Thorcon – neue Reaktoren aus/mit Indonesien?

Das US-Unternehmen Thorcon will Salzbadreaktoren in Indonesien bauen.

Indonesien

Für ein besseres Verständnis, erscheinen ein paar Worte über die Energiesituation in Indonesien angebracht. Indonesien besteht aus über 17000 Inseln und ist mit 253 Millionen Einwohnern (Stand 2014) das viertgrößte Land der Erde. Als Schwellenland hat es einen rasanten Anstieg des Primärenergieverbrauches zu verzeichnen. In der Dekade zwischen 2003 und 2013 um 43%. Die Hauptenergieträger sind Öl, Kohle und Erdgas. Indonesien ist seit 1885 ein Ölförderland. Inzwischen ist die Nachfrage durch Bevölkerungs- und Wirtschaftswachstum so stark gestiegen, daß es seit etwa 2003 Nettoölimporteur ist.

Es besitzt auch große Erdgasvorkommen (Platz 13 in der Weltrangliste, Platz 2 in Asien) und ist immer noch Nettoexporteur. Der Verbrauchsanstieg ist aber so groß, daß es neuerdings sogar Erdgas als LNG aus den USA importiert (20 Jahresvertrag mit Cheniere). Hinzu kommt die ungleiche Verteilung im Inselreich.

Eigentlich ist Indonesien Kohlenland mit über 500 Millionen Tonnen jährlich. Davon werden rund 80% exportiert (weltweit größter Exporteur nach Masse). Trotzdem beträgt der Inlandsverbrauch rund 80 Millionen Tonnen mit stark steigender Tendenz wegen des Zubaues von Kohlekraftwerken.

In Indonesien sind erst 84% der Bevölkerung überhaupt an das Stromnetz angeschlossen. Bei bisher erst 51 GWel installierter Leistung (88% fossil, davon 50% Kohle) ist das Netz chronisch überlastet. Die häufigen Zwangsabschaltungen sind eine enorme Belastung für Bevölkerung und Industrie.

Traurige Berühmtheit erlangte Indonesien durch die Brandrodung des Regenwaldes zur Anpflanzung gigantischer Palmölplantagen. Auch hier wieder ökosozialistische Wahnvorstellungen als entscheidende Triebkraft: Biokraftstoffe und Holzschnitzel zur „Klimarettung“ und gegen „Peakoil“.

Indonesiens Weg in die Kernenergie

Langfristig kommt Indonesien als bevölkerungsreiches Schwellenland – genauso wie China und Indien – nicht ohne eine Nutzung der Kernenergie aus. Man will aber offensichtlich einen etwas anderen Weg gehen: Nicht der schnelle Einstieg durch den Kauf fertiger Kraftwerke steht im Vordergrund, sondern der Aufbau einer eigenen kerntechnischen Industrie. Konsequent setzt man auf die Entwicklung „neuer“ Kernreaktoren. Dies ist zwar mit einem erheblichen Risiko verbunden, erlaubt aber eine konsequente Anpassung an lokale Verhältnisse und vermeidet hohe Lizenzgebühren. Für ein Inselreich bieten sich kleine Reaktoren (SMR) an, bevorzugt als schwimmende Einheiten.

Eine Entwicklungsschiene ist ein gasgekühlter Hochtemperaturreaktor mit Uran als TRISO Kugelhaufen. Der Prototyp RDE (Reaktor Daya Eksperimental) soll eine Leistung von 10 MWel haben, die später auf bis zu 100 MWel erweitert werden soll. Diese SMR (Small Modular Reactor) sind besonders für die „kleineren“ Inseln des Archipels vorgesehen. Noch dieses Jahr soll ein detaillierter Konstruktionsplan durch ein Konsortium aus Universitäten und privaten Unternehmen einer internationalen Kommission der IAEA zur Begutachtung vorgelegt werden. Grundlage für eine endgültige Entscheidung und die Finanzierung.

Schon 2015 hat die US-Firma Martingale (jetzt ThorCon International) mit einem staatlichen indonesischen Konsortium PT Industry Nuklir Indonesia (INUKI) ein Abkommen zum Bau eines Flüssigsalzreaktors abgeschlossen. Angeblich soll schon 2019 mit dem Bau begonnen werden und das erste Kraftwerk 2025 in Betrieb gehen.

Das ThorConIsle-Konzept

Der Guru der Flüssigsalzreaktoren Robert Hargraves verkündet in seinem neuesten Prospekt vollmundig, daß sein Kraftwerk weniger Investitionen als ein Kohlekraftwerk erfordern würde. Allerdings erinnert das schön bebilderte Verkaufsprospekt an einschlägige Exponate von Bauträgern: Alles schön, keine Probleme, super günstig, daher sofort kaufen.

Das Grundkonzept ist von den Russen abgekupfert: Man baut ein Schiff ohne Antrieb um zwei Reaktoren (plus dem nötigem Zubehör) herum. Alles etwas größer und schöner, versteht sich. Nur mit dem Unterschied, daß das russische Modell nach langer Bauzeit endlich schwimmt. Kein Supertanker – nur 2 x 35 MWel anstelle von 2 x 256 MWel – und „nur“ mit auf Eisbrechern erprobten Reaktoren, anstelle von frisch erfundenen Thorium-Flüssigsalz-Reaktoren. Schön wenn ein solches Kraftwerk mal gebaut wird, aber ganz gewiss nicht bis 2025 und dazu noch billiger als ein Kohlekraftwerk.

Die Idee Kernkraftwerke als Schiffe in Serie zu bauen, ist sicherlich für ein Inselreich verlockend. Nur ist eben ein Kernkraftwerk kein Supertanker (Schuhkarton ), sondern randvoll mit Technik. Insofern können die Baukosten nicht einfach übertragen werden.. Ein Schiff bleibt ein Schiff: Die Korrosionsprobleme im tropischen Meer sind gewaltig und erfordern erhöhte Betriebskosten. Ein Schiff kann auch keine „Betonburg“ (Terrorismus, Flugzeugabsturz etc.) sein. Ganz so einfach, wie im Prospekt, dürfte es nicht gehen: Man kippt einfach die Zwischenräume voll Beton und erhält so einen tollen Bunker. Wer z. B. das Genehmigungsverfahren für den AP-1000 (Sandwich aus Stahlplatten und Beton) verfolgt hat, ahnt, wie Genehmigungsbehörden ticken.

Alle Komponenten sollen zwischen 150 und 500 to schwer sein und sich sogar während des Betriebs auswechseln lassen. Auch hier scheint es mehr um Wunschdenken zu gehen.

Der Reaktor

Bei dem Reaktor handelt sich um eine Kanne, in der der eigentliche Reaktorbehälter (gen. Pot), die Umwälzpumpen und die Wärmetauscher untergebracht sind. Die Kanne wiegt knapp 400 to, wovon etwa 43 to auf die Salzfüllung entfallen. Dieses Gebilde soll spätesten nach acht Jahren komplett ausgebaut und mit einem Spezialschiff zur Wiederaufbereitung geschickt werden. Nach acht Jahren ist das Salz so voller Spaltprodukten, daß es nicht mehr weiter im Kraftwerk eingesetzt werden kann. Vor dem Transport soll es vier Jahre lagern, bis die Strahlung auf akzeptable Werte abgeklungen ist. Jeder Block hat deshalb zwei Kannen.

Die Kanne ist das Neuartige an diesem Konzept: Man tauscht nicht regelmäßig Brennstoff aus, sondern der eigentliche Reaktor ist eine „Batterie“, die komplett gewechselt wird. Vorteil dabei ist, daß man erforderliche Inspektionen und Reparaturen in einer Spezialfabrik durchführen kann. Der gesamte nukleare Teil („der strahlt.“) befindet sich in dieser Kanne. Alle anderen Komponenten sind „konventionell“. Mal sehen, was der Genehmigungsbehörde dazu alles einfällt….

Allerdings stellt das Batterieprinzip alle bisher geltenden Lehrmeinungen über Thorium-Reaktoren auf den Kopf:

  • Bisher ging man von einer kontinuierlichen Wiederaufbereitung aus. Man wollte das Spaltproduktinventar stets gering halten. So hätte man es bei einem schweren Störfall automatisch nur mit geringen Mengen zu tun.
  • Je mehr Neutronengifte – und im Sinne einer selbsterhaltenden Kettenreaktion ist schon Thorium selbst ein starker Parasit – vorhanden sind und je länger die Wechselintervalle sein sollen, um so mehr spaltbares Uran muß man am Anfang zugeben. Dieses muß auch noch möglichst hoch angereichert sein (hier geplant 19,7 %).

Das Salz

Als Brennstoff soll ein NaF – BeF2 – ThF4 – UF4 (mit 76 – 12 – 10,2 – 1,8 mol%) Salz verwendet werden. Es soll ganz tolle Lösungseigenschaften haben, die alle „gefährlichen“ Spaltprodukte zurückhalten. An dieser Stelle fällt mir immer der alte Chemikerwitz ein: Ruft der Professor überglücklich, ich habe endlich das ultimative Lösungsmittel gefunden. Antwortet der Laborant trocken, Glückwunsch und wo soll ich es jetzt hinein füllen? Bei einem solchen Salz ist das leider mehr als ein blöder Witz. Zumal hier auch noch mit Temperaturen von über 700 °C gearbeitet werden soll. Mit Schiffbaustahl (Kostenangaben) wird sich da leider gar nichts ausrichten lassen.

Beryllium und auch Berylliumfluorid sind sehr giftig und werden als krebserregend eingestuft. Wenn Beryllium ein Neutron einfängt, bildet es Helium und setzt dabei zwei Neutronen frei. Es wirkt dabei sowohl als Moderator, wie auch als Neutronenvervielfacher. Fluor und Fluorwasserstoff sind gasförmig und sehr giftig. Fluor ist äußerst reaktionsfreudig und geht mit fast allen Elementen stabile chemische Verbindungen ein. Mit Wasserstoff reagiert es letztendlich zu Flußsäure, die sogar Glas ätzt. Jede Kernspaltung zerstört auch die chemische Verbindung und neue chemische Elemente in Form der Spaltprodukte entstehen. Man hat es deshalb stets auch mit elementarem Fluor zu tun, der auch gern mit dem Strukturmaterial reagieren kann. Da Fluoride sehr reaktionsfreudig sind, reagieren sie natürlich auch wieder mit dem größten Teil der Spaltprodukte und binden diese sicher ein. Es gibt aber zwei Ausnahmen: Edelmetalle und Edelgase. Die Edelmetalle lagern sich innerhalb der Anlage ab und führen zu „Verschmutzungen“, die man regelmäßig und aufwendig wird entfernen müssen (Die Batterie doch komplett auf den Müll?). Die Edelgase müssen (eigentlich) durch Helium ständig aus dem Salz herausgespült werden.

Der immer wieder gern gehörte Hinweis aus der Salzbad-Scene auf den legendären MSRE-Reaktor, hilft in diesem Sinne leider auch nicht weiter: Er hat nur 1,5 Voll-Lastjahre (1966 bis 1969) gelaufen.

Das Sicherheitskonzept

Der Reaktor stellt sich immer selbstständig ab, wirbt ThorCon. Zwar ist dies durchaus kein Alleinstellungsmerkmal eines Flüssigsalzreaktors, aber trotzdem eine feine Sache. Locker mit „Walkaway Safe“ umschrieben. Es ist kein Hexenwerk, eine Kettenreaktion durch Überhitzung (Verkleinerung des makroskopischen Einfangquerschnittes) aus sich selbst heraus zusammenbrechen zu lassen, es bleibt aber immer noch die Nachzerfallswärme (Fukushima und Harrisburg): Sie muß entsprechend schnell abgeführt werden, sonst schmilzt der Reaktor. Auch hier gilt natürlich, je mehr Spaltprodukte im Reaktor enthalten sind (Batterie gegen kontinuierliche Aufbereitung), um so größer ist das Problem.

Die Konstrukteure von Flüssigsalzreaktoren gehen nun davon aus, daß das Salz unter allen denkbaren Umständen und überall im Reaktor schön fließfähig bleibt. Im Ernstfall läuft es dann problemlos in einen gekühlten Tank aus. Dazu denkt man sich an geeigneter Stelle einen Pfropfen als Verschluß, der während des Normalbetriebs durch permanente Kühlung erzeugt wird. Unterbricht man im Notfall die Kühlung, schmelzt das flüssige Salz den Pfropfen auf und gibt so den Weg frei. Der Nottank soll aus vielen Röhren bestehen, die über ihre Oberflächen die Wärme gegen eine Kühlwand abstrahlen. Die Wand wird mit Wasser gefüllt, welches verdampfen kann und sich in Kühltürmen auf Deck wieder niederschlägt. Das Kondensat läuft dann in die Hohlwand zurück.

Schlussbetrachtung

Indonesien muß wie jedes andere Schwellenland in die Kerntechnik einsteigen. Nicht nur zur Energiegewinnung, sondern auch um Anschluß an moderne Industriestaaten zu gewinnen. Kerntechnik ist neben Luft- und Raumfahrt die Schlüsseltechnologie schlechthin. In keiner anderen Branche kommen so viele Technologien mit ihren jeweiligen Spitzenleistungen zusammen. Insofern ist es nur konsequent, möglichst frühzeitig in die internationale Entwicklung „neuer“ Reaktortechnologien einzusteigen. Schon die Zusammenarbeit mit Spitzenuniversitäten und Hochtechnologieunternehmen stellt einen unschätzbaren Wert für die eigene Ausbildungslandschaft dar. Selbst wenn diese jungen Ingenieure später nicht in der Kerntechnik tätig werden, werden sie mit Sicherheit zu den gefragten Spitzenkräften in ihrer Heimat zählen. Keine „Entwicklungshilfe“, die „angepasste Technologie“ für die „große Transformation“ verbreiten will, wird auch nur ansatzweise vergleichbares hervorbringen. Technik – und damit die Gesellschaft –entwickelt sich halt immer nur durch machen weiter und nicht in irgendwelchen geisteswissenschaftlichen Seminaren.

Nukleare Fernwärme

Neuerdings rückt die Kerntechnik wieder in den Zusammenhang mit „Luftverbesserung“. Besonders in China wird über den Ersatz von Kohle nachgedacht.

Der Raumwärmebedarf

Die Heizung bzw. Kühlung von Gebäuden wird oft unterschätzt. Alle reden von Verkehr und Stromerzeugung. In Wirklichkeit werden aber ein Viertel bis ein Drittel des gesamten Energieverbrauches für unsere Gebäude benötigt. Unter dem Gesichtspunkt von Luftschadstoffen (z. B. Stickoxide, Feinstaub etc.) ist besonders problematisch, daß die Energiewandlung unmittelbar in unseren Städten stattfindet und das auch noch in unzähligen Einzelfeuerstätten (hiermit sind auch die „Zentralheizungen“ gemeint). Die einzelnen Heizkessel – oder gar Holzöfen – können keine kontrollierte Verbrennung gewährleisten oder gar eine Rauchgaswäsche benutzen. Zudem werden ihre Abgase in geringer Höhe flächig abgegeben. Eine hohe Luftbelastung gerade in Ballungsgebieten ist die Folge. Eine Erkenntnis, die schon unsere Urgroßväter hatten. Man begann deshalb schon Ende des 19. Jahrhunderts mit dem Bau zentraler Heizwerke.

Das Wärmenetz

Die angestrebte Raumtemperatur liegt bei etwa 20 °C. Es ist also ausgesprochene „Niedertemperaturwärme“. Hinzu kommt noch ein ganzjähriger Brauchwasserbedarf mit etwa 60 °C (Legionellen). Will man auch Kaltwasser für Klimaanlagen damit erzeugen, ist eine Temperatur von 130°C (Absorptions-Kälteanlagen) zu empfehlen. Damit ergeben sich schon die Randbedingungen für ein Rohrleitungsnetz.

Die Strömungsgeschwindigkeit ist begrenzt. Somit hängt die transportierbare Wärmeleistung von dem verwendeten Rohrdurchmesser und der Temperaturspreizung zwischen Vor- und Rücklauf ab. Alles eine Kostenfrage. Hat man sehr hohe Leistungen pro Grundstück (z. B. Hochhäuser in Manhattan) und dazu noch beengte Straßenverhältnisse, bleibt sogar nur Dampf als Transportmedium übrig. Zumindest in Deutschland hat sich eine maximale Vorlauftemperatur im Netz von 130 °C bis 150 °C als optimal erwiesen. Die Vorlauftemperatur im Netz wird proportional zur Außentemperatur geregelt. In manchen Regionen hat man noch ein drittes Rohr als „Konstantleiter“, an dem die Brauchwasserbereiter und die Klimaanlagen angeschlossen sind. Dadurch kann man im Sommer den Heizungsvorlauf komplett abstellen. Alles eine Frage der vorhandenen Bausubstanz.

Heizwerk oder Kraftwärmekopplung

Das Problem ist, daß das gesamte System für die maximale Leistung (kältester Tag in einer Region) ausgelegt sein muß. Diese tritt aber nur an wenigen Tagen auf. Die ohnehin hohen Kapitalkosten führen zu hohen Fixkosten, die wegen der geringen Anzahl von Vollbenutzungsstunden zu vergleichsweise hohen spezifischen Heizkosten führen. Als einzige Stellschraube bleiben die Brennstoffkosten.

Man ist deshalb schon frühzeitig auf die Idee gekommen, Kraftwerke mitten in den Städten zu bauen, um die Leitungskosten (Strom und Wärme) gering zu halten. Die Kraftwerke liefen auch als Kraftwerke und haben das ganze Jahr über elektrische Energie erzeugt. Sie haben ihre Kosten über die Stromproduktion eingespielt. Zusätzlich zu den normalen Kondensatoren hat man noch „Heizkondensatoren“ als Quelle für das Fernwärmenetz eingebaut. In diesen Heizkondensatoren wurde ein Teil des Dampfes (in Abhängigkeit von der Außentemperatur) zur Beheizung niedergeschlagen. Da dieser Dampf nicht mehr vollständig seine Arbeit in der Turbine verrichten konnte, ging die Stromproduktion etwas zurück. Dieser Rückgang wurde dem Kraftwerk vom Fernwärmenetzbetreiber vergütet. Es war quasi dessen „Brennstoffpreis“.

Zusätzlich hatte man auch immer schon reine Heizwerke, die nur Wärme für die Fernwärme erzeugt haben. Die geringen Kapitalkosten eines solchen „Warmwasserkessels“ lohnten sich schon immer als Reserve oder zur Spitzenlasterzeugung an wenigen Tagen eines Jahres.

Die nukleare Heizung

Soweit zur Fernwärme im Allgemeinen. Jetzt zu der Frage, was eine Umstellung auf Kernspaltung bringen kann. Der Brennstoffpreis des Urans ist konkurrenzlos gering. Geringer noch als Kohle. Es gibt fast keine Belastung durch Transporte (Kohle, Asche, Heizöl etc.). Es gibt keine Luftbelastung durch Abgase. Es besteht eine enorm hohe Versorgungssicherheit und Preisstabilität (Heizkosten als „zweite Miete“). Dagegen spricht eigentlich nur „die Angst vor dem Atom“. Diese ist aber zum Glück unterschiedlich ausgeprägt. Man kann sie sogar noch beträchtlich verringern. Um die notwendigen technischen Aspekte wird es im Weiteren gehen.

Kernkraftwerke als Wärmequelle

Technisch gesehen, besteht kein Unterschied zwischen einem Kernkraftwerk und einem fossilen Kraftwerk. Man könnte problemlos z. B. ein Kohlekraftwerke durch ein Kernkraftwerk ersetzen. Es gibt aber ein juristisches Hindernis: Das Genehmigungsverfahren. Bisher muß man immer noch davon ausgehen, daß es schwere Störfälle gibt (z. B. Fukushima), die einen Teil der Radioaktivität austreten läßt und somit die unmittelbare Umgebung belasten könnte. Dafür ist der Nachweis von Evakuierungszonen und Plänen notwendig. Spätestens seit Fukushima weiß man zwar, daß die Annahmen über Freisetzungsraten viel zu konservativ waren, aber das tut der Argumentation der Angstindustrie keinen Abbruch. Die jahrzehntelange Gehirnwäsche „Millionen-Tote, zehntausend-Jahre-unbewohnbar“ hat sich zumindest in den Industrieländern festgesetzt.

Will man Kernkraftwerke in Ballungsgebieten bauen, müssen neue Reaktortypen her, die als „inhärent sicher“ betrachtet werden. Außerdem empfiehlt es sich, kleinere Reaktoren (SMR) zu bauen, um zu lange Rohrleitungen (Kosten und Wärmeverluste) zu vermeiden. Gerade in den letzten Wochen wurde in diesem Sinne ein Durchbruch erzielt: Die US-Genehmigungsbehörde hat dem Reaktor der Firma NuScale bescheinigt, daß er ohne elektrische Hilfsenergie auch bei schwersten Störfällen auskommt. Es handelt sich um einen kleinen (50 MWel) Reaktor, der selbst in einem wassergefüllten Becken steht. Er ist also stets von ausreichend Kühlwasser umgeben. Alle Einbauten (Druckhaltung, Dampferzeuger etc.) befinden sich im Druckgefäß (keine Rohrleitungen), das von einem Containment nach dem Prinzip einer Thermosflasche umgeben ist. Er benötigt keine Pumpen zur „Notkühlung“, da er schon im Normalbetrieb ausschließlich im Naturumlauf (warmes Wasser steigt auf und sinkt nach der Abkühlung wieder in den Reaktorkern zurück) funktioniert. Ein solches Kernkraftwerk bietet ein geringeres Risiko für seine Nachbarn, als jedes Gas- oder Ölkraftwerk. Genau solche Kraftwerke befinden sich aber zahlreich mitten in deutschen Großstädten. Seit Jahrzehnten lebt ihre Nachbarschaft relativ angstfrei damit – Geräusche und Abgase inbegriffen.

Den deutschen „Grün-Wähler“ wird das alles nicht überzeugen. Er ist unerschütterlich in seinem Öko-Glauben. Warum auch nicht? Man diskutiert ja auch nicht mit einem Katholiken über die unbefleckte Empfängnis der Jungfrau Maria oder mit einem Hindu über die Heiligkeit von Kühen. In den Weiten Sibiriens wird die Kernenergie schon heute positiv bewertet. In ähnlichen Regionen Kanadas und den USA wird sie aus gleichen Gründen (Versorgungssicherheit auch bei -40 °C) ernsthaft in Erwägung gezogen. In den bevölkerungsreichen Metropolen Chinas steht die Luftverschmutzung im Vordergrund. Die reale Gefahr von Lungenkrebs und Herz- Kreislauferkrankungen durch Smog wird dort gegen die eingebildete „Strahlengefahr“ abgewogen. Selbst im Großraum Helsinki prüft man den Ersatz der fossilen Fernheizwerke durch Kernenergie. Sonne geht gar nicht und Wind nur sehr eingeschränkt in diesen nördlichen Breiten.

Nukleare Heizwerke

Seit Anbeginn der Kernkraftnutzung gab es die Idee von reinen Heizwerken. Die reine Wärmeproduktion kann einige Vorteile haben: Schließlich verbrennt man ja auch Gas in einem einfachen Heizkessel und setzt nicht alles Gas in „rotierenden Öfen“ (Blockheizkraftwerk) zur gleichzeitigen Stromerzeugung ein. Schon nach den „Ölkrisen“ der 1970er Jahre, setzte sich z. B. der Schweizer Professor Seifritz für ein solches Konzept ein. Er ging damals von der Verwendung erprobter Komponenten aus Kernkraftwerken (Druckbehälter, Brennelemente etc.) zum Bau eines abgespeckten Heizreaktors aus. Durch die „Überdimensionierung“ erhoffte er sich einen zusätzlichen Sicherheitsgewinn, der zu einer Akzeptanz bei der Politik führen würde. Die Grundüberlegung ist noch heute so gültig, wie vor nunmehr 50 Jahren: Ersatz fossiler Brennstoffe durch Uran. Damals wie heute, standen der Ölpreis und die Luftverschmutzung in den Städten im Vordergrund.

Um den Ansatz von Professor Seifritz zu verstehen, ist etwas Physik notwendig. Ein typischer Druckwasserreaktor eines Kernkraftwerks hat eine Wärmeleistung von etwa 4000 MWth. Viel zu viel für ein Fernheizwerk. Geht man aber mit der Leistung um mehr als eine Größenordnung runter – läßt den Reaktor quasi nur im Leerlauf laufen – hat man einen entsprechenden Sicherheitsgewinn in allen Parametern. Bis überhaupt die Betriebszustände eines – zigfach erprobten – Druckwasserreaktors erreicht werden, müßte eine Menge schief gehen. Man hätte genug Zeit den Reaktor abzustellen.

Bei einer so geringen Leistung, könnte man handelsübliche Brennelemente viel länger im Reaktor belassen bis sie „abgebrannt“ wären (Versorgungssicherheit, Preisstabilität etc.).

Ein Druckwasserreaktor in einem Kernkraftwerk arbeitet mit einem Betriebsdruck von etwa 155 bar und einer Wassertemperatur von etwa 325 °C. Beides recht ordentliche Werte. Wie sehe es bei einem Heizreaktor aus? Gehen wir von einer Vorlauftemperatur im Netz von 150 °C aus (Einsatz von Absorptionsanlagen zur Klimatisierung um das Netz auch im Sommer besser auszulasten). Damit das Wasser noch flüssig bleibt und nicht verdampft ist ein Betriebsdruck von mindestens 5 bar nötig. Geben wir noch mal 30 °C als treibende Temperaturdifferenz für die Wärmeübertrager im Heizreaktor drauf, kommen wir auf eine Betriebstemperatur von 180 °C. Dafür ist ein Betriebsdruck von mindestens 10 bar nötig. Ein beträchtlicher Sicherheitsgewinn.. Vor allen Dingen entfallen alle Hochdruck-Sicherheitseinrichtungen: Was man nicht hat, kann auch nicht kaputt gehen.

Noch eleganter erscheint ein Heizreaktor auf der Basis eines Siedewasserreaktors. Man bräuchte – da keine Turbine vorhanden ist – auch keinerlei Einbauten zur Dampftrocknung und keine Umwälzpumpen. Einfacher und sicherer geht nicht.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

Nachbemerkung

Fernheizungsnetze erfordern sehr hohe Investitionen, haben dafür kaum Betriebskosten und halten Jahrzehnte. Sie sind somit anderen Infrastrukturen, wie Trinkwasser- und Abwassernetzen sehr ähnlich. Gleichwohl gibt es schon heute weltweit unzählige Fernwärmenetze, die kontinuierlich erweitert werden. Der Markt für Wärmeerzeuger ist somit gewaltig. Auch die in Deutschland so beliebte „Plastikverpackung“ von Neubauten tut dem keinen Abbruch. Was braucht man also, um eine solche Entwicklung zu fördern?

  • Man benötigt möglichst kleine Heizreaktoren. Die Netzkosten fressen sonst sehr schnell etwaige Kosteneinsparungen bei den Reaktoren auf.
  • Die Reaktoren müssen sehr einfach und robust sein. Sie müssen standardisiert sein und in großen Stückzahlen in Fabriken hergestellt werden.
  • Es sollte weitgehend auf genehmigte Verfahren und Bauteile aus der Kernkraftwerkstechnik zurückgegriffen werden. Nur so kann man die kostspieligen und langwierigen Genehmigungsverfahren in den Griff bekommen.
  • Die Reaktoren müssen inhärent sicher sein und vollautomatisch betrieben werden können.
  • Sie müssen komplett und ständig fernüberwacht werden.
  • Die Anforderungen an Umgebung und Personal müssen vor Beginn des ersten Projekts neu definiert, öffentlich diskutiert und rechtssicher verabschiedet sein.
  • Bei jedem Standort müssen die Anwohner frühzeitig einbezogen werden. Nur durch Aufklärung kann man die einschlägige Angstindustrie und ihre Kumpane aus der Politik abwehren. Skandinavien und Frankreich bieten hierfür zahlreiche Beispiele und erprobte Vorgehensweisen.

Manchem mag das alles phantastisch vorkommen. Nur, ist die Diskussion nicht nur in China losgetreten worden. Sie läuft bereits auch in Osteuropa und Skandinavien. Es mag in Deutschland noch ein paar Jahre dauern, aber dann wird die Mehrheit der Bevölkerung erkennen, wie sie systematisch von Politikern und Schlangenölverkäufern mit der „Energiewende“ betrogen worden ist. Ist dieser Punkt erst erreicht, wird das Pendel ruckartig in seine alte Lage zurückkehren.

Fusion: 100 MW in Serie?

Wer die Entwicklung der Kernfusion beobachtet, hat den Eindruck einer unendlichen Geschichte. Mit Milliardenaufwand werden riesige Maschinen gebaut, die in jeweils etwa 50 Jahren Strom liefern sollen.

Hin und wieder tauchen von irgendwelchen Erfindern ganz neue, revolutionäre Konzepte auf, die sich bei näherem hinsehen, stets eher als Perpetuum Mobile, denn als Idee für ein Kraftwerk entpuppen. Genau das, habe ich gedacht, als ich die Meldung las: Kleine Fusionsanlage, Energie für jedermann. 100 MW Fusions-Reaktor, so groß wie eine konventionelle Gasturbine. Anlage in etwa fünf Jahren produktionsreif.

Normalerweise lese ich an diesem Punkt nicht mehr weiter. Science Fiction ödet mich an. Aber halt, der Vortrag (siehe Link zum Mitschnitt unten) ist von Lockheed Martin’s „Skunk Works“, einem Verein, der alles andere, als aus Aufschneidern besteht. Ich kann mich noch sehr gut an die immer wieder auftauchenden Berichte über die Entwicklung von „Tarnkappenbombern“ in den 1980er Jahren erinnern. Und auf einmal waren sie am Himmel: Die F-117 Nighthawk oder die B2 Spirit. Flugzeuge, schon in ihrer äußeren Form so revolutionär anders, daß man kaum glauben mochte, daß diese Maschinen überhaupt fliegen können.

Deswegen ist mir dieses Video eine Meldung auf der Wiese wert. Die „Stinktiere“ treten jedenfalls nie ohne Grund an die Öffentlichkeit. Irgendetwas brüten sie offensichtlich auf dem Energiesektor aus.

Kleinreaktoren

Bei allen Kraftwerken ist eine ausgeprägte Kostendegression mit zunehmender Leistung vorhanden – egal ob der Brennstoff Kohle, Gas, Uran oder sonst irgendetwas ist. Selbst bei Windmühlen gibt es einen Trend zu immer größeren Anlagen. Stark vereinfachend kann man sagen, es ist immer billiger, eine große Turbine als viele kleine zu bauen. Auch im Betrieb ergeben sich klare Vorteile: Meist wird weniger Personal und Wartungsaufwand benötigt und die Physik sorgt für bessere Wirkungsgrade.

Bei heutigen kommerziellen Kernkraftwerken geht die Bandbreite von etwa 1.000 MW (Westinghouse AP-1000) bis über 1.600 MW (Areva EPR) elektrischer Leistung. In Planung sind bereits noch größere Reaktoren. Warum sollte dieser offensichtlich erfolgreiche Trend also unterbrochen oder gar umgekehrt werden?

Marktpotential

Die Gründe sind ganz ähnlich denen in der Luftfahrt: Wenn man immer größere Flugzeuge verkaufen will, muß man auch dauerhaft entsprechend viele Fluggäste haben. Nicht jede Linie ist geeignet und bei mangelnder Auslastung kehrt sich der vermeintliche Kostenvorteil schnell ins Gegenteil um.

Schwellenländer

In der Stromwirtschaft gilt immer noch die Regel, daß der größte Block im Betrieb nicht mehr als zehn Prozent der momentanen Gesamtleistung haben sollte. Dies beschränkt den potentiellen Markt auf große Industrieländer, da sonst schnell des nachts und an Feiertagen die Auslastung nicht mehr gewährleistet wäre. Gerade Schwellenländer sind aber an der Einführung oder dem Ausbau der Kernenergie sehr stark interessiert. Wer in diesen Markt will, muß deshalb auch kleine Reaktoren anbieten.

Portfoliomanagement

Für jedes Energieversorgungsunternehmen bedeutet das Portfolio-Management eine immer größere Herausforderung. Genau so wenig, wie ein verantwortungsbewusster Finanzanleger all sein Vermögen in eine Anlage investiert, kann ein Energieversorger auf nur eine Art der Stromerzeugung setzen. Lediglich staatliche Versorger glauben die nötige Risikoprämie ausblenden zu können, da sie meinen, jederzeit die Steuerzahler in Geiselhaft nehmen zu können. Wenn man nun auch noch berücksichtigt, daß in marktwirtschaftlichen Systemen stets mehr als ein Anbieter vorhanden ist, kann man aus o. g. Gründen nachvollziehen, wie beschränkt die optimale Blockgröße nur sein kann. Selbst wenn große Blöcke vertretbar sind, kann die verringerte Vorfinanzierung durch allmählichen Zubau höchst lukrativ sein. In diesem Sinne ist auch das „modular“ in der Abkürzung SMR (Small Modular Reactor) zu verstehen. Zumindest ein Anbieter geht davon aus, einen „Großreaktor“ durch den sukzessiven Zubau von bis zu acht SMR zu realisieren.

Ersatz alter Kohlekraftwerke

In nächster Zeit ergibt sich ein bedeutendes internationales Marktpotential durch die notwendige Ausserbetriebnahme alter Kohlekraftwerke. Historisch bedingt, bewegen sich diese in der Größenordnung einiger hundert MW pro Standort. Will oder kann man dort keine neuen Kohlekraftwerke mehr bauen, so könnte man doch preisgünstig die vorhandene Infrastruktur mit SMRs weiter nutzen. Wie teuer allein der Netzumbau ist, zeigt sich gerade in Deutschland mit seiner Energiewende. Zumindest in China und USA wird dieses Konzept mit Nachdruck verfolgt. Ziel ist es, die dadurch frei werdenden Kohlenmengen für z. B. die Produktion synthetischer Kraftstoffe nutzbar zu machen. Interessanterweise wird dieses Konzept, von zahlreichen „Umwelt- und Klimaschutzorganisationen“ in den USA massiv unterstützt. In China dürfte eher die Luftverschmutzung und die (gewünscht und geförderte) Motorisierung Pate sein.

Mehr Öl durch SMR

Damit sind wir bei der letzten – und vielleicht am schnellsten realisierten – Anwendung kleiner Reaktoren. Die Förderung von Öl und Gas findet in immer weiter abgelegenen Regionen und mit immer höherem Energieaufwand statt. Der hierbei verbrannte Eigenbedarf setzt die verkaufbare Fördermenge herab. Aus diesem Grunde sind die ersten zwei Kleinreaktoren in Rußland bereits im Bau. Aber auch die Mineralölkonzerne sehen die Kernenergie nicht länger als lästige Konkurrenz, sondern eher zur Abdeckung des Eigenbedarfs.

Kerntechnische Besonderheiten

Aber noch einmal zurück zum Ausgangspunkt. Wenn immer größere Kraftwerke, zu immer geringeren Produktionskosten führen, wie sollen dann SMR konkurrenzfähig sein? In der Presse liest man immer die einfache Antwort: Durch Massenproduktion. Wenn die „Massenproduktion“ so einfach physikalische Gesetze überwinden könnte, hätten wir dann nicht längst Kleinraffinerien, kleine Hüttenwerke usw. an jeder Ecke? Ganz offensichtlich war „small is beautiful“ nichts weiter als ein erfolgreicher Werbeslogan.

Baukosten und Baustellenkosten

Kernkraftwerken geht der Ruf hoher Investitionskosten voraus. Es lohnt sich deshalb, einmal die Ursachen etwas näher zu beleuchten. Von der Entscheidung ein neues Kernkraftwerk zu bauen, bis zur ersten Stromproduktion, vergehen heute in den etablierten Ländern 10 bis 15 Jahre. Das bedeutet nichts anderes, als daß z. B. die Planungskosten über den gesamten Zeitraum vorfinanziert und damit laufend verzinst werden müssen. Selbst bei einem Zinssatz von nur fünf Prozent, haben sie sich nach 15 Jahren bereits verdoppelt. Wer Kosten sparen will, muß also schnell bauen. Wie fatal sich die Bauzeit auf die Stromgestehungskosten auswirkt, kann man heute durch den Vergleich mit China sehen: Baugleiche (!) Reaktoren der Generation III+ (Areva EPR oder AP-1000) werden in China wesentlich schneller fertiggestellt. Menetekel für den Industriestandort Europa sind die Areva-Baustellen eines EPR in Olkiluoto, Finnland und Taishan, China.

Bei beiden Projekten werden die Kernkomponenten (noch) nicht in den Ländern gefertigt, sondern komplett importiert. Ursache für den gewaltigen Preisunterschied sind also die Baustellenkosten. Bei Kernkraftwerken heutiger Bauweise fallen etwa 70 % der Baukosten auf der Baustelle an. Arbeiten auf einer Baustelle sind grundsätzlich teurer als in einer Fabrik. Dies gilt ganz besonders in der Kerntechnik, mit ihrem besonderen Prüf- und Dokumentationsaufwand. Wer also Kosten sparen will, muß möglichst viel, möglichst komplett, vorfertigen und schon in der Fabrik testen.

Wie klein sind SMR?

Als SMRs werden heute Reaktoren mit einer elektrischen Leistung von etwa 45 bis 300 MW bezeichnet. „Klein“ ist also auf diesem Gebiet sehr relativ. Die Definition hat einen anderen Ursprung: Sie sollen geometrisch so klein sein, daß sie sich noch mit der Eisenbahn transportieren lassen. Es wäre damit möglich, sie komplett in einer Fabrik zu fertigen und zu testen und sie nahezu einsatzbereit zu der Baustelle zu transportieren. Hiermit wäre ein Quantensprung in der Bauzeit und damit in den Finanzierungskosten verbunden. Ein Energieversorgungsunternehmen könnte wie eine Fluggesellschaft agieren: Definierter Liefertermin zu garantierten Kosten in akzeptabler Zeit.

Zusätzliche Sicherheit

Wenn man Dampferzeuger, Druckhalter und Umwälzpumpen mit in das Druckgefäß packt, spart man eine Menge Rohrleitungen und Schwachstellen. Dies ist durchaus nichts neues, sondern bei Schiffen seit Jahrzehnten erprobt. Da man wegen der Transportierbarkeit zu einer eher länglichen Bauform kommt, bietet es sich an, das Teil komplett in die Erde zu versenken. Man hat damit gegenüber einer konventionellen Bauweise einen natürlichen Schutz gegen Einwirkungen von außen (Flugzeugabsturz, Terror etc.) Manche Konzepte gehen sogar davon aus, das Containment dauerhaft mit Wasser zu füllen. Man erhält so eine sehr gute Abschirmung gegen Strahlung, eine Filterwirkung bei Störfällen und eine „ewige Kühlung“ zur Abfuhr der Nachzerfallswärme. Alles in allem, kann man von einer um ein bis zwei Größenordnung verringerten Eintrittswahrscheinlichkeit eines schweren Reaktorunfalls ausgehen.

In diesem Zusammenhang ist auch mit geringeren Kosten für die nötigen Versicherungen (Haftpflicht, Betriebsausfall) und einem geringeren Wartungsaufwand zu rechnen. Inhärente Sicherheitssysteme brauchen keine Wiederholungsprüfung. Je mehr Komponenten im Sinne der Kerntechnik nicht mehr sicherheitsrelevant sind, um so mehr kann (wieder) auf konventionelle Produkte und Hersteller zurückgegriffen werden. Es gibt in einem Kernkraftwerk unzählige Bauteile, die mit frei erhältlichen Teilen vollkommen identisch sind, aber einen drei bis viermal so hohen Preis haben. Der berühmt gewordene Dübel ist wahrlich kein Einzelfall. Ursache sind die Kosten für die Zulassung und der sprichwörtliche Dokumentationsaufwand.

Wohin geht die Reise?

Prinzipiell läßt sich jeder Reaktortyp auch klein herstellen. Wegen der erzkonservativen Einstellung der Genehmigungsbehörden – man könnte auch sagen: Was der Bauer nicht kennt, frisst er nicht – wird man sich nur wenig von Bekanntem entfernen. Zumindest in den USA sind Leichtwasserreaktoren favorisiert. Damit kennt sich die Genehmigungsbehörde aus und man kann auf langjährige Erfahrungen aus dem Schiffbau zurückgreifen. Schließlich hat allein die US-Marine über hundert Reaktoren in Betrieb. Wer sich für die gerade staatlich geförderten Konzepte von Westinghouse und B&W interessiert, sollte nicht versäumen, sich einmal den Reaktor der deutschen Otto Hahn (Stapellauf 1964) anzuschauen. Der hieß damals Fortschrittlicher Druckwasserreaktor (FDR). Vielleicht war er ja wirklich nur einfach vierzig Jahre zu früh?

Die Russen ticken auch nicht so viel anders. Die erste barge mit zwei Druckwasserreaktoren ist bereits in Bau und soll in Sibirien zur Versorgung der Gasfelder dienen. Die Reaktoren sind eine leichte Abwandlung des Typs, wie er auch bei russischen Eisbrechern verwendet wird. Allerdings arbeiten sie auch noch an einem Schnellen Reaktor mit Blei-Wismuth-Kühlung. Eine Weiterentwicklung eines mit mäßigem Erfolg eingesetzten U-Boot-Reaktors. Allerdings bietet dieses Konstruktionsprinzip schon allein wegen der höheren Temperaturen interessante Vorteile.

Und damit wären wir wieder in China angelangt. Die Chinesen haben gerade den Grundstein für einen mit Helium gekühlten Thorium Hochtemperatur Reaktor gelegt. Jawohl, es ist die Weiterentwicklung des guten, alten THTR aus Deutschland. Er soll Raffinerien und Chemiebetriebe mit Strom und Wärme versorgen. Das Konzept „Kohle und Kernenergie“ war vielleicht doch nicht so abwegig – meinen jedenfalls die Chinesen. Aus dem gleichen Grund – Erzeugung von Hochtemperatur-Wärme – greifen sie auch das amerikanische Konzept der Salzbadreaktoren wieder auf. Ganz neben bei, kann es auch der „Atommüllentsorgung“ dienen, die in China nicht nur ein Problem der Kernkraftwerke, sondern auch der Kohlekraftwerke und der Produktion Seltener Erden ist, die ja so gut für Windmühlen sein sollen.

In diesem Sinne, könnte man fast meinen, daß das Kernenergiezeitalter erst beginnt. Egal ob sich Deutschland nun „energiewendet“ oder nicht.