Fukushima – ein Zwischenbericht

In letzter Zeit ist es in den „Qualitätsmedien“ still geworden um die „Reaktorkatastrophe“. Um so mehr ein Grund, hier mal wieder einen Zwischenbericht zu liefern. Man könnte es sich einfach machen: Noch immer kein Toter durch Strahlung, noch immer keine Krebs-Epidemie, noch immer ist der Fisch an Japans Küste essbar…

…da warn es nur noch drei

Anfang August ging die Meldung um die Welt, daß über 90% der Brennelemente (1166 von 1331 abgebrannten Brennelementen) aus dem Lagerbecken des Blocks 4 geborgen und abtransportiert sind. Man erwartet bis Ende des Jahres die vollständige Räumung. Wir erinnern uns: Zum Zeitpunkt der Naturkatastrophe war der Block 4 für einen planmäßigen Brennelementewechsel außer Betrieb. All seine Brennelemente waren nicht mehr im Reaktordruckgefäß, sondern bereits im zugehörigen Lagerbecken. Dieses Lagerbecken wurde infolge der Wasserstoffexplosion mit Trümmern der „Reaktorhalle“ zugeschüttet. Kein schöner Anblick und überdies vermeidbar, wenn man eine übliche „Betonhülle“ um das Kernkraftwerk gebaut hätte. Um es auch unserer – von der japanischen Industriegesellschaft so enttäuschten – Kanzlerin und ihren Jüngern aus CD(S)U und FDP noch einmal klar und deutlich zu sagen: Ein solcher Schadensverlauf ist in einem Kernkraftwerk in Deutschland technisch ausgeschlossen. Jedes Kernkraftwerk in Deutschland (und fast alle auf der Welt) haben eine Stahlbetonhülle, die einer solch kleinen Explosion locker stand hält. Kein Reaktor in Deutschland ist mit einem anderen Block über eine gemeinsame Lüftungsanlage verbunden. Insofern hätte es in einem deutschen Kernkraftwerk (und in fast allen auf der Welt) gar kein explosives Gas geben können. Selten kann ein Ingenieur eine so eindeutige Aussage treffen.

An diesem Unfall sieht man, welch robuste Konstruktion ein Siedewasserreaktor an sich ist. Selbst eine schwere Explosion mit Einsturz der Reaktorhalle führt zu praktisch keiner Freisetzung von Radioaktivität in die Umwelt. Jeder moderne Reaktor hat darüber hinaus noch beträchtliche weitere Sicherheitsreserven. Dies ist auch der Grund, warum nur diese Reaktoren in Fukushima bei dem Tsunami und dem vorausgehenden Erdbeben kaputt gegangen sind. Es war nicht ohne Grund geplant, sie einige Monate später still zu legen. Eine bittere Lektion, die Japan aber angenommen hat: Alle Reaktoren befinden sich immer noch in einer umfangreichen Überprüfung. Es ist absehbar, daß einige nie mehr wieder in Betrieb gehen werden.

Wenn alle Brennelemente aus dem Block 4 ausgeräumt sind, ist das Kapitel faktisch abgeschlossen: Es verbleibt eine technische Ruine, die man auch als Denkmal stehen lassen könnte. So lange man sie nicht betritt, ist sie genauso ungefährlich, wie ein „Bankpalast“ aus Granit. Der japanischen Gemütslage entsprechend, wird man aber eher nicht innehalten, sondern nicht eher ruhen, bis man das Grundstück in eine Rasenfläche verwandelt hat.

Die Problemruinen

Weiterhin problematisch sind die ersten drei Reaktoren des Kraftwerks. Sie waren zum Zeitpunkt des Erdbebens in Betrieb und sind durch den Ausfall der erforderlichen Nachkühlung zerstört worden. Bisher ergibt sich immer noch kein eindeutiges Bild: Die Strahlung in unmittelbarer Nähe der Reaktoren ist noch so stark, daß man keine Menschen zur Untersuchung einsetzen kann und will. Japan ist nicht Russland. Bisher hat man sich nur mit Robotern versucht zu nähern. Dies ist aber schwieriger, als es den Anschein hat. Man hat ein extrem schwieriges Einsatzgebiet, das überdies noch durch Trümmer versperrt ist. Zum großen Teil steht es auch noch unter Wasser. Solange man aber keinen genauen Überblick hat, kann man auch keinen Bergungsplan ausarbeiten. Hier ist noch von jahrelanger Arbeit auszugehen. Sie vollzieht sich auf mehreren parallelen und sich ergänzenden Ebenen.

Jedes mal, wenn man an ein unüberwindlich scheinendes Hindernis gelangt, muß man sich erst neue Spezialvorrichtungen und modifizierte Roboter entwickeln, bauen und testen. Inzwischen arbeitet man weltweit (insbesondere mit den USA und Großbritannien) zusammen, die bereits über umfangreiche Erfahrungen aus dem Abbruch ihrer militärischen Anlagen verfügen. Hier wird eine beträchtliches technisches Wissen entwickelt, das weit über das Niveau von „Windmühlen“ und „Sonnenkollektoren“ hinausgeht. Die deutsche Industrie wird das dank ihrer Verweigerungshaltung in einigen Jahren noch auf ganz anderen Gebieten bitter zu spüren bekommen.

Zur Zeit scheut Japan jedenfalls keine Kosten und Mühen. Als ein Beispiel mag die Myonen-Analyse dienen. Myonen sind Elementarteilchen, die z. B. in großen Mengen durch die kosmische Strahlung in der oberen Erdatmosphäre gebildet werden. Diese Myonen treffen zu Tausenden, jede Minute auf jeden Quadratmeter unserer Erdoberfläche (Anmerkung: Wann demonstriert Greenpeace endlich gegen diese unverantwortliche Strahlenbelastung? Vorschlag: Gottesstrahlen im Kölner Dom hunderte male stärker als die Strahlenbelastung aus Fukushima.). Ein großer Teil dieser Strahlung durchdringt auch massive Bauwerke. Allerdings werden die Teilchen abhängig von der lokalen Dichte gestreut. Mißt man nun die „Flugbahnen“ der Myonen vor dem zu untersuchenden Objekt und nach der Durchdringung, so erhält man ein sehr genaues Bild der Zusammensetzung. Ganz ähnlich einer Röntgenaufnahme: Die dichteren Knochen zeichnen sich deutlich von sonstigem Gewebe ab. Da nun Uran und Plutonium eine – auch gegenüber allen Baustoffen, wie Stahl, Beton usw. – außergewöhnlich hohe Dichte besitzen, erwartet man ein ziemlich genaues Bild der Uranverteilung in den Unglücksreaktoren. Erst dann kann man sinnvoll und risikolos Löcher für Kameras etc. bohren, um sich ein abschließendes Bild zu machen.

Ein weiterer Weg ist die Analyse durch „nachrechnen“ des Unfallablaufes. Solche Rechnungen sind allerdings mit erheblichen Unsicherheiten versehen, da man nicht über ausreichende Messwerte über die tatsächlichen Zustände während des Unglücks verfügt. Sie sind solange nur als grobe Abschätzungen zu werten, solange man keine „Aufnahmen“ der tatsächlichen Brennelement-Reste vorliegen hat. Allerdings läßt sich die Aussagefähigkeit der Berechnungen Schritt für Schritt mit jeder neu gewonnenen Messung verbessern. Es verwundert daher nicht, daß die Ergebnisse verschiedener Institutionen noch recht weit auseinanderliegen: Man glaubt bisher, daß der gesamte Brennstoff des ersten Reaktors (ca. 77 to) damals aufgeschmolzen und weitestgehend aus dem Reaktordruckbehälter ausgelaufen ist und sich unterhalb in der Reaktorkammer gesammelt hat. Bei den Blöcken 2 und 3 gehen die Rechenergebnisse noch weiter auseinander. Hier glaubt man, daß mindestens noch ein Drittel (von je 107 to) sich in den Druckbehältern befindet.

Der Dauerbrenner Abwasser

Seit dem Unglück steht die Belastung des Grundwassers und etwaige Belastungen des Meerwassers im Vordergrund. Das Kraftwerk steht an einer Hanglage. Schon immer sind große Regenwassermengen unterirdisch um das Kraftwerk geflossen. Der Grundwasserspiegel war so hoch, daß alle unterirdischen Kanäle und Keller im Grundwasser stehen. Während des Betriebs hat man durch Entwässerung den Grundwasserspiegel ständig abgesenkt gehalten. Dieses Drainagesystem ist aber durch den Tsunami und das Erdbeben zerstört worden. Folglich stieg der Wasserstand an und die Gebäude schwammen auf und soffen ab. Da die technischen Anlagen ebenfalls undicht wurden, mischte sich das austretende radioaktiv belastete Kühlwasser ständig mit dem Grundwasser im Kellerbereich. Die bekannten Probleme entstanden.

Inzwischen hat man oberhalb des Kraftwerks eine Speerwand errichtet um den Grundwasserstrom einzudämmen. Vor dieser Sperrzone wird durch Brunnen das Grundwasser entzogen. Dies ist eine Technik, wie man sie bei vielen Baustellen weltweit anwendet. Das abgepumpte Wasser wird um das Kraftwerk herum geleitet. Am 2. Mai wurden zum ersten mal 561 m3 Wasser in Anwesenheit von Journalisten und Fischern ins Meer geleitet. Voller Stolz verkündete man, daß die Grenzwerte für die Einleitung ins Meer auf 1/10 (tatsächlich gemessene Werte weniger als 1/100) der Grenzwerte für Trinkwasser festgesetzt wurden.

An der gesamten Uferlänge vor dem Kraftwerk hat man eine Sperrmauer errichtet, die 30 m tief unter den Meeresboden bis in eine wasserundurchlässige Bodenschicht reicht. Vor dieser Sperrmauer wird das angeströmte Grundwasser ständig abgepumpt. Durch diese Maßnahmen kann praktisch kein radioaktives Wasser mehr in das Meer gelangen. Durch die Sanierung des zerstörten Abwassersystems auf dem Gelände, ist es gelungen den Grundwasserspiegel wieder auf das alte Niveau abzusenken. Damit kann nicht mehr so viel Grundwasser in die unterirdischen Kellerräume eindringen und sich dort mit einem Teil des Kühlwassers vermischen. Dies hat zu einer Verringerung der zu lagernden radioaktiven Wässer um etwa die Hälfte geführt.

Um längerfristig praktisch den gesamten Zustrom zu stoppen, hat man seit Juni begonnen das Kraftwerk unterirdisch komplett einzufrieren. Diese Arbeiten werden sich noch bis weit ins nächste Jahr hinziehen. Sind die „Eiswände“ fertig, kann das Grundwasser unkontaminiert um die Ruine herum fließen. Bis März sollen über 1550 Bohrungen 30 bis 35 m tief abgesenkt, und mit Kühlflüssigkeit gefüllten Rohrleitungen ausgestattet werden. Diese werden dann mit Kühlflüssigkeit von -30°C ständig durchströmt. Geplante Kosten: Mehr als 300 Millionen US-Dollar.

Die Roboter

Block 2 war nicht von der Wasserstoffexplosion zerstört und wäre somit zugänglich. Gerade weil er aber immer noch „gut verschlossen“ ist, ist er innerlich stark kontaminiert. Japanische Arbeitsschutzvorschriften sind streng, weshalb vor einem Betreten durch Menschen nur Roboter zum Einsatz kommen. Es sind mehrere Modelle aus aller Welt im Einsatz, die für die Reinigungsarbeiten in Japan modifiziert und umgebaut wurden. Die Roboter sind nicht nur mit „Wischern“ und „Staubsaugern“ ausgerüstet, sondern auch mit Dutzenden Kameras und Messinstrumenten. Sie werden von einer neu errichteten Zentrale aus ferngesteuert. Vordringliche Aufgabe ist die Reinigung der Anlage bis zur Schleuse des Containment. Es wird noch einige Wochen dauern, bis Arbeiter gefahrlos zu der Schleusentür vordringen können. Nächster Schritt wird dann sein, die Schleuse zu öffnen und (ebenfalls mit Robotern) bis zum Reaktordruckgefäß vorzudringen.

Bei allen Abbrucharbeiten in USA, UK und Japan nimmt der Robotereinsatz in letzter Zeit rapide zu. Dies liegt nicht nur an den Entwicklungsfortschritten auf diesem Gebiet, sondern vor allem auch an dem Preisverfall. Arbeiten, die noch vor zehn Jahren utopisch anmuteten, sind heute Routine geworden. Man „taucht“ heute genauso selbstverständlich in Kernreaktoren, wie in Ölförderanlagen tausende Meter tief im Meer. Die Energietechnik – nicht zu verwechseln mit Windmühlen, Biogasanlagen und Sonnenkollektoren – ist auch weiterhin der Antrieb der Automatisierungs- und Regelungstechnik. Wer sich aus ihr zurückzieht, verschwindet kurz über lang ganz aus dem Kreis der Industrienationen (Morgenthau-Plan 2.0 ?).

Die volkswirtschaftlichen Kosten

Der betriebswirtschaftliche und volkswirtschaftliche Schaden durch das Unglück von Fukushima ist riesig. Für Japan ist es um so bitterer, daß er vollständig vermeidbar gewesen wäre, wenn man auf die Fachleute gehört hätte. Allein zwei Geologen sind unter Protest aus Sicherheitsgremien zurückgetreten, weil sie vor einem möglichen Tsunami in der bekannten Höhe gewarnt hatten. Es scheint ein besonderes Phänomen unserer Zeit – und ganz besonders in Deutschland – zu sein, die Warnungen und Ratschläge von Fachleuten zu ignorieren. Wohlgemerkt Fachleute, die sich durch einschlägige Ausbildung und jahrelange Erfahrung ausweisen. Nicht zu verwechseln mit ernannten „Experten“, die meist weder eine Fachausbildung noch praktische Kenntnisse besitzen, diese Defizite aber durch „Festigkeit im Rechten-Glauben“ ersetzen. Diese Hohepriester der Ignoranz in Parteien und Betroffenheitsorganisationen sind nicht weniger gefährlich als Voodoo-Priester in Afrika.

Der in Japan entstandene Schaden durch Ignoranz vollzieht sich auf zwei unterschiedlichen Ebenen: Die Kosten für die Aufräumarbeiten und die Entschädigung für die Evakuierten treffen den Betreiber Tepco mit tödlicher Wucht. Die Kosten durch steigende Energiepreise treffen alle Japaner und sind in ihren Auswirkungen noch nicht endgültig absehbar. Japan und Deutschland werden noch für zig Generationen von Wissenschaftlern genug Stoff für die Frage liefern: Wie und warum haben sich zwei Nationen freiwillig und sehenden Auges durch eine falsche Energiepolitik ruiniert?

Die Kosten für die Aufräum- und Dekontaminierungsarbeiten werden inzwischen auf über 100 Milliarden US-Dollar geschätzt. Glücklicherweise gilt hier, daß die Kosten für Tepco die Gehälter für zahlreiche Japaner sind. Allerdings muß die Frage erlaubt sein, ob viele Japaner nicht sinnvolleres zu tun hätten, als Grenzwerte unterhalb der vorhandenen Strahlung anzustreben.

Viel bedenklicher – aber anscheinend nicht so offensichtlich – ist der volkswirtschaftliche Schaden. Die japanischen Energieversorger haben jährliche Mehrkosten von 35 Milliarden US-Dollar durch den Einkauf zusätzlicher fossiler Brennstoffe. Dies ist rausgeschmissenes Geld, da man täglich die abgeschalteten – und längst überprüften und für sicher befundenen – Kernkraftwerke wieder hochfahren könnte. Inzwischen importieren die Stromerzeuger jährlich für 80 Milliarden US-Dollar Kohle und LNG (verflüssigtes Erdgas). Japan ist der größte Importeur für LNG (90 Mio to jährlich) und der zweitgrößte Importeur für Kohle (190 Mio to jährlich, stark steigend) und der drittgrößte Importeur für Öl weltweit (4,7 Millionen barrel pro Tag). Sind die jährlichen Ausgaben hierfür schon imposant (289 Milliarden US-Dollar in 2012), so ist langfristig das Verhältnis zum Bruttosozialprodukt entscheidend: Es ist inzwischen doppelt so hoch wie in China (wobei das Bruttosozialprodukt in China schneller steigt, als der Energieverbrauch) und fast vier mal so hoch, wie in den USA (dort nimmt die Eigenproduktion ständig zu). Eine solche Schere ist für einen Industriestandort langfristig nicht tragbar. Es gibt also keinen anderen Weg, als zurück in die Kernenergie. „Wind und Sonne“ sind bei diesen Größenordnungen nichts anderes als Spielerei (in 2012: 92% fossil, 6% Wasserkraft; 2010: 15% Kernenergie).

Strahlenbelastung

Die UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) ist auch in ihrem neuesten Untersuchungsbericht zu dem Schluß gekommen, daß weder eine erhöhte Rate an Krebserkrankungen noch an Erbschäden in Japan feststellbar ist. Es wird ausdrücklich betont, daß die Strahlenbelastung durch die schnelle und großzügige Evakuierung viel zu gering ist um Folgeschäden auszulösen. Im Mittel sind die Menschen im Raum Fukushima mit 10 mSv über ihr gesamtes Leben zusätzlich belastet, während allein die Hintergrundstrahlung in Japan rund 170 mSv über ein Menschenalter beträgt. Es sind überhaupt nur Schädigungen feststellbar, wenn kurzfristig eine Strahlenbelastung von über 100 mSv vorgelegen hat. Deshalb befinden sich 160 Mitarbeiter in einem Langzeit-Überwachungs-Programm. Bisher konnten auch in dieser Gruppe keine Veränderungen festgestellt werden.

Parallel läuft ein Überwachungsprogramm von 360000 Kindern auf Veränderungen der Schilddrüse (Anmerkung: Gerade bei Kindern und Jugendlichen kann die Anreicherung von Jod-131 zu Wucherungen in der Schilddrüse führen.) Die dabei festgestellten Fälle, sind eher auf die genaueren Untersuchungsmethoden als durch eine Strahlenbelastung zurückzuführen. Eine Vergleichsgruppe unbelasteter Kinder ist nicht vorhanden. Interessant wird eher die Zahl der „Krebstoten“ nach Abschluss dieser Studie sein. Erfahrungsgemäß wird sie geringer als der japanische Durchschnitt werden, da durch die begleitende Überwachung „Krebs“ früher erkannt und besser behandelt werden kann.

Ein, zumindest zwiespältiges, Ergebnis brachten die Evakuierungen mit sich: Innerhalb kurzer Zeit wurden 78000 Menschen aus dem 20km-Radius ausgesiedelt. Weitere Menschen wurden aus dem 20 bis 30 km Radius in Schutzräume untergebracht.

Strahlenphobie tötet

In dem 20km-Radius um das Kraftwerk befanden sich acht Krankenhäuser und 17 Pflegeheime, in denen sich zum Zeitpunkt des Unglücks 1240 Patienten bzw. 940 Pflegefälle befanden.

Unmittelbar nach dem Tsunami wurde eine Evakuierung im 2km-Radius angeordnet. Am nächsten Morgen wurde der Radius auf 10 km ausgeweitet. Am Nachmittag ordnete die Regierung eine Ausweitung auf 20km an. Am Abend des zweiten Tags nach dem Tsunami stellte man fest, daß sich noch 840 Patienten in den Krankenhäusern und Pflegeheimen befanden. Die Regierung ordnete noch am späten Abend eine Notevakuierung an. Am folgenden Morgen begannen völlig panische und chaotische Transporte: Schwerkranke wurden ohne Begleitung durch medizinisches Personal in normale Fahrzeuge verfrachtet. Bettlägerige Patienten wurden teilweise schwer verletzt, weil sie während der Fahrt von den Sitzen rutschten. 27 Patienten mit Nierenversagen und Schlaganfällen wurden auf einen Transport ins 100km entfernte Iwaki verschickt. Zehn verstarben noch auf dem Transport. Insgesamt sollen 50 Patienten während oder kurz nach der Evakuierung verstorben sein. Todesursachen: Unterkühlung, Dehydration und drastische Verschlimmerung der vorhandenen medizinischen Probleme.

Das alles geschah, weil (einige) Menschen völlig absurde Vorstellungen von der Wirkung ionisierender Strahlung haben. Über Jahrzehnte systematisch aufgehetzt von Betroffenheits-Organisationen vom Schlage Greenpeace. Organisationen und Einzelpersonen („Atomexperte“), die es zu ihrem persönlichen Geschäftsmodell gemacht haben, andere Menschen in Furcht und Schrecken zu versetzen. Wir sind es den Opfern schuldig, diesem Treiben wesentlich entschiedener entgegenzutreten. Das sind nicht die netten-jungen-Leute-die-immer-die-Waale-schützen, sondern straff geführte Unternehmen mit Millionenumsätzen. Aufklärung beginnt immer im persönlichen Umfeld. Jede Spende weniger, bereitet dem Spuk ein baldiges Ende. Wenn sich das Geschäftsmodell „Strahlenangst“ erledigt hat, werden sich diese Typen schneller als gedacht lukrativeren Tätigkeiten zuwenden.

Fukushima – Zweite Begutachtung durch IAEA

Anfang Februar 2014 veröffentlichte die IAEA (International Atomic Energy Agency) ihren zweiten Bericht zur Vorgehensweise bei der Beseitigung der Schäden im Kernkraftwerk von Fukushima. Dieser Bericht enthält neben zahlreichen Details zum gegenwärtigen Zustand vor Ort, auch eine kritische Würdigung der bisher durchgeführten Maßnahmen und Vorschläge für Verbesserungen und mögliche internationale Unterstützung. Da es sicherlich für viele etwas zu zeitaufwendig ist, einen 72-Seiten-Bericht in englischer Sprache zu lesen, wird hier eine Zusammenfassung versucht.

Einordnung des Berichts

In der Folge des Reaktorunglücks am 11. März 2011 hat der Betreiber TEPCO einen Aktionsplan zur Beseitigung der Schäden vorgelegt. Dieser Plan wurde von den einschlägigen japanischen Verwaltungen geprüft. Diese „Roadmap“ enthält detaillierte Beschreibungen und Zeitpläne der durchzuführenden Arbeiten. Jeweils im July 2012 und Juni 2013 wurde eine grundlegend neu überarbeitete Fassung erstellt. Die japanische Regierung, vertreten durch das METI (Ministry of Economy, Trade and Industry), hat die IAEA um eine Begutachtung dieser „Roadmap“ gebeten.

Inzwischen trägt die japanische Offenheit Früchte. Das Spielfeld für Betroffenheitsunternehmen vom Schlage Greenpeace, ist bemerkenswert eng geworden. Es gelingt den einschlägigen „Atomexperten“ kaum noch, ihre tumbe Propaganda in den Medien unter zu bringen. Sie können nur noch ihre tiefgläubige Klientel bedienen. Wenn man sich an die Geheimniskrämerei der Sowjets nach Tschernobyl erinnert, ein bemerkenswerter Fortschritt. Mangels frei zugänglicher und überprüfbarer Informationen selbst für Fachkreise, war jeglicher Spekulation und Verschwörungstheorie Tür und Tor geöffnet.

Japan hat viele grundsätzliche und vermeidbare Fehler im Umgang mit der Kernenergie gemacht. Sie haben aber ihre Konsequenzen gezogen und ohne jede Rücksicht auf Kosten und Organisationsstrukturen radikale Veränderungen durchgeführt. Veränderungen, die der Verbesserung und weiteren Entwicklung dienen und nicht dem politischen Tagesgeschäft geschuldet sind.

Entfernung der Brennelemente

Die vorhandenen Lagerbehälter auf dem Gelände wurden überprüft, mit neuen Dichtungen versehen und auf einen sicheren Platz umgesetzt. An einer langfristigen Lösung wird gearbeitet.

Der Block 4 wurde vollständig neu eingehaust und inzwischen von allem Schutt geräumt. Es ist jetzt wieder eine, einem Kernkraftwerk entsprechende Arbeitsumgebung geschaffen worden. In den letzten fünf Monaten sind bereits 659 Brennelemente aus dem Lagerbecken entfernt worden, in 14 trockenen Lagerbehältern (Anmerkung: ähnlich „Castoren“) verpackt und auf dem Zwischenlagerplatz transportiert worden. Alle größeren Trümmer sind aus dem Lagerbecken geräumt, kleinteilige Trümmer zu über 70 % entfernt und fast 20% der Lagergestelle bereits ausgesaugt worden.

Es ist geplant, alle Brennelemente aus den Lagerbecken bis 2017 zu entfernen und in trockene Lagerbehälter zu verpacken. Es wird ein Verfahren ausgearbeitet, alle Brennelemente auch innen so zu reinigen und zu waschen, daß sie „normalen“ Ladungen aus Kernkraftwerken entsprechen, um sie den normalen Wiederaufbereitungsanlagen problemlos zuführen zu können. Alle Brennelemente werden in fünf Kategorien eingeteilt: In Ordnung und vollständig bestrahlt, in Ordnung und teilweise bestrahlt, in Ordnung und nicht bestrahlt, beschädigt (im Sinne von, der Austritt radioaktiver Stoffe ist möglich), leicht beschädigt (lediglich mechanisch; vom Originalzustand abweichend).

Weit aus schwieriger und langwieriger, gestaltet sich die Entfernung des „radioaktiven Bruches“. Gemeint ist damit geschmolzener Brennstoff, der teilweise sogar Legierungen mit anderen Materialien des Reaktorkerns eingegangen sein wird. Hier ist nur ein schrittweises Vorgehen möglich. Man muß erst allen Schutt – verursacht durch die Wasserstoffexplosionen – wegräumen, um an die Druckgefäße zu gelangen. Dies muß wegen der erhöhten Strahlung fernbedient und durch Roboter geschehen. Ein Entwicklungsprozess, der ständig neu durchdacht und angepaßt werden muß. Die Vorarbeiten werden mehre Jahre in Anspruch nehmen.

Umgang mit dem verseuchten Wasser

Die Lagerung von radioaktivem Wasser in Tankanlagen auf dem Gelände, war in den letzten Monaten ein ständiges Ärgernis. Auftretende Leckagen fanden ein breites Echo in der weltweiten Öffentlichkeit. Es wurden drei Prinzipien zur Vorgehensweise definiert:

  1. Beseitigung der Quellen. Dies ist der schwierigste Teil, da es kurzfristig eine Abdichtung der zerstörten Sicherheitsbehälter erfordert und langfristig eine Beräumung des „radioaktiven Schutts“.
  2. Trennung von Grundwasserströmen auf dem Gelände von kontaminiertem Wasser im Bereich der zerstörten Anlage. Maßnahmen sind eingeleitet: Umleiten der Grundwasserströme oberhalb des Standortes, bevor sie die Ruine erreichen können. Errichtung von unterirdischen Sperren vor den Blöcken und gegenüber der Hafenseite.
  3. Sicherung der gelagerten Wassermassen (Verhinderung von Undichtigkeiten, Auffanganlagen für Leckagen etc.). Beschleunigter Bau von Reinigungsanlagen. Momentan liegt der Schwerpunkt auf einer sehr erfolgreichen Entfernung des Cäsiums (Anmerkung: Cäsium ist ein γ-Strahler und maßgeblich für die Strahlenbelastung im Tanklager verantwortlich; β- und α-Strahler sind in diesem Sinne unerheblich – niemand muß das Wasser trinken.). Ferner wird inzwischen das ursprünglich zur Kühlung verwendete Meerwasser entsalzt und wieder verwendet. Inzwischen wurden über 800 000 m3. sehr erfolgreich behandelt.

Inzwischen haben sich mehr als 500 000 m3 kontaminiertes Wasser auf dem Gelände angesammelt. Davon ungefähr 400 000 m3 in 900 oberirdischen Tanks! Der Rest befindet sich noch in den Kellern, Kabelkanälen usw. Man geht davon aus, daß man das Tanklager noch einmal verdoppeln muß. Dies hängt jedoch letztendlich von den Gegenmaßnahmen und dem Tempo bei der Wasseraufbereitung ab. Es wird z. B. auch erprobt, das Wasser nicht mehr ständig aus den Kellern und Kanälen abzupumpen, sondern mobile Reinigungsanlagen einzusetzen. Rund 300 000 m3 in den Tanks bestehen inzwischen aus dem Abwasserstrom der Meerwasserentsalzung (Salzlake) und Cäsium-Entfernung. Es „strahlt“ daher nur noch relativ gering, besitzt aber einen erhöhten Anteil an Sr90 und Y90. Andere Radionuklide sind nur in geringem Umfang vorhanden. TEPCO setzt nun auf das Advanced Multi-Nuclide Removal System (ALPS) zur Beseitigung der radioaktiven Abwässer. Es ist bereits eine Versuchsanlage mit drei parallelen Strängen zu je 250 m3 / Tag in Betrieb. Mit ihr wurden bereits 30 000 m3 erfolgreich gereinigt. Es gelingt praktisch alle Radionuklide – bis auf Tritium – unter die Nachweisgrenze zu entfernen. (Anmerkung: Tritium bildet „titriertes Wasser“, welches chemisch praktisch nicht von normalem H2 O unterscheidbar ist. Es ist aber relativ harmlos, da es sich nicht im Körper anreichert und wie jegliches andere Wasser auch, eine sehr geringe biologische Halbwertszeit besitzt). Inzwischen laufen in Japan Diskussionen, ob man nicht wenigstens dieses Wasser, in „Trinkwasserqualität“ in das Meer abgeben könnte. In der japanische Kultur, ist diese Frage keinesfalls mit einem einfachen „Ja“ zu beantworten.

Unmittelbar nach dem Unglück, in einer durch den Tsunami völlig zerstörten Infrastruktur, war es richtig, möglichst schnell ein Tanklager zur Rückhaltung von radioaktivem Wasser aufzustellen. Es wurde deshalb auf zusammengeschraubte Tanks zurückgegriffen. Solche Tanks, mit ihren zahlreichen Dichtungen, sind nicht für einen dauerhaften Betrieb geeignet. Es wird deshalb ein umfangreiches Programm gestartet, welches sich mit einer dringend notwendigen Ertüchtigung beschäftigt. Neue Tanks sollen nur noch in geschweißter Ausführung erstellt werden. Wenn das Tanklager noch sehr lange nötig wird, will man sogar die vorhandenen Behälter ersetzen.

Feste Abfälle

Bei der Reinigung der gewaltigen Wassermengen darf nicht vergessen werden, daß man damit nicht die Radioaktivität beseitigt, sondern lediglich umlagert. Nach der Reinigung bleiben Zeolite, an die die Radionuklide gebunden sind und Schlämme mit Radionukliden übrig. Diese müssen vor der endgültigen Lagerung in eine feste Form überführt werden, damit sie nicht in die Umwelt freigesetzt werden. Es werden einige tausend Kubikmeter solcher niedrig und mittelaktiven Materialien übrig bleiben.

Der (kontaminierte) Schutt infolge des Tsunami ist für sich genommen, ein gewaltiges Problem. Bisher wurden von dem Gelände 65 000 m3 Schutt und allein 51 000 m3 Abfallholz beiseite geräumt und in zehn Zwischenlagern gesammelt. Da die gefällten Bäume „leicht verstrahlt“ sind, dürfen sie nicht einfach verbrannt werden. Sie werden deshalb in Fässer verpackt, die für eine Lagerung von 25 Jahren vorgesehen sind. Für 23 000 dieser „Altholzfässer“ wird gerade ein eigenes Lagergebäude errichtet. Kann sich noch jemand an die Bilder von Tschernobyl erinnern, wo ganze LKW und Busse einfach in ausgehobene Gräben versenkt wurden?

Bei einem normalen Abriss eines Reaktors, geht man von etwa 10 000 m„Atommüll“ aus, der endgelagert werden muß. Der Rest kann nach Reinigung und Freimessung in den normalen Wertstoffkreislauf gegeben werden. In Fukushima rechnet man mit über 800 000 m3.. Es ist deshalb ein umfangreiches Programm zur völligen Neuentwicklung eines Recycling auf der Unglücksstelle gestartet worden. Man möchte möglichst viel des unbelasteten Abfalls (nach einer Reinigung) auf der Baustelle wieder verwenden. Beispielsweise kann man das Volumen von Metallschrott durch Einschmelzen um 70 bis 80 % verringern. Ein bereits bei der Beseitigung von alten Dampferzeugern angewendetes Verfahren. Es wird nun untersucht, wie man das auf der Baustelle (kostengünstig) durchführen kann und dieses „leicht radioaktive“ Material gleich zum Bau der „Atommülldeponien“ wieder verwenden kann.

Nach heutiger Planung, geht man erst in 20 bis 25 Jahren von einem Abtransport radioaktiver Abfälle von der Unglücksstelle (in ein Endlager) aus. Bis dahin muß man deshalb für einen ausreichenden Strahlenschutz auf der Baustelle sorgen. Es müssen deshalb jede Menge provisorischer Abschirmungen gebaut werden.

Maßnahmen gegen das Eindringen von Grundwasser

Im Nachhinein kann man sagen, daß der Bau der Anlage im Grundwasser ein weiterer schwerwiegender Konstruktionsfehler war. Das Kraftwerk mit seiner kompakten Bauweise aus vier Blöcken, besitzt zahlreiche Keller und unterirdische Verbindungskanäle. Diese lagen alle unterhalb des natürlichen Grundwasserspiegels. Um ein aufschwimmen zu verhindern, war deshalb eine permanente Grundwasserabsenkung erforderlich. Die erforderlichen Leitungen und Pumpen wurden durch den Tsunami zerstört. Infolgedessen kam es zu einem schnellen Wiederanstieg des Grundwassers, was zu zahlreichen Bauschäden führte. Heute dringen immer noch ungefähr 400 m3. täglich ein.

Es wurde bereits ein ganzes Bündel Maßnahmen ergriffen, um dieses Problem in den Griff zu bekommen. Durch Grundwasserabsenkung, -umleitung und Abdichtung bestimmter Bodenschichten, konnte bereits das Weiterfließen ins Meer aufgehalten werden. Das Eindringen in die Gebäude kann aber erst verhindert werden, wenn um das gesamte Kraftwerk eine Barriere aus Eis erzeugt worden ist. Man arbeitet bereits daran. Diese Methode ist z. B. im Tunnelbau Stand der Technik.

Strahlenbelastung in unmittelbarer Umgebung

Die Grundstücksgrenze, ist die (juristische) Grenze zwischen zwei Welten: Innerhalb des Zaunes gilt der Arbeitsschutz, außerhalb die allgemeinen Regeln für die Bevölkerung. Die japanische Regierung hat die zulässige zusätzliche Belastung für die Bevölkerung auf 1 mSv pro Jahr festgelegt. Dieser – absurd niedrige Wert – hat auch unmittelbar am Bauzaun zu gelten. Die aktuelle Belastung durch Gase ist praktisch nicht mehr vorhanden, weil praktisch keine Gase mehr austreten. Der „cloudshine“ (Anmerkung: Strahlung, die Richtung Himmel abgegeben wird, wird teilweise durch die Luft zurückgestreut) beträgt ungefähr 1,8 x 10^-8 mSv/a, die direkte Strahlung ungefähr 2,8 x 10^-2 mSv/a und die Belastung durch Atmung und Nahrungsaufnahme ungefähr 1,8 x 10^-4 mSv/a. Wohlgemerkt, 0,0282 mSv für jemanden, der das ganze Jahr unmittelbar am Bauzaun steht! In etwa die Strahlenbelastung eines einzigen Transatlantikfluges nach USA.

Allerdings ist seit etwa April an manchen Stellen die jährliche Strahlenbelastung „dramatisch“ auf 0,4 bis 7.8 mSv angestiegen. Dies ist in der Nähe der Tanks der Fall, in denen die Lake aus der Aufbereitung der „ersten Kühlwässer“ eingelagert wurde. Sie wurde ursprünglich in unterirdischen Behältern gelagert, aber aus Angst vor unentdeckten Undichtigkeiten, in besser kontrollierbare oberirdische Tanks, umgepumpt.

Die IAEA-Kommission empfiehlt daher, für die „Strahlenbelastung der Öffentlichkeit“ eine Person mit realistischen Lebens- und Aufenthaltsbedingungen zu definieren.

Robotereinsatz

Deutlicher kann man den Unterschied zweier Gesellschaftssysteme nicht aufzeigen, wenn man die Aufräumarbeiten in Tschernobyl und Fukushima vergleicht. Welchen Wert ein Mensch im real existierenden Sozialismus hatte, kann man ermessen, wenn man die Bilder der Soldaten betrachtet, die mit bloßen Händen den Kernbrennstoff zurück in den Schlund des Reaktors warfen. In Fukushima schickt man auch nach drei Jahren nicht einmal einen Arbeiter in die Nähe der verunglückten Sicherheitsbehälter! Alle Erkundungen oder Reinigung- und Aufräumarbeiten werden maschinell aus sicherer Entfernung durchgeführt. Wenn man in des Wortes Bedeutung nicht weiter kommt, wird erst ein Roboter oder eine Vorrichtung entwickelt und gebaut. Wenn Geräte aus dem Ausland besser geeignet sind als eigene Entwicklungen, werden sie gekauft. Man denkt asiatisch langfristig und gibt sich selbst eine Zeitvorgabe von 30 bis 40 Jahren. Es wird schön zu beobachten sein, welchen Quantensprung die Automatisierung in der japanischen Industrie allgemein, in einigen Jahrzehnten erreicht haben wird. Hier in Fukushima, ist die Keimzelle für eine Revolution in der Industrie und Bautechnik. Japan scheint wieder einmal die restliche Welt verblüffen zu wollen – diesmal allerdings auf einem friedlichen Gebiet.

Kontrolle des Meeres

Zur Überwachung des Meeres wurden 180 Kontrollstellen für Wasser und Sedimente eingerichtet. Die laufenden Messungen haben ergeben, daß die Einleitungen seit dem Unglück um mehr als fünf Größenordnungen kleiner geworden sind. Die Messungen werden von TEPCO und sechs verschiedenen japanischen Behörden unabhängig und redundant vorgenommen. Hinzu kommen noch zahlreiche Universitäten und Forschungseinrichtungen.

Die Ergebnisse sind allen interessierten Organisationen international zugänglich. Fast alle Daten werden kontinuierlich auf verschiedenen Web-Sites veröffentlicht. Leitgröße ist Cs137. wegen seiner langen Halbwertszeit von 30 Jahren. Seine Konzentration beträgt in der Nähe des Kraftwerks zwischen 1 und 2 Bq/Liter. Wegen der starken Verdünnung durch die Meeresströmungen sinkt es im Küstenverlauf unter 100 mBq/Liter. An entfernteren Küsten sinkt sie unter 1 bis 3 mBq/Liter.

Japan hat 2012 einen zulässigen Grenzwert von 100 Bq/kg für Fisch als Summe aller Cäsium Isotope festgelegt. In Fukushima wurden von 2011 bis 2013, 15144 Proben Meeresfrüchte untersucht, von denen 2016 diesen Grenzwert überschritten haben. Ein Zeichen der positiven Entwicklung ist dabei, daß die Quote von 57,7 % (Mittelwert der Periode April bis Juni 2011) auf 1,7 % im Dezember 2013 gesunken ist. In den anderen Küstenregionen wurden weitere 21 606 Proben im gleichen Zeitraum untersucht. Von denen 174 den Grenzwert überschritten haben. Dort sank die Quote von 4,7 % auf 0,1 %. Die schnelle und örtliche Abnahme zeigt, wie unbegründet die Tatarenmeldungen über eine weltweite Gefährdung gewesen sind. Nur mal so zur Orientierung: Eine einzelne Banane soll etwa 20 Bq in der Form von „natürlichem“ Kalium haben.

Hier wird aber auch deutlich, daß es dem Laien wenig hilft, wenn er mit einem Zahlenfriedhof allein gelassen wird. Die IAEA empfiehlt daher den japanischen Behörden, noch enger mit interessierten Gruppen (Fischer, Händler, Verbraucherschutz, usw.) zusammenzuarbeiten und allgemein verständliche Interpretationen zu entwickeln. Ferner wird empfohlen automatische Meßstationen mit simultaner Übertragung ins Internet einzurichten, um das Vertrauen bei der Bevölkerung zu erhöhen. Außerdem ist die Qualität der Messungen über Ringversuche abzusichern. Inzwischen sind allein mehr als zehn verschiedene japanische Institutionen an den Messungen beteiligt. Meßfehler einzelner Organisationen, könnten von der Öffentlichkeit falsch interpretiert werden.

Das ewige Wasserproblem

In der letzten Zeit schien es etwas still um Fukushima geworden zu sein. Es passiert einfach zu wenig für deutsche „Qualitätsmedien“: Immer noch keine Vögel mit drei Flügeln oder vergleichbares in Sicht. Das einzige, was sich bietet, ist „radioaktiv verseuchtes Wasser“. Bischen Radioaktivität geht halt immer, auch in einem ansonsten langweiligen Wahlkampf.

Was geschah

Das Erdbeben mit seinem Tsunami hat nicht nur das oberirdische Kraftwerksgelände verwüstet, sondern auch unterhalb erhebliche „Veränderungen“ bewirkt. Die gesamte Küstenlinie, auf der das Kraftwerk steht, ist heute etwa einen Meter tiefer gelegen! Für uns Mitteleuropäer, ist so etwas kaum vorstellbar. Logisch ist allerdings, daß nach einem so gewaltigen Schlag, auch unterhalb der Erde nichts mehr so ist, wie es vorher war. Rohre sind geborsten (auch Kernkraftwerke haben Toiletten und Trinkwasseranschlüsse), Kellerwände rissig geworden und Grundwasserleiter verändert. Es mag sich simpel anhören, aber auch der Grundwasserspiegel liegt nun entsprechend höher, da ja der Meeresspiegel gleich geblieben ist. Alles zusammen, führt zu einem beständigen Eindringen von Grundwasser in die „unterirdischen“ Bereiche des Kraftwerks. Bei einer solchen Gemeinschaftsanlage (vier Reaktoren in einer Reihe nebeneinander) kamen noch etliche – teilweise begehbare – Verbindungstunnel hinzu. Nebenbei gesagt, wäre eine solche Konstruktion in (der Bundesrepublik) Deutschland nie genehmigungsfähig gewesen. Trotzdem hat eine ehemalige Pionierleiterin – erfolgreich nach dem Beifall einschlägiger Kreise heischend – aus diesem Unglück den Schluß gezogen, Kernkraftwerke in Deutschland sofort abzuschalten. Vielleicht war es für sie ja wirklich ein verspäteter Beitrittsschock, daß ein solches „Reaktorunglück in einem Hochtechnologieland, wie Japan“ möglich war. Vor der Einfalt jedenfalls, konnte der „Anti-Faschistische-Schutzwall“ offensichtlich auch nicht bewahren.

Der aktuelle Vorfall

Wieder einmal ist eine Leckage bei den Abwassertanks aufgetreten. Diese Zwischenlagerung radioaktiven Wassers entwickelt sich zu einem Dauerbrenner. Bei dem betroffenen Tanklager handelt es sich um 26 genietete Tanks mit jeweils 1000 m. Inhalt. Sie sehen schon so aus, als wenn sie mindestens aus der Vorkriegszeit stammen. Das Tanklager befindet sich auf einem Hügel, etwa 500 m vom Kraftwerk entfernt. Weil die Nähte bereits mehrfach undicht wurden, hat man um jeden Tank ein Auffangbecken aus Beton gebaut. Die Becken hätten auch problemlos das auslaufende Wasser vollständig zurückhalten können, wenn nicht die Überläufe (gegen starke Regenfälle; Taifungebiet) geöffnet gewesen wären! So ist ein Teil ausgelaufen und im Boden versickert. An dieser Stelle ist nun ein Bodenaustausch notwendig. Alles in allem, ein eher peinlicher Vorfall. Für deutsche „Qualitätsmedien“ ein gefundenes Fressen. Aus dem meldepflichtigen Vorfall nach Kategorie 1, wird flugs eine „nukleare Katastrophe“. Ob das einfach nur mangelnde Sachkenntnis oder schiere Boshaftigkeit ist, mag der Leser selbst entscheiden.

Der Weg des Wassers

Nach Schätzungen von TEPCO fließen jeden Tag etwa 1000 m3 Wasser aus den umliegenden Hügeln durch das Kraftwerksgelände. Davon fließen etwa 300 munkontaminiert ins Meer. Weitere 300 m3 fließen unterhalb des Geländes und mischen sich mit dem Grundwasser, welches durch Ebbe und Flut mit dem Hafen ausgetauscht wird. Diese Menge ist entsprechend radioaktiv belastet. Die restlichen etwa 400 m3 dringen durch diverse Risse in die Kanäle, Keller etc. ein und müssen ständig abgepumpt und gelagert werden.

Mit der radioaktiven Belastung ist das so eine Sache: Im Hafen wird praktisch nur Tritium festgestellt. Dies ist auch keinesfalls verwunderlich. Bodenschichten wirken wie Filter, die radioaktive Partikel zurückhalten. Jeder Boden ist ein – mehr oder weniger guter – Ionentauscher, in dem die meisten radioaktiven Stoffe gebunden bleiben und allenfalls nur sehr langsam wieder abgegeben werden. Lediglich Tritium (ein Wasserstoffisotop) bildet „strahlendes“ Wasser und fließt ungehindert mit ins Meer. Die Mengen sind jedoch so gering, daß sie schon außerhalb des Hafens unter der Nachweisgrenze liegen.

Die im Boden gebundene Radioaktivität dürfte wohl kaum in die Biosphäre gelangen. Bei dem Grundwasser im Gelände handelt es sich um Meer- bzw. Brackwasser. Die Nahrungskette über Pflanzen und Tiere dürfte kaum wirksam werden. Sind die Stoffe nicht oder nur schwer löslich, verbleiben sie im Boden. Sind sie leicht löslich, werden sie im offenen Meer sehr schnell verdünnt und stellen somit auch kaum ein Strahlenrisiko dar. Die ohnehin im Meer vorhandenen radioaktiven Stoffe (Uran, Kalium etc.) überwiegen.

Die Gegenmaßnahmen

Es sind zwei Quellen zu verstopfen: Der Zufluß von Grundwasser auf das Gelände und die Leckagen aus den Reaktoren. Als weitere Maßnahme bietet sich die Abdichtung gegen das Meer an.

Die Eindämmung des Zuflusses von Grundwasser ist schon recht weit fortgeschritten. Man führt oberhalb des Geländes eine permanente Grundwasserabsenkung mit Brunnen durch und hat Bypässe geschaffen, die das Regenwasser an dem Gelände vorbei führen. Durch diese Maßnahmen hat sich der Zufluß von Grundwasser in die Gebäude beträchtlich verringert. Hafenseitig ist eine Abdichtung der wasserführenden Schichten in Arbeit und ebenfalls eine Grundwasserabsenkung mit 30 Pumpen im Bau. Durch die Kombination aus Verstopfung der porösen Schichten mittels Wasserglas und Grundwasserabsenkung soll der Wasseraustausch mit dem Hafen unterbrochen werden. Zur Zeit wird der tägliche Austausch auf 35 m3/Tag geschätzt. Ferner wird untersucht, ob es sich lohnt, den Boden unterhalb des kompletten Kraftwerks bis in eine Tiefe von 40 m einzufrieren. Dieser Eisblock würde eine sichere Abdichtung herstellen, die für die gesamte Zeit bis zu einem sicheren Einschluß(geschätzt 10 Jahre) aufrecht erhalten werden könnte. Dieses Verfahren wird z. B. im Tunnelbau seit Jahrzehnten genutzt.

Der Eispanzer würde gleichzeitig das Auslaufen von radioaktivem Wasser aus den Gebäuden und das Eindringen von Grundwasser verhindern. Viel schwieriger ist die Bekämpfung der Quelle: Letztendlich muß sie durch die Entfernung des Brennstoffes aus den Reaktorruinen beseitigt werden. Bis dahin, müssen die Leckagen im Sicherheitsbehälter gefunden und abgedichtet werden.

Inzwischen weiß man, daß der größte Teil der Lecks unterhalb des Wasserstandes im Sicherheitsbehälter liegt. Das erschwert die Sache erheblich: Das Wasser ist trübe und an diesem Ort herrscht eine sehr hohe Strahlung. Die Arbeiten können deshalb nicht durch Menschen ausgeführt werden. Außerdem müssen die Abdichtungen in strömendem Wasser durchgeführt werden, da bis auf weiteres, die Kühlung der Brennelemente gewährleistet bleiben muß. Wenn es gelingt, den Ringraum der Kondensationskammer und den unteren Teil des Reaktordruckbehälters abzudichten, kann kein radioaktives Wasser mehr in das Gebäude auslaufen und man erhält wieder einen einfach kühlbaren „geschlossenen Kreislauf“. Bisher existieren aber bestenfalls Ansätze einer Lösung.

Das radioaktive Wasser

Inzwischen lagern bereits große Mengen kontaminierten Wassers auf dem Gelände. Bis zum Jahr 2015 rechnet man mit 700.000 m3. . Die Bandbreite geht dabei von stark belastet, bis kaum noch belastet. So hat man eine Pfütze gefunden, die mit 100 mSv pro Stunde gestrahlt hat. Zur Zeit wird von Toshiba eine MRRS (Multi Radionuclide Removal System) Anlage errichtet. Sie wird das Wasser voll entsalzen und soll die radioaktiven Stoffe bis unter die Nachweisgrenze entfernen. Eine eher fragwürdige Angelegenheit. Trinkwasserqualität täte es auch. Von handelsüblichen Mineralwässern gar nicht zu reden. Aber die Japaner scheinen in eine Art von Büsserritual verfallen zu sein. Dies zeigt sich schon bei der Dekontaminierung der derzeitigen Sperrbezirke. Eine Rückkehr ist nur erlaubt, wenn die Dosisleistung kleiner als 20 mSv/Jahr ist. In vielen Gegenden Japans ist die natürliche Strahlenbelastung höher. Vielleicht sollte man aber einfach nicht vergessen, daß so niedrige Grenzwerte zu Milliardenumsätzen bei einschlägig tätigen Firmen führen.