Hinkley Point C

Der Aufreger der Woche, ist der geplante Neubau zweier Reaktoren als Ersatz für das Kernkraftwerk Hinkley Point. Für die einen ist es der lang ersehnte Neubeginn, für andere ein Sündenfall der europäischen Subventionswirtschaft. Vor allem ist es jedoch ein hoch komplexer Vorgang, für den man etwas mehr Zeit benötigt als in den „Qualitätsmedien“ zur Verfügung steht.

Die Geschichte

Großbritannien (GB) ist die Mutter der sog. „Strom-Markt-Liberalisierung“ in Europa. Traditionell gab es Gebietsmonopole, in denen „Energieversorger“ tätig waren. Als Ausgleich für ihr Monopol, mußten sie ihre Tarife durch eine staatliche Aufsicht kontrollieren und genehmigen lassen. Nach der „Liberalisierung“ sollte elektrische Energie – wie andere Wirtschaftsgüter auch – zwischen Erzeugern und Verbrauchern gehandelt werden. Eine „Strombörse“ sollte hierfür der zentrale Marktplatz sein. So weit, so schlecht. Märkte kann man nicht verordnen, sondern Märkte ergeben sich und müssen sich frei organisieren können. Heute steht man in GB vor einem Scherbenhaufen. Böse Zungen behaupten, daß das heutige Theater um Hinkley Point nur das zwangsläufige Ergebnis für eine seit 30 Jahren nicht vorhandene Energiepolitik sei. Eine sicherlich nicht ganz falsche Feststellung. Noch treffender könnte man sagen, ein bischen Planwirtschaft geht genauso wenig, wie ein bischen schwanger. Um auch weiterhin seinen politischen Einfluß geltend machen zu können, hat man ganz schnell ein prinzipielles „Marktversagen“ in der Form einer von Menschen verursachen „Klimakatastrophe“ konstruiert. Früher gab es eine „Aufsichtsbehörde“ mit klar definierter Verantwortung und Aufgabenstellung. Heute ist die Elektrizitätswirtschaft zu einem Tummelplatz für Laiendarsteller und skrupellose Geschäftemacher verkommen. Im Ergebnis haben sich immer mehr seriöse Investoren aus diesem Sektor zurückgezogen. Dafür wurden immer mehr Kräfte aus dem dunklen Reich der „Gesellschaftsveränderer“ magisch angezogen. Wie konnte es dazu kommen?

Am Anfang und am Ende steht das Atom

In GB gab es zwar nie eine der deutschen „Anti-Atomkraft-Bewegung“ vergleichbare Strömung in der Bevölkerung, gleichwohl erkannten auch dort Politiker das Potential für eine „Gesellschaftsveränderung“. Man versuchte deshalb den Sektor Kernenergie möglichst lange aus der „Strom-Markt-Liberalisierung“ heraus zu halten. Letztendlich wurde auch er „privatisiert“. Die Kernkraftwerke wurden komplett an die staatliche französische EDF verkauft. Von einem Staatskonzern Unternehmertum zu erwarten, dürfte ungefähr genauso erfolgreich sein, wie die Übertragung eines Schnapsgeschäftes an einen Alkoholiker. Parallel wurden die „Alternativenergien“ massiv bevorzugt. Mit dem Ergebnis, daß man auch bald keinen Dummen mehr finden konnte, der gewillt war, in fossile Kraftwerke zu investieren. Nun steht man vor einem Scherbenhaufen: Rund ein Drittel aller Kraftwerke müssen in den nächsten Jahren aus Altersschwäche vom Netz gehen. Dies führt zu einer Versorgungslücke von wahrscheinlich 60 GW. Eine volkswirtschaftliche Herausforderung, wie in einem Schwellenland. Die Zeit wird knapp. Längst hat man gemerkt, daß Windenergie ohne konventionelle Kraftwerke gar nicht funktionieren kann. Da helfen auch noch so hohe Investitionen nicht weiter. Den Weg über den Neubau von Kohlekraftwerken traut man sich nicht zu gehen, hat man doch erst mit großem politischen Aufwand die „Klimakatastrophe“ erschaffen. Der einst erträumte Weg über „flexible und umweltfreundliche Gaskraftwerke“ ist bei der benötigten Stückzahl auch nicht realistisch. Zumindest das Handelsdefizit würde explodieren und das Pfund ruinieren. Man kann es drehen und wenden wie man will, aber zum Schluß landet man wieder bei der (ungeliebten) Kernenergie.

Weisse Salbe oder Reform

Solange man an dem „Einspeisevorrang“ für Windenergie fest hält, wird man keinen Investor für konventionelle Kraftwerke finden. Jedes zusätzliche Windrad drückt die Preise für Strom an der Börse weiter in den Keller und senkt zusätzlich die Auslastung der konventionellen Kraftwerke. Würde man die Einspeisung begrenzen – wenn der Wind einmal zufällig kräftig weht – wären die Windmüller aber über Nacht pleite. Dies wäre zwar die volkswirtschaftlich sinnvollste Lösung, ist aber (zur Zeit noch nicht) politisch durchsetzbar. Deshalb handelt man lieber nach dem alten Grundsatz: Erst einmal die Probleme schaffen, die man anschließend vorgibt zu lösen: In Deutschland nennt man das „Kapazitätsmärkte“, in GB „Contracts for Difference CfD“. Zwar ist beides durchaus nicht das Selbe, dient aber dem gleichen Zweck. Es dient dazu, die Kosten für ein zusätzliches System für die Zeiten der Dunkel-Flaute nicht dem Verursacher (Windmüller), sondern dem Verbraucher aufs Auge zu drücken. Noch einmal in aller Deutlichkeit: Würde man den „Erneuerbaren“ abverlangen, zu jedem Zeitpunkt den erforderlichen Anteil an der Netzleistung bereitzustellen, wäre der Traum von der „Energiewende“ über Nacht beendet. Es würden sich nämlich die wahren Kosten für jeden ersichtlich zeigen. Jeder Windmüller müßte entweder auf eigene Kosten Speicher bauen oder Notstromaggregate errichten oder Ersatzleistung bei anderen Kraftwerken zu kaufen. Wenn er keinen Strom liefern kann, weil das Netz voll ist (Starkwind) bekommt er auch kein Geld. Alles Selbstverständlichkeiten, die für jedes konventionelle Kraftwerk gültig sind. Ein „Kapazitätsmarkt“ wäre nicht notwendig oder würde sich von selbst ergeben – ganz nach Standort des Betrachters.

Windenergie ist nicht gleichwertig zu Kernenergie

Der Strom aus der Steckdose ist ein homogenes Gut im wirtschaftlichen Sinne. Es ist physikalisch in engen Grenzen (Frequenz, Spannung) immer gleich. Egal ob heute oder morgen oder in Berlin oder am Bodensee. Genauso wie Dieselkraftstoff, bei dem es auch egal ist, wo man tankt. Zu diesem homogenen Wirtschaftsgut wird die elektrische Energie aber noch nicht durch die Erzeugung, sondern erst durch das Netz (Netz nicht nur im Sinne von Drähten, sondern einschließlich Schaltanlagen, Transformatoren, Frequenzregler etc.). Ganz anders als beim Dieselkraftstoff. Der bleibt immer gleich, egal ob er frisch aus der Raffinerie kommt oder aus einem Lagertank. Damit ergibt sich wirtschaftlich ein grundlegender Unterschied: Diesel kann man lagern, bis die Preise günstiger sind (Arbitrage). Elektrische Energie muß man in dem Moment verkaufen, wo sie entsteht (z. B. Windbö). Andersherum gilt genauso: Der aktuelle Strompreis kann noch so hoch sein, wenn Flaute ist hat man nichts davon. Genauso wenig nutzt es, wenn der Sturm in der Nordsee tobt, man aber mangels Leitungen den Strom nicht nach Bayern transportieren kann.

Letztendlich muß der Verbraucher immer alle Kosten tragen. Für einen Vergleich unterschiedlicher Erzeuger ist aber eine richtige Zuordnung der Kosten sehr wohl nötig, will man nicht Äpfel und Birnen gleich setzen. Ein einfaches Beispiel mag das verdeutlichen: Bei einem Kernkraftwerk werden die Schaltanlagen und Anschlußleitungen bis zum „relevanten Anschlußpunkt“ den Baukosten des Kraftwerks zugeschlagen, weil sie als sicherheitsrelevant gelten. Bei Windkraftanlagen ist das genau andersherum, um die Windenergie künstlich günstig zu rechnen. Hier schmarotzt der Anlagenbetreiber von der Allgemeinheit. Insofern sind Investitionskosten ohne genaue Kenntnisse der Verhältnisse nicht unmittelbar gegenüber zu stellen. Begriffe wie „Netzparität“, sind nichts weiter als Irreführung der Verbraucher.

Entspricht 16 nun 34 oder nicht?

Die Baukosten für zwei EPR-Blöcke mit zusammen 3200 MW werden mit 16 Milliarden Pfund angegeben. Dies ist für sich schon ein stolzer Preis. Verwundern kann das jedoch nicht, da die Vergabe ohne Konkurrenz erfolgt. Dies ist nur politisch zu erklären: Der Segen aus Brüssel war sicherlich nur mit massiver Unterstützung von Frankreich möglich. Dürfte dieser Preis Realität werden, dürfte sich der EPR und Areva als sein Hersteller auf dem Weltmarkt erledigt haben. Er wäre schlichtweg nicht konkurrenzfähig. Wie eigenartig das Vergabeverfahren verlaufen ist, erkennt man schon daran, daß der Angebotspreis kurz vor Abgabe noch einmal um zwei Milliarden erhöht worden ist. Dies wurde mit einem zusätzlichen Erwerb eines Grundstückes und den Ausbildungskosten für die Betriebsmannschaft begründet. Vielleicht platzt das ganze Geschäft noch, weil Areva vorher die Luft ausgeht. Vielleicht ist Hinkley Point auch der Einstieg der Chinesen in das europäische Geschäft mit Kernkraftwerken. EDF hat ohnehin nur eine Beteiligung zwischen 45 bis 50% geplant. China General Nuclear und China National Nuclear Corporation sind schon lange als Partner vorgesehen.

Welche Kosten nun die wirklichen Kosten sind, ist so alt wie die Kerntechnik. Die Baukosten werden mit rund 16 Milliarden Pfund angegeben. Genauer gesagt sind dies die „Über-Nacht-Kosten“. Nun beträgt aber die geplante Zeit bis zur Inbetriebnahme etwa 10 Jahre. In dieser Zeit müssen alle Ausgaben über Kredite finanziert werden. Einschließlich der Finanzierungskosten soll das hier etwa 34 Milliarden Pfund ergeben. Weitere rund 10 Milliarden Pfund sollen auf die Rückstellungen für „Atommüll“ und die Abbruchkosten für das Kraftwerk entfallen. So ergibt sich die Zahl von 43 Milliarden Euro, die durch die Presselandschaft geistert. Man sollte dabei nicht vergessen, daß dies alles nur kalkulatorische Kosten zur Rechtfertigung des vertraglich vereinbarten „strike price“ von 92,50 Pfund pro MWh sind.

Es ging hier um ein „Beihilfeverfahren“, in dem die Kosten möglichst hoch angesetzt werden müssen, um das gewollte Ergebnis zu erhalten. Deutlich wird das an der erfolgreichen „Subventionskürzung“ bei der Finanzierung um über eine Milliarde Pfund, die Almunia stolz verkündet hat. Um was geht es genau dabei? Die Finanzierung eines Kernkraftwerks ist mit erheblichen, nicht kalkulierbaren – weil staatlich verursachten – Risiken verbunden. Man kann erst die Kredite zurückbezahlen, wenn man Strom liefern kann. Der Zeitpunkt ist aber unbestimmt, da laufend die Anforderungen der Behörden verändert werden können. Dieses (unkalkulierbare) Risiko, lassen sich die Banken mit erheblichen Zinsaufschlägen vergüten. Aus diesem Gedanken wurde die staatliche Bürgschaft (bis zur Inbetriebnahme) erschaffen. Durch diese Bürgschaft ist der Kredit einer Staatsanleihe gleichwertig. Allerdings kostet eine Bürgschaft immer Gebühren. Der Staat subventioniert hier nicht, sondern kassiert im Gegenteil ab! Zahlen muß – wie immer – der Verbraucher. Für Hinkley Point ist eine Bürgschaft über 10 Milliarden Pfund bzw. 65% der auflaufenden Kosten vorgesehen. Man setzt nun einen fiktiven Zinssatz mit Bürgschaft in Relation zu einem durchschnittlichen Zinssatz für Kredite und hat flugs eine – freilich rein theoretische – Subvention.

Es ging hier auch mehr um die grundsätzliche Absegnung eines Verfahrens. Eine solche Anleihe kann sehr langfristig angelegt werden und dürfte sich zu einem Renner für die Versicherungswirtschaft, Pensionskassen usw. im Zeitalter der niedrigen Zinsen erweisen. Dies war übrigens der Gedanke, der hinter der Erschaffung von Desertec, dem Projekt Strom aus der Sahara, stand. Nur hatten die energiewirtschaftlichen Laien der Münchener Rück auf das falsche Produkt gesetzt. Trotzdem ist die Idee Geld wert. Hier schlummert ein europaweites, gigantisches Infrastrukturprogramm. In diesem Sinne ist auch das chinesische Interesse kein Zufall. Man sucht auch dort händeringend langfristige, sichere und lukrative Anlagemöglichkeiten für die gigantischen Devisenreserven. Kapital gibt es genug, man muß nur die ideologischen Bedenken über Bord werfen.

Ist CfD gleich EEG oder doch nicht?

Um die Antwort vorweg zu nehmen: Das Hinkley Point Modell ist eher eine Abkehr vom deutschen EEG-Modell und eine Rückwärtsbesinnung auf die gute alte Zeit der Energieversorger mit genehmigungspflichtigen Preisen. Insofern hinkt auch hier der Vergleich mit der Förderung von Windenergie.

Nach dem EEG-Modell wird ein einmal beschlossener Energiepreis für die gesamte Laufzeit gewährt. Egal, wie hoch die erzielbaren Preise sind. Selbst wenn eine Entsorgungsgebühr für den erzeugten Strom an der Börse entrichtet werden muß (negative Energiepreise). Die Subvention wird jährlich als Zuschlag auf alle verbrauchten Kilowattstunden umgelegt. Das System ist rein an der Erzeugung orientiert. Je mehr Windstrom erzeugt wird, um so mehr drückt das auf die Börsenpreise und um so höher werden die Subventionen. Langfristig müssen sich die konventionellen Kraftwerke nicht nur ihre eigenen Kosten, sondern auch die Entsorgungsgebühren für Wind und Sonne in den Zeiten der Dunkel-Flaute zurückholen. Dies wird zu extremen Preisschwankungen an der Börse führen. Nicht einmal „Kapazitätsmärkte“ können dagegen etwas ausrichten.

Beim „strike price“ wird ebenfalls ein Preis festgelegt (hier die 92,50 Pfund/MWh auf der Basis 2012), der langfristig gezahlt wird. Immer wenn die an der Börse erzielbaren Preise geringer sind, wird die Differenz draufgelegt. Sind die erzielten Preise jedoch höher, muß diese Differenz zurückbezahlt werden. In der reinen Lehre, sollte es hierfür ein Bankkonto mit Zinsen geben, dessen Kredite durch den Staat (wegen der dann niedrigen Zinsen) verbürgt werden sollten. Dies war angeblich nicht „beihilfekonform“ und soll jetzt über kontinuierliche Umlagen bzw. Vergütungen bei den Stromrechnungen erfolgen. Hier liegt der entscheidende Unterschied zum EEG-Modell: Ein Kernkraftwerk kann immer Strom liefern, wenn es der Betreiber will – eine Windmühle nur, wenn die Natur es will. Kernkraftwerke können die hohen Börsenpreise bei „Spitzenlast“ in der Dunkel-Flaute voll mitnehmen. „Kapazitätsmärkte“ lassen sich so mit dem CfD-Modell elegant umschiffen. Die Kostentransparenz ist größer.

Die Preisaufsicht ist wieder zurück

In der Zeit der Gebietsmonopole, mußten sich die Energieversorger die Preise für die Endverbraucher genehmigen lassen. Ein Modell, welches noch in vielen Teilen der Welt praktiziert wird. Später glaubte man dies durch den freien Handel einer Börse ersetzen zu können. Leider ist dieser „freie Handel“ nie wirklich frei gewesen. Insofern hat es auch nie eine transparente und marktkonforme Preisfindung gegeben. Es war nur ein Alibi für eine Planwirtschaft.

Der von Brüssel genehmigte Preis ist nicht mehr auf ewig festgeschrieben, sondern plötzlich anerkannt veränderlich und bedarf somit einer Kontrolle. Er ist – klassisch, wie eine Preisgleitklausel – mit der allgemeinen Inflationsrate indexiert. Es ist ausdrücklich festgehalten, daß bei geringeren Baukosten als angesetzt, der „strike price“ angepaßt werden muß. Das gleiche gilt, wenn der Gewinn höher als vorgesehen ausfällt. Beides wohl eher fromme Wünsche, handelt es sich doch beim Bauherrn und Betreiber um staatliche Unternehmen. Zumindest die „hauseigene Gewerkschaft der EDF“ wird eher für das 15. und 16. Monatsgehalt streiken, bevor es dem Kunden auch nur einen Cent Preissenkung zugesteht. Man darf gespannt sein, mit welchen Befugnissen die Preisaufsicht ausgestattet werden wird.

Brüssel hat das ursprünglich auf 35 Jahre begrenzte Modell auf die voraussichtlich Lebensdauer von 60 Jahren ausgedehnt. Man will damit verhindern, daß das dann weitestgehend abgeschriebene Kraftwerk zu einer Gewinnexplosion bei dem Betreiber führt. Auch in dem erweiterten Zeitraum, müssen zusätzliche Gewinne zwischen Betreiber und Kunden aufgeteilt werden. Allerdings kehrt man mit diesem Ansatz nahezu vollständig zu dem Modell regulierter Märkte zurück. Eigentlich sollten an einer Börse die Preise durch Angebot und Nachfrage gefunden werden. Der Gewinn sollte dabei der Lohn für das eingegangene unternehmerische Risiko sein. Was unterscheidet das CfD-Modell eigentlich noch von einer rein öffentlichen Energieversorgung?

Nachwort

Man mag ja zur Kernenergie stehen wie man will. Nur was sind die Alternativen? Wenn man die gleiche elektrische Energie (3,2 GW, Arbeitsausnutzung ca. 90%) z. B. mit Sonnenenergie erzeugen wollte, müßte man rund 30 GW (Arbeitsausnutzung ca. 10%) Photovoltaik installieren. Trotzdem bleibt es in der Nacht dunkel – und die Nächte sind im Winterhalbjahr in GB verdammt lang. Im Gegensatz würden 30 GW an einem sonnigen Sonntag das Netz in GB förmlich explodieren lassen. Wollte man diese Leistung auf dem Festland entsorgen, müßte man erst gigantische Netzkupplungen durch den Ärmelkanal bauen.

Windkraftanlagen auf dem Festland erscheinen manchen als die kostengünstigste Lösung. Bei den Windverhältnissen in GB müßte man für die gleiche Energiemenge ungefähr 10 GW bauen und zusätzlich Gaskraftwerke mit etwa 3 GW für die Zeiten mit schwachem Wind. Das ergibt eine Kette von fast 1000 km Windkraftanlagen an der Küste. Wohlgemerkt, nur als Ersatz für dieses eine Kernkraftwerk Hinkley Point!

Oder auch gern einmal anders herum: Der Offshore-Windpark London Array – Paradebeispiel deutscher Energieversorger – hat eine Grundfläche von etwa 100 km2 bei einer Leistung von 0,63 GW. Weil ja der Wind auf dem Meer immer so schön weht (denkt die Landratte) geht man dort von einer Arbeitsausnutzung von 40% aus. Mit anderen Worten, dieses Wunderwerk grüner Baukunst, produziert weniger als 1/10 der elektrischen Energie eines Kernkraftwerkes.

SMR Teil 1 – nur eine neue Mode?

Small Modular Reactor (SMR) aus energiewirtschaftlicher Sicht

In letzter Zeit wird wieder verstärkt über „kleine, bausteinförmig aufgebaute Kernkraftwerke“ diskutiert. Wie immer, wenn es ums Geld geht, war der Auslöser ein Förderungsprogramm des Department of Energy (DoE) in den USA. Hersteller konnten sich um einen hälftigen Zuschuss zu den Kosten für das notwendige Genehmigungsverfahren bewerben. Der Gewinner bekommt vom amerikanischen Staat fünf Jahre lang die Kosten des Genehmigungsverfahrens und die hierfür notwendigen Entwicklungs- und Markteinführungskosten anteilig ersetzt. Es gibt die Förderung nur, wenn das Kraftwerk bis 2022 fertig ist (es handelt sich also um kein Forschungs- und Entwicklungsprogramm) und man muß sich zusammen mit einem Bauherrn bewerben.

Sieger der ersten Runde war Babcock & Wilcox (B&W) mit seinem mPower Konzept, zusammen mit Bechtel und Tennessee Valley Authority. Eine sehr konservative Entscheidung: Babcock & Wilcox hat bereits alle Reaktoren der US Kriegsschiffe gebaut und besitzt deshalb jahrzehntelange Erfahrung im Bau kleiner (militärischer) Reaktoren. Bechtel ist einer der größten internationalen Ingenieurfirmen mit dem Schwerpunkt großer Bau- und Infrastrukturprojekte. Tennessee Valley Authority ist ein öffentliches Energieversorgungsunternehmen. Wie groß die Fördersumme letztendlich sein wird, steht noch nicht fest. Die in der Öffentlichkeit verbreiteten 452 Millionen US-Dollar beziehen sich auf das gesamte Programm und nicht jeden Hersteller. Insofern war die Entscheidung für den Kandidaten, mit dem am weitesten gediehenen Konzept, folgerichtig.

Die Wirtschaftlichkeit

An dieser Stelle soll nicht auf den Preis für eine kWh elektrischer Energie eingegangen werden, da in diesem frühen Stadium noch keine ausreichend genauen Daten öffentlich zugänglich sind und es rein spekulativ wäre. Es sollen viel mehr ein paar qualitative Überlegungen angestellt werden.

Man geht von deutlich unter einer Milliarde US-Dollar pro SMR aus. Auch, wenn man nur eine Stückzahl von 100 Stück annimmt, ergibt das den stolzen Umsatz von 100 Milliarden. Dies entspricht in etwa dem „Modellwert“ in der Flugzeugindustrie. Damit wird sofort klar, daß das keine Hinterhof-Industrie werden kann. Der Weltmarkt wird unter einigen wenigen Konsortien von der Größenordnung Boing oder Airbus unter sich aufgeteilt werden! Wer zu lange wartet, hat praktisch keine Chance mehr, in diesen Markt einzusteigen. Ob Europa jemals noch ein Konsortium wie Airbus schmieden kann, ist mehr als fraglich. Die Energieindustrie wird wohl nur noch von den USA und China bestimmt werden.

Es ergeben sich auch ganz neue Herausforderungen für die Finanzindustrie durch die Verlagerung des Risikos vom Besteller zum Hersteller. Bisher mußte ein Energieversorger das volle Risiko allein übernehmen. Es sei hier nur das Risiko einer nicht termingerechten Fertigstellung und das Zinsänderungsrisiko während einer Bauzeit von zehn Jahren erwähnt. Zukünftig wird es einen Festpreis und kurze Bauzeiten geben. Die Investition kann schnell wieder zurückfließen. Daraus erklärt sich der Gedanke, ein Kernkraftwerk heutiger Größenordnung zukünftig aus bis zu einem Dutzend einzelner Anlagen zusammen zu setzen. Sobald der erste Reaktor in Betrieb geht, beginnt der Kapitalrückfluss. Man spielt plötzlich in der Liga der Gaskraftwerke!

Damit stellt sich aber die alles entscheidende Frage: Wer ist bereit, das finanzielle Risiko zu tragen? China hat sich durch den Bau von 28 Kernkraftwerken eine bedeutende Zulieferindustrie aufgebaut. Auch die USA verfügen über eine solche. Das Risiko auf verschiedene Schultern zu verteilen, ist ein probates Mittel. Europa müßte sich unter – wahrscheinlich französisch-britischer Führung – mächtig sputen, um den Anschluß nicht zu verlieren. Im Moment sieht es eher so aus, als wenn Frankreich, Großbritannien und die USA gleichermaßen um die Gunst von China buhlen.

Um es noch einmal in aller Deutlichkeit zu sagen: Europa fehlt es nicht an technischen Möglichkeiten und an Finanzkraft, sondern am politischen Willen. Es ist das klassische Henne-Ei-Problem: Ohne ausreichende Bestellungen, ist keiner bereit, in Fertigungsanlagen zu investieren. Wer aber, sollte diesen Mut aufbringen, ausgerechnet in Deutschland, wo es keinen Schutz des Eigentums mehr gibt, wo eine Hand voll Politiker nach einem Tsunami im fernen Japan, mit einem Federstrich, Milliarden vernichten können und die breite Masse dazu auch noch Beifall klatscht?

Fertigung in einer Fabrik

Bisher wurden Kernreaktoren mit immer mehr Leistung gebaut. Inzwischen wurde beim EPR von Areva fast die 1700 MWel erreicht. Man macht damit Kernkraftwerke und ihre Komponenten selbst zu einem Nischenprodukt. Nur wenige Stromnetze können so große Blockgrößen überhaupt verkraften. Andererseits wird der Kreis der Zulieferer immer kleiner. Es gibt weltweit nur eine Handvoll Stahlwerke, die überhaupt das Rohmaterial in der erforderlichen Qualität liefern können. Hinzu kommen immer weniger Schmieden, die solch große Reaktordruckgefäße, Turbinenwellen, Schaufeln etc. bearbeiten können. Je kleiner die Stückzahlen und der Kreis der Anbieter wird, um so teurer das Produkt.

Es macht aber wenig Sinn, kleine Reaktoren als verkleinertes Abbild bisheriger Typen bauen zu wollen. Dies dürfte im Gegenteil zu einem Kostenanstieg führen. Will man kostengünstige SMR bauen, muß die gesamte Konstruktion neu durchdacht werden. Man muß praktisch mit dem weißen Blatt von vorne beginnen. Typisches Beispiel ist die Integration bei einem Druckwasserreaktor: Bei der konventionellen Bauweise ist jede Baugruppe (Druckgefäß, Dampferzeuger, Umwälzpumpen, Druckhalter) für sich so groß, daß sie isoliert gefertigt und transportiert werden muß und erst am Aufstellungsort durch Rohrleitungen miteinander verbunden werden kann. Damit wird ein erheblicher Arbeits- und Prüfaufwand auf die Baustelle verlegt. Stundensätze auf Baustellen sind aber wegen ihrer Nebenkosten stets um ein vielfaches höher, als in Fabriken. Gelingt es, alle Baugruppen in das Druckgefäß zu integrieren, entfallen alle notwendigen Montagearbeiten auf der Baustelle, weil ein bereits fertiger und geprüfter „Reaktor“ dort angeliefert wird. Bauteile, die es gar nicht gibt (z. B. Rohrleitungen zwischen Reaktordruckgefäß und Dampferzeugern) müssen auch nicht ständig gewartet und wiederholt geprüft werden, was auch noch die Betriebskosten erheblich senkt.

Wenn alle Bauteile wieder „kleiner“ werden, erweitert sich auch automatisch der potentielle Herstellerkreis. Die Lieferanten können ihre Fertigungsanlagen wieder besser auslasten, da sie nicht so speziell sein müssen. Es ist wieder möglich, eine nationale Fertigung mit akzeptablen Lieferzeiten zu unterhalten.

Durch die Fertigung von Bauteilen in geschlossenen Hallen ist man vor Witterungseinflüssen (oder schlicht Dreck) geschützt, was die Kosten und das Ausschussrisiko senkt. Eine Serienfertigung führt durch den Einsatz von Vorrichtungen und die Umlage von Konstruktions- und Entwicklungskosten etc. zu geringeren Kosten. Die Standardisierung senkt Schulungskosten und erhöht die Qualität.

In der Automobilindustrie ist die Teilung in Markenhersteller und Zulieferindustrie üblich. Gelingt es Bauteile für Kernkraftwerke zu standardisieren, kann sich auch eine kerntechnische Zulieferindustrie etablieren. Ein wesentlicher Teil der Kostenexplosion bei Kernkraftwerken ist dem erforderlichen „nuclear grade“ geschuldet. Es ist kein Einzelfall, daß ein und das selbe Teil für Kernkraftwerke durch diesen Status (Dokumentation, Zulassung etc.) oft ein Vielfaches des „handelsüblichen“ kostet. Ein wesentlicher Schritt für den Erfolg, ist dabei die klare Trennung in „sicherheitsrelevante“ und „sonstige“ Teile. Eine Vorfertigung und komplette Prüfung von Baugruppen kann dabei entscheidend sein. Wird beispielsweise das Notkühlsystem komplett passiv ausgelegt – also (fast) keine elektrische Energie benötigt – können die kompletten Schaltanlagen usw. in den Zustand „normales Kraftwerk“ entlassen werden.

Was ist die richtige Größe?

Die Bandbreite der elektrischen Leistung von SMR geht etwa von 40 bis 300 MWel. Die übliche Definition von „klein“ leitet sich von der Baugröße der Zentraleinheit ab. Sie sollte noch in einem Stück transportierbar sein. Dies ist eine sehr relative Definition, die sich beständig nach oben ausweitet. Es werden heute immer größere Einheiten (Ölindustrie, Schiffbau usw.) auch über Kontinente transportiert. Der Grundgedanke bei dieser Definition bleibt aber die Zusammenfassung eines „kompletten“ Reaktors in nur einem Teil und die Funktionsprüfung vor der Auslieferung, in einer Fabrik.

Sinnvoller erscheint die Definition nach Anwendung. Grundsätzlich sind Insellösungen und die Integration in vorhandene Netze unterscheidbar. Besonders abgelegene Regionen erfordern einen erheblichen Aufwand und laufende Kosten für die Energieversorgung. Auf diese Anwendung zielt beispielsweise das russische Konzept eines schwimmenden Kernkraftwerks. Die beiden je 40 MWel Reaktoren sollen nach Chuktoa in Ost-Sibirien geschleppt werden und dort Bergwerke versorgen. Sehr großes Interesse existiert auch im kanadischen Ölsandgebiet. Ein klassischer Anwender war früher auch das US-Militär. Es besitzt wieder ein verstärktes Interesse, abgelegene Militärstützpunkte durch SMR zu versorgen. Langfristig fallen in diese Kategorie auch Chemieparks und Raffinerien.

Kernkraftwerke unterliegen – wie alle anderen Kraftwerke auch – prinzipiell einer Kostendegression und Wirkungsgradverbesserung mit steigender Leistung. Es ist deshalb bei allen Kraftwerkstypen eine ständige Vergrößerung der Blockleistungen feststellbar. Heute wird die maximale Leistung hauptsächlich durch das Netz bestimmt. Man kann die Grundregel für Neuinvestitionen (stark vereinfacht) etwa so angeben:

  • Baue jeden Block so groß, wie es das Netz erlaubt. Das Netz muß Schnellabschaltungen oder Ausfälle vertragen können.
  • Baue von diesen Blöcken auf einem Gelände so viel, wie du kannst. Wieviel Ausfall kann das Netz bei einem Ausfall einer Übertragungsleitung verkraften? Wie kann die Brennstoffversorgung am Standort gewährleistet werden (Erdgaspipeline, Eisenbahnanschluss, eigener Hafen etc.)? Wie groß ist das Kühlwasserangebot und wie sind die Randbedingungen bezüglich des Umweltschutzes?

Aus den vorgenannten Überlegungen ergeben sich heute international Blockgrößen von 200 bis 800 MWel, bei zwei bis acht Blöcken an einem Standort.

Wie groß der potentielle Markt ist, sieht man allein an der Situation in den USA. Dort müssen wegen verschärfter Bestimmungen zur Luftverschmutzung (Mercury and Air Toxic Standards (MATS) und Cross-State Air Pollution Rule (CSDAPR)) bis 2016 rund 34 GWel Kohlekraftwerke vom Netz genommen werden. Neue Kohlekraftwerke dürfen praktisch nicht mehr gebaut werden. Die Umstellung auf Erdgas kann wegen der erforderlichen Gasmengen und des daraus resultierenden Nachfragedrucks nur eine Übergangslösung sein. Da die „alten Kohlekraftwerke“ relativ klein sind, würde ein Ersatz nur durch „große“ Kernkraftwerke einen erheblichen Umbau der Netzstruktur erforderlich machen. Eine schmerzliche Erfahrung, wie teuer Zentralisierung ist, macht gerade Deutschland mit seinem Programm „Nordseewind für Süddeutschland“. Insofern brauchen SMR auch nur mit „kleinen“ Kohlekraftwerken (100 bis 500 MWel) konkurrieren, die der gleichen Kostendegression unterliegen.

Das Sicherheitskonzept

Bei der Markteinführung von SMR gibt es kaum technische, aber dafür um so größere administrative Probleme. Aus diesem Grund rechtfertigt sich auch das staatliche Förderprogramm in den USA. Die Regierung schreibt zwingend eine Zulassung und Überwachung durch die NRC vor. Dieses Verfahren muß vollständig durch die Hersteller und Betreiber bezahlt werden. Die Kosten sind aber nicht nur (mit dem jedem Genehmigungsantrag innewohnenden) Risiko des Nichterfolges versehen, sie sind auch in der Höhe unkalkulierbar. Die Prüfung erfolgt in Stundenlohnarbeit, zu Stundensätzen von knapp 300 US-Dollar! In diesem System begründet sich ein wesentlicher Teil der Kostenexplosion bei Kernkraftwerken. Die NRC hat stets – nicht ganz uneigennützig – ein offenes Ohr für Kritik an der Sicherheit von Kernkraftwerken. Mögen die Einwände auch noch so absurd sein. Als „gute Behörde“ kann sie stets „Bürgernähe“ demonstrieren, da die Kosten durch andere getragen werden müssen, aber immer den eigenen Stellenkegel vergrößern. Dieses System gerät erst in letzter Zeit in das Licht der Öffentlichkeit, nachdem man erstaunt feststellt, um wieviel billiger und schneller beispielsweise in China gebaut werden kann. Nur mit geringeren Löhnen, läßt sich das jedenfalls nicht allein erklären.

Die „Massenproduktion“ von SMR erfordert völlig neue Sicherheitskonzepte. Auf die technischen Unterschiede wird in den weiteren Teilen noch ausführlich eingegangen werden. Die Frage ist eher, welches Niveau man als Bezugswert setzt. Einem überzeugten „Atomkraftgegner“ wird nie ein Kraftwerk sicher genug sein! Im Gegenteil ist die ständige Kostentreiberei ein zentrales „Kampfmittel“. Allerdings wird durch die Erfolge von China und Korea das Märchen von der „ach so teuren Atomkraft“ immer schwerer verkaufbar. Selbst in einem tiefgläubigen Land wie Deutschland, muß man daher immer mehr auf andere Strategien (z. B. angeblich ungelöste „Entsorgung“) ausweichen. Sollte man jedoch das heute erreichte Sicherheitsniveau als Grenzwert setzen, lassen sich bei den meisten SMR-Konzepten bedeutende Kostenvorteile erreichen. Es ist nicht auszuschließen, daß das – außerhalb Deutschlands – so gesehen wird. Andererseits kann man durch zusätzliche Sicherheitsmaßnahmen die Auswirkungen auf das Umfeld auch bei schwersten Störfällen so stark begrenzen, daß ein Einsatz innerhalb des Stadtgebiets z. B. zur Fernwärmeversorgung akzeptabel wird. Könnte sogar sein, daß SMR in Städten mit starker Luftverschmutzung hoch willkommen sind.

Es gibt aber durchaus einige offene Fragen. Je mehr Standorte es gibt, um so aufwendiger ist die Organisation eines lückenlosen Überwachung- und Bewachungssystems. Heute hat jedes US-Kernkraftwerk zwischen 400 und 700 Festangestellte. Allein die „eigene Privatarme“ umfaßt durchschnittlich 120 Mann. Für jeden Reaktor gibt es ständig zwei – vom Energieversorger zu bezahlende – NRC-Kontrolleure.

International sind Abkommen zu treffen, die sich über die gegenseitige Anerkennung von Zulassungen und Prüfungen verständigen. Es macht keinen Sinn, wenn jedes Land von neuem das gesamte Genehmigungsverfahren noch einmal wiederholt. Bisher gilt eine NRC-Zulassung international als „gold standard“. Es würde sich lohnen, wenn die Kerntechnik sich hierbei an der internationalen Luftfahrt orientiert. Ebenfalls ein Bereich mit sehr hohen Sicherheitsanforderungen.

Nach allgemeiner Auffassung sollten die Lieferketten in „nuclear“ und „non nuclear“ unterteilt betrachtet werden. Die Lieferketten für alle sicherheitstechnisch bedeutenden Teile (Brennelemente, Dampferzeuger, Kühlmittelpumpen usw.) müssen schon sehr früh in der Genehmigungsphase stehen, da ihre Entwürfe unmittelbar mit der Sicherheit verbunden sind. Die Zulieferer müssen sehr eng mit dem eigentlichen Kraftwerkshersteller verknüpft werden. Es ergibt sich ein ähnliches Geschäftsmodell, wie in der Automobilindustrie. Dort werden die Zulieferer mit ihrem speziellen Wissen und Erfahrungen möglichst früh und eng in den Entwicklungsprozess einbezogen. Diese Lieferketten sollten für die Bauartzulassung (vorübergehend) festgeschrieben werden. Es sollten Bauteile gebaut und eingehend geprüft werden. Während dieses Prozesses sind alle Produktionsschritte und Prüfverfahren genau zu dokumentieren, um den Herstellerkreis später ausweiten zu können. Alle sonstigen Bestandteile des Kraftwerks können im Industriestandard und nach lokalen Gegebenheiten unmittelbar nach der jeweiligen Auftragsvergabe vergeben werden.

Hinweis

Dieser erste Teil beschäftigt sich mehr mit den grundsätzlichen Eigenheiten sog. „Small Modular“ Reaktoren. Die Betonung liegt hier auf der energiewirtschaftlichen Betrachtung. Es folgt ein zweiter Teil, der sich näher mit der Technik von SMR in der Bauweise als Leichtwasserreaktor beschäftigt. Ein dritter Teil wird auf die ebenfalls im Bewerbungsverfahren befindlichen schnellen Reaktoren eingehen.