Robuste Kraftwerke für robuste Netze

Für eine robuste Stromversorgung („Grid Resilience“) unter den erschwerten Bedingungen von Wind- und Sonnenenergie ergeben sich auch besondere Anforderungen an die Kraftwerke. Wind und Sonneneinstrahlung sind Wetterphänomene und damit nicht vom Menschen beeinflußbar. Sie sind mehr (Wind) oder weniger (Sonne) zufällig. Sie widersprechen dadurch allen Anforderungen an eine zivilisierte Gesellschaft. Will man sie aus (ideologischen Gründen) trotzdem zur Erzeugung elektrischer Energie heranziehen, ergeben sich drei Notwendigkeiten:

  1. Der Einspeisevorrang: Die Sonne scheint bei uns nur selten (nachts ist es dunkel, tagsüber oft schlechtes Wetter) und der Wind weht in der überwiegenden Zeit nur schwach. Man kann deshalb nicht auch noch auf den Bedarf Rücksicht nehmen (negative Börsenpreise), sondern muß produzieren wenn es der Wettergott gestattet. Ganz genau so, wie schon der Müller und die Seefahrer im Altertum ihr Leben fristen mußten.
  2. Man muß ein komplettes Backup System für die Zeiten der Dunkelflaute bereithalten. Wirtschaftlich ein absolut absurder Zustand. Es ist ein komplettes System aus Kraftwerken und Stromleitungen vorhanden — man darf es plötzlich nur nicht mehr benutzen! In der Stromwirtschaft sind aber die Kapitalkosten der mit Abstand dickste Brocken. Weit vor den Personalkosten und meist sogar den Brennstoffkosten. Wenn man ausgerechnet die Nutzungsdauer verringert, treibt man damit die spezifischen Energiekosten (€/kWh) in die Höhe. Umgekehrt kann man sagen, der maximal mögliche Wert elektrischer Energie aus „regenerativen Quellen“ kann immer nur den Brennstoffkosten entsprechen.
  3. „Regenerative Energien“ besitzen nur eine sehr geringe Energiedichte und benötigen deshalb riesige Flächen. Diese Flächen sind nicht an den Verbrauchsschwerpunkten (Städte, Industriegebiete) bereitzustellen. Heute muß man bereits auf das offene Meer ausweichen. Es sind deshalb riesige Netze zum Einsammeln der elektrischen Energie und anschließend noch die berüchtigten „Stromautobahnen“ für den Ferntransport nötig. Alles sehr kapitalintensiv, pflegebedürftig und verwundbar. Oft wird auch noch vergessen, daß diese Anlagen selbstverständlich nur die gleiche geringe Auslastung, wie die Windmühlen und Sonnenkollektoren besitzen können.

Das Speicherdrama

Wind und Sonne können nur die Schildbürger speichern. Elektrische Energie ist die verderblichste Ware überhaupt (Kirchhoffsche Gesetze). Wer also von Speichern faselt, meint in Wirklichkeit Speicher für chemische (Batterien, Power to Gas etc.) oder mechanische Energie (Schwungräder, Pump-Speicher usw.). Es ist also immer eine zweifache Umformung — elektrische Energie in das Speichermedium und anschließend wieder das Speichermedium zurück in elektrische Energie — mit den jeweiligen Verlusten erforderlich. Es geht bei diesen Umformungen mindestens 50% des ohnehin sehr teuren Sonnen- bzw. Windstromes unwiederbringlich verloren. Mit anderen Worten, der Strom der aus dem Speicher kommt, ist dadurch schon mal doppelt so teuer, wie der vor dem Speicher. Das wäre aber nicht einmal der Bruchteil der Kosten: Die „Chemieanlagen“ oder „Speicherseen“ müßten gigantisch groß sein. Sie müssen ja schließlich in der kurzen Zeit, in der sie wetterbedingt überhaupt nur produzieren können (<15%), die elektrische Energie für die gesamte Zeit (100%) herstellen können. Betriebswirtschaftlich eine Katastrophe. Niemand wird eine solch absurde Investition tätigen. Die Schlangenölverkäufer setzen auch hier wieder auf den Staat. Das bekannte „Windhundrennen“ setzt ein: Wer pumpt am schnellsten die „Staatsknete“ ab, bis das System unweigerlich in sich zusammenbricht. Selbstverständlich ist auch hier für einige wenige wieder ein Schlösschen drin.

Auch Wasserkraft ist wetterabhängig. Die Trockenphasen wechseln sich mit Hochwassern ab. Fast alle Staudämme sind deshalb zur Flussregulierung gebaut worden. Selbst das gigantische Drei-Schluchten-Projekt in China. Die Vorstellung, man könnte Wasserkraftwerke wie Gasturbinen nach Bedarf an und abstellen, ist absurd. Abgesehen von technischen Restriktionen sprechen Sicherheitsbelange (Schifffahrt, Wassersportler etc.) und der Umweltschutz dagegen. Ein Fluß ist keine technische Batterie, sondern ein sensibles Ökosystem. Genau aus diesen Gründen werden die Speicherkraftwerke in den Alpen — wie alle konventionellen Kraftwerke — durch die Windenergie aus Deutschland in die roten Zahlen getrieben. Man kann eben nicht immer den Stausee in den Stunden negativer Börsenpreise (Entsorgungsgebühren) schlagartig für die Dunkelflaute befüllen. Im Gegenteil, oft muß man gerade dann den eigenen Strom verkaufen. Und noch einmal für alle Milchmädchen: In den wenigen Stunden, in denen der Wind im Überfluß weht, müßte man die gesamte Energie für die überwiegenden Schwachwindzeiten einspeichern — ein betriebswirtschaftlicher Albtraum.

Die Frage des Brennstoffs

Wenn man ein Kraftwerk benutzen will, muß man Brennstoff am Ort zur Verfügung haben. Alles andere als eine triviale Frage. Alte West-Berliner kennen noch die Tanklager und die sich ständig selbst entzündenden Kohlenhalden gegen eine etwaige „Russenblockade“. Jedenfalls sind Tanklager und Halden noch relativ billig anzulegen.

Bei Erdgas stellt sich die Sache schon ganz anders dar. Ein Gaskraftwerk ist auf eine ziemlich dicke Rohrleitung angewiesen. Das gesamte System vom Bohrloch, über die Aufbereitung, bis zum Endkunden ist nicht viel weniger Komplex als die Stromversorgung. In unseren Breiten wird das meiste Erdgas zur Beheizung unserer Gebäude verwendet. Die Winterspitze ist maßgeblich für die Dimensionierung. Zum Ausgleich setzt man unterirdische Speicher ein. Diese sind aber (bezogen auf den Jahresverbrauch) relativ klein. Jeder eingelagerte Kubikmeter Gas ist totes Kapital. Man steuert deshalb den Absatz über den Preis. Im Sommer ist der Großhandelspreis gering — damit die Gaskraftwerke verstärkt produzieren — und im Winter — wenn es kalt ist und die Nachfrage nach Heizgas ansteigt — hoch. Die Gaskraftwerke ziehen sich dann wieder zurück und überlassen den Kohlekraftwerken die Produktion. Dieses Zusammenspiel hat bis zur Energiewende zu aller Zufriedenheit funktioniert. Man konnte im Sommer sehr gut Revisionen bei den Kohle- und Kernkraftwerken durchführen. Bis die Laiendarsteller kamen und etwas von notwendigen flexiblen Gaskraftwerken für die Energiewende geschwafelt haben. Heute kann man die Investitionsruinen an verschiedenen Standorten besichtigen. Man muß es eigentlich nicht besonders erwähnen, daß die grünen Fachpersonen der Stadtwerke (es haftet ja der Steuerzahler) besonders eifrig auf den Leim gekrochen sind. Um ihre Missetaten zu vertuschen, krähen sie heute besonders laut über die „Klimakatastrophe“ und das „klimafreundliche“ Erdgas.

Das Kraftwerk der großen Transformation

Je länger der Wahnsinn der „Energiewende“ anhält, um so mehr wird der Wettergott das Kommando übernehmen. Prinzipiell nimmt in einem technischen System mit der Häufigkeit der Störungen und der Größe einzelner Störungen die Wahrscheinlichkeit eines Ausfalls zu. Will man ein solchermaßen malträtiertes Stromnetz wieder robust machen, stellen sich in diesem Sinne („Grid Resilience“) zwei Anforderungen an die Kraftwerke:

  1. Die Kraftwerke müssen von der Konstruktion (z. B. Brennstoffe) her und bezüglich der Fahrweise (z. B. angedrosselt) robust gebaut und betrieben werden. Beides verursacht erhebliche Kosten, die ohne die „Energiewende“ gar nicht entstanden wären. Hinzugerechnet werden muß noch der Umsatzausfall durch den Einspeisevorrang. Werden diese Zusatzkosten nicht vergütet, müssen die Kraftwerke geschlossen werden. Mit jedem konventionellen Kraftwerk das vom Netz geht, wird das gesamte Stromnetz instabiler, was den Aufwand weiter in die Höhe treibt.
  2. Das Netz muß nach schweren Störungen (Brown oder Black Out) möglichst schnell wieder hochgefahren und in einen neuen stabilen Zustand versetzt werden. Dafür müssen die Kraftwerke technisch (z. B. Schwarzstartfähigkeit) und personell jederzeit in der Lage sein. Die Wiederinbetriebnahme muß nach den Anforderungen der Netzleitzentrale erfolgen. Etwaige Überprüfungen, Wartungen oder gar Reparaturen müssen selbstverständlich vorher erfolgt sein. Dies gilt insbesondere für Schäden, die durch den außergewöhnlichen Netzzustand entstanden sind.

Es ist daher nichts weiter als bösartige und schlechte Propaganda, wenn Scharlatane von dem „Kohlestrom, der die Netze verstopft“ erzählen. Je mehr konventionelle Kraftwerke stillgelegt werden (müssen), desto weniger notwendige Reserven gibt es. Schon jetzt verlassen wir uns auf Kraftwerke im benachbarten Ausland. Man kann nicht erwarten, daß das kostenlos erfolgt. Je mehr wir das System komplizieren und ausweiten, um so mehr koppeln unerwartete Ereignisse auf das Stromnetz zurück: Es gab schon Brände in Erdgasspeichern, die diese für Monate lahmlegten oder Engpässe durch Drosselung in den niederländischen Erdgasfeldern (Mikrobeben) oder Pipelinebrüche. Ganz zu schweigen von der politischen Abhängigkeit gegenüber ausländischen Lieferanten. Kohle und Kernenergie besitzen schon durch ihre einfache Lagerung einen entscheidenden Trumpf.

Das robuste Kernkraftwerk für ein „nervöses Netz“

Kernkraftwerke besitzen eine Reihe von Eigenschaften, die besonders wertvoll für „nervöse Stromnetze“ mit einem hohen Anteil von wetterabhängigen Energien sind. Dies mag „Atomkraftgegner“ erschüttern, aber nur Reaktoren können die extremen Lastschwankungen (z. B. 3. Potenz von der Windgeschwindigkeit) sicher verkraften. Nur sie können extremen Wettersituationen sicher widerstehen. Es waren immer die Kernkraftwerke, die als letzte vom Netz mußten (Tsunami und Erdbeben in Japan, Wirbelstürme in den USA, Eiseskälte in Rußland). Es ist allerdings unverständlich, warum man bei den geringen Urankosten die Kernkraftwerke überhaupt drosseln soll, wenn mal die Sonne scheint oder der Wind in der richtigen Stärke weht…

Für Kernkraftwerke, die in einem „nervösen Netz“ zur Stabilisierung betrieben werden, ergeben sich folgende Anforderungen:

Robuste Lastfolge

Je schneller und erfolgreicher (noch) kleine Störungen ausgeregelt werden, um so besser für das Netz. Heutige Leichtwasserreaktoren haben große Leistungen. Der im Bau befindliche Turbosatz des Kraftwerks Hinkley Point in GB mit 2 x 1770 MWel hat eine gewaltige Schwungmasse, die zur Frequenzstabilisierung mehrerer Windparks dienen kann und soll. Hinzu kommen die gespeicherten Wärmemengen im Wasser-Dampf-Kreislauf. Automatisch greift bei einem Leichtwasserreaktor die Selbstregulierung über den Zusammenhang von Dichte des Kühlwassers und Moderation der Neutronen. Zusammengenommen ergibt das die steilsten Leistungstransienten aller Kraftwerkstypen. Die alte Greenpeace Propaganda von den „viel zu starren Atomkraftwerken“ beruhte bestenfalls auf der Verwechslung von Technik mit Betriebswirtschaft. Mit anderen Worten: Frankreich kann sich ruhig noch ein paar Windmühlen für das bessere Gewissen erlauben, Deutschland hingegen, geht mit der weiteren Abschaltung immer unruhigeren Zeiten entgegen. Fatal wird es in dem Moment, wenn unsere Nachbarn nicht mehr bereit sind, die Kosten für die Stabilisierung unseres nationalen Stromnetzes zu bezahlen.

Abwehr äußerer Einflüsse

Fukushima hat eindrucksvoll gezeigt, wie zerstörerisch Naturgewalten sein können. Eine weltweite Überprüfung aller Kernkraftwerke gegen jegliche Wasserschäden (Starkregen, Überflutungen etc.) war die Folge. Eine Nachrüstung in Richtung „U-Boot“ wurde durchgeführt. Seit dem, haben bereits mehrere Reaktoren einen Betrieb „inmitten von Wasser“ unter Beweis gestellt. Oft waren sie die einzigen noch betriebsbereiten Kraftwerke: Kohlenhalden hatten sich in Schlamm verwandelt, Gaspipelines waren durch die Wassermassen ausgefallen.

Gerade auch Netzstörungen (Sturmschäden, Blitzschlag etc.) wirken oft auf ein Kraftwerk von außen ein. Ein Kraftwerk ohne Netz kann noch so gut funktionieren, aber es kann seine elektrische Energie nicht mehr ausliefern. Oft lösen die Netzstörungen auch Schäden in der Kraftwerksanlage aus. Bei einem Kernkraftwerk sollte keine Schnellabschaltung durch solche Ereignisse ausgelöst werden.

Sicherer Inselbetrieb

Egal was mit dem Netz passiert, das Kernkraftwerk sollte automatisch in den Inselbetrieb übergehen. Nur so kann bei einer schnellen Reparatur die Produktion unverzüglich wieder aufgenommen werden. Dies erfordert, daß wirklich alle elektrischen Verbraucher des Kraftwerks (verschiedene Spannungsebenen) dauerhaft über den eigenen Generator versorgt werden können.

Unendliche Notkühlung

Die Besonderheit eines Kernreaktors ist die anfallende Nachzerfallswärme auch nach vollständiger Abschaltung. Die mangelnde Wärmeabfuhr (Ausfall der Kühlmittelpumpen) war die Ursache für den Totalschaden in den Reaktoren von Fukushima. Neuere Reaktoren mit passiven Notkühlsystemen bieten hierfür einen unschätzbaren Vorteil. Alte Kraftwerke müssen mit ausreichender Eigenstromversorgung (mehrfache Notstromaggregate mit ausreichendem Tanklager) nachgerüstet werden. Die eigenen Schaltanlagen für den Notbetrieb müssen — im Gegensatz zu Fukushima — entsprechend geschützt werden.

Schwarzstartfähigkeit

Ein Kernkraftwerk benötigt für die Inbetriebsetzung eine gewaltige Menge elektrischer Energie. Üblicherweise wird diese dem Netz entnommen. Ist ein Netz im Katastrophenfall schon überlastet, dürfte dies kaum möglich sein. Es müßte also eine Eigenstromversorgung (z. B. Gasturbine) vorhanden sein, wenn ein Schwarzstart für die Robustheit eines Teilnetzes gefordert ist.

Normalerweise ist das Anfahren eines Kernkraftwerkes ein streng reglementierter und langwieriger Vorgang. Unzählige Prüfungen müssen durchgeführt, bestimmte Haltepunkte eingehalten werden. Immer nach dem Grundsatz „Safety First“. Alles andere als ideal für die Wiederherstellung eines Netzes nach einem „Blackout“. Deshalb sollte die Schnellabschaltung unbedingt vermieden werden. Gegebenenfalls ein Schnellverfahren für Notfälle geschaffen werden. Jedenfalls kommt noch eine Menge Arbeit auf die Überwachungs- und Genehmigungsbehörden zu. Aber es ist uns ja nichts zu schwer und zu teuer um wenigstens teilweise wieder ins Mittelalter zurückzukehren.

Die Robustheit eines Stromnetzes

In den USA hat die ideologisch bedingte („Klimakatastrophe“) Subventionierung von Wind- und Sonnenkraftwerken zu ähnlichen Problemen wie in Deutschland geführt: Immer mehr konventionelle Kraftwerke arbeiten mit Verlusten und drohen deshalb mit Schließung. Präsident Trump hat versucht dem mit verschiedenen Erlassen entgegen zu wirken. Inzwischen gibt es in verschiedenen Bundesstaaten ebenfalls konkrete Maßnahmen, insbesondere um die Schließung von Kernkraftwerken zu verhindern. Es hat der bekannte planwirtschaftliche Teufelskreis eingesetzt: Die Verzerrung des Marktes durch Subventionen wird mit weiteren Subventionen an anderer Stelle bekämpft. Das Ergebnis sind allgemein steigende Kosten, die zu überhöhten Preisen und letztendlich zum Schaden der Gesellschaft wirken.

Das neue Modewort „Resilience

Der Begriff „Resilience“ kommt eigentlich aus den Gesellschaftswissenschaften. Man versteht darunter die Fähigkeit eines technischen Systems oder einer Gesellschaft Veränderungen oder zerstörerischen Ereignissen zu widerstehen, indem es die negativen Einflüsse dämpft (absorptive capability), sich selbst verändert und anpasst (adaptive capability) oder letztendlich durch eine Wiederherstellung (restorative capability). Es wird deshalb hier das Wort „Robustheit“ als Übertragung ins Deutsche verwendet.

Um dem ganzen einen wissenschaftlichen Anstrich zu verleihen, wird gern ein Bild gezeichnet, welches als „System Resilience Curve (SRC)“ bezeichnet wird. Darunter versteht man die bauchige Kurve der „Performance“ über der Zeit. Dem gewöhnlichen Ingenieur sei dringend empfohlen, sich mit diesem neuen Wieselwort vertraut zu machen, da es nur eine Frage der Zeit sein kann, bis es zum Standardrepertoire eines jeden Dampfplauderers gehört. Es werden üblicherweise vier Phasen definiert:

  1. Zum Zeitpunkt t1 tritt eine Störung auf. Bis zum Zeitpunkt t2 kämpft das System mit dieser Störung. Man bezeichnet diese Phase noch als Normalbetrieb, solange die Auswirkungen auf die „Performance“ noch im Rahmen der Toleranzen bleiben.
  2. Zum Zeitpunkt t2 beginnt der teilweise Zusammenbruch des Systems. Gegenmaßnahmen zur Stabilisierung werden ergriffen und die „Performance“ erreicht zum Zeitpunkt t4 ihren Tiefpunkt.
  3. Ab dem Zeitpunkt t4 beginnt die Wiederherstellung des Systems im Notbetrieb, die zum Zeitpunkt t5 abgeschlossen ist. Die „Performance“ erreicht aber nicht wieder den Wert im Normalbetrieb.
  4. Ab dem Zeitpunkt t4 beginnt die Reparaturphase bis zum Zeitpunkt t5 an dem ein neuer Normalbetrieb erreicht wird.

So theoretisch, so schön und gut. Nur, dem Techniker dürstet es immer nach konkreten Zahlenwerten und genauen Definitionen. Mit Geschwurbel kann man zwar in den Gesellschaftswissenschaften hervorragend Geld und Anerkennung verdienen, aber in der realen Welt bringt man damit keine Maschine zum Laufen — geschweige ein so komplexes System wie ein Stromnetz. Zumal Experimente nur sehr eingeschränkt möglich sind: Es wären Operationen am „offenen Herzen einer Gesellschaft“.

Was bitte, ist die .„Performance“ eines Stromnetzes?

In einer Marktwirtschaft sollte man immer zuerst nach den Anforderungen der Kunden fragen. Der Kunde — das sind wir alle selbst — will zu jedem Zeitpunkt, an jeder Steckdose, seine georderte Leistung haben. Er will selbst und frei entscheiden, wann er das Licht oder seinen Computer einschaltet oder was sonst er mit elektrischer Energie alles machen will. Für uns seit Jahrzehnten eine Selbstverständlichkeit. Vielleicht zu selbstverständlich, als das wir die heraufziehenden Gefahren „Der-schönen-neuen-Welt“ des Öko-Sozialismus noch wahrnehmen.

Wir sollen uns an einen Systemwechsel gewöhnen: Zukünftig geht es nicht mehr um die Interessen der Kunden, sondern ausschließlich um die Interessen der Lieferanten. Aus dem Kunden wird ein lästiger „Strom-Bittsteller“, dessen einzige Aufgabe noch darin besteht, mit seiner ständig steigenden Stromrechnung diejenigen zu mästen, die besonders gut und gerne von diesem Land leben — die Sonnen- und Windbarone.

In der guten alten Zeit, in der noch die Energieversorgung im Vordergrund stand, war die Aufgabenstellung einfach und klar definiert: Priorität hatte stets die Stabilität des Netzes. Auch die Verantwortung war über die Gebietsmonopole eindeutig geregelt. Jeder Versorger hatte von der Erzeugung (Kraftwerke) über den Transport (Netz) bis zur Abrechnung (Zähler usw.) alles bereitzustellen. Robustheit war so selbstverständlich, daß niemand darüber reden mußte. Die Bewertung der Performance war einfach: Wie oft und für wie lange ist die Stromversorgung in einem Gebiet ausgefallen?

Alles eine Frage der Verantwortlichkeit

Ein klassisches Energieversorgungs-Unternehmen mußte selbst entscheiden, in welchen Kraftwerkspark (Kohle-, Kernkraft-, Gaskraftwerke etc.) in welcher Zusammensetzung (Optimierung der Erzeugungskosten) es investierte. Welche Kraftwerke es in Betrieb hatte, welche in Reserve, wann Wartungsarbeiten, wann Modernisierungen etc. durchgeführt wurden. In der Praxis oft schwierig zu beantwortende Fragen, aber durch entsprechend große Stäbe an Ingenieuren handhabbar. Ein über alle Kulturkreise und sogar Gesellschaftssysteme erfolgreiches Modell.

Eine alte Volksweisheit besagt: Wenn es dem Esel zu wohl geht, geht er aufs Eis tanzen. Die „Große Transformation“ zurück ins Mittelalter ward erschaffen: Plötzlich wurde die Technik zwangsweise durch die vom Menschen nicht bestimmbare Kraft des Wetters ersetzt. Absurderweise auch noch mit der Begründung, genau diese Naturgewalt dadurch beeinflussen zu können und zu müssen („Klimakatastrophe“). Da kein Energieversorgungsunternehmen so blöd war, sich weiterhin für ein robustes Stromnetz verantwortlich machen zu lassen, aber die Stellhebel ausschließlich dem „Wettergott“ zu überlassen (100% Wind und Sonne), mußte die „Strommarktliberalisierung“ erschaffen werden. Eine herrliche Wortschöpfung um den verbrannten Begriff „Planwirtschaft“ zu vermeiden. Die Vorgehensweise ist und bleibt immer gleich: Zerschlage erstmal das funktionierende System und bilde möglichst viele Einheiten (Energieerzeugung, Netzgesellschaft etc.) mit möglichst gegensätzlichen und unterschiedlichen Interessen — auch als Teile und Herrsche bekannt. Damit die Sache beschleunigt wird, sorge für möglichst viele „Schlangenölverkäufer“ (EE-Gesetz) und Agitprop-Einheiten (Greenpeace, Klimainstitute usw.). [Einschub: Warum fällt mir an dieser Stelle bloß eine Paraderolle mit Mario Adorf ein: Ich sch… dich zu mit Geld.] In diesem Punkt unterscheidet sich der „Öko-Sozialismus“ von seinen eher armen Vorgängern. Man hat in diesem (noch) erfolgreichen System einfach mehr Geld anderer Leute — auch Steuern und Abgaben genannt — zur Verfügung.

Wofür dient die SRC wirklich?

Bisher hat man einfach den Bedarf gedeckt. Störungen für das Stromnetz haben sich aus technischen Fehlern (Kraftwerk, Trafo etc.), aus höherer Gewalt (Bagger) und zum geringeren Maße durch das Wetter (Sturm, Vereisung, Blitzschlag etc.) ergeben. Alles sehr gut beherrschbar, weil man stets selbst die Hoheit über die Produktion und Verteilung besessen hat. Man hat sich fast immer und ausschließlich in der ersten Phase des Normalbetriebes bewegt. Die Öffentlichkeit hat meist nichts von etwaigen Schwierigkeiten mitbekommen. Stromausfällen gab es — wenn überhaupt — nur lokal und kurzfristig.

Nun hat man — nicht aus Not, sondern nur aus ideologischen Gründen — die Erzeugung in die Hand des „Wettergottes“ übergeben. Dort geht aber die Bandbreite der Stromproduktion von nahezu Null (Dunkelflaute) bis zur maximalen installierten Leistung, die manchmal höher als der Gesamtbedarf sein kann. Mit zunehmendem Ausbau in Europa werden die notwendigen Abschaltungen immer weiter zunehmen. Wirtschaftlich eine sich selbst verstärkende Katastrophe. Mit jeder notwendigen Zwangsabschaltung wird die — ohnehin geringe — Arbeitsausnutzung (Strommenge, die die entsprechenden Anlagen pro Jahr produzieren) geringer und die Kosten der erzeugten Kilowattstunden steigen dadurch entsprechend an. Noch einmal in einem kurzen Merksatz zusammengefaßt: Je mehr Windmühlen und Sonnenkollektoren in Betrieb gehen, um so teurer werden die damit erzeugten Kilowattstunden! Ganz im Gegensatz zur geltenden Propaganda, die von immer weiter sinkenden Preisen faselt. Jeder Investor, der sich heute noch mit dem Gedanken trägt in Wind und Sonne zu gehen, sollte diesen Zusammenhang beherzigen. Ist der Redeschwall und die Zahlenakrobatik der Schlangenölverkäufer auch noch so verführerisch.

In diesem Zusammenhang ist die Einbeziehung des Wirtschaftsraumes Europa nicht zu vernachlässigen. Je weiter auch dort der Ausbau von „regenerativen Energien“ fortschreitet, um so mehr werden die Entsorgungsgebühren (negative Strompreise an den Börsen) ansteigen. Die von den Stromkunden in Deutschland bezahlten Entsorgungsgebühren machen die Preise für den Windstrom in unseren Nachbarländern immer weiter kaputt und erhöhen damit die dort fälligen Subventionen. Auch das, eine weitere Todesspirale für die „regenerativen Energien“. Die alte Propagandalüge „irgendwo-weht immer-der Wind“ ist längst als solche enttarnt. Was Meteorologen schon immer wußten, daß Großwetterlagen nicht an den nationalen Grenzen halt machen, ist heute bereits in den Übertragungsnetzen meßbar: Die Produktion von Windenergie in den zentraleuropäischen Staaten verläuft bemerkenswert synchron.

Wenn also der Wettergott die Produktion übernimmt, muß man von tagelangen und großräumigen Flauten ausgehen. Speicher in dieser Größe gibt es nicht. Wenn man zudem in der kurzen Zeit, in der der Wind genug weht und die Sonne scheint (Arbeitsausnutzung <15% in der Summe beider), nicht nur die aktuelle Nachfrage abdecken muß, sondern auch noch die zu speichernde Energie einschließlich der Verluste (mindestens 50%) produzieren muß, benötigt man gigantische installierte Leistungen. Dabei muß man auch noch beachten, daß die Vollbenutzungsstunden der Wandlungsanlagen (Batterien, Power to Gas oder was auch immer) und Übertragungsnetze ebenfalls sehr gering ausfallen müssen (Produktion minus Nachfrage), was bei den ohnehin sehr hohen Investitionskosten für Speicher- und Übertragungssysteme zu gigantischen spezifischen Kapitalkosten (€/kWh) führt.

Die Antwort liegt in Phase 2 der SRC

Jeder Fachmann weiß, daß bei immer weniger konventionellen Kraftwerken am Netz, zukünftig der Punkt 2 der SRC-Kurve immer häufiger zu dem Ergebnis führt, daß Störungen eben nicht mehr ausgeregelt werden können. Störungen sind zukünftig nicht mehr nur technische Fehler im System, sondern vielmehr auch noch die Launen des Wettergottes. Wenn erst einmal kein „Kohlestrom mehr die Netze verstopft“ und die Kernkraftwerke abgeschaltet sind, bleibt nur noch der Abwurf von Verbrauchern. Dieser muß in Sekundenschnelle erfolgen, sonst bricht — gemäß den Kirchhoffschen Regeln — das gesamte Netz großflächig (Europaweit?) zusammen.

Unsere Fachpersonen an den Schaltstellen der großen Transformation haben natürlich auch darauf eine Antwort: Man schwadroniert vom „Smart Grid“ und von „Smart Metering“. Dahinter verbirgt sich nichts anderes, als der elektronische Bezugsschein der Mangelwirtschaft. Auch die fanatischsten „Transformatoren“ sehen durchaus das Problem von großflächigen Stromabschaltungen. Deshalb wollen sie gemäß Dringlichkeit abstellen. Wer im Dunkeln sitzen muß, entscheidet wohl der örtliche Parteisekretär oder schlicht der Geldbeutel. Der dumme Michel wird schon zahlen, wenn er unbedingt die Sportschau sehen will oder sein Gefriergut retten muß. In Afrika überleben die Menschen schließlich auch irgendwie.

Wenn nun der Wind wieder richtig weht und der Tag nach einer langen Winternacht anbricht, kann man langsam in die Phase 3 übergehen. Es ist nämlich gar nicht so einfach ein Netz wieder zu stabilisieren. Man kann dann schrittweise die Notstromaggregate in den Krankenhäusern, Unternehmen usw. abstellen und die Verbraucher wieder aufs Netz schalten. Wie die „Performance“ aussieht, wird sich zeigen. Als letztes kommt dann mit Phase 4 die Beseitigung der entstandenen Schäden im Netz.

Ausblick

Der nächste Artikel wird sich mit den Konsequenzen für die Kernkraftwerke in dieser neuen Welt befassen. Mit Sicherheit wird es noch eine jahrelange Übergangszeit geben, bis man mit dem Spuk der „Regenerativen Energien“ wieder Schluß macht. Es gilt diese Zeit möglichst elegant aus zu sitzen.

Nukleare Fernwärme

Neuerdings rückt die Kerntechnik wieder in den Zusammenhang mit „Luftverbesserung“. Besonders in China wird über den Ersatz von Kohle nachgedacht.

Der Raumwärmebedarf

Die Heizung bzw. Kühlung von Gebäuden wird oft unterschätzt. Alle reden von Verkehr und Stromerzeugung. In Wirklichkeit werden aber ein Viertel bis ein Drittel des gesamten Energieverbrauches für unsere Gebäude benötigt. Unter dem Gesichtspunkt von Luftschadstoffen (z. B. Stickoxide, Feinstaub etc.) ist besonders problematisch, daß die Energiewandlung unmittelbar in unseren Städten stattfindet und das auch noch in unzähligen Einzelfeuerstätten (hiermit sind auch die „Zentralheizungen“ gemeint). Die einzelnen Heizkessel – oder gar Holzöfen – können keine kontrollierte Verbrennung gewährleisten oder gar eine Rauchgaswäsche benutzen. Zudem werden ihre Abgase in geringer Höhe flächig abgegeben. Eine hohe Luftbelastung gerade in Ballungsgebieten ist die Folge. Eine Erkenntnis, die schon unsere Urgroßväter hatten. Man begann deshalb schon Ende des 19. Jahrhunderts mit dem Bau zentraler Heizwerke.

Das Wärmenetz

Die angestrebte Raumtemperatur liegt bei etwa 20 °C. Es ist also ausgesprochene „Niedertemperaturwärme“. Hinzu kommt noch ein ganzjähriger Brauchwasserbedarf mit etwa 60 °C (Legionellen). Will man auch Kaltwasser für Klimaanlagen damit erzeugen, ist eine Temperatur von 130°C (Absorptions-Kälteanlagen) zu empfehlen. Damit ergeben sich schon die Randbedingungen für ein Rohrleitungsnetz.

Die Strömungsgeschwindigkeit ist begrenzt. Somit hängt die transportierbare Wärmeleistung von dem verwendeten Rohrdurchmesser und der Temperaturspreizung zwischen Vor- und Rücklauf ab. Alles eine Kostenfrage. Hat man sehr hohe Leistungen pro Grundstück (z. B. Hochhäuser in Manhattan) und dazu noch beengte Straßenverhältnisse, bleibt sogar nur Dampf als Transportmedium übrig. Zumindest in Deutschland hat sich eine maximale Vorlauftemperatur im Netz von 130 °C bis 150 °C als optimal erwiesen. Die Vorlauftemperatur im Netz wird proportional zur Außentemperatur geregelt. In manchen Regionen hat man noch ein drittes Rohr als „Konstantleiter“, an dem die Brauchwasserbereiter und die Klimaanlagen angeschlossen sind. Dadurch kann man im Sommer den Heizungsvorlauf komplett abstellen. Alles eine Frage der vorhandenen Bausubstanz.

Heizwerk oder Kraftwärmekopplung

Das Problem ist, daß das gesamte System für die maximale Leistung (kältester Tag in einer Region) ausgelegt sein muß. Diese tritt aber nur an wenigen Tagen auf. Die ohnehin hohen Kapitalkosten führen zu hohen Fixkosten, die wegen der geringen Anzahl von Vollbenutzungsstunden zu vergleichsweise hohen spezifischen Heizkosten führen. Als einzige Stellschraube bleiben die Brennstoffkosten.

Man ist deshalb schon frühzeitig auf die Idee gekommen, Kraftwerke mitten in den Städten zu bauen, um die Leitungskosten (Strom und Wärme) gering zu halten. Die Kraftwerke liefen auch als Kraftwerke und haben das ganze Jahr über elektrische Energie erzeugt. Sie haben ihre Kosten über die Stromproduktion eingespielt. Zusätzlich zu den normalen Kondensatoren hat man noch „Heizkondensatoren“ als Quelle für das Fernwärmenetz eingebaut. In diesen Heizkondensatoren wurde ein Teil des Dampfes (in Abhängigkeit von der Außentemperatur) zur Beheizung niedergeschlagen. Da dieser Dampf nicht mehr vollständig seine Arbeit in der Turbine verrichten konnte, ging die Stromproduktion etwas zurück. Dieser Rückgang wurde dem Kraftwerk vom Fernwärmenetzbetreiber vergütet. Es war quasi dessen „Brennstoffpreis“.

Zusätzlich hatte man auch immer schon reine Heizwerke, die nur Wärme für die Fernwärme erzeugt haben. Die geringen Kapitalkosten eines solchen „Warmwasserkessels“ lohnten sich schon immer als Reserve oder zur Spitzenlasterzeugung an wenigen Tagen eines Jahres.

Die nukleare Heizung

Soweit zur Fernwärme im Allgemeinen. Jetzt zu der Frage, was eine Umstellung auf Kernspaltung bringen kann. Der Brennstoffpreis des Urans ist konkurrenzlos gering. Geringer noch als Kohle. Es gibt fast keine Belastung durch Transporte (Kohle, Asche, Heizöl etc.). Es gibt keine Luftbelastung durch Abgase. Es besteht eine enorm hohe Versorgungssicherheit und Preisstabilität (Heizkosten als „zweite Miete“). Dagegen spricht eigentlich nur „die Angst vor dem Atom“. Diese ist aber zum Glück unterschiedlich ausgeprägt. Man kann sie sogar noch beträchtlich verringern. Um die notwendigen technischen Aspekte wird es im Weiteren gehen.

Kernkraftwerke als Wärmequelle

Technisch gesehen, besteht kein Unterschied zwischen einem Kernkraftwerk und einem fossilen Kraftwerk. Man könnte problemlos z. B. ein Kohlekraftwerke durch ein Kernkraftwerk ersetzen. Es gibt aber ein juristisches Hindernis: Das Genehmigungsverfahren. Bisher muß man immer noch davon ausgehen, daß es schwere Störfälle gibt (z. B. Fukushima), die einen Teil der Radioaktivität austreten läßt und somit die unmittelbare Umgebung belasten könnte. Dafür ist der Nachweis von Evakuierungszonen und Plänen notwendig. Spätestens seit Fukushima weiß man zwar, daß die Annahmen über Freisetzungsraten viel zu konservativ waren, aber das tut der Argumentation der Angstindustrie keinen Abbruch. Die jahrzehntelange Gehirnwäsche „Millionen-Tote, zehntausend-Jahre-unbewohnbar“ hat sich zumindest in den Industrieländern festgesetzt.

Will man Kernkraftwerke in Ballungsgebieten bauen, müssen neue Reaktortypen her, die als „inhärent sicher“ betrachtet werden. Außerdem empfiehlt es sich, kleinere Reaktoren (SMR) zu bauen, um zu lange Rohrleitungen (Kosten und Wärmeverluste) zu vermeiden. Gerade in den letzten Wochen wurde in diesem Sinne ein Durchbruch erzielt: Die US-Genehmigungsbehörde hat dem Reaktor der Firma NuScale bescheinigt, daß er ohne elektrische Hilfsenergie auch bei schwersten Störfällen auskommt. Es handelt sich um einen kleinen (50 MWel) Reaktor, der selbst in einem wassergefüllten Becken steht. Er ist also stets von ausreichend Kühlwasser umgeben. Alle Einbauten (Druckhaltung, Dampferzeuger etc.) befinden sich im Druckgefäß (keine Rohrleitungen), das von einem Containment nach dem Prinzip einer Thermosflasche umgeben ist. Er benötigt keine Pumpen zur „Notkühlung“, da er schon im Normalbetrieb ausschließlich im Naturumlauf (warmes Wasser steigt auf und sinkt nach der Abkühlung wieder in den Reaktorkern zurück) funktioniert. Ein solches Kernkraftwerk bietet ein geringeres Risiko für seine Nachbarn, als jedes Gas- oder Ölkraftwerk. Genau solche Kraftwerke befinden sich aber zahlreich mitten in deutschen Großstädten. Seit Jahrzehnten lebt ihre Nachbarschaft relativ angstfrei damit – Geräusche und Abgase inbegriffen.

Den deutschen „Grün-Wähler“ wird das alles nicht überzeugen. Er ist unerschütterlich in seinem Öko-Glauben. Warum auch nicht? Man diskutiert ja auch nicht mit einem Katholiken über die unbefleckte Empfängnis der Jungfrau Maria oder mit einem Hindu über die Heiligkeit von Kühen. In den Weiten Sibiriens wird die Kernenergie schon heute positiv bewertet. In ähnlichen Regionen Kanadas und den USA wird sie aus gleichen Gründen (Versorgungssicherheit auch bei -40 °C) ernsthaft in Erwägung gezogen. In den bevölkerungsreichen Metropolen Chinas steht die Luftverschmutzung im Vordergrund. Die reale Gefahr von Lungenkrebs und Herz- Kreislauferkrankungen durch Smog wird dort gegen die eingebildete „Strahlengefahr“ abgewogen. Selbst im Großraum Helsinki prüft man den Ersatz der fossilen Fernheizwerke durch Kernenergie. Sonne geht gar nicht und Wind nur sehr eingeschränkt in diesen nördlichen Breiten.

Nukleare Heizwerke

Seit Anbeginn der Kernkraftnutzung gab es die Idee von reinen Heizwerken. Die reine Wärmeproduktion kann einige Vorteile haben: Schließlich verbrennt man ja auch Gas in einem einfachen Heizkessel und setzt nicht alles Gas in „rotierenden Öfen“ (Blockheizkraftwerk) zur gleichzeitigen Stromerzeugung ein. Schon nach den „Ölkrisen“ der 1970er Jahre, setzte sich z. B. der Schweizer Professor Seifritz für ein solches Konzept ein. Er ging damals von der Verwendung erprobter Komponenten aus Kernkraftwerken (Druckbehälter, Brennelemente etc.) zum Bau eines abgespeckten Heizreaktors aus. Durch die „Überdimensionierung“ erhoffte er sich einen zusätzlichen Sicherheitsgewinn, der zu einer Akzeptanz bei der Politik führen würde. Die Grundüberlegung ist noch heute so gültig, wie vor nunmehr 50 Jahren: Ersatz fossiler Brennstoffe durch Uran. Damals wie heute, standen der Ölpreis und die Luftverschmutzung in den Städten im Vordergrund.

Um den Ansatz von Professor Seifritz zu verstehen, ist etwas Physik notwendig. Ein typischer Druckwasserreaktor eines Kernkraftwerks hat eine Wärmeleistung von etwa 4000 MWth. Viel zu viel für ein Fernheizwerk. Geht man aber mit der Leistung um mehr als eine Größenordnung runter – läßt den Reaktor quasi nur im Leerlauf laufen – hat man einen entsprechenden Sicherheitsgewinn in allen Parametern. Bis überhaupt die Betriebszustände eines – zigfach erprobten – Druckwasserreaktors erreicht werden, müßte eine Menge schief gehen. Man hätte genug Zeit den Reaktor abzustellen.

Bei einer so geringen Leistung, könnte man handelsübliche Brennelemente viel länger im Reaktor belassen bis sie „abgebrannt“ wären (Versorgungssicherheit, Preisstabilität etc.).

Ein Druckwasserreaktor in einem Kernkraftwerk arbeitet mit einem Betriebsdruck von etwa 155 bar und einer Wassertemperatur von etwa 325 °C. Beides recht ordentliche Werte. Wie sehe es bei einem Heizreaktor aus? Gehen wir von einer Vorlauftemperatur im Netz von 150 °C aus (Einsatz von Absorptionsanlagen zur Klimatisierung um das Netz auch im Sommer besser auszulasten). Damit das Wasser noch flüssig bleibt und nicht verdampft ist ein Betriebsdruck von mindestens 5 bar nötig. Geben wir noch mal 30 °C als treibende Temperaturdifferenz für die Wärmeübertrager im Heizreaktor drauf, kommen wir auf eine Betriebstemperatur von 180 °C. Dafür ist ein Betriebsdruck von mindestens 10 bar nötig. Ein beträchtlicher Sicherheitsgewinn.. Vor allen Dingen entfallen alle Hochdruck-Sicherheitseinrichtungen: Was man nicht hat, kann auch nicht kaputt gehen.

Noch eleganter erscheint ein Heizreaktor auf der Basis eines Siedewasserreaktors. Man bräuchte – da keine Turbine vorhanden ist – auch keinerlei Einbauten zur Dampftrocknung und keine Umwälzpumpen. Einfacher und sicherer geht nicht.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

In diesem Zusammenhang erscheinen Meldungen zu einem geplanten Einsatz von Schwimmbadreaktoren zur Fernheizung wohl eher als „Fake News“. Schwimmbadreaktoren sind – wie der Name schon andeutet – oben offen. Sie ähneln eher einem Brennelemente-Lagerbecken. Sie könnten deshalb nur warmes Wasser mit deutlich unter 100 °C liefern. Für eine Fernheizung völlig ungeeignet.

Nachbemerkung

Fernheizungsnetze erfordern sehr hohe Investitionen, haben dafür kaum Betriebskosten und halten Jahrzehnte. Sie sind somit anderen Infrastrukturen, wie Trinkwasser- und Abwassernetzen sehr ähnlich. Gleichwohl gibt es schon heute weltweit unzählige Fernwärmenetze, die kontinuierlich erweitert werden. Der Markt für Wärmeerzeuger ist somit gewaltig. Auch die in Deutschland so beliebte „Plastikverpackung“ von Neubauten tut dem keinen Abbruch. Was braucht man also, um eine solche Entwicklung zu fördern?

  • Man benötigt möglichst kleine Heizreaktoren. Die Netzkosten fressen sonst sehr schnell etwaige Kosteneinsparungen bei den Reaktoren auf.
  • Die Reaktoren müssen sehr einfach und robust sein. Sie müssen standardisiert sein und in großen Stückzahlen in Fabriken hergestellt werden.
  • Es sollte weitgehend auf genehmigte Verfahren und Bauteile aus der Kernkraftwerkstechnik zurückgegriffen werden. Nur so kann man die kostspieligen und langwierigen Genehmigungsverfahren in den Griff bekommen.
  • Die Reaktoren müssen inhärent sicher sein und vollautomatisch betrieben werden können.
  • Sie müssen komplett und ständig fernüberwacht werden.
  • Die Anforderungen an Umgebung und Personal müssen vor Beginn des ersten Projekts neu definiert, öffentlich diskutiert und rechtssicher verabschiedet sein.
  • Bei jedem Standort müssen die Anwohner frühzeitig einbezogen werden. Nur durch Aufklärung kann man die einschlägige Angstindustrie und ihre Kumpane aus der Politik abwehren. Skandinavien und Frankreich bieten hierfür zahlreiche Beispiele und erprobte Vorgehensweisen.

Manchem mag das alles phantastisch vorkommen. Nur, ist die Diskussion nicht nur in China losgetreten worden. Sie läuft bereits auch in Osteuropa und Skandinavien. Es mag in Deutschland noch ein paar Jahre dauern, aber dann wird die Mehrheit der Bevölkerung erkennen, wie sie systematisch von Politikern und Schlangenölverkäufern mit der „Energiewende“ betrogen worden ist. Ist dieser Punkt erst erreicht, wird das Pendel ruckartig in seine alte Lage zurückkehren.

Kernenergie als Heizung?

Pünktlich zum Jahresanfang hat sich wieder der Winter eingestellt – trotz aller Beschwörungen der Medien zur Weihnachtszeit. Es ist deshalb angebracht, sich einmal mehr mit dem Thema Heizung zu beschäftigen.

Der Anteil am Energieverbrauch

Der Primärenergieverbrauch in Deutschland – und ähnlichen Regionen auf der Nord- und Südhalbkugel – läßt sich grob in die Bereiche Stromerzeugung, Verkehr und Heizung (Niedertemperaturwärme) unterteilen. Diese Aufteilung ist ein Kompromiß zwischen einer rein energetischen Gruppierung (Kohle, Öl, etc.) und üblichen volkswirtschaftlichen Betrachtungen (Privat, Industrie etc.). Ganz grob kann man sagen, daß in Ländern wie Deutschland jeweils ein Drittel des Primärenergieeinsatzes auf diese drei Sektoren entfallen. Der hohe Anteil der Raumwärme mag auf den ersten Blick manchen verblüffen. Besonders bemerkenswert ist dabei, daß sich dieser Anteil keinesfalls verringert, sondern eher noch zunimmt – trotz aller technischer Fortschritte bei den Gebäuden (Heizungssysteme, Wärmedämmung etc.). Eine wachsende Bevölkerung mit steigenden Komfortansprüchen (Wohnungsgröße und Ausstattung) verbraucht auch immer mehr „Raumwärme“. Hinzu kommt die ständig wachsende Infrastruktur in der Form von Krankenhäusern, Hallenbädern, Sporthallen, Einkaufscentern,Verwaltungsgebäuden usw.

Bemerkenswert ist auch, wie sich auf diesem Gebiet die allgemeine Entwicklung der Energietechnik widerspiegelt: Alles begann mit dem Holz am Lagerfeuer und dieser Brennstoff blieb für Jahrtausende bestimmend. Auch die „Energieeffizienz“ ist keine Erfindung heutiger Tage. Die Entwicklung ging von der offenen Feuerstelle bis zum Kachelofen – immer aus den gleichen Gründen: „Komfort“ und „Kosteneinsparung“. Nachdem man die Wälder fast abgeholzt hatte und die „Bedarfsdichte“ in der Form von großen Städten immer weiter anstieg, ging man zur Kohle über. Nachdem die Luftverschmutzung bedrohliche Ausmaße angenommen hatte, begann das Zeitalter der „Zentralheizung“ und der Brennstoffe Öl und Gas. Das ist – auch in Deutschland – nicht einmal eine Generation her!

Das Problem von Leistung und Energie

Wir Menschen streben in unseren Behausungen ganzjährig möglichst gleichmäßige Temperaturen um die 20 °C an. Das Wetter spielt uns aber einen Streich. Die Außentemperaturen schwanken in unseren Breiten von rund -20 °C bis rund +35 °C. Wir müssen also heizen oder kühlen, um unsere Ansprüche zu erfüllen. Extreme Temperaturen sind aber selten, sodaß wir überwiegend nur wenig heizen oder kühlen müssen. Dies stellt unsere Anlagentechnik vor große technische und wirtschaftliche Probleme. Ist beispielsweise eine Zentralheizung für eine Außentemperatur von -10 °C ausgelegt, so muß sie an Tagen mit 0 °C nur noch 2/3 ihrer Leistung und an Tagen mit +10 °C gar nur noch 1/3 ihrer Leistung bereitstellen. Einzig die Warmwasserbereitung fällt das ganze Jahr über an. Sie kann je nach Geräteausstattung (Geschirrspüler, Waschmaschine) und „Wärmedämmstandard“ des Gebäudes, einen beträchtlichen Anteil an den Heizkosten haben. Anders verhält es sich mit der Energie – das ist das Öl oder Gas auf unserer Heizkostenabrechnung – von dem mehr an den häufigen milden Tagen, als an den wenigen Extremen verbraucht wird.

Inzwischen setzt sich auch die Erkenntnis durch, daß alle „Energiesparmaßnahmen“ (Wärmedämmung, Zwangslüftung etc.) erhebliche Investitionskosten erforderlich machen. Letztendlich nur eine Frage von „Kaltmiete“ und „Heizkosten“. Darüberhinaus stellen sich noch Fragen der Architektur (Bestand, Denkmalschutz etc.) und vor allem der Gesundheit (Schimmelpilz etc.). Die „Nullenergiehäuser“ sind nichts weiter, als eine ideologische Kopfgeburt.

Zentral oder dezentral

Bei jeder Verbrennung entstehen auch Schadstoffe. Bei Einzelfeuerungen sind sie technisch praktisch nicht in den Griff zu bekommen und noch weniger zu überwachen. Wer Öfen fordert, braucht sich um Feinstaub und krebserregende Stoffe in seiner Umwelt keine Gedanken mehr zu machen. Passives Rauchen und Autofahren wird heute von grünen Gesinnungstätern mit Körperverletzung gleichgesetzt. Demgegenüber wird der Gestank und das Gift aus Holzheizungen romantisiert und als „klimafreundlich“ verkauft.

Nicht zuletzt die Brennstoffver- und Ascheentsorgung stellte in dichtbesiedelten Gegenden ein Problem dar. Ende des 19. Jahrhunderts installierte man dafür z. B. in Chicago spezielle U-Bahn-Systeme. Nachdem sich Zentralheizungen in modernen Gebäuden durchgesetzt hatten, boten sich Fernwärmesysteme (Dampf oder Heißwasser bzw. Kaltwasser zur Klimatisierung) an. Interessanterweise hat man von Anfang an Abwärme aus Kraftwerken (sog. Kraft-Wärme-Kopplung) für die Heizungen verwendet. Eine wesentlich bessere Auslastung konnte man erreichen, indem man im Sommer die Fernwärme für die Klimaanlagen nutzte (Absorptionskälteanlagen).

Ein Vorteil der zentralen Versorgung ist die umweltfreundliche Erzeugung. Nur Anlagen ab einer gewissen Größe kann man mit Filteranlagen, Betriebspersonal, einer ständigen Abgasanalyse usw. ausstatten. Dezentral (Gas- oder Ölkessel) muß leider passen, denn die jährliche Kontrolle durch den Schornsteinfeger kann damit nie mithalten.

Direkte oder indirekte Nutzung der Kernenergie?

Es gibt grundsätzlich drei Wege, die Kernenergie für die Gebäudeklimatisierung (Heizung und/oder Kühlung) zu nutzen:

  1. Einsatz der in einem Kernkraftwerk erzeugten elektrischen Energie um damit direkte elektrische Heizungen (z. B. Nachtspeicher oder Radiatoren) oder indirekte Systeme (Wärmepumpen und Kältemaschinen) zu betreiben. Dies ist ein sehr flexibler Weg, der besonders einfach ausbaubar ist. Bevorzugt wird er in Gegenden angewendet, in denen nicht so extreme Temperaturen (z. B. Südfrankreich) vorherrschen oder extrem unterschiedliche Nutzungen der Gebäude in Verbindung mit Leichtbau und Wärmedämmung (Schweden) vorliegen.
  2. Kraft-Wärme-Kopplung. Man koppelt aus der Turbine eines Kernkraftwerks Dampf – der bereits zum Teil Arbeit zur Stromerzeugung geleistet hat – aus und nutzt ihn über ein vorhandenes Rohrnetz. Einst wurde dies sogar in Deutschland gemacht (stillgelegtes Kernkraftwerk Stade) und seit Jahrzehnten bis heute in der Schweiz (KKW Beznau für die „Regionale Fernwärme Unteres Aaretal“). Allerdings erfordert dies Kernkraftwerke, die sich möglichst nahe an Ballungsgebieten befinden.
  3. Man würde reine „Heizreaktoren“ bauen, die nur Wärme – wie ein konventioneller Heizkessel – für ein Fernwärmenetz liefern. Der Sicherheitsgewinn wäre so entscheidend (siehe nächster Abschnitt), daß man sie in den Städten bauen könnte. Eine Optimierung mit Wärmespeichern oder Spitzenlastkesseln könnte zu optimalen Ergebnissen bezüglich Kosten, Versorgungssicherheit und Umweltbelastungen führen.

Der nukleare Heizkessel

Gebäudeheizungen benötigen nur Vorlauftemperaturen unterhalb 90 °C. Will man auch noch Kälte für Klimaanlagen mit Hilfe von Absorptionskälteanlagen (üblich Ammoniak und Lithiumbromid) erzeugen, empfiehlt sich eine Temperatur von 130 °C bis 150 °C im Vorlauf des Fernwärmenetzes. Dabei gilt: Je höher die Temperaturspreizung zwischen Vor- und Rücklauf ist, um so größer ist die transportierte Leistung und damit werden die erforderlichen Rohrdurchmesser um so kleiner. Bei sehr großen Leistungen (Hochhäuser und beengte Rohrleitungstrassen) muß man sogar auf ein Dampfnetz mit seinen spezifischen Nachteilen übergehen.

Für wirtschaftliche und sicherheitstechnische Bewertungen ist es ausschlaggebend, sich einen Überblick über das erforderliche Druckniveau zu verschaffen. Will man Wasser bei 90 °C verdampfen, benötigt man einen Druck von 0,7 bar, bei 130 °C von 2,7 bar und bei 150 °C von 4,8 bar. Umgekehrt gilt, man muß mindestens diese Drücke aufrecht erhalten, wenn man eine Verdampfung verhindern will. Alles meilenweit entfernt von den Zuständen, wie sie in jedem Kernkraftwerk herrschen.

Bei dem erforderlichen Druck- und Temperaturniveau könnte man also einen preiswerten „nuklearen Heizkessel“ zum Anschluß an Fernheizungssysteme bauen ohne irgendwelche Abstriche an der Sicherheitstechnik machen zu müssen. Damit man möglichst viele Gebiete erschließen kann, empfiehlt sich ohnehin: Je kleiner, je lieber. Man könnte diese „nuklearen Heizkessel“ als „nukleare Batterien“ bauen, die komplett und betriebsbereit zur Baustelle geliefert werden und erst nach Jahrzehnten wieder komplett zum Hersteller zurück transportiert werden. Dort könnten sie überarbeitet und der Brennstoff nachgeladen werden. Es bietet sich damit ein interessantes Leasingmodell für Gemeinden an: Für Jahrzehnte billige Heizkosten zu garantierten Festpreisen.

Notwendige Entwicklungen

Eigentlich nicht viel, nimmt man Reaktoren für Schiffe als Ausgangspunkt. So hatte der Reaktor der Otto Hahn eine thermische Leistung von 38 MW. Sein Auslegungsdruck betrug 85 bar bei einer Temperatur von 300 °C. Für einen „nuklearen Heizkessel“ schon viel zu viel. Trotzdem kam man mit Wandstärken von rund 50 mm aus. Er hatte eine Höhe von 8,6 m und einen Durchmesser von 2,6 m. Schon klein genug, um die ganze Fernwärmestation in einem mittleren Gebäude unterzubringen.

Wichtig ist, daß man bei den notwendigen Drücken und Temperaturen mit handelsüblichen Werkstoffen auskommt und nur (relativ) geringe Wandstärken benötigt. Dies vereinfacht die Fertigung und verringert die laufenden Kosten. Ausgehend von Leichtwasserreaktoren sind auch alle Berechnungsverfahren bekannt, erprobt und zugelassen. Die Konstruktion und das Zulassungsverfahren könnten sofort beginnen. Ein Bau wäre in wenigen Jahren realisierbar.

Wirtschaftliche Einflüsse

Die Investitionskosten sind natürlich höher als bei einem konventionellen Heizkessel. Dafür sind die Brennstoffkosten vernachlässigbar, sodaß sich trotzdem sehr attraktive Heizkosten ergeben würden. Betriebswirtschaftlich ist immer die Anzahl der „Vollbenutzungsstunden“ ausschlaggebend. Zumindest in der Anfangsphase sollte daher nur die Grundlast (Warmwasser, Klimatisierung und Heizlast in der Übergangszeit) eines Fernwärmenetzes abgedeckt werden. Die Spitzenlast könnte – wie heute – weiterhin durch Öl- oder Gaskessel bereitgestellt werden.

Der nächste Schritt könnte eine Wärmespeicherung sein. Das Wetter (Außentemperatur, Wind und Sonne in ihrem Zusammenwirken) ändert sich ständig. Tagelange Kälteperioden mit satten Minusgraden sind in Deutschland eher selten. Gebäude und das Fernwärmenetz selbst, besitzen bereits eine erhebliche Speicherfähigkeit. Die Anforderung der Heizleistung wird bereits dadurch gedämpft. Mit relativ kleinen Zusatzspeichern kann man daher die Auslastung erheblich verbessern. Beispiel hierfür sind die handelsüblichen Brauchwasserspeicher in unseren Gebäuden. Großtechnische Speicher mit mehreren GWh sind bereits in bestehenden Fernwärmenetzen installiert. Wie gesagt, alles kann schrittweise erfolgen. Je nach Entwicklung der Brennstoffpreise und verordneten Nebenkosten (Luftverschmutzung etc.).

Heute wird immer weniger Kohle zur Heizung eingesetzt. Der Trend zu Öl und insbesondere Gas, hält unvermittelt an. Durch die Verwendung von Kernenergie für die Gebäudeheizung kann man sofort beträchtliche Mengen davon für Industrie und Verkehr zusätzlich verfügbar machen. Eine wesentlich wirksamere Maßnahme als z. B. das „Elektroauto“. Wo und wann wird denn die Luftverschmutzung unerträglich: In den Großstädten und (in unseren Breiten) im Winter. Eine abgasfreie Heizung würde eine durchschlagende Verbesserung bewirken. Holzheizungen und Faulgas sind Wege in die falsche Richtung, die die Belastung für Natur und Menschen nur unnötig erhöhen. Feinstaub z. B. kommt nicht nur aus dem Auspuff, sondern vor allem aus den unzähligen Kaminen.

Der Wahnsinn geht weiter

Wer immer noch nicht glauben mag, daß Planwirtschaft schneller wuchert als Krebs, hat die Mitteilungen Energie: Bestätigung des Reservekraftwerkbedarfs der Bundesnetzagentur noch nicht gelesen. Inzwischen gibt es eine Verordnung über „Reservekraftwerke“. Immerhin werden hier die „Gebühren“ für zusätzliche Kraftwerke mit bis zu 7800 MWel geregelt, die wir Stromverbraucher zahlen müssen.

Das neu erschaffene Handelsgut der Reservekraftwerke

Irgendwann hat auch jedes Kraftwerk sein Lebensende erreicht: Meist nicht aus technischen Gründen (ein Kraftwerk muß bis zuletzt gewartet werden), oft aus technologischen Gründen, überwiegend aus wirtschaftlichen Erwägungen und neuerdings sogar aus politischen Gründen (Ausstieg aus der Kernenergie). Normalerweise – wie gesagt, bis auf Kernkraftwerke in Deutschland – eine auf betriebswirtschaftliche Daten fußende unternehmerische Entscheidung. Mit einfachen Worten: Wenn die laufenden Kosten, die erzielten Einnahmen übersteigen, wird es stillgelegt. Nun hat man auch früher solche Kraftwerke (eher einzelne Blöcke in einem Großkraftwerk) nicht sofort abgerissen, sondern sie erst einmal in die sogenannte „Kaltreserve“ überführt. Unter „Kaltreserve“ versteht man sorgsam gepflegte Einheiten, die man innerhalb weniger Tage wieder in Betrieb setzen kann. Das kostet natürlich zusätzlich Geld. Quasi eine Versicherungsprämie gegen Ausfälle von Kraftwerken (unerwartete Schäden, Umbau- und Wartungsmaßnahmen etc.). Wieviel und welche Blöcke man in der Kaltreserve belässt, ist wieder eine betriebswirtschaftliche Entscheidung. Weil das so ist, werden stets die Einheiten mit den höchsten Unterhaltungskosten – meist die ältesten – Einheiten endgültig abgerissen. An dieser Stelle muß man verstehen, daß der notwendige Umfang der Kaltreserve ausschließlich in der Verantwortung des jeweiligen Betreibers liegt. Wer seinen Kraftwerkspark optimal betreibt, auf dem Stand der Technik hält und stets gut wartet, kommt mit einer entsprechend kleinen Reserve aus. Wer über den richtigen Brennstoffmix verfügt, braucht unerwartete Preisschwankungen nicht zu fürchten.

Die Politik hat nun durch ihre Vorgaben (Ausstieg aus der Kernenergie, Wunschenergie Wind und Sonne), die vorher beschriebenen Zusammenhänge außer Kraft gesetzt. Damit die Politik nun ihren Willen durchsetzen kann, muß sie die Entscheidung übernehmen, welche Kraftwerke stillgelegt werden dürfen. Da aber Enteignungen in unserem Wirtschaftssystem (noch) schwer durchsetzbar sind, mußte eine Krücke gefunden werden. Will oder muß ein Betreiber ein Kraftwerk abschalten, muß er sich dies genehmigen lassen. Dies stellt für sich schon einen schwerwiegenden Eingriff in das Grundrecht auf Eigentum, Gewerbefreiheit und Vertragsfreiheit dar. Um das durchziehen zu können, muß man zumindest eine akzeptable Entschädigung vorsehen. Das Wirtschaftsgut „Reservekraftwerk“ war geboren. Ein weiteres, von Politikerhand erschaffenes, planwirtschaftliches Monster, welches weitere Monster gebären wird!

Was genau, ist ein Reservekraftwerk?

Wenn der Politik – vertreten durch die Bundesnetzagentur – die endgültige Abschaltung eines Kraftwerks missfällt, wird es zu einem Reservekraftwerk erklärt. Ein Reservekraftwerk darf ausdrücklich nicht mehr von seinem Eigentümer benutzt werden, muß aber stets und in vollem Umfang (Personal, Wartung, Prüfungen etc.) durch ihn unterhalten werden. Lediglich der zuständige Übertragungsnetzbetreiber entscheidet, wann, wie oft, für wie lange, das Kraftwerk betrieben werden soll. Für einen solch schweren Eingriff in das Recht auf Eigentum, muß es natürlich eine Entschädigung geben. Diese Kosten werden auf alle Stromverbraucher über das Netzentgeld umgelegt. Ganz neben bei, ist das eine weitere Verschleierung der tatsächlichen Kosten der Windenergie! Die Festlegung der Entschädigung wird im heute üblichen Neusprech als „Durchführung eines Interessenbekundungsverfahrens “ bezeichnet. Dahinter verbirgt sich folgende Problematik: Die Entschädigung muß ausgehandelt werden. Wenn ein Eigentümer – aus welchen Gründen auch immer – partout kein Reservekraftwerk haben will, kann er sich durch die Nennung eines überhöhten Preises schützen. Deshalb wird schon mal vorsorglich mit der Keule „Gewährleistung der Sicherheit und Zuverlässigkeit des Elektrizitätsversorgungssystems“ gedroht. Andererseits ist die Bundesnetzagentur in einer eher schwachen Position, da bestimmte Kraftwerke aus bekannten technischen Gründen faktisch eine Monopolstellung besitzen. In der Praxis werden die Verhandlungen eher in größter Harmonie verlaufen. Handelt es sich doch um ein klassisches StGeschäft zu Lasten Dritter: Wir Stromkunden müssen auf jeden Fall zahlen, sitzen aber gar nicht am Verhandlungstisch.

Wozu braucht man überhaupt Reservekraftwerke?

In einem Stromnetz müssen zu jedem Zeitpunkt und an jedem Ort Energieverbrauch und Produktion in einem Gleichgewicht sein. Vor dem Zeitalter des Ökologismus hat man deshalb die Kraftwerke so nah wie möglich an den Verbrauchsschwerpunkten gebaut. Teilweise sogar in den Städten (Berlin, Hamburg, München etc.) und hat dabei die Abwärme noch für die Fernheizung verwendet. Insbesondere für die Windenergie wurde zu deren Förderung die Standortwahl freigegeben. Der Strom muß nun irgendwie zum Verbraucher fließen. Die Windparks wurden und werden bevorzugt in Norddeutschland oder sogar im Meer errichtet. Inzwischen hat man dort erhebliche Überkapazitäten. Der Abfallstrom muß auf biegen und brechen (Abnahmezwang) in Süddeutschland und im Ausland entsorgt werden. Genau dieser Abfallstrom ist aber das Hauptproblem! Nicht die Dunkelflaute, von der inzwischen sogar in der breiteren Öffentlichkeit geredet wird ist der Grund für neue Leitungen und Reservekraftwerke. Wenn kein Wind weht und keine Sonne scheint, kann der Bedarf problemlos mit dem vorhandenen Stromnetz und den (noch) vorhandenen Kraftwerken abgedeckt werden. Nur wenn der Wind – ausnahmsweise – mal etwas stärker weht, ergibt sich sofort ein Problem für jedes Stromnetz! Selbst ein immer weiter betriebener Netzausbau ist deshalb keine Lösung. Auch wenn man das Stromnetz so erweitert, daß auch Windenergiespitzen immer transportiert werden können, ist das nur an wenigen Stunden im Jahr nötig und damit völlig unwirtschaftlich.

An dieser Stelle scheint ein kleiner Einschub zum Umweltschutz nötig. Niemand kann große Mengen elektrischer Energie ohne Verluste quer durch Deutschland verschieben. Schon heute betragen allein die Verluste im Übertragungsnetz (das ist nur das Hochspannungsnetz!) an „Starkwindtagen“ 1500 MWel.! Wie die Simulationen der Bundesnetzagentur zeigen, werden diese mit dem Ausbau der Windenergie beständig ansteigen.

Ein weiteres Zauberwort: „Redispatch“

Redispatch ist, wenn man bestimmte Kraftwerke im Netz runter regelt, um die Flüsse innerhalb des Netzes zu verändern. Natürlich muß man diese Minderleistung an anderer Stelle zusätzlich einspeisen. Dazu dienen die Reservekraftwerke und deshalb haben auch nur die Übertragungsnetzbetreiber eine Verfügung über sie. Man kann sich das (stark vereinfacht) so vorstellen: Wenn eine Übertragungsleitung an ihre Grenzen zu stoßen droht, kann man die Kraftwerke vor der Leitung etwas abregeln. Natürlich fehlt diese Leistung am anderen Ende, was zumindest dort zu Spannungseinbrüchen und Frequenzschwankungen führen würde. Als Gegenmaßnahme muß das Reservekraftwerk dort, die fehlende Leistung ersetzen. An dieser Stelle sei daran erinnert, daß bereits für den Winter 2015/2016 eine Reserveleistung von geschätzt 6,7 bis 7,8 GWel. eingekauft werden muß. Die Kosten hierfür sind noch nicht bekannt. Immerhin entspricht das rund sieben Kernkraftwerken und eine solche Leistung kauft man auch in Deutschland nicht beim Kaufmann um die Ecke.

Es muß noch einmal ganz deutlich gesagt werden, das Problem ist nicht, wenn der Wind nicht weht (Dunkelflaute), sondern wenn er mal weht! Bereits jetzt haben wir bei Starkwind ein Exportsaldo von 12,1 GW. Bei Dunkelflaute (meist am Wintertag) ergibt sich nur ein Importsaldo von -2,1 GW. Die eigenen Kraftwerke reichen (noch) aus, um Deutschland zu versorgen. Im Gegensatz dazu, muß der Abfallstrom bei stärkerem Wind erst einmal zu den Grenzen transportiert werden, bevor er anschließend im Ausland teuer entsorgt werden kann.

Milchmädchen und der CO2 – freie Windstrom

Bis vor wenigen Jahren, wurde man von den Schlangenölverkäufern der Windindustrie immer brüsk abgeschmettert, wenn man von der Dunkelflaute sprach. Obwohl jedem, der sich mit den meteorologischen Daten auseinandergesetzt hat, vollkommen klar war, daß der Wind eben nicht immer weht. Gerade im Winter, wenn der Stromverbrauch am höchsten ist, treten immer wieder großräumige Hochdruckwetterlagen in Europa auf. Heute sind diese Meßdaten der Windstromproduktion von jedermann im Netz einsehbar.

Wenn man den einschlägigen Umfragen glauben mag, ist die (gut verdienende) Mehrheit in Deutschland gern bereit, höhere Strompreise zu bezahlen, wenn sie dadurch das Weltklima retten darf. So eine Art von Ablasshandel halt. Allerdings werden auch immer mehr Gutmenschen stutzig über einen vermeintlichen Widerspruch: Kaum ein Tag vergeht, an dem nicht über neue Rekorde an der Ökostrom-Produktionsfront berichtet wird – nur die CO2 – Produktion sinkt nicht parallel dazu! Nur die Schlangenölverkäufer jubeln noch über jede zusätzliche CO2 – freie Kilowattstunde aus Windstrom.

Windstrom ist nur so lange „CO2 – frei“, wie er den Windpark noch nicht verlassen hat. Selbst hartgesottene „Öko’s“ wissen aber, daß er im Windpark ohne jeden Wert ist. Er muß noch auf einem hunderte Kilometer langen Weg bis zu den Verbrauchsstellen im In- und Ausland gelangen. Ohne konventionelle Kraftwerke, läßt sich aber kein „Zappelstrom“ transportieren. Inzwischen kann man aber auch dies messen! Je höher die Produktion von Windstrom an verbrauchsfernen Standorten ist, um so höher ist die CO2.-Freisetzung um diesen Strom über weite Strecken transportieren zu können. Da kommt auch kein Netzausbau hinterher.

Planwirtschaft gegen Realität

Es ist politisch gewollt, noch mehr Windparks im Meer zu bauen. Gleichzeitig will man aus der Kernenergie aussteigen. Der Ersatz dieser Kraftwerke durch (fossile) Neubauten ist unerwünscht. Es beginnt der Kampf gegen die noch vorhandenen Kohlekraftwerke. All das zusammen genommen, führt zu einem gigantischen Park von Reservekraftwerken mit steigendem CO2.-Ausstoß. Letztendlich zum Zusammenbruch des Strommarktes mit anschließender Verstaatlichung.

Man kann schon heute die Entwicklung in Echtzeit an der Strombörse verfolgen. Jedes mal, wenn der Wind etwas stärker weht, fallen die Strompreise an der Börse synchron. Einziger Grund ist der politisch verursachte Abnahmezwang. Wenn man in einem Markt eine Überversorgung herbeiführt, fallen die Preise so lange, bis genug Marktteilnehmer die Produktion einstellen. Schon heute werden für etliche Stunden sogar negative Preise erzielt. Nichts weiter, als eine Entsorgungsgebühr für die Vernichtung der Überproduktion. Je tiefer die Preise fallen, um so mehr Produzenten können ihre Kosten nicht mehr decken und stellen die Produktion ein. Dies betrifft im derzeitigen System ausschließlich die fossilen Kraftwerke. Denn die Windstromerzeuger erhalten auch weiterhin ihren Garantiepreis für ihre garantiert abgenommene elektrische Energie! Dies haben ausschließlich die Politiker zu verantworten, denn sie haben diesen Irrsinn in Gesetzesform gegossen.

Es gibt offensichtlich noch immer genug schlichte Gemüter, die diesen Zusammenhang gut finden. Sie glauben tatsächlich, daß so immer weniger fossile Energie verbraucht wird, wodurch das „Klima gerettet wird“. Das Gegenteil ist der Fall! Je mehr Windenergie produziert werden soll, um so mehr fossile Energie (bei gleichzeitigem Verzicht auf Kernenergie) muß eingesetzt werden. Nicht nur bei Dunkelflaute muß der Strom in konventionellen Kraftwerken produziert werden, sondern auch bei jeder wetterabhängigen Überproduktion müssen vermehrt fossile Kraftwerke zum Transport des Windstroms zu den Entsorgungsstätten eingesetzt werden. Was heute schon an Sonn- und Feiertagen oder in der Nacht passiert, wird bei weiterem Ausbau bald ständig Realität sein. Es gibt keinen Ausweg aus diesem Dilemma:

  • Regelt man die Windmühlen mit zunehmendem Wind ab, wird deren Auslastung immer schlechter und es erhöhen sich beständig die Stromkosten bei den Verbrauchern. Man zahlt dann nur noch für Windmühlen, die in der Landschaft herumstehen. Wie lange die Wähler so etwas dulden, kann man vielleicht aus der Geschichte lernen. Wer kennt nicht mehr die Bilder von Obst- und Gemüseüberproduktion, die zur Stabilisierung der Preise gleich untergepflügt wurden oder die man gegen Gebühr auf der Müllkippe entsorgt hat.
  • Man versucht die Überschußenergie gleich in den Windparks zu speichern, bis sie auch tatsächlich benötigt werden. Bei dieser Energiewandlung gingen dann gleich rund die Hälfte der Produktion wieder verloren. Der zweite Hauptsatz läßt sich durch Ideologie nicht aushebeln! Abgesehen von den gigantischen Investitionen, die hierfür nötig wären. Die Butterberge und Fleischberge der planwirtschaftlichen europäischen Landwirtschaft waren Nicklichkeiten dagegen.
  • Man versucht wie bisher, die Überschüsse im Ausland zu entsorgen. Für die immer weiter entfernten Abnehmer sind immer mehr Hochspannungsleitungen nötig, auf denen immer mehr elektrische Energie gleich „verbraten“ wird. Trotzdem wird man immer mehr Reservekraftwerke benötigen, um die Netze überhaupt betreiben zu können. Logischerweise werden die Betreiber immer ihre ältesten und umweltverschmutzenden Kraftwerke den Übertragungsnetzbetreibern vermieten.

Es gibt nur eine Möglichkeit diesen Wahnsinn zu stoppen. Man macht sofort Schluß damit. Dies kann aber nur die Politik leisten, weil sie dieses Monster der Planwirtschaft erst erschaffen hat.

Die europaweite Dimension

Die Idee, den Stromabfall gegen Gebühr im Ausland zu entsorgen, war ziemlich dämlich. Polen ist bereits dabei, seine Grenzen dicht zu machen. Man ist es leid, kostenlos Strom über Tschechien nach Bayern und Österreich zu transportieren. Auch die Idee Reservekraftwerke in Polen anzumieten, war ziemlich kurz gedacht. Weder sind die Polen bereit, ihre Souveränität für ein Linsengericht an die Deutschen zu verkaufen, noch die dadurch zusätzlich entstehenden Belastungen in ihrem Netz zu tragen. Einzig Greenpeace hätte sich wahrscheinlich einen Ast gelacht: Die als besonders umweltfreundlich bekannten (abgenutzten alten) Kohlekraftwerke in Polen von Deutschland weiter am Leben gehalten, um den „Grünen Strom“ von der Ostsee nach Österreich und weiter zu verkaufen.

Besonders lustig ist auch, daß ausgerechnet Deutschland nun darüber nachdenkt, den Stromhandel mit Skandinavien und Österreich zu begrenzen. Leider weht auch der Wind in Dänemark, wenn er in Norddeutschland weht. Weil ganz Norddeutschland bereits mit Windstrom verstopft ist, tut jede zusätzlich Kilowattstunde, die Dänemark in Deutschland entsorgen will, besonders weh. Langsam merkt man, daß sich Deutschland zu einem Transitland für elektrische Energie entwickelt. Man findet es inzwischen auch nicht mehr so prickelnd, daß deutsche Stromverbraucher für lukrative Geschäfte zwischen Österreich, Ungarn und Italien bezahlen müssen. Deutscher Stromabfall wird billig von Österreich aufgekauft und gewinnbringend an das alte KuK-Gebiet weiterverscherbelt. Inzwischen fließen bereits 8,5 GW nach Österreich. Tendenz weiter steigend. Alles ein Ergebnis des politisch gewollten „Ein-Zonen- Modells“, in dem die örtliche Entfernung per Ukas außer Kraft gesetzt wurde. Strom soll überall gleich teuer sein. Transportkosten müssen zur Verschleierung aus anderen Töpfen bezahlt werden.

Auch das „Vorangehen“ hat sich als blöde Idee herausgestellt. Frankreich z. B. ist inzwischen auch in das Windgeschäft eingestiegen. Dumm nur, daß dort die geographischen Bedingungen (z. B. Atlantikküste) wesentlich günstiger als in Bayern und im Schwabenland sind, somit die Produktionskosten auch geringer. Warum sollte Frankreich also zusätzlichen Windstrom aus Deutschland importieren? Es sei denn, Michel ist bereit, die Subventionen weiter hoch zu schrauben.

Völlig verschlafen haben unsere Politiker beim „Vorangehen“ den Netzausbau in Ost-West-Richtung. Man war zu sehr von der Idee besessen, die Kernkraftwerke in Süddeutschland abzuschalten und durch Windstrom zu ersetzen. Inzwischen hat man durch die politisch verordnete Überproduktion Strompreise an der Börse erzeugt, die (teilweise) unter den Brennstoffkosten liegen. Daraus ergeben sich erbliche Stromflüsse in Ost-West-Richtung. Ein Netzausbau auch in diese Richtung, ist unvermeidbar! Deutschland wird ein Land der „Stromautobahnen“ und „Reservekraftwerke“. Ist das, das „tolle Europa“, was man uns immer zu verkaufen versucht hat? Gut gemeint, ist noch lange nicht, gut gemacht.

Hinkley Point C

Der Aufreger der Woche, ist der geplante Neubau zweier Reaktoren als Ersatz für das Kernkraftwerk Hinkley Point. Für die einen ist es der lang ersehnte Neubeginn, für andere ein Sündenfall der europäischen Subventionswirtschaft. Vor allem ist es jedoch ein hoch komplexer Vorgang, für den man etwas mehr Zeit benötigt als in den „Qualitätsmedien“ zur Verfügung steht.

Die Geschichte

Großbritannien (GB) ist die Mutter der sog. „Strom-Markt-Liberalisierung“ in Europa. Traditionell gab es Gebietsmonopole, in denen „Energieversorger“ tätig waren. Als Ausgleich für ihr Monopol, mußten sie ihre Tarife durch eine staatliche Aufsicht kontrollieren und genehmigen lassen. Nach der „Liberalisierung“ sollte elektrische Energie – wie andere Wirtschaftsgüter auch – zwischen Erzeugern und Verbrauchern gehandelt werden. Eine „Strombörse“ sollte hierfür der zentrale Marktplatz sein. So weit, so schlecht. Märkte kann man nicht verordnen, sondern Märkte ergeben sich und müssen sich frei organisieren können. Heute steht man in GB vor einem Scherbenhaufen. Böse Zungen behaupten, daß das heutige Theater um Hinkley Point nur das zwangsläufige Ergebnis für eine seit 30 Jahren nicht vorhandene Energiepolitik sei. Eine sicherlich nicht ganz falsche Feststellung. Noch treffender könnte man sagen, ein bischen Planwirtschaft geht genauso wenig, wie ein bischen schwanger. Um auch weiterhin seinen politischen Einfluß geltend machen zu können, hat man ganz schnell ein prinzipielles „Marktversagen“ in der Form einer von Menschen verursachen „Klimakatastrophe“ konstruiert. Früher gab es eine „Aufsichtsbehörde“ mit klar definierter Verantwortung und Aufgabenstellung. Heute ist die Elektrizitätswirtschaft zu einem Tummelplatz für Laiendarsteller und skrupellose Geschäftemacher verkommen. Im Ergebnis haben sich immer mehr seriöse Investoren aus diesem Sektor zurückgezogen. Dafür wurden immer mehr Kräfte aus dem dunklen Reich der „Gesellschaftsveränderer“ magisch angezogen. Wie konnte es dazu kommen?

Am Anfang und am Ende steht das Atom

In GB gab es zwar nie eine der deutschen „Anti-Atomkraft-Bewegung“ vergleichbare Strömung in der Bevölkerung, gleichwohl erkannten auch dort Politiker das Potential für eine „Gesellschaftsveränderung“. Man versuchte deshalb den Sektor Kernenergie möglichst lange aus der „Strom-Markt-Liberalisierung“ heraus zu halten. Letztendlich wurde auch er „privatisiert“. Die Kernkraftwerke wurden komplett an die staatliche französische EDF verkauft. Von einem Staatskonzern Unternehmertum zu erwarten, dürfte ungefähr genauso erfolgreich sein, wie die Übertragung eines Schnapsgeschäftes an einen Alkoholiker. Parallel wurden die „Alternativenergien“ massiv bevorzugt. Mit dem Ergebnis, daß man auch bald keinen Dummen mehr finden konnte, der gewillt war, in fossile Kraftwerke zu investieren. Nun steht man vor einem Scherbenhaufen: Rund ein Drittel aller Kraftwerke müssen in den nächsten Jahren aus Altersschwäche vom Netz gehen. Dies führt zu einer Versorgungslücke von wahrscheinlich 60 GW. Eine volkswirtschaftliche Herausforderung, wie in einem Schwellenland. Die Zeit wird knapp. Längst hat man gemerkt, daß Windenergie ohne konventionelle Kraftwerke gar nicht funktionieren kann. Da helfen auch noch so hohe Investitionen nicht weiter. Den Weg über den Neubau von Kohlekraftwerken traut man sich nicht zu gehen, hat man doch erst mit großem politischen Aufwand die „Klimakatastrophe“ erschaffen. Der einst erträumte Weg über „flexible und umweltfreundliche Gaskraftwerke“ ist bei der benötigten Stückzahl auch nicht realistisch. Zumindest das Handelsdefizit würde explodieren und das Pfund ruinieren. Man kann es drehen und wenden wie man will, aber zum Schluß landet man wieder bei der (ungeliebten) Kernenergie.

Weisse Salbe oder Reform

Solange man an dem „Einspeisevorrang“ für Windenergie fest hält, wird man keinen Investor für konventionelle Kraftwerke finden. Jedes zusätzliche Windrad drückt die Preise für Strom an der Börse weiter in den Keller und senkt zusätzlich die Auslastung der konventionellen Kraftwerke. Würde man die Einspeisung begrenzen – wenn der Wind einmal zufällig kräftig weht – wären die Windmüller aber über Nacht pleite. Dies wäre zwar die volkswirtschaftlich sinnvollste Lösung, ist aber (zur Zeit noch nicht) politisch durchsetzbar. Deshalb handelt man lieber nach dem alten Grundsatz: Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen: In Deutschland nennt man das „Kapazitätsmärkte“, in GB „Contracts for Difference CfD“. Zwar ist beides durchaus nicht das Selbe, dient aber dem gleichen Zweck. Es dient dazu, die Kosten für ein zusätzliches System für die Zeiten der Dunkel-Flaute nicht dem Verursacher (Windmüller), sondern dem Verbraucher aufs Auge zu drücken. Noch einmal in aller Deutlichkeit: Würde man den „Erneuerbaren“ abverlangen, zu jedem Zeitpunkt den erforderlichen Anteil an der Netzleistung bereitzustellen, wäre der Traum von der „Energiewende“ über Nacht beendet. Es würden sich nämlich die wahren Kosten für jeden ersichtlich zeigen. Jeder Windmüller müßte entweder auf eigene Kosten Speicher bauen oder Notstromaggregate errichten oder Ersatzleistung bei anderen Kraftwerken zu kaufen. Wenn er keinen Strom liefern kann, weil das Netz voll ist (Starkwind) bekommt er auch kein Geld. Alles Selbstverständlichkeiten, die für jedes konventionelle Kraftwerk gültig sind. Ein „Kapazitätsmarkt“ wäre nicht notwendig oder würde sich von selbst ergeben – ganz nach Standort des Betrachters.

Windenergie ist nicht gleichwertig zu Kernenergie

Der Strom aus der Steckdose ist ein homogenes Gut im wirtschaftlichen Sinne. Es ist physikalisch in engen Grenzen (Frequenz, Spannung) immer gleich. Egal ob heute oder morgen oder in Berlin oder am Bodensee. Genauso wie Dieselkraftstoff, bei dem es auch egal ist, wo man tankt. Zu diesem homogenen Wirtschaftsgut wird die elektrische Energie aber noch nicht durch die Erzeugung, sondern erst durch das Netz (Netz nicht nur im Sinne von Drähten, sondern einschließlich Schaltanlagen, Transformatoren, Frequenzregler etc.). Ganz anders als beim Dieselkraftstoff. Der bleibt immer gleich, egal ob er frisch aus der Raffinerie kommt oder aus einem Lagertank. Damit ergibt sich wirtschaftlich ein grundlegender Unterschied: Diesel kann man lagern, bis die Preise günstiger sind (Arbitrage). Elektrische Energie muß man in dem Moment verkaufen, wo sie entsteht (z. B. Windbö). Andersherum gilt genauso: Der aktuelle Strompreis kann noch so hoch sein, wenn Flaute ist hat man nichts davon. Genauso wenig nutzt es, wenn der Sturm in der Nordsee tobt, man aber mangels Leitungen den Strom nicht nach Bayern transportieren kann.

Letztendlich muß der Verbraucher immer alle Kosten tragen. Für einen Vergleich unterschiedlicher Erzeuger ist aber eine richtige Zuordnung der Kosten sehr wohl nötig, will man nicht Äpfel und Birnen gleich setzen. Ein einfaches Beispiel mag das verdeutlichen: Bei einem Kernkraftwerk werden die Schaltanlagen und Anschlußleitungen bis zum „relevanten Anschlußpunkt“ den Baukosten des Kraftwerks zugeschlagen, weil sie als sicherheitsrelevant gelten. Bei Windkraftanlagen ist das genau andersherum, um die Windenergie künstlich günstig zu rechnen. Hier schmarotzt der Anlagenbetreiber von der Allgemeinheit. Insofern sind Investitionskosten ohne genaue Kenntnisse der Verhältnisse nicht unmittelbar gegenüber zu stellen. Begriffe wie „Netzparität“, sind nichts weiter als Irreführung der Verbraucher.

Entspricht 16 nun 34 oder nicht?

Die Baukosten für zwei EPR-Blöcke mit zusammen 3200 MW werden mit 16 Milliarden Pfund angegeben. Dies ist für sich schon ein stolzer Preis. Verwundern kann das jedoch nicht, da die Vergabe ohne Konkurrenz erfolgt. Dies ist nur politisch zu erklären: Der Segen aus Brüssel war sicherlich nur mit massiver Unterstützung von Frankreich möglich. Dürfte dieser Preis Realität werden, dürfte sich der EPR und Areva als sein Hersteller auf dem Weltmarkt erledigt haben. Er wäre schlichtweg nicht konkurrenzfähig. Wie eigenartig das Vergabeverfahren verlaufen ist, erkennt man schon daran, daß der Angebotspreis kurz vor Abgabe noch einmal um zwei Milliarden erhöht worden ist. Dies wurde mit einem zusätzlichen Erwerb eines Grundstückes und den Ausbildungskosten für die Betriebsmannschaft begründet. Vielleicht platzt das ganze Geschäft noch, weil Areva vorher die Luft ausgeht. Vielleicht ist Hinkley Point auch der Einstieg der Chinesen in das europäische Geschäft mit Kernkraftwerken. EDF hat ohnehin nur eine Beteiligung zwischen 45 bis 50% geplant. China General Nuclear und China National Nuclear Corporation sind schon lange als Partner vorgesehen.

Welche Kosten nun die wirklichen Kosten sind, ist so alt wie die Kerntechnik. Die Baukosten werden mit rund 16 Milliarden Pfund angegeben. Genauer gesagt sind dies die „Über-Nacht-Kosten“. Nun beträgt aber die geplante Zeit bis zur Inbetriebnahme etwa 10 Jahre. In dieser Zeit müssen alle Ausgaben über Kredite finanziert werden. Einschließlich der Finanzierungskosten soll das hier etwa 34 Milliarden Pfund ergeben. Weitere rund 10 Milliarden Pfund sollen auf die Rückstellungen für „Atommüll“ und die Abbruchkosten für das Kraftwerk entfallen. So ergibt sich die Zahl von 43 Milliarden Euro, die durch die Presselandschaft geistert. Man sollte dabei nicht vergessen, daß dies alles nur kalkulatorische Kosten zur Rechtfertigung des vertraglich vereinbarten „strike price“ von 92,50 Pfund pro MWh sind.

Es ging hier um ein „Beihilfeverfahren“, in dem die Kosten möglichst hoch angesetzt werden müssen, um das gewollte Ergebnis zu erhalten. Deutlich wird das an der erfolgreichen „Subventionskürzung“ bei der Finanzierung um über eine Milliarde Pfund, die Almunia stolz verkündet hat. Um was geht es genau dabei? Die Finanzierung eines Kernkraftwerks ist mit erheblichen, nicht kalkulierbaren – weil staatlich verursachten – Risiken verbunden. Man kann erst die Kredite zurückbezahlen, wenn man Strom liefern kann. Der Zeitpunkt ist aber unbestimmt, da laufend die Anforderungen der Behörden verändert werden können. Dieses (unkalkulierbare) Risiko, lassen sich die Banken mit erheblichen Zinsaufschlägen vergüten. Aus diesem Gedanken wurde die staatliche Bürgschaft (bis zur Inbetriebnahme) erschaffen. Durch diese Bürgschaft ist der Kredit einer Staatsanleihe gleichwertig. Allerdings kostet eine Bürgschaft immer Gebühren. Der Staat subventioniert hier nicht, sondern kassiert im Gegenteil ab! Zahlen muß – wie immer – der Verbraucher. Für Hinkley Point ist eine Bürgschaft über 10 Milliarden Pfund bzw. 65% der auflaufenden Kosten vorgesehen. Man setzt nun einen fiktiven Zinssatz mit Bürgschaft in Relation zu einem durchschnittlichen Zinssatz für Kredite und hat flugs eine – freilich rein theoretische – Subvention.

Es ging hier auch mehr um die grundsätzliche Absegnung eines Verfahrens. Eine solche Anleihe kann sehr langfristig angelegt werden und dürfte sich zu einem Renner für die Versicherungswirtschaft, Pensionskassen usw. im Zeitalter der niedrigen Zinsen erweisen. Dies war übrigens der Gedanke, der hinter der Erschaffung von Desertec, dem Projekt Strom aus der Sahara, stand. Nur hatten die energiewirtschaftlichen Laien der Münchener Rück auf das falsche Produkt gesetzt. Trotzdem ist die Idee Geld wert. Hier schlummert ein europaweites, gigantisches Infrastrukturprogramm. In diesem Sinne ist auch das chinesische Interesse kein Zufall. Man sucht auch dort händeringend langfristige, sichere und lukrative Anlagemöglichkeiten für die gigantischen Devisenreserven. Kapital gibt es genug, man muß nur die ideologischen Bedenken über Bord werfen.

Ist CfD gleich EEG oder doch nicht?

Um die Antwort vorweg zu nehmen: Das Hinkley Point Modell ist eher eine Abkehr vom deutschen EEG-Modell und eine Rückwärtsbesinnung auf die gute alte Zeit der Energieversorger mit genehmigungspflichtigen Preisen. Insofern hinkt auch hier der Vergleich mit der Förderung von Windenergie.

Nach dem EEG-Modell wird ein einmal beschlossener Energiepreis für die gesamte Laufzeit gewährt. Egal, wie hoch die erzielbaren Preise sind. Selbst wenn eine Entsorgungsgebühr für den erzeugten Strom an der Börse entrichtet werden muß (negative Energiepreise). Die Subvention wird jährlich als Zuschlag auf alle verbrauchten Kilowattstunden umgelegt. Das System ist rein an der Erzeugung orientiert. Je mehr Windstrom erzeugt wird, um so mehr drückt das auf die Börsenpreise und um so höher werden die Subventionen. Langfristig müssen sich die konventionellen Kraftwerke nicht nur ihre eigenen Kosten, sondern auch die Entsorgungsgebühren für Wind und Sonne in den Zeiten der Dunkel-Flaute zurückholen. Dies wird zu extremen Preisschwankungen an der Börse führen. Nicht einmal „Kapazitätsmärkte“ können dagegen etwas ausrichten.

Beim „strike price“ wird ebenfalls ein Preis festgelegt (hier die 92,50 Pfund/MWh auf der Basis 2012), der langfristig gezahlt wird. Immer wenn die an der Börse erzielbaren Preise geringer sind, wird die Differenz draufgelegt. Sind die erzielten Preise jedoch höher, muß diese Differenz zurückbezahlt werden. In der reinen Lehre, sollte es hierfür ein Bankkonto mit Zinsen geben, dessen Kredite durch den Staat (wegen der dann niedrigen Zinsen) verbürgt werden sollten. Dies war angeblich nicht „beihilfekonform“ und soll jetzt über kontinuierliche Umlagen bzw. Vergütungen bei den Stromrechnungen erfolgen. Hier liegt der entscheidende Unterschied zum EEG-Modell: Ein Kernkraftwerk kann immer Strom liefern, wenn es der Betreiber will – eine Windmühle nur, wenn die Natur es will. Kernkraftwerke können die hohen Börsenpreise bei „Spitzenlast“ in der Dunkel-Flaute voll mitnehmen. „Kapazitätsmärkte“ lassen sich so mit dem CfD-Modell elegant umschiffen. Die Kostentransparenz ist größer.

Die Preisaufsicht ist wieder zurück

In der Zeit der Gebietsmonopole, mußten sich die Energieversorger die Preise für die Endverbraucher genehmigen lassen. Ein Modell, welches noch in vielen Teilen der Welt praktiziert wird. Später glaubte man dies durch den freien Handel einer Börse ersetzen zu können. Leider ist dieser „freie Handel“ nie wirklich frei gewesen. Insofern hat es auch nie eine transparente und marktkonforme Preisfindung gegeben. Es war nur ein Alibi für eine Planwirtschaft.

Der von Brüssel genehmigte Preis ist nicht mehr auf ewig festgeschrieben, sondern plötzlich anerkannt veränderlich und bedarf somit einer Kontrolle. Er ist – klassisch, wie eine Preisgleitklausel – mit der allgemeinen Inflationsrate indexiert. Es ist ausdrücklich festgehalten, daß bei geringeren Baukosten als angesetzt, der „strike price“ angepaßt werden muß. Das gleiche gilt, wenn der Gewinn höher als vorgesehen ausfällt. Beides wohl eher fromme Wünsche, handelt es sich doch beim Bauherrn und Betreiber um staatliche Unternehmen. Zumindest die „hauseigene Gewerkschaft der EDF“ wird eher für das 15. und 16. Monatsgehalt streiken, bevor es dem Kunden auch nur einen Cent Preissenkung zugesteht. Man darf gespannt sein, mit welchen Befugnissen die Preisaufsicht ausgestattet werden wird.

Brüssel hat das ursprünglich auf 35 Jahre begrenzte Modell auf die voraussichtlich Lebensdauer von 60 Jahren ausgedehnt. Man will damit verhindern, daß das dann weitestgehend abgeschriebene Kraftwerk zu einer Gewinnexplosion bei dem Betreiber führt. Auch in dem erweiterten Zeitraum, müssen zusätzliche Gewinne zwischen Betreiber und Kunden aufgeteilt werden. Allerdings kehrt man mit diesem Ansatz nahezu vollständig zu dem Modell regulierter Märkte zurück. Eigentlich sollten an einer Börse die Preise durch Angebot und Nachfrage gefunden werden. Der Gewinn sollte dabei der Lohn für das eingegangene unternehmerische Risiko sein. Was unterscheidet das CfD-Modell eigentlich noch von einer rein öffentlichen Energieversorgung?

Nachwort

Man mag ja zur Kernenergie stehen wie man will. Nur was sind die Alternativen? Wenn man die gleiche elektrische Energie (3,2 GW, Arbeitsausnutzung ca. 90%) z. B. mit Sonnenenergie erzeugen wollte, müßte man rund 30 GW (Arbeitsausnutzung ca. 10%) Photovoltaik installieren. Trotzdem bleibt es in der Nacht dunkel – und die Nächte sind im Winterhalbjahr in GB verdammt lang. Im Gegensatz würden 30 GW an einem sonnigen Sonntag das Netz in GB förmlich explodieren lassen. Wollte man diese Leistung auf dem Festland entsorgen, müßte man erst gigantische Netzkupplungen durch den Ärmelkanal bauen.

Windkraftanlagen auf dem Festland erscheinen manchen als die kostengünstigste Lösung. Bei den Windverhältnissen in GB müßte man für die gleiche Energiemenge ungefähr 10 GW bauen und zusätzlich Gaskraftwerke mit etwa 3 GW für die Zeiten mit schwachem Wind. Das ergibt eine Kette von fast 1000 km Windkraftanlagen an der Küste. Wohlgemerkt, nur als Ersatz für dieses eine Kernkraftwerk Hinkley Point!

Oder auch gern einmal anders herum: Der Offshore-Windpark London Array – Paradebeispiel deutscher Energieversorger – hat eine Grundfläche von etwa 100 km2 bei einer Leistung von 0,63 GW. Weil ja der Wind auf dem Meer immer so schön weht (denkt die Landratte) geht man dort von einer Arbeitsausnutzung von 40% aus. Mit anderen Worten, dieses Wunderwerk grüner Baukunst, produziert weniger als 1/10 der elektrischen Energie eines Kernkraftwerkes.

Stromautobahn oder Schmalspurbahn?

Stück für Stück kommt nun auch die Wahrheit über den „Netzausbau“ ans Licht. Die ersten Bürgerproteste und Reaktionen der Lokalpolitiker gehen durch die Presse. Ein neues, aufregendes Kapitel der „Energiewende“ beginnt.

Versorgung oder Entsorgung?

Zuerst sollte man einmal den Sinn und Zweck dieser neuen Hochspannungs-Gleichstrom-Übertragung (HGÜ) hinterfragen: Dient sie der Versorgung von Süddeutschland mit elektrischer Energie oder vielmehr der Entsorgung norddeutscher Küsten vom Abfallstrom? Durchaus zwei völlig verschiedene Ansätze, die noch zahlreiche Juristen beschäftigen werden. Noch funktioniert die Stromversorgung in Bayern, nicht zuletzt wegen der hohen Eigenerzeugung der lokalen Kernkraftwerke (Isar2, Grafenrheinfeld, Gundremmingen mit zusammen 5.257 MWel.). Jedenfalls ist noch kein Blackout eingetreten. Diese Gefahr soll erst durch deren Abschaltung heraufbeschworen werden, damit die Anhänger der Planwirtschaft richtig zuschlagen können. Apropos Richtung: Selbst, wenn man gegen die vorhandenen Kernkraftwerke ist, könnte man diese durch konventionelle Kraftwerke oder Stromimporte aus dem benachbarten Ausland ersetzen. Will man partout keine eigenen Kraftwerke (Arbeitsplätze und Steuereinnahmen), könnte man sie leicht und schnell „hinter der Grenze“ bauen. Die Lage ist also alles andere als alternativlos – jedenfalls für Bayern.

Schauen wir uns deshalb etwas näher den Anfang dieser Stromtrasse an. Wenn dort der Wind mal richtig weht – das heißt nicht zu schwach und auch wieder nicht zu stark – versinkt Norddeutschland in elektrischer Energie. Selbstverständlich gehört es zur unternehmerischen Freiheit, ein Solarium in der Sahara zu errichten. Nur gehört zum Unternehmer auch das Risiko tragen zu müssen. Eine Tatsache, die bei deutschen Energieversorgern längst verdrängt worden ist. Wenn man nach der Fertigstellung feststellt, daß die Kunden nicht Schlange stehen, weil die Wüste zu gering bevölkert ist, kann man dafür nicht Menschen in einer Entfernung von über tausend Kilometern verantwortlich machen. Fairerweise muß man unseren Kombinatsleitern zubilligen, daß sie die Windmühlen nicht als leuchtende Köder für die zahlreicheren Fische einsetzen wollten. Jedenfalls haben sie sich die erforderliche Bauzeit für die Anschlüsse an die Küste von uns Stromkunden fürstlich vergüten lassen. An der Küste treffen nun diese Windmühlen auf zahlreiche „Windparks“, die dort unter tatkräftiger Förderung lokaler Politiker aus dem Boden gestampft wurden – alles wegen der „grünen Arbeitsplätze“ – denn sonst ist da nicht viel los! Wohin aber nun mit dem Abfallstrom, den man selbst gar nicht verbrauchen kann und den auch sonst keiner haben will, weil einfach viel zu teuer? Ab ins reiche Bayern als eine weitere Variante des Länderausgleich, könnte man meinen.

Kernenergie versus Wind

Die neue Stromtrasse soll bei den Kernkraftwerken enden. Es ist durchaus sinnvoll, die dort vorhandenen Stromleitungen weiter zu nutzen. In erster Linie geht es jedoch darum, den Eindruck zu erwecken, man ersetze den „Atomstrom“ durch „Erneuerbare Energien“. Physikalisch ist das natürlich unmöglich: Man kann konventionelle Kraftwerke nicht durch Windenergie ersetzen, da der Windstrom so zufällig wie das Wetter ist! Wirtschaftlich ist es unsinnig, da man (selbst bei Windparks in der Nordsee) mehr als die vierfache Leistung benötigt, um die gleiche Energie erzeugen zu können. Die bayrischen Kernkraftwerke haben eine Arbeitsverfügbarkeit von durchweg 90 %, während die Windenergie in Ost- und Nordsee auf gerade mal 20 % kommt. Wohlgemerkt, das sind die tatsächlich gemessenen Werte und nicht irgendwelche Phantasiewerte der Schlangenölverkäufer. Da es auch auf hoher See mehrtägige Flauten und Orkane gibt, kommt man nicht umhin, die Kernkraftwerke trotzdem durch fossile Kraftwerke zu ersetzen. An dieser Stelle wird es noch einmal deutlich: Die neuen Stromtrassen können nicht zu einer sicheren und unterbrechungsfreien Stromversorgung von Bayern dienen. Sie dienen lediglich zur Verteilung von Stromabfall aus Norddeutschland. Bisher gibt es nicht einmal „überzählige Kraftwerke“ in Norddeutschland, die die bayrischen Kernkraftwerke ersetzen könnten: Weht kein Wind an der Küste, brauchen die ihre Kohlekraftwerke selber, um die Großräume von Hamburg, Bremen und Berlin ausreichend mit Strom zu versorgen.

Ein Solitaire ist kein Stromnetz

Besonders aberwitzig ist, eine Hochspannungs-Gleichstrom-Übertragung (HGÜ) bauen zu wollen. Gleichstrom und Drehstrom sind physikalisch verschieden und lassen sich nicht einfach mischen! Man muß den erzeugten Drehstrom erst aufwendig in Gleichstrom umwandeln und später wieder zurück wandeln. Beides ist mit Verlusten behaftet und erfordert sehr kapitalintensive Anlagen. Wirtschaftlich lohnt sich das nur, bei sehr großen Entfernungen durch dünn besiedelte Regionen. Man kann nämlich nirgendwo unterwegs Strom abzweigen, um ihn in lokale Netze einzuspeisen. Der Gleichstrom müßte erst wieder in Wechselstrom gewandelt werden. Die Bezeichnung „Stromautobahn“ ist bewußt irreführend. Auf einer Autobahn kann man mit jedem Kraftfahrzeug mit dem man im sonstigen Straßennetz fahren kann, ebenfalls fahren. In Berlin sogar einmal im Jahr mit dem Fahrrad. Die Bezeichnung „Schmalspurtrasse“ wäre treffender. Genauso, wie man mit keinem Normalspurwaggon auf einer Schmalspur fahren kann und erst alles aufwendig (zweimal) umladen muß. Eine solche HGÜ-Trasse bleibt ewig ein Fremdkörper im vorhandenen (europaweiten) Stromnetz.

Wäre das Stromnetz in Deutschland in der Lage, auch ohne die Kernkraftwerke in Süddeutschland die Versorgungssicherheit aufrecht zu halten, bräuchte man keine zusätzlichen Stromleitungen. Andererseits bringt eine einzelne HGÜ-Trasse fast nichts für die Bayrische Versorgungssicherheit. Fällt nämlich diese einzelne Leitung (Eisregen, Sturm, Unfälle, Terrorismus etc.) aus, müßte das vorhandene Netz die Versorgung sicher übernehmen können. Ein Widerspruch in sich! Es ist die alt bekannte Salamitaktik, die hier angewendet werden soll. Erst mal eine Milliarde versprechen, aus denen dann ohnehin drei werden und dann das bereits vergrabene Geld als Begründung für weitere notwendige Kosten nehmen. Michel, wann lernst du endlich dazu!

Die Kosten

Die Kosten sind immens. Um die Regeln für Netzwerke (z. B. N-1) einhalten zu können, wird man noch mehrere HGÜ-Trassen durch Deutschland schlagen müssen. Das ist halt der Preis, den man für eine zentrale Versorgung zahlen muß. Schon unsere Großväter haben aus gutem Grund, viele Kraftwerke möglichst nah am Verbraucher gebaut. Wir können aber gerne die Fehler anderer Kontinente nachmachen.

Interessant wird sich die Finanzierung gestalten. Bei einer Stromtrasse für Windkraft, muß man von einer sehr geringen Auslastung (unter 20%) ausgehen. Dies treibt die Kosten pro transportierter kWh in Schwindel erregende Höhen. Hinzu kommt ein enormes wirtschaftliches Risiko. Bei der einseitigen Ausrichtung auf Windparks in der Nordsee, ist dies kaum zu kalkulieren. Wer kann garantieren, daß dieses tote Pferd von einer uns noch völlig unbekannten Regierung in 10 oder 20 Jahren noch geritten wird? Wer vermag heute voraus zu sagen, in welche Höhen der Strompreis in Deutschland durch die Laiendarsteller und Schlangenölverkäufer noch getrieben wird? Wo liegt die Schmerzgrenze, die zumindest von der Wirtschaft nicht mehr getragen werden kann? Was hätte das für Konsequenzen, da nicht einmal unsere Nachbarn gewillt sind, diesen Irrweg nach zu machen? Was es für eine Volkswirtschaft bedeutet, wenn Milliardenkredite bei Immobilien platzen, zeigen übrigens Spanien und Irland eindrucksvoll (dort war es ein durch die Politik erzeugter Bauboom bei Wohnungen).

Die tolle Idee einer Bürgerbeteiligung dürfte sich schon vor dem Start in Luft aufgelöst haben. Der Bürger hat dank Prokon gelernt, was es bedeutet, wenn das Risiko der Windkraft von Banken als zu hoch eingeschätzt wird. Es war – wie immer – ein sicheres Zeichen für ein totes Geschäftsmodell, aus dem nichts mehr herauszuholen ist.

Ein möglicher Ausweg

Man macht endlich Schluß mit dieser „Energiewende“, an deren Ende nicht nur die Zerstörung unserer Volkswirtschaft und Natur steht, sondern unserer gesamten Gesellschaft. Sind die Lehren aus der „DDR“ schon so schnell vergessen? Diesmal wird es kein Beitrittsgebiet geben. Diesmal, wird die Suppe bis zum letzten Tropfen selbst ausgelöffelt.

Wenn die Bayern ihre Kernkraftwerke nicht mehr mögen, sollten sie sich selbst um Ersatz kümmern. Wer Kernkraftwerke generell ablehnt, muß sich entsprechende Kohlekraftwerke als Ersatz bauen. Wer als Entscheidungsträger nicht durchsetzungsfähig ist, sollte neue Kraftwerke gleich hinter der Grenze bauen. In Polen und Tschechien sind (gut bezahlte) Arbeitsplätze noch heiß begehrt.

Der „Netzausbau“ ist nach den Sonnenkollektoren und den Windparks auf hoher See, die dritte Schnapsidee. Jetzt soll auch noch unser funktionierendes und robustes Stromnetz auf dem Altar der Planwirtschaft geopfert werden. Nach zweimal Sozialismus, sollten wir uns endlich mal eine „Irrtumskultur“ zulegen und diesmal rechtzeitig vor dem Zusammenbruch aufhören, unseren (Alb)Träumen nachzujagen.

Wende der „Energiewende“?

Die „Energiewende“ scheint unwiederbringlich ihren Zenit überschritten zu haben. Um so hektischer und peinlicher werden die Rettungsvorschläge. Immer heftiger wird der „Ausstieg aus dem Ausstieg“ dementiert.

Der dreidimensionale Schraubstock der Strompreise

Langsam dämmert es immer mehr Menschen in Deutschland, daß sie durch die ständig steigenden Strompreise mehrfach ausgequetscht werden:

  1. Jedes mal, wenn die Stromrechnung wieder etwas höher ausgefallen ist, geht ein Stück vom Kuchen des eigenen Einkommens verloren. Den Euro, den man an seinen Energieversorger bezahlt hat, kann man nicht noch einmal ausgeben. Nicht für Urlaub usw. – nein, auch nicht für die Anschaffung eines neuen Kühlschrankes mit Energie-Spar-Aufkleber! Mag das Stück vom Kuchen manchem auch klein erscheinen, so ist das sehr relativ: Bei Rentnern, Studenten, Arbeitslosen etc., ist der Kuchen des Familieneinkommens meist recht klein. Strompreise sind sozialpolitisch die Brotpreise von heute! Last euch das gesagt sein, liebe Genossinnen und Genossen von der SPD!
  2. Jedes Unternehmen benötigt elektrische Energie! Die Ausgaben für „Strom“ sind genau so Kosten, wie Material und Löhne und müssen damit über die Preise an die Kunden weiter gegeben werden. Hier zahlen wir zum zweiten Mal! Selbst „ökologisch wertvolle Betriebe“ sind davon nicht ausgenommen: So macht allein die „EEG-Abgabe“ bei den Berliner Verkehrsbetrieben 20 Millionen Euro pro Jahr – Kosten oder Nicht-Kosten – aus. Wie war das doch noch mal, liebe Grün-Alternativen? Sollten wir nicht mehr mit der Bahn fahren? Wegen „Klima“ und so?
  3. Kosten sind Kosten. Steigen die Energiekosten, müssen andere Ausgaben gesenkt werden. Das werdet ihr spätestens bei den nächsten Tarifverhandlungen noch lernen, liebe Gewerkschaftsfunktionäre. Vielleicht auch nicht mehr, weil eure Betriebe bereits dicht gemacht haben. Die Goldader, die jedes Unternehmen angeblich im Keller hat, von der ihr nur ein größeres Stück abschlagen müsst, war nur ein Märchen. Sonst hättet ihr das ja auch schon längst gemacht, gelle?

Um es noch einmal klar und deutlich in einem Satz zu sagen: Steigende Energiepreise bedeuten höhere Ausgaben bei steigenden Preisen und sinkenden Einkommen. Wer das Gegenteil behauptet, lügt! Mögen die Lügen auch in noch so wohlklingende Worte verpackt sein.

Der klassische Verlauf

Es ist immer der gleiche Ablauf, wenn sich Politiker anmaßen, die Gesellschaft zu verändern. Egal, ob über „Bauherrenmodelle“, „Filmfonds“, „Abschreibungsmodelle für Containerschiffe“ oder eben das „EEG“. Am Anfang steht eine Vision von einem angeblichen Mangel. Flugs nimmt die Politik einen Haufen fremdes Geld – besser gesagt unser aller Geld – in die Hand und verteilt dieses um. Am unbeliebtesten ist dabei der Einsatz von Haushaltsmitteln – schließlich hat man ja noch eine Menge anderer toller Ideen. Früher waren sog. „Sonderabschreibungen“ ein probates Mittel die Gier zu befriedigen. Leider wurde von den Investoren meist übersehen, daß der Staat nur Steuern stundet, nicht aber verschenkt. Das ökosozialistische Ei des Kolumbus war die Schaffung eines Schattenhaushaltes in der Form des „EEG“ durch „Rot/Grün“. Allen Modellen gemeinsam, ist die Gier und Unwissenheit potentieller Investoren.

Aus letzterem Grund ist der zeitliche Ablauf immer gleich: Sobald das Gesetz verabschiedet ist, schlagen die Profis aus den Banken etc. zu. Sie machen tatsächlich Gewinne. Nach einer gewissen Zeit jedoch, sind die besten Grundstücke usw. vergeben. Gleichzeitig steigen durch die erhöhte Nachfrage die Preise der Hersteller. Jetzt schlägt die Stunde des (halbseidenen) Vertriebs. Profis, wie Banken, steigen aus und verscherbeln ihre Investitionen mit Gewinn an die Kleinanleger. Jetzt werden die Laien skalpiert. Selbst diese Phase geht bei Wind, Sonne und Bioenergie langsam zu Ende. Der letzte Akt beginnt.

Unternehmen, die sich die Sache in ihrer Gier bedenkenlos schön gerechnet haben, gehen Pleite. Die Investoren verlieren nicht nur ihr Geld, sondern leiten eine Abwärtsspirale ein: Ihre Objekte kommen nun auf den Markt und erzielen nur noch reale Preise, die meist deutlich unter den Herstellungskosten liegen. Die Verwerter stehen bereit. Wie schnell die Preise bei Zwangsversteigerungen purzeln, kennt man z. B. von den „Bauherrenmodellen“ nach der Wende. Dies betrifft aber nicht nur diese gescheiterten Investoren. Plötzlich machen neue Preise die Runde. Über Nacht ist kein Investor mehr bereit, die überhöhten Preise zu bezahlen. Es entsteht schlagartig ein enormer Kostendruck auf der Herstellerseite. Der größte Teil der Hersteller wird in den nächsten Jahren vom Markt verschwinden. Ganz so, wie die aufgeblähte Bauindustrie nach der Wende.

Interessant ist, wie die eigentlichen Täter, die Politiker reagieren. Sie schreien unverzüglich: Haltet den Dieb! Nicht etwa die „Energiewende“ ist schuld, sondern es müssen schärfere Kapitalmarktkontrollen zum Schutz der Anleger her. Man erblödet sich nicht, Jahrzehnte alte Finanzinstrumente (Genußscheine) in Verruf zu bringen. Ganz so, als würde sich ein Schnapsfabrikant hinstellen und die Flaschenhersteller dafür verantwortlich machen, daß sie an den bedauernswerten Alkoholikern schuld tragen.

Die Milderung des Anstiegs oder die Quadratur des Kreises

Eigentlich ist die Sache ganz einfach: Entweder man gibt die Menge elektrischer Energie zu einem bestimmten Zeitpunkt vor und kann sich dann die erforderliche Anzahl Apparaturen und die dafür notwendigen finanziellen Mittel ausrechnen oder man gibt den Zahlungsstrom vor und kann sich ausrechnen, wieviel Strom man dafür erhält. Beides gleichzeitig geht nicht, weil beides streng voneinander abhängt. Soll keiner nachher wieder sagen, man hätte ja nichts davon gewusst oder eigentlich wäre eine „Energiewende“ ja ne tolle Sache gewesen.

Der neuerdings propagierte sanfte Ausbau, hat allerdings seine Logik. Es ist die Logik des Machterhalts. Würde man eingestehen, daß die „Energiewende“ Unsinn ist, würde man die „systemrelevante“ Frage nach der Allwissenheit der Politik stellen. Wenn man einmal zugibt, daß der Kaiser nackend ist, ist die Nomenklatura am Ende. Deshalb muß weiter gelten: Die Partei hat immer recht. Jedenfalls so lange, bis die Mehrheit des Volkes nicht mehr bereit ist, dieses Spiel mit zu spielen. Dann ist wieder einmal „Wendezeit“.

Mancher Politiker bekommt langsam Ohrensausen. Wer noch einen Rest von „Kontakt zum Volk“ hat, merkt den wachsenden Zorn über steigende Strompreise. Wenn jetzt auch noch die Angst vor dem Verlust des Arbeitsplatzes hinzukommt, könnte die Sache eng werden.

Der Popanz von den bösen Kapitalisten, die ihren Anteil an der „Ökostromumlage“ nicht zahlen wollen, kann nur bei besonders einfältigen oder gläubigen Menschen verfangen. Menschen, die etwas aus der Geschichte gelernt haben, sehen die Gefahr der „Ulbrichtfalle“ aufziehen: Je mehr Unternehmen ihre Standorte ins Ausland verlagern, um so mehr lukrative Arbeitsplätze gehen verloren. Den Unternehmen werden wieder die Menschen in Richtung Freiheit und Wohlstand folgen. Wie soll der Ökosozialismus reagieren? Mauer und Schießbefehl im Internetzeitalter?

Wie panisch die Reaktion der Politiker wird, zeigt der Plan, auch auf die sog. Eigenstromerzeugung die „EEG-Umlage“ zu erheben. Bisher war doch die Kraft-Wärme-Kopplung ein Bestandteil der „Energiewende“. Unternehmen, die „energieeffizient“ waren, haben sich solche Anlagen gebaut. Oft genug, am Rande der Wirtschaftlichkeit. Jetzt sollen sie mit der „EEG-Umlage“ dafür bestraft werden. Natürlich mit einem etwas geringeren Satz. Hier wird wieder einmal unverhohlen gezeigt, daß es gar nicht um Umweltschutz geht, sondern nur darum, „die Belastbarkeit der Unternehmen zu testen“. Klassenkampf in Reinkultur. Die gleichen Funktionäre, die immer von dem notwendigen Investitionsschutz säuseln (wenn es um die Photovoltaik auf dem Dach der eigenen Klientel geht), gehen mit Eigentumsrechten bei Kraftwerken locker um – egal ob es sich um Kernkraftwerke oder fossile Anlagen handelt. Langsam, aber sicher, entwickelt sich Deutschland in der Eigentumsfrage immer mehr zur Bananenrepublik. Das Kapital ist aber bekanntermaßen scheu und ängstlich. Deshalb verfällt man immer mehr auf eine „Bürgerbeteiligung“. Zu was es führt, wenn sich Banken wegen des unvertretbar hohen Risikos zurückziehen (müssen), sieht man gerade am Fall Prokon.

Die Bedeutung von Leistung und Energie

Leistung (kW) ist leider nicht gleich Energie (kWh). Entscheidend bei der Berechnung der erzeugten Energie aus der Nennleistung einer Anlage (kW) ist die Zeitdauer (h), in der die Leistung des Typenschilds wirksam ist. In Deutschland beträgt diese Zeitspanne bei Photovoltaik deutlich unter 1000 Stunden pro Jahr und bei Windmühlen deutlich unter 3000 Stunden pro Jahr. Will man nun eine bestimmte Menge elektrischer Energie (z. B. 50 % oder gar 100 % des gesamten Stromverbrauches in einem bestimmten Jahr) erzeugen, muß man diesen Wert (kWh/a) durch die „Vollbenutzungsstunden“ (h/a) des entsprechenden Verfahrens teilen. Man erhält die Leistung (kW), die mindestens installiert werden muß. Da z. B. die Sonne nur recht selten scheint (nachts ist es dunkel, an vielen Tagen trübe) erhält man sehr große (rechnerische) Leistungen die installiert werden müssen. Dieser Zusammenhang ist trivial, aber ausschlaggebend für das zwingende Scheitern einer Energieversorgung ausschließlich durch „Erneuerbare Energien“. Die Sache hat nämlich zwei Harken:

  1. Wenn die Natur keine, dem momentanen Bedarf entsprechende Erzeugung (Nacht, Flaute etc.) zuläßt, muß die elektrische Leistung über konventionelle Kraftwerke bereitgestellt werden. Hierzu zählen auch alle großtechnischen Speichersysteme, da dort die Rückwandlung immer über konventionelle Verfahren führen muß (Wasserkraft, Turbinen etc.).
  2. Wenn der Wind mal richtig weht oder ein strahlend blauer Himmel vorhanden ist, ist die erzeugte Leistung sehr schnell und sehr oft größer als die gerade im Netz verbrauchte Leistung. Physikalisch gibt es nur drei Möglichkeiten, dem entgegen zu treten: Man schaltet (teilweise) Windmühlen oder Sonnenkollektoren ab, entsorgt den Überschuß in benachbarte Netze oder erhöht künstlich den Verbrauch (Speicher). Es lohnt sich, diese drei Möglichkeiten etwas näher zu hinterfragen.

Immer, wenn man gezwungen ist, Anlagen wegen Überproduktion abzuschalten, wird das für den Stromkunden sehr teuer. Die entsprechende Anlage produziert noch weniger Strom und muß diesen deshalb noch teurer verkaufen um ihre Investitions- und Betriebskosten abdecken zu können. Deshalb hat die Politik den Abnahmezwang eingeführt. Die Kosten werden bewußt auf die Verbraucher abgewälzt, um die Produzenten zu schonen. Man könnte auch sagen, weil sich die „Vollbenutzungsstunden“ (h/a) verringern, muß man zusätzliche „Schattenanlagen“ errichten, um die angestrebte Energieausbeute zu erreichen. Physikalisch betrachtet funktioniert das nicht einmal, da man zu jedem Zeitpunkt Produktion und Verbrauch im Gleichgewicht halten muß! Aus diesem Grund hat sich die Politik für den zweiten Weg entschieden. Wenn man etwas nicht gebrauchen kann, nennt man es Abfall. Um Abfall zu entsorgen, muß man immer eine Gebühr entrichten. Dies geschieht an der Strombörse: Die gewaltsame Abnahme geschieht über den Preis. Der Strompreis für den „Alternativstrom“ wird stets so niedrig angesetzt, daß er gerade noch einen Käufer findet. Ist die Energie für niemanden mehr etwas wert, muß die Entsorgung sogar bezahlt werden (negative Strompreise an der Börse). Ganz genau so, wie bei der Müllverbrennungsanlage, wo man für die Dienstleistung der Abfallbeseitigung auch eine Gebühr entrichten muß. Der dritte Weg ist uns dadurch bisher erspart geblieben: Man baut zusätzliche Stromverbraucher (z. B. zur Erzeugung von synthetischem Erdgas) und produziert damit sehr teuer ein Produkt, welches ohnehin im Überfluß vorhanden und billig zu kaufen ist. Jedenfalls erheblich billiger, als elektrische Energie! Dieses System verkauft man als „Speichertechnologie“, weil man anschließend dieses Erdgas wiederum unter erheblichen Verlusten in Gaskraftwerken verfeuert, die man dringend für die Zeiten der Flaute und Dunkelheit benötigt. Hat es je in der Menschheitsgeschichte eine einfältigere Idee gegeben? Wenn das jemanden an etwas erinnert; richtig, an die Fleischversorgung durch Kleintierhaltung mittels der Verfütterung von subventioniertem Brot im (realexistierenden) Sozialismus.

Wenn man etwas unter den Gestehungskosten verkauft, nennt man das gemeinhin Dumping. Genau das, geschieht täglich an der Strombörse. Es ist nur eine Frage der Zeit, wie lange sich das unsere europäischen Nachbarn noch gefallen lassen. Mit jeder Windmühle und jedem Sonnenkollektor, die zusätzlich in Betrieb gehen, wird dieses Dumping größer. Die Differenz zwischen Erzeugungskosten und erzielbarem Preis nennt man „EEG-Umlage“. Die ungekrönte Königin der Schlangenölverkäufer Frau Professor Claudia Kemfert sieht das natürlich ganz anders. In einem Interview vom 27.1.14 in der Zeitschrift Cicero antwortet sie auf die Frage nach einer Umstellung der Ökostrom-Umlage in ihrem Sinne:

„Die EEG-Umlage hat sich bewährt. Schon jetzt sinken die Erzeugungskosten für erneuerbare Energien. Trotzdem sollte man die Ausnahmen für energieintensive Industrien endlich auf ein vernünftiges Maß vermindern – allerdings nur für Unternehmen, die wirklich energieintensiv sind und im internationalen Wettbewerb stehen. Im Gegenzug sollte man die Umlage an Gegenmaßnahmen koppeln, wie die Verbesserung der Energieeffizienz. Außerdem muss der Börsenpreis stabilisiert werden: Würde nämlich der niedrigere Börsenpreis für die Erneuerbaren an die Verbraucher weitergegeben, könnte der Strompreis schon heute stabil bleiben, wenn nicht sogar sinken. Dazu könnte man überschüssige Stromkapazitäten aus dem Markt nehmen und den CO2-Preis deutlich erhöhen.“

Selten dürfte es einem Professor gelungen sein, soviel Unsinn in nur einem Absatz von sich zu geben. Selbst wenn die Erzeugungskosten (Ausgaben für Kredite, Personal, Wartung, Betriebsmittel etc.) sinken – was sich erst noch zeigen muß – hat das keinen Einfluß auf den Preis. Ein Preis bildet sich aus dem Zusammenspiel von Angebot und Nachfrage. Immer, wenn mehr angeboten wird als gebraucht wird, sinkt im Handel der Preis. Wenn man sein verderbliches Gemüse überhaupt nicht an den Mann bringen kann, muß man für die Beseitigung auch noch Entsorgungskosten bezahlen – an der Strombörse „negative Preise“ genannt. Die Differenz zwischen den Gestehungskosten und dem (erzielbaren) Preis am Markt, nennt man Verlust. Die Verluste müssen aber irgendwie abgedeckt werden, da sonst die Windmüller und Sonnensammler in wenigen Wochen pleite wären. Damit genau das nicht passiert, wurde die „EEG-Umlage“ geschaffen: Sie legt diese Verluste auf die Verbraucher um. Die Strombörse ist ein hervorragender Anzeiger für das jeweilige Verhältnis von Stromproduktion zu Stromnachfrage – ausgedrückt in der Einheit Euro pro MWh. Nicht mehr, aber auch nicht weniger. Je weiter der Börsenpreis unter den Erzeugungskosten liegt, um so größer ist das Überangebot zu diesem Zeitpunkt. Es gibt überhaupt nichts weiter zu geben. Das System ist ja gerade für gleiche Strompreise geschaffen worden: Die tatsächlich erzielten Börsenpreise werden durch die „EEG-Umlage“ auf den Cent genau zu den staatlich garantierten Kosten ergänzt. Bisher mußten nur die konventionellen Kraftwerke ihre Verluste selbst tragen. Sie stellen deshalb (einer, nach dem anderen) einen Antrag auf Stilllegung. Die zuständige Behörde stellt dann ihre „Systemrelevanz“ fest (irgendeiner muß ja auch Strom bei Dunkelheit und Flaute liefern) und sie bekommen ihre Verluste ebenfalls durch eine (neue) Umlage für die Stromverbraucher ersetzt. Frau Kemfert wäre aber nicht Frau Kemfert, wenn sie nicht ein Interview mit etwas Klassenkampf aufpeppen würde und für „vernünftige“ Belastungen der Industrie plädieren würde. Ein richtig rausgehängter Klassenstandpunkt konnte in Deutschland schon immer mangelnde Fachkenntnisse kompensieren. Ist die Deutsche Bahn mit ihren ICE nun „wirklich energieintensiv“? Dafür steht sie aber nicht so „im internationalen Wettbewerb“, wie die Friseurmeisterin in Berlin (70 km von der polnischen Grenze, mit regem Busverkehr zum Polenmarkt mit billigen Zigaretten, billigerem Sprit und allerlei sonstigen Dienstleistungen). Dafür könnte die Bahn wieder durch die „Verbesserung der Energieeffizienz“ punkten, sie müßte einfach nur etwas langsamer fahren oder die Zugfolge ausdünnen. Im letzten Satz scheint sie doch noch die Kurve zu kriegen: „könnte man überschüssige Stromkapazitäten aus dem Markt nehmen“. Genau richtig, mit jeder Windmühle und jedem Sonnenkollektor die man verschrottet, senkt man sofort und unmittelbar den Strompreis für die Verbraucher!

Das Märchen von der immer billiger werdenden „Erneuerbaren Energie“

Der Slogan: „Die Sonne schickt keine Rechnung“ war nichts weiter, als ein Werbespruch für besonders schlichte Gemüter. Natürlich schickt die Sonne keine Rechnung. Genau so wenig, wie ein Kohlenflöz oder eine Ölquelle. Aber die Gerätschaften zum Einsammeln und Umformen kosten bei allen Energiearten Geld. Nicht der Wind, sondern die Windmühle verursacht die Kosten. Da aber, jede technische Anlage ständig repariert und einst auch erneuert werden muß, wird auch der Strom aus Wind und Sonne nie umsonst sein.

Weil von Anfang an die Herstellung elektrischer Energie aus Wind und Sonne sehr viel teurer war, hat man den Mythos irgendwelcher Lernkurven gepflegt. Selbstverständlich gibt es Lernkurven. Nur sind die – bei Windmühlen ganz offensichtlich – extrem flach. Windmühlen gibt es nämlich schon seit über 2000 Jahren. Ganz anders, als z. B. Computer.

Blieb noch die Möglichkeit, mit dem stets kleiner werdenden Abstand zu argumentieren, da ja die anderen Energieträger immer teurer würden. Warum sollten die aber immer teuerer werden, wenn es doch Lernkurven gibt? Logisch, weil die doch endlich sind. Ganz neben bei, ist die Lebensdauer unserer Sonne auch endlich. Eine solche Aussage ist also ohne die Angabe einer konkreten Lebensdauer völlig sinnlos. Flugs, ward die Theorie von peakcoal und später peakoil erschaffen. Man setzt einfach die bekannten Vorkommen als einzig und endlich an und kann damit ausrechnen, daß diese schon in „nächster Zeit“ erschöpft sind oder doch wenigstens deren Preise explodieren. Wäre vielleicht so gewesen, wenn es nicht den menschlichen Erfindergeist und den Kapitalismus geben würde. Wir haben heute die größten Vorkommen an Öl, Erdgas, Kohle, Uran usw. in der Menschheitsgeschichte, bei gleichzeitig größtem Verbrauch aller Zeiten. Die Primärenergiepreise (zumindest als Relativpreise) werden deshalb eher wieder sinken als steigen. Jedenfalls haben wir auf der Basis des heutigen Verbrauches und heutiger Relativpreise Vorräte für Jahrtausende.

Den Anhängern der Planwirtschaft blieb nichts anderes übrig, als ein neues „Marktversagen“ zu konstruieren: Die Klimakatastrophe durch die Freisetzung von CO2 war geboren. Gut und schön, man hätte unbestreitbar sehr viele fossile Energieträger, könnte die aber gar nicht nutzen, da man sonst das Klima kaputt machen würde. Es müßte daher – möglichst sofort – eine CO2.-freie Stromerzeugung her und da der Markt so etwas ja gar nicht regeln könne, muß der Staat lenkend eingreifen. Als wenn jemals die Planwirtschaft etwas anderes als Armut und Elend erzeugt hätte!

Es wird aber trotzdem für die Schlangenölverkäufer der Wind- und Sonnenindustrie immer schwieriger, den Leuten das Märchen von den billiger werdenden „Erneuerbaren“ zu verkaufen. Immer mehr Menschen erinnern sich daran, daß es nachts dunkel ist und manchmal tagelang der Wind kaum weht. Es muß also ein komplettes Backupsystem für diese Zeiten her. Egal ob mit Kohle, Erdgas, Kernenergie oder „Biomasse“ betrieben oder als Speicher bezeichnet. Zwei Systeme sind aber immer teurer, als nur ein System. Immer mehr (denkende) Menschen stellen sich daher die Frage, warum man krampfhaft versucht, unserem funktionierenden und (ehemals) kostengünstigen Stromversorgungssystem ein zweites – zu dem mit äußerst zweifelhafter Umweltbilanz – über zu stülpen.

Was hat das alles mit Kernenergie zu tun?

Erinnern wir uns an die Zeit unmittelbar nach dem Unglück in Fukushima. Die Kanzlerin wollte einen neuen Koalitionspartner. Nun, den hat sie inzwischen gefunden. Die FDP wollte die Grünen noch links überholen und warf all ihre Wahlversprechen über Bord. Nun, der Wähler hat das demokratisch gewürdigt und sie aus dem Bundestag gewählt. Alle deutschen „Qualitätsmedien“ haben gierig die Fieberträume der „Atomkraftgegner“ von „Millionen Toten und zehntausende Jahre unbewohnbar“ nachgeplappert. Nun, es hat immer noch keinen einzigen Toten durch die Strahlung gegeben. Die Aufräumarbeiten schreiten zielstrebig voran und die „Vertriebenen“ kehren langsam in ihre alte Wohngegend zurück. Kurz gesagt, das Unglück hat viel von seinem Schrecken verloren, den es für manche tatsächlich gehabt haben mag.

Deutschland ist das einzige Land auf der Welt, das aus der Kernenergie aussteigen will. Inzwischen sind zahlreiche Neubauten beschlossen. Wohlgemerkt nach Fukushima, hat Großbritannien den Neubau einer ganzen Flotte Kernkraftwerke beschlossen. Selbst Schweden – das Ausstiegsvorbild schlechthin – hat vor wenigen Wochen ein über zehn Jahre angelegtes Verfahren zur Bürgerbeteiligung zum Neubau neuer Kernkraftwerke eingeleitet. Nach Deutschland geh voran, wir folgen dir, sieht das alles gar nicht aus.

Wie ist nun die aktuelle Situation in Deutschland? Abgeschaltet wurden die älteren und kleineren Kernkraftwerke. Die Frage der Entschädigung für diese Enteignungen ist noch lange nicht durch. Die Streitsumme wird allgemein auf 15 Milliarden Euro geschätzt. Einmal Mütterrente, so zu sagen. Mögen sich deutsche Politiker auch auf ihre Kombinatsleiter und deren Stillhaltung verlassen: Vattenfall ist ein schwedischer Konzern und geht von Anfang an den Weg über die internationale Handelsgerichtsbarkeit. Die Konsequenzen einer internationalen Verurteilung wegen einer unrechtmäßigen, entschädigungslosen Enteignung, übersteigt offensichtlich das Vorstellungsvermögen deutscher Provinzpolitiker bei weitem.

Oder, man geht die Sache anders an. Erst in den nächsten Jahren wird der „Atomausstieg“ zu einem echten Problem, wenn nämlich die großen Blöcke in Süddeutschland vom Netz gehen sollen. Dann erst, werden die Strompreise richtig explodieren. Einerseits, weil die immer noch beträchtlichen Mengen „billigen Atomstroms“ aus der Mischkalkulation fallen und andererseits noch sehr kostspielige Maßnahmen für Netz und Regelung nötig sind. Gnade dem Unternehmen in Süddeutschland, dessen Lieferverträge in den nächsten Jahren erneuert werden müssen. Die immer wieder gern propagierten 5,6 bis 6,6 Cent pro kWh für Industriestrom sind nämlich nur die halbe Wahrheit. Hinzu kommt noch der Leistungspreis für die Bereitstellung. Grob gerechnet, ist der Anteil für Leistung und Energie jeweils die Hälfte der Stromrechnung. Die Eigenversorgung soll ja bald auch kein Ausweg mehr sein. Es wird jedenfalls spannend werden, einen SPD-Energieminister zwischen den Stühlen der Gewerkschaftsfunktionäre und dem linken Flügel seiner Partei schwitzen zu sehen.

 

 

SMR Teil 2 – Leichtwasserreaktoren

Leichtwasserreaktoren haben in den letzten zwanzig Jahren täglich mehr Energie produziert, als Saudi Arabien Öl fördert. Sie sind die Arbeitspferde der Energieversorger. Kein anders Reaktorkonzept konnte bisher dagegen antreten.

Sieger der ersten Runde des Förderungsprogramm des Department of Energy (DoE) war Babcock & Wilcox (B&W) mit seinem mPower Konzept, zusammen mit Bechtel und Tennessee Valley Authority. Sicherlich kein Zufall, sind doch (fast) alle kommerziellen Reaktoren Leichtwasserreaktoren und B&W ist der Hoflieferant der US-Navy – hat also jahrzehntelange Erfahrung im Bau kleiner Druckwasserreaktoren.

Die Gruppe der kleinen Druckwasserreaktoren

Bei konventionellen Druckwasserreaktoren sind um das „nukleare Herz“, dem Reaktordruckgefäß, die Dampferzeuger (2 bis 4 Stück), der Druckhalter und die Hauptkühlmittelpumpen in einer Ebene gruppiert. Diese Baugruppen sind alle mit dem eigentlichen Reaktor durch dicke und kompliziert geformte Rohrleitungen verbunden. Eine solche Konstruktion erfordert langwierige und kostspielige Montagearbeiten unter den erschwerten Bedingungen einer Baustelle. Die vielen Rohrleitungen bleiben für die gesamte Lebensdauer des Kraftwerks „Schwachstellen“, die regelmäßig gewartet und geprüft werden müssen. Der gesamte Raum muß in einem Containment (Stahlbehälter aus zentimeterdicken Platten) und einer Stahlbetonhülle (meterdick, z. B. gegen Flugzeugabstürze) eingeschlossen werden.

Bei einem Small Modular Reaktor (SMR) stapelt man alle erforderlichen Komponenten vertikal übereinander und packt sie alle zusammen in einen Druckbehälter. Dadurch entfallen die vielen Rohrleitungen und Ventile zu ihrer Verbindung. Was es gar nicht gibt, kann auch nicht kaputt gehen. Der „größte – im Sinne eines Auslegungskriteriums – anzunehmende Unfall“ (GAU, oft zitiert und kaum verstanden), der Verlust des Kühlmittels, wird weniger wahrscheinlich und läßt sich einfacher bekämpfen. Allerdings sind bei dieser „integrierten Bauweise“ die Größen der einzelnen Komponenten begrenzt, will man noch eine transportierbare Gesamteinheit haben. Will man ein Kraftwerk mit heute üblicher Leistung bauen, muß man daher mehrere solcher Einheiten „modular“ an einem Standort errichten.

Geht man von diesem Konstruktionsprinzip aus, erhält man ein röhrenförmiges (kleiner Durchmesser, große Länge) Gebilde. Die Länge – als Bauhöhe umgesetzt – läßt sich hervorragend für passive Sicherheitskonzepte nutzen. Die schlanke Bauweise erlaubt es, den kompletten Reaktor in eine Grube zu versenken: Durch die unterirdische Bauweise hat man einen hervorragenden Schutz gegen alle Einwirkungen von außen (EVA) gewonnen.

Das Grundprinzip der Anordnung übereinander, eint diese Gruppe. Gleichwohl, sind im Detail eine Menge Variationen möglich und vielleicht sogar nötig. So meldete allein nuSkale diesen Monat voller Stolz, daß sie über 100 verschiedene Patente in 17 Ländern für ihren Reaktor angemeldet haben. Inzwischen dürften die SMR-Patente in die Tausende gehen. Nach einer sterbenden Industrie sieht das jedenfalls nicht aus.

Das mPower Konzept

Das „Nuclear Steam Supply System“ (NSSS) von Babcock & Wilcox (B&W) ist besonders schlank geraten: Es hat eine Höhe von über 25 m bei einem Durchmesser von 4 m und wiegt 570 (ohne Brennstoff) bzw. 650 to (mit Brennstoff). Damit soll es in den USA noch auf dem Schienenweg transportierbar sein. Seine Wärmeleistung beträgt 530 MWth und seine elektrische Leistung 155 MWel (mit Luftkondensator) oder 180 MWel bei Wasserkühlung. Ein komplettes Kraftwerk mit zwei Blöcken und allen erforderlichen Hilfs- und Nebenanlagen (300 – 360 MWel) soll einen Flächenbedarf von etwa 16 ha haben. Damit ist die Hauptstoßrichtung klar: Der Ersatz bestehender, alter Kohlekraftwerke.

Das Core besteht aus 69 Brennelementen mit 2413 mm aktiver Länge in klassischer 17 x 17 Anordnung bei einer Anreicherung von weniger als 5 % U235.. Hierbei zielt man auf die kostengünstige Weiterverwendung handelsüblicher Brennelemente für Druckwasserreaktoren ab. Bei diesem kleinen Reaktor kann man damit Laufzeiten von rund 4 Jahren zwischen den Nachladungen erreichen. Durch die Doppelblockbauweise ergibt sich somit eine extrem hohe Arbeitsausnutzung von (erwartet) über 95%. Das integrierte Brennelementelagerbecken kann Brennelemente aus 20 Betriebsjahren aufnehmen.

Die Turmbauweise erlaubt vollständig passive Sicherheitseinrichtungen, wodurch ein Unglück wie in Fukushima (völliger Stromausfall) von vornherein ausgeschlossen ist. Die Brennelemente sitzen ganz unten im Druckbehälter. Darüber kommt die gesamte Steuereinheit (Regelstäbe und ihre Antriebe) und darüber die Dampferzeuger. Ganz oben sitzen die acht Umwälzpumpen und der Druckhalter. Bei einem Stromausfall würden die Regelstäbe sofort und vollautomatisch durch die Schwerkraft in den Reaktorkern fallen und diesen abschalten. Die – im ersten Moment noch sehr hohe – Nachzerfallswärme erwärmt das Kühlwasser weiter und treibt durch den entstehenden Dichteunterschied das Kühlwasser durch den inneren Kamin nach oben. In den höher gelegenen Dampferzeugern kühlt es sich ab und sinkt im Außenraum des Reaktorbehälters wieder nach unten: Ein Naturumlauf entsteht, der für die sichere und automatische Abfuhr der Restwärme sorgt.

Als „Notstrom“ werden nur entsprechende Batterien für die Instrumentierung und Beleuchtung etc. vorgehalten. Große Notstromaggregate mit Schalt- und Hilfsanlagen werden nicht benötigt. Auch hier gilt wieder: Was es gar nicht gibt, kann im Ernstfall auch nicht versagen!

Westinghouse SMR (NextStart Alliance)

Westinghouse hat den ersten Druckwasserreaktor überhaupt entwickelt (Nautilus Atom-U-Boot 1954), das erste kommerzielle Kernkraftwerk (Shippingport 1957) gebaut und ist bei fast allen (westlichen) Druckwasserreaktoren Lizenzgeber. Es ist also nicht überraschend, wenn der Marktführer auch in diesem Segment dabei ist. Die NextStart SMR Alliance ist ein Zusammenschluss mehrerer Energieversorger und Gemeinden, die bis zu fünf Reaktoren im Ameren Missouri’s Callaway Energy Center errichten will.

Der Westinghouse SMR soll eine Leistung von 800 MWth und mindestens 225 MWel haben. Er unterscheidet sich von seinem Konstruktionsprinzip nicht wesentlich vom vorher beschriebenen B&W „Kleinreaktor“. Seine Zykluszeit soll 24 Monate betragen (bei Verwendung der Brennelemente des AP1000). Seine Lastfolgegeschwindigkeit im Bereich von 20 bis 100% Auslegungsleistung beträgt 5% pro Minute. Der Reaktor kann selbstregelnd Lastsprünge von 10 % mit einer Rate von 2% pro Minute dauerhaft ausregeln. Das alte Propagandamärchen der „Atomkraftgegner“ von den „unflexiblen AKW’s“ trifft auch bei diesen Reaktortypen nicht zu. Im Gegenteil dreht Westinghouse den Spieß werbewirksam um und offeriert diesen Reaktor als (immer notwendiges) Backup für Windkraft- und Solaranlagen zur CO2 – freien Stromversorgung.

Westinghouse integriert in das Containment noch einen zusätzlichen Wasservorrat und bekämpft auch noch passiv einen völligen Verlust des Kühlwasserkreislaufes. Damit dieser Störfall eintreten kann, müßte das Druckgefäß des SMR zerstört worden sein. In diesem Fall könnte das Wasser auslaufen und würde sich im Sumpf des Containment sammeln. Damit jeder Zeit der Kern des Reaktors mit Wasser bedeckt bleibt (und nicht wie in Fukushima und Harrisburg teilweise und zeitweise trocken fallen kann), wird automatisch Wasser aus den Speichern im Containment zusätzlich hinzugefügt. Alle Systeme sind so bemessen, daß sich der Reaktor auch nach einem schweren Unglück selbst in einen sicheren Zustand versetzt und mindestens für die folgenden 7 Tage keines menschlichen Eingriffs bedarf.

Wenn nur der Strom total ausfällt, aber das Reaktordruckgefäß nicht geplatzt ist, funktioniert die passive Notkühlung in drei gestaffelten Ebenen. Solange der normale Kühlkreislauf (Kühlturm oder Kühlwasser) noch Wasser enthält, wird über diesen durch Verdunstung die Nachzerfallswärme abgeführt. Versagt dieser sekundäre Kreislauf des Kraftwerks, tritt die innere Notkühlung in Kraft. Das kalte und borierte Wasser in den Nottanks strömt in den Reaktor. Gleichzeitig kann das heiße Wasser den Reaktor verlassen und in die Notkühlbehälter zurückströmen – es entsteht ein Naturumlauf. Damit das Wasser in den Notkühlbehältern auch weiterhin „kalt“ bleibt, besitzt jeder dieser Behälter im oberen Teil einen Wärmeübertrager. Diese Wärmeübertrager sind außerhalb des Containment mit „offenen Schwimmbecken“ verbunden, die durch Verdunstung die Energie an die Umwelt abgeben können. Bricht auch dieser Kühlkreislauf in sich zusammen, kann die Wärme immer noch durch Verdampfung des Wassers im Sumpf des Containment und durch anschließende Kondensation an der Oberfläche des Containment abgeführt werden.

Ausdrücklich wird der Markt für diesen Reaktortyp auch in der Fernwärmeversorgung und zur Meerwasserentsalzung gesehen. Peking hat z. B. viele Kohleheizwerke, die stark zur unerträglichen Luftverschmutzung beitragen. Es ist also kein Zufall, daß bereits Kooperationsverhandlungen laufen.

NuScale

Diese Variante ist aus einem durch das U.S. Department of Energy (USDOE) geförderten Forschungsprojekt am Idaho National Environment & Engineering Laboratory (INEEL) und der Oregon State University (OSU) hervorgegangen. Im Jahre 2008 hat dieses „Startup“ einen Genehmigungsantrag bei der US Nuclear Regulatory Commission (USNRC) für einen 45 MWel. Reaktor gestellt. Im Jahr 2011 ist das Unternehmen praktisch vollständig von FLUOR übernommen worden. Es besteht zudem eine sehr enge Verbindung mit Rolls-Royce.

Das NuScale Modul hat nur eine thermische Leistung von 160 MWth und eine elektrische Leistung von mindestens 45 MWel.. Bei einem Durchmesser von 4,5 m, einer Höhe von 24 m und einem Gewicht von 650 to ist es aber fast genau so groß, wie die beiden schon vorgestellten SMR. Die geringe Energiedichte führt zu einer starken Vereinfachung. Das Unternehmen gibt die spezifischen Investitionskosten mit weniger als 5.000 $/kW an.

Bei dem Konzept handelt es sich um einen Zwitter aus Siedewasser- und Druckwasserreaktor. So etwas ähnliches gab es auch schon in Deutschland, unter der Bezeichnung FDR, als Antrieb der Otto Hahn. Dieses Konzept hat sich schon damals als sehr robust und gutmütig erwiesen. Der NuSkale SMR kommt völlig ohne Umwälzpumpen aus. Man nimmt im Reaktorkern einen etwas höheren (als bei einem reinen Druckwasserreaktor üblichen) Dampfanteil in Kauf, bekommt dafür aber einen großen Dichteunterschied (bezogen auf das „kalte“ Eintrittswasser), der hervorragend einen Naturumlauf anregt. Allerdings erzeugt man keinen Dampf, den man direkt auf die Turbine gibt (wie bei einem Siedewasserreaktor), sondern „beheizt“ damit nur die zwei in dem Reaktordruckgefäß integrierten Dampferzeuger. Man hat also wie bei einem konventionellen Druckwasserreaktor einen physikalisch voneinander getrennten Primär- (durch den Reaktorkern) und Sekundärkreislauf (über die Turbine).

Das NuScale-Konzept bricht radikal mit einigen Gewohnheiten:

  • Man geht von bis zu zwölf Reaktoren aus, die zu einem Kraftwerk mit dann mindestens 540 MWel. zusammengefaßt werden Sie sollen in zwei Reihen zu sechs Reaktoren in einem „unterirdischen Schwimmbecken“ angeordnet werden. Bei einem Ladezyklus von 24 Monaten, könnte somit alle zwei Monate ein Brennelementewechsel erfolgen. Bei einem zusätzlichen „Reservemodul“ könnte das Kraftwerk nahezu mit 100 % Arbeitsausnutzung durchlaufen. Die „Auszeit“ eines konventionellen Kernkraftwerk entfällt. Ebenso wird die Personalspitze(üblicherweise mehr als 1000 Leute beim Brennelementewechsel) vermieden. Der Brennelementewechsel mit seinen Wiederholungsprüfungen wird zu einem stetigen „Wartungsprozess“ umgestaltet. Dies kann zu beträchtlichen Kosteneinsparungen führen.
  • Durch den Verzicht von Umwälzpumpen wird die Konstruktion noch einmal stark vereinfacht.
  • Durch die Aufstellung in einem „großen Schwimmbecken“ sind die Reaktoren vor Erdbeben und Druckwellen praktisch vollkommen geschützt. Überflutungen (Fukushima) sind kein Sicherheitsrisiko mehr, da ja die Reaktoren ohnehin ständig im Wasser stehen.
  • Die Reaktoren verzichten vollständig auf Wechselstrom (Fukushima) und benutzen lediglich passive Sicherheits- und Kühlsysteme. Elektrische Energie ist nur für die Instrumentierung und Beleuchtung notwendig. Relativ kleine Batterien sind hierfür ausreichend. Der Batterie- und Kontrollraum befindet sich im unterirdischen Teil des Kraftwerks.
  • Selbst wenn es zu einer Beschädigung des Reaktorkerns kommen würde (Fukushima), würden radioaktive Stoffe im Schwimmbecken und Reaktorgebäude zurückgehalten werden. Außerdem beträgt das radioaktive Inventar in jedem Modul weniger als 5% eines konventionellen Reaktors. Somit ist auch die bei einem Unfall abzuführende Restwärme entsprechend klein.
  • Im Containment herrscht Vakuum. Eine Bildung explosiver Gase (Fukushima) ist somit ausgeschlossen. Es wirkt wie eine Thermosflasche. Zusätzliche Isolierungen sind nicht erforderlich. Andererseits würde es bei einer Zerstörung des eigentlichen Druckbehälters, den entweichenden Dampf aufnehmen und eine „Wärmebrücke“ zum umgebenden Wasser herstellen.

Die überragende sicherheitstechnische Philosophie dieses Konzeptes ist, daß sich auch nach schwersten Zerstörungen (z. B. Tsunami in Fukushima) der Reaktor ohne menschliche Eingriffe selbsttätig in einen sicheren Zustand überführt und dort ohne jeden (nötigen) Eingriff ewig verbleibt! Dies mag noch einmal an der „Notkühlung“ verdeutlicht werden: Wenn die äußere Wärmesenke entfällt (Ausfall der Kühlwasserpumpen in Fukushima durch den Tsunami), alle Stromquellen ausfallen (Zerstörung der Schaltanlagen und Notstromaggregate durch die Flutwelle in Fukushima), dient das „Schwimmbecken“ zur Aufnahme der Nachzerfallswärme. Es ist so bemessen, daß sein Wasserinhalt durch Erwärmung und Verdunstung den Reaktorkern sicher kühlt. Selbst, wenn man kein Wasser nachfüllen würde, wäre es erst nach etwa einem Monat leer. Dann aber, ist die Nachzerfallswärme bereits so stark abgeklungen (< 400 kW pro Modul), daß die „Luftkühlung“ in dem nun leeren Wasserbecken, sicher ausreichen würde.

Das Brennelementelagerbecken ist zur Aufnahme von 15 Betriebsjahren ausgelegt. Es befindet sich ebenfalls im unterirdischen Teil und kann für mindestens 30 Tage ohne zusätzliches Wasser auskommen (Fukushima). Es besteht aus einem Edelstahlbecken in einer Stahlbetonwanne. Stahlbecken und Betonwanne sind seismisch von einander isoliert, sodaß auch schwerste Erdbeben praktisch wirkungslos für die gelagerten Brennelemente sind.

Die NuScale Konstruktion ist ein schönes Beispiel, wie man Jahrzehnte alte Entwürfe der Leichtwasserreaktoren noch einmal ganz neu durchdenken kann. Es ist der radikalste Ansatz unter den zur Genehmigung eingereichten Konzepten. Die Wahrscheinlichkeit für eine schwere Beschädigung des Reaktorkerns mit teilweiser Kernschmelze – wie in Harrisburg und Fukushima geschehen – verringert sich auf unter ein Ereignis in zehn Millionen Betriebsjahren. Selbst wenn es eintreten würde, wären die Auswirkungen auf die Umwelt noch geringer. Es wird bereits diskutiert, ob bei diesem Reaktortyp überhaupt noch eine „Sicherheitszone“ mit potentieller Evakuierung der Anwohner, erforderlich ist. Jedenfalls gibt es in USA bereits ein reges Interesse zahlreicher Gemeinden und Städte zur dezentralen, kostengünstigen, umweltschonenden und krisensicheren (Wirbelstürme, Tornados, etc.) Versorgung mit Strom und Fernwärme.

Holtec international

Einem klassischen Reaktor noch am ähnlichsten, ist das von Holtec im Jahre 2012 eingereichte Konzept des „Holtec Inherently-Safe Modular Reactor“ (HI-SMUR) mit einer geplanten Leistung von 145 MWel.. Er besteht aus den klassischen drei Baugruppen: Reaktor, Dampferzeuger und Druckhalter. Der Druckbehälter ist ein fast 32 m langes Gebilde, welches in einer brunnenförmigen Grube versenkt ist. Es ist mit den Dampferzeugern entweder durch ein „Rohrstück“ (senkrechte Variante) verbunden oder die waagerechten Dampferzeuger sind direkt angeschweißt. Liegende Dampferzeuger sind nur bei russischen Konstruktionen gebräuchlich. Werden stehende Dampferzeuger verwendet, baut dieser Typ oberirdisch noch einmal 28 m hoch.

Der Entwurf ist sehr eigenwillig. Man hat ursprünglich waagerechte Dampferzeuger mit separater Überhitzung vorgesehen. Angeblich kann man durch eine angestrebte Überhitzung auf handelsübliche Industrieturbinen zurückgreifen. Man verzichtet auf Umwälzpumpen, bei gleichzeitig großem Abstand vom Siedezustand. Man ist deshalb auf eine sehr große Temperaturspreizung (TE = 177 °C und TA = 302 °C bei p = 155 bar) angewiesen. Eine regenerative Speisewasservorwärmung ist praktisch ausgeschlossen. Das ganze ähnelt eher einer Dampflokomotive, als einem modernen Kraftwerk.

Das Brennstoffkonzept ist auch etwas ungewöhnlich. Es ist keine Borierung zur Kompensation der Überschußreaktivität vorgesehen. Das heißt, es muß alles über abbrennbare Gifte (Gd und Er) geschehen. Der gesamte Brennstoff soll sich in einer Kartusche aus nur 32 Brennelementen befinden. Bei einem so kleinen Core dürfte der Neutronenfluß nur sehr schwer in den Griff zu bekommen sein bzw. jeder Brennstab müßte eine individuelle Anreicherung erhalten. Man will die Kassette nach 100 h (Nachzerfallswärme) in einem Stück auswechseln. Ein Brennelementewechsel soll so weniger als eine Woche dauern. Gleichwohl, soll die Zykluszeit 42 Monate betragen. Wenn sich nicht einige revolutionäre Erfindungen dahinter verbergen, die bisher noch nicht öffentlich zugänglich sind, dürfte eher der Wunsch der Vater sein.

Bisher kooperiert Holtec mit Shaw und Areva. Ein Prototyp wäre auf der Savannah River Site des DoE’s geplant. Die Bauzeit wird mit nur 2 Jahren, bei Kosten von nur 675 Millionen US-Dollar angegeben. Man wird sehen.

Carem

Anfang Dezember 2013 wurde der Auftrag für das Reaktordruckgefäß des „Central Argentina de Elementos Modulares“ CAREM-Reaktor erteilt. Es handelt sich dabei um ein 200 to schweres, 11 m hohes Gefäß mit einem Durchmesser von 3,5 m. Es ist für den Prototyp eines argentinischen SMR mit einer Leistung von 25 MWel gedacht. Später soll dieser Reaktor eine Leistung von 100 bis 200 MWel. erreichen. Es handelt sich ebenfalls um eine voll integrierte Bauweise, mit ausschließlich passiven Sicherheitseinrichtungen.

Schwimmender SMR aus Russland

Der staatliche russische Hersteller Rosenergoatom baut in Petersburg eine Barge mit zwei Reaktoren, die nach Chukotka in Sibirien geschleppt werden soll, um dort Bergwerke mit Energie zu versorgen. Die Reaktoren sind eine zivile Abwandlung der KLT-40S Baureihe für Eisbrecher, mit einer Leistung von 35 MWel. Vorteil dieses „Kraftwerks“ ist, daß es auf einer seit Jahren erprobten Technik basiert. Die russische Eisbrecherflotte versieht zuverlässig ihren Dienst im nördlichen Eismeer. Ein nicht zu unterschätzender Vorteil bei der Versorgung entlegener Gegenden.

Sehr Interessant ist das Geschäftsmodell. Eine solche barge wird fix und fertig zum Einsatzort geschleppt. Der Kunde braucht nur für den Stromanschluss an Land zu sorgen. Weitere Investitionen oder Unterhaltskosten fallen für ihn nicht an. Nach drei Jahren wird die barge für einen Brennelementewechsel und notwendige Wiederholungsprüfungen abgeschleppt und durch eine andere barge ersetzt. Da bei einem Kernkraftwerk die Brennstoffkosten ohnehin eine untergeordnete Rolle spielen, kann der Kunde das Kraftwerk für eine pauschale Jahresgebühr mieten. Ob und wieviel Strom er verbraucht, braucht ihn nicht mehr zu kümmern. Eine feste Kalkulationsgrundlage, die für Öl- und Minengesellschaften höchst verlockend ist. Als einzige Hürde in westlichen Regionen erscheint lediglich (noch) das „Made in Russia“. Jedenfalls hat er keine Vorauszahlungen zu leisten, hat keinerlei Reparaturkosten und braucht sich nicht um die Entsorgung des „Atommülls“ zu kümmern. Russland kann seinen „Heimvorteil“ des geschlossenen Brennstoffkreislaufs voll ausspielen.

Parallel hat Russland noch ein größeres Modell mit 300 MWel auf der Basis des VBER-300 PWR Druckwasserreaktors in der Entwicklung.

Abschließender Hinweis

Dieser Artikel kann und soll nur einen Überblick über den Stand der internationalen Entwicklung geben. Wer bis hierhin nicht durch so viel Technik abgeschreckt worden ist, dem empfehle ich, einfach mal die Typen und Hersteller zu googeln. Besonders die Seiten der Hersteller verfügen über zahlreiche Zeichnungen und Animationen. Zwar ausnahmslos in Englisch, aber mit der Grundlage dieses Artikels lassen sie sich hoffentlich auch für nicht Techniker verstehen.

 

Stasi 2.0 -Zähler

Die Katze ist endlich aus dem Sack

Wer immer noch glaubte, die „Energiewende“ sei mit „EEG-Abgabe“ und „Netz-Abgabe“ bezahlt, wird langsam eines Besseren belehrt. Die nächste Schnapsidee ist ein „Smart-Meter“. Eine Verniedlichung für die totale Überwachung und Gängelung. Selbstverständlich ist die Technik und deren Unterhalt von Michel selbst zu bezahlen. Die elektronische Fußfessel für Straftäter war gestern, es lebe das „Smart-Meter“ für jedermann. Die NSA ist gegen deutsche Öko-Sozialsten ein Schmusekätzchen – doch der Reihe nach.

Elektrizität ist nicht gleich Elektrizität

Es gibt kein Windrad, das bei Flaute elektrische Energie produziert und es gibt keinen Sonnenkollektor, der bei Dunkelheit Strom fließen läßt. So einfach ist das und so unumstößlich, wie zwei und zwei vier ist. Jedes Kind im Vorschulalter kann das nachvollziehen. Warum versuchen uns also täglich Politiker und Medien für dumm zu verkaufen? Es geht nicht um Umweltschutz oder Energieversorgung, sondern um Gesellschaftsveränderung. Kein Politiker und kein Kombinatsleiter glaubt an eine Stromversorgung ausschließlich durch „Erneuerbare Energien“. Schon allein dieses Neusprechwort läßt jeden halbwegs gebildete Menschen erschauern. So, als hätte es die Thermodynamik nie gegeben.

Was wir alle kennen, den „Strom aus der Steckdose“ ist ein völlig anderes Produkt, als das, was nach Lust und Laune der Natur aus Windrädern und Sonnenkollektoren kommt. Man könnte sogar sagen, es ist das genaue Gegenteil: Lassen wir es uns daher nicht länger gefallen, daß man uns Äpfel für Birnen verkaufen will. „Erneuerbare Energien“ haben so viel mit dem derzeitigen „Strom aus der Steckdose“ gemeinsam, wie Malzkaffee mit Bohnenkaffee. Es ist bloß ein neuer Ersatzstoff aus der Trickkiste sozialistischer Mangelwirtschaft.

Langsam dämmert es auch mancher Politikerin: Leistung ist nicht gleich Energie, da steckt irgendwo auch noch die Zeit drin! Man kann so viel Megawatt Photovoltaik auf die Dächer pflanzen und Windmühlen in die Landschaft pflanzen wie man will, aber es gelingt trotzdem nicht, auf konventionelle Kraftwerke zu verzichten. Eigentlich ist auch das, ganz einfach zu verstehen: Will man eine bestimmte Energiemenge erzeugen – z. B. den Jahresstromverbrauch von Deutschland – muß man diesen durch die installierte Leistung – z. B. alle installierten Windräder und Sonnenkollektoren – teilen. Man erhält die Zeitdauer, in der die Anlagen – ihrem Typenschild gemäß – laufen müssen. Da es aber zumindest nachts dunkel ist und auch der Wind nicht ständig mit voller Kraft weht, braucht man hierfür gigantische Leistungen. Wenn aber der Wind dummerweise weht und die Sonne strahlt, produzieren diese Anlagen notgedrungen mehr Strom, als das Netz verkraften kann: Man müßte die Anlagen teilweise abstellen. Wenn man sie aber abstellt, produzieren sie übers Jahr gerechnet, noch weniger Energie oder anders ausgedrückt, ihre Vollbenutzungsstunden werden noch geringer. Ein Rennen, wie das berühmt berüchtigte, zwischen Hase und Igel. Sagen wir es noch einmal ganz einfach und für jeden verständlich: Eine Vollversorgung durch „Erneuerbare“ ist physikalisch unmöglich!

Eigentlich wäre alles ganz einfach. Lasst uns zugeben, daß die „Energiewende“ eine Schnapsidee war und lasst uns ganz schnell aufhören mit dem Geld verbrennen. Aber leider haben wir ja keine Irrtumskultur in Deutschland. Wir gründen lieber einen Volkssturm oder faseln von einer Mauer, die noch hundert Jahre stehen würde, wenn sie bereits einstürzt. Hauptsache: Die Partei hat immer recht, die Partei kann sich nicht irren! Bis zum endgültigen Zusammenbruch, lassen wir uns gerne durch das Gesäusel von Wunderwaffen einlullen. Um die Wunderwaffe Speicher ist es zur Zeit etwas still geworden. Es lassen sich kaum noch Zeugen finden. Zu gering, sind die Fortschritte, die man vorzeigen könnte. Das Dilemma zwischen dem Abkassieren von Forschungsgeldern und dem nötigen schnellen Erfolg ist zu groß geworden. Auch für geübte Schlangenölverkäufer ist der Spagat zwischen dem „wir brauchen noch einige Jahre und natürlich viele Milliarden Subventionen“ und „Energiespeicherung ist überhaupt kein Problem“ zu groß geworden.

Das „smarte“ Netz

Für Hausfrauen, vom Schlage von Frau Professor Claudia Kemfert (Leiterin der Abteilung Energie, Verkehr und Umwelt am Deutschen Institut für Wirtschaftsforschung) ist die Sache ganz einfach: Wenn man zu viel Strom hat, muß man mehr verbrauchen und wenn das Angebot der Natur zu klein ist, eben weniger. So einfach geht Energiewende, jedenfalls für deutsche „Wirtschaftswissenschaftlerinnen“. Ihr Rat von Frau zu Frau: Warum die Wäsche nicht nachts waschen, wenn der Wind nachts weht? Damit läßt sich trefflich in jeder „Talkrunde“ brillieren, in der noch keiner in einer Sozialbau-Wohnung gelebt hat oder jemals eine Waschmaschine, die schon Stunden vor sich her „gemüffelt“ hat, selbst entleerte. Mit der Waschmaschine und dem Trockner (sofern überhaupt vorhanden!) sind die variablen „Großverbraucher“ im Haushalt schon erschöpft. Der üblicherweise größte Einzelverbraucher Kühlschrank/Gefrierer sollte wohl besser nicht abgestellt werden. Man kann aber keinesfalls das Licht ausschalten, nur weil gerade die Sonne nicht scheint. Ist im Haushalt die Stromrationierung schon absurd, ist sie in Industrie und Gewerbe reiner Selbstmord. Wer das nicht glauben mag, sollte einmal Unternehmer über revolvierende Stromabschaltungen in den sog. Entwicklungsländern befragen.

Damit kein Mißverständnis entsteht: Es ist nichts gegen gestaffelte Tarife einzuwenden. Allerdings ist die Flexibilität selbst im Haushalt so gering, daß Aufwand und Kosteneinsparung in keinem Verhältnis zueinander stehen. Sie sind seit Jahren Realität (Optimierung der Spitzenleistung, Nachtspeicher etc.) und wirtschaftlich ausgereizt. Für all die Methoden haben konventionelle Zähler und Rundsteueranlagen vollkommen ausgereicht. Bei der Rundsteuertechnik werden durch das Stromnetz Nachrichten gesendet, die jeder empfangen und nutzen kann. Solche Nachrichten können beim Kunden den Stromtarif wechseln oder auch Geräte an- und abschalten. Entscheidend unter den Gesichtspunkten des Datenschutzes ist, daß das System wie beim Rundfunk die Nachrichten an alle versendet, jeder aber frei entscheiden kann, ob er sie auch nutzt. Es gibt auch keinen Rückkanal. Insofern ist eine Überwachung der Kunden nur „zweckdienlich“ möglich. Beispielsweise kann man bei einer Nachtspeicherheizung mit Rundsteuerung zwar feststellen, ob der Kunde in der Heizperiode viel oder wenig verbraucht hat (Zählerstand) aber nicht, ob er gern länger schläft oder in der Weihnachtswoche Besuch hatte und deshalb das Gästezimmer stärker als sonst üblich geheizt hat.

Kein „Smart Meter“ wird je in der Lage sein, den Verlauf der Sonne zu steuern oder das Wetter zu beeinflussen. Auch ein „Smart Meter“ ist nichts anderes, als die moderne Version der Lebensmittelkarte. Es kann nur den Mangel nach politisch/gesellschaftlichen Kriterien in engen Grenzen verwalten. Wir benötigen nachts elektrisches Licht, weil es nachts dunkel ist. Wenn die Sonnenkollektoren gerade dann keinen Strom produzieren, sollte das weiterhin das Problem der Energieversorger bleiben. Wenn die Windräder mehr Strom produzieren, als das Netz aufnehmen kann, müssen sie gedrosselt werden. Es gibt jedenfalls keinen Grund, das Mittagessen in die Nacht zu verlegen, nur damit der Profit des Windparkbetreibers, wie in den Prospekten versprochen, ausfällt. Ein bischen unternehmerisches Risiko sollte schon bleiben.

Das vermeintliche Milliardengeschäft

„Smart Meter“ sind die Kopfgeburt von den gleichen Kombinatsleitern, die auch so peinliche Werbekampagnen wie „Vorweggehen“ starten. Wobei, eigentlich „Vorweggehen“? Bei der Kapitalvernichtung, beim Abbau von Arbeitsplätzen und der Transformation Deutschlands in ein Agrarland.

Natürlich, ist es weit aus kuscheliger, wenn man Milliardenumsätze mit zwangsverordneten „Smart Metern“ machen könnte, als in international umkämpften Märkten (Computertechnik, Mobiltelefone, Kraftwerksbau etc.) immer wieder gezeigt zu bekommen, daß man längst nicht mehr erfolgreich in der ersten Liga mitspielen kann. Schließlich sind deutsche Konzerne immer gut gefahren, wenn sie an den Lippen der jeweiligen Politiker geklebt haben. Die eigenen Pensionsansprüche konnten noch immer über die (absehbaren) Zusammenbrüche der unterschiedlichen „Reiche“ hinweg gerettet werden.

Die totale Überwachung

Das eigentlich empörende an dem „Smart Meter“ Konzept ist jedoch, daß der Schnüffelstaat nun endgültig in unsere Wohnungen dauerhaft einziehen will. Das „Smart Meter“ ist weit aus weniger ein Stromzähler, als vielmehr der „Vollautomatische Mielke“. Es handelt sich um eine Messeinrichtung mit Mikroprozessor und Speichereinheit nebst Rückkanal. Mit dem Stromzähler im Keller (bei großen Mietshäusern im zentralen Zählerraum) hat das so viel zu tun, wie ein Küchenmesser mit einem Maschinengewehr. Im Sinne von Datenschutz und Überwachung sollte sich der technische Laie dieses System eher wie einen Computer mit stets eingeschaltetem Mikrofon in jedem Raum vorstellen, der alle Aktivitäten aufzeichnet und per Internet zu der Überwachungszentrale zur (beliebigen und unkontrollierbaren) Auswertung schickt. Mag ja sein, daß der freundliche Computer einen nur darauf aufmerksam machen will, daß man wieder vergessen hat, das Licht auszuschalten. Kann aber auch sein, daß die Polizei die Daten zur Überprüfung eines Alibis nutzt. Selbstverständlich nur bei schwersten Straftaten! Vielleicht nutzt aber auch irgendein Geheimdienst das System zur Überwachung von geheimen Treffen irgendwelcher Terroristen. Man wird es selbstverständlich nie erfahren. Die schöne neue Welt der Öko-Sozialisten, ist halt viel mehr, als nur „Vogel-Häcksler“ und Dächer im Einheitsblau.

Wer glaubt, das alles sei übertrieben, der hat nicht die geringste Ahnung, was bereits heute Stand der Technik in der Netzleittechnik ist. Wie ausgefuchst bereits heute die statistischen Methoden und Datenmodelle sind. Und nicht vergessen: Ausweichen ist nicht! Auf das Internet oder (stets als Bewegungsmelder eingeschaltete) Mobiltelefon kann man verzichten, aber wer kann und will schon auf eine Wohnung verzichten?