Immobilisierung von Pu & Co

Alle radioaktiven Stoffe sind erst richtig gefährlich, wenn sie in den Körper aufgenommen werden. Solange sie sich außerhalb befinden, ist eine Abschirmung recht einfach möglich. Für eine „Inkorporation“ sind drei Wege ausschlaggebend: Über die Atemluft, Trinkwasser und Nahrung. Solange sie also gar nicht in die „Biosphäre“ gelangen, können sie auch keinen Menschen schädigen oder sich dort anreichern. Andersherum war dies der Grund, warum man sich recht früh auf ein „Teststoppabkommen“ in der Atmosphäre geeinigt hat. Es wurden über 2000 Kernwaffentests international durchgeführt. Durch die Zündung von Kernwaffen in der Atmosphäre wurden zig Tonnen Uran, Plutonium und Spaltprodukte über die gesamte Erde verteilt. Auch das wieder als Hinweis, wie schamlos die Propaganda von Greenpeace und Konsorten bezüglich „Atommüll“ ist, von denen ja wenige Gramm ausreichen sollen, die ganze Menschheit auszurotten.

Eine vorübergehende Lagerung

Plutonium wird z. B. in den USA in Fässern aus Edelstahl gelagert. Diese Fässer sind etwa 90 cm hoch und haben einen Durchmesser von 50 cm und beinhalten eine Portion von jeweils etwa 4,4 kg Plutonium. Wegen dessen hoher Dichte eine sehr „luftige“ Verpackung. Dies geschieht aus Sicherheitsgründen, damit auf jeden Fall eine Kettenreaktion verhindert wird. Diese Fässer stehen in ständig überwachten Bunkern. Selbst die kleinste Undichtigkeit würde sofort erkannt werden.

Alle Transurane sind nur schlecht wasserlöslich. Eine Verbreitung über große Strecken ist schon deshalb ausgeschlossen. Dies ist nicht nur eine theoretische Überlegung, sondern auch in unfreiwilligen Großversuchen betätigt: In den Anfangsjahren der Kernwaffenproduktion hat man die gesamte Brühe (Spaltprodukte, Minore Aktinoide usw.) einfach in unterirdischen Tanks (Abschirmung) gelagert. Teilweise sind diese undicht geworden und ein Teil der Ladung ist im Boden versickert. Man verfügt deshalb über jahrzehntelange Messreihen zur Ausbreitung aller Spaltprodukte und von Plutonium im Erdboden. Im Laufe der Jahrzehnte hat sich in diesen Tanks eine Schlammschicht aus „Atommüll“ abgelagert. Diese wird nun kostspielig beseitigt und für eine Endlagerung im WIPP umgeformt. Vor dem Transport zum WIPP werden sie verglast und in endlagerfähige Behälter aus Edelstahl abgegossen.

Die Verglasung

Glas ist ein sehr haltbarer Werkstoff. Wir finden heute noch Glasscherben aus der Antike, die aussehen, als wären sie erst gestern hergestellt worden. In der Fischerei werden deshalb z. B. Glaskugeln als Schwimmkörper eingesetzt. Sie halten Salzwasser und hohen Drücken über Jahrzehnte stand. Zudem ist Glas auch noch billig und einfach (Automatisierung) herstellbar. Jahrzehntelang hat man weltweit Spezialgläser entwickelt, die ein besonders hohes Rückhaltevermögen für Spaltprodukte und Transurane besitzen.

Der plutoniumhaltige Abfall wird kalziniert (bei hohen Temperaturen gebrannt um alle chemischen Verbindungen aufzubrechen und das Kristallwasser auszutreiben) und gemahlen. Parallel wird in einem Schmelzofen eine Glasfritte erzeugt, in die der Abfall eingestreut wird. Der Abfall löst sich wie Zucker im heißen Tee gleichmäßig im flüssigen Glas auf. Je nach Abfallzusammensetzung kann man etwa 20 bis 30% Abfall auflösen. Ist die Mischung homogen, wird sie in Edelstahlbehälter abgegossen. Da Glas eine „unterkühlte Flüssigkeit“ ist, erhält man auch im erkalteten Zustand einen homogenen „Abfallblock“.

Die Abfallmenge, die bisher verglast und bis 2009 in der WIPP eingelagert wurde, enthielt etwa 4,5 to Plutonium. Weitere 17 to stark verunreinigtes Plutonium sind ebenfalls zur direkten Endlagerung in der WIPP vorgesehen.

Bildung von synthetischem Gestein

Eine weitere Methode — die besonders für Plutonium — geeignet erscheint, geht genau einen anderen Weg: Man stellt einen synthetischen Stein her (SynRoc) in dessen Kristallgitter das Plutonium fest eingebaut ist. Diese künstlichen Steine sollen noch einmal um den Faktor eine Million weniger löslich sein als Glas. Man hat in verschiedenen Einrichtungen in den USA und in der Wiederaufbereitungsanlage in Sellafield (GB) mehrere to Plutonium mit dieser Methode eingeschlossen. Es handelt sich dabei um jeweils kleine Mengen Plutonium aus verschiedenen Forschungsprogrammen. Es lohnt nicht, diese „geringen Mengen“ aufwendig mit Spezialverfahren aufzubereiten. Es ist zumindest wirtschaftlicher, diese Mengen mit ins Endlager zu geben.

Bei dem SynRoc-Verfahren wird ein Gestein auf der Basis von ausgewählten Titanaten hergestellt. Diese werden in der richtigen Mischung mit Wasser vermahlen und das Plutonium (bis 30%Gew) zugesetzt. Dieser Schlamm wird getrocknet und bei 750°C kalziniert um ein feines Pulver zu erhalten. Dieses Pulver wird auf einer automatischen Abfüllanlage in kleine, hantelförmige Edelstahldosen abgefüllt, die sofort verschweißt werden. Der entscheidende Verfahrensschritt ist nun ein heißisostatisches Pressen: Die „Hanteln“ werden acht Stunden lang bei 1300°C und einem Druck von 1000 bar gesintert. Heraus kommen schwarze, gesteinsartige Zylinder.

Zurück zur Abrüstung

Wie schon ausgeführt, ist die Lagerung von Plutonium kein großartiges Problem. Das Problem bei reinem Pu239 ist vielmehr, daß man es jederzeit wieder zum Bau neuer Kernwaffen verwenden kann. Das Sicherheitsproblem ist also nicht der Strahlenschutz, sondern der „Diebstahlschutz“. Die National Academy of Sciences erschuf den „Selbstschutz-Standard durch γ-Strahlung“ auf der Basis von „abgebrannten Brennelementen“. Fast das gesamte Strahlungsfeld wurde auf den Zerfall von Cesium-137 mit einer Halbwertszeit von 30 Jahren bezogen.

Nachdem man langsam zu der Erkenntnis gelangte, daß das Mischoxid-Programm völlig aus dem Ruder lief, hat die Obama-Administration 2014 folgende Alternativen vorgeschlagen:

  1. Verdünnung des Plutoniums mit noch vorhandenem Restmüll und anschließende Einlagerung im WIPP.
  2. Der „can in canister“ Ansatz zur Einlagerung in hochaktivem Glas.
  3. Entsorgung in 5000 m tiefen Bohrlöchern, und
  4. Bestrahlung in einem natriumgekühlten Reaktor mit schnellem Neutronenspektrum.

Die Verdünnung

Die Verdünnung des Plutoniums durch die Auflösung in noch vorhandenem Restmüll aus der Wiederaufbereitung kann man wohl nur als Schnapsidee bezeichnen. Man erzeugt damit wieder besonders langlebigen „Atommüll“. Zum Glück hat man nur noch kleine Mengen unverglasten Restmüll in den Labors übrig, die nicht ausreichen werden um das „Überschuss Plutonium“ auf diese Art zu beseitigen. Allenfalls geringe Mengen — die auf irgendeine Art besonders schwer zu behandeln sind — sind so gegen Diebstahl zu schützen.

Eine Abwandlung dieses Weges hat das Energieministerium (DOE) schon 2011 beschritten: Über 580 kg Plutoniumoxid Pulver aus den Labors der Savannah River Site wurden mit einem geheimgehaltenen Stoff gemischt, der angeblich besonders schwer wieder zu trennen ist. Diese Mischung — mit einem Anteil von 10% Plutonium — wurde in Rohre von 15 cm Durchmesser abgefüllt, die wiederum einzeln in 200 l Fässern eingeschlossen wurden (“pipe-overpack containers”). Der Gehalt an Plutonium pro Faß wurde auf höchstens 175 gr begrenzt.

Würde man den Gehalt pro Faß auf 340 gr Plutonium erhöhen, wären für 50 to Plutonium rund 150 000 Fässer nötig. Eine — von derzeit sieben Kammern im WIPP Endlager— könnte 90 000 Fässer aufnehmen. Ursprünglich betrug das genehmigte Einlagerungsvolumen für das WIPP 176 000 m3 für Abfall mit Transuranen. Eine Genehmigung für eine Erweiterung ist in Arbeit.

Die Kritik von Sicherheitsexperten über diese Methode zur Einlagerung von waffengrädigem Plutonium ist nicht ganz von der Hand zu weisen: Für den Bau einer „Nagaski Bombe“ wären etwa 20 solcher „Rohre“ mit den Abmessungen von 15 cm Durchmesser und 60 cm Länge nötig. Bei einer Stückzahl von 150 000 Stück, mit diversen verteilten Produktions- und Lagerstätten eine extrem geringe Anzahl. Die bewegt sich schon in in der Größenordnung vorgekommener Buchung- und Bilanzierungsprobleme. Selbst ein reiner Papierverlust wäre eine Katastrophe in der öffentlichen Wahrnehmung.

Das Dose in Kanister Verfahren

Aus dem „Selbstschutz-Gedanken“ wurde das „can in canister“ Verfahren entwickelt. Man mischt etwa 10% Plutonium mit speziellen Stoffen, die besonders schwer trennbare chemische Verbindungen mit ihm eingehen, presst dieses Pulver in Scheiben und sintert diese zu Keramik. Das ergibt die „Immobilisierung“. Diese Scheiben werden in Dosen von etwa 6 cm Durchmesser und 25 cm Höhe gefüllt. Jede dieser Dosen enthält etwa 1 kg Plutonium. Jeweils 28 Dosen kommen in einen Kanister von etwa 3 m Kantenlänge und werden mit flüssigem, strahlenden Glas aus der Beseitigung von hochaktivem „Atommüll“ umgossen. Für die geplant 50 to „Überschussplutonium“ werden also 1800 solcher Kisten benötigt. Genau das ist aber das Problem: Die USA haben gar nicht mehr solche Mengen unbehandelten hochaktiven Müll zur Verfügung.

Das Energieministerium (DOE) hat als Standard für eine „Selbstsicherung“ bei solchen Kanistern eine Strahlendosis von 1 Sv pro Stunde in einem Abstand von einem Meter in 30 Jahren nach der Befüllung definiert. Man würde deshalb für die Kanister über 1,221×1018 Bq Cäsium-137 (rund 225 kg) benötigen. Zur Orientierung: Bei der Tschernobyl-Katastrophe soll eine Aktivität von etwa 8,5×1016 Bq Cs137 freigesetzt worden sein.

Bohrlöcher

Seit Jahrzehnten gibt es den Vorschlag „Atommüll“ in tiefen Bohrlöchern (ca. 3000 bis 5000 m tief) einzulagern. Dahinter steckt der Grundgedanke: Tiefe = langer Weg bis zur Oberfläche = lange Zeitdauer. Die angepeilte Tiefe ist etwa die zehnfache Tiefe von bergmännischen Endlagern. Diese große Tiefe stellt eine zusätzliche Sicherheit vor der „Wiedergewinnung“ des „Waffen-Plutoniums“ dar.

Es wurden bereits Demonstrations-Bohrungen durchgeführt und über 110 Standorte in den USA bewertet. Kriterien waren unter anderem: Entfernung zu Siedlungsgebieten, das Vorhandensein von kristallinem Grundgestein ab 2000 m Tiefe, flacher Verlauf der Schicht, geringer geothermischer Wärmestrom und geringer Vulkanismus.

Diese Form der Endlagerung geht davon aus, daß es mindestens drei Gründe gibt, warum ein natürlicher Transport durch Wasser bis an die Oberfläche nahezu ausgeschlossen ist — selbst wenn das Plutonium sich aufgelöst hat:

  1. Der gewaltige Gebirgsdruck in solchen Tiefen schließt etwaige Risse und Spalten sehr schnell, sodaß es nur zu sehr geringen Strömungen von Wasser kommt.
  2. Plutonium hat nur eine äußerst geringe Löslichkeit in solch sauerstoffarmen Tiefenwasser.
  3. Tiefenwasser ist meist mit Mineralien und Salzen gesättigt, was eine hohe Dichte zur Folge hat. Es gibt deshalb wenig Auftrieb, der es überhaupt mit eher oberflächennahem „Trinkwasser“ in Kontakt bringen könnte.

Die Bohrungen sollen auf die Mindesttiefe plus einem zusätzlichen Stück zur Einlagerung abgeteuft werden. Studien haben ergeben, daß so ein „Lagerraum“ von etwa 40 m3 pro Bohrung (Enddurchmesser ca. 16 cm) geschaffen werden kann. Nach Einlagerung wird die Bohrung wieder sorgfältig verfüllt. Ein erprobter Vorgang bei zig Tausend Bohrungen in der Öl- und Gasindustrie.

Bisher ist diese Methode an zu hohen Kosten gescheitert. Allerdings hat die Bohrtechnik in den letzten Jahren einen sehr rasanten Fortschritt erlebt. Inzwischen gibt es sogar schon Studien über horizontale Bohrungen in geeigneten Schichten. Man geht von einem dramatischen Verfall der Kosten aus. In Verbindung mit der ebenfalls rasanten Entwicklung von Robotern, ein durchaus vielversprechender Ansatz auch für die Endlagerung von besonders hochaktivem „Restmüll“.

Beseitigung in Reaktoren .

In diesem Blog ist schon vieles über Reaktoren mit schnellem Neutronenspektrum geschrieben worden. Man kann nur hoffen, daß auch die USA den Mut haben, diesen Weg einzuschlagen. Ein guter Start wäre der Bau z. B. eines PRISM als Demonstrationsreaktor für die Beseitigung von überschüssigem Waffen-Plutonium in der Hand des Energieministeriums. Vieles könnte unter den militärischen Bedingungen der Kernwaffenproduktion schnell und problemlos durchgeführt werden. Milliarden Dollar sind durch die ohnehin bereitzustellenden Beseitigungskosten unter dem politischen Druck der Abrüstungsverträge vorhanden. Der Demonstrationsreaktor wäre — ähnlich der Geschichte des Druckwasserreaktors als Antrieb für U-Boote — sehr schnell und kostengünstig in eine zivile Anwendung überführbar. Ist dies vielleicht der wahre Grund, warum „Atomkraftgegner“ so verbissen an der direkten Endlagerung fest halten?

Gray, Sievert und was sonst noch?

In den Medien wird im Zusammenhang mit Radioaktivität mit Zahlenwerten nur so um sich geschmissen. Kaum einer versteht die Aussagen, aber alle reden davon.

Vorbemerkung

Eine Maßeinheit bezieht sich stets auf einen genau definierten Zustand: So ist das [kg] die Einheit für die Masse und das [N] bzw. früher das [kp] eine Einheit für eine Kraft. Im Alltag kann man zwar oft beide Einheiten gleich setzen, es kann aber auch zu schwerwiegenden Fehleinschätzungen dadurch kommen. Kraft und Masse sind halt nur im unbewegten Zustand gleichwertig. Dies ist Allgemeinwissen, aber im Zusammenhang mit Strahlung und Radioaktivität werden fröhlich alle Einheiten miteinander vermischt. Leider nicht nur in Massenmedien.

Die Öffentlichkeit interessiert sich meist nur für die biologische Wirkung: Ab wann ist ionisierende Strahlung gefährlich, ab wann bekomme ich Krebs, sind nachfolgende Generationen gefährdet? Alles Fragen der Biologie – oder noch genauer gesagt – der Medizin und schon wird es schwierig. Der Mensch ist halt keine Maschine und läßt sich deshalb nur sehr schlecht vermessen. Aus den physikalischen Meßwerten über Strahlung lassen sich bestenfalls Erwartungswerte für Krankheiten ableiten. Aus einem Unverständnis wird schnell eine Strahlenphobie. Dies betrifft nicht nur die Kernenergie. Röntgenärzte und Nuklearmediziner können ein Lied davon singen. Besonders heikel sind Patienten, die durch Jahrzehnte grüner Indoktrination notwendige Diagnosen und Therapien verweigern.

Am Anfang steht der Zerfall

Der überwiegende Teil der in der Natur vorkommenden Isotope befindet sich in einem angeregten Zustand. Dieser Zustand läßt sich nicht unbegrenzt aufrecht erhalten, das Atom zerfällt und wandelt sich dabei in ein neues Element um. Dies kann mehrfach geschehen (sog. Zerfallsketten oder Mutter-Tochter Beziehungen), bis ein stabiler Zustand erreicht ist. Wir kennen mehr als 3400 radioaktive Isotope, von denen etwa 900 Halbwertszeiten von mehr als einer Stunde haben. Schon sind wir bei zwei grundlegenden Maßeinheiten angekommen: Der Aktivität mit der Maßeinheit Becquerel Bq und der Lebensdauer mit der Halbwertszeit. Wenn ein Atomkern pro Sekunde zerfällt, bedeutet das eine Aktivität von 1Bq. Nicht mehr, aber auch nicht weniger. Es ist noch nichts über die Art der freigesetzten Strahlung ausgesagt oder über deren Energie und damit auch nichts über die biologische Wirksamkeit.

Das Becquerel [Bq] ist eine reine Stückzahl, die ohne die Angabe des Stoffes (z. B. Cäsium oder Jod) und des Ortes des Zerfalls (z. B. im Körper oder außerhalb) keine Aussage über irgendeine Gefährdung zuläßt.

An dieser Stelle ist auch besonders hervorzuheben, daß wir von zerfallenen Atomen pro Sekunde sprechen. Atome sind aber sehr klein, weswegen man zu gewaltig großen Zahlen kommt. Bis 1985 war deshalb die Einheit Curie [Ci] für die Aktivität gebräuchlich. Sie war von einem Gramm Radium-226 abgeleitet und entsprach 37 000 000 000 Zerfällen pro Sekunde. Schon an dieser Stelle wird deutlich, wie überzogen der japanische Grenzwert von 100 Bq/kg für Fisch nach dem Reaktorunglück von Fukushima war. Man hätte auch gleich sagen können, der Fisch enthält praktisch kein Cäsium (1 gr Cs-137 hat eine Aktivität von 3 215 000 000 000 Bq).

Geläufig – wir haben aus Erfahrung ein Gefühl dafür – sind uns die Einheiten kg oder Gramm. Heutige Waagen können (mit erheblichem Aufwand) noch Millionstel Gramm messen. Die Empfindlichkeit bei der Messung von Radioaktivität ist (recht einfach) noch um eine weitere Million empfindlicher. Radioaktive Quellen mit 10 bis 100 Bq sind schnell und einfach meßbar, obwohl es sich dabei um Stoffmengen von um die 0,000 000 000 000 01 Gramm handelt. Für die Angstindustrie ist das natürlich völlig unbrauchbar. Solche kleinen Mengen ergeben einfach keine Horrormeldung.

Die Strahlungsarten

Unter ionisierender Strahlung versteht man elektromagnetische Wellen sehr hoher Frequenz bzw. Teilchenstrahlung. Normalerweise enthalten Atome genau so viele Protonen (positive Ladung) im Kern, wie Elektronen (negative Ladung) in ihrer Hülle und sind somit elektrisch neutral.

Die technische Nutzung von ionisierender Strahlung begann 1895 mit der Entdeckung der Röntgenstrahlung.

Bei der Strahlung infolge des radioaktiven Zerfalls unterscheidet man im wesentlichen zwischen α- (Heliumkerne), β- (Elektronen) und γ-Strahlen. Die beiden Teilchenstrahlen sind elektrisch positiv bzw. negativ geladen. Insbesondere für die biologische Wirkung ist deren Eindringtiefe maßgebend. Die Heliumkerne der α-Strahlung können in Luft maximal 10 cm zurücklegen und in Wasser (menschliches Gewebe besteht hauptsächlich aus Wasser) wenig mehr als 0,1 mm. Das bedeutet für den Strahlenschutz, daß bereits normale Kleidung zur Abschirmung ausreicht. Umgekehrt gilt aber auch, daß innerhalb des Körpers die gesamte Energie auf kürzester Entfernung freigesetzt wird und lokal einen großen Schaden anrichten kann. Für die β-Strahlung gilt ähnliches. Auch für sie reicht normale Kleidung als Schutz aus.

Die Aufnahme radioaktiver Stoffe in den Körper (Essen, Trinken und Atemluft) ist möglichst zu vermeiden.

Bei der γ-Strahlung verhält sich die Sache etwas anders. Sie durchdringt mühelos den menschlichen Körper. Nur deswegen kann z. B. eine Kontamination im Körper von außen gemessen werden. Für γ-Strahlen verwendet man den Begriff der Halben-Weglänge: Das ist die Materialstärke, bei der die Strahlung nach der Schicht genau halb so groß ist, wie vor der Schicht. Diese halbe Weglänge ist vom Material und der Energie der Strahlung abhängig. Die Abschwächung verläuft exponentiell. Mit anderen Worten: Die Strahlung schwächt sich über den Weg sehr schnell ab, ist aber auch nach dicken Schichten immer noch nachweisbar. Für eine Energie von 0,662 MeV (γ-Strahlung von Cs-137) beträgt die Halbe-Weglänge in Wasser etwa 9 cm. Somit ist nach rund einem halben Meter (entsprechend fünf Halben-Weglängen) die Strahlung um 97% abgeklungen. Dies erklärt, warum das Wasser in einem Brennelementebecken so eine wirksame Abschirmung darstellt. Hat man wenig Platz, verwendet man Blei mit seiner hohen Dichte zur Abschirmung.

Die Energie der Strahlung

Neben der Art der Strahlung ist ihre Energie maßgeblich für die biologische Wirkung. Die Einheit für die Energie ist das Elektronenvolt [eV]. Sie ergibt sich aus der Beschleunigung eines Elektrons in einem Spannungsfeld von einem Volt. Um eine radioaktive Quelle in ihrer biologischen Wirkung zu beurteilen, braucht man folgende physikalischen Parameter:

Die Aktivität, gemessen in Zerfällen pro Sekunde [Bq] und die Halbwertszeit, die Art der ausgesendeten Strahlung (α-, β-, γ-Strahlung) und deren Energien.

Anschaulich werden diese Daten in einem sogenannten Zerfallsschema für jedes Isotop dargestellt. Dabei werden in einer Karte die Energien über den Ordnungszahlen aufgetragen. In der Praxis hat man es immer mit Gemischen von Isotopen zu tun. Dies ergibt sich schon aus den meist vorhandenen Zerfallsketten. Beispielsweise verläuft der Zerfall von Uran-238 in 14 Schritten bis zum stabilen Blei-206.

Wie die Strahlung absorbiert wird

Wenn Röntgenstrahlung oder die Strahlung aus dem radioaktiven Zerfall auf Atome und Moleküle trifft, entstehen Ionen oder angeregte Moleküle. Die Strahlung verliert dabei Energie. Für die biologische Wirkung ist nicht nur die Art und deren Energie der Strahlung von Bedeutung, sondern auch die „Materie“ des Lebewesens. Ein bekanntes Beispiel hierfür ist eine Röntgenaufnahme: Man erkennt ein Skelett. Die Strahlung ist stark genug (von hoher Energie), um den menschlichen Körper zu durchdringen, sonst wäre gar keine Aufnahme möglich. Die Absorption im Körper ist aber unterschiedlich: Es entsteht ein Schattenbild der Knochen (hohe Absorption wegen hoher Dichte) vor einem hellen Hintergrund (wenig Absorption im Gewebe, weshalb viel Strahlung durchkommt).

Auf ihrem Weg durch Materie reagiert die Strahlung mit den Atomen und Molekülen. In Bezug auf die biologische Wirkung ergeben sich sehr komplexe Zusammenhänge, die letztendlich auch noch über chemische Reaktionen Wirkung zeigen können. Stellvertretend soll hier nur die α-Strahlung etwas näher behandelt werden. Wenn ein Heliumkern – nichts anderes ist α-Strahlung – mit bis zu 11 MeV durch Gewebe schießt, kann er die Atome auf die er trifft ionisieren. Diese können dann selbst wieder Strahlung aussenden. Auf seinem Weg verliert er Energie, die er an die Atome abgegeben hat. Um die Sache noch komplizierter zu machen, geschieht das solange, bis er eine bestimmte Geschwindigkeit unterschreitet. An diesem Punkt angekommen, überträgt er seine gesamte Restenergie auf einen Schlag (Bragg peak). Dies macht man sich z. B. bei der Krebstherapie nutzbar. Man kann quasi gesundes Gewebe mit Ionen durchschießen, ohne großen Schaden anzurichten und setzt erst in der Krebszelle die vernichtende Energie frei.

Die Gamma-Strahlung

Sie ist von zentraler Bedeutung in der Kerntechnik, da sie sich recht einfach messen läßt, den menschlichen Körper auf jeden Fall durchdringt (sonst könnte man eine Inkorporation gar nicht feststellen) und sich nur aufwendig abschirmen läßt.

Die γ-Photonen besitzen Energien von 0,1 bis 3 MeV. Wichtig dabei ist, daß jedes Isotop γ-Photonen mit einer charakteristischen Energie bei seinem Zerfall aussendet. Mißt man die Energiespektren, erhält man die „Fingerabdrücke“ der enthaltenen Isotope. Dies ist Voraussetzung, um die biologische Wirkung und damit die Gefährdung überhaupt ermitteln zu können.

Die γ-Strahlung selbst, wirkt durch drei Effekte: Das γ-Photon überträgt seine Energie auf ein Elektron und ist damit verschwunden (Photoelektrischer Effekt), das γ-Photon schießt ein Elektron aus der Atomhülle und bewegt sich danach mit geringerer Energie in einer anderen Richtung weiter (Compton Effekt) oder es bilden sich zwei neue Teilchen: Elektron und Positron (Paarbildung). Der Photoelektrische Effekt tritt ein, wenn das γ-Photon nur eine eine geringe Energie hat. Dies ist mit maximal 100 keV der bevorzugte Bereich in der Diagnostik. Die Durchdringung dieser „weichen γ-Strahlung“ ist sehr von der Dichte (Knochen oder Kontrastmittel) abhängig. Erst oberhalb einer Energie von 100 keV kann der Compton-Effekt auftreten. Er hat durch die Bildung von Ionen auf jeden Fall eine biologische Wirkung. Für eine Paarbildung muß die Energie den Schwellwert von 1,02 MeV überschreiten.

Die Halbwertszeiten

Gängig ist die Physikalische-Halbwertszeit. Sie beträgt z. B. für Cäsium-137 etwa 30 Jahre. Das bedeutet, nach jeweils 30 Jahren ist nur noch die Hälfte des Startwertes vorhanden. Nach 60 Jahren noch 25%, nach 90 Jahren noch 12,5% usw. Cs-137 ist eine Leitsubstanz bei Reaktorunfällen wie in Tschernobyl und Fukushima. Es ist in relativ großen Mengen – ca. 6% der Kernspaltungen – entstanden, bis zum nächsten Brennelementewechsel entsprechend angesammelt worden und gasförmig und gut wasserlöslich. Es kann sich daher weiträumig ausbreiten und auch in großen Entfernungen punktförmig ausregnen.

Es gibt aber noch eine Biologische Halbwertszeit für jeden Stoff. Jedes Lebewesen nimmt zwar Stoffe mit der Nahrung aus der Umwelt auf, scheidet sie aber auch unterschiedlich schnell wieder aus. Wir trinken Wasser (eventuell tritiumhaltig), aber scheiden auch wieder große Mengen durch Schwitzen, Atmung und Ausscheidung aus. Wenn man keine neuen radioaktiven Stoffe aufnimmt, tritt schnell eine Verdünnung im Körper ein. Beim Menschen beträgt die biologische Halbwertszeit für Cs rund 70 Tage. Sie kann durch Medikamente noch weiter auf etwa 30 Tage gesenkt werden. Bei Schafen beträgt sie etwa zwei bis drei Wochen. Man hat nach Tschernobyl Schafe in Schottland vier Wochen vor der Schlachtung mit „sauberem Futter “ aus anderen Regionen gefüttert und so die Belastung im Fleisch auf unter 25% abgesenkt.

Aus der Summe (der Kehrwerte) der biologischen und physikalischen Halbwertszeiten wird die Effektive-Halbwertszeit gebildet. Zu allem Überdruss gibt es auch noch eine Ökologische-Halbwertszeit. Nach dem Reaktorunglück in Tschernobyl im April 1986 sind in Teilen von Norwegen durch Regenfälle 130 000 Bq pro Quadratmeter runter gegangen. Bis zum August stieg deshalb in einigen Seen die Belastung bei Forellen auf 7200 Bq/kg an. Sie wird seitdem kontinuierlich überwacht. Im Jahr 2008 war sie bereits wieder auf 150 Bq/kg abgesunken. In den ersten Jahren betrug die Ökologische-Halbwertszeit rund 3,6 Jahre. Sie ist seitdem angestiegen und hat sich inzwischen der physikalischen Halbwertszeit angenähert. So viel zum Thema Rückbesiedelung in den Sperrzonen. Natürlich bleiben die radioaktiven Stoffe nicht einfach liegen und warten auf ihren Zerfall, sondern werden ausgewaschen, dringen in tiefere Bodenschichten ein oder reagieren chemisch zu Verbindungen, die nicht mehr so einfach in die Nahrungskette aufgenommen werden. Andererseits können sie auch wieder aus diesen Depots freigesetzt werden. In einem See oder einer Wiese bildet sich ein Gleichgewichtszustand aus. Selbstverständlich ist Landwirtschaft in den „verseuchten Gebieten“ möglich. Man muß es nur richtig machen. Das Märchen von Für-Jahrtausende-Unbewohnbar ist einfach nur schlecht gemachte Propaganda.

Die Strahlungsdosis

Bisher haben wir uns nur mit der Aktivität in einem Feststoff [Bq/kg], einer Flüssigkeit [Bq/l] oder auch einer Fläche [Bq/m2] beschäftigt. Wie schon weiter oben erklärt, sagt das ohne weitere Kenntnis über die Isotopen und den Ort noch nichts aus. Für den Übergang auf die (biologische) Wirkung ist entscheidend, wieviel der ausgesendeten Energie auch vom Empfänger aufgenommen wird. Diese kann man einfach und direkt messen. Es handelt sich – bisher immer noch – um reine Physik. Die biologische Wirkung kommt später.

Heute verwendet man für die Dosis die Einheit Gray [1 Gy]. Sie ist aus dem SI-Einheitensystem abgeleitet und entspricht der sehr kleinen Energie von einem Joule pro Kilogramm [1J/kg] absorbierter Energie. Wenn man bedenkt, daß zur Erhöhung der Temperatur von einem Kilogramm Wasser um ein Grad, etwa 4200 Joule notwendig sind, wird auch diese Definition wieder zu großen Zahlen führen. Der nächste Scheinriese, der der Angstindustrie hilft.

1953 wurde die Einheit [rad] festgelegt. Sie beruhte noch auf dem damals gebräuchlichen Einheitensystem und wurde zu 100 [erg] pro Gramm festgelegt. Sie ist einfach – und genau – in die moderne Einheit [1 Gy] durch den Faktor 100 umzurechnen: 1 Gy entspricht 100 rad.

Eine Sonderstellung nimmt das Röntgen ein. Es ist über die Bildung von Ladungen in trockener Luft definiert. Ein Röntgen [1R] entspricht etwa 2,54 x 10-4. Coulomb pro kg in Luft erzeugter Ionen. Eine sehr unhandliche Einheit für den Strahlenschutz. Als Anhaltswert kann man sagen, daß ein Röntgen ungefähr 9,3 Milligray [mGy] in menschlichem Gewebe entspricht.

Relative biologische Wirksamkeit unterschiedlicher Strahlung (RBE)

Ab jetzt verlassen wir den sicheren Boden der Physik: Es wird biologisch – man könnte fast sagen, politisch. Es ist unbestritten, daß verschiedene Strahlungsformen auch bei gleicher Energie unterschiedliche biologische Wirkung zeigen. Ein Hauptgrund ist die (heute) beobachtbare Wirkung beim Beschuß von Zellen. Die α-Strahlung hinterläßt einen regelrechten Schußkanal in der Zelle, während die β- und γ-Strahlung eine eher räumlich gleich verteilte Wirkung zeigt. Man kann dieses Problem lösen, indem man für jede Strahlungsform einen Gewichtungsfaktor einführt.

Für die Endstufe von Strahlenschäden, den Zelltod, kann man einfache und reproduzierbare Versuche durchführen. Man bestrahlt eine Zellkultur mit Strahlung von bekannter Energie. Die lebenden Zellen werden vor und nach der Bestrahlung gezählt. Jeder Versuch wird in ein Diagramm mit der Dosis als Abszisse und dem Prozentsatz der überlebenden Zellen als Ordinate eingetragen. Jede Strahlungsart ergibt eine eigene charakteristische Kurve. Für jeden Wert der Ordinate (überlebende Zellen) ergeben sich nun mehrere verschiedene Werte auf der Abszisse (Dosis). Mit anderen Worten: Diese Wirkung der Strahlung (Zelltod) bei gleicher Dosis nimmt mit der Schwere der Ionen zu. Es werden nun RBE-Werte (Relative Biological Effectiveness) als Gewichtungsfaktoren bestimmt. Bezugsgröße ist die Kurve für Röntgenstrahlung.

Für das Verständnis ist wichtig, daß es sich bei den oben beschriebenen Versuchen zum Zelltod um einfach zu reproduzierende Experimente handelt. Eine tote Zelle ist einfach von einer lebenden Zelle zu unterscheiden. Wie sieht es aber mit (angeblichen) Erbschäden und mit Krebs aus? Krebs kann bis zum Ausbruch Jahrzehnte dauern, für Erbschäden müßten gar zig Generationen beobachtet werden. Experimente wären nicht reproduzierbar, weil die Umwelteinflüsse über so lange Zeiträume gar nicht konstant sein können.

Äquivalentdosis

Damit alle denkbaren Effekte erfaßt werden, hat man sich im International Committee on Radiation Protection (ICRP) auf eine Äquivalentdosis mit der Einheit [rem] bzw. Sievert [Sv] geeinigt. Sie wird aus der physikalischen Dosis – gemessen in Gray [Gy] – durch Multiplikation mit dimensionslosen Gewichtungsfaktoren werzeugt. Genau daraus ergibt sich die Gefahr der Verwechslung und Fehlinterpretation:

Die Äquivalentdosis – angegeben in Sievert [Sv ]– ist keine physikalische Größe und kann auch nicht gemessen werden, sondern ist eine rein rechnerische Größe. Sie wird aus der meßbaren Dosis mit ihrer Einheit Gray [Gy] über (politisch) festgelegte Gewichtungsfaktoren wR gebildet. Diese Gewichtungsfaktoren sollen die komplexen biologischen Verhältnisse des Menschen widerspiegeln. Es handelt sich lediglich um „Modellvereinfachungen“, wie sie auch aus anderen Bereichen bekannt sind. Sievert ist ungeeignet, die biologische Wirkung bei anderen Lebewesen zu beschreiben oder umgekehrt. Sie beruht auf der fragwürdigen LNT-Hypothese (kein Schwellwert, linearer Verlauf). Deshalb sind gerade kleine Werte mit großer Skepsis zu betrachten.

Lediglich bei einer reinen γ-Strahlung wäre eine Gleichsetzung von Sv mit Gy möglich, da hier der Gewichtungsfaktor 1 beträgt. Man sollte dies aber tunlichst vermeiden, da in der Praxis immer Isotopengemische mit allen möglichen Strahlungsarten auftreten. Wenn man z. B. wie Tepco, Strahlungswerte im Sicherheitsbehälter von Fukushima in Sievert angibt, ist das etwas irreführend. Man hat natürlich nur die γ-Strahlung in Gray gemessen. Die sicherlich vorhandene α-Strahlung (Gewichtungsfaktor 20) oder gar die vorhandenen Neutronen (energieabhängiger Gewichtungsfaktor 5 bis 20) sind mit Sicherheit nicht mit ihrem Äquivalent korrigiert worden.

Effektive Dosis

In manchen Fällen werden nur einzelne Organe des menschlichen Körpers belastet. Klassiker ist die Belastung der Lunge und Bronchien durch Radon und seine Zerfallsprodukte. Verschiedene Organe und Gewebe haben eine unterschiedliche Empfindlichkeit bezüglich sog. „Verzögerter Effekte“. Krebs ist ein solcher Effekt, der oft viele Jahre braucht, bis er nachweisbar ist. Um dafür das Risiko vergleichbar zu machen, wird eine Effektive Dosis gebildet.

Wenn in einem bestimmten Teil des menschlichen Körpers eine Dosis wirkt, ergibt sich das Risiko einer bestimmten Wirkung (z. B. Lungenkrebs). Wirkt die gleiche Dosis auf ein anderes Körperteil, ergibt sich ein anderes Risiko. Für jedes Organ – oder besser gesagt Gewebetyp – ergibt sich nun ein Gewichtungsfaktor wT. Daraus ergibt sich schließlich die Effektive Dosis, meist kurz als Dosis bezeichnet.

Die in Gy gemessene Energie einer Strahlung die vom Gewebe aufgenommen wird, wird gemäß ihres Typs (z. B. γ- oder α-Strahlung) in eine äquivalente Strahlung mit der Einheit Sv umgerechnet. Die Äquivalentdosis darf nur die Einheit Sv tragen, da sie eine fiktive Größe ist, die die unterschiedliche biologische Wirkung der Strahlungsarten berücksichtigen soll. Nur im Sonderfall (beispielsweise reiner γ-Strahlung) sind die Zahlenwerte von Gy und Sv gleich setzbar, da sie beide – per Definition – den gleichen Gewichtungsfaktor 1 haben. Trotzdem handelt es sich bei der Einheit Gy [J/kg] um eine physikalische Größe und bei der Einheit Sv um eine fiktive Einheit, die biologische Wirkungen beim Menschen charakterisieren soll. Die Effektivdosis erhält man erst, wenn man für jedes belastete Organ eine weitere Gewichtung vornimmt. Unterstellt man weiterhin einen linearen Verlauf, ohne Schwellwert (LNT) der Dosis-Wirkungsbeziehung, kann man diese Einzelwerte einfach addieren und erhält daraus die Ganzköperdosis, die in der Öffentlichkeit gern als die Dosis bezeichnet wird.

Das ICRP hat dafür ein Modell eines Menschen erschaffen, das aus 14 Organen bzw. Gewebetypen und einem „Rest“ besteht. Der „Rest“ dient zur Unterscheidung von Mann und Frau mit Prostata bzw. Gebärmutter. Die Summe aller 15 Gewichtungsfaktoren wT ergibt 100%.

Die Kollektivdosis

Die Kollektivdosis ist die Summe aller individuellen Dosen in einer Gruppe. Meist wird sie als Produkt einer mittleren Dosis und der Anzahl der Personen gebildet. Ihre Einheit ist das Person Sievert [person-Sv] oder Man-Sievert [man-Sv] bzw. in älteren Veröffentlichungen das Man-Rem [man-rem].

Die Kollektivdosis ergibt in Verbindung mit der LNT-Hypothese absurde Ergebnisse. So sollte z. B. das Reaktorunglück von Tschernobyl über 14000 Tote verursachen. Nichts, aber auch rein gar nichts, konnte bis heute – mehr als 30 Jahre später – davon nachgewiesen werden. Genauso wenig, wie die prognostizierten Spätfolgen von Hiroshima und Nagasaki. Das hielt aber die einschlägigen Propagandaabteilungen der Angstindustrie nicht davon ab, ähnlich blödsinnige Vorhersagen für das Reaktorunglück in Fukushima zu treffen.

Zumindest in den letzten 20 Jahren konnte die Forschung zahlreiche Reperaturmechanismen für die DNA nachweisen, den programmierten Zelltod (Apoptose) erklären und die positive Wirkung kleiner Dosen (adaptive response) als Fortschritt in der Strahlentherapie anwenden.

Nachbemerkung

Ein Schelm, wer bei „Menschenmodellen“ an „Klimamodelle“ denkt, bei Sv an „menschengemachtes CO2“ und bei „Reaktorkatastrophen“ an „Erderwärmung“ – auf zehntel Grad genau berechnet, versteht sich.

Allerdings sind Ähnlichkeiten zwischen dem International Committee on Radiation Protection (ICRP) und dem Intergovernmental Panel on Climate Change (IPCC) alles andere als zufällig: Beide Organisationen halten regelmäßig Kongresse mit wunderbaren Dienstreisen ab. Bei beiden sind in Öffentlichkeitsarbeit geschulte Funktionäre tonangebend. Hinter beiden steht eine milliardenschwere Industrie, die gut auf Kosten der Allgemeinheit lebt.

Allerdings glaube ich immer noch an die Kraft der Aufklärung. Mag es auch lange dauern. Die katholische Kirche brauchte immerhin bis 1992, bis sie in der Lage war Galileo Galilei zu rehabilitieren. Möge es Gott geben, daß der Ökosozialismus gar nicht so alt wird. Es wäre schön, wenn dieser Artikel einen kleinen Beitrag dazu leisten könnte. Steter Tropfen höhlt den Stein.

Mediziner gegen LNT

Unerwartete Hilfe für Strahlenschützer kommt nun von Medizinern. Neu, ist weniger die Kritik an der LNT-Hypothese, als die Abwägung der Nachteile durch ihre Anwendung.

Was ist noch mal LNT und ALARA?

Die LNTH (linear no-threshold hypothesis) geht von einem rein linearen Zusammenhang zwischen Strahlungsdosis und Krebsfällen aus. Die Gerade soll von einer Dosis Null bis unendlich verlaufen. Es gibt ausdrücklich keinen Schwellwert, unterhalb dessen kein Krebs auftritt. Wegen dieser Annahme, hat man für den Strahlenschutz das ALARA-Prinzip (as low as reasonably achievable) erschaffen.

Selbst Kritiker des linearen Ansatzes ohne Schwellwert, sind oft Anhänger des Prinzips: „So wenig Strahlung, als vernünftig erreichbar“. Das Wort „vernünftig“ wird – wegen der angeblichen Krebsgefahr – als „so gering wie möglich“ überinterpretiert. Das gut gemeinte Vorsorgeprinzip, wird dadurch leider in einen Nachteil verkehrt. Genau da, setzt die Kritik der Mediziner ein. Vorab aber noch ein paar deutliche Worte zur Erklärung.

Wieso linear?

Durch den Bombenabwurf auf Hiroshima und Nagasaki hat man einen gigantischen Menschenversuch gestartet, dessen Untersuchungen bis heute anhalten. Die Bedingungen entsprachen geradezu einem klinischen Versuch: Hunderttausende (große Zahl im Sinne der Statistik) Menschen wurden einer unterschiedlichen Strahlendosis ausgesetzt. Es handelte sich um eine „normale“ Bevölkerung (unterschiedliche Altersgruppen, unterschiedliche Vorbelastungen usw.), die man problemlos in Relation zur sonstigen japanischen Bevölkerung setzen konnte. Es war somit eine relativ einfache Aufgabe, das mehr an Krebserkrankungen quantitativ zu erfassen. In der Tat, ergab sich in dem meßbaren Bereich ein linearer Zusammenhang zwischen Dosis und Krebsfällen. Dabei muß man sich immer vor Augen führen, daß die Meßbarkeit sowohl unten wie oben begrenzt war: Menschen, die hohen Strahlendosen ausgesetzt waren – also sich nahe dem Abwurfpunkt befunden hatten – hatten meist auch schwerste Brand- und Explosionsverletzungen und sind lange vorher verstorben, bis sich überhaupt Krebs hätte bilden können. Bei sehr kleinen Dosen, bildeten die Krebsfälle die übliche Wolke, wie sie in jeder Bevölkerung auftritt. Das hindurch legen einer Geraden – treffend als Ausgleichsgerade bezeichnet –, ist eine ziemlich willkürliche Angelegenheit.

Man einigte sich auf eine Gerade mit einer Steigung von 5% tödlichen Krebserkrankungen pro 1 Gy (entsprechend 1 J/kg oder nach alter Maßeinheit 100 Rad) Dosis.

Warum kein Schwellwert?

Will man es positiv betrachten, wollte man die Unsicherheit in dem Bereich sehr kleiner Dosen durch eine Extrapolation ersetzen. Besonders unsicher war man sich über die (lange) Zeit, die es erfordern könnte, bis ein Krebs ausbricht. Heute kann man mit Sicherheit sagen, daß der Ansatz falsch ist.

In der Wissenschaft ist es üblich, Hypothesen (Modelle) aufzustellen. Anders als z. B. in der Mathematik, kann man deren Richtigkeit nicht beweisen. Man überprüft sie dadurch, daß man sich Experimente überlegt und dann deren Ergebnisse mit der Hypothese vergleicht. Genau diese Vorgehensweise, führt bei kleinen Dosen immer zu frappierenden Differenzen zwischen Modell-Vorhersage und Auswertung. Die Hypothese ist damit eigentlich als falsch zu den Akten zu legen.

Weshalb additiv übers ganze Leben?

Der größte Blödsinn ist jedoch die Außerkraftsetzung des Grundsatzes : „Die Dosis macht’s“. Schon entgegen jeder Alltagserfahrung, daß ein Schnaps täglich, die gleiche Wirkung, wie eine Flasche „auf ex“ haben soll. Bestenfalls ist dieser Irrglaube auf ein „physikalisches“ Weltbild in der aufkommenden Molekularbiologie zurückzuführen. Man konnte Messen, daß durch Strahlung DNA und sogar ganze Gene geschädigt werden konnten. Legendär, ist der Versuch des späteren Nobelpreisträgers Müller mit Fruchtfliegen. Allerdings wurde damals mit Dosen von mehr als 4 Gy (400 Rad) gearbeitet. Bei diesen hohen Dosen, gab es ohne Zweifel, eine lineare Abhängigkeit der genetischen Schäden. Eine Extrapolation über mehrere Größenordnungen hinweg, in den Milli-Rad-Bereich, war schon damals eigentlich aberwitzig, aber man hatte eine physikalische und keine biologische Vorstellung von Leben. In der Welt der Molekularbiologie war ein einmal zerstörter DNA-Strang, halt ein auf ewig kaputtes Molekül. Insofern mußten sich in dieser einfältigen Welt, alle einmal aufgetretenen Schäden, addieren.

Heute weiß man, es gibt Reparaturmechanismen auf der Ebene der DNA-Stränge, angeregte Produktion von Antioxidantien, programmierten Zelltod, Beistandseffekte auf Gewebeebene und zu guter letzt das Immunsystems auf Körperebene. Ganz nebenbei, all diese biologischen Vorgänge sind im höchsten Maße nichtlinear. Wie man daraus eine LNT-Hypothese basteln kann, ist schon recht seltsam. Bisher sind mindestens sechs Mechanismen zur Reduktion von Krebs, angeregt durch geringe Strahlung, nachgewiesen worden. Diese Erkenntnisse machen moderne Krebstherapien erst möglich, wenngleich auch sehr schwierig.

Gerade aus der Strahlentherapie gegen Krebs, kommen täglich die Argumente gegen eine kumulierende Wirkung einzelner Dosen: Man teilt eine Behandlung in mehrere Dosen auf, damit sich das gesunde Gewebe besser wieder regenerieren kann. Mutationen sind zwar eine notwendige Bedingung, aber noch lange keine hinreichende Bedingung für Krebs. Der Grundsatz „eine Mutation = ein Krebs“ ist schlichtweg Unsinn.

Warum immer noch LNT?

Aus der Wissenschaftsgeschichte ist bekannt, daß sich falsche Theorien sehr lange halten können, bis sie endlich verschwinden. Dies um so länger, wenn Macht oder Geld im Spiel sind. Beim ALARA-Prinzip dürfte es schlicht Geld sein. Der „Strahlenschutz“ ist weltweit ein Milliardenmarkt. Hinzu kommen tausende von Angestellte, und Wissen schaffende, die damit ihren Lebensunterhalt bestreiten und ihre Karrieren aufbauen – alles potentielle Gegner anderer Erkenntnisse.

Ein Meinungsumschwung ist erst dann zu erzielen, wenn breite Bevölkerungsschichten nicht mehr bereit sind, einfach nur zu glauben, sondern ihren gesunden Menschenverstand einsetzen und kritische Fragen stellen. In diesem Sinne, dürfte Fukushima als Meilenstein in die Wissenschaftsgeschichte eingehen. Alle Vorhersagen der Angst-Industrie über verseuchte Lebensmittel, unbewohnbar gewordene Landstriche, Millionen von zusätzlichen Krebserkrankungen etc. haben sich als primitive Propaganda enttarnt. Die Glaubwürdigkeit der „Walschützer“ ist verspielt. Händeringend suchen diese Organisationen nach neuen Katastrophen (Klima, Gentechnik, Wasser, ?), um die Spendengelder weiter strömen zu lassen. Die Wahl eines Präsidenten in den USA, der sich in seinem Wahlkampf bewußt gegen „Klimaschutz“ und andere Machenschaften der „Ökoindustrie“ ausgesprochen hat, sind lediglich das erste Wetterleuchten. Der Schulterschluss zwischen Politik, Presse und Geschäftemachern neigt sich dem Ende zu.

Was ist das Neue an der Kritik der Mediziner?

Die Fakten zu LNT und ALARA sind allen Fachleuten längst bekannt. In der Fachwelt gibt es schon lange keine ernsthafte Verteidigung der LNT-Hypothese mehr. Überlebt hat bisher nur das ALARA-Prinzip. Mit der nötigen Eindimensionalität im Denken, ließ es sich als Vorsorge verkaufen. Kritik gab es allenfalls von der Betriebswirtschaft: Sind die überproportional zunehmenden Kosten noch vertretbar? Könnte man mit dem Geld nicht anderswo mehr Arbeitsschutz erreichen? Diese – zwar inhaltlich richtige – Kritik, war eher ein gefundenes Fressen für alle „Gutmenschen“ mit linker Grundhaltung.

Nun dreht langsam der Wind, da plötzlich „harte moralische Fakten“ von immer zahlreicheren Bevölkerungsschichten wahrgenommen werden. Es begann weltweit mit Fukushima. Auch der Speerspitze der Angstindustrie gelang es nicht, einen einzigen Strahlentoten oder (bisher) eine zusätzliche Krebserkrankung nachzuweisen. Andererseits äußerten sich immer mehr Mediziner kritisch zu den Umständen der Evakuierung. Überhastete Evakuierungen von ganzen Krankenhäusern und Pflegeheimen. Man spricht inzwischen von etwa 1600 Toten. Plötzlich wird deutlich, Strahlenphobie tötet. Darüberhinaus führt Strahlenphobie zu dauerhafter psychischer Erkrankung. Die sozialen Folgen der Zwangsumsiedlung haben sogar zu Selbsttötungen geführt. Ein Phänomen, das schon von dem Unglück von Tschernobyl bekannt ist.

Nun melden sich mit diesem Artikel auch die Diagnostiker öffentlich zu Wort. Schon seit Jahren sind sie mit verängstigten Patienten konfrontiert, die notwendige Untersuchungen aus „Angst vor Strahlung“ verweigern. Inzwischen ist das ALARA-Prinzip so weit auf die Spitze getrieben worden, daß die Diagnostik als solche gefährdet scheint. Clevere Gerätehersteller haben die „Strahlung“ so weit gesenkt, daß die damit gewonnenen Ergebnisse (teilweise) unbrauchbar sind. Mehrfachuntersuchungen sind nötig, falsche Diagnosen nicht ausgeschlossen. Auch hier gilt es, rein medizinische Vor- und Nachteile gegeneinander abzuwägen. Eigentlich reicht auch hier schon, der gesunde Menschenverstand.

Röntgenärzte waren übrigens – lange vor der Kerntechnik – die ersten betroffenen von „Strahlenkrankheiten“. Sie waren auch die ersten, die Grenzwerte für die Strahlenbelastung einführten. Ganz pragmatisch gingen sie von der Hautrötung als erkennbares Anzeichen einer Schädigung aus. Sicherheitshalber setzten sie 1/10 davon als Schwellwert für eine Unbedenklichkeit an. Dieser Grenzwert war lange der Standard. Bis im „kalten Krieg“ die Strahlenphobie zur politischen Waffe wurde.

Zusammenfassung

Es gibt in Natur und Technik kein „gut“ und kein „schlecht“, allenfalls ein Optimum. Jede Sache hat ihre Vor- und Nachteile, die immer untrennbar miteinander verbunden sind. Erkenntnisse, die so alt wie die Menschheit sind. Fast jede Giftpflanze ist – in der richtigen Dosierung – gleichzeitig auch Heilkraut. Die Erkenntnis „die Dosis macht’s“, ist schon seit Jahrhunderten die Grundlage einer jeden Apotheke – unabhängig vom Kulturkreis. Der „Angstmensch“ als Massenerscheinung, wurde erst vor wenigen Jahrzehnten in saturierten, westlichen Gesellschaften kultiviert.

Es wird von den Ärzten zu recht kritisiert, daß den (fachgerechten) Untersuchungen zur Behandlung und Diagnose (Röntgen, CT, Radionuklide) von Krebs ein innewohnendes (zu hohes) Krebsrisiko unterstellt wird. Dieser Fehlschluss beruht einzig auf der falschen LNT-Hypothese. Unterhalb einer Dosis von 100 mGy (10 Rad) konnte kein einziger Krebsfall nachgewiesen werden. Angebliche Fälle, werden nur aus dem (bekannt falschen) LNT-Modell hergeleitet. Ähnlichkeiten zu den „Klimawissenschaften“, bei denen „Welt-Temperaturen“ mit (bekannt fehlerhaften) „Weltmodellen“ berechnet werden, sind auffällig, aber beileibe nicht zufällig. Es sind lediglich Spielarten des gleichen Lyssenkoismus.

Endlager auf französisch

Im Gegensatz zu Deutschland, geht der Bau eines Endlagers in Frankreich zielstrebig voran: Bei uns, endloses Geschwafel von ausgesuchten Laien, dort konsequente Forschung und Entwicklung.

Die Rolle der Öffentlichkeit

Im Jahr 1991 verabschiedete das französische Parlament den sog. Bataille Act, in dem die Forderung nach einer langfristigen und sicheren Lösung für radioaktive Abfälle festgeschrieben wurde. Dabei sollten zukünftige Generationen nicht durch das heutige Vorgehen belastet werden.

Im ersten Schritt des Verfahrens wurden unterschiedliche Wege untersucht. Für hochaktiven und mittelaktiven Abfall wurde sowohl eine oberirdische Lagerung in Gebäuden als auch eine geologische Tiefenlagerung als machbar ermittelt. Nach Abschluss dieser Phase entschied man sich für eine unterirdische Lagerung, da nur bei ihr kommende Generationen von Lasten befreit sind.

Die nächste Phase erstreckte sich auf die Suche eines geeigneten Standorts in Frankreich. Unter den in Frage kommenden, entschied man sich für eine Einlagerung in die Tonschichten von Bure im Departement Haute-Marne und Meuse. Das Parlament beschloß im Jahr 2006 die Einrichtung eines geologischen Tiefenlabors (Bergwerk) zur endgültigen Abklärung der Eignung. Die endgültige Entscheidung durch das Parlament ob an diesem Standort das Endlager errichtet wird, ist für 2018 vorgesehen.

Wichtig an der Vorgehensweise ist die Aufteilung in Etappen. Für jede Phase gab es einen klar vorgegebenen Auftrag, der im Parlament diskutiert und beschlossen wurde. Voraus gingen öffentliche Anhörungen, Forschungsberichte und Kritik durch Umweltschutzorganisationen etc. Für die Untersuchungen am Standort Bure wurde eine unabhängige Organisation – die CLIS – geschaffen, die für die Vermittlung zwischen Öffentlichkeit und zuständigen Behörden zuständig ist. Sie wird hälftig aus Steuergeldern und durch Umlagen der „Müllerzeuger“ finanziert. Sie hat eigene Räume, feste Mitarbeiter und eine Bibliothek vor Ort, die für jedermann frei zugänglich sind. Mitglieder sind fast hundert Vertreter aus den betroffenen Gemeinden: Bürgermeister, Behörden, Feuerwehr, Gesundheitseinrichtungen, Gewerkschaftsvertreter etc. Zur Zeit knapp 100 Mitglieder. Sie versammeln sich mindestens vier mal pro Jahr, um sich auszutauschen. Darüberhinaus kann jeder Bürger sich an die CLIS wenden. Diese Versammlungen sind öffentlich und von jedem übers Internet mitzuverfolgen. Alle Behörden sind gegenüber der CLIS auskunftspflichtig. Zu den Anhörungen werden regelmäßig externe Fachleute eingeladen. Diese Transparenz hat maßgeblich zu der Gelassenheit in der örtlichen Bevölkerung beigetragen. Demonstrationen und gewalttätige Auseinandersetzungen – wie wir sie aus Wackersdorf und Gorleben kennen – sind bisher völlig ausgeblieben. Hier könnte Deutschland eine Menge von Frankreich lernen. Momentan wird die Quote auf etwa 20% Befürworter, 20% Gegner und einer Mehrheit von noch Unentschlossenen bzw. Gleichgültigen eingeschätzt. Jedenfalls lange nicht so aufgeputscht, wie in Gorleben. Widerstand wird nur von außen in die Gemeinden hereingetragen.

Das unterirdische Versuchsbergwerk und die oberirdischen Labore sind nach Voranmeldung zu besichtigen. Wer will, kann sich also ein eigenes Bild vor Ort machen und die entwickelten Gebinde, Transport-Roboter, Abbaumaschinen etc. im Original besichtigen.

Das Versuchslabor

Es wurden zwei Bergwerksschächte bis in die 500 Meter tiefe und etwa 150 m dicke Tonstein-Schicht abgeteuft. Dort unten, werden verschiedenste Gänge und Einrichtungen erbaut die zur Erforschung der geologischen Verhältnisse und der Einlagerungsverfahren und Gerätschaften dienen. Es wird mit Originalgebinden – allerdings ohne Atommüll – gearbeitet. Zur Simulation werden die Gebinde teilweise sogar beheizt. Für jede Methode werden mindestens zwei Alternativen gleichzeitig untersucht. Ziel ist bei allem, Entscheidungen möglichst lange offen zu halten, um Sackgassen oder notwendige „faule Kompromisse“ zu verhindern. Bis zur endgültigen Entscheidung, ob hier das Endlager errichtet wird, wird man über mehr als zehn Jahre praktische Erfahrungen verfügen.

Ein Tiefenlager ist kein Bergwerk

Zwischen einem Bergwerk (Kohle, Salz etc.) und einem geologischen Tiefenlager besteht ein deutlicher Unterschied: Ein Bergwerk folgt den Kohlenflözen oder Mineraladern. Es orientiert sich nicht an den Erfordernissen von Fahrzeugen und Robotern etc. Nach dem Abbau können die Hohlräume ruhig einstürzen. Ein Endlager für Atommüll ähnelt jedoch eher einem System aus Straßentunneln. In diesem Fall besitzen die Tunnel einen Durchmesser zwischen sechs und acht Metern, bei einer Wandstärke von gut 30 cm Stahlbeton. Sie sollen mindestens 150 Jahre stabil bestehen bleiben. Das Lager ist für stärkste Erdbeben ausgelegt.

Ausgehend von diesen Tunneln, werden beidseitig, horizontal etwa 90 m lange Bohrungen mit rund 75 cm Durchmesser hergestellt, in die später die Gebinde mit hochaktivem Abfall eingeschoben werden. Um auch hier die Rückholbarkeit für mindestens 100 Jahre zu gewährleisten, werden diese Bohrungen sofort mit Stahlrohren ausgekleidet. Man kann sich einen solchen Abschnitt wie ein Stück Pipeline für Gas oder Öl vorstellen. Es gelten hier ganz ähnliche Qualitätsanforderungen. Mit einer „Müllkippe“ für Fässer – wie z. B. in der Asse – hat das alles nichts zu tun. Vielleicht liegt in diesem Missverständnis ein wesentlicher Grund für die breite Ablehnung eines Endlagers in der deutschen Öffentlichkeit?

Für die mittelaktiven Abfälle werden Kammern – oder sollte man vielleicht besser unterirdische Betonbunker sagen – gebaut, in die die Blöcke mit radioaktiven Abfällen gestapelt werden. Auch diese Abfälle müssen für mindestens 100 Jahre rückholbar sein. Das ganze ähnelt den „Zwischenlagern“, wie man sie bereits heute an der Oberfläche betreibt. Nur eben 500 m unter der Erde, in einer über 100 m dicken Tonschicht.

Rückholbarkeit

Die Franzosen gehen Schritt für Schritt vor. Jeder Schritt muß umkehrbar sein. So soll das Endlager z. B. mindestens 5 Jahre im Versuchsbetrieb ohne radioaktive Abfälle laufen. Erst wenn in der Praxis gezeigt wurde, daß alle technischen Einrichtungen so funktionieren, wie auf dem Reißbrett erdacht, kann mit der tatsächlichen Einlagerung von radioaktiven Abfällen begonnen werden. Nach heutigem Kenntnisstand erst in der zweiten Hälfte dieses Jahrhunderts.

In diesem Sinne, ist die geforderte Rückholbarkeit des Atommülls für mindestens 100 Jahre zu verstehen. Sind doch „Rückholbarkeit“ und „Endlager“ zwei gegensätzliche Forderungen. Weiterhin steht die endgültige, sichere und wartungsfreie Lagerung im Vordergrund. Vor der endgültigen Versiegelung führt man eine Beobachtungsphase über 100 Jahre ein, um sicher zu gehen, weder etwas übersehen, noch etwas falsch gemacht zu haben. Läuft die Sache nicht wie geplant, kann man anhalten und sogar einen Schritt zurückgehen, um eine neue Richtung einzuschlagen.

Besonders wichtig bei technischen Projekten, die sich über so lange Zeiträume hinziehen, ist die Flexibilität. Keiner hat vor 100 Jahren den heutigen Stand der Robotertechnik oder das Niveau im Tunnelbau vorhersehen können. Die Kerntechnik gab es noch nicht einmal. Vielleicht will man in 200 Jahren den „Atommüll“ gar nicht mehr verbuddeln, sondern als Rohstoff nutzen? Auch das gehört zur viel bemühten „Nachhaltigkeit“: Zukünftigen Generationen Entscheidungen offen zu lassen und (einfach) möglich zu machen.

Hochaktiver Abfall

Der HLW (High-Level Waste) besteht hauptsächlich aus den Spaltprodukten. Sie werden noch in der Wiederaufbereitungsanlage in geschmolzenem Glas gelöst und in Kannen aus rostfreiem Stahl abgefüllt. Eine solche Kanne ist ein Zylinder mit einem Durchmesser von 43 cm und einer Höhe von 130 cm. In ihm befinden sich ungefähr 400 kg Glas und 70 kg Abfall. Jede volle Kanne wiegt somit etwa eine halbe Tonne. Es sind die gleichen Kannen, die auch im Zwischenlager Gorleben auf ihr Schicksal warten. Ein Kernkraftwerk vom Typ Emsland (geplant noch bis 2022 am Netz) hinterläßt rund 20 solcher Kannen pro Jahr – wenn denn die abgebrannten Brennelemente aufbereitet werden dürften.

In Frankreich lagern diese Kannen in speziellen Bunkern auf dem Gelände der Wiederaufbereitungsanlage. Dort können sie solange abkühlen, bis ihre Oberflächentemperatur auch nach der Endlagerung maximal 90 °C beträgt. Zum Transport werden sie in spezielle Transportbehälter verpackt, die die Strahlung auf maximal 0,1 mSv/h begrenzen. Außerdem schützen sie die Kannen auch bei schwersten Unglücken. Sie sollen mit Sonderzügen zum Endlager nach Bure gefahren werden.

Im Eingangsbereich werden die Kannen ferngesteuert ausgeladen und auf ihren bestimmungsgemäßen Zustand und Inhalt überprüft. Für die Endlagerung werden sie in einen Zylinder verpackt. Dieser Zylinder dient dem Schutz bei der Einführung in die Endlager-Pipelines. Außerdem haben diese Zylinder spezielle Anschlüsse, die es den Beschickungsmaschinen erlauben, sie sicher zu halten und zu manövrieren. Außen sind sie mit Kufen aus Keramik versehen, die auch eine „gewaltsame“ Rückholung aus einem verbogenen Rohr ermöglichen würde. Solche Situationen werden bereits heute mit „kalten“ Kannen ausgiebig getestet.

Für den Transport aus dem oberirdischen Bereich in das Endlager werden diese Einheiten zum Schutz gegen Beschädigung und für den Strahlenschutz noch in einen Transportbehälter verpackt. Erst die Lademaschine entnimmt sie und schiebt sie in eine Lager-Pipeline. Ist die Pipeline voll, wird sie abschließend gegenüber dem Zufahrtstunnel versiegelt. Ab diesem Moment können keine radioaktiven Stoffe mehr aus der Pipeline (25 mm Wandstärke hat das Stahlrohr) austreten, bzw. kein Wasser etc. in sie eindringen. Erst nach einer eventuellen Zerstörung müssen die Barrieren Ton und Deckgebirge wirksam werden.

Mittelaktiver Abfall

Neben dem HLW soll auch der ILW (Intermediate-Level long-lived Waste) endgelagert werden. Typische Vertreter sind die alten Brennstabhüllen oder Filterrückstände aus Kraftwerken und Wiederaufbereitung. Diese Abfälle werden verdichtet und ebenfalls in Kannen aus rostfreiem Stahl eingeschweißt. Da sie keine fühlbare Wärme entwickeln, könnten sie sofort endgelagert und dichter gepackt werden.

Nachdem sie überprüft sind, werden sie in rechteckige Betonblöcke (je vier Kannen) eingesetzt. Diese dienen dem Schutz vor mechanischen Belastungen und dem Strahlenschutz. Diese Betonblöcke werden in den dafür vorgesehenen Kammern dicht gestapelt. Dafür sollen ebenfalls „Straßentunnel aus Beton“ im Ton gebaut werden. Diese werden Abschnittsweise beladen und anschließend versiegelt.

Aufbau des Endlagers

Oberirdisch wird die Anlage in zwei örtlich getrennte Bereiche unterteilt: Den nuklearen und den bergbaulichen Teil. Der „Bergbau“ wird aus fünf Schachtanlagen mit allen notwenigen Einrichtungen und den Abraumhalden bestehen. Der nukleare Teil umfaßt alle Einrichtungen, die zum Verpacken, überwachen und zur Wartung und Weiterentwicklung nötig sind. Dieser Teil ist mit dem unterirdischen Endlager durch eine etwa fünf Kilometer lange Rampe verbunden. Alle radioaktiven Stoffe werden durch eine Schienenbahn in diesem schrägen Tunnel nach unten geschafft. Während des Betriebs sind unterirdisch der nukleare und der bergbauliche Teil voneinander isoliert. Dies dient dem Arbeits- und Umweltschutz. Der nukleare Teil wird einem Kontrollbereich in einem Kernkraftwerk entsprechen.

Wird das Endlager – wahrscheinlich erst in ein paar hundert Jahren – endgültig außer Betrieb genommen, werden alle unterirdischen Gänge sorgfältig wieder verfüllt und die oberirdischen Anlagen abgebrochen. Bis zu diesem Zeitpunkt, bietet die Anlage einige hundert Dauerarbeitsplätze.

Sicherheit

Bei dem französischen Weg, über eine Wiederaufbereitung der abgebrannten Brennstäbe das Uran und Plutonium abzuscheiden und nur die Spaltprodukte und minoren Aktinoide als Abfall zu „endlagern“, reduziert sich der Gefährdungszeitraum auf etwa 100 000 Jahre. Nach Ablauf dieses Zeitraumes sind fast alle radioaktiven Stoffe zerfallen und der „Atommüll“ hat nur noch das Gefährdungspotential von Natururan.

Gesetzlich ist der Nachweis vorgeschrieben, daß die maximale Strahlenbelastung in der Umgebung des Lagers für den gesamten Zeitraum auf 0,01 mSv begrenzt bleibt. Selbst bei allen denkbaren Störfällen muß die Belastung auf 0,25 mSv beschränkt bleiben.

Zum Verständnis eines Endlagers ist das Zusammenspiel von Zeitdauer und Konzentration wichtig. Das Glas müßte z. B. durch Grundwässer aufgelöst werden. Hierdurch findet eine Verdünnung statt. Je geringer die Konzentration der radioaktiven Stoffe in diesem Wasser ist, desto harmloser ist es. Im Normalfall hätte dieses Wasser noch Trinkwasserqualität (Auflösung und Auslaugung von Glas in Wasser geht nur sehr langsam vor sich). Jetzt müßte dieses Wasser und die radioaktiven Stoffe aber noch 500 m Deckgebirge durchwandern, bevor es in die Biosphäre gelangt. Dabei wird es aber nicht einfach befördert, sondern tauscht sich beständig mit den Bodenschichten aus. Auf dieser langen Reise schreitet jedoch der radioaktive Zerfall kontinuierlich fort. Was z. B. in einem Trinkwasserbrunnen ankommen kann, ist – insbesondere bei den ausgesucht idealen Bedingungen am Standort – nur noch verschwindend gering und damit harmlos. Viele Mineralwässer sind höher belastet und werden sogar als gesundheitsfördernd eingestuft.

Zusammenfassung

Frankreich verfolgt zielstrebig seine „Endlagerpolitik“. Sie ist durch folgende Punkte charakterisiert:

  • Abgebrannte Brennelemente werden wieder aufbereitet. Durch die Abtrennung von Uran und Plutonium verringert sich die Menge an hochaktivem Abfall beträchtlich. Das Endlager kann kleiner werden. Der erforderliche Zeitraum für einen sicheren Einschluß reduziert sich deutlich auf rund 100.000 Jahre
  • Die übrig bleibenden Spaltprodukte und minoren Aktinoide werden verglast und in der Wiederaufbereitungsanlage zwischengelagert. Wegen des relativ kleinen Volumens kann die Zwischenlagerung beliebig lange erfolgen. Die abnehmende Radioaktivität vereinfacht den notwendigen Strahlenschutz bei Transport und Handhabung.
  • Von der Entstehung des ersten Mülls bis zur Inbetriebnahme des Endlagers sind (wahrscheinlich) 100 Jahre vergangen. Der Müll ist damit soweit abgeklungen, daß problemlos Temperaturen von 90 °C auch im Endlager eingehalten werden können.. Dies entschärft die Anforderungen an das Wirtsgestein ganz beträchtlich. Auch hier gilt die Politik der kleinen Schritte: Ab 2025 soll maximal 5% eingelagert werden und mindestens für 50 Jahre beobachtet werden, bis die Freigabe für die restlichen 95% erfolgt.
  • Die Entwicklung der Technologie ist weit fortgeschritten. Dies ist auf das konsequente Vorgehen in kleinen, gut überschaubaren und klar definierten Schritten zurückzuführen. In jeder Phase wurden mehrere Alternativen untersucht.
  • Im Gegensatz zu Deutschland, wurde großer Wert auf Transparenz und Öffentlichkeitsarbeit gelegt. Alle wesentlichen Schritte werden im Parlament behandelt und entschieden. Dabei beschränkt sich die Politik auf Grundsatzfragen, wie z. B. die Entscheidung zwischen oberirdischen technischen Lagern oder geologischem Tiefenlager. Dies ist eine rein ethische Entscheidung nach dem Muster: Traut man mehr der Gesellschaft oder der Geologie und sie ist deshalb vom Parlament zu fällen.
  • Die Durchführung der Beschlüsse wird ausschließlich durch ausgewiesene Fachleute ausgeführt und beurteilt.. Selbsternannte „Atomexperten“ können, wie alle anderen Laien auch, ihre Einwände über die Anhörungen einbringen.
  • Alle Forschungsergebnisse werden veröffentlicht und bewußt auch den internationalen Fachgremien zur Beurteilung zur Verfügung gestellt.
  • Frankreich hat sich ein enormes Fachwissen zur geologischen Endlagerung erarbeitet. Es hat sich damit bedeutende Exportchancen erschlossen,. denn „Endlagerung“ ist eine weltweite Aufgabe.

Ausblick

Im nächsten Teil wird noch näher auf die Entstehung von Atommüll und die unterschiedlichen Behandlungsweisen und Klassifizierungen eingegangen.

Braucht das Leben Strahlung?

Die Erkenntnisse über die Wirkung niedriger Strahlungsdosen schreiten immer weiter voran. Die radikalste Fragestellung dabei ist die Frage nach dem Verhalten von Zellen bei Abwesenheit von ionisierender Strahlung. Die Ergebnisse sind verblüffend – aber der Reihe nach…

Das LNT-Modell

In den 1950er-Jahren einigte man sich weltweit auf einen linearen Zusammenhang, ohne einen Schwellwert (linear no-threshold model; LNT), für den Strahlenschutz. Es ist simpel und damit leicht anwendbar: Man unterstellte, daß die biologischen Schäden (gemeint ist Krebs), die durch ionisierende Strahlung (umgangssprachlich durch Radioaktivität) ausgelöst werden, direkt proportional zur Dosis sind: Die mathematische Funktion ist eine einfache Gerade mit der Steigung 0,05/Sv. Etwas anschaulicher ausgedrückt, wenn man 100 Menschen einer Dosis von 1 SV (Sievert) aussetzt, erkranken davon fünf Menschen (zusätzlich) an Krebs. Mehr steckt nicht dahinter und damit fangen schon die Schwierigkeiten an.

Wie ist man zu dieser einfachen Zahl gekommen? Hauptsächlich durch die Auswertung der Opfer der Bomben auf Hiroshima und Nagasaki. Man hat zehntausende Menschen über Jahre beobachtet und ihre Erkrankungen dokumentiert. Das war der einfache Teil der Aufgabe. Wesentlich schwieriger war schon die Ermittlung der individuellen Strahlendosis, da diese Menschen natürlich keine Meßgeräte getragen haben. Hinzu kamen noch jeweils verschiedene Lebensumstände, Vorerkrankungen etc. Wenn man nun jeden einzelnen Fall in einem Diagramm (Krebserkrankungen über Dosis) aufträgt, kann man streng genommen keinen Punkt eintragen, sondern muß eher einen Klecks verwenden: Weder ist die genaue Dosis zu ermitteln, noch sind die Krebsarten alle gleich, noch kann man sonstige Belastungen (z. B. krebserregende Chemikalien, Umwelteinflüsse, genetische Prägungen etc.) genau erfassen.

In solchen Fällen helfen nur die Methoden der Statistik. Vereinfachend gesagt braucht man eine Wolke aus möglichst vielen Fällen, die möglichst eng zusammenliegen. Sieht das sich ergebende Band nach einer Geraden aus, kann man in guter Näherung eine solche hindurch legen und deren Steigung bestimmen.

Hier ergibt sich aber das Problem, welches seit über 80 Jahren zu heftigsten Diskussionen auch in der Fachwelt führt: Im unteren Teil (kleine Dosen und damit eine geringe Anzahl von Krebsfällen) gibt es kaum Punkte und die streuen auch noch sehr stark. Es ist damit äußerst fragwürdig, den gesamten Bereich – von keiner meßbaren Wirkung, bis zum garantiert kurzfristig eintretendem Strahlentod – durch ein und dieselbe Gerade nachbilden zu wollen. Schon die geringe zusätzliche Anzahl von den ohnehin auftretenden Krebsfällen trennen zu wollen, ist eine schier unlösbare Aufgabe. Hier rächt sich die Statistik: Sie arbeitet stets nur mit Wahrscheinlichkeiten. In dem vorherigen Zahlenbeispiel kann man weder voraussagen, welche fünf Personen von den betrachteten 100 Personen Krebs bekommen, noch ob es exakt fünf Fälle sind. Lediglich, wenn man sehr, sehr viele Menschen mit einem Sievert bestrahlen würde, würde sich die Anzahl der zusätzlichen Krebsfälle (bei diesem Modell!) der Zahl von fünf Prozent annähern.

Schwellwert oder nicht?

Man bezeichnet einen Wert als Schwellwert, wenn sich der Zusammenhang bei einem Modell wesentlich ändert. Für einen Ingenieur ist es nichts ungewöhnliches, Messreihen z. B. abschnittsweise durch unterschiedliche Geraden anzunähern.

Im Arbeitsschutz ist es üblich, für Giftstoffe Schwellwerte zu definieren. Üblicherweise sind dies Dosen, bei denen man auch über ein ganzes Arbeitsleben keine Schädigung feststellen kann. Dahinter steckt eine Alltagserfahrung: Nicht jeder Umgang mit einem Stoff führt sogleich zu einem Schaden. Andrerseits führt ein zu viel – bei jedem Stoff – irgendwann, zu irgendwelchen Schäden.

Bis zur Politisierung der Strahlung durch die „Atombomben“, ist man auch mit ionisierender Strahlung sehr erfolgreich so pragmatisch umgegangen. Man hatte schon wenige Jahre nach der segensreichen Erfindung der Röntgenstrahlung festgestellt, daß diese zu Erkrankungen bei dem medizinischen Personal führen konnte. Man analysierte die Fälle und definierte einen (zulässigen) Schwellwert für den Arbeitsschutz.

Energie und Leistung

Schon jedem Schüler sollte der Zusammenhang von Energie und Leistung vertraut sein. Es macht einen gewaltigen Unterschied, ob ich eine Leistung (W oder J/s) für Bruchteile einer Sekunde aufbringe oder über Stunden verteilt. Eindrucksvolles Beispiel hierfür, ist ein Laser-Strahl: Eine relativ geringe Energie reicht aus, um zwei Stahlplatten miteinander zu verschweißen. Der „Trick“ ist, die Energie in einem sehr kurzzeitigen Blitz zu senden. Über Stunden angewendet, würde sie den Stahl nicht einmal zum glühen bringen.

Warum glaubte man nun, diese Erfahrungstatsachen bei der ionisierenden Strahlung außer Kraft setzen zu können? Es war schlicht ein unvollständiges und damit leider falsches Verständnis der biologischen Zusammenhänge. Man hatte erkannt, daß bei der Zellteilung die DNA kopiert und damit die Erbinformationen weitergegeben würden. Man wußte, daß bereits ein Partikel einen DNA-Strang zerschlagen konnte. Man glaubte, wenn nun der Fehler beim kopieren an die Tochterzelle weitergegeben würde, müßten die Fehler irgendwann so häufig sein, daß eine „Krebszelle“ entstanden wäre. Eine übervorsichtige oder abstruse Vorstellung – ganz nach Standpunkt des Betrachters. Der gesunde Menschenverstand sagt einem schon, daß es einen gewaltigen Unterschied macht, ob man täglich nur einen Schnaps trinkt oder gleich die Flasche „auf ex“ leert. Die ganze Pharmakologie müßte neu geschrieben werden, wenn es keinen Unterschied machte, ob man seine Tabletten nach Anwendungsvorschrift einnimmt oder gleich die ganze Schachtel auf einmal in der Apotheke schluckt. Ausgerechnet bei der ionisierenden Strahlung sollte der seit Jahrhunderten bekannte Grundsatz: Die Dosis macht das Gift, nicht gelten.

Die Kollektivdosis ist schlichtweg Unsinn. Nach dem Motto, wenn wir einer Million Menschen je einen Aspirin geben, haben wir X Tote, weil wir ja wissen und nachweisen können, daß die Einnahme von y Schachteln Aspirin zum Tode führt. Ganz im Gegenteil nehmen Millionen Menschen weltweit täglich eine Tablette Aspirin ein, um z. B. das Risiko von Herzinfarkten drastisch zu senken.

Hormesis

Damit kommen wir zur Hormesis. Darunter wird verstanden, daß ein und derselbe Stoff, in geringen Mengen verabreicht, eine genau gegenteilige Wirkung haben kann. Seit Anbeginn zeigte sich bei „Niedrigstrahlung“ das Phänomen deutlich geringerer Krebsfälle, als nach dem LNT-Modell zu erwarten waren. Fast alle Studien mit Arbeitern aus der kerntechnischen Industrie, Opfern von „Atombomben“ und nicht zuletzt den Reaktorunglücken von Tschernobyl und Fukushima zeigten sogar unter dem Erwartungswert für die entsprechende Bevölkerungsgruppe liegende Werte. Jahrzehntelang versuchte man sich besonders bei Bergleuten mit der besonderen medizinischen Fürsorge und der Vorauswahl („Survival of the Fittest“) aus der Affäre zu stehlen. Bis man sich die Frage stellte, ob nicht ionisierende Strahlung in bestimmten geringen Dosen sogar eine den Krebs verhindernde Wirkung zeigte. Plötzlich war auch die „Radontherapie“ keine Esoterik mehr.

Seit man in der Molekularbiologie große Fortschritte erzielt hat und Gene und die DNA praktisch beobachten kann, kann man diese Phänomene sogar naturwissenschaftlich erklären. Es passieren ständig, in jeder Zelle, zehntausende DNA-Fehler. Hauptsächlich sind dafür Radikale verantwortlich. Es gibt daher einen Reperaturmechanismus, der die DNA größtenteils wieder repariert. Darüberhinaus existiert noch eine weitere Ebene, die Zerstörung entarteter Zellen. Erst wenn alle Reparatur- und Schutzmechanismen versagen, kann sich „Krebs“ ausbilden. Hieraus ergibt sich auch der Zusammenhang von (permanenten) kleinen und kurzzeitig hohen Dosen: Mit einer geringen Anzahl von Fehlern wird das Reparatursystem leicht fertig. Ab einer gewissen Dosis entsteht ein „Sättigungsangriff“, der die Abwehr schlicht weg überfordert.

Ohne diese „Selbstheilungskräfte“ wäre überhaupt kein Leben möglich. Man kann nun in Versuchen zeigen, daß diese Kräfte durch ionisierende Strahlung (in der richtigen Dosis!) motiviert und unterstützt werden. Ein Umstand, der bereits in der Strahlentherapie Anwendung findet. Um Krebszellen zu zerstören, braucht man punktuell sehr hohe Dosen, die natürlich das umliegende gesunde Gewebe stark belasten. Deshalb trainiert man in bestimmten Fällen vor der eigentlichen Behandlung das gesunde Gewebe durch mehrere Bestrahlungen mit niedrigen Dosen.

Der Ultimative Test

Wenn es eine Hormesis gibt, was passiert eigentlich, wenn man von Zellen die Strahlung fern hält? Eine einfache Fragestellung, aber ein schwer durchführbares Experiment. Es gibt nämlich überall ionisierende Strahlung: Aus dem All und aus der Erde – die sogenannte Hintergrundstrahlung. Dieser Strahlung war und ist jedes Leben seit Milliarden Jahren ausgesetzt. Leben hätte sich gar nicht entwickeln können, wäre es nicht gegen ionisierende Strahlung überlebensfähig gewesen. Gott sei es gedankt, ist die Natur etwas einfallsreicher, als die Anhänger des LNT-Modells meinen.

Schon in den 1990er Jahren wurde in Italien ein Experiment mit Hefezellen durchgeführt. Hefezellen sind ein Standardobjekt der Molekularbiologen. Sie wurden in ein Labor 1300 m tief unter einem Bergmassiv gezüchtet. Hier unten war die Strahlung tausendfach kleiner, als in dem oberirdischen Vergleichslabor. Anschließend wurden beide Versuchsgruppen Chemikalien ausgesetzt, die starke genetische Veränderungen auslösen können. Es zeigte sich, daß die Fehlerrate bei den „vor Strahlung geschützten“ Zellen höher war.

Inzwischen werden solche Experimente ausgeweitet. In den USA hat man z . B. in einem Salzstock in Carlsbad ein Labor in 650m Tiefe eingerichtet. Die dortige Salzschicht besteht aus sehr reinem Kochsalz und enthält damit nur sehr wenig „radioaktive Stoffe“. Die Deckschicht schirmt die kosmische Strahlung entsprechend ab. Die „Bakterienzucht“ wird in einem Tresor mit 15 cm dicken Stahlwänden aus Stahl vor dem II. Weltkrieg durchgeführt. Solch alter Schrott wird inzwischen hoch gehandelt, da er noch nicht mit Fallout aus „Atombombenversuchen“ etc. belastet ist. Durch diese Maßnahmen gelang es, eine Strahlung von 0,17 mSv pro Jahr innerhalb des Tresors zu erreichen. Dies ist der geringste Wert, der bisher auf der Erde erzeugt werden konnte.

In der Versuchsanordnung wurden nun als besonders strahlenempfindlich bekannte Bakterien Shewanella oneidensis und als besonders strahlungsresistente Bakterien Deinococcus radioduruans gezüchtet. In regelmäßigen Abständen wurde die DNA der Versuchsgruppen auf Schäden untersucht. Um andere Einflüsse ausschließen zu können, wurden die Bakterien mehrfach zwischen den Orten mit verringerter Strahlung und normaler Strahlung hin und her getauscht.

An dieser Stelle müssen wir uns noch einmal die zentrale Aussage des LNT-Modells verdeutlichen:

  • Jedes „Strahlungsereignis“ schädigt die DNA. Deshalb gilt: Je weniger Strahlung, um so weniger Schäden. Nach dem LNT-Modell gibt es einen Nullpunkt, an dem es infolge der nicht vorhandenen Strahlung auch keine Schäden geben dürfte.
  • Die aufgetretenen Schäden addieren sich. Je länger man eine Probe bestrahlt, um so mehr Schäden treten auf.

Demgegenüber stehen die Messergebnisse des Versuches: Beide Bakterienarten weisen „ohne Strahlung“ mehr Schäden auf als „mit Strahlung“. Besonders verblüffend ist, daß sich die Schäden innerhalb von 24h normalisieren, wenn man die Proben wieder der Hintergrundstrahlung aussetzt. Schützt man die Probe wieder vor Strahlung, nehmen die Schäden auch wieder zu. Dies scheint in beliebigem Wechsel möglich.

Sollten sich diese Erkenntnisse weiter verdichten, würde es bedeuten, daß das LNT-Modell schlicht weg, falsch ist. Benutzt man den gesunden Menschenverstand, ist dies auch nicht besonders überraschend: Es hat immer schon Strahlung auf der Erde gegeben. Früher sogar mehr als heute (Halbwertszeit z. B. von Uran, Kalium etc., Sonnenaktivitäten und unterschiedliche Atmosphäre). Vielleicht wäre ohne Strahlung gar kein Leben möglich?

ALARA

Bei diesen Forschungsergebnissen handelt es sich nicht einfach um irgendwelche Trivialitäten, sondern sie sind hoch brisant. Bisher galt weltweit das Prinzip beim Strahlenschutz, die Strahlenbelastung so gering wie möglich zu halten (As Low As Reasonably Archievable; ALARA). Eine ganze Industrie mit Milliardenumsätzen lebt davon. Geld, das man nutzbringender hätte einsetzen können. Konnte man bisher noch mit Fürsorglichkeit und Vorsicht argumentieren, ist es spätestens nach dem Unglück von Fukushima endgültig damit vorbei. Dort hat man eindeutig das Kind mit dem Bade ausgeschüttet. Es sind viel mehr Menschen seelisch und körperlich durch ALARA zu Schaden gekommen, als durch die vorhandene Strahlung. Es wäre besser gewesen, die Menschen hätten in ihrer Umgebung verbleiben können. Evakuierungen wären nur in ganz wenigen Fällen und auf freiwilliger Basis nötig gewesen. Gut gemeint, war auch hier nicht, gut gemacht. Ideologie kann töten. Die Aufklärung der Bevölkerung ist daher dringend notwendig.

PRISM das moderne Entsorgungszentrum? Teil 1

Von den populistischen „Argumenten“ gegen die Kernenergie, ist praktisch nur noch eines öffentlichkeitswirksam: Die „ungelöste Entsorgungsfrage“. Aus diesem Grunde, wird in den Medien – zumindest in Deutschland – nur äußerst zurückhaltend über Entwicklungen berichtet, die über das bloße Vergraben hinausgehen.

In England wird seit einigen Jahren ernsthaft über den Bau des sogenannten Power Reactor Innovative Small Module (PRISM) von GE-Hitachi diskutiert. Hintergrund ist der stetig wachsende Plutoniumberg aus der Wiederaufbereitungsanlage. Inzwischen lagern zwischen 100 und 150 Tonnen auf der Insel. Es geht dabei um die sinnvollste Verwendung. Ein „verbuddeln und vergessen“ nach deutschen Vorstellungen, scheidet für GB ohnehin aus. Vielmehr ist man bestrebt, das Gefahrenpotential des „Atommülls“ auf einige hundert Jahre zu begrenzen. Ein Zeitraum, den man unstrittig durch technische Bauten sicher beherrschen kann. Man holt dadurch das Problem von der wenig fassbaren moralischen Ebene – irgendwelcher „Ethikkommissionen“ – auf die berechenbare Ebene der Ingenieurwissenschaften zurück.

Ein Weg – und beileibe nicht der einzige – ist die Nutzung und Beseitigung abgebrannter Brennelemente durch einen mit Natrium gekühlten Reaktor mit schnellem Neutronenspektrum und metallischem Brennstoff: Dem PRISM. Nichts von der Erfindermesse, sondern ein Stück erprobter Technik. Sein unmittelbarer Vorläufer, der EBR II, war 30 Jahre erfolgreich in Betrieb (bis 1994). Ein PRISM-Kraftwerk mit 1866 MWel würde rund zwei Tonnen abgebrannter Brennelemente pro Jahr verbrauchen und damit die gleiche Menge Strom erzeugen, wie Kohlekraftwerke durch die Verbrennung von sechs Millionen Tonnen Steinkohle.

Warum schnelle Neutronen?

Mit hinreichend schnellen Neutronen kann man alle schweren Kerne spalten. Ausdrücklich auch U238, alle Plutoniumisotope und die minoren Aktinoiden (Americium, Curium, Neptunium usw.). Letztere sind für die Langlebigkeit des Atommülls verantwortlich. Gelingt es sie zu spalten, bleiben nur noch Spaltprodukte mit einer Halbwertszeit von unter 30 Jahren übrig. Allerdings hat die Sache einen entscheidenen Harken: Die Reaktionsquerschnitte sind nicht nur stoffabhängig, sondern auch sehr stark energieabhängig. Mit anderen Worten, nimmt die Wahrscheinlichkeit für eine Spaltung mit schnellen Neutronen stark ab.

Eine selbsterhaltende Kettenreaktion läßt sich nur mit U235 (in der Natur vorkommend) und U233. (aus Thorium erbrütet), sowie Pu239 (aus Uran erbrütet) aufrecht erhalten. Auch deren Spaltquerschnitte sind für langsame thermische Neutronen um Größenordnungen geeigneter. Will man also einen schnellen Reaktor bauen, braucht man wesentlich höhere Anteile an Spaltmaterial. Allerdings steigt auch die Anzahl der freigesetzten Neutronen mit der Energie der spaltenden Neutronen an.

An dieser Stelle ergeben sich die drei Varianten des PRISM-Reaktors, die sich nur durch die Zusammensetzung des Kerns unterscheiden:

  1. Der Brenner. Er verbraucht – wie ein Leichtwasserreaktor – mehr Spaltstoff als beständig neu entsteht. Man muß diese Verluste stetig aus abgebrannten Brennelementen ersetzen. Dies wäre eine reine „Abfallverbrennungsanlage“.
  2. Der Selbsterhalter. Er stellt ziemlich genau so viel Pu239 beim Betrieb gleichzeitig her, wie er auch verbraucht. Die Spaltungen müssen nur durch U238– z. B. aus dem Abfall der Anreicherungsanlagen – ergänzt werden.
  3. Der Brüter. Dies ist die wohl bekannteste Variante. Ein solcher Kern erzeugt mehr Pu239., als er selbst verbraucht. Entscheidendes Maß ist bei diesem Typ die sogenannte Verdoppelungszeit. Damit ist die Zeitdauer gemeint, in der ein Reaktor so viel Überschussplutonium produziert hat, wie man braucht, um damit einen zweiten Reaktor in Betrieb nehmen zu können. Diese Variante wird erst attraktiv, wenn die Preise für Natururan explodiert sind. Also erst in sehr ferner Zukunft.

Es ist bei allen drei Varianten sinnvoll, die Spaltprodukte von Zeit zu Zeit abzutrennen. Allerdings haben sie nicht die Bedeutung, die sie bei Leichtwasserreaktoren haben, da ihre Einfangquerschnitte (und dadurch verursachte Neutronenverluste) für hohe Energien recht klein sind. Der Abbrand kann bei schnellen Reaktoren rund fünfmal so hoch sein, wodurch sich eine Wiederaufbereitung wesentlich vereinfacht und nicht so oft geschehen muß (Kosten).

Warum Natrium als Kühlmittel?

Wenn man einen schnellen Reaktor bauen will, muß man ein Kühlmittel verwenden, das Neutronen praktisch nicht abbremst. In diesem Sinne, kommen praktisch nur drei Stoffe in Frage: Natrium, Blei und Helium. Natrium besitzt in allen relevanten Eigenschaften klare Vorteile, sodaß es nicht verwunderlich ist, daß praktisch alle schnellen Reaktoren (über 20 in 8 Ländern) mit Natrium gekühlt wurden. Einzige Ausnahme bilden die sieben Blei-Wismut-Reaktoren der U-Boote der Alpha-Klasse in der Sowjetunion. Sie sind gerade an den Eigenschaften des Blei gescheitert (hohe Schmelztemperatur, die eine ständige Beheizung erfordert; große Korrosionsprobleme; hohe Pumpleistung; starke Aktivierung durch die Bildung von Po210. Je eingehender man sich mit Kühlmitteln beschäftigt, gibt es für ein Kernkraftwerk (zur reinen Stromerzeugung) lediglich zwei optimale Kühlmittel: Wasser für thermische und Natrium für schnelle Reaktoren.

Natrium ist wegen seines elektrischen Widerstandes hervorragend für den Bau von elektromagnetischen Pumpen ohne bewegliche Teile und damit ohne Dichtungsprobleme geeignet.

Bei Natrium braucht man immer einen zusätzlichen Zwischenkreislauf. Der Neutronenfluß bildet Na24, welches ein harter γ.-Strahler ist. Das primäre Natrium muß deshalb gut abgeschirmt werden. Außerdem besteht bei Leckagen im Dampferzeuger die Gefahr der Wasserstofferzeugung und der Bildung von NaOH. Wasserstoff ist ein guter Moderator, der zu einer Beschädigung des Kerns durch einen Reaktivitätssprung führen könnte.

Die Gefahr von Natriumbränden wird meist überschätzt. Natrium hat eine hohe Verdampfungswärme bei hoher Verdampfungstemperatur. Dies führt zu einer geringen Verdampfungsrate während der Verbrennung – dem Feuer mangelt es an Nahrung. Die Verbrennung von Natrium in Luft setzt nur etwa ein Viertel der Energie, wie Benzin frei. Bei dem klassischen Brandversuch in einer offenen Wanne, bilden sich nur wenige Zentimeter hohe Flammen und in einem Meter über den Flammen herrscht nur eine Temperatur von rund 100 °C. Die bei der Verbrennung entstehenden Na2 O und Na O – Aerosole reagieren in Luft unter Anwesenheit von Wasserdampf und Kohlendioxid weiter zu Na OH und Na2 CO3. Diese Aerosole erfordern anschließend gründliche Reinigungsarbeiten, da sie elektrische Anlagen zerstören können und giftig sind.

Natrium besitzt sehr gute Korrosionsschutzeigenschaften, da es leicht mit Sauerstoff reagiert. Erst oberhalb von 50 ppm besteht für gewisse Stähle eine Korrosionsgefahr im flüssigen Natrium. Dieser Wert ist problemlos über eine Kältefalle (Im Prinzip ein Topf, durch den ein Teilstrom von weniger als 5% des Kreislaufes sehr langsam hindurch strömt) auf 10 bis 25 ppm zu halten. In der Kältefalle kristallisiert das Na2Oa bei unter 200 °C aus.

Warum metallischer Brennstoff?

Metallische Brennstoffe ermöglichen die höchsten Brutraten, da sie vollständig aus spaltbarem und brutfähigen Material bestehen könnten. Sie liefern das härteste Neutronenspektrum, da sie nur aus den schwersten Kernen bestehen. Die Folge ist, daß rund 25% der erzeugten Energie aus der direkten Spaltung von U238. stammen können.

Metalle sind ausgezeichnete Wärmeleiter und vertragen sehr schnelle Temperaturänderungen. Im Gegensatz dazu sind Uranoxide – wie sie in allen Leichtwasserreaktoren verwendet werden – Keramiken, mit bekannt schlechter Wärmeleitung und Sprödigkeit. Sie können im Inneren bereits aufschmelzen, wenn sich ihre Randtemperatur noch kaum geändert hat und können bei schockartiger Abkühlung wie eine Teetasse zerspringen.

Metallische Brennstoffe vertragen sich ausgezeichnet mit dem flüssigen Natrium. Chemische Reaktionen, wie zwischen den Brennstabhüllen aus Zr bei Leichtwasserreaktoren und Wasserdampf gibt es nicht (Wasserstoffexplosionen in Fukushima).

Metallischer Brennstoff schwillt durch die Strahlenbelastung um bis zu 30% an. Die Brennstäbe müssen deshalb sehr viel Raum für Spaltgase besitzen. Der notwendige Anfangsspalt zwischen Hüllrohr und Brennstoff wird mit Natrium als Wärmebrücke ausgefüllt.

Man kann bei Metallen die Eigenschaften durch Legierung gezielt verändern. Plutonium hat eine zu geringe Schmelztemperatur. Der Brennstoff kann mit den Legierungsbestandteilen der Stahlhülle schädliche Eutektika bilden usw. Dies alles, hat in den USA Jahrzehnte Forschung und Entwicklung und den Test von hunderttausenden von Brennstäben erfordert. Als Optimal hat sich eine Brennstofflegierung aus Uran und Plutonium mit etwa 10% Zr in einer Hülle aus austenitischem Stahl herausgestellt.

S wie small

Von Anfang an, stand bei der Entwicklung die geometrische Größe des Reaktors im Vordergrund: Man wollte den kompletten nuklearen Teil in einer Fabrik fertigen und testen und anschließend (möglichst) mit der Eisenbahn zum Standort transportieren. Alle Einbauten, der Kern, die Pumpen, die Zwischen-Wärmeübertrager, die Lademaschine mit dem Zwischenlager und die Regelstäbe werden in einen Topf aus Edelstahl eingebaut und mit dem Deckel gasdicht verschweißt. Diesen Reaktorbehälter umschließt noch ein zweiter Sicherheitsbehälter und die Luftkühlung. All das, wird in einer Fabrik zusammengebaut und getestet und anschließend zur Baustelle transportiert und dort in das örtlich gefertigte Betonsilo eingesetzt. Damit ist die geplante Leistung auf etwa 840 MWth. begrenzt. Durch die Serienfertigung in einer spezialisierten Fabrik verspricht man sich einen bedeutenden Kostenvorteil.

M wie modular

Die Modularität bezieht sich sowohl auf einen Block selbst, wie auch auf ein Kraftwerk:

  • Jeder Block besteht aus dem nuklearen Teil in einem unterirdischen Betonsilo, der oberirdischen Dampferzeuger-Anlage und den konventionellen Stromerzeugungsanlagen.
  • Ein komplettes Kernkraftwerk könnte z. B. eine elektrische Leistung von 1866 MWel haben und müßte dann aus sechs Reaktoren (je 840 MWth) bestehen, die jeweils paarweise auf eine Turbine (je 622 MWel.) wirken und insgesamt drei Turbinen haben. Alle sonstigen Einrichtungen (Werkstatt, Sozialgebäude usw.) würden gemeinsam genutzt. Ein solches Kraftwerk könnte auch eine integrierte Wiederaufbereitungsanlage beinhalten.

Die interne Unterteilung zielt auf eine potentielle Kosteneinsparung ab: Lediglich der Reaktor in seinem Betonsilo müßte dem Sicherheitsstandard „nuclear grade“ entsprechen. Bereits die Dampferzeugungsanlage in ihrem separaten Gebäude sollte – nach Meinung von GE – nur einen „gehobenen Industriestandard“ haben. In wie weit die Genehmigungsbehörden dieser Argumentation folgen werden, ist noch nicht ganz eindeutig zu beantworten.

Die Zusammenfassung von zwei Reaktoren mit Dampferzeuger und einer Turbine zu jeweils einer Einheit, zielt auf eine hohe Verfügbarkeit und einen kostengünstigen Ausbau eines Standortes ab. Sobald eine Einheit fertig ist, kann diese bereits Geld verdienen, während der Ausbau des Kraftwerkes weiter läuft. Die heute übliche Vorfinanzierung der gesamten Summe entfällt. Später, hat das Kraftwerk eine sehr hohe Verfügbarkeit bei guten Wirkungsgraden. Letztendlich muß die Praxis zeigen, welcher Weg der günstigere ist. Rußland beispielsweise, versucht es über möglichst große Blöcke.

Das Sicherheitskonzept

PRISM setzt konsequent auf eine passive oder inhärente Sicherheitstechnik. Der völlige Stromausfall (Station-Blackout) ist kein Problem mehr. Es wird lediglich eine elektrische Leistung von weniger als 200 kW für Instrumentierung, Notbeleuchtung, Rechner und Bildschirme usw. benötigt. Diese kann problemlos über Batterien bereitgestellt werden. Notstromdiesel (als Sicherheitstechnik) sind nicht mehr nötig. Die Nachzerfallswärme wird ausschließlich über eine Luftkühlung mit Naturzug abgeführt. Dazu wird die Wärme über das Reaktorgefäß und den Sicherheitsbehälter an einen umgebenden Luftspalt abgegeben. Die erwärmte Luft steigt über vier Kamine auf. Das System ist so bemessen, daß auch bei erheblichen Verstopfungen (z. B. durch Erdbeben oder Anschläge) oder dem kompletten Ausfall von zwei Kaminen oder einem völligen Verschluß der Zuluftöffnungen die Kühlung stets gewährleistet ist. Selbst bei einem völligen Ausfall von 36 Stunden tritt noch keine Kernschmelze auf. Ein Unfall wie in Fukushima, wäre damit ausgeschlossen.

Der gesamte Reaktor ist elastisch auf Federn und Dämpfern gelagert. Da sich alle Rohrleitungen und Pumpen etc. in dem Reaktorgefäß befinden, ergibt sich ein optimaler Erdbebenschutz. Dies gilt auch für Flugzeugabstürze und sonstige Einwirkungen von außen, da sich der Reaktor in einem unterirdischen Betonsilo befindet. Die Verbindung zum Dampferzeuger besteht aus Vor- und Rücklauf des Natrium-Zwischen-Kreislaufes, die ebenfalls in einem Betongraben verlegt sind. Diese Leitungen sind als Rohr in Rohr Konstruktion ausgeführt, um Natrium-Leckagen zu verhindern.

Der Dampferzeuger ist ebenfalls mit einem Mantel zur Luftführung umgeben. Wenn die eigentliche Kühlung des Kraftwerks ausfällt, kann die Wärme auch darüber abgeführt werden. Dies ist jedoch kein nukleares Sicherheitssystem im engeren Sinne, sondern dient dem Anlagenschutz.

Die Lagerung der Brennelemente

Die Handhabung der Brennelemente verläuft bei diesem Reaktor gänzlich anders als bei Leichtwasserreaktoren. Der Reaktor kann wegen des flüssigen Natriums mit seiner hohen Temperatur und Brandgefahr nicht einfach geöffnet werden. Zuerst wird das Helium als Schutzgas und Ausgleichsraum abgesaugt und durch frisches Gas ersetzt. Damit soll die Gefahr der Freisetzung radioaktiver Gase in den Sicherheitsbehälter vermieden werden. Die fest im Reaktor installierte Lademaschine entnimmt abgebrannte Brennelemente und lagert sie oberhalb des Kerns in ein Lagergestell ein. Anders als bei Leichtwasserreaktoren, verbleiben sie für mindestens 20 weitere Monate zur Abkühlung im Reaktor. Ihre Wärmeentwicklung durch den radioaktiven Zerfall ist dann soweit abgeklungen, daß sie auch ohne spezielle Kühlung keine Temperatur von 400 °C mehr überschreiten können. Dies ist für ihren metallischen Kern und die Hüllrohre aus Stahl kein Problem. Ein Brennelemente-Lagerbecken ist nicht nötig.

Ein vollautomatisches Transportfahrzeug dockt an den Reaktordeckel an, entnimmt die zu entladenden Brennelemente und fährt sie anschließend zum zentralen Lagergebäude.

All das, geschieht vollautomatisch und unter Schutzgas. Trotzdem ist ein Auslegungsstörfall der Brand des Natriums im Reaktor. Der Sicherheitsbehälter oberhalb des Reaktors ist so bemessen, daß er die freigesetzte Energie und die Temperaturen aushält. Automatische Löschanlagen mit Schutzgasen sind vorhanden.

Die Auslegungsstörfälle

Schnelle Reaktoren (SR) und Leichtwasserreaktoren (LWR) unterscheiden sich stark in ihrem Unfallverhalten. LWR stehen unter hohem Druck und werden nahe dem Verdampfungspunkt betrieben. Schon bei einem relativ kleinem Leck baut sich der Druck stark ab und das „Kühlwasser“ verdampft. Die Temperatur im Kern steigt damit steil an und nähert sich schnell den Grenzwerten. Gelingt es nicht, das Kühlwasser schnell zu ersetzen, wird der Kern zerstört (Unfall in Harrisburg). Auch nach erfolgreicher Abschaltung, kann die Nachzerfallswärme noch zur Kernschmelze führen (Unfall in Fukushima). Es kommt im weiteren Verlauf dann zur Reaktion zwischen Wasserdampf und den Brennstabhüllen mit starker Wasserstoffproduktion (zerstörende Explosionen in Fukushima).

Bei einem SR sieht der Ablauf gänzlich anders aus. Die Kombination aus metallischem Brennstoff, Brennstabhüllen aus Edelstahl und Natrium als Kühlmittel ergibt eine sehr gute Wärmeübertragung mit hoher Temperaturbeständigkeit. Chemische Reaktionen zwischen den Unfallbeteiligten sind praktisch nicht vorhanden. Mit anderen Worten: Es wird recht schnell und gleichmäßig heißer im Reaktor. Wegen der hohen Verdampfungstemperatur kann es deutlich heißer werden, ohne daß sich wesentliches ändert. Bei einem LWR reicht selbst die Nachzerfallswärme aus, den Kern zum Schmelzen zu bringen, wenn er nicht mehr mit flüssigem Wasser bedeckt ist. Bei einem SR führt die starke Temperaturerhöhung lediglich zu einem neuen Gleichgewicht zwischen „Notkühlluft“ und Reaktorgefäß. Die neue Gleichgewichtstemperatur ist so bemessen, daß sie sich noch weit von Materialgrenzwerten entfernt einstellt. Der Reaktor ist „inhärent sicher“.

Bei jedem Reaktor führen gewisse Grenzwerte zur sofortigen und automatischen Abschaltung. Beim PRISM fallen zu diesem Zweck sechs Regelstäbe in den Kern ein. Die Kettenreaktion wird dadurch in Sekundenbruchteilen unterbrochen. Zur dauerhaften Abschaltung gibt es noch ein zweites System, das Kugeln aus Borkarbid in den Kern einführt. Insofern unterscheiden sich LWR und SR kaum.

Man geht aber beim PRISM-Reaktor noch einen Schritt weiter, in dem man sich den starken Temperaturanstieg nutzbar macht. Dieser führt zu einer Reihe von Auswirkungen, die neutronenphysikalisch wirken (Dopplereffekt, Dichteänderung des Natrium, Axiale und radiale Ausdehnungen des Brennstoffs, usw.). Wichtig ist die konstruktive Gestaltung, damit der Temperaturkoeffizient der Reaktivität immer negativ bleibt (In Tschernobyl war er positiv!). In Alltagssprache: Je heißer der Reaktor wird, um so schneller bricht die Kettenreaktion von selbst zusammen. Wird die Kühlung – aus welchen Gründen auch immer – unterbrochen, schaltet sich der Reaktor von selbst ab. Er ist also auch im Betrieb „inhärent sicher“.

Der Ausfall der Umwälzpumpen im Reaktor (vier Stück) kann zu einer lokalen Überhitzung führen, die örtlich sogar zu einem Verdampfen des Natriums führen könnte. Dadurch könnte der Neutronenfluß lokal weiter ansteigen und Teile des Kerns beschädigen. Ursache sind die elektromagnetischen Pumpen, die keine rotierenden Massen haben und somit sofort ausfallen, wenn der Strom weg ist (Station-Blackout). Sie werden deshalb mit Synchronmotoren, mit extra großen Schwungmassen, parallel betrieben. Die Synchronmaschinen erzeugen im Normalbetrieb Blindleistung und schalten bei Stromausfall automatisch in den Generatorbetrieb um. So entsteht ein mehrere Minuten dauernder Auslauf der Pumpen, der lokale Überhitzungen verhindert und sanft in einen Naturumlauf überführt.

Versagt auch dieses System, werden die Gasraum-Ausdehner wirksam. Sie funktionieren nach dem Prinzip eines umgedrehten Glas im Spülbecken: Je weiter man es eintaucht, um so kleiner wird das Luftpolster infolge des steigenden Wasserdrucks. Im PRISM spielt nun der Pumpendruck auf das Natrium mit einem Gaspolster aus Argon zusammen. So wie der durch die Pumpen erzeugte Druckanstieg kleiner wird, dehnt sich das Argonpolster aus. Da das Gas eine wesentlich geringere Dichte als das flüssige Natrium hat, kann es auch weniger Neutronen in den Kern zurück streuen. Der Ausfluß erhöht sich und die Kettenreaktion bricht zusammen. Ein weiteres, völlig passives, Sicherheitssystem.

Natriumbrand im Dampferzeuger

Ein spezielles Sicherheitsproblem ist die Reaktion zwischen Wasser und Natrium. Bei ihr wird neben Energie auch Wasserstoff frei bzw. es entstehen Reaktionsprodukte, die Wasserstoff enthalten. Daraus ergeben sich folgende Ansprüche:

  • Der Dampferzeuger sollte in einem separaten Gebäude – streng getrennt vom Reaktor – stehen. Da es nur hier eine Schnittstelle zwischen Wasser und Natrium gibt, können alle Auswirkungen besser beherrscht und lokal begrenzt werden.
  • Es sollte eine Isolierung zwischen Dampferzeuger und Reaktorteil geben, um Rückwirkungen auf die Wärmetauscher im Reaktor zu verhindern.
  • Es müssen ausreichend große Abblasetanks vorhanden sein, um Natrium und Wasser möglichst schnell voneinander zu trennen, damit die Brandlasten klein bleiben. Entstandener Wasserstoff muß rekombiniert bzw. sicher abgeleitet werden, um Explosionen zu verhindern (nicht wie in Fukushima, auch noch benachbarte Gebäude zerstören.)

Der Dampferzeuger des PRISM ist ein schlanker, aufrecht stehender Behälter. Er ist nicht vollständig mit Natrium gefüllt, sondern besitzt oben einen mit Argon gefüllten Raum. Dieses Gaspolster, kann bei Störfällen etwaige Druckwellen bereits erheblich mindern. In dieses Natriumbad tauchen, zu einer Spirale gewickelte Rohre ein. In diesen strömt das Wasser und verdampft. Würde ein Rohr undicht werden, strömt Wasser bzw. Dampf unter hohem Druck in das Natrium ein und reagiert dort sofort. Die zusätzliche Energieproduktion kann zu einem Temperaturanstieg im Dampferzeuger führen. Wichtigste Gegenmaßnahme ist nun die Absperrung sowohl der Wasser- und Dampfleitungen wie auch der Natriumleitungen. Dabei sind kleine Leckagen kein Problem, da sie ein langsames Abfahren der Anlage ermöglichen.

Kommt es hingegen zu massiven Wassereinbrüchen, kann es zu einer stärkeren Temperaturerhöhung und einem steilen Druckanstieg führen. Wichtigstes Ziel ist nun, die Druckspitze zu begrenzen und die Druckwelle möglichst von den Zwischenwärmetauschern im Reaktor fern zu halten. Zur Dämpfung dient bereits das Gaspolster im Dampferzeuger. Wird der vorgesehene Druck überschritten, bersten zwei Scheiben in der Verbindungsleitung zum Abblasetank. Der Abblasetank trennt die Gase (insbesondere den entstandenen Wasserdampf) vom flüssigen Natrium. Das Natrium strömt dann weiter in Reservetanks. Bereits gebildeter Wasserstoff wird rekombiniert, um etwaige Explosionen zu vermeiden. Die Restwärme wird über die Außenluft abgeführt.

Unmittelbar hinter dem Sicherheitsbehälter des Reaktorgebäudes befinden sich Isolierventile, die sofort und automatisch schließen. Dadurch wird verhindert, daß überhaupt Reaktionsprodukte zum Reaktor gelangen können.

Schlußbetrachtung

Es gibt international viel Erfahrung aus einigen hundert Betriebsjahren mit natriumgekühlten schnellen Reaktoren. Allein in den USA ist der EBR II über 30 Jahre erfolgreich gelaufen. Man hat in ihm über 100000 Brennelemente getestet und umfangreiche Experimente der Sicherheitssysteme durchgeführt. Mehrfach wurde bei voller Leistung die Wärmesenke einfach abgestellt, um beispielsweise die Richtigkeit der Rechenprogramme zu überprüfen. Die Entwicklung ist seit dem – wenn auch stark reduziert – kontinuierlich weitergeführt worden. Bereits 1994 wurde das eingereichte Konzept von der NRC in einem 400seitigen Abschlussbericht positiv beurteilt. Seit dem, könnte eigentlich ein Kraftwerk als Demonstrationsanlge gebaut werden – wenn der politische Wille vorhanden wäre. Ob auch hier wieder China voranschreiten wird oder kann Europa (GB) noch den Anschluß halten?

Ausblick

Der zweite Teil wird sich mit der Wiederaufbereitung und der Herstellung der metallischen Brennelemente beschäftigen.

Reaktortypen in Europa – Teil5, ESBWR

Der ESBWR (Economic Simplified Boiling Water Reactor) ist die bisherige Krönung in der Evolution der Leichtwasserreaktoren. Es ist ein Reaktor der Generation III+ und erfüllt sicherheitstechnisch bereits die Ziele der vierten Generation: Passive und inhärente Sicherheit, die die Anlage stets selbstständig in einen sicheren Zustand überführt.

Geschichte

Bereits nach dem Reaktorunglück von TMI in Harrisburg begann man in den USA das Genehmigungsverfahren für einen stark vereinfachten Reaktor, den SBWR (Simplified Boiling Water Reactor). Nachdem man über eine halbe Milliarde Dollar Entwicklungs- und Genehmigungskosten investiert hatte, mußte man erkennen, daß dieser Reaktor mit 670 MWel schlicht zu klein und damit unverkäuflich war. Im nächsten Schritt legte man mehr Wert auf die „Wirtschaftlichkeit (Economic)“ und erhöhte die Leistung auf 1600 MWel. Ein weiteres Jahrzehnt mit unzähligen Prüfungen verging. Seit letztem Jahr liegen endlich alle Genehmigungen für den Typ vor. Es fehlt nur noch ein Kunde mit einem konkreten Bauauftrag. Inzwischen gibt es auch dazu Verhandlungen in USA, Polen und Indien. Wie immer, wird der „mutige Investor“ gesucht, der bereit ist in eine neue Technik (first of a kind) zu investieren. Dabei ist die Technik alles andere als revolutionär, sondern im Gegenteil strikt evolutionär. Man hat Schritt für Schritt auf in der Praxis bewährte Bauteile zurückgegriffen. Dies sei nur am Rande bemerkt, für all die Erfinder, die immer nach revolutionären Konzepten schreien. Erfinden und in allen Details den Nachweis der Funktionstüchtigkeit erbringen, sind zwei völlig verschiedene Dinge. Zumindest der Nachweis der Funktionstüchtigkeit – nach den Maßstäben der Kerntechnik – erfordert Jahrzehnte und verschlingt somit immense Summen. Vergleichbares gibt es nur in der zivilen Luftfahrt. Auch dort sind revolutionäre Flugzeugentwürfe nur etwas für Universitäten und Medien.

Anforderungen

Alle bisherigen Erfahrungen mit Kernkraftwerken – insbesondere die Unglücke in Harrisburg, Tschernobyl und Fukushima – haben zu folgenden Anforderungen für einen sicheren und wirtschaftlichen Betrieb geführt:

  • Je weniger Bauteile man hat, je weniger kann kaputt gehen (Schaden) und je weniger muß gewartet und überwacht werden (Wirtschaftlichkeit).
  • Je einfacher („kiss = keep it simple stupid“) das Kraftwerk ist, je einfacher ist es auch zu bedienen – dies gilt für die Automatik, wie auch für das Personal.
  • Je mehr man auf Naturkräfte (Schwerkraft, Speicherung etc.) bei der Sicherheitstechnik setzt, um so sicherer ist ihre Verfügbarkeit im Ernstfall.
  • Je unabhängiger man von äußeren Einflüssen ist (Netzanschluss, Kühlwasser etc.), je weniger können solche „Einwirkungen von außen“ (Tsunami, Wirbelsturm, aber auch Flugzeugabsturz, Terror etc.) zu Schäden beim Kraftwerk führen.
  • Je passiver die Sicherheitsketten sind, je weniger muß man sich auf eine hohe Bereitschaft des Schichtpersonals verlassen. Gerade in Ausnahmesituationen (Erdbeben mit Tsunami) brauchen Menschen Zeit sich darauf umzustellen.
  • Wenn man bewußt von dem Versagen aller Sicherheitssysteme ausgeht und offensiv solche Ereignisse durchspielt, kann man trotzdem die Schäden für die Umwelt noch weiter mindern.

Nur die konsequente Umsetzung der vorausgehenden Punkte hat zu der gewaltigen Steigerung der Sicherheit beim ESBWR geführt. Hatte die „Fukushima-Generation“ noch eine Wahrscheinlichkeit von einer Kernschmelze in 100.000 Betriebsjahren, so liegt diese Wahrscheinlichkeit beim ESBWR bei etwa einer Kernschmelze in 170.000.000 Betriebsjahren. Spätestens nach den Ereignissen von Tschernobyl und Fukushima legt man großen Wert auf die Freisetzung von Radioaktivität nach dem Versagen aller Sicherheitseinrichtungen (z. B. Beschädigung des Containment etc.). Man kann durch geeignete Maßnahmen auch in einem solchen schweren – und unwahrscheinlichen – Unfall, die Freisetzung von radioaktiven Stoffen erheblich verringern. Simulationen für Standorte in USA haben ergeben, daß selbst in Betrachtungszeiträumen von einer Milliarde Jahren (berücksichtigt die geringe Wahrscheinlichkeit der Ereignisse) in einer Entfernung von 800 m (!) keine Dosen über 1 Sv auftreten würden. Natürlich können solche Berechnungen „Atomkraftgegner“ nicht überzeugen. Sie halten auch nach Tschernobyl und Fukushima tapfer an ihrem Glauben von Millionen-Tote-für-zehntausende-Jahre-unbewohnbar fest. Was soll’s, es gibt auch heute noch Menschen, die an Hexen glauben.

Der Naturumlauf

Die Idee einen Siedewasserreaktor ohne Umwälzpumpen zu bauen, ist keinesfalls neu. Allerdings waren die ursprünglichen Modelle, wie z. B. Dodewaard (183 MWth) und Humboldt Bay (165 MWth) geradezu winzig gegenüber einem ESBWR (4500 MWth). Gleichwohl haben sie in den Jahrzehnten ihres Betriebs wertvolle Erkenntnisse und Messreihen geliefert, die als Referenz für die Auslegungsprogramme des ESBWR dienen. Dodewaard war von 1969 bis 1997 am Netz und hat trotz seiner bescheidenen Leistung von 55 MWel fast 11000 GWhelStrom produziert.

Wenn man einen Reaktor mit Naturumlauf bauen will, muß man die treibende Kraft der Umwälzpumpen durch einen Kamineffekt ersetzen: Es steht nur die Dichtedifferenz zwischen kaltem Abwärtsstrom und dampfhaltigem Aufwärtsstrom zur Verfügung. Um überhaupt genug Druck erzeugen zu können, damit man die Reibung in den Bauteilen überwinden kann, ist eine erhebliche Bauhöhe erforderlich. Genau das war aber in den Anfangsjahren das Problem. Man konnte solch große Druckgefäße – zumindest wirtschaftlich – nicht herstellen. Es bot sich deshalb an, besser Umwälzpumpen zu verwenden. Heute haben sich die Verhältnisse umgekehrt. Es gelang praktisch das im ABWR verwendete Druckgefäß auch im ESBWR zu verwenden. Es mußte allerdings für den Kamin oberhalb des Reaktorkerns, von 21,7 auf 27,6 m verlängert werden. Solch schlanke Behälter haben Vor- und Nachteile. Für die Gebäudehöhe und den Erdbebenschutz ist eine solche Länge eher nachteilig. Allerdings ergibt sich auch ein sehr großes Wasservolumen, was sich positiv bei Störfällen auswirkt.

Der Kern des ESBWR ist gegenüber dem ABWR größer (1590 gegenüber 1350 Brennelemente) und flacher (3,0 m gegenüber 3,7 m aktive Brennstablänge). Dies ist auf die höhere Leistung (4500 gegenüber 3926 MWth.) und die anderen thermohydraulischen Bedingungen zurückzuführen. Wegen der höheren Anzahl der Brennelemente erhöht sich auch die Anzahl der Regelstäbe (269 gegenüber 205). Diesem Mehraufwand ist die Einsparung von zehn internen Umwälzpumpen gegen zu rechnen.

Der Rechenaufwand

Einfach anmutende natürliche Systeme, sind meist wesentlich schwieriger zu beschreiben, als technische Systeme. Technische Anlagen, wie z.B. Pumpen, können definierte Randbedingungen schaffen, die eine Berechnung oft stark vereinfachen. Nur auf Naturkräfte beruhende Systeme sind die hohe Schule der Simulation. Schnell stößt man bei der notwendigen räumlichen und zeitlichen Auflösung an die Grenzen heutiger Rechner. Hinzu kommt hier eine sehr große Anzahl von Gleichungen, da die Thermohydraulik und die Neutronenphysik sich sehr stark gegenseitig beeinflussen.

Man muß es eigentlich nicht besonders erwähnen, hier hat man es mit einer Genehmigungsbehörde zu tun und bewegt sich nicht als freischaffender Künstler in der Welt von Klimamodellen oder Wirtschaftsprognosen. Hier muß man nicht nur sein Programm offen legen, sondern auch noch nachweisen, daß es richtig rechnet. Dazu müssen zahlreiche Messreihen an 1:1 Modellen nachgerechnet werden, um Unterprogramme (z. B. Druckverlust in einem Brennelement) zu testen. Ist diese Hürde – zur Zufriedenheit der Genehmigungsbehörde – erfolgreich genommen, geht es daran, Versuche an bereits gebauten Reaktoren nachzurechnen. Erst wenn der Genehmigungsbehörde kein Testfall mehr einfällt, ist das Programm zugelassen. So etwas kann dauern, schließlich arbeitet die Behörde im Stundenlohn für einen Stundensatz von 280 US-Dollar. So viel zum Thema: Junge Unternehmen entwickeln einen innovativen Reaktor. Die alten Zeiten eines Admiral Hyman G. Rickover, für den der Reaktor der USS Nautilus noch mit Rechenschieber, Bleistift und ganz viel Hirn ausgelegt wurde, sind lange vergangen.

Allein die Anpassung des vorhandenen Programms an die Besonderheiten des ESBWR soll bei GE mehr als 100 Mann-Jahre gedauert haben. Erst dann konnten für alle möglichen geforderten Zustände, die Leistungen, Durchflüsse, Dampfzustände und Dampfanteile, Blasenkoeffizienten, die Leistungsdichte und -verteilung, sowie die Stabilität (z.B. Xenon-Schwingungen) nachgewiesen werden.

Führt man sich diesen Aufwand vor Augen, wird einsichtig, warum die Entwicklung evolutionär verläuft. Man hat versucht, soviel wie möglich vom ABWR beim ESBWR weiter zu verwenden. Nicht einmal ein Verbund von internationalen Konzernen aus GE, Hitachi und Toshiba kann es sich heute noch erlauben, die Entwicklung eines kommerziellen Reaktors mit einem weißen Blatt Papier zu beginnen. Ob das nun gut oder eher schlecht ist, mag jeder für sich selbst entscheiden.

Die Notkühlung

Nach dem Unglück in Fukushima sind zwei Ereignisse in den Mittelpunkt der Sicherheitsüberlegungen gerückt:

  1. Der Verlust der Hauptwärmesenke. In Fukushima wurden durch die Flutwelle die Kühlwasserpumpen und Einlaufbauwerke zerstört. Damit ging die Fähigkeit zur Abfuhr der Nachzerfallswärme verloren. Für sich genommen, schon ein wesentlicher Schritt zur Kernschmelze.
  2. Verlust (nahezu) jeglicher Stromversorgung. Durch die Schnellabschaltung infolge der Erdstöße war die Eigenversorgung weg, durch die großräumigen Verwüstungen durch die Naturkatastrophe, die Stromversorgung über das Netz und durch die Flutwelle wurden die Schaltanlagen und Notstromdiesel zerstört.

Wie hätte sich nun ein ESBWR in einer solchen Ausnahmesituation verhalten? Er verfügt über eine zusätzliche Wärmesenke für den Notfall, die vollständig unabhängig vom normalen Kühlwassersystem funktioniert: Die Außenluft. Der Auslegungsphilosophie folgend, sich nur auf Naturkräfte zu verlassen, handelt es sich dabei um offene „Schwimmbecken“ oberhalb des Sicherheitsbehälters. Das Volumen ist so bemessen, daß es für mindestens 72 Stunden reicht. Die Temperatur ist – unabhängig von den Umweltbedingungen – durch die Verdampfung auf maximal 100 °C begrenzt. Es kann jederzeit – auch von außen durch die Feuerwehr – aus verschiedenen Tanks nachgefüllt werden.

Das nur mit der Schwerkraft betriebene Notkühlsystem ECCS (Emergency Core Cooling System) besteht aus vier voneinander unabhängigen Zügen. In jeweils einem „Schwimmbecken“ oberhalb des Sicherheitsbehälters befinden sich zwei Kondensatoren. Diese bestehen aus je zwei übereinander angeordneten Sammlern, die durch zahlreiche dünne Rohre verbunden sind. Von dem Reaktordruckgefäß steigt eine Leitung zu den Sammlern auf. Im Kondensator kühlt sich das entweichende Dampf/Wassergemisch ab und strömt über den (kalten) Rücklauf wieder dem Reaktordruckgefäß zu. Es entsteht ein natürlicher Kreislauf, der sich selbst antreibt. Im Normalbetrieb ist die „warme“ Dampfleitung stets offen. Jede „kalte“ Rückleitung ist durch je zwei parallele Ventile verschlossen. Aus Gründen der Diversität ist ein Ventil elektrohydraulisch und das jeweils andere pneumatisch über einen Druckgasspeicher betrieben. Die Ventile befinden sich in einer „fail-safe“ Stellung: Während des Betriebs werden sie durch die Kraft der Hydraulik oder des Gases geschlossen gehalten. Geht der Druck weg – aus welchen Gründen auch immer, gewollt oder nicht – geben die Ventile den Weg frei. Wegen der Redundanz, reicht ein Ventil aus, um den gesamten Strom durchzulassen. Da die Kondensatoren und die Rückleitung vollständig mit „kaltem“ Wasser gefüllt sind, rauscht dieses Wasser infolge der Schwerkraft in den Reaktordruckbehälter und der Kondensator saugt dadurch ein „warmes“ Gas- und Dampfgemisch aus dem Reaktorgefäß nach. Ein Naturumlauf ist entfacht. Dieser läuft solange, wie der Kern Nachzerfallswärme produziert und die Außenluft diese Wärme abnimmt.

Wenn das nukleare System irgendwo ein Leck hat, würde irgendwann der Kern trocken fallen. Das entweichende Wasser muß sofort ersetzt werden. Zu diesem Zweck gibt es innerhalb des Sicherheitsbehälters große Wassertanks. Damit aber das Wasser in freiem Fall nachströmen kann, muß zuerst der Druck im System abgebaut werden. Hierfür gibt es 8 Sicherheitsventile, 10 Abblaseventile (die zeitweilig durch pneumatische Antriebe geöffnet werden können) und 8 Druckentlastungsventile unmittelbar am Reaktordruckgefäß. Letztere enthalten verschweißte Membranen, durch die sie dauerhaft dicht und wartungsfrei sind. Wenn sie öffnen müssen, „durchschneidet“ ein Kolben die Dichtung. Dieser Kolben wird durch Gas, welches pyrotechnisch in einem Gasgenerator erzeugt wird, bewegt. Es ist das gleiche Prinzip, wie bei einem „Airbag“ im Auto – ein sehr kleiner „Signalstrom“ reicht zur Zündung aus und erzeugt über die „Sprengkraft“ eine sehr große Gasmenge. Diese Ventile sind so gebaut, daß sie den Weg vollständig frei geben, nicht verstopfen können und sich nicht wieder schließen lassen.

Der Energieabbau und die Kühlung geschieht in mehreren miteinander verknüpften Schritten:

  1. Aus den diversen Abblaseventilen strömt (zumindest am Anfang) ein Dampfstrahl mit hoher Energie und Geschwindigkeit. Dieser wird feinverteilt in Wasserbecken eingeblasen. Diese sog. Kondensationskammern befinden sich unten im Sicherheitsbehälter.
  2. Durch die Kondensation fällt der Dampf in sich zusammen und bildet wieder Wasser. Die Verdampfungswärme geht dabei an das Wasser der Kondensationskammer über. Würde man das Wasser nicht kühlen, wäre irgendwann Schluß damit. Der Zeitraum hängt von der Nachzerfallswärme und dem Wasservolumen ab.
  3. Das Wasser in den Kondensationskammern kann auf verschiedenen Wegen gekühlt werden. Der wichtigste Weg ist über die weiter oben beschriebenen Kondensatoren.
  4. Damit der Reaktorkern stets sicher gekühlt ist, sind die Wasservolumina in den Kondensationskammern und Speichern so bemessen, daß der Kern auch dann unter Wasser bleibt, wenn sich das Wasser im Sicherheitsbehälter ausbreitet. Dieser Zustand kann auch absichtlich herbeigeführt werden.
  5. Um eine Kettenreaktion sicher und dauerhaft zu verhindern, wird zusätzlich aus Speichern borhaltiges (Neutronengift) Wasser eingesprüht.

Der „Supergau“

Im Gegensatz zu den Anfängen der Kernkraftwerkstechnik diskutiert man schon heute im Zulassungsverfahren ganz offensiv das Versagen aller Sicherheitseinrichtungen: Einerseits setzt man sich dabei mit den Auswirkungen der dadurch freigesetzten Radioaktivität auf die Umgebung auseinander und andererseits beschäftigt man sich mit Möglichkeiten diese Auswirkungen trotzdem abzumildern.

Ein typischer Fall ist das Versagen des Sicherheitsbehälters. Man versucht alles erdenkliche zu tun um dies zu verhindern, beschäftigt sich aber trotzdem mit diesem Ereignis. Ein Schritt diesen Unfall abzumildern, ist die gesteuerte Ableitung über Filter und den Abgaskamin. Durch die Kaminhöhe verdünnt sich die Abgaswolke beträchtlich. Durch das Vorschalten von geeigneten Filtern kann die Schadstoffmenge zusätzlich gemindert werden.

Ähnlich verhält es sich mit dem Kern: Durch redundante, passive Kühlsysteme versucht man den Brennstoff und die Spaltprodukte im Reaktordruckgefäß zu halten. Trotzdem untersucht man auch ein Versagen des Druckbehälters. Wie Fukushima gezeigt hat, ist auch beim Versagen der Notkühlung nicht mit einem „China Syndrom“ (Hollywood Phantasie, nach der sich der schmelzende Kern immer weiter in den Untergrund frisst) zu rechnen. Trotzdem geht man von einem Schmelzen des Stahlbehälters wie bei einem Hochofenabstich aus. Die Grube des Reaktorgefässes ist deshalb als „feuerfester Fußboden“ (BiMAC, Basemat Internal Melt Arrest and Coolability device) ausgeführt. Unterhalb einer feuerfesten Schicht befindet sich ein Rohrleitungssystem, welches – quasi wie bei einer Fußbodenheizung – diese Schicht kühlt. Dieser „Fußboden“ ist bezüglich seiner Konstruktion und Leistung für den 4-fachen Kerninhalt ausgelegt. Zusätzlich könnte die Grube mit dem im Sicherheitsbehälter vorhandenem Wasser vollständig geflutet werden, um die Spaltprodukte größtenteils darin zurückzuhalten.

Leistungsregelung

Normalerweise geschieht die Leistungsregelung bei Siedewasserreaktoren über die Steuerstäbe und die Umwälzpumpen. Die Steuerstäbe dienen nur zum Anfahren und bis etwa 50% der Auslegungsleistung. Im Bereich oberhalb 60% wird die Leistung nur noch über die Umwälzpumpen durchgeführt. Die Steuerstäbe dienen dann nur noch zur Kompensation des Abbrands.

Beim ESBWR kann der Reaktor durch langsames ziehen der Steuerstäbe auf Temperatur gebracht werden. Da im Siedebereich Temperatur und Druck miteinander gekoppelt sind, steigt auch der Druck im nuklearen System entsprechend an. Würde man keinen Dampf entnehmen, würde der Druck im „Kessel“ immer weiter ansteigen bis die Sicherheitsventile ansprechen. Natürlich wird so bald wie möglich Dampf entnommen, um die Turbine und das gesamte nukleare System damit aufzuwärmen. Wenn man aber Dampf entnimmt, muß die gleiche Menge durch Speisewasser ersetzt werden. Das Speisewasser wird im Betriebszustand auf 216°C vorgewärmt. Dies geschieht in sechs Stufen. Man entnimmt dazu an bestimmten Stellen der Turbine eine gewisse Menge Dampf. Dies ist sinnvoll, da der jeweils entnommene Dampf bereits Arbeit geleistet hat und sich somit der Wirkungsgrad verbessert. Man nennt diese Strategie „Carnotisierung“.

Der ESBWR hat gegenüber einem normalen Siedewasserreaktor (z. B. ABWR) eine siebte Vorwärmstufe, die mit frischem Dampf aus dem Reaktor beheizt wird. Normalerweise wird sie deshalb umgangen. Wenn man beispielsweise mit dieser Stufe die Speisewassertemperatur auf 252°C erhöht, geht die Leistung des Reaktors – bei gleicher Position der Steuerstäbe – auf 85% zurück. Umgekehrt könnte man die Steuerstäbe etwa so weit einfahren, daß nur noch rund 50% der Auslegungsleistung erzeugt wird. Würde man nun die Speisewassertemperatur auf 180°C absenken, würde sich wieder die ursprüngliche Leistung einstellen. Es ergibt sich somit im Bereich zwischen 50% bis 100% Leistung ein umfangreiches Feld, in dem sich die Leistung durch Kombination von Steuerstabstellungen und Speisewassertemperatur regeln läßt.

Die physikalische Ursache ist bei allen Siedewasserreaktoren die Abhängigkeit der Abbremsung der Neutronen von der Dichte des Moderators. Bei Reaktoren mit Umwälzpumpen wird die Dichte durch „ausspülen“ von Dampfblasen aus den Brennelementen erhöht, bei Naturumlauf durch das Absenken der mittleren Temperatur.

Wegen seiner Leistung von 1600 MWel. dürfte dieser Reaktor eher in der Grundlast eingesetzt werden. Gleichwohl ist ein täglicher Lastfolgebetrieb vorgesehen und genehmigt. So sind z. B. die Steuerstäbe für eine Betriebsdauer von 10 Jahren bei täglichem Lastwechsel zugelassen. Idealerweise fährt man mit diesem Reaktor aber mit konstant volle Leistung. Wegen seiner Stabilität und seiner passiven Notkühlung ist er sogar für den Betrieb durch nur einen Bediener konstruiert und zugelassen!

Ausblick

Im nächsten Teil werden die Schwerwasserreaktoren vorgestellt. Es ist bereits beschlossen, einen weiteren solchen Reaktor in Kooperation mit China, in Rumänien zu errichten.

Reaktortypen in Europa – Teil4, ABWR

Der ABWR (Advanced Boiling Water Reactor) ist eine Entwicklung von Hitachi und Toshiba in Zusammenarbeit mit General Electric. Er ist der einzige Reaktor der Generation III, der bereits über mehr als zehn Jahre Betriebserfahrung verfügt.

Geschichte

Es befinden sich bereits vier Reaktoren in Japan in Betrieb (Kashiwazaki-Koriwa 5+6, Hamaoka 5 und Shika 2), und drei weitere in Bau (Shimane und Langmen 1+2 in Taiwan). Die beiden ersten Reaktoren Kashiwazaki gingen 1996 und 1997 nach nur 36 Monaten Bauzeit (vom ersten Beton bis zur Beladung) ans Netz. Es ist in Anbetracht der vertrackten Situation in Grossbritannien daher nicht verwunderlich, daß man sich für den Bau von je drei Reaktoren in Wylfa Newyd und Oldbury-on-Severn durch das Horizon-Konsortium stark macht. Allerdings ist das Genehmigungsverfahren noch nicht abgeschlossen, sodaß man erst von einer Inbetriebnahme in der ersten Hälfte des nächsten Jahrzehntes ausgehen kann. Gleichwohl ist der Zeitdruck für erforderliche Neubauten scheinbar so groß geworden, daß man noch dieses Jahr mit der Baustellenvorbereitung beginnen will, damit man nach Erhalt aller Genehmigungen (erwartet 2018/2019) unverzüglich mit dem nuklearen Teil beginnen kann. Grundsätzliche Schwierigkeiten werden nicht gesehen, da die Genehmigungen für die USA, Japan und Taiwan bereits vollständig vorliegen und auf praktische Betriebserfahrungen seit 1996 in Japan verwiesen werden kann. Es sind lediglich die besonderen Erfordernisse der EU (insbesondere Flugzeugabsturz) einzuarbeiten und die „Post-Fukushima-Erfordernisse“ nachzuweisen. Es könnte durchaus sein, daß dieser Reaktortyp (UK-ABWR) noch in ganz Europa auf die Überholspur geht.

Warum Siedewasserreaktoren?

Wenn man ein großes Kraftwerk bauen will, bleibt praktisch nur der Dampfkreislauf. Wasser wird unter hohem Druck verdampft und verrichtet in einer Turbine Arbeit, durch die ein Generator angetrieben wird. Wenn man ohnehin Wasser als Arbeitsmittel für die Turbine braucht, warum nicht auch gleich als Arbeitsmittel (Kühlung und Moderator) im Reaktor einsetzen? Wenn man nun noch den Dampf in einem „einfachen Kessel“ durch Kernspaltung erzeugt, hat man einen Siedewasserreaktor. Einfacher geht nicht. Allerdings ist eine solche Konstruktion wegen der großen freien Flächen als Schiffsantrieb gänzlich ungeeignet. Bei einem stampfenden und rollenden Schiff im Seegang, hätte man bereits Probleme überhaupt eine vernünftige Regelung zu konzipieren. Zuerst war aber der Drang nach einem U-Boot, für das man den Druckwasserreaktor erschaffen mußte. Einmal fertig entwickelt – staatliche Förderung oder der Krieg ist der Vater aller Dinge – konnte man ihn schnell zu einem konventionellen Kraftwerk umstricken.

Bei der Diskussion von Vor- und Nachteilen beider Konzepte, wird von Laien oft der „nicht radioaktive Sekundärkreislauf“ als zusätzlicher Sicherheitsvorteil des Druckwasserreaktors angeführt. Beide Kreisläufe sind durch die Rohre in den Dampferzeugern physikalisch voneinander getrennt. Wasser – als H2 O – wird durch die Neutronen im Reaktor angegriffen: Teilweise zerschlagen sie die Moleküle in Wasserstoff und Sauerstoff (Wasserchemie und Korrosion) und teilweise fangen die Atome mit den ihnen charakteristischen Wahrscheinlichkeiten auch Neutronen ein und wandeln sich dadurch um. Unter den Gesichtspunkten des Strahlenschutzes ist hierbei die Umwandlung von Sauerstoff in radioaktiven Stickstoff die übelste Variante. Die gebildeten N16 – Atome zerfallen mit einer Halbwertszeit von 7,13 s wieder in Sauerstoff und senden dabei eine γ.-Strahlung von 10,4 MeV aus. Für den Arbeitsschutz ist das jedoch kein besonderes Problem, wenn man die Dampfleitungen und die Turbine mit einer entsprechenden Abschirmung versieht. Selbst bei einem Schaden an den Brennelementen können nur gasförmige Spaltprodukte in den Dampf gelangen – ist doch gerade die Verdampfung ein probates Mittel zur Reinigung von Flüssigkeiten. Aus den Jahrzehnten Betriebserfahrung weltweit, hat man genug Erfahrungen gesammelt und Gegenmaßnahmen entwickelt. So ist beispielsweise das Spülen der Kondensatoren mit Frischluft vor Wartungsarbeiten ein Mittel, die Belastung der Arbeiter z. B. durch radioaktives Jod drastisch zu senken. Heute liegen Siedewasserreaktoren auf den untersten Plätzen bei der gemessenen Strahlenbelastung. Schließlich gilt auch hier wieder der Grundsatz: Je weniger vorhanden ist, desto weniger muß repariert und gewartet werden.

Der ABWR ist der Porsche unter den Kraftwerken

Die momentane Leistung eines Leichtwasserreaktors hängt im Betrieb von der Dichte des Wassers ab. Je höher die Dichte ist, um so mehr nimmt die Wahrscheinlichkeit für einen Zusammenstoß der Neutronen mit einem Wasserstoffatom zu. Die sich dadurch ergebende Abbremsung ist aber die entscheidende Voraussetzung für eine weitere Spaltung (sog. Moderation). Bei dem Sättigungszustand im ABWR (70,7 bar) beträgt der Dichteunterschied zwischen Wasser und Dampf rund 0,05. Mit anderen Worten: Sind ungefähr erst 5% der Wassermasse in einem Kanal verdampft, ist dieser praktisch schon vollständig mit Dampf gefüllt. Damit man überhaupt eine ausreichende Moderation erzielen kann – gemeint ist, genug flüssiges Wasser im Kanal vorhanden ist – sind nahezu 20 Umläufe erforderlich. Hier kommen die internen Umwälzpumpen ins Spiel: Der ABWR hat davon 10 Stück mit je 8300 m3/h Förderleistung. Sie können die Dampfblasen förmlich aus den Kanälen herausspülen und sind somit das „Gaspedal“ des Siedewasserreaktors. Im Bereich von ca. 65% bis 100% übernehmen nur sie die Leistungsregelung. Die Leistung des Reaktors hängt quasi an der Pumpendrehzahl. Der ABWR ist für Leistungsänderungen von 1% pro Sekunde zugelassen. Ein Gas und Dampf Kombikraftwerk wirkt dagegen wie ein alter Trabant. Es ist lustig zu beobachten, wie manche „Umweltschützer“ schon die Zukunft ihrer „CO2-freien Stromwirtschaft“ in der Kombination aus Kernkraftwerken und Windmühlen auf dem Meer sehen. Die Propaganda von den notwendigen „flexiblen Gaskraftwerken“ wird jedenfalls nur noch von bildungsfernen Kreisen nachgeplappert. In GB sieht umgekehrt die Wind-auf-dem-Meer-Lobby in neuen Kernkraftwerken bereits die einzige Überlebenschance. Deutschland demonstriert ja gerade eindrucksvoll, wie hoch die Folgekosten (Regelung, Netzausbau, Speicher usw.) sind, wenn man sich als „Windpark in der Nordsee“ nicht schmarotzend an ein Kernkraftwerk anhängen kann. Bleibt nur abzuwarten, bis die Kapitalgeber erkannt haben, wieviel Uranbrennstoff man für die Baukosten eines Windparks kaufen könnte…

Der Reaktordruckbehälter

Der ABWR ist das vorläufige Endstadium einer jahrzehntelangen Evolution der Siedewasserreaktoren: Es ist gelungen, alle zur Dampferzeugung notwendigen Baugruppen in einen Behälter mit einem Durchmesser von 7,4 m und einer Höhe von 21 m unter zu bringen. Dies erlaubt nicht nur die Fertigung in einer Fabrik, sondern ist auch ein wesentlicher Grund für den enormen Sicherheitsgewinn. Mußte man bei der „Fukushima-Generation“ noch von etwa einer Kernschmelze in 20.000 Betriebsjahren ausgehen, beträgt die Häufigkeit beim ABWR nur noch eine Kernschmelze in über sechs Millionen Betriebsjahren. Damit kein Mißverständnis entsteht: Wahrscheinlichkeit heißt nichts anderes als, es kann – wie beim Lotto – schon morgen oder auch nie passieren. Lediglich bei sehr großen Stückzahlen (Betriebsjahre, nicht Kalenderjahre) ergibt sich der Durchschnittswert. Gleichwohl bilden solche Berechnungen den Sicherheitsgewinn zwischen zwei Anlagen sehr genau ab. Außerdem ist eine Kernschmelze – wie Harrisburg und Fukushima gezeigt haben – zwar eine sehr teure, aber relativ harmlose (keine Todesopfer!) Angelegenheit.

Je weniger Bauteile (Pumpen, Rohrleitungen, Ventile, Dampferzeuger etc.) man hat, je weniger kann kaputt gehen. Je weniger dieser Bauteile räumlich verteilt sind, je geringer ist außerdem die Strahlenbelastung für das Personal.

Der Reaktordruckbehälter ist für alle Einbauten ein sehr sicherer Aufbewahrungsort. Um die Sicherheit zu steigern, ist das Mittelteil, in dem sich der Reaktorkern befindet, aus einem Stück geschmiedet (keine Schweißnähte). Alle Anschlüsse (Speisewasser, Dampf, Notkühlung) befinden sich oberhalb des Reaktorkerns, damit der Kern immer unter Wasser bleibt, auch wenn schwere Leckagen in anderen Baugruppen auftreten.

Der Reaktorkern

Der Reaktorkern bei einem ABWR mit einer Leistung von 1350 MWel besteht aus 872 Brennelementen in einer 10 x 10 Anordnung der Brennstäbe. Jedes Brennelement ist ein viereckiges Rohr von 4,2 m Länge. Das Wasser kann nur von unten nach oben strömen und jedes Brennelement ist für sich wärmetechnisch ein abgeschlossenes System. Der Kasten aus Zircaloy ist allerdings für Neutronen nahezu vollkommen durchlässig. Dadurch ergibt sich neutronenphysikalisch die Verknüpfung mit allen Nachbarelementen.

Jedes Brennelement in 10 x 10 = 100 Anordnung besitzt 78 Brennstäbe von ganzer Länge, 14 teilgefüllte Brennstäbe und 2 dicke Wasserstäbe. Berücksichtigt man noch eine unterschiedliche Anreicherung bzw. Vergiftung der einzelnen Brennstofftabletten aus denen die Brennstäbe zusammengefügt werden, sowie den unterschiedlichen Abbrand im Betrieb, ergibt sich eine schier unendliche Kombinationsmöglichkeit. Sinn und Zweck ist eine möglichst gleichmäßige radiale und axiale Belastung über die gesamte Betriebszeit. Durch geschickte Ausnutzung des Neutronenspektrums während des Betriebs, kann man heute in einem Siedewasserreaktor gegenüber einem Druckwasserreaktor mit rund 15% weniger Verbrauch an Natururan auskommen. Lastfolgebetrieb ist mit beliebigen Tagesprofilen möglich. Die Ladezyklen der Brennelemente können flexibel zwischen 18 und 24 Monaten auf die Bedürfnisse des jeweiligen Energieversorgers abgestimmt werden. Es kann sowohl Plutonium als Mischoxid eingesetzt werden, wie auch die Konversionsrate („brüten“ von Plutonium aus Uran) auf Werte von nahezu 1 (Druckwasserreaktor rund 0,6) getrieben werden.

Die Steuerstäbe

Die Brennelemente sind nicht dicht nebeneinander gestapelt, sondern zwischen ihnen befindet sich ein genau definierter Wasserspalt. In diesen Spalten fahren die Steuerstäbe nach oben. Die 205 Steuerstäbe sind kreuzförmig, sodaß jeweils vier Brennelemente mit ihnen eine Einheit bilden. Sie bestehen aus Edelstahl. In ihnen sind mit Borkarbid oder Hafnium (Neutronengifte) gefüllte und gasdicht verschweißte Röhren eingelassen.

Die Steuerstäbe können vollständig ausgefahren werden. Sie ziehen sich dann in den Raum unterhalb des Kerns, aber innerhalb des Reaktordruckgefässes zurück. Jeder Steuerstab wird durch einen elektrischen Schrittmotor unterhalb des Reaktordruckbehälters angetrieben. Jeder Steuerstab kann damit einzeln und zentimetergenau verfahren werden. Steuerungstechnisch sind die einzelnen Stäbe zusätzlich in Gruppen zusammengefaßt. Ihre Stellung kann damit allen Betriebszuständen und den momentanen Neutronenflüssen angepaßt werden. Hierfür sind 52 feste Messeinrichtungen im Reaktorkern vorhanden. Zusätzlich wird der Abbrand noch auf einem Computer mitgerechnet.

Wird eine Schnellabschaltung ausgelöst, werden alle Steuerstäbe in höchstens 1,7 Sekunden vollständig von unten in den Kern eingeschossen. Zu diesem Zweck werden die elektrischen Antriebe durch hydraulische überbrückt. Die Energie wird aus ständig geladenen Wasser/Stickstoff-Druckspeichern bezogen.

Die Dampftrocknung

Aus den Brennelementen tritt oben ein Gemisch aus Wasser und Dampf im Sättigungszustand aus. Bei diesem Druck ist zwar weniger als 15% der Masse des unten in die Brennelemente eingetretenen Wassers verdampft, dies führt aber zu einem Volumenanteil des Dampfes von über 40%. Dieser Dampf muß abgeschieden werden und das Wasser über den Ringraum des Kerns wieder zum Eintritt zurückgeleitet werden. Zusätzlich wird der entzogene Dampf noch durch „kaltes“ Speisewasser ersetzt.

Die Wasserabscheider bestehen aus dreifach hintereinander geschalteten Elementen. In ihnen wird das Wasser rausgeschleudert und fällt durch sein Gewicht nach unten zurück. Der Dampf strömt weiter nach oben.

Ganz oben im Druckbehälter, befinden sich die Dampftrockner. In ihnen wird der Sattdampf durch Blechpakete umgeleitet. Hier werden nicht nur feinste Tröpfchen aufgehalten, sondern durch die Reibung entsteht zusätzliche Wärme, die den Dampf geringfügig überhitzt. Als Nebeneffekt verlängert sich die Verweilzeit des Dampfes im Reaktordruckgefäß durch die langen Wege. Ein beträchtlicher Teil des gebildeten radioaktiven Stickstoffs (N16. mit t ½ = 7,13 s) kann bereits dort zerfallen.

Die Notkühlung

Der ABWR verfügt über drei redundante und räumlich voneinander getrennte Notkühlsysteme. Dadurch steigt nicht nur die Sicherheit, sondern auch die Verfügbarkeit: Wenn während des Betriebs ein Notkühlsystem gewartet wird, stehen immer noch zwei zur Verfügung.

Ein Siedewasserreaktor ist eine robuste Konstruktion:

  • Der Wasserinhalt im Reaktordruckgefäß ist größer als bei einem Druckwasserreaktor. Dies verschafft Reaktionszeit.
  • Die Brennelemente sind für einen dauerhaften Siedezustand geschaffen. Die Gefahr in den Zustand des Filmsiedens – dabei entsteht eine isolierende Dampfchicht auf dem Brennstab – zu gelangen, ist wesentlich geringer und damit eine Überhitzung (z. B. Teilschmelze von Brennstäben) unwahrscheinlicher.
  • Da die Dampferzeugung bereits im Reaktor stattfindet, entfallen eine Menge potentieller Leckstellen. Die Gefahr eines größeren Kühlmittelverlustes reduziert sich auf die Frischdampf- und Speisewasserleitungen.

Die Notkühlung vollzieht sich in der Nachspeisung von ausreichend Kühlwasser. Der Wasserstand muß stets oberhalb des Reaktorkerns liegen. Ist ein auftretendes Leck nur klein, bleibt der Druck im Reaktordruckgefäß noch relativ hoch. Jede Notkühlung verfügt deshalb über eine Hochdruck-Einspeisung. Sollte diese Versagen, kann eine Druckabsenkung auch bewußt über die Abblaseventile herbeigeführt werden. Ist der Druck – aus welchen Gründen auch immer – weit genug abgefallen, erfolgt die Nachspeisung aus dem Niederdrucksystem. Damit der Druck im Containment nicht unnötig ansteigt, wird der Dampf in Kondensationskammern niedergeschlagen. Das sind große, mit kaltem Wasser gefüllte Kammern. Die Wasserfüllung wird durch eine Wasseraufbereitung stets auf Speisewasserqualität gehalten, sodaß das Kühlwasser gleichzeitig zur Nachspeisung dienen kann. Da sich diese Kammern innerhalb des Containment befinden, ist diese Wasserreserve sehr gut geschützt. Das Wasser wird beständig über die Kühlkreisläufe des Kraftwerks auf einer niedrigen Temperatur gehalten.

Die Eigenversorgung

Solange alles normal läuft, wird die gesamte vom Kraftwerk benötigte elektrische Energie von der eigenen Produktion abgezweigt. Wenn das Netz kurzfristig zusammenbricht – Blitzschlag, Sturmschaden, Schaltfehler etc. – kann die Regelung dies ohne Schnellabschaltung beherrschen: Der Dampf wird an der Turbine vorbei, direkt in die Kondensatoren geleitet. Gleichzeitig nimmt die Regelung die Leistung des Reaktors über die Umwälzpumpen und die Steuerstäbe sanft zurück. Das Kraftwerk läuft nun im Leerlauf und erzeugt nur noch Strom für den Eigenbedarf. Kann das Netz schnell wieder hergestellt werden, kann der Betrieb ohne große Verzögerung wieder aufgenommen werden.

Liegt der Schaden beispielsweise im Generator, kann die Stromversorgung aus dem Netz aufrecht erhalten werden. Ist das Netz ebenfalls zusammengebrochen (Fukushima) müssen die Notstromdiesel übernehmen. Hierfür gibt es drei Notstromdiesel in drei voneinander hermetisch getrennten (Feuerschutz und wasserdicht gegen Wasser von außen und innen) Bereichen innerhalb des Reaktorgebäudes (Schutz gegen z. B. Flugzeugabsturz, Erdbeben etc.). Versagen auch diese, gibt es noch eine Gasturbine im separaten „Notstandsgebäude“ (Post-Fukushima). Für alle Gleichstromverbraucher (z. B. Regelung, Computer etc.) gibt es eine überdimensionierte (Post-Fukushima) Batterieanlage zur unterbrechungsfreien Stromversorgung.

Sollten alle Sicherheitssysteme versagen, gibt es noch eine weitere Ebene für alle nicht vorhersehbaren Ereignisse. Unterhalb des Reaktordruckbehälters gibt es einen sog. „Core-Catcher“ auf dem sich ein eventuell austretendes Corium ausbreiten könnte (UK-ABWR). Der gesamte Raum unterhalb des Reaktors könnte durch das Wasser aus den Kondensationskammern zusätzlich geflutet werden. Sollte der Druck im Sicherheitsbehälter unzulässige Werte erreichen, kann das Gas kontrolliert und gefiltert über den Schornstein abgelassen werden. Dies ist für alle Menschen, die von einem nicht kalkulierbaren „Restrisiko“ ausgehen. Allerdings darf nicht erwartet werden, daß dadurch rechtgläubige „Atomkraftgegner“ von ihrem Kampf abgehalten werden. Schließlich hat in Fukushima eine der schwersten Naturkatastrophen in der Menschheitsgeschichte nur zum Totalschaden von vier Reaktoren aus den Anfängen der Kerntechnik geführt – ohne ein einziges zusätzliches Todesopfer zu verursachen. Genau die ABWR hingegen, haben durch dieses außergewöhnlich schwere Erdbeben keinen Schaden genommen. Ein schlimmer, aber bestens bestandener Praxistest. Wer also immer noch glaubt, in Deutschland ginge es bei Fragen der Kerntechnik nicht um vorgeschobene politische Interessen, dem ist nicht zu helfen.

Ausblick

Im nächsten Teil wird der ESBWR als bisher sicherheitstechnisches „High Light“ der Leichtwasserreaktoren behandelt. Er ist in Europa noch nicht in der Diskussion, weil er gerade erst den „Goldstandard der Genehmigungsverfahren“ – eine Zulassung durch die US-Behörden – erlangt. Dies kann sich aber sehr schnell ändern, wie die neusten Entwicklungen z. B. in Indien zeigen.

Reaktortypen in Europa – Teil2, EPR

EPR ist eine Warenmarke des französischen Herstellers Areva für einen Druckwasserreaktor der dritten Generation. Interessant ist schon die unterschiedliche Herleitung der drei Buchstaben EPR: European oder Evolutionary Pressurized Water Reactor. Beides ist angebracht.

Die Geschichte

Inzwischen sind von diesem Typ vier Reaktoren in Bau: Olkiluoto 3 in Finnland (seit Oktober 2005), Flamanville 3 in Frankreich (seit Dezember 2007) und Taishan 1 und 2 in China (seit Oktober 2009). Wahrscheinlich wird in den nächsten Jahren mit dem Bau zweier weiterer Reaktoren in Hinkley Point in Großbritannien begonnen werden.

Auf den ersten Blick eine Erfolgsbilanz. Wie kam es dazu? Ende der 1990er Jahre kam in Deutschland die Rot/Grüne-Koalition an die Macht. Die Kombinatsleitung von Siemens läutete in gewohnter Staatstreue den sofortigen und umfassenden Ausstieg aus der Kernenergie ein. Eine unternehmerische Fehlentscheidung. Heute sind die ganzen Staatsaufträge an Telefonen, Eisenbahnzügen etc. zu „besonders auskömmlichen Preisen“ längst Geschichte. Noch kann man ein paar Windmühlen nach altem Muster „an den Mann bringen“. Aber die einzige Zukunftstechnologie, in der Siemens wirklich einmal zur Weltspitze gehörte, ist unwiederbringlich und ohne Not „abgewickelt“ worden. Siemens fand in Framatome (Vorläufer von Areva) einen dankbaren Abnehmer. Die Franzosen konnten nach ihrem beispielhaften Ausbauprogramm von 57 Reaktoren ihre Kapazitäten nur durch den Ausbau des Auslandsgeschäftes aufrecht erhalten. Ein „Made in Germany“ kam ihnen dabei sicherlich nicht ungelegen. Siemens reichte der Einfuß von 34% der Aktien an dem neuen Gemeinschaftsunternehmen. Kernenergie war ja nicht mehr politisch korrekt und man wollte seinen (damals) lukrativen Kunden – die Öffentliche Hand – nicht verärgern. Man glaubte damals wohl auch noch, seinen überlegenen Turbinenbau allein weiter führen zu können. So als ob Daimler sein Autogeschäft verkaufen würde um zukünftig nur noch mit dem Reifengeschäft zu überleben. Jedenfalls ist Olkiluoto wohl das letzte Kernkraftwerk mit einer deutschen Turbine. Alle weiteren EPR haben natürlich französische Turbosätze der Marke Arabella. Dies gilt selbstverständlich auch für alle weiteren Geschäfte mit China. Ob die Kombinatsleitung den Chinesen ersatzweise politisch korrekte Windmühlen angeboten hat, weiß man nicht. Es gab ja mal eine Zeit lang in bildungsfernen Kreisen den festen Glauben, Deutschland würde „vorweg gehen“ mit seiner Energiepolitik.

Die Mitarbeiter in Frankreich und Deutschland waren jedenfalls redlich bemüht, das beste aus beiden Welten zu erschaffen. Grundlage des EPR sind die französische Baureihe N4 (Kraftwerke Chooz 1+2, Civaux 1+2) und die deutsche Konvoi Baureihe (Neckar 2, Emsland, Isar 2). Es war von Anfang an eine evolutionäre und ausdrücklich keine revolutionäre Entwicklung geplant. Außerdem nahm man nicht nur die Genehmigungsbehörden in beiden Ländern mit ins Boot, sondern auch 12 europäische Energieversorgungsunternehmen. Es sollte ein Reaktor entstehen, der europaweit genehmigungsfähig war. Heute ist er auch in China und USA geprüft und grundsätzlich zugelassen worden.

Das Problem der Größe

Jedes elektrische Netz kann nur eine gewisse Blockgröße vertragen. Über den Daumen gilt immer noch die Regel von maximal zehn Prozent der Leistung, die im Netz anliegt. Ist der Reaktor zu groß, scheiden weltweit eine Menge Netze aus. Das ist ein Problem bei der Vermarktung des EPR. Areva hat bereits schon länger die Problematik erkannt und bietet nun in Kooperation mit Mitsubishi auch einen kleineren Druckwasserreaktor (ATMEA mit ca. 1100 MWel) an. Wahrscheinlich werden die ersten Anlagen in der Türkei errichtet. Demgegenüber sollen die vier EPR von Olkiluoto bis Taishan eine Leistung zwischen 1600 und 1660 MWel erreichen. Die Vorläufer – z. B. das größte deutsche Kernkraftwerk Isar 2 – hatten eine Leistung von etwa 1400 MWel..

Bei Kraftwerken gibt es eine bedeutende Kostendegression. Je mehr man einen gegebenen Entwurf vergrößert, um so kleiner werden die spezifischen Investitions- und Betriebskosten. Man wollte ja ausdrücklich eine evolutionäre Entwicklung. Jetzt steckt man dafür in einer Größenfalle – und was fast noch schlimmer ist – die Kosten sind trotzdem viel zu hoch. Der EPR ist in diesem Sinne kein glücklicher Entwurf.

Die grünen Phantasien

Besonders von den deutschen Genehmigungsbehörden wurden die beiden Sicherheitsanforderungen „Absturz eines Jumbo“ und das „China Syndrom“ aus Hollywood eingebracht. Man glaubte in Deutschland lange genug, man müsste nur über jedes Stöckchen springen, das einem „Atomkraftgegner“ hin halten und dann würden sie auch irgendwann Kernkraftwerke ganz toll finden. Die simple Strategie, die Kosten durch immer neue Ideen immer weiter in die Höhe zu treiben, wurde nicht erkannt. Jetzt steht man mit einer millionenteuren doppelten Sicherheitshülle aus Beton und dem Gimmick eines „core catcher“ da und die „Atomkraftgegner“ lieben den EPR immer noch nicht.

Der Flugzeugabsturz

Solange es Kernkraftwerke gibt, hat man sich über „Einwirkungen von außen (EVA)“ Gedanken gemacht. Schon immer gehörte ein Flugzeugabsturz dazu. Frühzeitig bekamen deshalb die Reaktoren eine entsprechende Betonhülle als Schutz. Die vier Unglücksreaktoren in Fukushima hatten noch keine – mit den bekannten Konsequenzen. Bei ihnen war nur der unmittelbare Bereich um das Reaktordruckgefäß durch dicke Betonabschirmungen geschützt. Von Anfang an stellte sich die Frage, wie dick eine Betonhülle als Bunker sein müßte. In Deutschland ging man vom Absturz eines Militärjets vom Typ Phantom F4 aus. Eine heute noch sinnvolle Annahme – selbst nach den Ereignissen des 11. September. Die Phantom ist bis heute das Flugzeug mit der „größten Dichte“. Ein Militärjet noch aus dem „Stahlzeitalter“. Die Triebwerke einer im Tiefflug dahin rasenden Phantom, würden wie Rammböcke auf die Schutzhülle eines Reaktors wirken. Dahingegen entspricht die Wirkung einer abstürzenden A380 oder eines Jumbojets eher einer Bierdose. Die Terrorflieger des 11. September konnten selbst ein filigranes Hochhaus bzw. das Pentagon nur zum Wackeln bringen. Etwas anderes ist die ungeheure Brandlast eines voll betankten Großraumflugzeuges, aber gegen die hilft Beton nur bedingt.

Jedenfalls steht der EPR heute mit einer doppelten Betonhülle dar. Der innere Teil – das Containment – besteht aus ca. 1,3 m dickem Spannbeton und die äußere Schutzhülle aus einer weiteren ca. 1,8 m dicken Betonhülle. Zusätzlich verschwinden alle nuklearen Komponenten (Dampferzeuger, Reaktordruckgefäß usw.) hinter weiteren Betonmauern, die als Abschirmung gegen Strahlung dienen. Dieses „Bunkersystem“ ist mit Sicherheit stark genug, um jedem Flugzeugabsturz oder einem Terroranschlag zu widerstehen. Wir erinnern uns: Tschernobyl hatte nicht einmal ein Containment und in Fukushima waren nur die Reaktoren geschützt. Das Brennelementebecken stand in einer normalen Industriehalle. Anders als beim ERP, bei dem sogar das Lagergebäude für die Brennelemente und diverse Sicherheitsanlagen mit einer Betonhülle verbunkert sind.

Beton kann nicht schaden, er ist nur sehr teuer. Erschwerend kommt beim EPR die lohnintensive und zeitraubende Ausführung als Ortbeton hinzu. Dies wurde zumindest in Olkiluoto völlig unterschätzt.

Grundsätzlich ist die Konstruktion aus zwei Hüllen mit Zwischenraum sicherheitstechnisch zu begrüßen. Wird das Containment durch eine Explosion (Fukushima) oder was auch immer beschädigt, kann die äußere Hülle ihre Funktion wenigstens zum Teil übernehmen. Der Zwischenraum wird ständig abgesaugt und in leichtem Unterdruck gehalten. Die „radioaktiv belastete Luft“ wird vor der Abgabe über den Kamin gefiltert. Durch eine solche Maßnahme kann selbst, wenn die gasförmigen Spaltprodukte im Reaktor freigesetzt werden sollten, der größte Teil zurück gehalten bzw. auf ein erträgliches Maß verdünnt werden.

Der core catcher

Dank Hollywood ist jeder „Atomkraftgegner“ mit dem „China Syndrom“ vertraut: Eine einmal eingetretene Kernschmelze soll endlos andauern. Selbst die unfreiwilligen Großversuche von Harrisburg, Tschernobyl und Fukushima können einen rechtgläubigen „Atomkraftgegner“ nicht von diesem Irrglauben abbringen.

Fangen wir mal mit dem Schlimmsten an:

  • Der Reaktor in Tschernobyl stand in einer einfachen Industriehalle. Nachdem eine Kernschmelze stattgefunden hatte, verabschiedete sich der Reaktor durch eine physikalische Explosion. Er spie wie ein Vulkan den größten Teil seines radioaktiven Inhalts in die Umwelt aus. Dies ist der schlimmste – überhaupt vorstellbare – Unfall.
  • In Fukushima trat in mehreren Reaktoren (zumindest teilweise) eine Kernschmelze ein. Ursache war hierfür der zeitweise Ausfall der Stromversorgung und dadurch ein Mangel an Kühlwasser. Die Nachzerfallswärme konnte die Brennelemente (teilweise) schmelzen lassen. Die Nachzerfallswärme nimmt aber sehr schnell ab und die Kühlung konnte – wenn auch verspätet – wieder aufgenommen werden. Wieviel Corium sich tatsächlich durch die Reaktorgefäße gefressen hat, wird erst eine genaue Untersuchung zeigen können. Jedenfalls hat die Menge nicht einmal gereicht, um den Betonboden der Reaktorgrube zu durchschmelzen. Ursache für die Freisetzung von Radioaktivität sind schlicht weg Konstruktionsfehler: Die Wasserstoffexplosion und die „Untertunnelung“ des Kraftwerks.
  • Bei dem TMI-Reaktor in Harrisburg hatte man wenigstens alles grundsätzlich richtig konstruiert, obwohl dann später alles schief lief. Maßgeblich durch Bedienungsfehler fiel ein Teil des Kerns unbemerkt trocken. Es entstand Wasserstoff, welcher aber nicht zu einer heftigen Explosion führte. Das Reaktordruckgefäß blieb ganz und in ihm sammelten sich Bruchstücke und Schmelze. Es gelangte praktisch keine unzulässig hohe Radioaktivität in die Umwelt.

Anstatt durch Aufklärung entgegen zu wirken, versuchte man den Segen der „Atomkraftgegner“ durch die Erfindung des core catcher zu erlangen. Ein von Anfang an sinnloses Unterfangen. Die Strategie der „Atomkraftgegner“ ging vielmehr auf: Die Kosten wurden weiter in die Höhe getrieben um mit einer vorgeblich „unwirtschaftlichen Atomkraft“ argumentieren zu können.

Wie sieht dieses Ding nun beim EPR aus? Man pflastert den Boden unterhalb des Reaktordruckgefäßes mit Steinen aus einer feuerfesten Keramik. Gemäß den Vorstellungen aus Hollywood frisst sich das Corium als glühende Schmelze durch das Reaktordruckgefäß und sammelt sich in der feuerfesten Wanne. In der Realität nimmt die Nachzerfallswärme zwar exponentiell ab, nach Drehbuch natürlich nicht, sondern der Boden der Wanne aus einem Spezialbeton schmilzt langsam auf und die Schmelze rinnt anschließend über eine Schräge in eine großflächige Vertiefung. Diese soll dauerhaft und automatisch durch Wasser gekühlt werden. Dort soll die Schmelze dann dauerhaft erstarren. Man könnte dieses Konzept auch mit: „Richtige Antworten auf falsche Fragestellungen umschreiben.“ Jedenfalls kostet allein der umbaute Raum für diese technische Glanzleistung zig Millionen.

Die magische Zahl vier

Der EPR hat vier Primärkreise: Um das Druckgefäß im Zentrum stehen kreisförmig angeordnet vier Dampferzeuger. Zwischen ihnen stehen die vier Hauptkühlmittelpumpen für die Umwälzung des Wassers durch den Reaktorkern und die Wärmeübertrager. All diese Komponenten stehen in Betonkammern, die der Abschirmung der Strahlung dienen. Damit ist der Sicherheitsbehälter auch während des Betriebes begehbar.

Dieser Grundanordnung folgend, gibt es auch vier vollständige Sicherheitseinrichtungen, deren Komponenten in vier voneinander völlig getrennten Gebäuden um den Sicherheitsbehälter angeordnet sind. Diese vier Sicherheitsabschnitte, sowie die Bedienungszentrale und das Gebäude für die Brennelemente, sind ebenfalls (wie das zylindrische Reaktorgebäude) gegen Flugzeugabstürze verbunkert.

Etwas abseits liegen zwei Gebäude, die die Notstromversorgung enthalten. Sie befinden sich jeweils in Deckung durch den eigentlichen Reaktorbau. Da sie ebenfalls vollständig redundant sind, geht man nur von höchstens einem Schaden bei einem Flugzeugabsturz aus. Die Gebäude sind mit wasserdichten Türen verschlossen. Ein Auslöschen durch eine Flutwelle (Fukushima) wäre ausgeschlossen.

Jedes, der vier Notkühlsysteme, kann allein die gesamte Wärme abführen (4 x 100%). In erster Linie dient das zur Verbesserung der Verfügbarkeit. Da alle vier Züge völlig voneinander unabhängig sind, kann man Wartungsarbeiten im laufenden Betrieb ausführen. Wenn ein System gewartet wird, stehen immer noch drei zur Verfügung.

Die Nachzerfallswärme

Bei einem Störfall wird das Kernkraftwerk durch eine Unterbrechung der Kettenreaktion abgeschaltet. Das Einfahren der Steuerstäbe entspricht z. B. dem Ausschalten der Feuerung bei einem konventionellen Kraftwerk. Bei beiden muß nun noch die im System gespeicherte Wärme abgeführt werden. Es gibt bei einem Kernkraftwerk aber zusätzlich den physikalischen Effekt der Nachzerfallswärme: Der radioaktive Zerfall der Spaltprodukte läßt sich durch nichts aufhalten. Es wird also auch nach der Abschaltung noch Wärme produziert! Die freiwerdende Wärme hängt von verschiedenen Umständen ab. In den ersten Sekunden können es über 5% der thermischen Leistung sein. Die Nachzerfallswärme nimmt sehr schnell ab und es sind nach einer Stunde nur noch rund 1%. Gleichwohl handelt es sich um gewaltige Leistungen. Ist ein EPR längere Zeit mit Höchstlast im Netz gewesen, sind das entsprechend 225 MW bzw. noch 45 MW nach einer Stunde. Diese Wärme muß auf jeden Fall – auch bei widrigsten äußeren Umständen (Fukushima) – abgeführt werden, da sonst der Kern schmilzt.

Praktisch ist die einzige Möglichkeit solche Leistungen sicher abzuführen, die Verdampfung. Ist die äußere Wärmesenke (Fluß, Meer oder Kühlturm) nicht mehr nutzbar, muß dies ausschließlich über die Notkühlung möglich sein. Zuerst baut man über Ventile am Druckhalter den Druck im Primärkreis ab. Schon durch dieses „auskochen“ tritt eine merklich Kühlung ein. Allerdings muß die abgelassene Wassermenge möglichst schnell ersetzt werden, da sonst das Reaktordruckgefäß ausdampft und der Kern (teilweise, wie in Harrisburg) trocken fällt. Ist der Druck auf ein gewisses Niveau abgefallen (ungefähr 100 bar) setzt eine Nachspeisung von Kühlwasser ein. Für den Antrieb der Pumpen ist aber elektrische Energie nötig. Würde die Notstromversorgung – wie in Fukushima – versagen, würde die Überhitzung des Kerns eher noch schneller eintreten. Das Reaktormodell aus den 1960er Jahren hatte bereits eine pfiffigere Idee: Der abgelassene Dampf wurde vor der Kondensation in der wassergefüllten Ringkammer über eine kleine Turbine geleitet. Diese Turbine treibt eine kleine Speisepumpe, die Wasser aus dem Ringraum zurück in das Druckgefäß speist. Dies funktioniert bis zu einem gewissen Temperaturausgleich recht gut. Eine Notmaßnahme, die zumindest in den ersten Minuten ohne jede Hilfsenergie sehr gut funktioniert hat.

Gegenüber seinen Vorläufern hat der EPR durch das Wasserbecken am Boden einen Sicherheitsgewinn: Das Wasser dient nicht nur zur Noteinspeisung, sondern stellt auch eine Wärmesenke innerhalb des Sicherheitsbehälters dar. Das Wasser kann durch Wärmeübertrager gepumpt werden, um es „kühl“ zu erhalten. Die Lagerung am Boden kommt der statischen Belastung bei Erdbeben entgegen, vergibt aber die Chance einer passiven Nachspeisung durch Schwerkraft.

Bei dem EPR ergibt sich kein grundsätzlicher Sicherheitsgewinn gegenüber seinen Vorgängern des Konvoi. Er arbeitet nach den gleichen Prinzipien: Lediglich die Stückzahl und Aufstellung der Sicherheitseinrichtungen wurde erhöht: Je zwei Notstromdiesel in zwei verschiedenen Gebäuden (2 x 2 x 8 MW Redundanz) und je ein Notstromaggregat zusätzlich im Gebäude (2 x 1 MW Diversität). Es bleibt aber das alte Problem aktiver Sicherheitssysteme: Strom weg, Wasser weg! Die vorgeblich um den Faktor zehn erhöhte Sicherheit, ergibt sich rechnerisch hauptsächlich aus dem Core Catcher.

Der Zugewinn an Lebensdauer

Beim EPR ist die konstruktive Nutzungsdauer von 40 auf 60 Jahre erhöht. Dies ist durch eine konsequente Überarbeitung aller Bauteile geschehen. So ist man z. B. beim Druckgefäß und den Hauptkühlmittelleitungen auf den Werkstoff Alloy 690 (59,5% Nickel, 30% Chrom, 9,2% Eisen etc.) übergegangen. Er besitzt bessere Korrosionsbeständigkeit und bildet nicht soviel „Atommüll“ durch Neutroneneinfang. Zusätzlich hat man das Druckgefäß mit einem Reflektor aus Stahl ausgestattet. Durch das Zurückstreuen von Neutronen in den Kern kann man den Brennstoff besser ausnutzen und gleichzeitig den Druckbehälter weniger belasten (Versprödung durch Neutronen).

Sicherheit und Wartung stehen in enger Beziehung. Schweißnähte weisen immer Fehler auf, die in regelmäßigen Abständen überprüft werden müssen. Solche Wiederholungsprüfungen sind zeitaufwendig (Verfügbarkeit) und kostspielig. Je weniger Schweißnähte, desto besser. Wenn schon Schweißnähte, dann an gut zugänglichen Stellen. Man hat deshalb beim EPR wesentlich komplizierter geschmiedete Formstücke (hohe Investitionskosten) für die Hauptkühlmittelleitungen verwendet bzw. durch Aushalsungen beim Druckbehälter die Anschlüsse vorverlegt.

Schlusswort

Ohne jede Frage hat man in hunderten von Betriebsjahren eine Menge Erfahrungen gesammelt. Hinzu kamen die realen „Großversuche“ aus Harrisburg und Fukushima. Insofern ist der EPR nicht mehr mit den ersten Druckwasserreaktoren vergleichbar. Als Ersatz für gasgekühlte Reaktoren (Hinkley Point) oder als Zubau (Olkiluoto, Taishan) ist er sicherlich eine gute Lösung. Aber ist der Sicherheitsgewinn beispielsweise gegenüber einer Konvoi-Anlage so viel höher, daß ein Ersatz durch einen EPR zu rechtfertigen wäre? Zumal man mit wenigen Nachrüstungen bzw. Ersatzteilen (z. B. Dampferzeuger) sehr kostengünstig eine Betriebsdauer von 80 und mehr Jahren erreichen könnte. Genug Zeit jedenfalls, um auf fortschrittlichere Konzepte umzusteigen.

Im nächsten Teil geht es um den APR-1000 von Westinghouse, der in Moore Side (und anderswo) geplant ist.

Fukushima – ein Zwischenbericht

In letzter Zeit ist es in den „Qualitätsmedien“ still geworden um die „Reaktorkatastrophe“. Um so mehr ein Grund, hier mal wieder einen Zwischenbericht zu liefern. Man könnte es sich einfach machen: Noch immer kein Toter durch Strahlung, noch immer keine Krebs-Epidemie, noch immer ist der Fisch an Japans Küste essbar…

…da warn es nur noch drei

Anfang August ging die Meldung um die Welt, daß über 90% der Brennelemente (1166 von 1331 abgebrannten Brennelementen) aus dem Lagerbecken des Blocks 4 geborgen und abtransportiert sind. Man erwartet bis Ende des Jahres die vollständige Räumung. Wir erinnern uns: Zum Zeitpunkt der Naturkatastrophe war der Block 4 für einen planmäßigen Brennelementewechsel außer Betrieb. All seine Brennelemente waren nicht mehr im Reaktordruckgefäß, sondern bereits im zugehörigen Lagerbecken. Dieses Lagerbecken wurde infolge der Wasserstoffexplosion mit Trümmern der „Reaktorhalle“ zugeschüttet. Kein schöner Anblick und überdies vermeidbar, wenn man eine übliche „Betonhülle“ um das Kernkraftwerk gebaut hätte. Um es auch unserer – von der japanischen Industriegesellschaft so enttäuschten – Kanzlerin und ihren Jüngern aus CD(S)U und FDP noch einmal klar und deutlich zu sagen: Ein solcher Schadensverlauf ist in einem Kernkraftwerk in Deutschland technisch ausgeschlossen. Jedes Kernkraftwerk in Deutschland (und fast alle auf der Welt) haben eine Stahlbetonhülle, die einer solch kleinen Explosion locker stand hält. Kein Reaktor in Deutschland ist mit einem anderen Block über eine gemeinsame Lüftungsanlage verbunden. Insofern hätte es in einem deutschen Kernkraftwerk (und in fast allen auf der Welt) gar kein explosives Gas geben können. Selten kann ein Ingenieur eine so eindeutige Aussage treffen.

An diesem Unfall sieht man, welch robuste Konstruktion ein Siedewasserreaktor an sich ist. Selbst eine schwere Explosion mit Einsturz der Reaktorhalle führt zu praktisch keiner Freisetzung von Radioaktivität in die Umwelt. Jeder moderne Reaktor hat darüber hinaus noch beträchtliche weitere Sicherheitsreserven. Dies ist auch der Grund, warum nur diese Reaktoren in Fukushima bei dem Tsunami und dem vorausgehenden Erdbeben kaputt gegangen sind. Es war nicht ohne Grund geplant, sie einige Monate später still zu legen. Eine bittere Lektion, die Japan aber angenommen hat: Alle Reaktoren befinden sich immer noch in einer umfangreichen Überprüfung. Es ist absehbar, daß einige nie mehr wieder in Betrieb gehen werden.

Wenn alle Brennelemente aus dem Block 4 ausgeräumt sind, ist das Kapitel faktisch abgeschlossen: Es verbleibt eine technische Ruine, die man auch als Denkmal stehen lassen könnte. So lange man sie nicht betritt, ist sie genauso ungefährlich, wie ein „Bankpalast“ aus Granit. Der japanischen Gemütslage entsprechend, wird man aber eher nicht innehalten, sondern nicht eher ruhen, bis man das Grundstück in eine Rasenfläche verwandelt hat.

Die Problemruinen

Weiterhin problematisch sind die ersten drei Reaktoren des Kraftwerks. Sie waren zum Zeitpunkt des Erdbebens in Betrieb und sind durch den Ausfall der erforderlichen Nachkühlung zerstört worden. Bisher ergibt sich immer noch kein eindeutiges Bild: Die Strahlung in unmittelbarer Nähe der Reaktoren ist noch so stark, daß man keine Menschen zur Untersuchung einsetzen kann und will. Japan ist nicht Russland. Bisher hat man sich nur mit Robotern versucht zu nähern. Dies ist aber schwieriger, als es den Anschein hat. Man hat ein extrem schwieriges Einsatzgebiet, das überdies noch durch Trümmer versperrt ist. Zum großen Teil steht es auch noch unter Wasser. Solange man aber keinen genauen Überblick hat, kann man auch keinen Bergungsplan ausarbeiten. Hier ist noch von jahrelanger Arbeit auszugehen. Sie vollzieht sich auf mehreren parallelen und sich ergänzenden Ebenen.

Jedes mal, wenn man an ein unüberwindlich scheinendes Hindernis gelangt, muß man sich erst neue Spezialvorrichtungen und modifizierte Roboter entwickeln, bauen und testen. Inzwischen arbeitet man weltweit (insbesondere mit den USA und Großbritannien) zusammen, die bereits über umfangreiche Erfahrungen aus dem Abbruch ihrer militärischen Anlagen verfügen. Hier wird eine beträchtliches technisches Wissen entwickelt, das weit über das Niveau von „Windmühlen“ und „Sonnenkollektoren“ hinausgeht. Die deutsche Industrie wird das dank ihrer Verweigerungshaltung in einigen Jahren noch auf ganz anderen Gebieten bitter zu spüren bekommen.

Zur Zeit scheut Japan jedenfalls keine Kosten und Mühen. Als ein Beispiel mag die Myonen-Analyse dienen. Myonen sind Elementarteilchen, die z. B. in großen Mengen durch die kosmische Strahlung in der oberen Erdatmosphäre gebildet werden. Diese Myonen treffen zu Tausenden, jede Minute auf jeden Quadratmeter unserer Erdoberfläche (Anmerkung: Wann demonstriert Greenpeace endlich gegen diese unverantwortliche Strahlenbelastung? Vorschlag: Gottesstrahlen im Kölner Dom hunderte male stärker als die Strahlenbelastung aus Fukushima.). Ein großer Teil dieser Strahlung durchdringt auch massive Bauwerke. Allerdings werden die Teilchen abhängig von der lokalen Dichte gestreut. Mißt man nun die „Flugbahnen“ der Myonen vor dem zu untersuchenden Objekt und nach der Durchdringung, so erhält man ein sehr genaues Bild der Zusammensetzung. Ganz ähnlich einer Röntgenaufnahme: Die dichteren Knochen zeichnen sich deutlich von sonstigem Gewebe ab. Da nun Uran und Plutonium eine – auch gegenüber allen Baustoffen, wie Stahl, Beton usw. – außergewöhnlich hohe Dichte besitzen, erwartet man ein ziemlich genaues Bild der Uranverteilung in den Unglücksreaktoren. Erst dann kann man sinnvoll und risikolos Löcher für Kameras etc. bohren, um sich ein abschließendes Bild zu machen.

Ein weiterer Weg ist die Analyse durch „nachrechnen“ des Unfallablaufes. Solche Rechnungen sind allerdings mit erheblichen Unsicherheiten versehen, da man nicht über ausreichende Messwerte über die tatsächlichen Zustände während des Unglücks verfügt. Sie sind solange nur als grobe Abschätzungen zu werten, solange man keine „Aufnahmen“ der tatsächlichen Brennelement-Reste vorliegen hat. Allerdings läßt sich die Aussagefähigkeit der Berechnungen Schritt für Schritt mit jeder neu gewonnenen Messung verbessern. Es verwundert daher nicht, daß die Ergebnisse verschiedener Institutionen noch recht weit auseinanderliegen: Man glaubt bisher, daß der gesamte Brennstoff des ersten Reaktors (ca. 77 to) damals aufgeschmolzen und weitestgehend aus dem Reaktordruckbehälter ausgelaufen ist und sich unterhalb in der Reaktorkammer gesammelt hat. Bei den Blöcken 2 und 3 gehen die Rechenergebnisse noch weiter auseinander. Hier glaubt man, daß mindestens noch ein Drittel (von je 107 to) sich in den Druckbehältern befindet.

Der Dauerbrenner Abwasser

Seit dem Unglück steht die Belastung des Grundwassers und etwaige Belastungen des Meerwassers im Vordergrund. Das Kraftwerk steht an einer Hanglage. Schon immer sind große Regenwassermengen unterirdisch um das Kraftwerk geflossen. Der Grundwasserspiegel war so hoch, daß alle unterirdischen Kanäle und Keller im Grundwasser stehen. Während des Betriebs hat man durch Entwässerung den Grundwasserspiegel ständig abgesenkt gehalten. Dieses Drainagesystem ist aber durch den Tsunami und das Erdbeben zerstört worden. Folglich stieg der Wasserstand an und die Gebäude schwammen auf und soffen ab. Da die technischen Anlagen ebenfalls undicht wurden, mischte sich das austretende radioaktiv belastete Kühlwasser ständig mit dem Grundwasser im Kellerbereich. Die bekannten Probleme entstanden.

Inzwischen hat man oberhalb des Kraftwerks eine Speerwand errichtet um den Grundwasserstrom einzudämmen. Vor dieser Sperrzone wird durch Brunnen das Grundwasser entzogen. Dies ist eine Technik, wie man sie bei vielen Baustellen weltweit anwendet. Das abgepumpte Wasser wird um das Kraftwerk herum geleitet. Am 2. Mai wurden zum ersten mal 561 m3 Wasser in Anwesenheit von Journalisten und Fischern ins Meer geleitet. Voller Stolz verkündete man, daß die Grenzwerte für die Einleitung ins Meer auf 1/10 (tatsächlich gemessene Werte weniger als 1/100) der Grenzwerte für Trinkwasser festgesetzt wurden.

An der gesamten Uferlänge vor dem Kraftwerk hat man eine Sperrmauer errichtet, die 30 m tief unter den Meeresboden bis in eine wasserundurchlässige Bodenschicht reicht. Vor dieser Sperrmauer wird das angeströmte Grundwasser ständig abgepumpt. Durch diese Maßnahmen kann praktisch kein radioaktives Wasser mehr in das Meer gelangen. Durch die Sanierung des zerstörten Abwassersystems auf dem Gelände, ist es gelungen den Grundwasserspiegel wieder auf das alte Niveau abzusenken. Damit kann nicht mehr so viel Grundwasser in die unterirdischen Kellerräume eindringen und sich dort mit einem Teil des Kühlwassers vermischen. Dies hat zu einer Verringerung der zu lagernden radioaktiven Wässer um etwa die Hälfte geführt.

Um längerfristig praktisch den gesamten Zustrom zu stoppen, hat man seit Juni begonnen das Kraftwerk unterirdisch komplett einzufrieren. Diese Arbeiten werden sich noch bis weit ins nächste Jahr hinziehen. Sind die „Eiswände“ fertig, kann das Grundwasser unkontaminiert um die Ruine herum fließen. Bis März sollen über 1550 Bohrungen 30 bis 35 m tief abgesenkt, und mit Kühlflüssigkeit gefüllten Rohrleitungen ausgestattet werden. Diese werden dann mit Kühlflüssigkeit von -30°C ständig durchströmt. Geplante Kosten: Mehr als 300 Millionen US-Dollar.

Die Roboter

Block 2 war nicht von der Wasserstoffexplosion zerstört und wäre somit zugänglich. Gerade weil er aber immer noch „gut verschlossen“ ist, ist er innerlich stark kontaminiert. Japanische Arbeitsschutzvorschriften sind streng, weshalb vor einem Betreten durch Menschen nur Roboter zum Einsatz kommen. Es sind mehrere Modelle aus aller Welt im Einsatz, die für die Reinigungsarbeiten in Japan modifiziert und umgebaut wurden. Die Roboter sind nicht nur mit „Wischern“ und „Staubsaugern“ ausgerüstet, sondern auch mit Dutzenden Kameras und Messinstrumenten. Sie werden von einer neu errichteten Zentrale aus ferngesteuert. Vordringliche Aufgabe ist die Reinigung der Anlage bis zur Schleuse des Containment. Es wird noch einige Wochen dauern, bis Arbeiter gefahrlos zu der Schleusentür vordringen können. Nächster Schritt wird dann sein, die Schleuse zu öffnen und (ebenfalls mit Robotern) bis zum Reaktordruckgefäß vorzudringen.

Bei allen Abbrucharbeiten in USA, UK und Japan nimmt der Robotereinsatz in letzter Zeit rapide zu. Dies liegt nicht nur an den Entwicklungsfortschritten auf diesem Gebiet, sondern vor allem auch an dem Preisverfall. Arbeiten, die noch vor zehn Jahren utopisch anmuteten, sind heute Routine geworden. Man „taucht“ heute genauso selbstverständlich in Kernreaktoren, wie in Ölförderanlagen tausende Meter tief im Meer. Die Energietechnik – nicht zu verwechseln mit Windmühlen, Biogasanlagen und Sonnenkollektoren – ist auch weiterhin der Antrieb der Automatisierungs- und Regelungstechnik. Wer sich aus ihr zurückzieht, verschwindet kurz über lang ganz aus dem Kreis der Industrienationen (Morgenthau-Plan 2.0 ?).

Die volkswirtschaftlichen Kosten

Der betriebswirtschaftliche und volkswirtschaftliche Schaden durch das Unglück von Fukushima ist riesig. Für Japan ist es um so bitterer, daß er vollständig vermeidbar gewesen wäre, wenn man auf die Fachleute gehört hätte. Allein zwei Geologen sind unter Protest aus Sicherheitsgremien zurückgetreten, weil sie vor einem möglichen Tsunami in der bekannten Höhe gewarnt hatten. Es scheint ein besonderes Phänomen unserer Zeit – und ganz besonders in Deutschland – zu sein, die Warnungen und Ratschläge von Fachleuten zu ignorieren. Wohlgemerkt Fachleute, die sich durch einschlägige Ausbildung und jahrelange Erfahrung ausweisen. Nicht zu verwechseln mit ernannten „Experten“, die meist weder eine Fachausbildung noch praktische Kenntnisse besitzen, diese Defizite aber durch „Festigkeit im Rechten-Glauben“ ersetzen. Diese Hohepriester der Ignoranz in Parteien und Betroffenheitsorganisationen sind nicht weniger gefährlich als Voodoo-Priester in Afrika.

Der in Japan entstandene Schaden durch Ignoranz vollzieht sich auf zwei unterschiedlichen Ebenen: Die Kosten für die Aufräumarbeiten und die Entschädigung für die Evakuierten treffen den Betreiber Tepco mit tödlicher Wucht. Die Kosten durch steigende Energiepreise treffen alle Japaner und sind in ihren Auswirkungen noch nicht endgültig absehbar. Japan und Deutschland werden noch für zig Generationen von Wissenschaftlern genug Stoff für die Frage liefern: Wie und warum haben sich zwei Nationen freiwillig und sehenden Auges durch eine falsche Energiepolitik ruiniert?

Die Kosten für die Aufräum- und Dekontaminierungsarbeiten werden inzwischen auf über 100 Milliarden US-Dollar geschätzt. Glücklicherweise gilt hier, daß die Kosten für Tepco die Gehälter für zahlreiche Japaner sind. Allerdings muß die Frage erlaubt sein, ob viele Japaner nicht sinnvolleres zu tun hätten, als Grenzwerte unterhalb der vorhandenen Strahlung anzustreben.

Viel bedenklicher – aber anscheinend nicht so offensichtlich – ist der volkswirtschaftliche Schaden. Die japanischen Energieversorger haben jährliche Mehrkosten von 35 Milliarden US-Dollar durch den Einkauf zusätzlicher fossiler Brennstoffe. Dies ist rausgeschmissenes Geld, da man täglich die abgeschalteten – und längst überprüften und für sicher befundenen – Kernkraftwerke wieder hochfahren könnte. Inzwischen importieren die Stromerzeuger jährlich für 80 Milliarden US-Dollar Kohle und LNG (verflüssigtes Erdgas). Japan ist der größte Importeur für LNG (90 Mio to jährlich) und der zweitgrößte Importeur für Kohle (190 Mio to jährlich, stark steigend) und der drittgrößte Importeur für Öl weltweit (4,7 Millionen barrel pro Tag). Sind die jährlichen Ausgaben hierfür schon imposant (289 Milliarden US-Dollar in 2012), so ist langfristig das Verhältnis zum Bruttosozialprodukt entscheidend: Es ist inzwischen doppelt so hoch wie in China (wobei das Bruttosozialprodukt in China schneller steigt, als der Energieverbrauch) und fast vier mal so hoch, wie in den USA (dort nimmt die Eigenproduktion ständig zu). Eine solche Schere ist für einen Industriestandort langfristig nicht tragbar. Es gibt also keinen anderen Weg, als zurück in die Kernenergie. „Wind und Sonne“ sind bei diesen Größenordnungen nichts anderes als Spielerei (in 2012: 92% fossil, 6% Wasserkraft; 2010: 15% Kernenergie).

Strahlenbelastung

Die UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) ist auch in ihrem neuesten Untersuchungsbericht zu dem Schluß gekommen, daß weder eine erhöhte Rate an Krebserkrankungen noch an Erbschäden in Japan feststellbar ist. Es wird ausdrücklich betont, daß die Strahlenbelastung durch die schnelle und großzügige Evakuierung viel zu gering ist um Folgeschäden auszulösen. Im Mittel sind die Menschen im Raum Fukushima mit 10 mSv über ihr gesamtes Leben zusätzlich belastet, während allein die Hintergrundstrahlung in Japan rund 170 mSv über ein Menschenalter beträgt. Es sind überhaupt nur Schädigungen feststellbar, wenn kurzfristig eine Strahlenbelastung von über 100 mSv vorgelegen hat. Deshalb befinden sich 160 Mitarbeiter in einem Langzeit-Überwachungs-Programm. Bisher konnten auch in dieser Gruppe keine Veränderungen festgestellt werden.

Parallel läuft ein Überwachungsprogramm von 360000 Kindern auf Veränderungen der Schilddrüse (Anmerkung: Gerade bei Kindern und Jugendlichen kann die Anreicherung von Jod-131 zu Wucherungen in der Schilddrüse führen.) Die dabei festgestellten Fälle, sind eher auf die genaueren Untersuchungsmethoden als durch eine Strahlenbelastung zurückzuführen. Eine Vergleichsgruppe unbelasteter Kinder ist nicht vorhanden. Interessant wird eher die Zahl der „Krebstoten“ nach Abschluss dieser Studie sein. Erfahrungsgemäß wird sie geringer als der japanische Durchschnitt werden, da durch die begleitende Überwachung „Krebs“ früher erkannt und besser behandelt werden kann.

Ein, zumindest zwiespältiges, Ergebnis brachten die Evakuierungen mit sich: Innerhalb kurzer Zeit wurden 78000 Menschen aus dem 20km-Radius ausgesiedelt. Weitere Menschen wurden aus dem 20 bis 30 km Radius in Schutzräume untergebracht.

Strahlenphobie tötet

In dem 20km-Radius um das Kraftwerk befanden sich acht Krankenhäuser und 17 Pflegeheime, in denen sich zum Zeitpunkt des Unglücks 1240 Patienten bzw. 940 Pflegefälle befanden.

Unmittelbar nach dem Tsunami wurde eine Evakuierung im 2km-Radius angeordnet. Am nächsten Morgen wurde der Radius auf 10 km ausgeweitet. Am Nachmittag ordnete die Regierung eine Ausweitung auf 20km an. Am Abend des zweiten Tags nach dem Tsunami stellte man fest, daß sich noch 840 Patienten in den Krankenhäusern und Pflegeheimen befanden. Die Regierung ordnete noch am späten Abend eine Notevakuierung an. Am folgenden Morgen begannen völlig panische und chaotische Transporte: Schwerkranke wurden ohne Begleitung durch medizinisches Personal in normale Fahrzeuge verfrachtet. Bettlägerige Patienten wurden teilweise schwer verletzt, weil sie während der Fahrt von den Sitzen rutschten. 27 Patienten mit Nierenversagen und Schlaganfällen wurden auf einen Transport ins 100km entfernte Iwaki verschickt. Zehn verstarben noch auf dem Transport. Insgesamt sollen 50 Patienten während oder kurz nach der Evakuierung verstorben sein. Todesursachen: Unterkühlung, Dehydration und drastische Verschlimmerung der vorhandenen medizinischen Probleme.

Das alles geschah, weil (einige) Menschen völlig absurde Vorstellungen von der Wirkung ionisierender Strahlung haben. Über Jahrzehnte systematisch aufgehetzt von Betroffenheits-Organisationen vom Schlage Greenpeace. Organisationen und Einzelpersonen („Atomexperte“), die es zu ihrem persönlichen Geschäftsmodell gemacht haben, andere Menschen in Furcht und Schrecken zu versetzen. Wir sind es den Opfern schuldig, diesem Treiben wesentlich entschiedener entgegenzutreten. Das sind nicht die netten-jungen-Leute-die-immer-die-Waale-schützen, sondern straff geführte Unternehmen mit Millionenumsätzen. Aufklärung beginnt immer im persönlichen Umfeld. Jede Spende weniger, bereitet dem Spuk ein baldiges Ende. Wenn sich das Geschäftsmodell „Strahlenangst“ erledigt hat, werden sich diese Typen schneller als gedacht lukrativeren Tätigkeiten zuwenden.