Wirtschaftliche Bedeutung der Kerntechnik in Europa

Ganz offensichtlich haben nur die Wenigsten eine Vorstellung von den wirtschaftlichen Konsequenzen des „Atom-Ausstiegs“ in Deutschland. Wie sonst ist es zu erklären, daß die einsame Entscheidung der Grökaz Merkel – in der Folge der (willkommenen?) Ereignisse in Fukushima – so widerstandslos hingenommen worden ist. Es trifft sich gut, daß parallel zu dem „Krisentreffen Windenergie“ beim Wirtschaftsmister, FORATOM (European Atomic Forum) eine Studie zur wirtschaftlichen und gesellschaftlichen Bedeutung der Kernenergie in Europa veröffentlicht hat. Bei dem „Krisentreffen-Windenergie“ haben alle Schlangenölverkäufer ihr gemeinsames Wehklagen nach noch mehr Subventionen und Ausnahmen vom Menschen- und Umweltschutz (Mindestabstände zu Wohngebäuden, Abholzungen in Wäldern etc.) für ihre Windmühlen angeschlagen. Nun droht die Windbranche auch noch mit dem Verlust von Arbeitsplätzen. Dies ist um so schamloser, da sich keiner für die Arbeitsplatzverluste in den Kohle- und Kernkraftwerken zu interessieren scheint. Noch heute schwätzen unsere Ökosozialisten bei ihren regelmäßigen Auftritten im Staatsfernsehen von dem „notwendigen Strukturwandel weg von der Kohle, hin zu Regenerativen Energien“. Wie erfrischend anders sieht der Polnische Energieminister die Dinge: „Kernenergie ist eine Möglichkeit technologisch anspruchsvolle Projekte in die Tat umzusetzen, die dazu beitragen, einen Arbeitsmarkt mit gut bezahlten Arbeitsplätzen in der gesamten Wirtschaft einzurichten“. Der Mann hat ja so recht und es stimmt – wie einst auch in Deutschland – auch noch die Reihenfolge: Erst Kernkraftwerke bauen und dann die Zechen und Kohlekraftwerke abschalten. Viele der heute in der Kohlenindustrie arbeitenden, können dann wieder auf anspruchsvolle und gut bezahlte Arbeitsplätze umgeschult werden. Wie gesagt, schon heute beträgt das Verhältnis der Beschäftigten in der kerntechnischen Industrie in Europa (EU28) zu denen in der Windindustrie etwa Faktor 4,4 und zur Sonnenindustrie gar 13,75. Tendenz steigend, da die Arbeitsplätze bei den „Regenerativen“ durch die Fertigung in Niedriglohnländern bereits rapide sinken – doch dazu später.

Istzustand

Seit rund 60 Jahren gibt es eine umfangreiche kerntechnische Industrie in der EU. Sie deckt von der Uranmine über den gesamten Brennstoffkreislauf bis zu den Kernkraftwerken die volle Bandbreite ab. Wieviel dort umgesetzt wird, wieviele Arbeitsplätze vorhanden sind, wieviele Steuern bezahlt werden etc. zu ermitteln, ist eher eine Fleißarbeit. Neben dieser „Direct Dimension“ gilt es noch die „Indirect Dimension“ zu erfassen: Wenn man beispielsweise ein Kernkraftwerk baut, braucht man Kühlmittelpumpen (direkte Ausgaben). Der Hersteller braucht aber beispielsweise Werkzeugmaschinen (indirekte Ausgaben) für die Pumpenherstellung, die aus der einschlägigen (nicht kerntechnischen) Industrie bezogen werden müssen. Eine Volkswirtschaft entsteht… Um solche komplexen Beziehungen nachbilden zu können, gibt es verschiedene Ansätze. Deloitte hat ein Computable General Equilibrium (CGE) Model für diese Studie verwendet. Über die Genauigkeit kann hier nichts ausgesagt werden. Nur so viel: Die direkten Ausgaben im Istzustand sind nachvollziehbar, die „angeregten Ausgaben“ sind nur von Spezialisten zu beurteilen und Betrachtungen in der Zukunft sind ohnehin unsicher.

Für viele wahrscheinlich verblüffend, nimmt der Sektor Kerntechnik mit einem Anteil von 3,30% am Gross Domestic Product (GDP) der EU in 2019 den zweiten Platz hinter dem Sektor Bau mit 4,76% ein. Der Sektor Automobile folgt erst mit 1,45% auf dem dritten Platz. Selbst in diesem Jahr sind noch 136.000 Menschen in Deutschland in der Kerntechnik beschäftigt, sie macht einen Umsatz von 71,6 Milliarden € und entrichtet Steuern in der Höhe von 13,9 Milliarden €. Recht ordentlich – für einen schon fast erdrosselten Industriezweig. Wie es sein könnte, zeigt Frankreich mit 457.200 Beschäftigten, einem Umsatz von 175,2 Milliarden und 53,3 Milliarden Steuereinnahmen. Und wer immer noch nicht nachdenklich wird: In Europa beschäftigt die Kerntechnik 1,1 Millionen festangestellte Arbeitnehmer, die Windindustrie (noch) 250.000 und die Solarwirtschaft (noch) 80.000. Noch vernichtender wird das Urteil, wenn man die 507 Milliarden der Kerntechnik zu den 36,1 Milliarden € der Windindustrie am europäischen GDP in Beziehung setzt. Wer immer noch eine Antwort sucht, warum uns unsere Nachbarn nicht folgen wollen, findet sie vielleicht hierin.

Zukunft

Mit der Vorhersage der Zukunft ist es grundsätzlich schwierig. Entscheidend ist schon mal, ob der Zeitraum und der Betrachtungsgegenstand in angemessenem Verhältnis zueinander stehen: Beim Wetter z. B. sind ein paar Tage noch zu bewältigen, mehrere Monate schlicht unmöglich. Bei dieser Studie wurde der Zeitraum von 2020 bis 2050 in 5-Jahresschritten gewählt. Das erscheint angemessen, denn (reife) Volkswirtschaften sind recht träge und neue Kernkraftwerke wachsen auch nicht über Nacht. Man hat die drei Szenarien „niedrig“, „mittel“ und „hoch“ durchgerechnet. Bei der Variante „niedrig“ geht man davon aus, daß es keine Verlängerung der Laufzeiten für bestehende Kraftwerke gibt und keine neuen gebaut werden. Damit würde die in Europa installierte Leistung von derzeit 118 GWel auf nur noch 36 GWel zurückfallen. Die obere Schranke wird durch das Szenario „hoch“ gebildet. Bei ihm werden alle Neubauten und Laufzeitverlängerungen umgesetzt. Dadurch stiege die installierte Leistung in Europa auf 150 GWel an. Dies ist beileibe keine utopische Variante. Der Anteil der Kernenergie würde damit sogar von derzeit 25% auf etwa 24% sinken. An dieser Stelle muß man darauf hinweisen, daß bei solchen Prognosen bereits eine erhebliche Unsicherheit in der Voraussage des Stromverbrauchs im Betrachtungszeitraum liegt. Er soll von derzeit 3100 TWh auf 4100 TWh in 30 Jahren ansteigen. Ein europaweiter Anstieg um 30% erscheint nicht abwegig, da in den meisten der 28 Staaten noch ein erheblicher Nachholbedarf besteht. Da helfen auch keine Phantasien über „Effizienzsteigerung“ – von „Elektromobilität“ und „Dekarbonisierung“ gar nicht zu schwafeln.

Bevor man über die wirtschaftlichen und sozialen Auswirkungen nachdenken kann, ist zu klären, ob die Variante „hoch“ überhaupt realisierbar scheint. Heute sind in Europa 126 Reaktoren (mit 118 GWel) in Betrieb, 5 im Bau (Olkiluoto (FIN), Flammanville (F) Mochovce (SK), Hinkleypoint (GB)) und 11 sollen bis 2050 definitiv stillgelegt werden. Um auf die angedachten 122 Reaktoren (mit dann 150 GWel) zu kommen, müssen also weitere hinzugebaut werden. Dies erscheint als kein großes (technisch/wirtschaftliches) Problem, da 99 Reaktoren bereits in Planung sind und verschiedene Typen erfolgreich ein Genehmigungsverfahren durchlaufen haben. Hat man den nötigen politischen Willen und einigt sich auf bereits erfolgreiche Reaktoren der dritten Generation (EPR, AP1000, ABWR, AP-1400, VVWR-1200 etc.) kann man „zahlreiche“ Neubauten in den kommenden 30 Jahren realisieren. Es sei nur an das Ausbauprogramm einst in Frankreich und heute in China erinnert. Einziger Engpass dürften die notwendigen Fachkräfte sein. Schon heute drohen beim Bau der Reaktoren in Hinkleypoint Verzögerungen, weil es an zugelassenen Schweißern in GB mangelt.

Bei der„hohen“ Variante sind 1.321.600 Vollzeitbeschäftigte in der EU tätig. Davon sind etwa 595.600 „hoch qualifizierte Beschäftigte“ mit entsprechend hohem Gehalt. Es ist eine Besonderheit der Kerntechnik, daß man für fast alle Tätigkeiten besondere Zusatzausbildungen, teilweise mit regelmäßigen Wiederholungsprüfungen, benötigt (z. B. Schweißer, Reaktorfahrer, Strahlenschutz etc.). Hierin liegt die schwerste Sünde der deutschen Politik: Durch den Ausstiegsbeschluß sind bereits viele Ausbildungsplätze – bei gleichzeitiger Überalterung der Beschäftigten – vernichtet worden. Es fehlen langsam sogar die Ausbilder. Schon in wenigen Jahren befinden wir uns auf dem kerntechnischen Niveau der Vereinigten Emirate oder Ägyptens. Wieviel Geld und Engagement ein Umsteuern noch deutlich vor der Klippe erfordert, kann man gerade in GB betrachten.

Vorbeugend

Bevor nun gleich wieder alle Schlangenölverkäufer ihre Kübel mit Desinformation ausschütten, hier gleich noch ein paar klärende Worte:

  1. Nein, man kann Kernkraftwerke und Windräder bzw. Sonnenkollektoren gar nicht miteinander vergleichen. Kernkraftwerke können zu jedem Zeitpunkt die von den Verbrauchern geforderte elektrische Leistung und Energie bereitstellen.
  2. Windräder und Sonnenkollektoren sind zu 100% vom Wetter abhängig. Kein Sonnenlicht und kein Wind, bedeutet auch keinen elektrischen Strom. Ja, irgendwo weht immer Wind – leider oft genug nicht gleichzeitig in ganz Europa. Ja, irgendwo scheint immer die Sonne – nur nicht nachts hier und in der Sahara. Wer das nicht glauben will, soll einfach mal einen Globus heranziehen.
  3. Nein, man kann die elektrische Energie für eine tagelange Dunkelflaute nicht speichern. Dies ist schon so oft vorgerechnet worden, daß ich mir das hier getrost erspare.
  4. Die Arbeitsausnutzung (wieviel elektrische Energie man produziert hat) beträgt bei Kernkraftwerken rund 90% der „Leistung auf dem Typenschild“ multipliziert mit der Kalender-Zeit. Bei Windrädern rund 20% und bei Photovoltaik in Deutschland gar nur rund 10%. Zukünftig also schön den „spezifischen Typenschildpreis“ (€/kW) bei Windrädern mit fünf multiplizieren und bei Photovoltaik mit dem Faktor zehn. Erst dann sind die Investitionskosten (halbwegs) vergleichbar. Alles andere ist vorsätzliche Täuschung.
  5. Das Vorgesagte gilt auch für alle „power to gas“ und sonst was Anlagen. Immer schön die Investitionskosten mit fünf bzw. zehn multiplizieren, denn diese Anlagen können immer nur Gas machen, wenn der Wind weht oder die Sonne scheint. Egal wie groß sie sind, egal wie viele es sind. Und alle guten Wünsche eines Verfahrenstechnikers zum Betrieb solcher „chemischer Anlagen“ unter ständig wechselnder Last.
  6. Wenn man (hochwertige) elektrische Energie in (minderwertiges) Gas verwandelt um dieses zu speichern und bei Bedarf wieder zurück zu wandeln in elektrische Energie, hat man immer enorme Verluste. Schon die Thermodynamik zeigt einem, daß die (theoretischen) Verluste der gesamten Umwandlungskette (Achtung: Die Einzelwirkungsgrade sind miteinander zu multiplizieren) bereits bei rund 50% liegen. Bei technischen Anlagen unter ständig wechselnden Lasten sind die Verluste noch beträchtlich höher. Also für die „Speicherketten“ besser die Investitionskosten mit dem Faktor 10 bis 20 multiplizieren, wenn man sie mit Kernkraftwerken vergleichen will. Ein bischen Überschlagsrechnung kann nie schaden.
  7. Ja, es hat auch etwas gutes, wenn die bösen „Atomkraftwerke nicht mehr die Netze verstopfen“: Man spart das sonst gespaltene Uran ein. Nur sind die Brennstoffkosten (einschließlich Wiederaufbereitung und Endlagerung) eine ganz kleine Position beim „Atomstrom“.

Braucht das Leben Strahlung?

Die Erkenntnisse über die Wirkung niedriger Strahlungsdosen schreiten immer weiter voran. Die radikalste Fragestellung dabei ist die Frage nach dem Verhalten von Zellen bei Abwesenheit von ionisierender Strahlung. Die Ergebnisse sind verblüffend – aber der Reihe nach…

Das LNT-Modell

In den 1950er-Jahren einigte man sich weltweit auf einen linearen Zusammenhang, ohne einen Schwellwert (linear no-threshold model; LNT), für den Strahlenschutz. Es ist simpel und damit leicht anwendbar: Man unterstellte, daß die biologischen Schäden (gemeint ist Krebs), die durch ionisierende Strahlung (umgangssprachlich durch Radioaktivität) ausgelöst werden, direkt proportional zur Dosis sind: Die mathematische Funktion ist eine einfache Gerade mit der Steigung 0,05/Sv. Etwas anschaulicher ausgedrückt, wenn man 100 Menschen einer Dosis von 1 SV (Sievert) aussetzt, erkranken davon fünf Menschen (zusätzlich) an Krebs. Mehr steckt nicht dahinter und damit fangen schon die Schwierigkeiten an.

Wie ist man zu dieser einfachen Zahl gekommen? Hauptsächlich durch die Auswertung der Opfer der Bomben auf Hiroshima und Nagasaki. Man hat zehntausende Menschen über Jahre beobachtet und ihre Erkrankungen dokumentiert. Das war der einfache Teil der Aufgabe. Wesentlich schwieriger war schon die Ermittlung der individuellen Strahlendosis, da diese Menschen natürlich keine Meßgeräte getragen haben. Hinzu kamen noch jeweils verschiedene Lebensumstände, Vorerkrankungen etc. Wenn man nun jeden einzelnen Fall in einem Diagramm (Krebserkrankungen über Dosis) aufträgt, kann man streng genommen keinen Punkt eintragen, sondern muß eher einen Klecks verwenden: Weder ist die genaue Dosis zu ermitteln, noch sind die Krebsarten alle gleich, noch kann man sonstige Belastungen (z. B. krebserregende Chemikalien, Umwelteinflüsse, genetische Prägungen etc.) genau erfassen.

In solchen Fällen helfen nur die Methoden der Statistik. Vereinfachend gesagt braucht man eine Wolke aus möglichst vielen Fällen, die möglichst eng zusammenliegen. Sieht das sich ergebende Band nach einer Geraden aus, kann man in guter Näherung eine solche hindurch legen und deren Steigung bestimmen.

Hier ergibt sich aber das Problem, welches seit über 80 Jahren zu heftigsten Diskussionen auch in der Fachwelt führt: Im unteren Teil (kleine Dosen und damit eine geringe Anzahl von Krebsfällen) gibt es kaum Punkte und die streuen auch noch sehr stark. Es ist damit äußerst fragwürdig, den gesamten Bereich – von keiner meßbaren Wirkung, bis zum garantiert kurzfristig eintretendem Strahlentod – durch ein und dieselbe Gerade nachbilden zu wollen. Schon die geringe zusätzliche Anzahl von den ohnehin auftretenden Krebsfällen trennen zu wollen, ist eine schier unlösbare Aufgabe. Hier rächt sich die Statistik: Sie arbeitet stets nur mit Wahrscheinlichkeiten. In dem vorherigen Zahlenbeispiel kann man weder voraussagen, welche fünf Personen von den betrachteten 100 Personen Krebs bekommen, noch ob es exakt fünf Fälle sind. Lediglich, wenn man sehr, sehr viele Menschen mit einem Sievert bestrahlen würde, würde sich die Anzahl der zusätzlichen Krebsfälle (bei diesem Modell!) der Zahl von fünf Prozent annähern.

Schwellwert oder nicht?

Man bezeichnet einen Wert als Schwellwert, wenn sich der Zusammenhang bei einem Modell wesentlich ändert. Für einen Ingenieur ist es nichts ungewöhnliches, Messreihen z. B. abschnittsweise durch unterschiedliche Geraden anzunähern.

Im Arbeitsschutz ist es üblich, für Giftstoffe Schwellwerte zu definieren. Üblicherweise sind dies Dosen, bei denen man auch über ein ganzes Arbeitsleben keine Schädigung feststellen kann. Dahinter steckt eine Alltagserfahrung: Nicht jeder Umgang mit einem Stoff führt sogleich zu einem Schaden. Andrerseits führt ein zu viel – bei jedem Stoff – irgendwann, zu irgendwelchen Schäden.

Bis zur Politisierung der Strahlung durch die „Atombomben“, ist man auch mit ionisierender Strahlung sehr erfolgreich so pragmatisch umgegangen. Man hatte schon wenige Jahre nach der segensreichen Erfindung der Röntgenstrahlung festgestellt, daß diese zu Erkrankungen bei dem medizinischen Personal führen konnte. Man analysierte die Fälle und definierte einen (zulässigen) Schwellwert für den Arbeitsschutz.

Energie und Leistung

Schon jedem Schüler sollte der Zusammenhang von Energie und Leistung vertraut sein. Es macht einen gewaltigen Unterschied, ob ich eine Leistung (W oder J/s) für Bruchteile einer Sekunde aufbringe oder über Stunden verteilt. Eindrucksvolles Beispiel hierfür, ist ein Laser-Strahl: Eine relativ geringe Energie reicht aus, um zwei Stahlplatten miteinander zu verschweißen. Der „Trick“ ist, die Energie in einem sehr kurzzeitigen Blitz zu senden. Über Stunden angewendet, würde sie den Stahl nicht einmal zum glühen bringen.

Warum glaubte man nun, diese Erfahrungstatsachen bei der ionisierenden Strahlung außer Kraft setzen zu können? Es war schlicht ein unvollständiges und damit leider falsches Verständnis der biologischen Zusammenhänge. Man hatte erkannt, daß bei der Zellteilung die DNA kopiert und damit die Erbinformationen weitergegeben würden. Man wußte, daß bereits ein Partikel einen DNA-Strang zerschlagen konnte. Man glaubte, wenn nun der Fehler beim kopieren an die Tochterzelle weitergegeben würde, müßten die Fehler irgendwann so häufig sein, daß eine „Krebszelle“ entstanden wäre. Eine übervorsichtige oder abstruse Vorstellung – ganz nach Standpunkt des Betrachters. Der gesunde Menschenverstand sagt einem schon, daß es einen gewaltigen Unterschied macht, ob man täglich nur einen Schnaps trinkt oder gleich die Flasche „auf ex“ leert. Die ganze Pharmakologie müßte neu geschrieben werden, wenn es keinen Unterschied machte, ob man seine Tabletten nach Anwendungsvorschrift einnimmt oder gleich die ganze Schachtel auf einmal in der Apotheke schluckt. Ausgerechnet bei der ionisierenden Strahlung sollte der seit Jahrhunderten bekannte Grundsatz: Die Dosis macht das Gift, nicht gelten.

Die Kollektivdosis ist schlichtweg Unsinn. Nach dem Motto, wenn wir einer Million Menschen je einen Aspirin geben, haben wir X Tote, weil wir ja wissen und nachweisen können, daß die Einnahme von y Schachteln Aspirin zum Tode führt. Ganz im Gegenteil nehmen Millionen Menschen weltweit täglich eine Tablette Aspirin ein, um z. B. das Risiko von Herzinfarkten drastisch zu senken.

Hormesis

Damit kommen wir zur Hormesis. Darunter wird verstanden, daß ein und derselbe Stoff, in geringen Mengen verabreicht, eine genau gegenteilige Wirkung haben kann. Seit Anbeginn zeigte sich bei „Niedrigstrahlung“ das Phänomen deutlich geringerer Krebsfälle, als nach dem LNT-Modell zu erwarten waren. Fast alle Studien mit Arbeitern aus der kerntechnischen Industrie, Opfern von „Atombomben“ und nicht zuletzt den Reaktorunglücken von Tschernobyl und Fukushima zeigten sogar unter dem Erwartungswert für die entsprechende Bevölkerungsgruppe liegende Werte. Jahrzehntelang versuchte man sich besonders bei Bergleuten mit der besonderen medizinischen Fürsorge und der Vorauswahl („Survival of the Fittest“) aus der Affäre zu stehlen. Bis man sich die Frage stellte, ob nicht ionisierende Strahlung in bestimmten geringen Dosen sogar eine den Krebs verhindernde Wirkung zeigte. Plötzlich war auch die „Radontherapie“ keine Esoterik mehr.

Seit man in der Molekularbiologie große Fortschritte erzielt hat und Gene und die DNA praktisch beobachten kann, kann man diese Phänomene sogar naturwissenschaftlich erklären. Es passieren ständig, in jeder Zelle, zehntausende DNA-Fehler. Hauptsächlich sind dafür Radikale verantwortlich. Es gibt daher einen Reperaturmechanismus, der die DNA größtenteils wieder repariert. Darüberhinaus existiert noch eine weitere Ebene, die Zerstörung entarteter Zellen. Erst wenn alle Reparatur- und Schutzmechanismen versagen, kann sich „Krebs“ ausbilden. Hieraus ergibt sich auch der Zusammenhang von (permanenten) kleinen und kurzzeitig hohen Dosen: Mit einer geringen Anzahl von Fehlern wird das Reparatursystem leicht fertig. Ab einer gewissen Dosis entsteht ein „Sättigungsangriff“, der die Abwehr schlicht weg überfordert.

Ohne diese „Selbstheilungskräfte“ wäre überhaupt kein Leben möglich. Man kann nun in Versuchen zeigen, daß diese Kräfte durch ionisierende Strahlung (in der richtigen Dosis!) motiviert und unterstützt werden. Ein Umstand, der bereits in der Strahlentherapie Anwendung findet. Um Krebszellen zu zerstören, braucht man punktuell sehr hohe Dosen, die natürlich das umliegende gesunde Gewebe stark belasten. Deshalb trainiert man in bestimmten Fällen vor der eigentlichen Behandlung das gesunde Gewebe durch mehrere Bestrahlungen mit niedrigen Dosen.

Der Ultimative Test

Wenn es eine Hormesis gibt, was passiert eigentlich, wenn man von Zellen die Strahlung fern hält? Eine einfache Fragestellung, aber ein schwer durchführbares Experiment. Es gibt nämlich überall ionisierende Strahlung: Aus dem All und aus der Erde – die sogenannte Hintergrundstrahlung. Dieser Strahlung war und ist jedes Leben seit Milliarden Jahren ausgesetzt. Leben hätte sich gar nicht entwickeln können, wäre es nicht gegen ionisierende Strahlung überlebensfähig gewesen. Gott sei es gedankt, ist die Natur etwas einfallsreicher, als die Anhänger des LNT-Modells meinen.

Schon in den 1990er Jahren wurde in Italien ein Experiment mit Hefezellen durchgeführt. Hefezellen sind ein Standardobjekt der Molekularbiologen. Sie wurden in ein Labor 1300 m tief unter einem Bergmassiv gezüchtet. Hier unten war die Strahlung tausendfach kleiner, als in dem oberirdischen Vergleichslabor. Anschließend wurden beide Versuchsgruppen Chemikalien ausgesetzt, die starke genetische Veränderungen auslösen können. Es zeigte sich, daß die Fehlerrate bei den „vor Strahlung geschützten“ Zellen höher war.

Inzwischen werden solche Experimente ausgeweitet. In den USA hat man z . B. in einem Salzstock in Carlsbad ein Labor in 650m Tiefe eingerichtet. Die dortige Salzschicht besteht aus sehr reinem Kochsalz und enthält damit nur sehr wenig „radioaktive Stoffe“. Die Deckschicht schirmt die kosmische Strahlung entsprechend ab. Die „Bakterienzucht“ wird in einem Tresor mit 15 cm dicken Stahlwänden aus Stahl vor dem II. Weltkrieg durchgeführt. Solch alter Schrott wird inzwischen hoch gehandelt, da er noch nicht mit Fallout aus „Atombombenversuchen“ etc. belastet ist. Durch diese Maßnahmen gelang es, eine Strahlung von 0,17 mSv pro Jahr innerhalb des Tresors zu erreichen. Dies ist der geringste Wert, der bisher auf der Erde erzeugt werden konnte.

In der Versuchsanordnung wurden nun als besonders strahlenempfindlich bekannte Bakterien Shewanella oneidensis und als besonders strahlungsresistente Bakterien Deinococcus radioduruans gezüchtet. In regelmäßigen Abständen wurde die DNA der Versuchsgruppen auf Schäden untersucht. Um andere Einflüsse ausschließen zu können, wurden die Bakterien mehrfach zwischen den Orten mit verringerter Strahlung und normaler Strahlung hin und her getauscht.

An dieser Stelle müssen wir uns noch einmal die zentrale Aussage des LNT-Modells verdeutlichen:

  • Jedes „Strahlungsereignis“ schädigt die DNA. Deshalb gilt: Je weniger Strahlung, um so weniger Schäden. Nach dem LNT-Modell gibt es einen Nullpunkt, an dem es infolge der nicht vorhandenen Strahlung auch keine Schäden geben dürfte.
  • Die aufgetretenen Schäden addieren sich. Je länger man eine Probe bestrahlt, um so mehr Schäden treten auf.

Demgegenüber stehen die Messergebnisse des Versuches: Beide Bakterienarten weisen „ohne Strahlung“ mehr Schäden auf als „mit Strahlung“. Besonders verblüffend ist, daß sich die Schäden innerhalb von 24h normalisieren, wenn man die Proben wieder der Hintergrundstrahlung aussetzt. Schützt man die Probe wieder vor Strahlung, nehmen die Schäden auch wieder zu. Dies scheint in beliebigem Wechsel möglich.

Sollten sich diese Erkenntnisse weiter verdichten, würde es bedeuten, daß das LNT-Modell schlicht weg, falsch ist. Benutzt man den gesunden Menschenverstand, ist dies auch nicht besonders überraschend: Es hat immer schon Strahlung auf der Erde gegeben. Früher sogar mehr als heute (Halbwertszeit z. B. von Uran, Kalium etc., Sonnenaktivitäten und unterschiedliche Atmosphäre). Vielleicht wäre ohne Strahlung gar kein Leben möglich?

ALARA

Bei diesen Forschungsergebnissen handelt es sich nicht einfach um irgendwelche Trivialitäten, sondern sie sind hoch brisant. Bisher galt weltweit das Prinzip beim Strahlenschutz, die Strahlenbelastung so gering wie möglich zu halten (As Low As Reasonably Archievable; ALARA). Eine ganze Industrie mit Milliardenumsätzen lebt davon. Geld, das man nutzbringender hätte einsetzen können. Konnte man bisher noch mit Fürsorglichkeit und Vorsicht argumentieren, ist es spätestens nach dem Unglück von Fukushima endgültig damit vorbei. Dort hat man eindeutig das Kind mit dem Bade ausgeschüttet. Es sind viel mehr Menschen seelisch und körperlich durch ALARA zu Schaden gekommen, als durch die vorhandene Strahlung. Es wäre besser gewesen, die Menschen hätten in ihrer Umgebung verbleiben können. Evakuierungen wären nur in ganz wenigen Fällen und auf freiwilliger Basis nötig gewesen. Gut gemeint, war auch hier nicht, gut gemacht. Ideologie kann töten. Die Aufklärung der Bevölkerung ist daher dringend notwendig.