Immobilisierung von Pu & Co

Alle radioaktiven Stoffe sind erst richtig gefährlich, wenn sie in den Körper aufgenommen werden. Solange sie sich außerhalb befinden, ist eine Abschirmung recht einfach möglich. Für eine „Inkorporation“ sind drei Wege ausschlaggebend: Über die Atemluft, Trinkwasser und Nahrung. Solange sie also gar nicht in die „Biosphäre“ gelangen, können sie auch keinen Menschen schädigen oder sich dort anreichern. Andersherum war dies der Grund, warum man sich recht früh auf ein „Teststoppabkommen“ in der Atmosphäre geeinigt hat. Es wurden über 2000 Kernwaffentests international durchgeführt. Durch die Zündung von Kernwaffen in der Atmosphäre wurden zig Tonnen Uran, Plutonium und Spaltprodukte über die gesamte Erde verteilt. Auch das wieder als Hinweis, wie schamlos die Propaganda von Greenpeace und Konsorten bezüglich „Atommüll“ ist, von denen ja wenige Gramm ausreichen sollen, die ganze Menschheit auszurotten.

Eine vorübergehende Lagerung

Plutonium wird z. B. in den USA in Fässern aus Edelstahl gelagert. Diese Fässer sind etwa 90 cm hoch und haben einen Durchmesser von 50 cm und beinhalten eine Portion von jeweils etwa 4,4 kg Plutonium. Wegen dessen hoher Dichte eine sehr „luftige“ Verpackung. Dies geschieht aus Sicherheitsgründen, damit auf jeden Fall eine Kettenreaktion verhindert wird. Diese Fässer stehen in ständig überwachten Bunkern. Selbst die kleinste Undichtigkeit würde sofort erkannt werden.

Alle Transurane sind nur schlecht wasserlöslich. Eine Verbreitung über große Strecken ist schon deshalb ausgeschlossen. Dies ist nicht nur eine theoretische Überlegung, sondern auch in unfreiwilligen Großversuchen betätigt: In den Anfangsjahren der Kernwaffenproduktion hat man die gesamte Brühe (Spaltprodukte, Minore Aktinoide usw.) einfach in unterirdischen Tanks (Abschirmung) gelagert. Teilweise sind diese undicht geworden und ein Teil der Ladung ist im Boden versickert. Man verfügt deshalb über jahrzehntelange Messreihen zur Ausbreitung aller Spaltprodukte und von Plutonium im Erdboden. Im Laufe der Jahrzehnte hat sich in diesen Tanks eine Schlammschicht aus „Atommüll“ abgelagert. Diese wird nun kostspielig beseitigt und für eine Endlagerung im WIPP umgeformt. Vor dem Transport zum WIPP werden sie verglast und in endlagerfähige Behälter aus Edelstahl abgegossen.

Die Verglasung

Glas ist ein sehr haltbarer Werkstoff. Wir finden heute noch Glasscherben aus der Antike, die aussehen, als wären sie erst gestern hergestellt worden. In der Fischerei werden deshalb z. B. Glaskugeln als Schwimmkörper eingesetzt. Sie halten Salzwasser und hohen Drücken über Jahrzehnte stand. Zudem ist Glas auch noch billig und einfach (Automatisierung) herstellbar. Jahrzehntelang hat man weltweit Spezialgläser entwickelt, die ein besonders hohes Rückhaltevermögen für Spaltprodukte und Transurane besitzen.

Der plutoniumhaltige Abfall wird kalziniert (bei hohen Temperaturen gebrannt um alle chemischen Verbindungen aufzubrechen und das Kristallwasser auszutreiben) und gemahlen. Parallel wird in einem Schmelzofen eine Glasfritte erzeugt, in die der Abfall eingestreut wird. Der Abfall löst sich wie Zucker im heißen Tee gleichmäßig im flüssigen Glas auf. Je nach Abfallzusammensetzung kann man etwa 20 bis 30% Abfall auflösen. Ist die Mischung homogen, wird sie in Edelstahlbehälter abgegossen. Da Glas eine „unterkühlte Flüssigkeit“ ist, erhält man auch im erkalteten Zustand einen homogenen „Abfallblock“.

Die Abfallmenge, die bisher verglast und bis 2009 in der WIPP eingelagert wurde, enthielt etwa 4,5 to Plutonium. Weitere 17 to stark verunreinigtes Plutonium sind ebenfalls zur direkten Endlagerung in der WIPP vorgesehen.

Bildung von synthetischem Gestein

Eine weitere Methode — die besonders für Plutonium — geeignet erscheint, geht genau einen anderen Weg: Man stellt einen synthetischen Stein her (SynRoc) in dessen Kristallgitter das Plutonium fest eingebaut ist. Diese künstlichen Steine sollen noch einmal um den Faktor eine Million weniger löslich sein als Glas. Man hat in verschiedenen Einrichtungen in den USA und in der Wiederaufbereitungsanlage in Sellafield (GB) mehrere to Plutonium mit dieser Methode eingeschlossen. Es handelt sich dabei um jeweils kleine Mengen Plutonium aus verschiedenen Forschungsprogrammen. Es lohnt nicht, diese „geringen Mengen“ aufwendig mit Spezialverfahren aufzubereiten. Es ist zumindest wirtschaftlicher, diese Mengen mit ins Endlager zu geben.

Bei dem SynRoc-Verfahren wird ein Gestein auf der Basis von ausgewählten Titanaten hergestellt. Diese werden in der richtigen Mischung mit Wasser vermahlen und das Plutonium (bis 30%Gew) zugesetzt. Dieser Schlamm wird getrocknet und bei 750°C kalziniert um ein feines Pulver zu erhalten. Dieses Pulver wird auf einer automatischen Abfüllanlage in kleine, hantelförmige Edelstahldosen abgefüllt, die sofort verschweißt werden. Der entscheidende Verfahrensschritt ist nun ein heißisostatisches Pressen: Die „Hanteln“ werden acht Stunden lang bei 1300°C und einem Druck von 1000 bar gesintert. Heraus kommen schwarze, gesteinsartige Zylinder.

Zurück zur Abrüstung

Wie schon ausgeführt, ist die Lagerung von Plutonium kein großartiges Problem. Das Problem bei reinem Pu239 ist vielmehr, daß man es jederzeit wieder zum Bau neuer Kernwaffen verwenden kann. Das Sicherheitsproblem ist also nicht der Strahlenschutz, sondern der „Diebstahlschutz“. Die National Academy of Sciences erschuf den „Selbstschutz-Standard durch γ-Strahlung“ auf der Basis von „abgebrannten Brennelementen“. Fast das gesamte Strahlungsfeld wurde auf den Zerfall von Cesium-137 mit einer Halbwertszeit von 30 Jahren bezogen.

Nachdem man langsam zu der Erkenntnis gelangte, daß das Mischoxid-Programm völlig aus dem Ruder lief, hat die Obama-Administration 2014 folgende Alternativen vorgeschlagen:

  1. Verdünnung des Plutoniums mit noch vorhandenem Restmüll und anschließende Einlagerung im WIPP.
  2. Der „can in canister“ Ansatz zur Einlagerung in hochaktivem Glas.
  3. Entsorgung in 5000 m tiefen Bohrlöchern, und
  4. Bestrahlung in einem natriumgekühlten Reaktor mit schnellem Neutronenspektrum.

Die Verdünnung

Die Verdünnung des Plutoniums durch die Auflösung in noch vorhandenem Restmüll aus der Wiederaufbereitung kann man wohl nur als Schnapsidee bezeichnen. Man erzeugt damit wieder besonders langlebigen „Atommüll“. Zum Glück hat man nur noch kleine Mengen unverglasten Restmüll in den Labors übrig, die nicht ausreichen werden um das „Überschuss Plutonium“ auf diese Art zu beseitigen. Allenfalls geringe Mengen — die auf irgendeine Art besonders schwer zu behandeln sind — sind so gegen Diebstahl zu schützen.

Eine Abwandlung dieses Weges hat das Energieministerium (DOE) schon 2011 beschritten: Über 580 kg Plutoniumoxid Pulver aus den Labors der Savannah River Site wurden mit einem geheimgehaltenen Stoff gemischt, der angeblich besonders schwer wieder zu trennen ist. Diese Mischung — mit einem Anteil von 10% Plutonium — wurde in Rohre von 15 cm Durchmesser abgefüllt, die wiederum einzeln in 200 l Fässern eingeschlossen wurden (“pipe-overpack containers”). Der Gehalt an Plutonium pro Faß wurde auf höchstens 175 gr begrenzt.

Würde man den Gehalt pro Faß auf 340 gr Plutonium erhöhen, wären für 50 to Plutonium rund 150 000 Fässer nötig. Eine — von derzeit sieben Kammern im WIPP Endlager— könnte 90 000 Fässer aufnehmen. Ursprünglich betrug das genehmigte Einlagerungsvolumen für das WIPP 176 000 m3 für Abfall mit Transuranen. Eine Genehmigung für eine Erweiterung ist in Arbeit.

Die Kritik von Sicherheitsexperten über diese Methode zur Einlagerung von waffengrädigem Plutonium ist nicht ganz von der Hand zu weisen: Für den Bau einer „Nagaski Bombe“ wären etwa 20 solcher „Rohre“ mit den Abmessungen von 15 cm Durchmesser und 60 cm Länge nötig. Bei einer Stückzahl von 150 000 Stück, mit diversen verteilten Produktions- und Lagerstätten eine extrem geringe Anzahl. Die bewegt sich schon in in der Größenordnung vorgekommener Buchung- und Bilanzierungsprobleme. Selbst ein reiner Papierverlust wäre eine Katastrophe in der öffentlichen Wahrnehmung.

Das Dose in Kanister Verfahren

Aus dem „Selbstschutz-Gedanken“ wurde das „can in canister“ Verfahren entwickelt. Man mischt etwa 10% Plutonium mit speziellen Stoffen, die besonders schwer trennbare chemische Verbindungen mit ihm eingehen, presst dieses Pulver in Scheiben und sintert diese zu Keramik. Das ergibt die „Immobilisierung“. Diese Scheiben werden in Dosen von etwa 6 cm Durchmesser und 25 cm Höhe gefüllt. Jede dieser Dosen enthält etwa 1 kg Plutonium. Jeweils 28 Dosen kommen in einen Kanister von etwa 3 m Kantenlänge und werden mit flüssigem, strahlenden Glas aus der Beseitigung von hochaktivem „Atommüll“ umgossen. Für die geplant 50 to „Überschussplutonium“ werden also 1800 solcher Kisten benötigt. Genau das ist aber das Problem: Die USA haben gar nicht mehr solche Mengen unbehandelten hochaktiven Müll zur Verfügung.

Das Energieministerium (DOE) hat als Standard für eine „Selbstsicherung“ bei solchen Kanistern eine Strahlendosis von 1 Sv pro Stunde in einem Abstand von einem Meter in 30 Jahren nach der Befüllung definiert. Man würde deshalb für die Kanister über 1,221×1018 Bq Cäsium-137 (rund 225 kg) benötigen. Zur Orientierung: Bei der Tschernobyl-Katastrophe soll eine Aktivität von etwa 8,5×1016 Bq Cs137 freigesetzt worden sein.

Bohrlöcher

Seit Jahrzehnten gibt es den Vorschlag „Atommüll“ in tiefen Bohrlöchern (ca. 3000 bis 5000 m tief) einzulagern. Dahinter steckt der Grundgedanke: Tiefe = langer Weg bis zur Oberfläche = lange Zeitdauer. Die angepeilte Tiefe ist etwa die zehnfache Tiefe von bergmännischen Endlagern. Diese große Tiefe stellt eine zusätzliche Sicherheit vor der „Wiedergewinnung“ des „Waffen-Plutoniums“ dar.

Es wurden bereits Demonstrations-Bohrungen durchgeführt und über 110 Standorte in den USA bewertet. Kriterien waren unter anderem: Entfernung zu Siedlungsgebieten, das Vorhandensein von kristallinem Grundgestein ab 2000 m Tiefe, flacher Verlauf der Schicht, geringer geothermischer Wärmestrom und geringer Vulkanismus.

Diese Form der Endlagerung geht davon aus, daß es mindestens drei Gründe gibt, warum ein natürlicher Transport durch Wasser bis an die Oberfläche nahezu ausgeschlossen ist — selbst wenn das Plutonium sich aufgelöst hat:

  1. Der gewaltige Gebirgsdruck in solchen Tiefen schließt etwaige Risse und Spalten sehr schnell, sodaß es nur zu sehr geringen Strömungen von Wasser kommt.
  2. Plutonium hat nur eine äußerst geringe Löslichkeit in solch sauerstoffarmen Tiefenwasser.
  3. Tiefenwasser ist meist mit Mineralien und Salzen gesättigt, was eine hohe Dichte zur Folge hat. Es gibt deshalb wenig Auftrieb, der es überhaupt mit eher oberflächennahem „Trinkwasser“ in Kontakt bringen könnte.

Die Bohrungen sollen auf die Mindesttiefe plus einem zusätzlichen Stück zur Einlagerung abgeteuft werden. Studien haben ergeben, daß so ein „Lagerraum“ von etwa 40 m3 pro Bohrung (Enddurchmesser ca. 16 cm) geschaffen werden kann. Nach Einlagerung wird die Bohrung wieder sorgfältig verfüllt. Ein erprobter Vorgang bei zig Tausend Bohrungen in der Öl- und Gasindustrie.

Bisher ist diese Methode an zu hohen Kosten gescheitert. Allerdings hat die Bohrtechnik in den letzten Jahren einen sehr rasanten Fortschritt erlebt. Inzwischen gibt es sogar schon Studien über horizontale Bohrungen in geeigneten Schichten. Man geht von einem dramatischen Verfall der Kosten aus. In Verbindung mit der ebenfalls rasanten Entwicklung von Robotern, ein durchaus vielversprechender Ansatz auch für die Endlagerung von besonders hochaktivem „Restmüll“.

Beseitigung in Reaktoren .

In diesem Blog ist schon vieles über Reaktoren mit schnellem Neutronenspektrum geschrieben worden. Man kann nur hoffen, daß auch die USA den Mut haben, diesen Weg einzuschlagen. Ein guter Start wäre der Bau z. B. eines PRISM als Demonstrationsreaktor für die Beseitigung von überschüssigem Waffen-Plutonium in der Hand des Energieministeriums. Vieles könnte unter den militärischen Bedingungen der Kernwaffenproduktion schnell und problemlos durchgeführt werden. Milliarden Dollar sind durch die ohnehin bereitzustellenden Beseitigungskosten unter dem politischen Druck der Abrüstungsverträge vorhanden. Der Demonstrationsreaktor wäre — ähnlich der Geschichte des Druckwasserreaktors als Antrieb für U-Boote — sehr schnell und kostengünstig in eine zivile Anwendung überführbar. Ist dies vielleicht der wahre Grund, warum „Atomkraftgegner“ so verbissen an der direkten Endlagerung fest halten?

Notbremse gezogen?

Anfang Mai schrieb der „Energieminister“ (US Energy Secretary Rick Perry) der USA eine Mitteilung an sein Parlament (Congress), daß er im Grunde den Bau der Anlage zur Produktion von Mischoxid-Brennelementen (MOX) in Savannah River Site in South Carolina abgebrochen habe. Die Anlage ist bereits zu 70% fertiggestellt und sollte aus 34 to waffengrädigem Plutonium Brennstoff für Leichtwasserreaktoren herstellen.

Die Vorgeschichte

Bereits vor dem Zusammenbruch der Sowjetunion setzte ein gewaltiges Abrüstungsprogramm zwischen den USA und Russland ein. Letztendlich wurden im Rahmen des ersten Vertrages zur Verringerung strategischer Waffen (START I) tausende Raketen und Sprengköpfe auf beiden Seiten vernichtet. Damit saß jeder der beiden Vertragspartner auf zig Tonnen waffengrädigem Materials, aus dem man zehntausende von neuen Sprengköpfen hätte bauen können. Im Zeitalter des aufkeimenden Terrorismus eine äußerst unbehagliche Situation, zumal die Sowjetunion in Auflösung begriffen war.

Die Mengen an hochangereichertem Uran stellten nur ein kleines Problem dar: Sie wurden mit abgereichertem Uran auf die Gehalte für Brennstoff verschnitten und nach und nach in Kernkraftwerken zur Stromerzeugung verbraucht. Gleichwohl waren die Mengen so gewaltig, daß für Jahre der Markt für Natururan nahezu zusammenbrach. Für sich genommen schon ein gewaltiger Schaden für die Uranbergwerke.

Ganz anders verhielt es sich mit dem Plutonium. Jeder der beiden Vertragspartner verfügte nun über einen Überschuß von 34 to waffengrädigem Plutoniums, der irgendwie aus der Welt geschafft werden mußte. Um zu verstehen, warum das gar nicht so einfach ist, muß man sich etwas näher mit Plutonium beschäftigen.

Das besondere Plutonium

Plutonium ist ein chemisches Element mit der Ordnungszahl 94 (94 Protonen im Kern), welches faktisch nicht in der Natur vorkommt. Es kann zwar in verschiedene chemische Verbindungen mit verschiedenen chemischen Eigenschaften überführt werden, nicht aber auf chemischen Wegen wieder aus der Welt geschafft werden. Es kommt in zahlreichen Isotopen (unterschiedliche Anzahl von Neutronen im Kern) — von Pu236 bis Pu244 — mit jeweils eigener Halbwertszeit und eigenem Einfangquerschnitt für Neutronen vor. Die einzige Möglichkeit es wieder aus der Welt zu schaffen, ist es mittels Neutronen zu spalten oder wenigstens in andere Isotopen um zu formen.

Schon in den Anfängen der Entwicklung von Kernwaffen hat man erkannt, daß Pu239ein idealer Kandidat für den Bau von Kernwaffen ist. Es ist recht einfach und preiswert in „speziellen Reaktoren“ in beliebigen Mengen aus Natururan herstellbar und es besitzt ein Optimum aus „Lebensdauer“ und Einfangquerschnitt im auftretenden Energiespektrum einer Kernexplosion.

Jede Kernwaffe altert durch spontane Zerfälle. Je kürzer die Halbwertszeit des Materials ist, desto schneller ist die Kernwaffe unbrauchbar. Jeder Kern, der schon zerfallen ist, steht für die Kettenreaktion im Ernstfall nicht mehr zur Verfügung. Dies ist leicht einsichtig. Jeder Spontanzerfall löst aber eine ganze Kette weiterer radioaktiver Produkte aus. Jedes Glied hat eigene, energieabhängige Einfangquerschnitte. Vereinfachend gesagt, viele verbrauchen nur Neutronen, die für eine Kettenreaktion nicht mehr zur Verfügung stehen können. Im Extremfall bricht die „Explosion“ sehr schnell in sich zusammen.

Der Zweck einer Kernwaffe ist Zerstörung (Druckwelle, Feuerball und Strahlung). Dafür braucht man eine hohe Leistung (Energie pro Zeiteinheit). Mit einfachen Worten: Man muß möglichst viele Kerne (ungefähr 200 MeV pro Spaltung) in nahezu „Null Sekunden“ spalten. Das Geheimnis des Bombenbaues liegt nun in der Beherrschung der Kettenreaktion: Mit jeder Spaltung werden weitere Neutronen frei, die von Generation zu Generation (jeweils etwa Verdoppelung) immer noch mehr Kerne spalten könnten — wenn sie nicht parasitär weggefangen werden oder den Ort des Geschehens einfach mit hoher Geschwindigkeit verlassen würden ohne überhaupt jemals einem spaltbaren Kern begegnet zu sein. Insbesondere für diesen „Verlust von Neutronen durch Austritt“ ist die schnelle Ausdehnung des Spaltmaterials durch die entstehende Hitze verantwortlich.

Waffengrädiges- oder Reaktorplutonium?

Von „Atomkraftgegnern“ wird immer wieder behauptet, man könne auch aus Reaktorplutonium „Bomben bauen“. Man möchte damit Plutonium aus der Wiederaufbereitung von Brennelementen aus Leichtwasserreaktoren gefährlicher erscheinen lassen, als es in Wirklichkeit ist. Bestenfalls steckt dahinter Wortklauberei. Natürlich kann man mit großem Aufwand unter Laborbedingungen auch mit Reaktorplutonium eine Kettenreaktion auslösen — bloß bringt man damit keine Fensterscheibe zum wackeln. Deshalb ist auch noch keiner so bescheuert gewesen, mit gewaltigem Aufwand eine „Atombombe“ aus Reaktorplutonium zu bauen, die trotzdem nur einem Knallfrosch gleicht, wenn er mit geringstem Aufwand aus Natururan waffengrädiges Plutonium erzeugen kann.

Damit ist auch ein Weg aufgezeigt, wie man „altes Bombenplutonium“ dauerhaft und sicher beseitigen kann. Setzt man es als Brennstoff in Leistungsreaktoren ein, wird dadurch ein erheblicher Teil der Ursprungsmenge „verbrannt“ und gleichzeitig der Rest durch die Bildung von anderen Isotopen verdorben. Denn nicht jeder Kern Pu239 wird durch das Einfangen eines Neutrons gespalten, sondern wird teilweise bloß in ein anderes Isotop (Pu240, Pu241 usw.) umgewandelt. Man kann das mit dem vergällen von trinkbarem Alkohol vergleichen: Der Zusatz von geringen Mengen ähnlicher Stoffe macht aus einer großen Menge Genussmittel einen für Menschen giftigen Industriealkohol. Der Trick ist der Gleiche: Der Aufwand zur Trennung wäre um ein vielfaches höher, als die erneute Herstellung von Trinkalkohol.

Grundsätzlich kann man „überschüssiges Bombenplutonium“ in schnellen Reaktoren oder in konventionellen Leichtwasserreaktoren einsetzen. Effektiver ist der von Rußland eingeschlagene Weg der Herstellung von Brennstoff für einen natriumgekühlten Reaktor mit schnellen Neutronen: Man kann größere Anteile (schnelle Reaktoren über 20%, LW bis rund 8%) verwenden. Dies vereinfacht schon mal die notwendige Überwachung bei der Produktion. Durch eine angepaßte Fahrweise (nicht die Energieerzeugung steht im Vordergrund, sondern die Erzeugung ungeeigneter Isotope) kann man recht schnell große Mengen Plutonium für eine Waffenproduktion dauerhaft unbrauchbar machen. So gibt es beispielsweise ein Konzept — bestehend aus zwei PRISM-Reaktoren — innerhalb von nur zwei Jahren alle Überschussbestände in Großbritannien für eine Waffenproduktion unbrauchbar zu machen. Elektrische Energie könnten diese Reaktoren mit diesem Plutonium dann trotzdem noch viele Jahrzehnte weiter produzieren.

Der Weg über MOX

Üblicherweise setzt man in Kernkraftwerken einen Brennstoff aus (nur) angereichertem Uran ein. Man kann aber auch einen Brennstoff aus einer Mischung aus Uranoxid und Plutoniumoxid verwenden. Keine neue Erfindung. Bereits 1972 wurde in Deutschland (!) erfolgreich ein Mischoxid in einem Reaktor verwendet. Heute sind rund 5% aller verwendeten Brennelemente weltweit vom Typ MOX. Führend in dieser Technologie ist mit großem Abstand Frankreich. Ursprünglich wollte man damit den Verbrauch von Natururan strecken. Es war daher nicht abwegig, über diese Schiene auch das „Überschuß-Plutonium“ aus der Rüstung vernichten zu wollen. Nur mußte aus politischen Gründen (Proliferation und Verträge mit Rußland) in USA erst einmal eine neue Anlage gebaut werden. Und damit nahm das Verhängnis seinen Lauf…

Wenn man eine verfahrenstechnische Großanlage in Auftrag gibt, sollte man vorher wissen, welches Produkt man eigentlich herstellen will, welche Vorschriften im eigenen Land gelten und welchen Rohstoff man genau einsetzen muß. Ganz offensichtlich für Politiker (per Eigendefinition Alleskönner) und öffentliche Verwaltungsapparate (zumindest, wenn sie sich auf einem neuen Gebiet bewegen sollen) eine unlösbare Aufgabe. Wie immer, wurde erst einmal — im Bewußtsein kein eigenes Geld, sondern das Geld der Steuerzahler zu verschwenden — eine Anlage für den Durchsatz von 3,5 to Plutonium pro Jahr bei Areva für 2,7 Milliarden Dollar in Auftrag gegeben. Baubeginn war 2007 mit einer geplanten Fertigstellung im Jahr 2016.

Nachdem der Baubeginn bereits erfolgt war, stellte man fest, daß der spezielle Eingangsstoff — besagtes Waffenplutonium zur Vernichtung in Leichtwasserreaktoren — anders, als das übliche Plutonium — Plutonium aus französischer Wiederaufbereitung von Kernbrennstoff— war. Flugs mußte noch ein kompletter zusätzlicher Verfahrensschritt zur Entfernung von Verunreinigungen eingeführt werden. Die Anlage — fast genau so groß, wie die bereits im Bau befindliche — wurde verniedlichend „Aqueous Polishing“ genannt. Die geplante Fertigstellung verschob sich auf 2019 und die geplanten Kosten schossen auf 4,9 Milliarden Dollar hoch.

Im Jahre 2012 führte man eine Untersuchung durch und aktualisierte die Kostenschätzung auf 7,7 Milliarden. Eine weitere Untersuchung im Jahre 2016 ergab eine Kostenschätzung von 17,2 Milliarden und eine Inbetriebnahme nicht vor 2025. Wie bei öffentlichen Projekten üblich — wir kennen das vom Flughafen BER in Berlin — wurschtelt man weiter vor sich hin. Jährlich versickerten zwischen 350 und 500 Millionen Dollar aus diversen Haushaltstiteln in diesem Sumpf. Ein schönes Auftragsvolumen, für das man schon etwas für die Politik tun kann.

Die Programmkosten

Mit dem Bau der Anlage ist es aber noch nicht getan. In einer Marktwirtschaft muß man auch noch Kunden für das Produkt finden. In diesem Fall, wegen der geltenden Abrüstungsverträge, ausschließlich in den USA. Die Kernkraftwerke in den USA müssen aber Genehmigungen für den Betrieb mit MOX-Brennelementen besitzen. Sie müssen geprüft und umgebaut werden. Mit anderen Worten, im Moment würden die Betreiber die Brennelemente nicht einmal geschenkt nehmen. Lange Rede, kurzer Sinn, das Energieministerium schätzt die Gesamtkosten für das Programm auf 50 Milliarden Dollar. Das entspricht einem Preis von über 1,4 Millionen Dollar für jedes Kilogramm Waffenplutonium. Selbst wenn man die Anlagen noch für andere Zwecke nutzen kann, ist das ein Irrsinn.

Dieser Vorgang zeigt sehr schön, was geschieht, wenn man Politikern solche komplexen technischen Herausforderungen überläßt. Man muß nur so ein verrücktes Programm starten und erschließt sich damit eine sprudelnde Geldquelle: In diesem Fall mit ursprünglich „etwa 1 Milliarde für ein tolles Abrüstungsprogramm“ oder einer „Eiskugel für eine Energiewende“ bei uns. Sind erstmal genug Laiendarsteller auf den Zug aufgesprungen, kann man sie beliebig ausquetschen. Der Politiker steht vor der Alternative: Ich verbrenne weiterhin das Geld fremder Leute (sprich unsere Steuern) oder gebe zu, gar nicht allwissend zu sein, was das Ende der eigenen Karriere bedeutet. Solche „Steuergelder-Verbrennungsanlagen“ werden erst gestoppt, wenn Kräfte an die Regierung kommen, die bisher nicht im etablierten Machtapparat tätig waren. Dies geschah mit der Wahl von Donald Trump zum 45. Präsidenten der USA, der schon in seinem Wahlkampf lieber vom „Sumpf“ sprach und ungern das etablierte Synonym „Washington“ benutzte.

Wie geht’s weiter

Allerdings ist mit dem Baustopp der Anlage noch lange nicht das Problem beseitigt. Dabei ist das Plutonium selbst das geringste Problem: Es schlummert weiterhin in den Tresoren vor sich hin. Was drückt, sind die Abrüstungsverträge mit Russland. Im Moment herrscht ein seltsames gegenseitiges „Wegsehen“: Die USA kommen nicht mit der Vernichtung ihres „Überschussplutonium“ voran, dafür regt man sich nicht sonderlich über den Bruch des Abrüstungsabkommens über Mittelstreckenwaffen (Landgestützte Cruise missile mit „Atomsprengköpfen“) durch Putin auf.

Es muß also eine Lösung her. Zumindest über einen weiteren Ansatz, wird hier demnächst berichtet…

Trump kündigt das „Iranabkommen“

Für manche in Deutschland ist es wie eine Bombe eingeschlagen: Trump hat den „Joint Comprehensive Plan of Action“ nicht mehr verlängert. Dies ist schon die erste wichtige Feststellung: Es hat sich nie um einen völkerrechtlichen Vertrag – wie z. B. die zahlreichen Abrüstungsabkommen mit Rußland – gehandelt, sondern viel mehr um eine „Bekundung“ des vorhergehenden Präsidenten Obama. Für eine Ratifizierung des US-Parlaments hat es nie gereicht, denn es hat schon immer zahlreiche Kritiker gegeben. Dies sei schon einmal vorab allen gesagt, die reflexartig auf den Präsidenten Trump einprügeln – sei es aus Unkenntnis oder tiefer linker Gesinnung. Deshalb mußte dieses seltsame Abkommen vom jeweiligen Präsidenten turnusgemäß verlängert werden. Auf jeden Fall eine Gewissensentscheidung, wie sie einsamer nicht zu treffen ist. Präsident Trump hat sich die Entscheidung wahrlich nicht leicht gemacht, hat er doch bisher jedesmal verlängert. Er hat aber auch bei jeder Verlängerung eindringlich auf seine Bedenken aufmerksam gemacht und damit dem Mullah-Regime die Hand für Verhandlungen gereicht. Was kam, war jedesmal eine schroffe Ablehnung. Die Mullahs haben sich gründlich verzockt. Präsident Trump ist kein Jimmy Carter und auch kein Obama. Man mag es nicht glauben, wenn man ausschließlich GEZ-Verlautbarungen hört: Präsident Trump ist ein Mann mit klaren Überzeugungen – egal ob man sie mag oder nicht. Auch in dieser Frage ist er seit seinen Wahlkampfbekundungen keinen Millimeter von seinen Aussagen abgewichen. Es wäre gerade unserer selbsternannten „Führungselite“ dringend angeraten, endlich einmal aufmerksam zu zu hören. Nicht Präsident Trump ist unberechenbar, sondern die „Politikerkaste“, deren oberster Karrieregrundsatz „was kümmert mich mein Geschwätz von gestern“ ist. Präsident Trump macht das, von dem er überzeugt ist und nicht das, was unsere Realitätsverweigerer glauben was er machen sollte.

Was ist so schlecht an diesem Abkommen?

In diesem Blog ist bereits schon bei der Verabschiedung dieses Abkommens ein kritischer Artikel erschienen. Eine alte Geschäftsweisheit lautet: Ein gutes Geschäft ist nur eines, was für beide Seiten ein gutes Geschäft ist. Übertragen auf dieses Abkommen kann man sagen, daß es ausschließlich für Iran ein gutes – um nicht zu sagen Bombengeschäft war. Für den gesamten Nahen Osten eine einzige Katastrophe und für Israel eine existenzielle Bedrohung. Warum eine so eindeutige Feststellung: Iran hat den Bau von Kernwaffen nur um wenige Jahre verschoben. Bei Lichte besehen, nicht einmal das. Betrachtet man das System aus Kernwaffe und Rakete, hätte Iran ohne das Abkommen keinesfalls schneller zum Ziel kommen können. Eher im Gegenteil. Für dieses Stück Papier hat es jedoch irgendwo zwischen 100 und 200 Milliarden US-Dollar kassiert: Freigabe von gesperrten Konten, Ölverkäufe etc. Überraschung, es hat dieses Geld nicht zum Nutzen der eigenen Bevölkerung eingesetzt, sondern für eine beispiellose Aufrüstung und zur Finanzierung des Terrorismus. Mullahs ticken halt sehr viel anders, als idealistische europäische Friedensengel. Wie groß wäre wohl die Bedrohung von Israel und Saudi Arabien durch iranische Raketen und die Anzahl der Opfer in Jemen und Syrien ohne diesen „Geldsegen“ gewesen? Wer glaubte, die Welt hätte aus der Erfahrung des „Münchener Abkommens“ gelernt, ist bitter enttäuscht worden. Diktatoren mit Sendungsbewusstsein lassen sich nicht durch gut gemeinte Gesten von ihrem Kurs abbringen. Getrieben durch religiöse Wahnvorstellungen sind sie in der Lage, ganze Völker auszurotten. Im Zusammenhang mit Israel alles andere als eine Übertreibung. Gerade als Deutsche haben wir die Pflicht, solche Diktatoren und ihre .– ständig wiederholten – Aussagen ernst zu nehmen. Wir haben es uns schon einmal vorgemacht, daß ein gewisser Adolf Hitler alles nicht so ernst meint. Am Ende dieser Selbsttäuschung stand dann Auschwitz.

Der Zusammenhang mit Nord-Korea

Es gibt einen wesentlichen Unterschied zwischen der Diktatur in Nord-Korea und Iran. Kim und seine Clique ist eine gewöhnliche Mafia-Truppe: Sie beutet das eigene Volk bis aufs Blut aus, macht auch gern ein paar illegale Geschäfte, ist sich aber darüber im Klaren, wenn der Sheriff mit der Kavallerie kommt ist Schluß mit Lustig. Soll heißen: Die Bedrohung seiner Nachbarn oder der USA mit Kernwaffen ist letztendliche Selbstmord. Mit Teheran verhält es sich anders. Wer überzeugt ist, er wird mit 72 Jungfrauen belohnt, wenn er sich selbst in die Luft sprengt, ist ein anderes Kaliber. Da helfen Verträge nur sehr bedingt.

Wenn man solchen Regimen Kernwaffen zubilligt, wem will man sie dann noch verwehren? Wie lange sollen Nachbarländer (Saudi Arabien, Vereinigte Emirate, Irak usw.), die sich bereits heute faktisch im Kriegszustand mit Iran befinden auf Kernwaffen verzichten? Will man in Europa die Raketenabwehr weiter ausbauen? Wie will man die daraus resultierenden Verwicklungen mit Rußland meistern (Schon heute behauptet Putin, daß die Abwehrsysteme in Rumänien in Wirklichkeit gegen ihn gerichtet sind)?

Die Konsequenzen

Manchmal gibt es nur eindeutige Entscheidungen. Wenn man einem Psychopaten, der ständig gewalttätig gegen seine Nachbarn ist, auch noch eine Schusswaffe zugesteht, macht man sich an dem absehbaren Blutbad mitschuldig. Wenn man ein Land wie Israel, dem ständig die Ausrottung angedroht wird, ohne Unterstützung läßt, muß man nicht erstaunt sein, wenn dieses Land irgendwann zu einem Präventivschlag ausholt. Wer Krieg und unschuldige Opfer verhindern will, muß jetzt handeln. Ein verschieben des Problems um wenige Jahre – und nichts weiter ist das Abkommen gewesen – ist lediglich weiße Salbe. Jetzt kann man die Mullahs noch mit Wirtschaftssanktionen bändigen, sind sie erstmal Atomwaffenmacht, wird es mit Sicherheit nicht einfacher. Gleichzeitig zeigt man allen Potentaten deutlich die Konsequenzen von Kernwaffen auf.

Wenn Leute von den eingehaltenen Bedingungen faseln, stellen sie damit nur unter Beweis, daß sie nie den Text gelesen haben. Allein der Passus über Anmeldefristen und zur Inspektion freigegebener Orte ist ein einziger Witz. Selbst die Abkommen in den schlimmsten Zeiten des „Kalten Kriegs“ haben mehr Überwachungen erlaubt und damit Vertrauen geschaffen. Allerdings kommt man hiermit zum entscheidenden Unterschied: Es waren Abrüstungsverträge. Man hat die Verschrottung und deren Überwachung vereinbart. Vor allen Dingen aber, hat man die Trägersysteme mit einbezogen. Iran hingegen, hat sich lediglich bereit erklärt, die Entwicklung von Sprengköpfen um etwa eine Dekade zu verschieben. Dafür haben sie alle Mittel in die Entwicklung von Raketen gesteckt. Gerade das Beispiel Nord-Korea zeigt aber, wie problematisch der umgekehrte Weg ist. Nord-Korea hat bereits funktionierende Sprengköpfe vorgeführt, hat aber Schwierigkeiten mit den Trägersystemen. Erst als diese medienwirksam gestartet wurden hat die Weltöffentlichkeit reagiert.

Politischer Schaden

Unsere großartigen Fachkräfte der Außenpolitik haben bereits einen Scherbenhaufen angerichtet, ohne sich dessen überhaupt bewußt zu sein. Erst haben sie sich ein katastrophales Abkommen abhandeln lassen. Getreu dem Grundsatz „die Partei hat immer recht“ klammern sie sich nun daran. Obwohl sie hätten erkennen müssen, daß irgendwann jemand neues kommt, der sich nicht an dieses Machwerk gebunden fühlt.

Als wenn der Schaden nicht schon genug wäre, lassen sie sich jetzt auch noch von den Mullahs vorführen. Ganz offen gehen sie auf Konfrontationskurs mit den USA. Kann diesen Größen nicht einmal jemand einen Globus schenken, damit sie mal kapieren, wer zuerst betroffen ist? Es sind die gleichen Strategen, die schon nicht adäquat auf Erdogan reagieren konnten. Gegen die Mullahs ist Erdogan jedoch ein lupenreiner Demokrat und ein lediglich islamistisch angehauchter Politiker.

Als nächstes werden noch die Trittbrettfahrer China und Russland auf den Zug gegen Amerika aufspringen. China wird versuchen sich das Öl und Erdgas Irans billig zu sichern. Putin muß den Mullahs ohnehin aus der Hand fressen, da sie für seine Interessen im Mittelmeer das Kanonenfutter liefern. Deutschland ist dabei, seinen fetten Hintern gleich zwischen alle Stühle zu setzen. Langfristig, könnte die „Flüchtlingspolitik“ dagegen noch ein harmloses Abenteuer gewesen sein.

Ölsand, die nächste Ölquelle in den USA?

In diesem Jahr hat die Ölförderung in den USA erstmalig seit 1970 wieder 10 Millionen Faß pro Tag erreicht.

Peak Oil

Kann sich noch jemand erinnern, wie vor einigen Jahren die Anhänger der Mangelwirtschaft das baldige Ende des Ölzeitalters vorausgesagt haben? Man glaubte endlich ein Marktversagen gefunden zu haben, was die Wiedereinführung der Planwirtschaft ermöglichte. Ein seit nunmehr 200 Jahren anhaltender Irrtum. Wieder einmal hat ein Mangel – ausgedrückt in steigenden Preisen – den menschlichen Erfindergeist frei gesetzt. In diesem Fall war es die Entwicklung des „fracking“, die erst gigantische Mengen Erdgas und anschließend Erdöl zugänglich machte.

Ganz nebenbei kann man an dieser Entwicklung auch die unterschiedliche Gesellschaftsauffassung sehen: In den USA ist Erfinden und Tüfteln immer noch eine angesehene Tätigkeit. Solange man nicht gegen Gesetze verstößt, kann man seiner Phantasie freien Lauf lassen. Man findet auch relativ leicht Geldgeber, weil „Profit machen“ nichts anrüchiges ist, sondern im Gegenteil ein verbrieftes Recht für den, der wirtschaftliche Risiken eingeht. Niemand erwartet dabei eine Erfolgsgarantie, weil Chance und Risiko des Misserfolges immer die zwei Seiten derselben Medaille sind.

Ganz anders in Deutschland: Kaum war der Ruf „fracking“ als neu erschlossene Energiequelle erschallt, haben sich sofort die einschlägigen Kostgänger dieser Gesellschaft aus Politik und Medien zusammengerottet. In altbekannter Manier wurden jegliche Chancen sofort vehement geleugnet und dafür apokalyptische Gefahren beschworen. Die willfährigen Volksbeglücker aller etablierten Parteien haben sofort jede Entwicklung per Gesetz im Keim zu ersticken verstanden. Die gleichen Pharisäer, die – wenn es um ihre eigene Klientel geht – schamlos Wälder roden lassen und jeglichen Artenschutz leugnen, damit ihre Reichskrafttürme wie Pilze aus dem Boden schießen können.

Wurde Präsident Trump hier politisch korrekt belächelt wenn er davon sprach, er wolle die Industriearbeitsplätze zurückholen, dämmert es mittlerweile auch jedem GEZ-Nachrichtenvorleser wo die Reise hingeht: Erst billige Energie im Überfluß, anschließend drastische Steuersenkungen und nun auch noch die Forderung nach „fairem Handel – von jedem wirtschaftsunkundigen gern als Protektionismus verunglimpft. Bald können deutsche Politiker sicherlich wieder die Schließung eines Stahlwerks oder die Verlagerung von Dieselmotoren etc. bejubeln – ist doch toll für den „Klimaschutz“.

Die Ölsände der USA

Wer so naiv war zu glauben, die USA hätten bald ihr Pulver verschossen, steht nun vor der nächsten Phase: Nach unkonventionellem Gas und Öl kommen jetzt die Ölsände hinzu. Die USA verfügen über mindestens 30 Milliarden Faß Öläquivalent. Davon befinden sich rund 50% im Uinta-Basin im nordöstlichen Utah. Leicht abbaubar, weil oberflächennah und dazu noch sehr schwefelarm. Im Dreieck von Utah, Colorado und Wyoming liegen wohl 1200 Milliarden Faß Rohöläquivalent.

Was sind Ölsände?

Ölsände – auch Teersände genannt – sind natürliche Umweltkatastrophen in grauer Vorzeit. Irgendwann sind Öllagerstätten bis an die Oberfläche durchgebrochen. Die leicht flüchtigen Bestandteile des Erdöls sind verdunstet und es ist Bitumen zurückgeblieben. Man unterscheidet zwei Typen: „water wet“ und „oil wet“. Der erste Typ ist von den kanadischen Ölsand Lagerstätten in Alberta bekannt. Bei ihm sind die Sandkörner von einer dünnen Wasserschicht umgeben auf der wiederum der Bitumen sitzt. Das Gewinnungsverfahren ist seit den 1920er Jahren bekannt: Der Sand wird in 80 °C heißem Wasser gewaschen, wodurch sich das Bitumen vom Sand ablöst. Durch einblasen von Luft bildet sich ein ölhaltiger Schaum, der aufschwimmt. Dieser Schaum ist das Rohprodukt. Es besteht zu etwa 60% aus Öl, 30% Wasser und 10% Feststoffen. Nach dessen Aufbereitung geht das Abwasser mit allen Chemikalien und Feststoffen in riesige Absetzbecken. Eine ziemliche Umweltbelastung. Anschließend muß das Bitumen noch zu synthetischem Rohöl verarbeitet werden, bis es auf dem Ölmarkt zu verkaufen ist. Eine ziemlich energieaufwendige Angelegenheit. Das ganze erfordert gigantische Anlagen mit einem immensen Kapitalaufwand.

Die Ölsände in Utah sind vom Typ „oil wet“, der sich nicht mit dem vor beschriebenen Verfahren verarbeiten läßt. Die Sandkörner sind direkt vom Öl umkleidet. Deshalb ist das Bitumen nicht mit Wasser abwaschbar. Es mußte ein geeignetes Lösungsmittel gefunden werden. Auch hier haben wieder mittelständische Unternehmen – nicht die großen Ölkonzerne – jahrzehntelang getüftelt und entwickelt. Es wurden (patentierte) Lösungen auf der Basis von Diesel, Propan und Gas-Kondensaten gefunden. Der Trick dabei ist, daß es sich um azeotrope (gleiche Zusammensetzung in der flüssigen und dampfförmigen Phase) Gemische handelt, die sich bei geringer Temperatur von 70 bis 75 °C durch einfache Destillation wieder von dem aufgelösten Bitumen trennen lassen. So erhält man einerseits ein reines Produkt und kann 99,9% des Lösungsmittels im Kreislauf laufen lassen (keine Abwasser-Seen!). Der Ölsand wird bei etwa 60 °C mit dem Lösungsmittel gewaschen. Der Sand ist anschließend so „sauber“, daß er problemlos auf Halde gelagert oder sogar als Baustoff verkauft werden kann. Ein energiesparendes und umweltfreundliche Verfahren.

Die Produktionskosten werden mit lediglich 22 $/barrel angegeben. Man muß etwa 1 to Ölsand zur Gewinnung eines barrel Öl verarbeiten. Das ist bei den geologischen Verhältnissen in Utah kein Problem. Das Lösungsmittel ist zwar recht teuer (ca. 35 $ pro barrel), hängt aber ganz unmittelbar von den jeweils aktuellen Ölpreisen ab: Billiges Rohöl, billiger Einstandspreis für das Lösungsmittel und umgekehrt. Das macht die Produktionskosten (anders als beim „fracking“) sehr stabil gegenüber Ölpreisschwankungen. Die Ölsände lagern in einem alten Ölfördergebiet, d. h. die Infrastruktur für Transport und Verarbeitung ist bereits vorhanden. Das Öl ist mit 14 API-Graden zwar sehr zäh (schwimmt kaum noch auf dem Wasser), aber „süß“ (geringer Schwefelgehalt und damit mit geringem Energieaufwand zu verarbeiten). Gut in lokalen und Schweröl-Raffinerien an der Golfküste zu verarbeiten, was weitere Ölmengen (z. B. Leichtöle aus Texas) für den Export freistellt.

Der entscheidende Antrieb für eine schnelle Umsetzung dürften aber die geringen Kapitalkosten sein. Inzwischen ist man bei einer Anlagengröße von 5000 Faß pro Tag angekommen. Eine solche Anlage kostet angeblich nur 70 Millionen Dollar. Für die Ölindustrie ein Trinkgeld.

Die politischen Konsequenzen

Seit Trump die Hindernisse für eine gesteigerte Produktion an fossilen Energien systematisch aus dem Weg räumt, explodiert die Öl- und Gasförderung. Für sich genommen, schon ein enormer Wohlstandsgewinn in der Form von (gut bezahlten) Arbeitsplätzen und steigenden Staatseinnahmen (trotz oder gerade wegen der Steuersenkung).

Hinter den neuen Produktionsverfahren verbergen sich eine Menge neuer Technologien. Unkonventionelle Öl- und Gasvorkommen gibt es aber überall auf der Welt. Die Schätze warten nur darauf, gehoben zu werden. Die amerikanische Zulieferindustrie wird weiterhin wachsen und international marktbeherrschend bleiben.

Preiswerte Energie ist der Lebenssaft einer jeden Volkswirtschaft. In den USA treffen billige Rohstoffe auf eine hochentwickelte Industrie.. Eine einzigartige Kombination in der Weltwirtschaft. Ein Narr, wer glaubte, Trump wolle die Niedriglohngruppen aus China und Mexiko zurückholen. Die Stahlwerke und Aluminiumhütten die sich Trump vorstellt, sind nicht die Museumsbetriebe aus den Hinterhöfen Chinas, Indiens oder Russlands. Die internationalen Investoren sind ausdrücklich aufgerufen in den USA modernste Anlagen zu bauen. In der (hier ebenfalls ungeliebten) Chemieindustrie ist die Verlagerung bereits im Gange. Da bedurfte es noch nicht einmal Zölle und Steuersenkungen als Impuls.

Öl- und Gasexporte sind nicht nur volkswirtschaftlich sinnvoll: Ein Produkt mit weltweiter Nachfrage, welches gewaltige Summen in die eigenen Kassen spülen kann. Darüberhinaus besitzt es auch eine außerordentliche geostrategische Qualität.. Man kann „wohlgesonnene Nationen“ mit ausreichend und billiger Energie versorgen. Gleichzeitig kann man „unfreundlichen Nationen“ die Deviseneinnahmen beschneiden und damit deren Aufrüstung zurechtstutzen. Besonders die „Alt-68er“ in Deutschland werden umdenken müssen: Wenn die USA angeblich nur wegen Öl Krieg geführt haben, droht ziemlich schnell ein böses Erwachen. Trump hat schon in seinem Wahlkampf immer gesagt (auch da hat offensichtlich niemand zugehört!), die USA haben nur zwei Interessen im Mittleren Osten: Terrorbekämpfung und Beistand von Israel. Alles andere sei Aufgabe der Europäer. Ob da wohl noch die Verteidigungsausgaben ausreichen werden? Deutschland schlittert schon heute sehenden Auges immer tiefer in den Sumpf des Irak und Nordafrikas hinein.

E3/EU+3 = 10 Punkte für Iran

Am 14. Juli wurden die Verhandlungen in Wien abgeschlossen. Als Ergebnis steht ein 150-Seiten Papier im Raum – von manchen begeistert gefeiert, von anderen als Katastrophe empfunden.

Erste Fehlinterpretation: Es geht gar nicht um Abrüstung.

Gerne werden die Verhandlungen zwischen China, Deutschland, Frankreich, Rußland, Großbritannien, USA und Europäische Union auf der einen Seite und Iran auf der anderen Seite, mit den Abrüstungsverhandlungen zwischen USA und der Sowjetunion verglichen. Hier geht es aber überhaupt nicht um Abrüstung. Damals haben sich zwei Parteien zusammengesetzt, um die Rüstungsspirale zu begrenzen. Mehr als zig-fache Vernichtung brachte nichts mehr, sondern kostete nur noch. Wie gesagt, zwei Parteien, die beide einen unmittelbaren Nutzen hatten. Hier sitzt eine Gruppe mit stark unterschiedlichen Interessen einem einzelnen Staat gegenüber. Diese Gruppe ist von dem Verhandlungsgegenstand nur sehr mittelbar betroffen, während die eigentlich bedrohten (Israel, Sunniten etc.) bewußt von den Verhandlungen ausgeschlossen worden sind. Eine solche Konstellation ist von vornherein zum Scheitern verurteilt.

Es geht in diesem Abkommen überhaupt nicht um Abrüstung, sondern lediglich um eine Willensbekundung in den nächsten Jahren keine Kernwaffen zu produzieren. Vertrauen ist gut, Kontrolle ist besser. Dieser Grundsatz galt bei den Abrüstungsabkommen: Raketen etc. wurden unter Beobachtung zerstört. Zu was unterstellte oder tatsächliche Absichten führen, zeigt gerade die Geschichte der „Atombombe“ überdeutlich: Der Verdacht, Hitler-Deutschland würde eine Kernwaffe entwickeln führte erst zum Manhattan-Projekt in den USA.

Mullah-Iran ist ein aggressives System, welches offen die Vorherrschaft in der Golfregion beansprucht, aktuell mehrere Stellvertreterkriege (Syrien, Irak, Jemen) führt, weltweit Terrorismus unterstützt und die totale Vernichtung des Staates Israel fordert. Allein der letzte Punkt, sollte die Euphorie aller „Gutmenschen und Friedensengel“ etwas ausbremsen: Der Holocaust ist erlebter Bestandteil fast jeder Familie in Israel. Bitte nicht überrascht tun, wenn Israel irgendwann das Bedrohungsrisiko als zu groß einschätzt und handelt.

Der spärliche Inhalt

Schon allein der Umfang der Auflistungen über die Sanktionen, welche außer Kraft gesetzt werden sollen, im Verhältnis zu den Auflagen spricht Bände. Letztendlich sollen lediglich ein paar Zentrifugen zeitweise weggeschlossen werden und ein Reaktor von Iran umgebaut werden. Forschung und Entwicklung der Zentrifugen kann weitergehen. Bestenfalls – wenn sich der Iran voll an das Abkommen hält – ergibt sich eine Verzögerung von einem Jahrzehnt. Dafür kann anschließend mit viel besserer Technik gearbeitet werden. Fraglich ist allerdings, ob dieser Zustand unter Weiterführung der Sanktionen, aus eigener Kraft so schnell zu erreichen wäre.

Der Reaktor in Arak soll von Iran selbst umgebaut werden. Warum aber, bei einem Schwerwasserreaktor eine Anreicherung auf 3,75% nötig sein soll, solche Brennelemente vorgesehen sind und solche konstruktiven Details bezüglich der Kanäle, mögen die Neutronenphysiker beurteilen. All zu viele, können nicht am Verhandlungstisch gesessen haben. Die Verpflichtung, die abgebrannten Brennelemente ins Ausland zu schaffen, ist bei diesen Ladezyklen rührend. In den Kanälen werden selbstverständlich nur medizinische Präparate erbrütet – großes Mullah-Ehrenwort.

Für einen sachkundigen Leser bieten sich in der Wunschliste der Zusammenarbeit zahlreiche versteckte Hinweise, wo derzeit auf dem Weg zur Bombe noch der Schuh drückt und was sonst noch auf dem Programm steht. Iran wird auch in einer Generation nicht in der Lage sein Kernkraftwerke zu bauen. Dafür fehlt es schlichtweg an der industriellen Kapazität. Man hat aber seit geraumer Zeit gemerkt, daß man auch geeignete Schiffe braucht, wenn man den „Persischen Golf“ unter Kontrolle halten will und die US-Flotte wirklich ärgern will.

Besonders niedlich ist die Entsendung von Iranern ins Ausland, um eine bessere kerntechnische Ausbildung zu erhalten. Sollten die Gerüchte über die Aktivitäten des Mossad doch wahr gewesen sein? Mal sehen, wann die ersten Experten für Sicherheitstechnik in Deutschland auftauchen. Man kann es sich schon vorstellen, wie die „Gruppe 12. September“ gemeinsam nach dem Freitagsgebet ein Kernkraftwerk besichtigt, um sich besser mit der Terrorabwehr vertraut zu machen. Man kann ja über Geheimdienste denken was man will, jedenfalls brauchen die sich um ihre Arbeit in der Zukunft keine Sorgen zu machen, wenn dieses Abkommen umgesetzt wird.

Das Ende jeder Proliferation

Die USA haben immer größten Wert auf die Beschränkung der Anreicherung gelegt. Selbst enge Verbündete, wie z. B. Taiwan, Süd Korea und die Vereinigten Emirate haben engere Grenzen als – jetzt offiziell abgesegnet – Iran. Eins dürfte jetzt auch dem letzten Potentaten klar geworden sein: Frech kommt weiter (Natranz und Fordow werden nachträglich legalisiert, obwohl sie illegal gebaut und betrieben wurden). Der Geist ist endlich raus aus der Flasche. Nach einer kurzen Phase der „Friedensdividende“ ist das Rennen für ein nukleares Wettrüsten eröffnet. Bald wird die Kernwaffe als Statussymbol so wichtig, wie das AK47 und die RPG heute.

Überraschende Kontrollen sind auch out. Ab jetzt, gilt es sich höflich 24 Tage vorher anzumelden. Selbstverständlich hat man den Verdacht ausführlich zu begründen. Man will ja die Verschleierung beständig verbessern und insbesondere undichte Stellen eliminieren. Welche Diktatur kann sich schon bedingungslos auf seine Unterdrückten verlassen?

Man bevorzugt auch „elektronische Siegel“. Da braucht man nicht so viele Inspektoren vor Ort, die ständig überwacht werden müssen. Außerdem verfügt man im Iran über große Erfahrungen in Netzwerke einzudringen und sie zu stören. Ups, gestern ist uns leider das Internet teilweise ausgefallen.

Inspektoren haben in dem Land ohnehin keine Chance Beweise zu sammeln. Man wird bei jedem Fund behaupten, daß es sich um alte Verunreinigungen handelt. Sollte sich auch nur einer der Verhandlungspartner wehren, hat sich Iran das Recht eingeräumt, sofort das ganze Abkommen zu kündigen.

Wem nützt nun das Abkommen?

Auf jeden Fall dem Mullah-Regime. Iran verfügt allein über fast 150 Milliarden Dollar eingefrorener Guthaben und Vermögenswerte. Hinzu kommen rund 50 Millionen barrel Rohöl, die bereits auf dem Meer schwimmen und auf die Sanktionsfreigabe warten. Alles in allem, eine schöne Finanzspritze. Sicherlich nicht für die Bevölkerung im Iran, aber für das iranische Militär und Hizbollah und Co.

Putin hat persönlich das Abkommen gewürdigt und ausdrücklich den Beitrag russischer Nuklear-Experten gewürdigt. Das mag sein. Ansonsten ist Putin eine eher tragische Gestalt. Er braucht Iran unbedingt, um seinen sozialistischen Waffenbruder Assad im Sattel zu halten. Ist der gefallen, ist Rußland raus aus dem Mittelmeer und ein neuer Korridor für Öl- und Gastransporte vom Golf nach Europa tut sich auf. Inzwischen hat Putin aber schmerzlich begriffen, daß Rohstoffe haben und zu Geld machen, zwei verschiedene Dinge sind. Er greift deshalb nach jedem Strohhalm: Waffenexporte und Kernkraftwerke. Was anderes hat er nicht anzubieten. Beides erfordert gewaltige Summen zur Vorfinanzierung. Kernkraftwerke sind schnell verkauft, aber schwer und zeitaufwendig gebaut. Längerfristig könnte diese Strategie voll nach hinten losgehen. Niemand ist mehr von hohen Gas- und Ölpreisen abhängig, als Rußland. Wenn Iran seine Sanktionen los wird, drückt es ziemlich bald mit 1 Million barrel Rohöl täglich auf den Weltmarkt. Hinzu kommen gewaltige Erdgasvorkommen. China ist an billigem Öl und Gas brennend interessiert. China hat nicht nur Waffen zu verkaufen, sondern hat Geld und (inzwischen) viel westliche Technologie.

Reaktortypen in Europa – Teil3, AP1000

AP1000 ist die Warenmarke eines Druckwasserreaktors der Generation III+ des Herstellers Westinghouse. Westinghouse ist die Mutter aller Druckwasserreaktoren. Sie erschuf 1954 unter Hyman G. Rickover und Alvin M. Weinberg diesen Reaktortyp für den Antrieb des ersten Atom-U-Boots USS Nautilus (SSN-571).

Geschichte

Der AP1000 entwickelt sich zum „Golf“ der Kernkraftwerke. Inzwischen sind acht Reaktoren in Bau: Je zwei in Sanmen und Haiyang in China und in Vogtle (Georgia) und Summer (South Carolina) in USA. Zahlreiche andere befinden sich weltweit im Vergabeverfahren. So sind drei Reaktoren in Moorside (West Cumbria, nordwestlich von Sellafield, UK) in Vorbereitung. Sie sollen durch NuGen, ein Joint Venture aus Toshiba (Westinghouse gehört zu Toshiba) und GDF SUEZ errichtet und betrieben werden.

Ständig steigende Investitionskosten und steigende Sicherheitsanforderungen zwangen Westinghouse das Konzept grundlegend zu überarbeiten. Über 50 Jahre Betriebserfahrung gipfelten in einer völlig neuen Konstruktion mit vier zentralen Anforderungen:

  • Vereinfachte Konstruktion: Was man nicht hat, kostet auch nichts und kann nicht versagen,
  • Übergang von aktiven auf passive Sicherheitssysteme,
  • modularer Aufbau und
  • parallele Errichtung von Bau und Anlagentechnik.

Der AP1000 ist ein schönes Beispiel dafür, was man erreichen kann, wenn man den Mut hat, eine Konstruktion noch einmal mit einem weißen Blatt Papier von Anfang an zu beginnen. Vorgabe war ein Druckwasserreaktor mit einer mittleren Leistung von rund 1000 MWel. Schon damit setzte man sich ab. Man versuchte gar nicht erst eine Kostensenkung über eine Leistungssteigerung zu erzielen, sondern setze lieber auf die Nachfrage des Weltmarktes. Die Größe entsprach nur etwa 2/3 der letzten Typen der zweiten Generation. Dieser Rückschritt sollte dafür die Märkte der Schwellenländer mit noch kleinen Netzen einschließen.

Durch die „geringe“ Leistung kommt man mit nur zwei modernen Dampferzeugern gegenüber üblicherweise vier aus. Dies spart schon mal beträchtlich umbauten Raum, der bei Kernkraftwerken besonders teuer ist (Sicherheitsbehälter, Betonbunker etc.). Durch weiteres, konsequentes „weglassen“ ergibt sich der Druckwasserreaktor mit dem geringsten Beton- und Stahleinsatz pro MWel.

Ein weiterer Ansatz zur Senkung der Stromerzeugungskosten ist die Verlängerung der Nutzungsdauer: Die Ausdehnung auf genehmigte 60 Jahre verteilt die Kapitalkosten auf wesentlich mehr produzierte KWh. Weniger sicherheitsrelevante Teile (z. B. Noteinspeisepumpen mit zugehörigen Ventilen und Rohrleitungen) oder robustere Konstruktionen (z. B. dichtungslose Hauptkühlmittelpumpen) verringern die Wartungskosten und die notwendigen Wiederholungsprüfungen. Eine nicht zu vernachlässigende Einsparung über die Lebensdauer eines Kraftwerks.

Pumpen

Üblicherweise stehen die Hauptkühlmittelpumpen zwischen den Dampferzeugern. Sie sind mit diesen und dem Reaktordruckgefäß über Rohrleitungen verbunden. Die Pumpen saugen das abgekühlte Wasser aus den Dampferzeugern an und drücken es zurück durch den Kern. Beim AP1000 haben sie die gleiche Aufgabe. Sie sind aber paarweise direkt an den Dampferzeugern angeflanscht. Dies erspart nicht nur Rohrleitungen, sondern vereinfacht diese erheblich. Es sind weniger Formstücke und Schweißnähte erforderlich und der Schutz gegen Erdbeben gestaltet sich wesentlich einfacher.

Die Pumpen selbst, sind für zivile Druckwasserreaktoren ungewöhnlich. Sie verfügen über mit Wasser geschmierte Gleitlager und sind voll gekapselt. Der Läufer und der Stator sind in wasserdichte Hüllen eingeschweißt. Das Pumpenrad sitzt direkt auf der Welle des Antriebsmotors. Sie benötigen damit keine Wellendichtungen und sind somit extrem wartungsarm. Sie sind für eine Betriebsdauer von 60 Jahren ausgelegt und zugelassen. Dieser Pumpentyp ist sehr anspruchsvoll in der Fertigung. Die USA verfügen jedoch über eine jahrzehntelange Erfahrung mit diesem Pumpentyp in ihrer Marine.

Passive Sicherheit

Unter „Passiver Sicherheit“ versteht man, daß bei keinem Störfall Pumpen, Diesel etc. benötigt werden um den Reaktor in einen sicheren Zustand zu überführen und zu halten. Alle Armaturen müssen nur einmal ausgelöst werden (voll offen oder voll geschlossen) und nach Auslösung ohne Hilfsenergie auskommen. Es sollten keine Eingriffe durch das Personal nötig sein.

Hinter dieser Definition verbirgt sich noch ein weiterer Ansatz zur Kostensenkung: Man kann „Sicherheit“ oder „Verteidigung“ in mehreren Stufen definieren. Bevor ein Ereignis zu einem Störfall wird, kann man durch automatische Stellglieder die Folgen abwenden. So kann man z. B. bei einem Generatorschaden den Dampf direkt in den Kondensator leiten und dadurch eine Notkühlung verhindern. Alle für diese Umleitung notwendigen Komponenten bräuchten nur den bei konventionellen Kraftwerken üblichen Qualitätsstandard besitzen, da sie das eigentliche Sicherheitssystem (gemeint ist damit das passive Notkühlsystem) nicht berühren. Nur die Komponenten des passiven Sicherheitssystems müssten den Stempel „nuclear grade“ tragen. Oft sind solche Teile völlig identisch mit dem „Industriestandard“ – unterscheiden sich lediglich im bürokratischen Aufwand und im Preis.

Man kann die Sicherheit – bezogen auf eine eventuelle Freisetzung von radioaktiven Stoffen in die Umwelt – noch steigern, indem man eine konsequente Diversifizierung betreibt. Ferner sieht man für wahrscheinlichere Ereignisse eine höhere Anzahl von Verteidigungsstufen vor.

Der Station Blackout

Vor Fukushima war der größte anzunehmende Unfall (GAU) der entscheidende Sicherheitsmaßstab. Man ging von einem plötzlichen Verlust der Reaktorkühlung infolge einer abgerissenen Hauptkühlmittelleitung aus. Um ein solches Ereignis zu beherrschen – ohne Freisetzung nennenswerter Radioaktivität in die Umwelt – muß bei Reaktoren mit aktivem Sicherheitskonzept auf jeden Fall ausreichend elektrische Energie vorhanden sein. Mindestens ein Notstromdiesel muß starten und die entsprechenden Schaltanlagen müssen funktionstüchtig sein. In Fukushima hat beides ein Tsunami außer Gefecht gesetzt.

Seit Fukushima ist der „station blackout“ ins öffentliche Interesse geraten. Gemeint ist damit der völlige Verlust von Wechselstrom (Kraftstrom) im Kraftwerk. Es ist nur noch Gleichstrom aus Batterien für Steuerung und Notbeleuchtung vorhanden. Es ist daher interessant, wie der AP1000 auf solch eine Situation reagieren würde:

Durch den Stromausfall fallen die Regelstäbe durch ihr Eigengewicht in den Reaktorkern ein und unterbrechen jede Kettenreaktion. Allerdings beträgt in diesem Moment die Nachzerfallswärme noch rund 6% der thermischen Leistung (ungefähr 200 MW), die sicher abgeführt werden müssen. Durch den Stromausfall, fallen alle Pumpen aus. Durch die in den Schwungrädern der Hauptkühlmittelpumpen gespeicherte Energie, laufen diese noch geraume Zeit nach und halten den Primärkreislauf aufrecht. Allerdings ist nach etwa zwei Minuten der Wasserstand auf der Sekundärseite der Dampferzeuger auf sein zulässiges Minimum gefallen, da die Speisepumpen auch nicht mehr laufen können. Dieser Zustand öffnet automatisch die beiden Ventile zur Notkühlung (die Ventile sind im Betrieb elektromagnetisch geschlossen, d. h. Strom weg = Ventil offen). Nur ein Ventil müßte öffnen (Redundanz), um die volle Wärmeleistung abzuführen. Das Wasser strömt nun vom Reaktorkern zu einem Wärmeübertrager (PRHR HX) in dem Wassertank innerhalb der Sicherheitshülle (PRHR). Dieser Tank liegt deutlich oberhalb des Reaktordruckgefässes, wodurch sich ein Naturumlauf ergibt. Nach rund zwei Stunden ist die Nachzerfallswärme auf rund ein Prozent (immerhin noch rund 34 MW) abgefallen. Nach ungefähr fünf Stunden wäre der Tank soweit aufgeheizt, daß das Wasser zu sieden beginnt. Der Sicherheitsbehälter ist ein Zylinder aus 45 mm dickem Stahlblech (bessere Wärmeleitung als Beton). Der Dampf würde an den Wänden kondensieren und über ein Auffangsystem zurück in den Tank laufen. Der Sicherheitsbehälter wiederum, würde seine Wärme an die Umgebungsluft abgeben. Die Umgebungsluft steigt wie in einem Kamin im Zwischenraum zwischen Sicherheitshülle und Betonwand der Schutzhülle (gegen Flugzeugabsturz usw.) auf. Steigt der Druck im Sicherheitsbehälter über einen Grenzwert an, werden zur Steigerung der Kühlung die pneumatisch betätigten Ventile der Beregnungsanlage geöffnet. Ganz oben, auf dem Dach des Reaktors befindet sich ein charakteristischer, ringförmiger Wassertank. Aus ihm würde nun Wasser durch Schwerkraft auf die äußere Seite des Sicherheitsbehälters „regnen“ und diesen stärker kühlen. Der Inhalt des Tanks reicht für 72 Stunden Beregnung.

Durch die (gewollte) Abkühlung des Reaktors zieht sich das gesamte Wasser des Primärkreislaufes wieder zusammen. Der Wasserstand im Druckhalter sinkt. Genauso würde er sinken, wenn der klassische GAU – irgendein Leck im Primärkreis – eingetreten wäre. Damit ein zeitweiliges „trocken fallen“ der Brennelemente (Harrisburg und Fukushima) sicher verhindert werden kann, wird rechtzeitig Wasser nachgespeist. Hierfür gibt es sog. Akkumulatoren. Das sind Behälter, die teilweise mit Wasser gefüllt sind und durch ein Stickstoffpolster unter Druck gehalten werden. Aus diesen strömt automatisch (Rückschlagventile, die durch den Druck im Primärkreis geschlossen gehalten werden, Druck zu klein = Ventil offen) Wasser in den Reaktordruckbehälter nach.

Ist der Druck – egal ob durch ein Leck oder Abkühlung – bis auf Umgebungsdruck abgebaut, kann die Kühlung direkt über die Verdampfung des Wassers im Druckbehälter endlos weiter erfolgen. Dieser Zustand kann auch gewollt oder automatisch angestrebt werden. Würde die Kühlung – aus welchen Gründen auch immer – versagen, würde der Druck im Reaktorbehälter immer weiter ansteigen. Um dies zu verhindern, kann man den Druck über ein Abblasen des Druckhalters abbauen. Dies ist ein Beispiel, wie man durch den geschickten Aufbau einer Sicherheitskette das eventuelle Versagen einzelner Glieder überbrücken kann: Würden tatsächlich beide Ventile (2 x 100%) des Notkühlkreislaufes versagen (siehe weiter oben) müßte trotzdem nicht die Kühlung ausfallen, sondern es würde lediglich ein anderer Weg beschritten.

Die 72 h Regel

Beim AP1000 bezieht sich die passive Sicherheit nicht nur auf die Anlagentechnik, sondern auch auf das Personal. Seit den Störfällen von Harrisburg und Tschernobyl weiß man um die Bedeutung von Bedienungsfehlern. Gerade in der Zeit unmittelbar nach der Störung ist die Wahrscheinlichkeit dafür besonders hoch: Das Schichtpersonal muß erst seinen Schock überwinden, eine wahre Informationsflut muß erst einmal verarbeitet werden damit man sich überhaupt einen Überblick verschaffen kann und dann müssen die richtigen Maßnahmen auch noch erkannt und eingeleitet werden. Andererseits sind drei volle Tage eine recht lange Zeit, um etwas zu reparieren, Fachleute außerhalb des Kraftwerks hinzu zu ziehen oder sogar Ersatzgerät herbeizuschaffen. Dies gilt selbst bei schwersten Naturkatastrophen wie in Fukushima.

Dabei sind die 72 Stunden als Mindestwert bei ungünstigsten Bedingungen zu verstehen. Nach Ablauf dieser Zeitspanne sind weitere Auffanglinien vorgesehen. So können z. B. die Kühlwasserbehälter auch von außen über die Feuerlöschtanks auf dem Gelände nachgefüllt werden. Hierfür ist allerdings wenigstens ein kleiner Hilfsdiesel, der zusätzlich zu den eigentlichen Notstromdieseln vorhanden ist, nötig. Der Treibstoffvorrat beträgt vier Tage. Inzwischen dürften längst Hilfskräfte und Material aus den Notfallcentern eingetroffen sein.

Die Strategie zur Kostensenkung

So makaber es klingen mag, aber die Unglücke von Tschernobyl (vollkommen explodierter Reaktor) und Fukushima (in drei Reaktoren gleichzeitige Kernschmelze) haben den „Atomkraftgegnern“ ihr stärkstes Argument von dem „unkalkulierbaren Restrisiko“ bei Kernkraftwerken entzogen. Nur noch sehr schlichte Gemüter glauben das Märchen „Millionen-Tote-für-10000-Jahre-unbewohnbar“. Es ist also kein Zufall, daß sich die „Bewegung“ nun auf angeblich „zu teuer“, konzentriert. Für die Investitionskosten sind folgende Faktoren ausschlaggebend:

  • Unnötig kompliziert: Doppelte Betonbunker, Core catcher, weitere Notstromdiesel, Pumpen etc.
  • Bürokratismus: „Nuclear grade“ erfordert einen – teilweise absurden – bürokratischen Aufwand. Oft kostet das gleiche Bauteil als „nuclear grade“ geadelt, den vier bis fünffachen Preis. Um eine Diskussion über Sinn und Zweck zu vermeiden, sollte dieser Standard nur noch für echte Sicherheitstechnik verlangt sein. So könnte man beispielsweise bei einem Reaktor mit passiver Sicherheit, die Notstromdiesel aus diesem Verfahren entlassen – als wenn es in anderen Bereichen (IT, Luftfahrt, Seefahrt etc.) keine Sicherheitsnormen gäbe.
  • Bauzeit: Je länger die Bauzeit dauert, desto höher sind automatisch die Baukosten (Verzinsung), das Risiko (z. B. Inflation) und der ausgefallene Gewinn (z. B. Zukauf von Strom). Eine Verkürzung läßt sich grundsätzlich nur durch parallele Abläufe erzielen.
  • Baustelle: Arbeiten auf Baustellen sind grundsätzlich teurer, als eine Fertigung in einer Fabrik. Hinzu kommt meist noch ein schwer zu kalkulierendes Witterungsrisiko.
  • Serien: Jeder „first of a kind“ ist teurer als die Nachfolgemodelle. Hat man erst einmal die „Konstruktionsfehler“ behoben und das Personal seine Erfahrungen gesammelt, geht die Arbeit wesentlich flotter. Dies hat sich auch jetzt beim Bau der ersten AP1000 in China und USA wieder gezeigt.

Westinghouse hat konsequent auf eine Modularisierung bei paralleler Fertigung gesetzt. Im Schiffbau nennt man das „Sektionsbauweise“. Ziel ist die Errichtung eines Kernkraftwerks in 36 Monaten. Diesen sind noch der Vorlauf für die Baustelleneinrichtung und die Inbetriebnahme hinzu zu rechnen, sodaß ein Zeitraum von rund fünf Jahren zwischen Auftragserteilung und Übergabe an den Kunden liegt.

Der Rohbau

Üblich ist es schon immer, alle großen Bauteile: Reaktordruckgefäß, Dampferzeuger, Druckhalter, Turbine und Generator, Kühlmittelpumpen etc. möglichst schnell zu vergeben. Diese Aggregate werden von Spezialfirmen gefertigt und getestet und kommen möglichst komplett auf die Baustelle.

Gänzlich anders verhielt es sich bisher mit dem baulichen Teil: Der Hochbau wurde ganz konventionell in Ortbeton hergestellt. Dabei arbeitete man sich, wie bei jedem anderen Gebäude auch, vom Keller bis zum Dach stückweise voran. Wie auf jeder anderen Baustelle auch, konnte man mit dem Innenausbau erst beginnen, wenn der Rohbau fertig war.

Beim AP1000 hat man konsequent mit dieser Tradition gebrochen. Hier gilt: Möglichst wenig Arbeiten auf der unmittelbaren Baustelle und weitgehendste Fertigung in den Fabriken der Zulieferer. Um möglichst parallel arbeiten zu können, werden die Sektionen auf dem Baustellengelände aus den gelieferten Modulen zusammengebaut und die Sektionen termingerecht mit einem Schwerlastkran (3200 to) zu dem eigentlichen Reaktor zusammengefügt.

Konventionell (Schalung aus Holz, Eisengeflecht vor Ort und mit Beton ausgegossen) gebaut, wird nur noch die Grundplatte, auf der die gesamte „nukleare Insel“ steht. Schon die sich anschließende „Reaktorgrube“ ist eine komplette Sektion in Sandwich-Bauweise. So geht es Sektion für Sektion nach oben. Der Schwerlastkran stapelt alle wie auf einer Werft über- und nebeneinander. Dazu gehören auch ganze Baugruppen aus Rohrleitung, Pumpen, Ventilen usw., fertig lackiert, in Stahlgestellen. Die eigentliche Montage vollzieht sich in der erdbebenfesten Verbindung der Gestelle mit dem Baukörper und dem Anschluß an die Versorgungsleitungen etc. Da diese Module schon bei ihren Herstellern vollständig getestet und abgenommen worden sind, verkürzt sich auch die spätere Inbetriebnahme erheblich.

Das Sandwich

Für eine konventionelle Betonwand muß der Zimmermann eine Schalung aus Holz bauen und die Eisenflechter die Moniereisen einbringen. Nach dem Aushärten des Beton muß alles noch mühselig ausgeschalt und meist auch noch nachgearbeitet werden. Eine kosten- und vor allem zeitaufwendige Arbeit. Außerdem sind Zimmerleute keine Feinmechaniker.

Ein Sandwich besteht aus zwei Stahlplatten, die später mit Beton ausgegossen werden. Die Stahlplatten-Konstruktion übernimmt die Funktion einer verlorenen Schalung und enthält auch noch das „notwendige Eisen“, was die Festigkeit eines Stahlbeton ausmacht. Auf den ersten Blick keine revolutionäre Erfindung. Nur sind die Wände und Decken in einem Kraftwerk meist nicht massiv, sondern haben unzählige Durchbrüche und Einbauten. Wenn man die Anlagentechnik auch in Modulen vorfertigen will, müssen diese in der Toleranz von Maschinenbauern und nicht von Zimmerleuten ausgeführt werden. Wenige Millimeter Versatz, enden in einer teuren Katastrophe. Die einzelnen Platten werden nun – wie auf einer Werft – vollautomatisch aus- und zugeschnitten. Die Verstärkungen (die das Eisengeflecht bei konventionellem Beton ersetzen) werden auf Schweißmaschinen angebracht und die Platten zu Modulen zusammengeschweißt. Die Größe der Module ist dabei maßgeblich durch den Transportweg begrenzt. Die größte Sektion besteht z. B. in Vogtle aus 72 Modulen, die auf der Baustelle zusammengeschweißt werden und mittels eines Schwerlasttransporters und des Schwerlastkranes in den Sicherheitsbehälter eingesetzt wurde. Diese Sektion wiegt ohne Betonfüllung rund 1000 to.

Neue Herausforderungen

Die Aufteilung in drei Bauphasen: Fertigung von Modulen bei den Herstellern, zusammenfügen der Module zu Sektionen auf separaten Vormontageplätzen und der Zusammenbau der Sektionen zum eigentlichen Reaktor, erfordert eine besonders ausgefeilte Planung und Logistik.

Ein solches Vorhaben kann nur gelingen, wenn man von Anfang an, wirklich alle Elemente auf einem entsprechenden Rechner in vierdimensionaler (drei Orts- und eine Zeitachse) Abbildung zur Verfügung hat. Solche Werkzeuge gibt es noch nicht sehr lange. Zum Werkzeug gehören aber noch die entsprechend qualifizierten Konstrukteure mit praktischer Erfahrung und eine Lernkurve. So waren z. B. bei den ersten Reaktoren in China einige Abstände zwischen den Kabelbahnen und den Decken des nächsten Moduls zu knapp bemessen. Es ergaben sich tote Ecken bezüglich der Lackierung, usw. Alles Dinge, die zu Zeitverzug und ungeplanter Nacharbeit geführt haben.

Es ist eine ungeheure Disziplin und straffe Organisation über die gesamte Laufzeit eines Projekts erforderlich: Jede Änderung bei einem Zulieferer – irgendwo auf der Welt – kann dutzende Änderungen, zusätzliche Prüfungen usw. bei anderen Zulieferern auslösen. Gerade Dokumentation und Prüfungen sind in der kerntechnischen Industrie eine besondere Herausforderung. In den USA hat letzteres zu erheblichen Verzögerungen beim Bau des Kraftwerks Vogtle geführt. Ein Hersteller aus Louisiana – der seit Jahrzehnten erfolgreich im Bau von Ölförderanlagen etc. tätig war – war mit diesen „Gepflogenheiten der Kerntechnik“ nicht hinreichend vertraut. Im Endergebnis mußten etliche Module aus China nachbestellt werden.

Die Sektionsbauweise ist auch nicht ohne Tücken und erfordert entsprechendes Fachpersonal auf der Baustelle. Es müssen komplizierte und stabile Leergerüste gebaut werden, um die Sektionen aus Modulen passgerecht zusammen zu bauen. Der Verzug beim Schweißen und die Temperaturschwankungen sind bei so großen Bauteilen eine weitere Herausforderung. Der Schwerpunkt ist ebenfalls nicht immer genau festgelegt, was das Anheben ohne zusätzliche Belastungen nicht einfacher macht. Für Sektionen bis zu 1000 to müssen entsprechende Kräne und Transporter bereitgehalten werden. Für diese selbst, muß die Infrastruktur (Schwerlaststraßen, Bewegungsräume, Energieversorgung etc.) geschaffen werden.

Ausblick

Der AP1000 setzt die Maßstäbe für den Bau moderner Druckwasserreaktoren. Seine Weichen werden z. Zt. in China gestellt. Er kann seine wirtschaftlichen Vorteile erst in einer größeren Serie voll ausspielen. Die Lernkurve zeichnet sich bereits in USA und China deutlich ab. Es ist nur eine Frage der Stückzahl, wann die Investitionskosten für ein solches Kernkraftwerk unter das Niveau eines Kohlekraftwerks nach deutschen Standards (Wirkungsgrad 46%, mit Entstickung und Rauchgasentschwefelung, zugehörige Entsorgungsanlagen etc.) gesunken sind. Genau diese Frage, stellt sich aber bereits heute – wie schon in den 1970er Jahren in Deutschland –, wenn man die Luftverschmutzung in Peking betrachtet. Anschließend steht für China ein gigantischer Weltmarkt offen. Wir sprechen bereits in Europa nicht nur über Moorside, sondern auch über Polen, Tschechien und Bulgarien.

Im nächsten Teil4 geht es um die Siedewasserreaktoren, wie sie z. B. für den Standort Wylfa Newydd (Insel Anglesey in Nord Wales, GB) vorgesehen sind.

 

Reaktortypen in Europa – Teil2, EPR

EPR ist eine Warenmarke des französischen Herstellers Areva für einen Druckwasserreaktor der dritten Generation. Interessant ist schon die unterschiedliche Herleitung der drei Buchstaben EPR: European oder Evolutionary Pressurized Water Reactor. Beides ist angebracht.

Die Geschichte

Inzwischen sind von diesem Typ vier Reaktoren in Bau: Olkiluoto 3 in Finnland (seit Oktober 2005), Flamanville 3 in Frankreich (seit Dezember 2007) und Taishan 1 und 2 in China (seit Oktober 2009). Wahrscheinlich wird in den nächsten Jahren mit dem Bau zweier weiterer Reaktoren in Hinkley Point in Großbritannien begonnen werden.

Auf den ersten Blick eine Erfolgsbilanz. Wie kam es dazu? Ende der 1990er Jahre kam in Deutschland die Rot/Grüne-Koalition an die Macht. Die Kombinatsleitung von Siemens läutete in gewohnter Staatstreue den sofortigen und umfassenden Ausstieg aus der Kernenergie ein. Eine unternehmerische Fehlentscheidung. Heute sind die ganzen Staatsaufträge an Telefonen, Eisenbahnzügen etc. zu „besonders auskömmlichen Preisen“ längst Geschichte. Noch kann man ein paar Windmühlen nach altem Muster „an den Mann bringen“. Aber die einzige Zukunftstechnologie, in der Siemens wirklich einmal zur Weltspitze gehörte, ist unwiederbringlich und ohne Not „abgewickelt“ worden. Siemens fand in Framatome (Vorläufer von Areva) einen dankbaren Abnehmer. Die Franzosen konnten nach ihrem beispielhaften Ausbauprogramm von 57 Reaktoren ihre Kapazitäten nur durch den Ausbau des Auslandsgeschäftes aufrecht erhalten. Ein „Made in Germany“ kam ihnen dabei sicherlich nicht ungelegen. Siemens reichte der Einfuß von 34% der Aktien an dem neuen Gemeinschaftsunternehmen. Kernenergie war ja nicht mehr politisch korrekt und man wollte seinen (damals) lukrativen Kunden – die Öffentliche Hand – nicht verärgern. Man glaubte damals wohl auch noch, seinen überlegenen Turbinenbau allein weiter führen zu können. So als ob Daimler sein Autogeschäft verkaufen würde um zukünftig nur noch mit dem Reifengeschäft zu überleben. Jedenfalls ist Olkiluoto wohl das letzte Kernkraftwerk mit einer deutschen Turbine. Alle weiteren EPR haben natürlich französische Turbosätze der Marke Arabella. Dies gilt selbstverständlich auch für alle weiteren Geschäfte mit China. Ob die Kombinatsleitung den Chinesen ersatzweise politisch korrekte Windmühlen angeboten hat, weiß man nicht. Es gab ja mal eine Zeit lang in bildungsfernen Kreisen den festen Glauben, Deutschland würde „vorweg gehen“ mit seiner Energiepolitik.

Die Mitarbeiter in Frankreich und Deutschland waren jedenfalls redlich bemüht, das beste aus beiden Welten zu erschaffen. Grundlage des EPR sind die französische Baureihe N4 (Kraftwerke Chooz 1+2, Civaux 1+2) und die deutsche Konvoi Baureihe (Neckar 2, Emsland, Isar 2). Es war von Anfang an eine evolutionäre und ausdrücklich keine revolutionäre Entwicklung geplant. Außerdem nahm man nicht nur die Genehmigungsbehörden in beiden Ländern mit ins Boot, sondern auch 12 europäische Energieversorgungsunternehmen. Es sollte ein Reaktor entstehen, der europaweit genehmigungsfähig war. Heute ist er auch in China und USA geprüft und grundsätzlich zugelassen worden.

Das Problem der Größe

Jedes elektrische Netz kann nur eine gewisse Blockgröße vertragen. Über den Daumen gilt immer noch die Regel von maximal zehn Prozent der Leistung, die im Netz anliegt. Ist der Reaktor zu groß, scheiden weltweit eine Menge Netze aus. Das ist ein Problem bei der Vermarktung des EPR. Areva hat bereits schon länger die Problematik erkannt und bietet nun in Kooperation mit Mitsubishi auch einen kleineren Druckwasserreaktor (ATMEA mit ca. 1100 MWel) an. Wahrscheinlich werden die ersten Anlagen in der Türkei errichtet. Demgegenüber sollen die vier EPR von Olkiluoto bis Taishan eine Leistung zwischen 1600 und 1660 MWel erreichen. Die Vorläufer – z. B. das größte deutsche Kernkraftwerk Isar 2 – hatten eine Leistung von etwa 1400 MWel..

Bei Kraftwerken gibt es eine bedeutende Kostendegression. Je mehr man einen gegebenen Entwurf vergrößert, um so kleiner werden die spezifischen Investitions- und Betriebskosten. Man wollte ja ausdrücklich eine evolutionäre Entwicklung. Jetzt steckt man dafür in einer Größenfalle – und was fast noch schlimmer ist – die Kosten sind trotzdem viel zu hoch. Der EPR ist in diesem Sinne kein glücklicher Entwurf.

Die grünen Phantasien

Besonders von den deutschen Genehmigungsbehörden wurden die beiden Sicherheitsanforderungen „Absturz eines Jumbo“ und das „China Syndrom“ aus Hollywood eingebracht. Man glaubte in Deutschland lange genug, man müsste nur über jedes Stöckchen springen, das einem „Atomkraftgegner“ hin halten und dann würden sie auch irgendwann Kernkraftwerke ganz toll finden. Die simple Strategie, die Kosten durch immer neue Ideen immer weiter in die Höhe zu treiben, wurde nicht erkannt. Jetzt steht man mit einer millionenteuren doppelten Sicherheitshülle aus Beton und dem Gimmick eines „core catcher“ da und die „Atomkraftgegner“ lieben den EPR immer noch nicht.

Der Flugzeugabsturz

Solange es Kernkraftwerke gibt, hat man sich über „Einwirkungen von außen (EVA)“ Gedanken gemacht. Schon immer gehörte ein Flugzeugabsturz dazu. Frühzeitig bekamen deshalb die Reaktoren eine entsprechende Betonhülle als Schutz. Die vier Unglücksreaktoren in Fukushima hatten noch keine – mit den bekannten Konsequenzen. Bei ihnen war nur der unmittelbare Bereich um das Reaktordruckgefäß durch dicke Betonabschirmungen geschützt. Von Anfang an stellte sich die Frage, wie dick eine Betonhülle als Bunker sein müßte. In Deutschland ging man vom Absturz eines Militärjets vom Typ Phantom F4 aus. Eine heute noch sinnvolle Annahme – selbst nach den Ereignissen des 11. September. Die Phantom ist bis heute das Flugzeug mit der „größten Dichte“. Ein Militärjet noch aus dem „Stahlzeitalter“. Die Triebwerke einer im Tiefflug dahin rasenden Phantom, würden wie Rammböcke auf die Schutzhülle eines Reaktors wirken. Dahingegen entspricht die Wirkung einer abstürzenden A380 oder eines Jumbojets eher einer Bierdose. Die Terrorflieger des 11. September konnten selbst ein filigranes Hochhaus bzw. das Pentagon nur zum Wackeln bringen. Etwas anderes ist die ungeheure Brandlast eines voll betankten Großraumflugzeuges, aber gegen die hilft Beton nur bedingt.

Jedenfalls steht der EPR heute mit einer doppelten Betonhülle dar. Der innere Teil – das Containment – besteht aus ca. 1,3 m dickem Spannbeton und die äußere Schutzhülle aus einer weiteren ca. 1,8 m dicken Betonhülle. Zusätzlich verschwinden alle nuklearen Komponenten (Dampferzeuger, Reaktordruckgefäß usw.) hinter weiteren Betonmauern, die als Abschirmung gegen Strahlung dienen. Dieses „Bunkersystem“ ist mit Sicherheit stark genug, um jedem Flugzeugabsturz oder einem Terroranschlag zu widerstehen. Wir erinnern uns: Tschernobyl hatte nicht einmal ein Containment und in Fukushima waren nur die Reaktoren geschützt. Das Brennelementebecken stand in einer normalen Industriehalle. Anders als beim ERP, bei dem sogar das Lagergebäude für die Brennelemente und diverse Sicherheitsanlagen mit einer Betonhülle verbunkert sind.

Beton kann nicht schaden, er ist nur sehr teuer. Erschwerend kommt beim EPR die lohnintensive und zeitraubende Ausführung als Ortbeton hinzu. Dies wurde zumindest in Olkiluoto völlig unterschätzt.

Grundsätzlich ist die Konstruktion aus zwei Hüllen mit Zwischenraum sicherheitstechnisch zu begrüßen. Wird das Containment durch eine Explosion (Fukushima) oder was auch immer beschädigt, kann die äußere Hülle ihre Funktion wenigstens zum Teil übernehmen. Der Zwischenraum wird ständig abgesaugt und in leichtem Unterdruck gehalten. Die „radioaktiv belastete Luft“ wird vor der Abgabe über den Kamin gefiltert. Durch eine solche Maßnahme kann selbst, wenn die gasförmigen Spaltprodukte im Reaktor freigesetzt werden sollten, der größte Teil zurück gehalten bzw. auf ein erträgliches Maß verdünnt werden.

Der core catcher

Dank Hollywood ist jeder „Atomkraftgegner“ mit dem „China Syndrom“ vertraut: Eine einmal eingetretene Kernschmelze soll endlos andauern. Selbst die unfreiwilligen Großversuche von Harrisburg, Tschernobyl und Fukushima können einen rechtgläubigen „Atomkraftgegner“ nicht von diesem Irrglauben abbringen.

Fangen wir mal mit dem Schlimmsten an:

  • Der Reaktor in Tschernobyl stand in einer einfachen Industriehalle. Nachdem eine Kernschmelze stattgefunden hatte, verabschiedete sich der Reaktor durch eine physikalische Explosion. Er spie wie ein Vulkan den größten Teil seines radioaktiven Inhalts in die Umwelt aus. Dies ist der schlimmste – überhaupt vorstellbare – Unfall.
  • In Fukushima trat in mehreren Reaktoren (zumindest teilweise) eine Kernschmelze ein. Ursache war hierfür der zeitweise Ausfall der Stromversorgung und dadurch ein Mangel an Kühlwasser. Die Nachzerfallswärme konnte die Brennelemente (teilweise) schmelzen lassen. Die Nachzerfallswärme nimmt aber sehr schnell ab und die Kühlung konnte – wenn auch verspätet – wieder aufgenommen werden. Wieviel Corium sich tatsächlich durch die Reaktorgefäße gefressen hat, wird erst eine genaue Untersuchung zeigen können. Jedenfalls hat die Menge nicht einmal gereicht, um den Betonboden der Reaktorgrube zu durchschmelzen. Ursache für die Freisetzung von Radioaktivität sind schlicht weg Konstruktionsfehler: Die Wasserstoffexplosion und die „Untertunnelung“ des Kraftwerks.
  • Bei dem TMI-Reaktor in Harrisburg hatte man wenigstens alles grundsätzlich richtig konstruiert, obwohl dann später alles schief lief. Maßgeblich durch Bedienungsfehler fiel ein Teil des Kerns unbemerkt trocken. Es entstand Wasserstoff, welcher aber nicht zu einer heftigen Explosion führte. Das Reaktordruckgefäß blieb ganz und in ihm sammelten sich Bruchstücke und Schmelze. Es gelangte praktisch keine unzulässig hohe Radioaktivität in die Umwelt.

Anstatt durch Aufklärung entgegen zu wirken, versuchte man den Segen der „Atomkraftgegner“ durch die Erfindung des core catcher zu erlangen. Ein von Anfang an sinnloses Unterfangen. Die Strategie der „Atomkraftgegner“ ging vielmehr auf: Die Kosten wurden weiter in die Höhe getrieben um mit einer vorgeblich „unwirtschaftlichen Atomkraft“ argumentieren zu können.

Wie sieht dieses Ding nun beim EPR aus? Man pflastert den Boden unterhalb des Reaktordruckgefäßes mit Steinen aus einer feuerfesten Keramik. Gemäß den Vorstellungen aus Hollywood frisst sich das Corium als glühende Schmelze durch das Reaktordruckgefäß und sammelt sich in der feuerfesten Wanne. In der Realität nimmt die Nachzerfallswärme zwar exponentiell ab, nach Drehbuch natürlich nicht, sondern der Boden der Wanne aus einem Spezialbeton schmilzt langsam auf und die Schmelze rinnt anschließend über eine Schräge in eine großflächige Vertiefung. Diese soll dauerhaft und automatisch durch Wasser gekühlt werden. Dort soll die Schmelze dann dauerhaft erstarren. Man könnte dieses Konzept auch mit: „Richtige Antworten auf falsche Fragestellungen umschreiben.“ Jedenfalls kostet allein der umbaute Raum für diese technische Glanzleistung zig Millionen.

Die magische Zahl vier

Der EPR hat vier Primärkreise: Um das Druckgefäß im Zentrum stehen kreisförmig angeordnet vier Dampferzeuger. Zwischen ihnen stehen die vier Hauptkühlmittelpumpen für die Umwälzung des Wassers durch den Reaktorkern und die Wärmeübertrager. All diese Komponenten stehen in Betonkammern, die der Abschirmung der Strahlung dienen. Damit ist der Sicherheitsbehälter auch während des Betriebes begehbar.

Dieser Grundanordnung folgend, gibt es auch vier vollständige Sicherheitseinrichtungen, deren Komponenten in vier voneinander völlig getrennten Gebäuden um den Sicherheitsbehälter angeordnet sind. Diese vier Sicherheitsabschnitte, sowie die Bedienungszentrale und das Gebäude für die Brennelemente, sind ebenfalls (wie das zylindrische Reaktorgebäude) gegen Flugzeugabstürze verbunkert.

Etwas abseits liegen zwei Gebäude, die die Notstromversorgung enthalten. Sie befinden sich jeweils in Deckung durch den eigentlichen Reaktorbau. Da sie ebenfalls vollständig redundant sind, geht man nur von höchstens einem Schaden bei einem Flugzeugabsturz aus. Die Gebäude sind mit wasserdichten Türen verschlossen. Ein Auslöschen durch eine Flutwelle (Fukushima) wäre ausgeschlossen.

Jedes, der vier Notkühlsysteme, kann allein die gesamte Wärme abführen (4 x 100%). In erster Linie dient das zur Verbesserung der Verfügbarkeit. Da alle vier Züge völlig voneinander unabhängig sind, kann man Wartungsarbeiten im laufenden Betrieb ausführen. Wenn ein System gewartet wird, stehen immer noch drei zur Verfügung.

Die Nachzerfallswärme

Bei einem Störfall wird das Kernkraftwerk durch eine Unterbrechung der Kettenreaktion abgeschaltet. Das Einfahren der Steuerstäbe entspricht z. B. dem Ausschalten der Feuerung bei einem konventionellen Kraftwerk. Bei beiden muß nun noch die im System gespeicherte Wärme abgeführt werden. Es gibt bei einem Kernkraftwerk aber zusätzlich den physikalischen Effekt der Nachzerfallswärme: Der radioaktive Zerfall der Spaltprodukte läßt sich durch nichts aufhalten. Es wird also auch nach der Abschaltung noch Wärme produziert! Die freiwerdende Wärme hängt von verschiedenen Umständen ab. In den ersten Sekunden können es über 5% der thermischen Leistung sein. Die Nachzerfallswärme nimmt sehr schnell ab und es sind nach einer Stunde nur noch rund 1%. Gleichwohl handelt es sich um gewaltige Leistungen. Ist ein EPR längere Zeit mit Höchstlast im Netz gewesen, sind das entsprechend 225 MW bzw. noch 45 MW nach einer Stunde. Diese Wärme muß auf jeden Fall – auch bei widrigsten äußeren Umständen (Fukushima) – abgeführt werden, da sonst der Kern schmilzt.

Praktisch ist die einzige Möglichkeit solche Leistungen sicher abzuführen, die Verdampfung. Ist die äußere Wärmesenke (Fluß, Meer oder Kühlturm) nicht mehr nutzbar, muß dies ausschließlich über die Notkühlung möglich sein. Zuerst baut man über Ventile am Druckhalter den Druck im Primärkreis ab. Schon durch dieses „auskochen“ tritt eine merklich Kühlung ein. Allerdings muß die abgelassene Wassermenge möglichst schnell ersetzt werden, da sonst das Reaktordruckgefäß ausdampft und der Kern (teilweise, wie in Harrisburg) trocken fällt. Ist der Druck auf ein gewisses Niveau abgefallen (ungefähr 100 bar) setzt eine Nachspeisung von Kühlwasser ein. Für den Antrieb der Pumpen ist aber elektrische Energie nötig. Würde die Notstromversorgung – wie in Fukushima – versagen, würde die Überhitzung des Kerns eher noch schneller eintreten. Das Reaktormodell aus den 1960er Jahren hatte bereits eine pfiffigere Idee: Der abgelassene Dampf wurde vor der Kondensation in der wassergefüllten Ringkammer über eine kleine Turbine geleitet. Diese Turbine treibt eine kleine Speisepumpe, die Wasser aus dem Ringraum zurück in das Druckgefäß speist. Dies funktioniert bis zu einem gewissen Temperaturausgleich recht gut. Eine Notmaßnahme, die zumindest in den ersten Minuten ohne jede Hilfsenergie sehr gut funktioniert hat.

Gegenüber seinen Vorläufern hat der EPR durch das Wasserbecken am Boden einen Sicherheitsgewinn: Das Wasser dient nicht nur zur Noteinspeisung, sondern stellt auch eine Wärmesenke innerhalb des Sicherheitsbehälters dar. Das Wasser kann durch Wärmeübertrager gepumpt werden, um es „kühl“ zu erhalten. Die Lagerung am Boden kommt der statischen Belastung bei Erdbeben entgegen, vergibt aber die Chance einer passiven Nachspeisung durch Schwerkraft.

Bei dem EPR ergibt sich kein grundsätzlicher Sicherheitsgewinn gegenüber seinen Vorgängern des Konvoi. Er arbeitet nach den gleichen Prinzipien: Lediglich die Stückzahl und Aufstellung der Sicherheitseinrichtungen wurde erhöht: Je zwei Notstromdiesel in zwei verschiedenen Gebäuden (2 x 2 x 8 MW Redundanz) und je ein Notstromaggregat zusätzlich im Gebäude (2 x 1 MW Diversität). Es bleibt aber das alte Problem aktiver Sicherheitssysteme: Strom weg, Wasser weg! Die vorgeblich um den Faktor zehn erhöhte Sicherheit, ergibt sich rechnerisch hauptsächlich aus dem Core Catcher.

Der Zugewinn an Lebensdauer

Beim EPR ist die konstruktive Nutzungsdauer von 40 auf 60 Jahre erhöht. Dies ist durch eine konsequente Überarbeitung aller Bauteile geschehen. So ist man z. B. beim Druckgefäß und den Hauptkühlmittelleitungen auf den Werkstoff Alloy 690 (59,5% Nickel, 30% Chrom, 9,2% Eisen etc.) übergegangen. Er besitzt bessere Korrosionsbeständigkeit und bildet nicht soviel „Atommüll“ durch Neutroneneinfang. Zusätzlich hat man das Druckgefäß mit einem Reflektor aus Stahl ausgestattet. Durch das Zurückstreuen von Neutronen in den Kern kann man den Brennstoff besser ausnutzen und gleichzeitig den Druckbehälter weniger belasten (Versprödung durch Neutronen).

Sicherheit und Wartung stehen in enger Beziehung. Schweißnähte weisen immer Fehler auf, die in regelmäßigen Abständen überprüft werden müssen. Solche Wiederholungsprüfungen sind zeitaufwendig (Verfügbarkeit) und kostspielig. Je weniger Schweißnähte, desto besser. Wenn schon Schweißnähte, dann an gut zugänglichen Stellen. Man hat deshalb beim EPR wesentlich komplizierter geschmiedete Formstücke (hohe Investitionskosten) für die Hauptkühlmittelleitungen verwendet bzw. durch Aushalsungen beim Druckbehälter die Anschlüsse vorverlegt.

Schlusswort

Ohne jede Frage hat man in hunderten von Betriebsjahren eine Menge Erfahrungen gesammelt. Hinzu kamen die realen „Großversuche“ aus Harrisburg und Fukushima. Insofern ist der EPR nicht mehr mit den ersten Druckwasserreaktoren vergleichbar. Als Ersatz für gasgekühlte Reaktoren (Hinkley Point) oder als Zubau (Olkiluoto, Taishan) ist er sicherlich eine gute Lösung. Aber ist der Sicherheitsgewinn beispielsweise gegenüber einer Konvoi-Anlage so viel höher, daß ein Ersatz durch einen EPR zu rechtfertigen wäre? Zumal man mit wenigen Nachrüstungen bzw. Ersatzteilen (z. B. Dampferzeuger) sehr kostengünstig eine Betriebsdauer von 80 und mehr Jahren erreichen könnte. Genug Zeit jedenfalls, um auf fortschrittlichere Konzepte umzusteigen.

Im nächsten Teil geht es um den APR-1000 von Westinghouse, der in Moore Side (und anderswo) geplant ist.

Halbzeit bei GenIV

Nach zehn Jahren der internationalen Zusammenarbeit bei der Entwicklung von Reaktoren der sogenannten „vierten Generation“ erschien eine Überarbeitung der Ursprünglichen Fahrplanes aus dem Jahre 2002 erforderlich.  In der letzten Dekade ist viel geschehen: Dies betrifft die Zusammensetzung und Forschungsintensität der Mitglieder, die bereits gewonnenen Erkenntnisse und nicht zuletzt die Veränderung der äußeren Randbedingungen (Shale Gas Boom, Fukushima, etc.).

Es ist bei den ursprünglich ausgewählten sechs Konzepten geblieben. Neue sind nicht hinzugekommen. Mehrere teilnehmende Länder haben bedeutende Mittel in die Entwicklung natriumgekühlter Reaktoren mit einem schnellen Neutronenspektrum (sodium-cooled fast reactor, SFR) und gasgekühlten Reaktoren mit möglichst hoher Betriebstemperatur (very-high-temperature reactor, VHTR) investiert.

Die restlichen vier Konzepte: Mit Wasser im überkritischen Zustand gekühlte Reaktoren (SCWR), bleigekühlte Reaktoren mit schnellem Neutronenspektrum (LFR), gasgekühlte Reaktoren mit schnellem Neutronenspektrum (GFR) und mit Salzschmelzen gekühlte Reaktoren wurden – mehr oder weniger – auf Sparflamme entwickelt.

Ziele

Weiterhin gelten als zentrale Anforderungen an die sogenannte vierte Generation folgende vier Bereiche:

  • Nachhaltigkeit
  • Sicherheit und Verfügbarkeit
  • Wirtschaftliche Wettbewerbsfähigkeit
  • nicht zur Produktion von Waffen geeignete Technologien und ein physikalischer Schutz gegen jedwede Einwirkungen von Außen (Naturkatastrophen, Terrorismus etc.).

Interessant ist in diesem Zusammenhang die Definition der vier Generationen: Die ersten Reaktoren der Baujahre 1950–1960 (z. B. Shippingport, Dresden, MAGNOX usw.) werden als Demonstrationskraftwerke verstanden und sind bereits stillgelegt. Die zweite Generation umfaßt die Baujahre 1970–1990 und stellt die überwiegend heute im Betrieb befindlichen Leichtwasser- und Schwerwasserreaktoren dar. Die dritte Generation wird als die Leichtwasserreaktoren der Baujahre 1990–2000 definiert, wobei die Reaktoren nach dem Jahr 2000 als Generation III+ bezeichnet werden. Sie stellen eine evolutionäre Weiterentwicklung der Druck- und Siedewassertechnologie dar. Die Vielzahl unterschiedlichster Reaktortypen der Anfangsjahre hat sich also auf lediglich zwei Bauarten verengt. Die Weiterentwicklungen der schwerwassermoderierten, der gasgekühlten und der metallgekühlten Reaktoren ist – zumindest, was die Stückzahlen anbetrifft – auf das Niveau von Demonstrationsanlagen zurückgefallen. Erst ab dem Jahr 2030 wird von der Einführung einer vierten Generation ausgegangen.

Als die zentralen Ziele für die vierte Generation wird dabei die Verringerung der Gesamtkosten über den Lebenszyklus eines Kraftwerks, eine nochmals verbesserte Sicherheit, ein möglichst großer Schutz vor missbräuchlicher Nutzung (Waffen, Terrorismus) und eine erhebliche Verringerung des (Atom)mülls gesehen.

Abgebrannte Brennelemente

Nach einer gewissen Zeit ist jedes Brennelement in einem Reaktor nicht mehr nutzbar und muß ausgetauscht werden. Im Sprachgebrauch der „Atomkraftgegner“ ist es dann „Atommüll“ der zudem auch noch für Jahrtausende tödlich sein soll. In Wirklichkeit sind in einem „abgebrannten“ Brennelement eines Leichtwasserreaktors noch über 95% Brennstoff enthalten. Dieser Brennstoff muß und kann recycled werden. Aber selbst die übrig bleibenden Spaltprodukte sind keinesfalls wertlos. Aus wirtschaftlichen Gründen lohnt meist keine sofortige Aufbereitung. Es empfiehlt sich daher, diesen Atommüll (Müll in Bezug auf eine energetische Verwertung) für längere Zeit sicher zu lagern um ein Abklingen der Radioaktivität abzuwarten. Durch eine Nachbehandlung des Abfalls in geeigneten Reaktoren (mit schnellem Neutronenspektrum oder sog. Transmutation) kann diese notwendige Lagerzeit auf wenige hundert Jahre beschränkt werden. Eine „Endlagerung“ ist weder nötig noch sinnvoll. Das übrig bleibende „Erz“ – mit hohem Gehalt wertvollster Materialien – kann anschließend dem normalen Wirtschaftskreislauf zugeführt werden.

Die Aufgabe der nahen und mittleren Zukunft liegt in der Entwicklung und Realisierung solcher Kreisläufe mit möglichst geringen Kosten. Das bisher vorliegende „Henne-Ei-Problem“ beginnt sich gerade von selbst zu lösen: Es gibt inzwischen weltweit große Mengen abgebrannter Brennelemente, die eine Aufbereitung mit unterschiedlichsten Verfahren im industriellen Maßstab möglich machen. Viele dieser Brennelemente sind bereits soweit abgelagert (die Strahlung nimmt in den ersten Jahren besonders stark ab), daß sich ihre Handhabung stark vereinfacht hat.

Ein „Endlager“ – besser ein Lager mit sicherem Einschluß über geologische Zeiträume – ist nur für die Abfälle nötig, deren Aufbereitung zu kostspielig wäre. Dieser Weg wird bereits für Abfälle aus der Kernwaffenproduktion beschritten. Dafür reicht aber maximal ein „Endlager“ pro Kernwaffenstaat aus.

In naher Zukunft wird sich ein weltweiter Austausch ergeben: Es wird unterschiedliche Wiederaufbereitungsanlagen in verschiedenen Ländern geben. Die Kraftwerksbetreiber können diese als Dienstleistung nutzen. Die dabei wiedergewonnen Wertstoffe werden auf speziellen Märkten gehandelt werden. Wer zukünftig beispielsweise einen „Brutreaktor“ bauen möchte, kann sich das für die Erstbeladung notwendige Plutonium auf diesem Markt zusammenkaufen. Wem die Mengen langlebiger Aktinoiden zu groß werden (Lagerkosten) kann diese an Betreiber von schnellen Reaktoren oder Transmutationsanlagen zur „Verbrennung“ abgeben. Es wird sich genau so ein Markt für „nukleare Müllverbrennungsanlagen“ etablieren, wie er heute für Industrie- und Hausmüll selbstverständlich ist.

Ebenso wird es kommerzielle „Endlager“ geben, die gegen (teure) Gebühren Restmengen aufnehmen, die sich anderweitig nicht mehr wirtschaftlich verwenden lassen. Gerade Deutschland ist weltweit führend in Erwerb und Endlagerung von hoch toxischen Abfällen in ehemaligen Salzbergwerken. Hier ist es auch sprachlich gerechtfertigt, von Endlagern zu sprechen, da die dort eingelagerten Stoffe – anders als radioaktive Stoffe – nie verschwinden werden. „Gefährlich“ ist (zumindest in Deutschland) halt nur eine Frage des ideologischen Standpunktes.

Die sechs Systeme

Im Jahre 2002 wurden aus über 100 Vorschlägen sechs Konzepte ausgewählt. Leitgedanke dabei war, aus verschiedenen Reaktortypen symbiotische Systeme zu bilden. Beispielsweise durch die Verknüpfung von Leichtwasserreaktoren mit Reaktoren mit schnellem Neutronenspektrum, sodaß der „Abfall“ des einen Reaktortyps als Brennstoff für den anderen dienen kann. In diesem Sinne, konzentrierte man sich nicht auf die Entwicklung eines einzelnen neuen Reaktors, sondern wählte sechs Konzepte aus, aus denen ein weltweites Netz aufgebaut werden könnte. Jeder einzelne dieser sechs ausgewählten Konzepte hat ganz spezielle Vor- und Nachteile, die es jedem Land ermöglichen sollte, für seinen speziellen Bedarf, das geeignete Modell auswählen zu können. Es geht also eher darum, Möglichkeiten zu eröffnen, als Konzepte fest zu schreiben. Dies ist ein sehr flexibler und (theoretisch) Kosten sparender Ansatz, da jedes Land seine besonderen Stärken (Werkstofftechnik, Fertigungstechnik, Datenverarbeitung etc.) in die gemeinsame Forschung und Entwicklung einbringen kann, ohne sich ein komplettes Entwicklungsprogramm für einen einzelnen Reaktor aufbürden zu müssen. Insbesondere auch kleinen Ländern, mit beschränkten Ressourcen steht es offen, sich zu beteiligen.

Die ursprünglich ausgewählten Konzepte sind alle in den letzten zehn Jahren verfolgt worden und sollen auch weiter entwickelt werden. Allerdings haben sich durch neue Erkenntnisse und einem unterschiedlichen finanziellen Einsatz in den beteiligten Ländern, der ursprünglich geplante Zeitplan etwas verschoben. Die Entwicklung wurde in jeweils drei Phasen unterteilt.

Zeitplan

Für alle sechs Reaktortypen sollten die Machbarkeitsstudien als erste Phase bereits abgeschlossen sein. Bei der Machbarkeitsstudie sollten alle relevanten Probleme geklärt worden sein und insbesondere für kritische Eigenschaften, die später sogar eine Aufgabe erforderlich machen könnten, zumindest Lösungswege aufgezeigt werden. Für Salzbadreaktoren glaubt man diese Phase nicht vor 2025 und für gasgekühlte Reaktoren mit schnellem Neutronenspektrum, nicht vor 2022 abschließen zu können.

In der Durchführungsphase sollten alle Materialeigenschaften, Berechnungsverfahren etc. entwickelt und als Prototypen getestet und optimiert sein. Diese Phase wurde bisher bei keinem Konzept abgeschlossen. Am weitesten vorn im Zeitplan, liegen der mit Natrium gekühlte schnelle Reaktor (erwartet 2022) und der mit Blei gekühlte schnelle Reaktor (erwartet 2021).

Aus heutiger Sicht wird deshalb kein Reaktor die Demonstrationsphase bis zum Jahr 2030 abschließen können. Bevor eine kommerzielle Anlage in Angriff genommen werden kann, muß wenigstens ein Demonstrationskraftwerk (einschließlich dem erforderlichen Genehmigungsverfahren!) errichtet worden sein und einige Jahre Betriebserfahrung gesammelt haben. Selbst in Ländern mit durchweg positiver Einstellung zur Nutzung der Kernenergie und einem gewissen Pioniergeist (ähnlich der 1950er Jahre) dürfte dies ein ehrgeiziges Ziel sein. Zumal kein wirklicher Zeitdruck vorliegt: Es gibt genug Natururan zu günstigen Preisen, die Mengen abgebrannter Brennelemente sind immer noch so gering, daß kein Kostendruck zur Beseitigung von „Atommüll“ existiert und der Bedarf an Prozeßwärme mit hoher Temperatur kann problemlos durch kostengünstiges Erdgas gedeckt werden. Es bleibt die Erzeugung elektrischer Energie: Die kann aber problemlos und kostengünstig (im Vergleich zu Kohlekraftwerken mit Abgaswäsche) durch konventionelle Leichtwasserreaktoren erzeugt werden. China stellt dies eindrucksvoll unter Beweis.

Fukushimas Auswirkungen

Fukushima hat die Bedeutung für eine nach den Regeln der Technik entsprechende Auslegung und Bauweise gezeigt. Die Lehren aus dem Unglück beeinflussen nicht nur die in Betrieb befindlichen Kraftwerke, sondern auch zukünftige der vierten Generation. Schädigende Einflüsse von außen müssen bauartbedingt von den Reaktoren fern gehalten werden (z. B. Baugrund oberhalb von möglichen Flutwellen) und die Nachzerfallswärme muß auch über längere Zeit und in jedem Falle sicher abgeführt werden (z. B. passive Wasserkühlung aus oberen Tanks ausreichender Dimension).

Für die Reaktoren der vierten Generation sind umfangreiche Forschungsarbeiten zur Beantwortung dieser Fragen notwendig. Dies betrifft insbesondere das Verhalten der andersartigen Kühlmittel (Helium, Natrium, Blei etc.) und die teilweise wesentlich höheren Temperaturen (Werkstoffe, Temperaturschocks etc.). Hinzu kommt die höhere Energiedichte in den Kernen und etwaige Brennstoffkreisläufe in unmittelbarer Nähe.

Gasgekühlter schneller Reaktor (GFR)

Bei dem GFR (Gas-cooled Fast Reactor) handelt es sich um einen mit Helium gekühlten Reaktor mit schnellem Neutronenspektrum. Durch schnelle Neutronen lassen sich alle Aktinoiden – also alle radioaktiven Elemente mit langen Halbwertszeiten – spalten. Dies ist heute der Hauptgrund, warum man diese Entwicklung verfolgt. Man könnte mit solchen Reaktoren die „Endlagerfrage“ eindeutig beantworten: Man braucht faktisch kein Endlager mehr, weil sich das Problem der potentiellen „Gefahr durch strahlenden Atommüll“ auf technische Zeiträume von weniger als 300 Jahren reduziert. Damit ist auch klar, warum sich die „Anti-Atomkraftbewegung“ mit besonderer Vehemenz – und auch Gewalttätigkeit – gegen den Bau solcher Reaktoren gewandt hat. Würden solche Reaktoren mit Wiederaufbereitung abgebrannter Brennelemente eingesetzt, wäre ihnen ihr Totschlagargument von angeblich über Millionen Jahre zu sichernden Endlagern entzogen. Die (deutsche) Scharade einer „Standortsuche“ wäre schlagartig zu Ende.

Ein mit Helium gekühlter Reaktor mit schnellem Neutronenspektrum hat jedoch einen systembedingten Nachteil: Wegen des angestrebten Neutronenspektrums darf ein solcher Reaktor nur geringe Mengen an Materialien enthalten, die Neutronen abbremsen. Idealerweise würde er nur aus Brennstoff und Kühlmittel bestehen. Seine Fähigkeit „Wärme“ zu speichern, ist sehr gering. Jede Leistungsänderung führt somit zu starken und schnellen Temperaturänderungen. Ein ernster Nachteil bei einem Verlust des Kühlmittels. Allein die Nachzerfallswärme könnte zu schwersten Schäden führen. Ebenso ist eine passive Nachkühlung kaum realisierbar. Helium ändert – anders als Wasser – nur geringfügig seine Dichte bei Temperaturänderungen. Man wird daher immer auf aktive Nachkühlung angewiesen sein. Die Ereignisse von Fukushima haben die Genehmigungsfähigkeit dieses Reaktorprinzips nicht unbedingt erhöht.

In nächster Zukunft müssen Gebläse bzw. Turbinen entwickelt werden, die Helium mit hoher Temperatur (Betriebstemperatur 850 °C) und unterschiedlichen Drücken (zwischen 1 und 70 bar) zuverlässig befördern können. Für die Kreisläufe zur Abführung der Nachzerfallswärme sind sicherheitsrelevante Ventile zu entwickeln und zu testen. Es sind zuverlässige Antriebskonzepte für die Notkühl-Gebläse zu entwickeln. Nach den Erfahrungen in Fukushima keine ganz einfache Aufgabe.

Die infrage kommenden Legierungen und Keramiken für die Brennelemente sind ausgiebig zu testen. Gleiches gilt für die Hüllrohre. Es müssen im Störfall Temperaturen von etwa 2000 °C sicher beherrscht werden.

Mit der bisherigen Entwicklung sind die Probleme eher größer geworden. Es wird deshalb nicht mit einem Abschluss der Machbarkeitsstudien in den nächsten zehn Jahren gerechnet. Wegen der Langfristigkeit ist der Einsatz der Mittel eher verringert worden.

Bleigekühlter schneller Reaktor (LFR)

Bei dem Lead-cooled Fast Reactor (LFR) handelt es sich um einen Reaktor, der flüssiges Blei als Kühlmittel verwendet. Blei besitzt einen sehr hohen Siedepunkt (1743 °C), sodaß man mit diesem Reaktortyp sehr hohe Temperaturen ohne nennenswerten Druckanstieg erzeugen kann. Allerdings ist Blei bei Umgebungsbedingungen fest, weshalb man den gesamten Kreislauf stets auf über 328 °C halten muß. Es gibt also zusätzlich den neuen Störfall „Ausfall der Heizung“. Blei ist chemisch recht beständig und reagiert – wenn überhaupt – ohne große Wärmefreisetzung mit Luft oder Wasser. Es schirmt Gammastrahlung sehr gut ab und besitzt ein gutes Lösungsvermögen (bis 600 °C) für Jod und Cäsium. Ferner trägt die hohe Dichte von Blei eher zu einer Rückhaltung als einer Verteilung von radioaktiven Stoffen bei einem schweren Störfall bei. Allerdings stellt die Undurchsichtigkeit und der hohe Schmelzpunkt bei allen Wartungsarbeiten und Sicherheitsinspektionen eine echte Herausforderung dar. Die hohe Dichte von Blei erschwert den Erdbebenschutz und erfordert neue (zugelassene) Berechnungsverfahren. Nach wie vor, ist die Korrosion von Stahl in heißem Blei mit Sauerstoff ein großes Problem. Hier ist noch sehr viel Forschung und Entwicklung nötig, bis ein dem heutigen Niveau von Leichtwasserreaktoren entsprechender Zustand erreicht wird.

In sowjetischen U-Booten wurden Reaktoren mit einem Blei-Wismut-Eutektikum (niedrigerer Schmelzpunkt) verwendet. Die dort (meist schlechten) gesammelten Erfahrungen sind nicht direkt auf das LFR-Konzept übertragbar. Die Reaktoren sind wesentlich kleiner, haben eine geringere Energiedichte und Betriebstemperatur und eine geringere Verfügbarkeit. Außerdem arbeiteten sie mit einem epithermischen und nicht mit einem schnellen Neutronenspektrum. Der Vorteil des geringeren Schmelzpunktes einer Blei-Wismut-Legierung ist nicht ohne weiteres auf eine zivile Nutzung übertragbar, da durch den Neutronenbeschuß Polonium-210 gebildet wird. Es handelt sich dabei um einen starken Alphastrahler (Halbwertszeit 138 Tage), der den gesamten Kühlkreislauf kontaminiert.

Im Moment werden im Projekt drei verschiedene Konzepte verfolgt: Ein Kleinreaktor mit 10 bis 100 MWel in den USA (Small Secure Transportable Autonomous Reactor or SSTAR), ein Reaktor mit 300 MWel in Russland (BREST) und ein Reaktor mit mehr als 600 MWel in Europa (European Lead Fast Reactor or ELFR – Euratom).

Wenn man einen solchen Reaktor als Brüter betreiben will, benötigt man eine Mindestleistung. Je größer, je effektiver. Ein kleiner Reaktor, wie z. B. der SSTAR, ist nur als reiner „Aktinoidenbrenner“ geeignet. Allerdings kann er sehr lange ohne einen Brennstoffwechsel betrieben werden. Will man Spaltmaterial erbrüten, ist ein häufiger Brennstoffwechsel unvermeidlich. Es empfiehlt sich deshalb, einen entsprechenden Brennstoffzyklus zu entwickeln. Es wird auf den Bau mehrere Reaktoren mit einer gemeinsamen Wiederaufbereitungsanlage hinauslaufen. Das Verfahren zur Wiederaufbereitung hängt wiederum von dem Brennstoffkonzept des Reaktors ab.

Ein besonderes Konzept, im Zusammenhang mit Blei, ist die Entwicklung einer Spallationsquelle (Japan, MYRRHA in Belgien usw.). In einem Beschleuniger wird ein Strahl von Protonen auf über 1 GeV beschleunigt und auf flüssiges Blei geschossen. Beim Auftreffen auf ein Bleiatom „verdampft“ dieses seine Kernelemente. Es wird eine große Anzahl von Neutronen frei. Diese Neutronen werden von einem Mantel aus Aktinoiden absorbiert. Diese eingefangenen Neutronen führen teilweise zu einer Spaltung oder einer Umwandlung. Durch die Spaltungen wird – wie in jedem Kernreaktor – Wärme frei, die anschließend konventionell genutzt werden kann. Es entsteht aber keine selbsterhaltende Kettenreaktion. Wird der Beschleuniger abgeschaltet, brechen auch sofort die Kernreaktionen in sich zusammen. Es handelt sich hierbei also um eine Maschine, die primär der Stoffumwandlung und nicht der Energieerzeugung dient. Durch die Verwendung von Blei als „Neutronenquelle“ und Kühlmittel sind aber alle Erfahrungen und Probleme unmittelbar übertragbar.

Am weitesten scheint die Entwicklung in Russland vorangeschritten zu sein. Man entwickelt einen bleigekühlten Reaktor mit 300 MWel (BREST-300) und betreibt die Weiterentwicklung der U-Boot-Reaktoren mit Blei-Wismut-Eutektikum als Kühlmittel (SVBR-100). Beide Reaktoren sollen bis zum Ende des Jahrzehnts erstmalig kritisch werden. In Europa plant man eine Demonstrationsanlage mit 300 MWth (Advanced Lead Fast Reactor European Demonstrator, ALFRED).

Salzbadreaktoren (MSR)

Salzbadreaktoren (Molten Salt Reaktor, MSR) werden in zwei Gruppen eingeteilt: Reaktoren, bei denen der Spaltstoff im Salz selbst gelöst ist und Reaktoren, bei denen das flüssige Salz nur als Kühlmittel dient (Fluoride salt-cooled High-temperature Reactor, FHR).

Zwischen 1950 und 1976 gab es in den USA ein umfangreiches Entwicklungsprogramm, aus dem zwei Prototypen erfolgreich hervorgingen (Aircraft Reactor Experiment, ARE und Molten Salt Reactor Experiment, MSRE). Anfangs konzentrierte man sich in der Entwicklung auf Salzbadreaktoren mit thermischem Neutronenspektrum.

Ab 2005 entwickelte sich eine Linie, die von in Salz gelöstem Brennstoff und Spaltprodukten ausging. Als Kühlmittel soll ebenfalls Salz dienen. Das Neutronenspektrum soll schnell sein. Von dieser Kombination verspricht man sich einerseits das Erbrüten von Spaltstoff (z. B. Uran-233 aus Thorium-232) und andererseits das kontinuierliche „Verbrennen“ von Minoren-Aktinoiden mit dem Ziel eines relativ kurzlebigen „Atommülls“, der nur noch aus Spaltstoffen besteht. Durch das Salzbad möchte man hohe Betriebstemperaturen bei nahezu Umgebungsdruck erreichen. Bis zum Bau eines Reaktors, ist jedoch noch ein langer Weg zurück zu legen: Es müssen die chemischen (Korrosion) und thermodynamischen Zustandsdaten für solche n-Stoff-Salze bestimmt werden. Es müssen Verfahren zur kontinuierlichen Entgasung der Salzschmelze entwickelt werden, da ein großer Teil der Spaltprodukte (zumindest bei der Betriebstemperatur) gasförmig ist. Für das flüssige Salzgemisch müssen gekoppelte neutronenphysikalische und thermohydraulische Berechnungsverfahren geschaffen werden. Für die radioaktiven Salzgemische sind zahlreiche Sicherheitsversuche zur Datensammlung und Absicherung der Simulationsmodelle nötig. Die Chemie und Verfahrenstechnik der Aufbereitung während des Reaktorbetriebs muß praktisch noch vollständig getestet werden.

Natriumgekühlter schneller Reaktor (SFR)

Der Sodium-cooled Fast Reactor (SFR) verwendet flüssiges Natrium als Kühlmittel. Natrium hat nahezu ideale Eigenschaften: Relativ geringer Schmelzpunkt (98 °C), aber hoher Siedepunkt (890 °C), sehr gute Wärmeleitfähigkeit (140 W/mK) bei annehmbarer Wärmekapazität (1,2 KJ/kgK). Es hat keine korrosiven Eigenschaften, reagiert aber heftig unter Wärmefreisetzung mit Luft und Wasser. Bisher wurden bereits 17 Reaktoren gebaut und drei weitere befinden sich in Russland, Indien und China im Bau.

Ursprüngliches Ziel war die Erschaffung eines „schnellen Brüters“. Mit ihm sollte mehr (thermisch) spaltbares Plutonium erzeugt werden, als dieser Reaktortyp zu seinem Betrieb benötigte. Dieses zusätzlich gewonnene Plutonium sollte dann zum Start weiterer Reaktoren verwendet werden. Inzwischen gibt es aus dem Betrieb von Leichtwasserreaktoren und der Rüstungsindustrie mehr als genug Plutonium auf der Erde. Darüber hinaus sind die Natururanvorräte nahezu unerschöpflich. Deshalb hat sich die Zielrichtung in den letzten Jahren verschoben. Die benutzten Brennelemente aus Leichtwasserreaktoren werden von „Atomkraftgegnern“ abfällig als „Atommüll“ bezeichnet. In Wirklichkeit sind aber das gesamte enthaltene Uran und Plutonium (weit über 95 %) vollständig zur Energiegewinnung nutzbar. Gerade aus dem wertvollsten Material – dem Plutonium – wird wegen dessen langer Halbwertszeit der Bedarf eines Endlagers und dessen „sicherer Einschluß über Millionen von Jahre“ konstruiert. Selbst die Spaltprodukte – als tatsächlicher Abfall der Energieerzeugung durch Kernspaltung – sind (wirtschaftlich) nutzbar.

Man geht heute von einer Erstbeladung eines schnellen natriumgekühlten Reaktors mit einem Gemisch aus Uran und knapp 20% Plutonium aus. Das Plutonium gewinnt man aus den abgebrannten Brennelementen der Leichtwasserreaktoren. Die abgebrannten Brennelemente eines solchen schnellen Reaktors werden nach angemessener Zwischenlagerung in einem elektrochemischen Prozeß (wie z. B. bei der Kupfer- und Aluminiumproduktion) wieder aufbereitet. Bei diesem Wiederaufbereitungsverfahren liegt der Schwerpunkt in der Gewinnung möglichst reiner (kurzlebiger) Spaltprodukte. Alle langlebigen Aktinoiden werden wieder in den neuen Brennelementen weiter verwendet. Das „verbrauchte“ Uran und Plutonium wird dabei durch „Atommüll“ aus Leichtwasserreaktoren ergänzt. Ein solcher Reaktor gleicht also einer „Müllverbrennungsanlage“, in der ja auch „gefährliche Stoffe“ unter gleichzeitiger Stromerzeugung beseitigt werden.

Natriumgekühlte Reaktoren können in beliebiger Größe gebaut werden. Lediglich wenn man Brennstoff erbrüten will (d. h. mehr Plutonium produzieren als man verbraucht) muß der Reaktor geometrisch groß sein, um Neutronenverluste zu vermeiden. Gerade „Aktinoidenbrenner“ können sehr klein und kurzfristig gebaut werden. Die Entwicklung bezieht sich auf die Kombination aus Brennstoff (oxidisch, metallisch, karbidisch und Nitride möglich) und die Wiederaufbereitung (naßchemisch, pyrotechnisch). Es gilt die optimale Kombination aus Werkstoffen und Verfahren zu finden. Ferner sind homogene Brennstoffe und spezielle heterogene Anordnungen zur Verbrennung von Minoren-Aktinoiden denkbar. Diese Anordnungen koppeln wieder auf die Neutronenphysik, die Regelung und damit letztendlich auf die Sicherheit zurück.

Reaktor mit überkritischem Wasser (SCWR)

Wird Wasser oberhalb des kritischen Punktes (374,12 °C bei 221,2 bar) verwendet, ändert es radikal seine chemischen und physikalischen Eigenschaften. Entscheidend ist die kontinuierliche Änderung der Dichte. Es gibt nicht mehr das gleichzeitige Auftreten von Dampf und Flüssigkeit (z. B. Blasen) in einem Behälter.

Ziel von „überkritischen Kesseln“ ist die Steigerung des Wirkungsgrades. So sind heute in modernen Kohlekraftwerken Wirkungsgrade von 46 % möglich. Für den Supercritical-water-cooled reactor (SCWR) ist ein Wirkungsgrad von 44 % angestrebt. Die leidvolle Entwicklungsgeschichte bei konventionellen Kraftwerken hat jedoch gezeigt, daß die Steigerung von Druck und Temperatur mit erheblichen Werkstoffproblemen und damit Kosten verbunden ist. Solange Kernbrennstoffe so billig wie heute sind, scheint dieser Weg bei Reaktoren zumindest wirtschaftlich nicht sinnvoll.

Die gesamte Sicherheitstechnik muß neu durchdacht und experimentell bestätigt werden. Es gibt keine lokale Selbstregelung durch Dampfblasenbildung mehr. Die Gefahr von überhitzten Stellen im Kern muß schon im Normalbetrieb sicher beherrscht werden. Die Notkühlsysteme müssen bei einem Druckabfall sowohl im überkritischen Zustand, als auch im Zwei-Phasenbereich voll wirksam sein. Man kann sich nicht mehr auf den Wasserstand als Stellgröße verlassen, sondern muß auf den Durchfluß übergehen, was wesentlich schwerer zu realisieren ist. Die Wasserchemie ist im überkritischen Zustand wesentlich anders und schwerer zu beherrschen.

Bisher wurden nur Tests mit Komponenten ausgeführt. Man hofft auf dieser Basis in den nächsten fünf Jahren eine Entscheidung für den Bau eines Prototyps fällen zu können. Bis zu einem kommerziell nutzbaren Reaktor dürften noch weit über 20 Jahre vergehen.

Hösttemperaturreaktor (VHTR)

Der Very-High-Temperature Reactor (VHTR) ist eine Weiterentwicklung eines mit Helium gekühlten Reaktors mit thermischem Neutronenspektrum. Es gibt die – ursprünglich in Deutschland entwickelte – Anordnung der Brennelemente als Kugelhaufen oder eine prismatischer Anordnung. Ziel war immer das Erreichen von Betriebstemperaturen von nahezu 1000 °C. Dieser Reaktortyp sollte primär als Wärmequelle in der Verfahrenstechnik (Kohleveredlung etc.) dienen. In diesem Sinne war ein Meilenstein immer das Erreichen einer Temperatur von 950 °C, bei der eine rein thermische Zerlegung von Wasser über einen Schwefel-Jod-Prozeß möglich ist. Dies war als Fundament einer „Wasserstoffwirtschaft“ gedacht. In Deutschland wurde das Konzept einer „kalten Fernwärme“ entwickelt, in dem Methan im Kreislauf läuft und beim Verbraucher lediglich chemisch zerlegt wird und die Bestandteile anschließend wieder mit der Hilfe der Wärme des Kernreaktors wieder zusammengesetzt werden. Der Charme dieses Konzepts liegt in der Fähigkeit, Energie über große Entfernungen mit geringen Verlusten (wie ein Erdgasnetz) transportieren und auch speichern zu können. Stellt man das „Erdgas“ synthetisch aus Kohle her, kann man dieses Gas in das vorhandene Erdgasnetz einspeisen. Interessanterweise wird dieser Gedanke in China aus den gleichen Gründen, wie damals in Deutschland, wieder aufgegriffen: Luftverschmutzung durch Kohle, bei (noch) geringen eigenen Erdgasvorkommen.

Die Entwicklung von Höchsttemperaturreaktoren ist im wesentlichen ein Werkstoffproblem. Wobei nicht übersehen werden darf, daß mit steigender Temperatur der Aufwand und die Kosten exponentiell ansteigen. Allerdings kann diese Entwicklung evolutionär durchgeführt werden. China scheint offensichtlich diesen Weg eingeschlagen zu haben. Ausgehend vom (Nachbau) des deutschen Kugelhaufenreaktors begibt man sich schrittweise vorwärts.

Stromautobahn oder Schmalspurbahn?

Stück für Stück kommt nun auch die Wahrheit über den „Netzausbau“ ans Licht. Die ersten Bürgerproteste und Reaktionen der Lokalpolitiker gehen durch die Presse. Ein neues, aufregendes Kapitel der „Energiewende“ beginnt.

Versorgung oder Entsorgung?

Zuerst sollte man einmal den Sinn und Zweck dieser neuen Hochspannungs-Gleichstrom-Übertragung (HGÜ) hinterfragen: Dient sie der Versorgung von Süddeutschland mit elektrischer Energie oder vielmehr der Entsorgung norddeutscher Küsten vom Abfallstrom? Durchaus zwei völlig verschiedene Ansätze, die noch zahlreiche Juristen beschäftigen werden. Noch funktioniert die Stromversorgung in Bayern, nicht zuletzt wegen der hohen Eigenerzeugung der lokalen Kernkraftwerke (Isar2, Grafenrheinfeld, Gundremmingen mit zusammen 5.257 MWel.). Jedenfalls ist noch kein Blackout eingetreten. Diese Gefahr soll erst durch deren Abschaltung heraufbeschworen werden, damit die Anhänger der Planwirtschaft richtig zuschlagen können. Apropos Richtung: Selbst, wenn man gegen die vorhandenen Kernkraftwerke ist, könnte man diese durch konventionelle Kraftwerke oder Stromimporte aus dem benachbarten Ausland ersetzen. Will man partout keine eigenen Kraftwerke (Arbeitsplätze und Steuereinnahmen), könnte man sie leicht und schnell „hinter der Grenze“ bauen. Die Lage ist also alles andere als alternativlos – jedenfalls für Bayern.

Schauen wir uns deshalb etwas näher den Anfang dieser Stromtrasse an. Wenn dort der Wind mal richtig weht – das heißt nicht zu schwach und auch wieder nicht zu stark – versinkt Norddeutschland in elektrischer Energie. Selbstverständlich gehört es zur unternehmerischen Freiheit, ein Solarium in der Sahara zu errichten. Nur gehört zum Unternehmer auch das Risiko tragen zu müssen. Eine Tatsache, die bei deutschen Energieversorgern längst verdrängt worden ist. Wenn man nach der Fertigstellung feststellt, daß die Kunden nicht Schlange stehen, weil die Wüste zu gering bevölkert ist, kann man dafür nicht Menschen in einer Entfernung von über tausend Kilometern verantwortlich machen. Fairerweise muß man unseren Kombinatsleitern zubilligen, daß sie die Windmühlen nicht als leuchtende Köder für die zahlreicheren Fische einsetzen wollten. Jedenfalls haben sie sich die erforderliche Bauzeit für die Anschlüsse an die Küste von uns Stromkunden fürstlich vergüten lassen. An der Küste treffen nun diese Windmühlen auf zahlreiche „Windparks“, die dort unter tatkräftiger Förderung lokaler Politiker aus dem Boden gestampft wurden – alles wegen der „grünen Arbeitsplätze“ – denn sonst ist da nicht viel los! Wohin aber nun mit dem Abfallstrom, den man selbst gar nicht verbrauchen kann und den auch sonst keiner haben will, weil einfach viel zu teuer? Ab ins reiche Bayern als eine weitere Variante des Länderausgleich, könnte man meinen.

Kernenergie versus Wind

Die neue Stromtrasse soll bei den Kernkraftwerken enden. Es ist durchaus sinnvoll, die dort vorhandenen Stromleitungen weiter zu nutzen. In erster Linie geht es jedoch darum, den Eindruck zu erwecken, man ersetze den „Atomstrom“ durch „Erneuerbare Energien“. Physikalisch ist das natürlich unmöglich: Man kann konventionelle Kraftwerke nicht durch Windenergie ersetzen, da der Windstrom so zufällig wie das Wetter ist! Wirtschaftlich ist es unsinnig, da man (selbst bei Windparks in der Nordsee) mehr als die vierfache Leistung benötigt, um die gleiche Energie erzeugen zu können. Die bayrischen Kernkraftwerke haben eine Arbeitsverfügbarkeit von durchweg 90 %, während die Windenergie in Ost- und Nordsee auf gerade mal 20 % kommt. Wohlgemerkt, das sind die tatsächlich gemessenen Werte und nicht irgendwelche Phantasiewerte der Schlangenölverkäufer. Da es auch auf hoher See mehrtägige Flauten und Orkane gibt, kommt man nicht umhin, die Kernkraftwerke trotzdem durch fossile Kraftwerke zu ersetzen. An dieser Stelle wird es noch einmal deutlich: Die neuen Stromtrassen können nicht zu einer sicheren und unterbrechungsfreien Stromversorgung von Bayern dienen. Sie dienen lediglich zur Verteilung von Stromabfall aus Norddeutschland. Bisher gibt es nicht einmal „überzählige Kraftwerke“ in Norddeutschland, die die bayrischen Kernkraftwerke ersetzen könnten: Weht kein Wind an der Küste, brauchen die ihre Kohlekraftwerke selber, um die Großräume von Hamburg, Bremen und Berlin ausreichend mit Strom zu versorgen.

Ein Solitaire ist kein Stromnetz

Besonders aberwitzig ist, eine Hochspannungs-Gleichstrom-Übertragung (HGÜ) bauen zu wollen. Gleichstrom und Drehstrom sind physikalisch verschieden und lassen sich nicht einfach mischen! Man muß den erzeugten Drehstrom erst aufwendig in Gleichstrom umwandeln und später wieder zurück wandeln. Beides ist mit Verlusten behaftet und erfordert sehr kapitalintensive Anlagen. Wirtschaftlich lohnt sich das nur, bei sehr großen Entfernungen durch dünn besiedelte Regionen. Man kann nämlich nirgendwo unterwegs Strom abzweigen, um ihn in lokale Netze einzuspeisen. Der Gleichstrom müßte erst wieder in Wechselstrom gewandelt werden. Die Bezeichnung „Stromautobahn“ ist bewußt irreführend. Auf einer Autobahn kann man mit jedem Kraftfahrzeug mit dem man im sonstigen Straßennetz fahren kann, ebenfalls fahren. In Berlin sogar einmal im Jahr mit dem Fahrrad. Die Bezeichnung „Schmalspurtrasse“ wäre treffender. Genauso, wie man mit keinem Normalspurwaggon auf einer Schmalspur fahren kann und erst alles aufwendig (zweimal) umladen muß. Eine solche HGÜ-Trasse bleibt ewig ein Fremdkörper im vorhandenen (europaweiten) Stromnetz.

Wäre das Stromnetz in Deutschland in der Lage, auch ohne die Kernkraftwerke in Süddeutschland die Versorgungssicherheit aufrecht zu halten, bräuchte man keine zusätzlichen Stromleitungen. Andererseits bringt eine einzelne HGÜ-Trasse fast nichts für die Bayrische Versorgungssicherheit. Fällt nämlich diese einzelne Leitung (Eisregen, Sturm, Unfälle, Terrorismus etc.) aus, müßte das vorhandene Netz die Versorgung sicher übernehmen können. Ein Widerspruch in sich! Es ist die alt bekannte Salamitaktik, die hier angewendet werden soll. Erst mal eine Milliarde versprechen, aus denen dann ohnehin drei werden und dann das bereits vergrabene Geld als Begründung für weitere notwendige Kosten nehmen. Michel, wann lernst du endlich dazu!

Die Kosten

Die Kosten sind immens. Um die Regeln für Netzwerke (z. B. N-1) einhalten zu können, wird man noch mehrere HGÜ-Trassen durch Deutschland schlagen müssen. Das ist halt der Preis, den man für eine zentrale Versorgung zahlen muß. Schon unsere Großväter haben aus gutem Grund, viele Kraftwerke möglichst nah am Verbraucher gebaut. Wir können aber gerne die Fehler anderer Kontinente nachmachen.

Interessant wird sich die Finanzierung gestalten. Bei einer Stromtrasse für Windkraft, muß man von einer sehr geringen Auslastung (unter 20%) ausgehen. Dies treibt die Kosten pro transportierter kWh in Schwindel erregende Höhen. Hinzu kommt ein enormes wirtschaftliches Risiko. Bei der einseitigen Ausrichtung auf Windparks in der Nordsee, ist dies kaum zu kalkulieren. Wer kann garantieren, daß dieses tote Pferd von einer uns noch völlig unbekannten Regierung in 10 oder 20 Jahren noch geritten wird? Wer vermag heute voraus zu sagen, in welche Höhen der Strompreis in Deutschland durch die Laiendarsteller und Schlangenölverkäufer noch getrieben wird? Wo liegt die Schmerzgrenze, die zumindest von der Wirtschaft nicht mehr getragen werden kann? Was hätte das für Konsequenzen, da nicht einmal unsere Nachbarn gewillt sind, diesen Irrweg nach zu machen? Was es für eine Volkswirtschaft bedeutet, wenn Milliardenkredite bei Immobilien platzen, zeigen übrigens Spanien und Irland eindrucksvoll (dort war es ein durch die Politik erzeugter Bauboom bei Wohnungen).

Die tolle Idee einer Bürgerbeteiligung dürfte sich schon vor dem Start in Luft aufgelöst haben. Der Bürger hat dank Prokon gelernt, was es bedeutet, wenn das Risiko der Windkraft von Banken als zu hoch eingeschätzt wird. Es war – wie immer – ein sicheres Zeichen für ein totes Geschäftsmodell, aus dem nichts mehr herauszuholen ist.

Ein möglicher Ausweg

Man macht endlich Schluß mit dieser „Energiewende“, an deren Ende nicht nur die Zerstörung unserer Volkswirtschaft und Natur steht, sondern unserer gesamten Gesellschaft. Sind die Lehren aus der „DDR“ schon so schnell vergessen? Diesmal wird es kein Beitrittsgebiet geben. Diesmal, wird die Suppe bis zum letzten Tropfen selbst ausgelöffelt.

Wenn die Bayern ihre Kernkraftwerke nicht mehr mögen, sollten sie sich selbst um Ersatz kümmern. Wer Kernkraftwerke generell ablehnt, muß sich entsprechende Kohlekraftwerke als Ersatz bauen. Wer als Entscheidungsträger nicht durchsetzungsfähig ist, sollte neue Kraftwerke gleich hinter der Grenze bauen. In Polen und Tschechien sind (gut bezahlte) Arbeitsplätze noch heiß begehrt.

Der „Netzausbau“ ist nach den Sonnenkollektoren und den Windparks auf hoher See, die dritte Schnapsidee. Jetzt soll auch noch unser funktionierendes und robustes Stromnetz auf dem Altar der Planwirtschaft geopfert werden. Nach zweimal Sozialismus, sollten wir uns endlich mal eine „Irrtumskultur“ zulegen und diesmal rechtzeitig vor dem Zusammenbruch aufhören, unseren (Alb)Träumen nachzujagen.

Stasi 2.0 -Zähler

Die Katze ist endlich aus dem Sack

Wer immer noch glaubte, die „Energiewende“ sei mit „EEG-Abgabe“ und „Netz-Abgabe“ bezahlt, wird langsam eines Besseren belehrt. Die nächste Schnapsidee ist ein „Smart-Meter“. Eine Verniedlichung für die totale Überwachung und Gängelung. Selbstverständlich ist die Technik und deren Unterhalt von Michel selbst zu bezahlen. Die elektronische Fußfessel für Straftäter war gestern, es lebe das „Smart-Meter“ für jedermann. Die NSA ist gegen deutsche Öko-Sozialsten ein Schmusekätzchen – doch der Reihe nach.

Elektrizität ist nicht gleich Elektrizität

Es gibt kein Windrad, das bei Flaute elektrische Energie produziert und es gibt keinen Sonnenkollektor, der bei Dunkelheit Strom fließen läßt. So einfach ist das und so unumstößlich, wie zwei und zwei vier ist. Jedes Kind im Vorschulalter kann das nachvollziehen. Warum versuchen uns also täglich Politiker und Medien für dumm zu verkaufen? Es geht nicht um Umweltschutz oder Energieversorgung, sondern um Gesellschaftsveränderung. Kein Politiker und kein Kombinatsleiter glaubt an eine Stromversorgung ausschließlich durch „Erneuerbare Energien“. Schon allein dieses Neusprechwort läßt jeden halbwegs gebildete Menschen erschauern. So, als hätte es die Thermodynamik nie gegeben.

Was wir alle kennen, den „Strom aus der Steckdose“ ist ein völlig anderes Produkt, als das, was nach Lust und Laune der Natur aus Windrädern und Sonnenkollektoren kommt. Man könnte sogar sagen, es ist das genaue Gegenteil: Lassen wir es uns daher nicht länger gefallen, daß man uns Äpfel für Birnen verkaufen will. „Erneuerbare Energien“ haben so viel mit dem derzeitigen „Strom aus der Steckdose“ gemeinsam, wie Malzkaffee mit Bohnenkaffee. Es ist bloß ein neuer Ersatzstoff aus der Trickkiste sozialistischer Mangelwirtschaft.

Langsam dämmert es auch mancher Politikerin: Leistung ist nicht gleich Energie, da steckt irgendwo auch noch die Zeit drin! Man kann so viel Megawatt Photovoltaik auf die Dächer pflanzen und Windmühlen in die Landschaft pflanzen wie man will, aber es gelingt trotzdem nicht, auf konventionelle Kraftwerke zu verzichten. Eigentlich ist auch das, ganz einfach zu verstehen: Will man eine bestimmte Energiemenge erzeugen – z. B. den Jahresstromverbrauch von Deutschland – muß man diesen durch die installierte Leistung – z. B. alle installierten Windräder und Sonnenkollektoren – teilen. Man erhält die Zeitdauer, in der die Anlagen – ihrem Typenschild gemäß – laufen müssen. Da es aber zumindest nachts dunkel ist und auch der Wind nicht ständig mit voller Kraft weht, braucht man hierfür gigantische Leistungen. Wenn aber der Wind dummerweise weht und die Sonne strahlt, produzieren diese Anlagen notgedrungen mehr Strom, als das Netz verkraften kann: Man müßte die Anlagen teilweise abstellen. Wenn man sie aber abstellt, produzieren sie übers Jahr gerechnet, noch weniger Energie oder anders ausgedrückt, ihre Vollbenutzungsstunden werden noch geringer. Ein Rennen, wie das berühmt berüchtigte, zwischen Hase und Igel. Sagen wir es noch einmal ganz einfach und für jeden verständlich: Eine Vollversorgung durch „Erneuerbare“ ist physikalisch unmöglich!

Eigentlich wäre alles ganz einfach. Lasst uns zugeben, daß die „Energiewende“ eine Schnapsidee war und lasst uns ganz schnell aufhören mit dem Geld verbrennen. Aber leider haben wir ja keine Irrtumskultur in Deutschland. Wir gründen lieber einen Volkssturm oder faseln von einer Mauer, die noch hundert Jahre stehen würde, wenn sie bereits einstürzt. Hauptsache: Die Partei hat immer recht, die Partei kann sich nicht irren! Bis zum endgültigen Zusammenbruch, lassen wir uns gerne durch das Gesäusel von Wunderwaffen einlullen. Um die Wunderwaffe Speicher ist es zur Zeit etwas still geworden. Es lassen sich kaum noch Zeugen finden. Zu gering, sind die Fortschritte, die man vorzeigen könnte. Das Dilemma zwischen dem Abkassieren von Forschungsgeldern und dem nötigen schnellen Erfolg ist zu groß geworden. Auch für geübte Schlangenölverkäufer ist der Spagat zwischen dem „wir brauchen noch einige Jahre und natürlich viele Milliarden Subventionen“ und „Energiespeicherung ist überhaupt kein Problem“ zu groß geworden.

Das „smarte“ Netz

Für Hausfrauen, vom Schlage von Frau Professor Claudia Kemfert (Leiterin der Abteilung Energie, Verkehr und Umwelt am Deutschen Institut für Wirtschaftsforschung) ist die Sache ganz einfach: Wenn man zu viel Strom hat, muß man mehr verbrauchen und wenn das Angebot der Natur zu klein ist, eben weniger. So einfach geht Energiewende, jedenfalls für deutsche „Wirtschaftswissenschaftlerinnen“. Ihr Rat von Frau zu Frau: Warum die Wäsche nicht nachts waschen, wenn der Wind nachts weht? Damit läßt sich trefflich in jeder „Talkrunde“ brillieren, in der noch keiner in einer Sozialbau-Wohnung gelebt hat oder jemals eine Waschmaschine, die schon Stunden vor sich her „gemüffelt“ hat, selbst entleerte. Mit der Waschmaschine und dem Trockner (sofern überhaupt vorhanden!) sind die variablen „Großverbraucher“ im Haushalt schon erschöpft. Der üblicherweise größte Einzelverbraucher Kühlschrank/Gefrierer sollte wohl besser nicht abgestellt werden. Man kann aber keinesfalls das Licht ausschalten, nur weil gerade die Sonne nicht scheint. Ist im Haushalt die Stromrationierung schon absurd, ist sie in Industrie und Gewerbe reiner Selbstmord. Wer das nicht glauben mag, sollte einmal Unternehmer über revolvierende Stromabschaltungen in den sog. Entwicklungsländern befragen.

Damit kein Mißverständnis entsteht: Es ist nichts gegen gestaffelte Tarife einzuwenden. Allerdings ist die Flexibilität selbst im Haushalt so gering, daß Aufwand und Kosteneinsparung in keinem Verhältnis zueinander stehen. Sie sind seit Jahren Realität (Optimierung der Spitzenleistung, Nachtspeicher etc.) und wirtschaftlich ausgereizt. Für all die Methoden haben konventionelle Zähler und Rundsteueranlagen vollkommen ausgereicht. Bei der Rundsteuertechnik werden durch das Stromnetz Nachrichten gesendet, die jeder empfangen und nutzen kann. Solche Nachrichten können beim Kunden den Stromtarif wechseln oder auch Geräte an- und abschalten. Entscheidend unter den Gesichtspunkten des Datenschutzes ist, daß das System wie beim Rundfunk die Nachrichten an alle versendet, jeder aber frei entscheiden kann, ob er sie auch nutzt. Es gibt auch keinen Rückkanal. Insofern ist eine Überwachung der Kunden nur „zweckdienlich“ möglich. Beispielsweise kann man bei einer Nachtspeicherheizung mit Rundsteuerung zwar feststellen, ob der Kunde in der Heizperiode viel oder wenig verbraucht hat (Zählerstand) aber nicht, ob er gern länger schläft oder in der Weihnachtswoche Besuch hatte und deshalb das Gästezimmer stärker als sonst üblich geheizt hat.

Kein „Smart Meter“ wird je in der Lage sein, den Verlauf der Sonne zu steuern oder das Wetter zu beeinflussen. Auch ein „Smart Meter“ ist nichts anderes, als die moderne Version der Lebensmittelkarte. Es kann nur den Mangel nach politisch/gesellschaftlichen Kriterien in engen Grenzen verwalten. Wir benötigen nachts elektrisches Licht, weil es nachts dunkel ist. Wenn die Sonnenkollektoren gerade dann keinen Strom produzieren, sollte das weiterhin das Problem der Energieversorger bleiben. Wenn die Windräder mehr Strom produzieren, als das Netz aufnehmen kann, müssen sie gedrosselt werden. Es gibt jedenfalls keinen Grund, das Mittagessen in die Nacht zu verlegen, nur damit der Profit des Windparkbetreibers, wie in den Prospekten versprochen, ausfällt. Ein bischen unternehmerisches Risiko sollte schon bleiben.

Das vermeintliche Milliardengeschäft

„Smart Meter“ sind die Kopfgeburt von den gleichen Kombinatsleitern, die auch so peinliche Werbekampagnen wie „Vorweggehen“ starten. Wobei, eigentlich „Vorweggehen“? Bei der Kapitalvernichtung, beim Abbau von Arbeitsplätzen und der Transformation Deutschlands in ein Agrarland.

Natürlich, ist es weit aus kuscheliger, wenn man Milliardenumsätze mit zwangsverordneten „Smart Metern“ machen könnte, als in international umkämpften Märkten (Computertechnik, Mobiltelefone, Kraftwerksbau etc.) immer wieder gezeigt zu bekommen, daß man längst nicht mehr erfolgreich in der ersten Liga mitspielen kann. Schließlich sind deutsche Konzerne immer gut gefahren, wenn sie an den Lippen der jeweiligen Politiker geklebt haben. Die eigenen Pensionsansprüche konnten noch immer über die (absehbaren) Zusammenbrüche der unterschiedlichen „Reiche“ hinweg gerettet werden.

Die totale Überwachung

Das eigentlich empörende an dem „Smart Meter“ Konzept ist jedoch, daß der Schnüffelstaat nun endgültig in unsere Wohnungen dauerhaft einziehen will. Das „Smart Meter“ ist weit aus weniger ein Stromzähler, als vielmehr der „Vollautomatische Mielke“. Es handelt sich um eine Messeinrichtung mit Mikroprozessor und Speichereinheit nebst Rückkanal. Mit dem Stromzähler im Keller (bei großen Mietshäusern im zentralen Zählerraum) hat das so viel zu tun, wie ein Küchenmesser mit einem Maschinengewehr. Im Sinne von Datenschutz und Überwachung sollte sich der technische Laie dieses System eher wie einen Computer mit stets eingeschaltetem Mikrofon in jedem Raum vorstellen, der alle Aktivitäten aufzeichnet und per Internet zu der Überwachungszentrale zur (beliebigen und unkontrollierbaren) Auswertung schickt. Mag ja sein, daß der freundliche Computer einen nur darauf aufmerksam machen will, daß man wieder vergessen hat, das Licht auszuschalten. Kann aber auch sein, daß die Polizei die Daten zur Überprüfung eines Alibis nutzt. Selbstverständlich nur bei schwersten Straftaten! Vielleicht nutzt aber auch irgendein Geheimdienst das System zur Überwachung von geheimen Treffen irgendwelcher Terroristen. Man wird es selbstverständlich nie erfahren. Die schöne neue Welt der Öko-Sozialisten, ist halt viel mehr, als nur „Vogel-Häcksler“ und Dächer im Einheitsblau.

Wer glaubt, das alles sei übertrieben, der hat nicht die geringste Ahnung, was bereits heute Stand der Technik in der Netzleittechnik ist. Wie ausgefuchst bereits heute die statistischen Methoden und Datenmodelle sind. Und nicht vergessen: Ausweichen ist nicht! Auf das Internet oder (stets als Bewegungsmelder eingeschaltete) Mobiltelefon kann man verzichten, aber wer kann und will schon auf eine Wohnung verzichten?