, um zusätzliche Lasten für die Ruine zu vermeiden. Alles sicher, auch gegen schwerste Erdbeben und Wirbelstürme versteht sich. Eigentlich erstaunlich, daß ausgerechnet aus dem Land der Juristen, Sozialwirte und Lehrer, in dem man nicht einmal mehr einen Flughafen bauen kann, immer so getan wird, als sei Japan mit dem Ereignis von Fukushima total überfordert. Wieviel Jahre und Arbeitskreise es in Deutschland wohl gedauert hätte, bis man sich überhaupt auf eine Vorgehensweise geeinigt hätte? Wahrscheinlich würden die Arbeiten immer noch ruhen, weil wir nicht genug Bischöfe für die unzähligen Ethikkommissionen etc. bereitstellen könnten. Völlig zu recht, hat man mit gewissem Stolz bereits Journalisten an das Lagerbecken gelassen. So viel auch zum Thema Transparenz. Wer je versucht hat, an ein Brennelementebecken eines deutschen Kernkraftwerkes zu treten, weiß wovon ich rede. Strahlenphobie hat viele Ursachen, auch hausgemachte!

Parallel zu den Arbeiten, hat man bereits Transportbehälter angefertigt. Sie ähneln unseren Castoren. Diese werden mit dem Kran aufs Dach gehoben und in das Brennelementebecken zum Umpacken abgesenkt. Nach der Beladung werden sie zur genauen Untersuchung in das vorhandene Zentrallager auf dem Gelände gebracht. Alle Arbeiten finden bei Unterdruck statt, um etwaige Austritte von radioaktiven Gasen und Aerosolen zu verhindern. Dafür hat man in der Ruine eine gigantische „Lüftungs- und Filteranlage“ errichtet. Das Entladen ist nun fast schon eine Routinearbeit, wie in jedem anderen Kernkraftwerk unzählige male ausgeführt.

Sind die Brennelemente wirklich keine Gefahr?

Kurz nach dem Unglück, haben sich „Deutsche Qualitätsmedien“, angefeuert von „Atomexperten“, gegenseitig versucht zu überbieten. Es wurden die wildesten Geschichten von schmelzenden Lagerbecken und einem größeren Schaden als durch die Atombombe von Hiroshima zusammengefaselt. Angst verkauft sich halt gut und war schon immer ein probates Mittel einschlägiger politischer Kreise. Kurz vor der Räumung des Lagerbeckens 4 drehen noch einmal alle Propagandaabteilungen voll auf: Es werden gekonnt Halbwahrheiten miteinander gemischt, bis man die „gefährlichste Situation in der Geschichte der Menschheit“ konstruiert hat. Erstaunlich ist immer wieder, für wie dämlich die ihr Publikum halten.

Ein Brennelementelagerbecken enthält notgedrungen sehr viel Wasser, da die Wasserschicht über den Elementen als Abschirmung der Strahlung dient. Eine Kettenreaktion in einem solchen Becken ist schon aus geometrischen Gründen ausgeschlossen. Es muß daher nur die Nachzerfallswärme abgeführt werden. Diese nimmt aber innerhalb der ersten Stunden nach dem Abschalten sehr stark ab. Sie ist so gering, daß ein Sieden des Wassers in solch einem Becken ausgeschlossen ist. Das Wasser wird lediglich erwärmt (deutlich unter 100 °C) und kann nur verdunsten, aber nicht „leer kochen“, wie ein Kochtopf auf der Herdplatte. Der vorhandene Kühlwasserkreislauf dient nur dazu, daß im Reaktorgebäude keine unnötig hohe Luftfeuchtigkeit entsteht. Jedenfalls war das viel belächelte Besprühen aus Betonpumpen eher ein Gürtel zum Hosenträger. Es hätte auch gewirkt, wenn das Lagerbecken (Erdbeben, Explosion, reingestürzte Trümmer) undicht geworden wäre. Insofern eine richtige Maßnahme.

Es ist also keine Überraschung, daß die ersten geborgenen Brennelemente „wie neu“ aussehen. Wenn einige der 1533 (1331 benutzte, 202 neue) vorhandnen Elemente undicht oder beschädigt sind, ist auch das kein Beinbruch. Man wird sie zusätzlich in Kassetten verpacken. Auch das ist zig mal geschehen. Anschließend beginnt das große Umpacken auf dem Gelände. Jeder Reaktor hat sein eigenes Abklingbecken. Zusätzlich befindet sich auf dem Kraftwerksgelände ein zentrales Lagerbecken in einem eigenen Gebäude. Dies dient auch bisher schon zur Zwischenlagerung bis zur Wiederaufbereitung. Um dort Platz zu schaffen, baut man nun ein Trockenlager. In diesem werden die „abgekühltesten“ Brennelemente zukünftig gelagert. Wir kennen das in Deutschland aus dem Zwischenlager Gorleben.

Irgendwelche schwerwiegenden Unfälle während der Räumung sind äußerst unwahrscheinlich. Es handelt sich nicht um einen Haufen Mikado-Stäbchen, wie immer wieder von „Atomexperten“ behauptet. Ein Brennelement besteht zwar aus vielen, fingerdicken Stäben, die aber durch Abstandshalter miteinander verbunden sind. Bei einem Siedewasserreaktor ist das Element auch noch von einem stabilen „Blechkasten“ umgeben, um unerwünschte Querströmungen im Reaktor zu verhindern. Da die Fragestellung neuartig war, hat man in Japan inzwischen mit „unbenutzten“ Brennelementen Versuche durchgeführt: Man hat aus einer Höhe von 5 m (!) 100 kg (!) schwere Stahlgewichte auf die Brennelemente fallen lassen. Dies hat zwar zu schweren Verformungen geführt, aber die Brennstäbe haben sich trotzdem nicht einmal geöffnet. Außerdem liegen die Brennelemente nicht einfach im Becken herum. Es gilt die „Bierkastenmethode“: Die Brennelemente werden vorsichtig von oben in stabile Lagergestelle (jeweils 10 Elemente in 3 Reihen) gestellt. Oben guckt nur noch der Henkel des Brennelementes heraus. Der Spalt zwischen Brennelement und Kasten beträgt weniger als 15 mm. Umfallen kann da gar nichts. Ferner sind die Brennelemente durch die Gestelle vor herabfallenden Dingen geschützt. Es gibt nur zwei potentielle Gefahren: Die „Henkel“ sind zu stark beschädigt oder kleinste Trümmerstücke sind in die Spalte zwischen Brennelement und Lagergestell gefallen. Vor jedem Zug werden deshalb die „Henkel“ mit einer extra entwickelten Meßtechnik vermessen. Erscheinen sie nicht mehr sicher genug, müssen andere „Greiftechniken“ angewendet werden. Das Rausziehen geschieht nur sehr langsam (etwa 10 Minuten pro Element) um ein Klemmen oder Verkanten zu verhindern. Werden die Zugkräfte zu groß, wird sofort angehalten.

Das Kapitel der Reaktoren 4, 5 und 6 wird in wenigen Jahren abgeschlossen sein. Schon jetzt geht von diesen „Atomruinen“ kaum noch eine Gefahr aus. Anders verhält es sich mit den Reaktoren 1 bis 3. Wie man aus dem Störfall in Harrisburg weiß, wird noch einige Zeit und viel Arbeit vergehen, bis auch diese drei Ruinen beseitigt sind. Es kann durchaus noch vier Jahrzehnte dauern, wenn die Japaner ihre extrem hohen Anforderungen aufrecht erhalten wollen. Dann allerdings, dürfte aus dem Kraftwerksgelände ein Erholungspark geworden sein. Sehr zum Bedauern aller „Atomkraftgegner“.