Beginn einer neuen Ära?

Im Juni 2021 begann der Bau eines neuen Reaktors im sibirischen chemischen Kombinat Seversk. Der Ort ist nicht zufällig gewählt, sondern es handelt sich um ein grundsätzlich neues System: Ein spezieller Reaktor mit angeschlossener Wiederaufbereitung. Ziel ist ein Kernkraftwerk, dem lediglich Uran (aus abgebrannten Brennelementen) zugeführt wird und nur (endlagerfähige) Spaltprodukte abgeführt werden. Der entscheidende Punkt gegenüber herkömmlichen Reaktoren ist der Abfall Spaltprodukte. Die Problematik der Endlagerung über sehr lange Zeiträume wäre damit vom Tisch, da Spaltprodukte in weniger als 300 Jahren zerfallen sind. Die sehr langlebigen Transurane werden bei diesem Reaktor kontinuierlich „mit verbrannt“. Diese „Stromfabrik“ besteht also aus drei Einheiten: Der (neuartigen) Brennelemente-Fabrik, dem Kernreaktor und der Wiederaufbereitungsanlage. Die Brennelemente-Fabrik soll 2023 und die Wiederaufbereitung 2024 gebaut werden. Der Reaktor soll 2026 in Betrieb gehen.

Der BREST-OD-300

Das Entwicklungsziel dieses Reaktors der vierten Generation war „natürliche Sicherheit“. Das Kühlmittel ist nicht Wasser unter hohem Druck, sondern nahezu druckloses Blei. Der Reaktorkern befindet sich deshalb nicht in einem dickwandigen Druckbehälter, sondern in einem (nahezu drucklosen) Tank für flüssiges Blei. Der Schmelzpunkt von Blei liegt bei rund 330°C. Dies ergibt ein neuartiges Sicherheitsproblem, denn es muß gewährleistet sein, daß das Blei an keiner Stelle einfriert und irgendwelche Kanäle verstopft. Andererseits ist der Siedepunkt mit über 1700°C so hoch, daß sich kein Druck im Reaktorkreislauf aufbauen kann. Leckagen sind unproblematisch, da Blei weder mit Luft noch mit Wasser heftig reagiert. Blei wird praktisch auch nicht aktiviert, sodaß nur ein einfacher Kreislauf nötig ist, was Kosten spart und das System vereinfacht. Die Austrittstemperatur des Blei beträgt rund 540°C. Ist also weit von der Siedetemperatur entfernt. Hinzu kommt die große Wärmespeicherfähigkeit des Blei (spezifisch und über das Tankvolumen), die alle Lastsprünge abfedert. Ein solcher Reaktor ist in seinem (sicherheitstechnischen) Verhalten sehr gutmütig.

Blei ist ein sehr schlechter Moderator, der die Neutronen kaum abbremst. Schnelle Neutronen können zwar alles Uran, Plutonium und sogar die minoren Aktinoide spalten – das allerdings mit einer weit geringen Wahrscheinlichkeit. Als Konsequenz muß man entweder eine hohe Anreicherung oder einen höheren Gehalt an Plutonium verwenden. In diesem Sinne sind solche Reaktoren sinnvollerweise als Nachfolger der Leichtwasserreaktoren anzusehen. Erst wenn man entsprechend viele abgebrannte Brennelemente besitzt – von „Atomkraftgegnern“ fälschlicherweise als „Atommüll“ bezeichnet – aus denen man das Plutonium extrahieren kann, kann man sinnvollerweise mit dem Aufbau einer Flotte schneller Reaktoren beginnen. Für jede Erstbeladung muß das Plutonium von außen kommen. Läuft ein solcher Reaktor, kann er genug neues Plutonium bilden um für seinen Weiterbetrieb selbst zu sorgen. Man muß dann nur die Spaltprodukte entfernen (die nukleare Asche) und die gespaltenen Kerne durch U238 – ebenfalls von „Atomkraftgegnern“ als „Atommüll“ bezeichnet – ersetzen. In diesem Sinne verfügen wir bereits heute über gigantische Energievorkommen in der Form abgebrannter Brennelemente aus Leichtwasserreaktoren. Bisher war die Nutzung wegen der geringen Natururan-Preise noch unwirtschaftlich. Allerdings kommen die stets steigenden Lagerkosten für abgebrannte Brennelemente einer schnelleren Nutzung entgegen.

Da Blei ein schlechter Moderator ist, kann man die Gitterabstände im Kern vergrößern. Durch den verringerten Strömungswiderstand kann man mehr Wärme über Naturkonvektion abführen, was die Notkühlung auch nach einem Blackout (Fukushima) ermöglicht. Zu diesem Zweck sind Kamine (2 von 4 genügen) vorhanden, die die Restwärme passiv an die Umgebungsluft abführen. Selbst unter vollständigem Verlust der Wärmesenke bei voller Leistung von 700 MWth erreicht die Hüllrohr-Temperatur am ungünstigsten Brennstab keine 900°C. Für die Hüllen aus Stahl kein großes Problem: Ein Unglück wie in Fukushima wäre gar nicht möglich. Es könnte kein Knallgas entstehen (Reaktion der Zirconium-Hüllen mit Wasserdampf) und es wäre keine aktive Not-Kühlung nötig. Treffender kann man nicht verdeutlichen, was mit „natürliche Sicherheit“ gemeint ist.

Die Brennstäbe

Auch hier geht man neue Wege. Bei herkömmlichen Reaktoren verwendet man Urandioxid als Brennstoff in Hüllrohren aus Zirkalloy. Uranoxid ist eine (spröde) Keramik mit schlechter Wärmeleitung. Es kann bei einem Störfall passieren, daß die Brennstäbe in ihrem Zentrum bereits aufschmelzen und Spaltprodukte frei setzen, während sie ansonsten noch intakt sind. Fallen sie kurzzeitig und lokal trocken (Kühlmittelverlust-Störfall), kann die Abschreckung durch die Notkühlung fatale Konsequenzen haben (Harrisburg, Fukushima).

Bei diesem Typ verwendet man Uran-Plutonium-Nitrid als Brennstoff. Es besitzt eine um 30% größere Dichte, eine 4 bis 8 fache Wärmeleitung, gute Rückhaltung für Spaltprodukte, gute Formstabilität und geringe Reaktionen mit der Edelstahl-Hülle. Die hohe Dichte und gute Wärmeleitung führen zu geringeren Temperaturgradienten zwischen Zentrum und Umfang. Dies führt zu einer hohen Lebensdauer der Brennelemente (Brennstoffwechsel nur alle fünf Jahre) und großen Sicherheitsreserven für Störfälle.

Der Kern besteht aus 169 Brennelementen, hat eine Höhe von lediglich 1,1m und beinhaltet rund 20 to Brennstoff. Die Brennelemente sind sechseckig, wodurch sich eine sehr dichte Packung ergibt. Sie sind rundum offen, um bei einer etwaigen Verstopfung auch Querströmung zu ermöglichen. Auf Grund der Brennstoffeigenschaften und der Konstruktion ist die Neutronenökonomie so gut, daß keine separate Brutzone erforderlich ist und trotzdem eine Konversionsrate von Eins („Selbstversorgung“) erzielt wird.

Wiederaufbereitung

Bisher wurde großtechnisch nur das PUREX-Verfahren angewendet. Dieses nass-chemische Verfahren zielt – ursprünglich aus der Rüstung kommend – auf die Rückgewinnung von möglichst reinem Uran und (insbesondere ) Plutonium ab. Alles andere ist Abfall. Dieser ist wegen der minoren Aktinoide besonders langlebig und erfordert ein geologisches Tiefenlager zur Endlagerung. Bei diesem Reaktorkonzept sieht die Fragestellung gänzlich anders aus. Hier gilt es nur die Spaltprodukte – die nukleare Asche – zu entfernen. Alles andere soll und kann als Energieträger verbleiben. Die Spaltprodukte können anschließend weiterverarbeitet oder verglast werden und in Edelstahlbehälter abgefüllt werden. Wegen der relativ geringen Halbwertszeiten kann dieser Abfall je nach Gusto „tiefengelagert“ oder „ingenieurgelagert“ werden. Auf jeden Fall, zu verschwindend geringen Kosten gegenüber der Endlagerung von kompletten Brennelementen.

Der BREST-OD-300 im Allgemeinen

Der Reaktor verfügt über eine elektrische Leistung von 300 MWel bei einer thermische Leistung von 700 MWth. Er wäre per Definition damit noch ein SMR. Der Hersteller selbst betrachtet ihn eher als Vorläufer für einen Reaktor mit 1200 MWel, der etwa Anfang der 2030er Jahre gebaut werden soll. Es ist der russische Weg der kleinen, aufeinander aufbauenden Schritte mit immer mehr gesammelten Erfahrungen, die in das jeweilige Nachfolgemodell einfließen können. In diesem Zusammenhang muß man feststellen, daß die Entwicklung bleigekühlter Reaktoren in Russland eine Jahrzehnte lange Tradition hat. Sie reicht bis auf die U-Boote der Alfa-Klasse (Bauzeitraum 1968–1975, Außerdienststellung 1983 bis 1997) zurück. Zahlreiche Probleme bezüglich Korrosion und Verschleiß konnten inzwischen gelöst werden.

Der Aufbau ähnelt klassischen Druckwasserreaktoren: In der Mitte befindet sich der Reaktor. Von ihm gehen vier Kühlkreisläufe (flüssiges Blei) ab. Jeder Kühlkreislauf versorgt zwei Dampferzeuger. Das in den beiden Dampferzeugern abgekühlte Blei wird von einer Umwälzpumpe angesaugt und dem Reaktor wieder zugeführt. Die acht Dampferzeuger produzieren etwa 1500 to/h Dampf mit einer Temperatur von über 500°C. Auf Grund der höheren Dampftemperaturen ergeben sich bessere Wirkungsgrade und andere Anwendungsgebiete (z. B. Wasserstoffherstellung durch Hochtemperatur-Elektrolyse, Raffinerien, chemische Industrie etc.). Jeder Kühlkreislauf bildet eine separate Baugruppe mit kompletter Notkühlung, Umwälzpumpe etc. in einer eigenen „Betonkammer“. Das Ganze ist von einem Betonzylinder als Schutz gegen Einwirkungen von außen umgeben.

Anders als bei Leichtwasserreaktoren wird der Kern durch eine Lademaschine versorgt. Sie kann Brennelemente entnehmen, umsetzen und durch frische ersetzen. Verbrauchte Elemente werden im Bleitank bis zum erforderlichen Abklingen zwischen gelagert. Sie stehen also stets unter dem gleichen Schutz (Fukushima) wie der Reaktorkern. Ein Brennstoffzyklus dauert fünf Jahre (Leichtwasserreaktor 9 bis 16 Monate üblich). Sind erst einmal die üblichen Kinderkrankheiten beseitigt, kann man von einer noch besseren Verfügbarkeit als heute (etwa 90%) ausgehen. Geplant ist ein Abbrand zwischen 5,5% und 9% Schwermetall. An dieser Stelle erscheint es sinnvoll, sich die Materialströme und Abfallmengen zu verdeutlichen. Wenn dieser Reaktor das ganze Jahr voll durchläuft (Grundlast) verbraucht er etwa 270 kg Uran. Das ist gleichzeitig die Menge hochaktiver Spaltprodukte die jährlich anfällt. Geht man von einem mittleren Abbrand von 8% Schwermetall aus, sind etwa 3,5 to frische Brennelemente jährlich nötig. Das alles erinnert mehr an eine Anlage im Labormaßstab. Wollte man diese Strommenge von 2,6 TWh mit einem Offshore-Windpark erzeugen, müßte dieser mindestens 1000 MW umfassen oder bei einem Photovoltaik-Park mindestens 2000 MW. Wobei dies lediglich die gleiche Energieproduktion wäre. Da aber Wind und Sonne nur zufällig und unvorhersehbar sind (Wettervorhersage), müßten noch die zwingend erforderlichen Stromspeicher (zusätzliche Investitionen) und deren Verluste (ca. 50% für längere Ausfallzeiten) hinzugerechnet werden. Diese wenigen Zahlen machen deutlich, daß zumindest Russland nicht zurück ins Mittelalter will, ob nun „Klimakatastrophe“ oder nicht.

Sicherheit

Die vierte Generation soll noch einmal um Größenordnungen „sicherer“ sein als die derzeitige dritte Generation. Gemeint ist damit die Wahrscheinlichkeit für Unglücke, bei denen Radioaktivität das Betriebsgelände überschreitet und damit Anlieger gefährdet. Diese Reaktoren sollen so sicher sein, daß sie unmittelbar in einer Chemieanlage betrieben werden können, denn sie sind nicht gefährlicher als diese Anlagen selbst, wodurch völlig neue Anwendungen für Kernenergie möglich sind.

Da diese Kernkraftwerke mit dem „Abfall“ der bisherigen Kernkraftwerke betrieben werden können, sind sie extrem „nachhaltig“. Damit sind nicht nur die abgebrannten Brennelemente gemeint, sondern auch das „Abfall-Uran-238“ aus den Anreicherungsanlagen. Ganz neben bei, löst sich auch die „Endlagerfrage“. Spaltprodukte sind im Vergleich zu den Aktinoiden kurzlebig. Diese Form von „Atommüll“ ist nach wenigen Jahrzehnten weiterverarbeitbar. In ihnen sind jede Menge wertvoller Stoffe enthalten. Schon heute werden seltene Isotope aus dem Abfall der militärischen Wiederaufbereitung für z.B. medizinische Anwendungen gewonnen. Wer aber unbedingt möchte, kann sie auch weiterhin in geologischen Tiefenlagern verschwinden lassen. Nur eben zu viel geringeren Kosten.

Flugscharen zu Schwertern?

Kaum baut China seinen dritten natriumgekühlten Reaktor mit schnellem Neutronenspektrum, kommen die einschlägigen „Atomkraftgegner“ wieder unter ihren Steinen hervorgekrochen und erzählen das Märchen von den „Bomben aus den schnellen Brütern“ neu. Diesmal in der Version ‎China. Genau dieser Henry Sokolski hat schon 2010 seine steilen Thesen bei der Heirich Böll Stiftung (Die grüne politische Stiftung) unter dem Titel Wege aus dem nuklearen Dilemma verbreitet. Eigentlich nur neuer Wein aus alten Schläuchen. Gleichwohl Hauptgift der „Atomkraftgegner“ im doppelten Sinne: Erstens, der Mythos vom nicht wiederverwendbaren Atommüll und die „Endlagerfrage“ muß aufrecht erhalten bleiben und zweitens, es gibt keine Trennung zwischen friedlicher Nutzung der Kernenergie und „Atombomben“. Genau das, was schlichte Gemüter mit guten Herzen an die Wahlurnen oder auf Demos treiben soll. Es ist deshalb nötig, die Schleier der Propaganda etwas beiseite zu schieben.

Die Rolle Chinas

Da uns Claudia Kemfert und ihre Kumpane in unzähligen Auftritten im Staatsfernsehen erklärt haben, daß Wind und Sonne die einzig wahren Energieträger sind und „Atomkraft ganz, ganz unwirtschaftlich ist“, muß natürlich eine Begründung für den Ausbau der Kernenergie in China her: Was geht da besser, als „atomare“ Aufrüstung? Die Enthüllung ist, China baut gar keine Kern-Kraftwerke für die Stromerzeugung, sondern will nur Plutonium erzeugen, um daraus Bomben zu bauen oder wenigstens die Welt zu vergiften. Klingt alles – aber bestimmt nicht zufällig – nach Dr. Fu Manchu bzw. ist einfach nur schlechte Propaganda. Aber Vorsicht, langjährige Erfahrung mit dem Ökosozialismus zeigt, daß es denen egal ist, ob wahr oder falsch, Hauptsache die Spinnereien werden so lange in allen Medien wiederholt, bis jeder sie nachplappert und sie dadurch auf mystische Art wahr erscheinen.

Man mag ja über das kommunistische China denken was man will, aber China hat es gar nicht nötig, heimlich Kernwaffen zu produzieren. China ist seit 1964 „Atommacht“ – ganz im Gegenteil z. B. zum Iran. Inzwischen mit allem was dazu gehört, wie z. B. Raketen. Niemand dürfte daran zweifeln, daß China in der Lage wäre, weltweit einen „Atomschlag“ auszuführen. Aber will es das wirklich? Zweifellos hat China imperiale Gelüste, aber gerade deshalb wird es einen Atomkrieg vermeiden. Die blitzartige Einäscherung von Shanghai (ca. 26 Millionen Menschen) oder Peking (ca. 20 Millionen) würde China schneller in die Knie zwingen, als Hiroshima und Nagasaki das japanische Kaiserreich. China ist mit seiner Bevölkerungsstruktur längst nicht mehr in der Lage einen Atomkrieg zu führen. China kann auch nur auf Abschreckung setzen. Dafür reichen seine geschätzt 350 Sprengköpfe aus. Das mag gegenüber Russland (6375 Sprengköpfe) und USA (5800) gering erscheinen, ist aber in der Größenordnung von GB und Frankreich. Gerade für seine imperialen Züge im Pazifik – und nicht zuletzt für die latente Bedrohung von Taiwan – braucht es eine starke konventionelle Armee und Marine. Ein nukleares Wettrüsten frißt aber Unmengen Geld.

Selbst wenn China einen Ausbau seiner Nuklearstreitkräfte plant, kann es sogar auf Vorräte an für Waffen geeignetem Plutonium (geschätzt 2,5 bis 3,5 to) für weitere 480 Sprengköpfe zurückgreifen. Darüberhinaus noch auf hochangereichertes Uran (geschätzt 11 bis 17 to) für weitere etwa 1000 Sprengköpfe. Wenn das nicht reicht, kann man noch entsprechende Produktionsanlagen reaktivieren.

Plutonium ist nicht gleich Plutonium

An dieser Stelle ist noch ein bißchen Neutronenphysik nötig. Plutonium wird in jedem Reaktortyp aus U238 durch das Einfangen von Neutronen gebildet. Die Typen unterscheiden sich lediglich durch ihre Konversionsrate. Bei Leichtwasserreaktoren beträgt diese etwa 0,6. Das heißt statistisch betrachtet, wenn 10 Kerne gespalten wurden, haben sich 6 Plutoniumatome neu gebildet. Ist die Konversionsrate größer 1, spricht man von Brütern. Es werden also mehr Kerne – die zu Spontanspaltungen neigen, wie U235 und Pu239 – neu gebildet als verbraucht. Mit schnellen Neutronen kann man alle Kerne spalten, braucht aber eine höhere Anreicherung als bei langsamen (abgebremsten oder moderierten) Neutronen.

Wenn nun ein Neutron auf einen Kern Pu239 (Halbwertszeit 24 110 Jahre) trifft, wird er nicht zwingend gespalten, sondern es bildet sich (manchmal) Pu240 (Halbwertszeit 6 564 Jahre), aus diesem kann sich Pu241(Halbwertszeit 14,35 Jahre) bilden und daraus sogar Pu242 (Halbwertszeit 375 000 Jahre). Wichtig ist nur, daß man je nach Fahrweise und Betriebsdauer des Reaktors ein wildes Isotopengemisch erhält, welches man chemisch nicht trennen kann. Aus verschiedenen Gründen ist aber lediglich das Isotop Pu239 für eine Kernwaffe geeignet. Man unterscheidet deshalb zwischen Reaktor-Plutonium und Waffen-Plutonium. Letzteres muß mindestens eine Reinheit von 93% Pu239 haben. Es ist deshalb Unsinn – aber immer wieder gern von „Atomkraftgegnern“ gemacht – aus der Menge an anfallendem Reaktorplutonium aus Kernkraftwerken irgendwelche „Atombomben“ zusammen zu spekulieren. Noch einmal in aller Deutlichkeit: Aus dem Reaktorplutonium üblicher Kernkraftwerke läßt sich nur eine „Atombombe“ bauen, mit der man nicht einmal Fensterscheiben zum wackeln bringen kann.

Gleichwohl ist es kein Problem, Waffen-Plutonium herzustellen, wenn man die Erzeugung verstanden hat. Aus U238 bildet sich U239, welches mit einer Halbwertszeit von 24 Minuten in Np239 zerfällt und dieses zerfällt wiederum mit einer Halbwertszeit von 2,4 Tagen in Pu239. Der wesentliche Trick ist also, man läßt die Brennstäbe nur kurz im Reaktor verweilen. Will man hochreines Waffen-Plutonium herstellen, hat man dafür immer spezielle Anlagen verwendet, in denen die entstandene Wärme einfach als Abfall an die Umgebung abgegeben wurde. Die Brennelemente waren nur so kurz „abgebrannt“, daß sie einfach in Wasserbecken fielen und früher sogar nur mit Zangen entnommen wurden. Da sie so schwach strahlen, ist die Wiederaufbereitung ebenfalls viel einfacher als bei Brennelementen aus Kernkraftwerken. Kurzum, es ist einfach idiotisch, „Atombomben“ mit Kernkraftwerken herstellen zu wollen. Ganz besonders dann, wenn man – wie China als anerkannte „Atommacht“ – Heimlichkeit gar nicht nötig hat.

Warum baut China nun Natriumgekühlte-Reaktoren?

China setzt voll auf Kernenergie. Man geht beim Ausbau langfristig und in klar definierten Schritten vor. Erst kauft und klaut man das gesamte weltweit vorhandene Wissen zusammen. Diese Phase ist bezüglich Reaktoren der dritten Generation abgeschlossen. Jetzt geht man in die Serienproduktion mit „Eigenentwicklungen“, für die man keine Lizenzgebühren mehr bezahlt und keine Einschränkungen mehr akzeptieren muß. Chinesische Druckwasserreaktoren haben inzwischen Bauzeiten von rund fünf Jahren und Baukosten auf dem Niveau modernster Kohlekraftwerke mit Rauchgaswäsche und höchsten Wirkungsgraden. Die Auslegungslebensdauer bewegt sich auf dem internationalen Standard von 60 Jahren und wird real 100 Jahre überschreiten. Die Reaktoren, die heute ans Netz gehen, werden die Jahrhundertwende noch überleben. Wie immer, wird nicht die Technik, sondern die individuelle Wirtschaftlichkeit über deren Ende entscheiden.

China hat aber von Anbeginn der Nutzung von Kernenergie ein Problem: Zumindest die wirtschaftlich förderbaren Uranvorkommen im eigenen Land sind sehr gering. Deshalb gilt schon heute die Dreierregel: Ein Drittel aus inländischer Förderung, ein Drittel durch Kauf am Weltmarkt und ein Drittel aus ausländischen, aber von China betriebenen, Minen. Man darf dabei nie aus den Augen verlieren, daß ein abgebranntes Brennelement immer noch rund 95% Energieträger enthält. Es baut sich also ein gewaltiger Schatz auf, den es (langfristig) zu heben gilt. Die einzig verfügbare erprobte Technik zur Spaltung von U238 kommt derzeit aus Russland in der Form des mit Natrium gekühlten und schnellem Neutronenspektrum betriebenen BN-600. Dieser Reaktor ist seit 1981 in Beloyarsk am Netz. Inzwischen haben umfangreiche Nachrüstungen (seit 2010) stattgefunden und drei neue Dampferzeuger sind in Vorbereitung, die die genehmigte Betriebsdauer auf 60 Jahre erhöhen. Auf der Basis dieses Typs (1500 MWth, 600 MWel) hat China zwei Reaktoren für das Kraftwerk Xiapu bestellt. Sie sind seit 2018 in Bau und sollen 2023 bzw. 2026 den kommerziellen Betrieb aufnehmen. Sie können mit Uranoxid (Anreicherung 17 bis 26%) oder Mischoxid (100 GWd/t Abbrand) bestückt werden. Später ist sogar eine Beladung mit metallischem Brennstoff (100–120 GWd/t) vorgesehen. Dies würde auch ganz neue Wege bezüglich der Wiederaufbereitung ermöglichen. Der Brennstoff für die ersten sieben Jahre kommt von TCEL aus Russland. China geht auch hier wieder extrem konservativ vor.

Eine grobe Abschätzung ergibt für diese Reaktoren bei einer Erstbeladung mit Mischoxid einen Bedarf von etwa 10 to pro Reaktor. Dabei ist ein Verhältnis von (abgereichertem) Uran und Plutonium von etwa 8:2 erforderlich. Jedes Jahr dürfte eine Nachladung von rund 5 to MOX-Brennelementen pro Reaktor nötig sein. Die tatsächlichen Werte hängen stark von der jährlichen Auslastung und dem erzielten Abbrand (Werkstoffproblematik) ab. Die Energiedichte von natriumgekühlten Reaktoren ist sehr hoch: Der Reaktorkern eines BN-600 ist nur etwa 1m hoch, bei einem Durchmesser von etwa 2m (369 Brennelemente mit je 127 Brennstäben).

Die Wiederaufbereitung

Parallel läuft ein Programm zur Wiederaufbereitung. Aufbauend auf die umfangreiche Erfahrung aus der Waffenproduktion wurde bis 2005 eine Pilotanlage zur Aufbereitung ziviler Brennelemente gebaut. Ab 2010 begann der heiße Testbetrieb. Zahlreiche Verzögerungen ergaben aber erst 2017 einen halbwegs zufrieden stellenden Betrieb. Im Jahre 2011 wurde der Bau einer Anlage mit einer Kapazität von 200 toSM/a in Jinta beschlossen. Sie sollte 2020 in Betrieb gehen. Neben dieser Anlage wird auch eine Fertigung für MOX-Brennelemente mit einer Kapazität von 20 t/a errichtet. Diese Anlagen reichen für einen BN-600 Reaktor aus. Parallel ziehen sich seit Jahren Verhandlungen mit Frankreich über eine Wiederaufbereitungsanlage mit 800 t/a für Brennelemente aus Druckwasserreaktoren hin. Bisher scheiterten die Verhandlungen an den Preisvorstellungen der EDF.

Bezüglich der Wiederaufbereitung steht China nicht unter Zeitdruck: (Noch) sind die Weltmarktpreise für Uran niedrig, China verfügt bereits über große Kapazitäten zur Anreicherung und zur Produktion von Brennelementen für Druckwasserreaktoren. Die zeitlich nahezu unbefristete Lagerung von abgebrannten Brennelementen ist kein Problem – schon gar nicht für China mit seinen Wüsten. Es ist also folgerichtig, sich auf den Zubau der konventionellen Reaktorflotte (Generation III) zu konzentrieren. Jedes neue Kernkraftwerk am Netz kann potentiell alte umweltverschmutzende Kohlekraftwerke ersetzen. Der derzeitige Einstieg in die Reaktoren mit Natriumkühlung ist vergleichbar mit dem Einstieg in die Druckwasserreaktoren in den 1980er Jahren. Auch diesmal wird weniger auf Exotik als auf erprobte Technik gesetzt – nur verengt sich hier der Weltmarkt derzeit auf Russland.

Zusammenfassung

China setzt konsequent auf den Ausbau der Kernenergie:

  • Am Ende von 2019 verfügte China über eine installierte Leistung von 50 GWel. Geplant war eine Leistung von 58 GWel. Die kleine Delle kam durch die Reaktion auf das Unglück von Fukushima. Im laufenden Fünfjahrplan (2021 – 2025) ist eine Leistung von 70 GWel geplant. Beauftragt sind vier Reaktoren vom Typ CAP1000, vier vom russischen Typ VVER- V491, ein SMR vom Typ ACP100 und ein Hualong One. Alles Druckwasserreaktoren der III. Generation.
  • Seit 2011 ist der Chinese Experimental Fast Reactor (CEFR) mit einer Leistung von 65 MWth / 20 MWel in Betrieb. Er wird mit auf 64% angereichertem Uran betrieben. Reaktor und Brennstoff kommen aus Russland.
  • Seit 2017 bzw. 2020 befinden sich zwei schnelle Reaktoren mit Natriumkühlung in Xiapu in Bau. Die beiden russischen Reaktoren mit 1500 MWth / 600 MWel sollen 2023 bzw. 2026 ans Netz gehen. Die Brennstoffversorgung für sieben Jahre erfolgt aus einer neuen Fabrik in Russland. Beide Länder erzielen dadurch für ihre Programme mit schnellen Reaktoren einen bedeutenden Kostenvorteil. Beide Länder bevorzugen zusammen eine evolutionäre Strategie in Richtung 1000 MWel. (Russland verfügt bereits über einen BN-800 in Beloyarsk).
  • Bereits 1983 hat China einen geschlossenen Brennstoffkreislauf beschlossen. Seit 2015 gibt es eine Testanlage für die Aufbereitung ziviler Brennelemente in Jinta. Sie soll eine Kapazität von 50 to/a haben. Ihr Bau und Betrieb war mit zahlreichen Schwierigkeiten verbunden.
  • In Jiuquan ist eine 200 to/a Demonstrationsanlage in Bau. Die Bauarbeiten sind fertig und letztes Jahr hat die Montage der Verfahrenstechnik begonnen. Geplante Inbetriebnahme ist 2025. Inzwischen ist ein baugleicher zweiter Strang in Arbeit, der noch vor 2030 fertiggestellt sein soll.
  • Seit 2018 sind neben den zwei Wiederaufbereitungsanlagen auch zwei Brennelementefabriken für Mischoxid mit einer Kapazität von je 20 to/a in Bau. In ihnen kann das aus der Wiederaufbereitung von abgebrannten Brennelementen aus den Druckwasserreaktoren zurückgewonnene Uran und Plutonium zu neuen Brennelementen verarbeitet werden.
  • In Beishan laufen seit Jahren die vorbereitenden Untersuchungen und Baumaßnahmen für ein geologisches Endlager für die hochaktiven Reststoffe. Geplant ist eine Inbetriebnahme bis 2050.

NELA

Das Kunstwort NELA ist eine Abkürzung für den Nuclear Energy Leadership Act. Eine Anweisung des US-Senats („Länderkammer der USA“) an den Secretary of Energy („Energieminister“ ), die Ziele für die zukünftige friedliche Nutzung der Kernenergie in den USA aufzustellen, eine vielseitig verwendbare Quelle für schnelle Neutronen auf der Basis eines Kernreaktors zu bauen (VTR) und High-Assay-Uran (Anmerkung: Uran mit knapp unter 20% Anreicherung, HALEU) für Forschung, Entwicklung und den Bau eines fortschrittlichen Reaktors etc. bereit zu stellen.

Die Reaktion auf dieses Gesetz – z. B. durch den Milliardär Bill Gates – war geradezu euphorisch. Der ehemalige Mitbegründer von Microsoft hält Kernenergie für eine der wichtigsten Zukunftstechnologien und ist auch aktiv und mit eigenem Geld an der Förderung beteiligt. So soll in seine Gründung TerraPower LLC Nuclear Energy bereits über eine Milliarde US-Dollar Risikokapital geflossen sein. Er war auch nicht ganz unschuldig an dieser Gesetzgebung, da seine Ankündigung mit seinem Reaktortyp nach China abzuwandern, mächtig Staub aufgewirbelt hat – man muß nicht extra erwähnen, daß dieser Schachzug bei Donald Trump voll ins Schwarze getroffen hat.

Politische Auswirkungen

Mag auch im deutschen Staatsfernsehen immer wieder der Eindruck geschürt werden, die USA seinen vollkommen gespalten und stünden kurz vor einem Bürgerkrieg, so ist dieses Gesetz ausdrücklich von Demokraten und Republikanern gemeinsam eingebracht worden.

Es gibt aber noch einen weiteren Hinweis für eine in der Bevölkerung breit vorhandene Zustimmung. Im Senat ist jeder Bundesstaat – unabhängig von Größe und Bevölkerung – durch zwei Senatoren vertreten. Jeder Senator ist für sechs Jahre gewählt und die Wahlen finden zeitversetzt alle zwei Jahre statt. Anders als in Deutschland („Parteiendemokratie“), werden die Senatoren direkt durch die Einwohner ihres Bundesstaates gewählt. Sie besitzen daher einen hohen Bekanntheitsgrad und entsprechendes Ansehen – deshalb wird keiner ein Gesetz einbringen, das seine Wiederwahl gefährdet. Insofern wird die Standortsuche nur eine Formsache sein. Verzögerungen durch „Bürgerproteste“ sind nicht zu erwarten.

Inhalt der Anweisung

NELA beinhaltet eine Menge tiefgreifender Veränderungen für die zukünftige Entwicklung der friedlichen Nutzung der Kernenergie: Endlich scheint der Gegensatz von hohen Investitionen – bei später extrem geringen Betriebskosten – verstanden und als Besonderheit der Kerntechnik akzeptiert zu sein. Es soll eine Wiederbelebung der sog. „schnellen Reaktoren“ erfolgen, diesmal jedoch nicht wegen (falsch eingeschätzter) kleiner Uranreserven, sondern zur „Entschärfung“ der Atommüll-Problematik. Die Zeit ist dafür reif. Gibt es doch auch in den USA mehrere tausend Tonnen abgebrannter Brennelemente, die durch jahrzehntelange Lagerung bereits so stark abgeklungen sind, daß sie förmlich nach einer Wiederaufbereitung schreien.

(Section 2) Genehmigung von langfristigen Energielieferungsverträgen

In den USA sind Verträge zwischen Energieerzeugern und öffentlichen Versorgern über die PPA (Power Purchase Agreement) reglementiert. Zukünftig dürfen Verträge über eine Laufzeit von 40 Jahren (bisher 10 Jahre) für Kernkraftwerke abgeschlossen werden. Die Zahlungsströme über die Vertragslaufzeit sind eine wichtige Grundlage für eine Finanzierung durch Kreditgeber.

(Section 3) Langfristige Pilotverträge

Der Energieminister soll insbesondere mit dem Verteidigungsminister und dem Minister für die Heimatverteidigung langfristige Verträge zur Versorgung mit Kernenergie ausarbeiten. Ziel ist mindestens ein Vertrag mit einem kommerziellen Kernkraftwerk bis zum 31.12.2023.

Der Minister soll neuartige Reaktoren (first-of-a-kind ) und neue kerntechnische Verfahren besonders berücksichtigen, die eine zuverlässige und belastbare (Anmerkung: also ausdrücklich keine wetterabhängigen und an Rohrleitungen gebundene Systeme) Energieversorgung von besonders wichtigen Einrichtungen ermöglichen. Insbesondere für abgelegene Regionen (Anmerkung: Militärstützpunkte etc.) und bei Inselbetrieb geeignete Systeme.

Es sind unter diesen Umständen ausdrücklich höhere, als Marktpreise erlaubt.

(Section 4) Entwicklungsziele für fortschrittliche Kernreaktoren

Unter fortschrittliche Reaktoren werden auch Prototypen verstanden, die besondere Fortschritte zur jeweils neusten Generation aufweisen:

  • Zusätzliche inhärente Sicherheiten,
  • geringerwertige (Anmerkung: Im Sinne von Menge und Aktivität) Abfälle,
  • bessere Brennstoffausnutzung (Anmerkung: Weniger Natur-Uran),
  • größere Toleranz gegenüber Ausfall der Kühlung,
  • höhere Verfügbarkeit (Anmerkung: Brennelementewechsel etc.),
  • besserer Wirkungsgrad,
  • geringerer Verbrauch an Kühlwasser,
  • die Fähigkeit zur Erzeugung elektrischer Energie und Heizwärme,
  • Anpassung an wachsende Verbräuche durch einen modularen Aufbau,
  • flexible Leistungsbereitstellung zum Ausgleich zwischen dem Angebot an wetterabhängigen Energien und der Verbrauchernachfrage
  • und Fusionsreaktoren.

Es soll ein Projekt zur Demonstration durchgeführt werden. Darunter wird ein fortschrittlicher Reaktor verstanden, der

  • innerhalb eines Versorgungsgebietes als Kraftwerk eingesetzt wird,
  • oder in irgendeinem anderen Zusammenhang, der den kommerziellen Einsatz eines solchen Reaktors erlaubt, eingesetzt wird.

Zu diesem Zweck soll der Minister möglichst bald nach dem Inkrafttreten, die Forschung und Entwicklung von fortschrittlicher, bezahlbarer und sauberer Kernenergie im eigenen Land vorantreiben. Zu diesem Zweck soll die Eignung verschiedener fortschrittlicher Reaktortechnologien für eine Anwendung durch private Unternehmen nachgewiesen werden:

  • zur Gewinnung von emissionsfreier elektrischer Leistung bei einem Energiepreis von bis zu 60 $ pro Megawattstunde, gemittelt über die geplante Lebensdauer des Kraftwerks,
  • zur Versorgung durch Fernwärme, Wärme in industriellen Prozessen und zur Herstellung synthetischer Kraftstoffe,
  • als Backup (Anmerkung: Für „Flatterstrom“) oder beim Einsatz von betriebsnotwendigen Strom-Versorgungsanlagen (Anmerkung: Rechenzentren, militärische Anlagen etc.).

Entwicklungsziele für die (staatliche) Kernforschung sind in diesem Sinne Demonstrationsprojekte, die nicht durch private Unternehmen durchgeführt werden können, da diese nicht in der Lage oder willens sind, das erhebliche finanzielle Risiko der Forschung zu tragen. Es soll der Zugang von Privatunternehmen zu staatlichen Forschungseinrichtungen oder die Nutzung staatlicher Forschungsergebnisse erleichtert werden.

Der Minister soll bis zum 30.9.2028 mindestens in ein Abkommen mit mindestens vier verschiedenen fortschrittlichen Reaktoren eintreten. Der Minister soll in diesem Sinne verschiedene Verfahren zur primären Kühlung (Anmerkung: Metalle, Gas, Salzschmelzen etc.) aussuchen. Er sollte dabei anstreben, daß die Langzeitkosten für elektrische Energie und Wärme konkurrenzfähig sind. Die in die Auswahl einbezogenen Reaktortypen sind durch externe Gutachten zu überprüfen. Es sollen in Zusammenarbeit mit privaten Unternehmen geeignete Liegenschaften ermittelt werden. Es sind staatliche Stellen, die National Laboratories und „höhere Bildungseinrichtungen“ direkt anzusprechen. Neben traditionellen Abnehmern, wie z. B. Stromversorger, sind auch potentielle Anwender neuer Technologien, wie z. B die petrochemische Industrie, sowie die Entwickler fortschrittlicher Reaktoren einzubeziehen.

Der Minister soll sicherstellen, daß er die Forschung auf Schlüsselgebieten der Kernenergie erleichtert, die Erkenntnisse über den gesamten Entwicklungsprozess, die Sicherheitstests und das Genehmigungsverfahren umsetzt. Aufgelegte Forschungsprogramme sollten Wert darauf legen, daß sie Lösungen für die Strahlenbelastung (Anmerkung: Schnelle Neutronen sind fürs Material schädlicher als thermische) und korrodierende Kühlmittel (Anmerkung: z. B. Salzschmelzen) bereitstellen und für die Zulassung fortschrittlicher Brennstoffe (Anmerkung: z. B. metallische zur einfacheren Wiederaufbereitung) sorgen.

Herausforderungen bezüglich Modellierung und Simulation, die den Konstruktionsprozess und das Zulassungsverfahren beschleunigen können, sind zeitnah zu realisieren.

Zugehörige Technologien, wie z.B. elektro-chemische Verfahren oder Wiederaufbereitungsverfahren, die das Volumen der Abfälle und deren Halbwertszeiten verringern, sind entwickelt. Die Infrastruktur, wie z. B. die „versatile fast neutron source“ und Prüfstände für Salzschmelzen sind errichtet. Das Grundlagenwissen über die Physik und Chemie von anderen Kühlmitteln als Wasser, wurde vertieft. Um die Kosten für die Realisierung fortschrittlicher Kernreaktoren zu senken, wurden fortschrittliche Herstellungs- und Konstruktionsverfahren, sowie Materialien untersucht.

(Section 5) Strategische Planung für die Kernenergie

Nicht später als 180 Tage nach dem Inkrafttreten soll der Minister den Fachausschüssen von Senat und Parlament einen 10-Jahres-Plan für die Strategie der Umsetzung vorlegen.(Anmerkung: Bisher gibt es keine übergreifende Koordinierung der Forschung und Entwicklung. Kernforschung wird von verschiedensten Regierungsstellen mit jeweils eigener Zielsetzung betrieben.)

Mindestens im Zwei-Jahres-Turnus hat der Minister den einschlägigen Fachausschüssen von Senat und Parlament einen aktualisierten 10-Jahres-Plan vorzulegen. Die Abweichungen oder die nicht Erfüllung sind zu begründen. (Anmerkung: Damit soll erreicht werden, daß neueste Forschungsergebnisse – von wem auch immer – unmittelbar in die laufende Entwicklung neuartiger Reaktoren einfliessen können und so die Zeitdauer bis zur Markteinführung verkürzt wird.)

(Section 6) Vielseitig verwendbare Quelle schneller Neutronen auf der Basis eines Reaktors

Als „Schnelle Neutronen“ werden hier Neutronen mit einer Bewegungsenergie von über 100 Kiloelektronenvolt verstanden. Der Minister soll für diese Quelle verantwortlich sein und sie soll als öffentliche Einrichtung betrieben werden. (Anmerkung: Hinter dieser „Quelle“ verbirgt sich ein Reaktor auf der Basis des PRISM Konzepts von GE Hitachi. Aufträge wurden bereits erteilt und Mittel von bis zu 800 Milionen Dollar jährlich in den Haushalt eingestellt. Man rechnet mit Gesamtkosten von bis zu sechs Milliarden Dollar. Es wird also diesmal nicht gekleckert. Als „Forschungsreaktor“ unterliegt er auch nicht dem normalen Genehmigungsverfahren mit seiner bekannt langen Dauer – auch hier heißt es: Zurück in die Zukunft.)

Der VTR (Versatile Test Reactor) soll die öffentliche Forschung mit „schnellen Neutronen“ sicherstellen. (Anmerkung: Seit der Ausserbetriebsetzung des Halden-Reaktors in Norwegen ist selbst die Industrie bei Bestrahlungsexperimenten auf China und Rußland angewiesen – ein absolutes No Go für die nationale Sicherheit.) Der Minister soll gewährleisten, daß die Quelle die Bestrahlung mit dem schnellen Neutronenspektrum ermöglicht und für neuartige Forschungsanforderungen erweiterbar ist. Der Minister soll gewährleisten:

  • Die Fähigkeit Experimente und Materialtests unter hohen Temperaturen durchzuführen.
  • Hohe Flüsse von schnellen Neutronen, wie sie bisher an anderen Forschungseinrichtungen nicht möglich sind.
  • Eine optimale Basis für zukünftige Forscher zu schaffen.
  • Eine maximale Flexibilität bei der Bestrahlung und ein maximales Volumen zu schaffen, damit so viele Forschergruppen wie praktikabel, tätig sein können.
  • Möglichkeiten zur Bestrahlung von Neutronen mit einem geringeren Energiespektrum zu gewährleisten.
  • Verschiedene Kreisläufe für Tests mit verschiedenen Brennstoffen und Kühlmitteln.
  • Zusätzliche Einrichtungen zur Untersuchung der Eigenschaften vor und nach der Bestrahlung.
  • Geringe Kosten für den Betrieb und Unterhalt über die gesamte Lebenszeit.

Der Minister soll bis spätestens zum Ende des Jahres 2025 die Anlage in Betrieb nehmen. (Anmerkung: Make America Great Again. Dieses Programm ist nur mit dem Bau des ersten Atom U-Boots oder dem Apollo-Programm in seinem Ehrgeiz vergleichbar.)

(Section 7) Programm zur Sicherheit von fortgeschrittenem Brennstoff

Zur Unterstützung der Kernwaffenproduktion und der Schiffsreaktoren (der Marine) benötigen die USA einen vollständigen Brennstoffkreislauf für leicht- und hochangereichertes Uran: Uranminen, Konversion, Anreicherung und Brennstoffherstellung.

Viele Unternehmen in den USA benötigen den Zugang zu Uran mit einer Anreicherung von knapp unter 20%-U235 (HALEU) für:

  • Erste Brennstofftests
  • Betrieb von Demonstrationsreaktoren
  • Kommerzieller Betrieb von fortschrittlichen Reaktoren

Bis heute existiert keine Anlage zur Herstellung von Brennstoff mit einer Anreicherung von mehr als 5%-U235 in den USA. Ein gesunder kommerzieller Brennstoffkreislauf mit höherer Anreicherung wäre gut für die einschlägigen Bereiche der nationalen Sicherheit und für die fortschrittliche kerntechnische Industrie der USA. Durch die Bereitstellung von Uran mit einer Anreicherung von knapp bis unter 20% aus den Beständen für die Rüstung für erste Brennstofftests und einen Demonstrationsreaktor könnte

  • der Weg bis zur Markteinführung solcher Konzepte,
  • die Entwicklung eines Marktes für fortgeschrittene Reaktoren
  • und ein wachsender kommerzieller Brennstoffkreislauf

beschleunigt werden. (Anmerkung: Hier wird das „Henne-Ei“ Problem durch eine Öffnung der Schatulle der Rüstung durchbrochen. Ein Zeichen, daß es mit einer möglichst schnellen Umsetzung sehr ernst gemeint ist. Gleichzeitig wird mit der Verwendung von höher angereichertem Uran die Plutonium-Problematik geschickt umschifft. Auch diese Pragmatik, deutet auf den festen Willen zu einer schnellen Entwicklung hin.)

Der Minister soll nicht später als in einem Jahr nach Inkraftsetzung höher angereichertes Uran bereitstellen und Verträge für Verkauf, Weiterverkauf, Übertragung und Vermietung zur Verwendung in kommerziellen oder nicht kommerziellen Reaktoren ausarbeiten.

Jeder Mietvertrag sollte eine Klausel enthalten, daß der Brennstoff im Eigentum des Ministeriums verbleibt, einschließlich einer Endlagerung der radioaktiven Abfälle infolge der Bestrahlung, und einer Wiederaufbereitung.(Anmerkung: Bei einer Miete könnten also die vorhandenen (militärischen) Wiederaufbereitungsanlagen und das WIPP als (staatliches) Endlager genutzt werden. Dies dürfte Störungen durch die „Anti-Atombewegung“ nahezu unmöglich machen.)

Bis Ende 2022 hat der Minister zwei Tonnen (bezogen auf den Gehalt von U235) und bis Ende 2025 zehn Tonnen zur Verfügung zu stellen. Dieses Programm endet 2034 oder wenn genug Uran aus kommerziellen Quellen zur Verfügung steht.

(Section 8) Qualitätsoffensive für Universitäten

Das Parlament stellt fest, daß Kernkraftwerke in den USA Milliarden Dollar Auftragsvolumen erzeugen und zehntausenden Amerikanern gut bezahlte Arbeitsplätze geben; dies gilt insbesondere in den Standort-Gemeinden. Der Weltmarkt für kommerzielle Kernkraftwerke wird in der Dekade 2018–2028 (nach Angabe der Handelskammer) um 740 Milliarden Dollar wachsen. Die Teilnahme und (wieder gewonnene) Führerschaft auf diesem Markt kann zu entsprechenden Exporten führen. Den Einfluß auf die internationalen Standards für Sicherheit, Schutz und gegen Weiterverbreitung könnten über die Handelsbeziehungen aufrechterhalten und weiter ausgebaut werden. Dies erfordert umfangreiche Investitionen in fortschrittliche Kerntechnik. Um die Welt in die nächste Generation kommerzieller Kernreaktoren zu führen, muß die Industrie für fortschrittliche Kernenergie in einen Zustand beschleunigten Wachstums versetzt werden. Dazu müssen Kooperationen (public-private-partnerships) zwischen den öffentlichen Institutionen und der Privatwirtschaft geschaffen werden. Neue Reaktoren stellen besondere Anforderungen an die Genehmigungs- und Überwachungsinstitutionen. Dafür sind hoch qualifizierte Arbeitskräfte nötig. Die Universitäten sollen jährlich mindestens 600 Absolventen (undergraduate students) bzw. 500 Absolventen (graduate students) der Kerntechnik hervorbringen. Dies ist der Mindestbedarf um eine internationale Führung auf diesem Gebiet zu erlangen. (Anmerkung: Hinzu kommen noch die von der Marine selbst ausgebildeten und aus deren aktiven Dienst ausgeschiedenen.)

Um auf dem neusten Stand Forschung und Entwicklung betreiben zu können, sind zusätzlich Fachkräfte auf den Gebieten Rüstungskontrolle, Nuklearmedizin und fortschrittlicher Fertigungsverfahren etc. auszubilden. (Anmerkung: Wie gut, daß auf Grund der unendlichen Weisheit unserer Kanzlerin, Deutschland bald nur noch „Windmühlenbauer“ und „Batterien in Autos Einsetzer“ braucht. Angepaßte Technologie halt, für die, „die noch nicht so lange hier leben“.)

Abschließende Bemerkungen

Es scheint, der Riese USA ist erwacht. Inzwischen kommen rund zwei Drittel aller neuen Kernkraftwerke aus China und Rußland. Die USA sind nicht mehr lange der größte Produzent elektrischer Energie aus Kernenergie. Das bedeutet, die Führungsrolle geht verloren. Die Druckwasser-Technologie ist ausgereizt. Es ist absehbar, wann China und Rußland vollständig aus eigener Kraft Kernkraftwerke auf internationalem Niveau bauen können. China wegen seiner breiteren industriellen Basis sicherlich früher. Beide Länder drängen massiv auf die Märkte in Schwellenländern. Was sie technisch noch nicht leisten können, machen sie über den Preis wett.

Hinzu kommt der Schock über die beiden aus dem Ruder gelaufenen Baustellen Vogtle und Summers: Man kriegt einen selbst entwickelten Reaktor im eigenen Land nicht mehr termingerecht und zu den geplanten Kosten fertig. Für die kerntechnische Industrie hat das wie die Unglücke mit der Raumfähre auf die Raumfahrtindustrie gewirkt. Es war höchste Zeit sich neu zu erfinden. Aus dem „Raumgleiter“ wurde ein privat entwickelter „Bleistift“, der senkrecht auf einem Ponton im Meer zur Wiederverwendung landet. Inzwischen plant man die Reise zum Mars.

In der Kerntechnik kommt die Abkehr vom immer größer werden (Kostendegression), zum genauen Gegenteil hin. Anstatt immer mehr (erforderliche) Sicherheitssysteme, hin zu „inhärenter Sicherheit“. Zur Kostensenkung Serienfertigung in der Fabrik. Ganz nebenbei die Erschließung neuer Märkte durch diese Maßnahmen: Kleinere Stromnetze, Länder die gar nicht so viel Kapital für ein konventionelles Kernkraftwerk aufbringen können, Länder die nicht über die Infrastruktur für Betrieb und Wartung verfügen usw.

Hinzu kommt die größer werdende – oder zumindest so empfundene – Problematik des „Atommülls“. Ein Leichtwasserreaktor produziert zwar – gemessen an einem fossilen Kraftwerk – verschwindend geringe Mengen an Abfall, aber mit steigender Anzahl werden auch die abgebrannten Brennelemente spürbar. Die naßchemische Wiederaufbereitung mit anschließender erneuter Verwendung des Plutoniums in Leichtwasserreaktoren (Mischoxid) hat sich auch nicht als der Hit erwiesen. Will man das „Atommüllproblem“ besser in den Griff kriegen, ist der Übergang zu Reaktoren mit schnellem Neutronenspektrum nötig. Nur mit schnellen Neutronen kann man alle Uran- und Plutoniumkerne erfolgreich spalten. So wird aus abgebrannten Brennelementen wieder neuer Brennstoff. Das verringert den Einsatz des Brennstoffs für eine vorgegebene Menge elektrischer Energie mindestens um den Faktor 60. Weniger Brennstoff, weniger Abfall. Hinzu kommt aber noch ein zweiter Vorteil: Nicht nur weniger, sondern auch weniger langlebiger Abfall. Die übrig bleibenden Spaltprodukte stellen nur eine Strahlenquelle für Jahrzehnte oder wenige Jahrhunderte dar. Früher stand das „Brüten“, heute das „vollständig aufbrauchen“ im Vordergrund. Brütertechnologie wird auf absehbare Zeit – wenn überhaupt jemals – nicht gebraucht. Schon heute haben wir Plutonium im Überfluß und Uran und Thorium sowieso. Deshalb kann man auch bei dieser Reaktortechnologie von den „Gigawattmaschinen“ abschied nehmen und auf kleinere, inhärent sichere Einheiten übergehen. Diese sind „walk-away-safe“. Man kann einfach die Turbine abstellen und nach Hause gehen. Keine Science Fiction, sondern zig mal beim EBER II praktiziert. Das Kernkraftwerk zur Strom- und Wärmeversorgung mitten in der Stadt, alles andere als Utopie. Natürlich für das Zeitalter nach dem Zusammenbruch des Öko-Sozialismus, versteht sich.

Weitere Nutzung für „Atommüll“

Während in Deutschland weiterhin abgebrannte Brennelemente als „Atommüll“ verteufelt werden, hat China bereits einen weiteren Weg für deren Nutzung eingeschlagen. Zwischen dem Betreiber von zwei Candu 6 Reaktoren in Quinshan TQNPC (China National Nuclear Corporation subsidy Third Quinshan Nuclear Power Company) und der kanadischen SNC-Lavalin wurde ein Vertrag zur Lieferung von Brennelementen aus 37M NUE (Natural Uranium Equivalent) abgeschlossen. Dies ist das Ergebnis einer mehr als zehnjährigen gemeinsamen Forschung und Entwicklungsarbeit. Seit 2008 werden im Reaktor QP III immer wieder NUE-Brennelemente als Dauertest eingesetzt. Diese praktischen Versuche dienten der Anpassung einiger Sicherheitsparameter und der Durchführung des Genehmigungsverfahrens. Jetzt sind die Arbeiten abgeschlossen und der Betrieb mit recyceltem Uran kann beginnen.

Die Reaktoren

Bei den Candu Reaktoren in Quinshan handelt es sich um mit schwerem Wasser (D2O) gekühlte und moderierte Reaktoren. Dieser Reaktor hat im Gegensatz zu Leichtwasserreaktoren keinen Druckbehälter in dem sich die Brennelemente befinden, sondern viele Druckröhren in denen jeweils nur eine Reihe einzelner Brennelemente stecken. Die Druckröhren sind waagerecht und sitzen wiederum in einem mit Schwerwasser gefüllten drucklosen Tank. Vorteil dieser Konstruktion ist, daß man kein dickwandiges Druckgefäß benötigt, sondern lediglich druckfeste Röhren von etwa 10 cm Durchmesser. Druckbehälter können nur eine Handvoll Schmieden weltweit fertigen. Deshalb kann diesen Reaktortyp z. B. Indien selbst herstellen. Als Nachteil erkauft man sich dieses Prinzip mit einem Gewirr von Rohrleitungen: Jede Druckröhre muß mit Vorlauf- und Rücklaufleitung mit den Dampferzeugern verbunden werden. Insgesamt ist die Herstellung aufwendiger und damit teurer.

Durch den Einsatz von Schwerwasser als Kühlmedium und Moderator gehen wesentlich weniger Neutronen verloren als bei Leichtwasserreaktoren. Man kommt deshalb mit Natururan als Brennstoff aus. Eine Anreicherung ist nicht nötig. Darüberhinaus ist das Konzept so flexibel, daß auch andere Brennstoffe wie Thorium oder eben abgebrannte Brennelemente aus Leichtwasserreaktoren eingesetzt werden können. (Siehe hierzu auch den Artikel Reaktortypen in Europa – Teil6, CANDU in diesem Blog.)

Die Wiederaufbereitung

Wenn Brennelemente „abgebrannt“ sind, müssen sie entnommen werden und durch frische Brennelemente ersetzt werden. Sie sind aber keinesfalls Abfall, sondern können und sollten recycelt werden. Auch in Deutschland war deshalb eine eigene Wiederaufbereitungsanlage nach dem PUREX-Verfahren vorgesehen. Übergangsweise hat man Brennelemente in Frankreich und GB aufbereiten lassen. Aus bekannten ideologischen Gründen ist man davon abgegangen. Der Kampf gegen das Atom ist der zentrale Gründungsmythos von Bündnis 90 / Die Grünen.

Die Kerntechnik war der erste Industriezweig der nicht einfach Abfall produzieren wollte, sondern vielmehr der Begründer des industriellen Recyclings. In einem „abgebrannten“ — oder besser abgenutzten und für seinen ursprünglichen Verwendungszweck nicht mehr geeigneten — Brennelement sind lediglich rund 5 % Spaltprodukte. Das ist die „Asche“ der nuklearen Energieherstellung. Aber über 93% des Urans und zusätzlich rund 1% Plutonium sind für die Energiegewinnung wiederverwendbar!

Bei dem PUREX-Verfahren werden die Brennstäbe aufgelöst und anschließend durch eine mehrstufige flüssig-flüssig Extraktion in möglichst reines Uran und Plutonium zerlegt. Alles andere ist bei diesem Verfahren Abfall, wird in Glas eingeschmolzen und ist zur Endlagerung vorgesehen. Das Plutonium wird seit Jahrzehnten — auch in Deutschland — zusammen mit abgereichertem Uran zu sogenannten Mischoxid-Brennelementen verarbeitet und erneut in Leichtwasserreaktoren zur Energiegewinnung eingesetzt. Das zurückgewonnene Uran wird bisher fast ausschließlich eingelagert. Man kann es als „Ersatz“ für Natururan in Anreicherungsanlagen einsetzen. Es muß dazu aber in Uranhexafluorid umgewandelt werden. Ein, bei den heutigen Preisen für Natururan nicht wirtschaftlicher Weg.

Der NUE-Weg

Das Uran für Leichtwasserreaktoren hat eine ursprüngliche Anreicherung von 3% bis 5% U235. Im Reaktor wird sowohl U235 als auch Pu239 gespalten. Das Plutonium bildet sich kontinuierlich aus dem U238 durch das (parasitäre) Einfangen von Neutronen. Ein Teil davon, wird sofort wieder im Reaktor gespalten. Deshalb kann nicht alles U235 aufgebraucht werden bevor die zulässige Betriebsdauer des Brennelements erreicht ist. Oft hat das recycelte Uran noch einen höheren Anteil davon als das Natururan (0,7% U235). Es kann daher noch in Schwerwasserreaktoren eingesetzt werden. Allerdings ist die Natur immer etwas komplizierter als die Theorie. Nicht jeder U235 Kern wird auch gespalten, wenn er von einem Neutron getroffen wird. Es bildet sich auch U236 und sogar Spuren von U234. Alle diese Isotope haben ihre charakteristischen neutronenphysikalischen Eigenschaften. Es wird deshalb durch Verschneiden mit abgereichertem Uran ein dem „Natururan entsprechendes Äquivalent“ (NUE) hergestellt. Dies ist aber eine reine Frage der Analyse (welche Isotopenzusammensetzung?), der Rechnung (neutronenphysikalische Bestimmung) und der Mischung. Ein vergleichbar geringer Aufwand, verglichen z. B. mit einer Anreicherung.

Man kann etwa mit dem recycelten Uran aus vier Leichtwasserreaktoren einen zusätzlichen Schwerwasserreaktor betreiben. Die zusätzliche Energie wird ohne zusätzlichen Verbrauch von Natururan erzeugt — Energie aus „Atommüll“. China betrachtet ihr kerntechnisches Programm offensichtlich von Anfang an als System. Im Zentrum stehen die Leichtwasserreaktoren und eine Wiederaufbereitung des „Atommülls“. Nach dem Vorbild von Frankreich wird dadurch der endgültig zu lagernde Abfall beträchtlich entschärft und verringert. Das anfallende Plutonium wird über Mischoxid wieder den Leichtwasserreaktoren zugeführt. Das zurückgewonnene Uran den Schwerwasserreaktoren. Mittelfristig soll eine weitere Nutzung über natriumgekühlte Reaktoren mit schnellem Neutronenspektrum erfolgen. Beachtenswert ist die Vorgehensweise: Zwar in voller Breite aller am Weltmarkt erhältlichen Reaktortypen, aber stets in kleinen Schritten in enger Kooperation mit internationalen Partnern. Ganz nebenbei ist dadurch eine der bedeutendsten kerntechnischen Industrien der Welt aufgebaut worden. Ein nicht zu unterschätzender und bewußt angestrebter Nebeneffekt. Kerntechnik ist eine Schlüsseltechnologie, die weit in die industrielle Welt ausstrahlt. So war es einst auch in Deutschland, aber hier wird dieser Vorteil zusehends aufgebraucht. Manch ein Grüner wird sich noch die Augen reiben, wie schnell der „Exportweltmeister“ zu einem mittelmäßigen Industriestandort verkommen sein wird.

Evolution der Brennstäbe

Auch die kontinuierliche Weiterentwicklung einzelner Bauteile kann die Sicherheit von Reaktoren erhöhen. Dies gilt besonders nach den Erfahrungen aus dem Unglück in Fukushima.

Brennstäbe heute

Brennstäbe für Leichtwasserreaktoren haben eine Durchmesser von nur 11 mm bei einer Länge von fast 5 m. Sie sind deshalb so instabil, daß sie zu sog. Brennelementen fest zusammengebaut werden. Dort werden sie durch Abstandshalter und Befestigungsplatten in ihrer Position gehalten. Zusätzlich enthalten die noch Einbauten für Regelstäbe, Messeinrichtungen usw. Wichtig in diesem Zusammenhang ist, daß solche Brennelemente mit sehr engen Toleranzen gefertigt werden müssen, da z. B. die sich ergebenden Abstände sehr entscheidend für die Strömungsverhältnisse (Kühlung) und die Abbremsung der Neutronen sind.

Die Brennstäbe bestehen aus Hüllrohren aus Zirkalloy mit Wandstärken von weniger als einem Millimeter und sind mit Tabletten aus Urandioxid gefüllt. Auf die Konsequenzen aus dieser Materialwahl wird später noch eingegangen werden. Die Tabletten sind gesintert („gebrannt“ wie eine Keramik) und anschließend sehr präzise im Durchmesser geschliffen; an den Stirnflächen konkav gearbeitet, um Ausdehnungen im Betrieb zu kompensieren usw. All dieser Aufwand ist nötig, um die Temperaturverteilung im Griff zu behalten.

Das Temperaturproblem

Brennstäbe dürfen nicht schmelzen, denn dann ändert sich ihre mechanische Festigkeit und ihre Abmessungen (Kühlung und Neutronenspektrum). Keramiken sind zwar chemisch sehr beständig, besitzen aber gegenüber Metallen nur eine sehr schlechte Wärmeleitung. Jeder kennt den Unterschied, der schon mal heißen Kaffee aus einem Metallbecher getrunken hat. Außerdem sind Keramiken sehr spröde.

Die gesamte Wärme kann nur über den Umfang an das Kühlwasser abgegeben werden. Sie entsteht aber ziemlich gleich verteilt innerhalb des Brennstabes, da er für Neutronen ziemlich durchsichtig ist. Dies hat zur Folge, daß es einen sehr starken Temperaturunterschied zwischen Zentrum und Oberfläche gibt. Zusätzlich verschlechtert sich auch noch die Wärmeleitfähigkeit mit zunehmender Temperatur. All das führt dazu, daß der Brennstab in seinem Innern bereits aufschmelzen kann, obwohl er an seiner Oberfläche noch relativ kalt ist. Die Temperaturdifferenz zwischen Oberfläche und Kühlwasser ist aber in dieser Phase die bestimmende Größe für die Wärmeabfuhr.

Steigt die Oberflächentemperatur über die Verdampfungstemperatur des Kühlwassers, fängt das Wasser (an der Oberfläche) an zu verdampfen. Die Dampfblasen kondensieren nach deren Ablösung im umgebenden „kalten“ Wasser. Durch dieses sogenannte „unterkühlte Blasensieden“ kann man sehr große Wärmemengen abführen. Tückisch ist nur, wenn die Wärmeproduktion durch Kernspaltung einen Grenzwert übersteigt, bildet sich eine geschlossenen Dampfschicht auf der Oberfläche die auch noch stark isolierend wirkt. Als Folge steigt die Temperatur in der dünnen Brennstabhülle explosionsartig an. Dampf in Verbindung mit hoher Temperatur führt aber zur Oxidation des Zirkalloy. Die Hülle verliert schnell ihre Festigkeit.

Harrisburg und auch Fukushima

Bricht die Kühlung zusammen, überhitzen die Brennstäbe. Wie Fukushima gezeigt hat, kann das auch noch (kurz) nach dem Abschalten des Reaktors geschehen, da dann die Nachzerfallswärme noch sehr groß ist. Durch die hohen Temperaturen in den Brennstabhüllen in Verbindung mit Wasserdampf oxidieren die Hüllen und setzen dabei große Mengen Wasserstoff frei. Dieser Wasserstoff hat zu den fürchterlichen Explosionen in den Reaktorgebäuden geführt. In Harrisburg waren die Wasserstoffmengen zwar beherrschbar, aber auch damals schon zerfielen Teile des Reaktorkerns. Die Wiederbenetzung konnte zwar schlimmeres verhindern – aber man schrecke mal eine glühende Tasse mit Wasser ab.

Für alle Leichtwasserreaktoren bedeutet das, die zulässigen Temperaturen müssen bei allen Betriebsbedingungen in allen Teilen des Reaktorkerns sicher eingehalten werden. Mit anderen Worten, die Kühlung darf nie versagen. In diesem Sinne ist der Sicherheitsgewinn einer passiven (auf die natürlichen Kräfte, wie z. B. Schwerkraft beruhende) Kühlung zu verstehen.

Oberflächenschutz der Brennstäbe

Insbesondere nach den Ereignissen in Fukushima hat man unterschiedlichste Maßnahmen ergriffen, um die Sicherheit bestehender Kraftwerke weiter zu erhöhen. Außerhalb Deutschlands nach den üblichen Vorgehensweisen wie sie bei Flugzeugabstürzen, Schiffsunglücken etc. üblich sind: Akribische Untersuchung der Schadensabläufe mit dem Zweck Schwachstellen zu ermitteln und Lösungen dafür zu finden. Ein Weg war die Verbesserung der Brennstabhüllen. Zu diesem Zweck hat man z. B. in den USA das Entwicklungsprogramm „Enhanced Accident-tolerant Fuel programme.“ gestartet.

Aus einer internationalen Zusammenarbeit haben sich zwei neue Konzepte – IronClad und ARMOR. – entwickelt, deren Prototypen im Kernkraftwerk Hatch in Georgia, USA seit März 2018 im Normalbetrieb getestet werden. Der Test unter realen Bedingungen in einem laufenden Kernkraftwerk ist ein üblicher Entwicklungsschritt. Nur so kann man Fehlentwicklungen vermeiden.

IronClad sind Hüllrohre, die aus einer Eisen-Chrom-Aluminium-Legierung bestehen. Man glaubt damit einen wesentlich robusteren Werkstoff gefunden zu haben, der nicht so temperaturempfindlich ist, nicht so leicht oxidiert und kein Wasserstoffgas produziert.

ARMOR ist ein eher evolutionärer Ansatz. Man panzert konventionelle Hüllrohre mit einer Schutzschicht auf der Basis von Chrom. Es sind Produkte dreier Hersteller in der Erprobung: Global Nuclear Fuel-Japan Co (GE-Hitachi), Framatom mit zusätzlich mit Chrom geimpften Brennstofftabletten und EnCore Fuel.(Westinghouse) mit Tabletten auf der Basis von Uran-Siliciden.

Ein ganz neues Konzept

Das Unternehmen Lightbridge hat das Bauelement Brennstab noch einmal ganz neu gedacht und bereits prototypenreif entwickelt. Inzwischen ist man eine Kooperation für die Weiterentwicklung und Serienproduktion mit Framatom eingegangen. Entscheidend war die Anforderung des Ersatzes von Brennstäben in konventionellen Leichtwasserreaktoren im Betrieb. Deshalb ist nicht nur ein Ersatz, sondern auch ein gemischter Betrieb mit konventionellen Brennelementen angestrebt worden.

Der Übergang von keramischem Uranoxid auf eine metallische Legierung aus Uran und Zirkon ist für Leichtwasserreaktoren revolutionär. Bisher wurde so etwas nur in schnellen Reaktoren mit Natrium – und nicht Wasser – als Kühlmittel gemacht. Ebenso neu ist die Form: Sie sind nicht mehr zylindrisch, sondern kreuzförmig. Diese Kreuze sind spiralförmig verdreht, sodaß sich vier gewindeähnliche Kanäle für das Kühlwasser bilden.. Außen sind sie mit einer dünnen und fest verbundenen Schicht aus Zirkon versehen um eine übliche Wasserchemie zu gewährleisten. Diese „Gewindestäbe“ liegen in dem Brennelement dicht beieinander, sodaß keine Abstandshalter mehr erforderlich sind.

Metall verfügt über eine bessere Wärmeleitung als Keramik und die Kreuzform ergibt eine größere Oberfläche und dünnere Querschnitte. Beides führt zu geringeren Betriebs- und Spitzentemperaturen (starke und schnelle Lastschwankungen). Der Strömungswiderstand solcher Brennelemente ist kleiner, wodurch sich der Durchfluß durch den Kern bei gleicher Pumpenleistung erhöht. Man geht deshalb von einer möglichen Leistungssteigerung von 10% aus. Ein nicht zu unterschätzender wirtschaftlicher Anreiz, wenn man in einer bestehenden Flotte für „kleines Geld“ ganze Kraftwerke zusätzlich erhält.

Die neuen Lightbridge-Brennelemente vertragen alle Leistungstransienten besser, sind aber vom Prinzip her gegen längerfristige Kühlmittelverluste anfälliger, da Metalle einen geringeren Schmelzpunkt als Keramiken besitzen. Dies war der Hauptgrund für die ursprüngliche Wahl von Uranoxid als Werkstoff.

Bei einer Simulation eines Abrisses einer Hauptkühlmittelleitung bei einem VVER-1000 Druckwasserreaktor ergab sich eine maximale Kerntemperatur von 500 °C. Dieser Wert liegt weit unterhalb von der Temperatur, bei der überhaupt Wasserstoff (900 °C) gebildet wird. Durch die hohe Wärmeleitung stellt sich bereits wieder nach 60 Sekunden nach erfolgter Wiederbenetzung erneut die normale Betriebstemperatur ein. Bei konventionellen Brennelementen steigt die Temperatur auf über 1000 °C und erreicht erst nach acht Minuten wieder den stabilen Zustand. Dies hat einen erheblichen Druckanstieg im Reaktor zur Folge, der ein ansprechen der Sicherheitsventile erforderlich macht. Bei diesem Abblasen gelangen auch geringe Mengen von radioaktivem Jod und Cäsium (zumindest) in das Containment. Der Abriß einer Hauptkühlmittelleitung ist der Auslegungsstörfall, der sicher beherrscht werden muß.. In diesem Sinne führen die Lightbridge-Brennelemente zu einem Sicherheitsgewinn.

Es sind aber noch etliche praktische Erfahrungen zu sammeln. Ein Reaktor ist ein komplexes physikalisches und chemisches System. Dies betrifft z. B. das Rückhaltevermögen für Spaltprodukte unter allen möglichen Betriebs- und Störfallbedingungen. In der Kerntechnik dauert wegen der besonderen Sicherheitsansprüche halt alles länger. Die Maßeinheit für die Einführung von Neuerungen ist eher Jahrzehnte als Jahre.

Ein weiterer vielversprechender Entwicklungsaspekt ist der Zusatz von Thorium als „abbrennbarer Brutstoff“ zur Ausdehnung der erforderlichen Ladezyklen auf vier Jahre. Um solch lange Ladezyklen zu erreichen, muß man den Brennstoff höher anreichern. Um diese Überschußreaktivität zu kompensieren muß man abbrennbare Neutronengifte zumischen. Würde man Thorium verwenden, kann man diese Überschußneutronen zum Erbrüten von Uran-233 verwenden.. Längere Ladezyklen würden die Wirtschaftlichkeit bestehender Reaktoren weiter erhöhen.

Durch die Verwendung von metallischem Brennstoff ergeben sich auch völlig neue Perspektiven der Wiederaufbereitung. Durch den Übergang auf elektrochemische Verfahren – wie man sie bereits beim EBRII – erfolgreich ausprobiert hat, kann man zu kleinen Wiederaufbereitungsanlagen in der Nähe der Kernkraftwerke übergehen. Ein weiterer Lösungsweg für die angebliche Atommüllproblematik. Gerade im Zusammenhang mit der Wiederaufbereitung und Proliferation ist auch der Zusatz von Thorium besonders interessant.

Schlussbemerkung

Man sieht, daß die Leichtwasserreaktoren noch lange nicht am Ende ihrer Entwicklung angekommen sind. Insbesondere der Einsatz von metallischen Brennstäben ergibt nicht nur einen evolutionären Weg für bestehende Reaktoren, sondern auch für Neukonstruktionen. Im Zusammenhang mit passiver Kühlung kann ein erheblicher Sicherheitsgewinn erzielt werden. Irgendwann wird die Frage der Anpassung der Genehmigungsbedingungen gestellt werden müssen. Dann aber, beginnt das Kernenergiezeitalter erst richtig. Billige Energie im Überfluß. Egal, was in Deutschland darüber gemeint wird.

TRISO

Tri-Isotropic (TRISO) Brennstoff wird immer im Zusammenhang mit Hochtemperaturreaktoren (HTR) erwähnt. Oft mit schönen Bildern. Es lohnt sich, sich etwas näher damit zu beschäftigen.

Geschichte

Seit etwa 1957 wurde der Gedanke propagiert, sehr kleine Brennstoffpartikel mit geeigneten Mitteln zu ummanteln und als „Mini-Brennelemente“ einzusetzen. Im Vordergrund stand dabei der Gedanke, unterschiedlichste Brennstoffkombinationen zu verwenden: Hoch angereichertes Uran (HEU), schwach angereichertes Uran (LEU), Uran mit Thorium (U, Th), Uran mit Plutonium (U, Pu) und Plutonium (Pu). Es wurden umfangreiche Testreihen in aller Welt durchgeführt. Im Prinzip geht tatsächlich alles. Es gibt aber unterschiedlich Vor- und Nachteile.

So hat man z. B. in Deutschland auf Thorium als Brennstoff gesetzt. Man wollte damit eine zweite Schiene von Brutreaktoren schaffen, die die – wie man damals glaubte – geringen Uranvorräte strecken sollte. Diese Entwicklungsrichtung mündete in den Thorium-Hochtemperaturreaktor (THTR) in Hamm-Uentrop als Demonstrationskraftwerk. Diese Schiene kann man heute nur als Sackgasse bezeichnen. Jedenfalls so lange, wie die heutigen Regeln zur Nichtverbreitung von Kernwaffen bestehen bleiben. Man benötigte dafür nämlich auf 93% hoch angereichertes Uran. Heute lagern aus dieser Demonstration noch etwa 900 kg dieses Materials in der Form von schwach abgebrannten Brennelementen in Deutschland. Ein Thema, über das nicht gern öffentlich geredet wird: Die Grünen klammern sich an jedes Gramm, um ihren Gründungsmythos von der ungeklärten Entsorgungsfrage aufrecht erhalten zu können. Eigentlich müßte das Zeug längst in die USA verbracht sein. Es ist geradezu peinlich, wenn man vergleicht, welchen Aufwand die USA und sogar Rußland betreiben, um wenige Kilogramm aus Forschungsreaktoren weltweit wieder einzusammeln und zurück zu führen. In Deutschland steht das Zeug in mäßig bewachten Zwischenlagern rum. Eine tolle Ausgangsposition für Verhandlungen mit Iran, Nord Korea etc. Manchmal stellt man sich schon die Frage, ob das alles nur mit der Bildungsresistenz deutscher Politiker und ihrer ausgesuchten „Atomexperten“ erklärbar ist.

Aus diesen kleinsten Mini-Brennelementen kann man anschließend technische Brennelemente formen. Dafür haben sich zwei Wege heraus kristallisiert: Etwa tennisballgroße Kugeln oder sechseckige „Bausteine“ aus denen man einen Kern aufbauen kann. Die erste Variante ist besonders einfach zu produzieren und ermöglicht einen Reaktor, den man kontinuierlich beladen kann. Frische Kugeln werden oben eingebracht und gleichzeitig unten gebrauchte Kugeln ausgeschleust. Der eher konventionelle Aufbau aus Brennelementen ist dafür flexibler und auch für große Reaktoren geeignet. Letztendlich beruhen aber beide Prinzipien auf den sandartigen Mini-Brennelementen.

In Deutschland wurde zur Herstellung dieser Mini-Brennelemente das sogenannte Sol-Gel-Verfahren entwickelt. Später entwickelte die deutsche Firma NUKEM ein Verfahren für die freie Erstarrung solcher Kügelchen. Dieses Verfahren wurde von den Chinesen übernommen. Wiederum ein krasses Beispiel für den Ausverkauf deutscher Hochtechnologie. Einzig allein aus ideologischer Verblendung.

Herstellung der Kerne

Uranpulver (U3 O8) wird in Salpetersäure (HNO3) aufgelöst. Es bildet sich eine Uranylnitrat Lösung die noch mit Salmiak neutralisiert werden muß. Ihr werden diverse Alkohole zugesetzt um die Zähigkeit und Oberflächenspannung optimal einzustellen.

Diese eingestellte Lösung wird nun aus Glasröhren vertropft. Um die Tröpfchenbildung zu unterstützen, werden diese Röhrchen in Schwingungen versetzt. Aus jedem Röhrchen tropfen etwa 100 Tröpfchen pro Sekunde. Im freien Fall bilden sich daraus kreisrunde Kügelchen von definiertem Durchmesser. Noch sind es unbeständige Flüssigkeitstropfen. Diese fallen deshalb anschließend durch eine Ammoniak Atmosphäre (NH3), welche mit dem Uranylnitrat chemisch reagiert. Es bildet sich um die Kügelchen eine stabile Haut, die ausreicht, damit sie in dem anschließenden Bad ihre kreisrunde Form behalten. Es haben sich – noch weiche und empfindliche – Kugeln von knapp zwei Millimetern Durchmesser gebildet.

Diese Kugeln werden mit Dampf in rotierenden Trommeln behandelt. Dadurch wachsen in dem Gel Kristalle und sie werden fest. Anschließend werden diese Kugeln in mehreren Schritten mit Wasser und verschiedenen Chemikalien gründlich gewaschen. Dies ist wichtig, damit in den weiteren Verfahrensschritten kein Uran in die Kohlenstoffschichten verschleppt wird. Unter ständiger Rotation werden die Urankügelchen im Vakuum getrocknet. Die Kugeln schrumpfen dadurch auf etwa einen Millimeter Durchmesser. Im nächsten Schritt werden die Kügelchen bei 430 °C kalziniert. Durch diese hohe Temperatur zerlegen sich die organischen Bestandteile und werden ausgetrieben. Es bleiben Kügelchen aus UO3 mit einem Durchmesser von nur noch einem Dreiviertel-Millimeter zurück. Damit sich das UO3 zu UO2reduziert, werden sie in einem weiteren Schritt in einer Wasserstoff-Atmosphäre bei rund 600 °C geröstet. Im letzten Verfahrensschritt werden diese Kügelchen bei 1600 °C gebacken, um eine optimale Dichte und Festigkeit zu erlangen. Das Endprodukt sind Kügelchen mit knapp einem Halben-Millimeter Durchmesser. Sie werden noch fein gesiebt (zu klein = zu wenig Brennstoff und zu groß = zu viel Brennstoff) und die unrunden Partikel aussortiert.

Die Ummantelung

Ganz entscheidend beim TRISO-Konzept ist die Ummantelung der Brennstoffkerne. Sie muß gleichermaßen mehrere Funktionen erfüllen:

  • Mechanischer und chemischer Schutz der Brennstoffkerne vor Einwirkungen von außen. Die Ummantelung ist so stabil, daß sie einerseits für die direkte Endlagerung geeignet ist, andererseits aber eine Wiederaufbereitung erschwert.
  • Zurückhaltung von Spaltprodukten und Brennstoff, damit das Kühlmittel Helium möglichst sauber bleibt.
  • Volumenausgleich. Bei der Kernspaltung entsteht praktisch das gesamte Periodensystem – diese Stoffe können untereinander und mit dem freigewordenen überschüssigen Sauerstoff reagieren. Es ergeben sich auf jeden Fall neue chemische Verbindungen mit unterschiedlichen Dichten. Etwaige Ausdehnungen müssen durch die Ummantelung abgepuffert werden, um ein Aufsprengen der Brennelementen zu vermeiden.

Es werden insgesamt vier Schichten aufgetragen:

  1. Als innerste Schicht (≈ 95 µm), eine Schicht aus porösem Kohlenstoff. Sie soll wie ein Schwamm aus dem Kern austretende Spaltprodukte (z.B. die Edelgase) aufnehmen und auf Volumenänderungen ausgleichend wirken.
  2. Als zweite Schicht (≈ 40 µm), ebenfalls eine Kohlenstoffschicht, aber diesmal von hoher Dichte.
  3. Als dritte Schicht (≈ 35 µm), eine Schicht aus chemisch sehr widerstandsfähigem Siliciumcarbid. Sie hält fast alle Spaltprodukte auch unter extremen Bedingungen (Störfall) nahezu vollständig zurück.
  4. Als äußere Schicht (≈ 40 µm), wird noch eine weitere Schicht aus besonders dichtem Kohlenstoff aufgebracht.

Die Schichten werden aus der Gasphase abgeschieden. Für die porösen Schichten wird Azetylen (C2 H2) und für die dichten Schichten zusätzlich Propylen (C3 H6) verwendet. Zur Erzeugung der Schicht aus Siliciumcarbid wird Methylchlorsilane (CH3 SiCl5) verwendet.

Die Bildung der Schichten erfolgt in einem zylindrischen Reaktor, in dem die Brennstoffkügelchen geschüttet werden und anschließend von unten die Reaktionsgase eingeblasen werden. Dabei werden die Gase in eine so hohe Strömungsgeschwindigkeit versetzt, daß die Kügelchen gerade schweben (Wirbelschicht). Über die Steuerung der Temperatur (1200 bis 1500 °C) wird die Zersetzung der Gase und die Abscheidung auf den Kügelchen gesteuert.

Die Brennelemente

Es wird ein Pulver aus 64% Naturgraphit, 16% Elektrographit und 20% Phenolharz hergestellt. Mit diesem Pulver werden die ummantelten Kerne in einer rotierenden Trommel etwa 200 µm überzogen und bei 80 °C getrocknet. Diese Grünlinge dürfen einen Durchmesser von 1,1 bis 1,5 mm haben. Sie werden bei Raumtemperatur mit einem Druck von 50 bar in Silikonformen zu den brennstoffhaltigen Kernen der Brennelemente gepreßt. Eine zweite Form wird mit Reaktorgraphit ausgekleidet, die grünen Kerne eingelegt und mit einem Druck von 3000 bar zusammengepreßt. Dies ergibt die charakteristischen Kugeln für einen Kugelhaufenreaktor.

Damit sich das Phenolharz in Graphit zersetzt, werden die Kugeln in einer Argonatmosphäre auf 800 °C erhitzt. Zur Härtung werden sie anschließend noch in einem Vakuum bei fast 2000 °C geglüht. Wenn sie alle Qualitätstest bestanden haben, sind sie nun für den Einsatz im Reaktor fertig.

Qualitätskontrolle

Die Verfahrensschritte sind nicht geheimnisvoll. Das eigentliche Wissen liegt in der erforderlichen Qualitätskontrolle. Alle Verfahren müssen bei jedem Zwischenschritt zerstörungsfrei erfolgen. Wird bei einem Fertigungsschritt ein Fehler gemacht, ist das gesamte Fertigprodukt Ausschuss. Es muß also sehr sorgfältig geprüft werden. Hinzu kommt die astronomische Anzahl von Brennstoffkernchen. Es mußten deshalb ganz neue statistische Verfahren entwickelt werden.

Mögliche Fehler im Betrieb

Die Brennelemente sollen im Idealfall alle Spaltprodukte vollständig zurückhalten. Gelangt keine Radioaktivität in das Kühlmittel Helium, kann auch keine Radioaktivität aus dem Kraftwerk austreten. Es lohnt sich also, mögliche Schäden etwas näher zu betrachten. Ganz, lassen sich Schäden in der Technik nie verhindern. Es ist vielmehr entscheidend, wieviel Radioaktivität – auch bei einem schwersten Störfall – das Kraftwerksgelände verlassen kann.

  • Überdruck in den Kernen. Es entstehen gasförmige Spaltprodukte, insbesondere Edelgase. Hinzu kommt ein Sauerstoffüberschuss durch die Kernspaltung, da nicht jedes Sauerstoffatom der chemischen Verbindung UOeinen neuen Partner findet. Es bildet sich Kohlenmonoxid aus der Ummantelung. Diese Gase sollen in der ersten, porösen Schicht zurückgehalten werden. Werden die Qualitätsrichtlinien eingehalten, ergibt sich daraus kein ernsthaftes Problem.
  • Durch die Neutronenstrahlung schrumpft und dehnt sich der Kohlenstoff der Ummantelungen aus. Durch diese Spannungen können Risse auftreten. In Deutschland konnte diese Fehlerquelle fast vollständig ausgeschaltet werden.
  • Durch die Temperaturunterschiede zwischen dem Kern und der Oberfläche können Teile des Kerns in die Umhüllung wandern. Auch dieses Problem kann durch eine konsequente Qualitätskontrolle klein gehalten werden.
  • Edelmetalle greifen die Siliciumcarbid-Schicht chemisch an. Insbesondere Silber kann diese Schichten passieren und bildet unerwünschte Ablagerungen im Reaktor. Generell gilt, daß in die Ummantelung gewanderte Spaltprodukte bei der erhöhten Temperatur eines Störfalls zu unerwarteten Freisetzungen führen können.

Zusammenfasend kann man feststellen, daß hochwertig produzierte Brennelemente der beste Schutz gegen Freisetzungen bei einem Störfall sind. Hinzu kommt eine (aufwendige) Überprüfung jeder ausgeschleusten Kugel auf Schäden und den erfolgten Abbrand. Je weniger Kugeln „am Limit“ sich im Reaktor befinden, je größer sind die Sicherheitsreserven für einen Störfall. Dies war eine Erkenntnis des Versuchsreaktors AVR in Jülich, der als Forschungsreaktor natürlich seine Grenzen erkunden mußte.

Brennstoffkreisläufe

Durch die sehr guten neutronenphysikalischen Eigenschaften und die extreme Temperaturbeständigkeit von Kohlenstoff ist das TRISO-Konzept sehr flexibel. Es ist gering angereichertes Uran verwendbar, aber auch Mischoxide oder sogar reines Plutonium, sowie Kreisläufe auf der Basis von Thorium.

Favorit ist derzeit die Verwendung von leicht angereichertem Uran. Allerdings muß die Anreicherung deutlich höher als bei Leichtwasserreaktoren sein. Ursache ist beim TRISO-Brennstoff die räumliche Verteilung, durch die eine Selbstabschirmung eintritt.

Gemische aus Plutonium und Uran können auch verwendet werden. Diese können als Karbide oder Nitrite eingesetzt werden. Favorit dürfte wegen der Erfahrungen in Leichtwasserreaktoren Mischoxide (MOX) sein.

Es wurden sogar reine Plutonium-Brennstoffe untersucht. Dies geschah aus dem Gedanken, insbesondere Plutonium aus einer Abrüstung zu verbrennen. Vielen Kritikern machen die weltweit ständig steigenden Plutoniumvorräte sorgen. Allerdings ist bis zu einem Prototyp noch sehr viel Forschung und Entwicklung nötig.

Das aus Thorium gebildete U-233 ist mit Abstand das beste Spaltmaterial für thermische Reaktoren. Aus diesem Grunde wurde in USA und Deutschland schon sehr früh das Thorium-Brutreaktor-Konzept favorisiert. Allerdings dürfte die Verwendung von hoch angereichertem Uran heute nicht mehr praktikabel sein. Für eine mittlere Anreicherung bzw. Verwendung von Plutonium als Ersatz, ist noch sehr viel Forschung nötig.

Entsorgung

Ein TRISO-Brennelement besteht aus 94% Graphit. Einerseits ist das für eine (auch sehr lange) Zwischenlagerung eine sehr gute Verpackung, andererseits muß man gewaltige Volumen lagern. Es empfiehlt sich daher eine Wiederaufbereitung um das Volumen zur Endlagerung klein zu halten. Leider gilt aber: Je (mechanisch und chemisch) stabiler ein Brennelement ist, je geringer ist (auch) im Störfall die Freisetzung von Spaltprodukten. Allerdings ist es dann auch um so aufwendiger an diese Spaltprodukte und Wertstoffe heranzukommen. Bei noch nicht bestrahlten Brennelementen ist das Stand der Technik. Der Ausschuss jeder Produktionsstufe wird wieder in die Ursprungsprodukte zerlegt und wiederverwendet.

Im Betrieb wird radioaktives C14 gebildet. Dieser Kohlenstoff bleibt in der Matrix gelöst. Insbesondere bei Feuchtigkeit kann dieses C14 in der Form von CO2 Gas austreten. Ähnliches gilt für radioaktives Tritium H3. Die auftretenden Mengen sind so gering, daß sie bei einer Wiederaufbereitung nach entsprechender Verdünnung in die Umwelt abgegeben werden könnten. Beide Stoffe kommen ohnehin in der Natur vor.

Die Mengen sind nicht sonderlich hoch. Bei einem Hochtemperaturreaktor dürften in seinem Leben von 60 Jahren rund 5000 bis 10000 to abgebrannter Brennelemente anfallen. Diese entwickeln nach etwa drei Jahren etwa 100 W Wärme pro Lagerkanne. Dieser Wert halbiert sich noch einmal nach 50 Jahren. Eine Lagerung ist also kein Problem.

Hat man erstmal die Kerne „zerstört“ – gemeint ist damit, die Kohlenstoffschichten mechanisch und/oder chemisch entfernt – ist die Wiederaufbereitung in leicht modifizierten PUREX-Anlagen möglich.

Neuer Temperaturrekord für Brennstoffe gemeldet

Forscher am Idaho National Laboratory (INL) und beim Oak Ridge National Laboratory (ORNL) meldeten einen neuen Meilenstein bei der Entwicklung von Brennstoffen für einen Reaktor der sog. vierten Generation. Sie erreichten einen neuen Rekord von 1800 °C . „Ein sicherer und effizienterer Kernbrennstoff zeichnet sich am Horizont ab“ war die Meldung betitelt. Der weiterentwickelte TRISO-Brennstoff (tristructural-isotropic, Bilderstrecke hierzu) hätte sich als noch robuster als gedacht erwiesen. Die Entwicklung dieses Brennstoffes ist Bestandteil einer Reaktorentwicklung für besonders hohe Betriebstemperaturen (Very High Temperature Reactor Technology Development Office). Es ist die Wiederaufnahme einer Entwicklungsschiene zur Nutzung von Kernenergie in der Chemie. Insbesondere zur Umwandlung von Kohle in umweltfreundlichere Produkte oder zur großtechnischen (chemischen) Wasserstoffgewinnung. Am konsequentesten und weitesten wurde diese Schiene einst in Deutschland (THTR) entwickelt. Mußte aber – wie so vieles andere – aus politischen Gründen aufgegeben werden. Inzwischen wurde auch die Entwicklung in Südafrika mangels finanzieller Möglichkeiten fast vollständig eingestellt. Nur das andere „Kohleland“ China, verfolgt noch mit merklichem Einsatz die Weiterentwicklung. Die USA – auch das Saudi Arabien der Kohle genannt – betreiben mit allen eine enge Kooperation, insbesondere auf dem Sektor der Brennstoffentwicklung.

Der heutige Stand, ist das Ergebnis von 11 Jahren Entwicklung am INL und ORNL. Wobei diese Forschung, schon auf den deutschen Ergebnissen aus den 1980er Jahren aufbauen konnte. Dies nur mal so am Rande, wie lang Entwicklungszeiträumen in der Kerntechnik dauern. Dabei handelt es sich hier nur um ein Teil – dem Brennelement – eines neuen, gasgekühlten Hochtemperaturreaktors. Alle Teile koppeln aber später im Betrieb gegenseitig aufeinander zurück. Erinnert sei nur, an das Einfahren der Steuerstäbe in den Kugelhaufenreaktor in Hamm-Üntrop, welches zu unerwartetem Verschleiß geführt hatte. Die hier beschriebenen TRISO-Elemente waren drei Jahre zur Bestrahlung in einem Testreaktor (im Advanced Test Reactor des INL). Ziel war ein Abbrand von etwa 20%. Dies entspricht etwa dem doppelten Wert, der damals in Deutschland verwendeten Brennelemente. Je höher der Abbrand ist, um so mehr Spaltprodukte sind in den Brennelementen vorhanden und um so höher war die Strahlenbelastung.

Nach der Bestrahlung wurden sie in einem Ofen auf die Testtemperatur erhitzt. Hauptzweck eines solchen Versuches ist, zu messen, wieviel Spaltprodukte, von welcher Sorte, „ausgeschwitzt“ werden und wie stark die anderen Eigenschaften (Festigkeit, Korrosion etc.) nachlassen. Aus solchen Versuchen kann man wertvolle Erkenntnisse für die Optimierung des Herstellungsprozesses ableiten. Die Meßergebnisse sind so positiv, daß man sogar Tests bei noch höheren Temperaturen erwägt. Wichtig für die Sicherheitstechnik ist, daß bereits die jetzigen Temperaturen etwa 200 Grad über den möglichen Höchsttemperaturen bei einem Störfall liegen.

Unterschiede zu konventionellen Brennelementen

Ein Brennelement enthält den Spaltstoff (Uran, Plutonium) und soll später die bei der Kernspaltung entstehenden Produkte möglichst gut festhalten. Das Brennelement muß gekühlt werden. Bei einem Leichtwasserreaktor ist das Kühlmittel auch das Arbeitsmedium (Dampfturbine). Bei einem klassischen Hochtemperaturreaktor, dient Helium als Wärmeübertrager zwischen den Brennelementen und dem eigentlichen Dampfkreislauf. Verwendet man Helium als Kühlmittel und wünscht trotzdem ein thermisches Neutronenspektrum, benötigt man noch einen zusätzlichen Moderator. Diese Funktion übernimmt der Kohlenstoff in den TRISO-Elementen.

Ein Brennelement eines Druck- oder Siedewasserreaktors besteht aus vielen einzelnen Brennstäben (üblich 14 x 14 und 17 x 17). Jeder Brennstab ist mit Tabletten (kleine Zylinder mit etwa 1 cm Durchmesser und Höhe) aus Uranoxid gefüllt. Die Hülle besteht aus einem beidseitig verschlossenen Rohr aus einer Zirkonlegierung. Uranoxid ist in Wasser praktisch unlöslich und hat einen hohen Schmelzpunkt von über 2800 °C. Dies erscheint sehr hoch, kann aber relativ schnell im Innern eines Brennstabs erreicht werden, da Uranoxid ein schlechter Wärmeleiter ist. Es kommt deshalb bei einem Verlust des Kühlwassers – wie in Harrisburg und Fukushima – partiell zur „Kernschmelze“. Infolgedessen reagiert die Brennstabhülle mit Wasserdampf bei hoher Temperatur und es bilden sich beträchtliche Mengen Wasserstoff, die in Verbindung mit Luft explodieren können. Die ursprünglich im Brennstab zurückgehaltenen Spaltprodukte können freigesetzt werden. Dabei ist zu beachten, daß viele Spaltprodukte bei den hohen Temperaturen gasförmig sind. Sie breiten sich deshalb zumindest im Reaktor aus. Dies führt zu einer erheblichen Strahlenbelastung, die menschliche Eingriffe für lange Zeit unmöglich macht. Man muß also längere Zeit warten, bis man mit den Aufräumarbeiten beginnen kann. Dies war das Problem in Harrisburg und ist heute das Problem in Fukushima.

Die Kombination Uranoxid, eingeschweißt in einer Hülle aus einer Zirkonlegierung (Zirkalloy) ist für den „normalen“ Betrieb eine sehr gute Lösung. Solche Brennelemente sind sogar für Jahrzehnte problemlos in Wasserbecken oder Spezialbehältern (trocken) lagerbar. Anders verhält es sich, wenn sie – insbesondere aus dem vollen Betrieb heraus – „trocken fallen“: Die Temperatur des Brennstabs steigt sofort über den gesamten Querschnitt an. Dies liegt an der relativ gleichmäßigen Verteilung der Spaltprodukte (Nachzerfallswärme) und der schlechten Wärmeleitung von Uranoxid. Der Brennstab fängt regelrecht an zu glühen und kann in seinem Inneren bereits aufschmelzen. Ohne den Phasenübergang von Wasser zu Dampf (Verdampfungsenthalpie) ist der gewaltige Wärmestrom (dafür reicht schon die Nachzerfallswärme kurz nach Abschaltung) nicht aus dem Brennstab zu transportieren. Mit anderen Worten: Ist der Brennstab erst einmal von Dampf umgeben, heizt er sich immer weiter auf. Nun setzen zwei fatale Prozesse ein: Infolge der steigenden Temperatur verliert das Brennelement seine mechanische Festigkeit und das Material der Brennstoffhülle „verbrennt“ im heißen Wasserdampf und produziert dadurch beträchtliche Mengen Wasserstoff. In diesem Moment wird ein Teil der vorher eingeschlossenen radioaktiven Stoffe zumindest im Reaktordruckgefäß (Unfall in Harrisburg) oder sogar im Sicherheitsbehälter (Fukushima) freigesetzt. Die produzierte Menge Wasserstoff kann so groß sein, daß sie ein ganzes Kraftwerk zerstört. Die Bilder von der Explosion in Fukushima sind hinlänglich bekannt. Ist das passiert, wird auch eine beträchtliche Menge radioaktiver Stoffe in die Umwelt freigesetzt.

Man kann also zusammenfassend sagen: Die Konstruktion der Brennelemente eines Leichtwasserreaktors funktioniert nur so lange, wie sie ständig von flüssigem Wasser umgeben sind. Sind sie nicht mehr vollständig von Wasser benetzt, nimmt die Katastrophe innerhalb von Sekunden ihren Lauf und endet – zumindest – im Totalschaden des Reaktors. Die Sicherheit steht und fällt mit der Aufrechterhaltung einer „Notkühlung“. Ein „trocken fallen“ muß sicher verhindert werden. Dabei spielt es keine Rolle, ob dies von außen ausgelöst wird (Tsunami), durch technisches Versagen im Kraftwerk (Rohrbruch) oder auch durch menschliches Versagen (Bedienungsfehler). In diesen Zusammenhängen liegt die Begründung für die passiven Sicherheitseinrichtungen bei Reaktoren der sog. Generation III+.

Das TRISO-Konzept

Beim Tristructural-isotropic (TRISO) Brennstoff geht man nicht von einer Tablette mit einem Durchmesser von etwa 1 cm als Baustein aus, sondern von winzigen Körnern, im Bereich von zehntel Millimetern. Diese Körnchen werden mit vier Schichten umhüllt und besitzen anschließend einen Durchmesser von etwa einem Millimeter. Die erste Schicht besteht aus porösem Kohlenstoff. Sie kann wie ein Schwamm die Ausdehnungen des Brennstoffkerns ausgleichen und kann aus ihm entwichene Spaltprodukte (Gase) aufnehmen. Diese Schicht ist von einer weiteren Schicht aus dichtem pyrolitischem Kohlenstoff (PyC) umgeben. Nun folgt eine Schutzschicht aus Siliziumkarbid (SiC). Dieses Material ist sehr hart und chemisch widerstandsfähig. Außen folgt eine weitere Schicht Kohlenstoff. Ein solches Korn „Verbundwerkstoff“ ist gleichzeitig nahezu unzerbrechlich und äußerst temperaturbeständig. In diesem „Tresor“ sind Spaltstoff und Spaltprodukte für Jahrzehnte fest eingeschlossen. In Deutschland plante man die „abgebrannten“ Kugeln in Edelstahlbehälter einzuschweißen und diese dann in ein Endlager zu bringen.

Aus diesen kleinen TRISO-Körnern kann man in einem weiteren Verfahrensschritt handhabbare Brennelemente „backen“. Bei einem Kugelhaufenreaktor sind das etwa Tennisball große Kugeln aus solchen TRISO-Körnern, die durch weiteren Kohlenstoff miteinander verbunden sind. Das erforderliche Verhältnis, ist durch die Neutronenphysik vorgegeben, da bei diesem Reaktortyp der Kohlenstoff auch die Funktion des Moderators übernehmen muß. Das durch den Kugelhaufen strömende Helium dient nur dem Wärmetransport. Da weder Zirkalloy, noch Wasser vorhanden ist, kann bei einem Störfall auch keine größere Menge Wasserstoff gebildet werden. Eine Explosion, wie im Kraftwerk Fukushima, wäre ausgeschlossen.

Wie diverse Versuche mit Kugelhaufenreaktoren eindrucksvoll gezeigt haben, sind sie „inhärent sicher“. In China hat man beispielsweise in einem öffentlichen Versuch dem Reaktor bei voller Leistung die Wärmesenke entzogen. Der Reaktor „ging von alleine aus“ und verharrte in einem stabilen Zustand. Die Kettenreaktion wurde durch den extrem negativen Temperaturkoeffizienten des Reaktorgraphit und dem Dopplereffekt des Brennstoffs augenblicklich unterbrochen. Durch die Nachzerfallswärme verharrt der Reaktor in diesem „überhitzten Zustand“ für viele Stunden, ohne jedoch eine für den Brennstoff kritische Temperatur zu überschreiten (Eine maximale Brennstofftemperatur von 1600 °C wurde nach drei Tagen erreicht). Der Reaktor blieb unbeschädigt und konnte nach dem Versuch wieder in Betrieb gesetzt werden. Diese Demonstration war wichtig, da dieser Reaktortyp unmittelbar in Raffinerien als Wärmequelle eingesetzt werden soll.

Ein Reaktor mit TRISO-Brennstoff und Helium als Kühlmittel macht hauptsächlich zur Erzeugung von Hochtemperatur-Prozeßwärme Sinn. Der gegenüber Leichtwasserreaktoren höhere Kapitalaufwand, wiegt die Brennstoffeinsparung durch höhere Wirkungsgrade bei der Stromerzeugung nicht auf. Bei kleinen Reaktoren dieses Typs, ist wegen des günstigen Verhältnisses von Volumen zu Oberfläche, eine „Notkühlung“ nicht notwendig. Die geringe Leistung (einige Hundert Megawatt) ist für die Anwendung „Prozeßwärme“ kein Nachteil, da der Bedarf von Hochtemperaturwärme an einem Standort ohnehin begrenzt ist. Wegen der relativ geringen Stückzahlen ist eine Wiederaufbereitung eher unwirtschaftlich. Die Stabilität der TRISO-Elemente kommt einer direkten „Endlagerung“ entgegen. Geschieht diese rückholbar, kann das irgendwann bei Bedarf geschehen.

Wie in Deutschland eindrucksvoll gezeigt wurde, eignet sich dieses Reaktorkonzept hervorragend, um Thorium nutzbar zu machen. Bei Kugelhaufen ist eine Anreicherung von 8 bis 10% Spaltmaterial und für das US-Konzept der Prismenanordnung von 14 bis 19% erforderlich. Es wäre sogar eine Verwendung von „teilaufgearbeitetem“ Leichtwasserbrennstoff möglich. Wegen des hohen Abbrandes wären hiermit etwa 70% des vorhandenen „Atommülls“ nutzbar. Ein Konzept, ähnlich dem koreanischen DUPIC-Verfahren (Nachnutzung in Schwerwasserreaktoren).

Reaktortypen heute und in naher Zukunft

Warum haben sich einige Reaktoren durchgesetzt und andere nicht?

Bevor die technische Betrachtung los gehen kann, sind einige Vorbemerkungen erforderlich. Es sind die immer gleichen Sätze, die aber all zu gern gerade von Technikern und Wissenschaftlern verdrängt werden: Da draußen, in der realen Welt, außerhalb von Hörsälen und Politologenseminaren, kostet alles Geld und muß auch alles wieder Geld einbringen. Einen Euro, den man für Forschung ausgegeben hat, kann man nicht noch einmal für „soziale Projekte“ oder sonst irgend etwas ausgeben. In der Politik herrscht der nackte Verteilungskampf. Jeder in der Wirtschaft investierte Euro, muß nicht nur wieder eingespielt werden, sondern auch noch einige Cents zusätzlich einbringen – gemeinhin Gewinn genannt. Dies ist geradezu naturgesetzlich. Wie der „Real Existierende Sozialismus“ eindrücklich bewiesen hat, bricht sonst ein ganzes Gesellschaftssystem einfach in sich zusammen.

Die Evolution

Von den unzähligen Reaktortypen, haben nur drei – in der Reihenfolge ihrer Stückzahl – überlebt: Druckwasser-, Siedewasser- und Schwerwasserreaktoren. Gestorben sind alle mit Gas gekühlten, Graphit moderierten, und „schnellen“ Reaktoren. Manche sind über den Status eines Prototypen – wie z. B. die Salzbadreaktoren – nicht hinaus gekommen. Das sagt weniger über ihre „technischen Qualitäten“, als sehr viel mehr über die Gültigkeit der Vorbemerkung aus.

Die „schnellen“ Brüter

Das einzige, in der Natur vorkommende Material, mit dem man eine Kettenreaktion einleiten kann, ist Uran-235. Der Anteil dieses Isotops am Natururan beträgt nur 0,7%. Hört sich beängstigend gering an. Mit Prozenten ist das aber immer so eine Sache: Wenn man nicht fragt, von wieviel, kann man schnell zu falschen Schlüssen gelangen. Drei Dinge sind zu berücksichtigen, die sich gegenseitig positiv verstärken:

  1. Nach menschlichen Maßstäben, gibt es auf der Erde unerschöpflich viel Uran. Uran ist als Spurenelement überall vorhanden. Allein in den oberen 30 cm Erdschicht, sind auf jedem Quadratkilometer rund 1,5 to vorhanden (der durchschnittliche Urangehalt in der Erdkruste liegt bei 2,7 Gramm pro Tonne). Das Uran-Vorkommen im Meerwasser wird auf vier Milliarden Tonnen geschätzt. Der Menschheit wird das Uran also nie ausgehen. Eine von „Atomkraftgegnern“ immer wieder gern verbreitete angebliche Reichweite von ohnehin nur 30 bis 80 Jahren, ist einfach nur grottenschlechte Propaganda.
  2. Für uns Menschen setzt die Kernspaltung von Uran unvorstellbare – weil außerhalb unseres normalen Erfahrungshorizont liegend – Energiemengen frei. Die Spaltung eines einzelnen Gramms Uran setzt rund 22.800 kWh Wärme frei oder viel anschaulicher ausgedrückt, 13 boe (Fässer Rohöläquivalent). Zur Zeit kostet ein barrel (159 Liter) Rohöl rund 80 Euro am Weltmarkt. Ein Pound (453 gr) U3 O8 kostet aber nur etwa 50 US-Dollar – und damit nicht 1 Million (!!) Dollar, wie es seinem „Öläquivalent“ entsprechen würde. Diese Abschätzung macht deutlich, daß noch einige Zeit vergehen dürfte, bis das Uran auch nur im wirtschaftlichen Sinne knapp werden wird. Allein das bisher geförderte Uran (in der Form von Sprengköpfen, abgebrannten Brennelementen etc.) reicht für einige Jahrtausende aus, um den heutigen Weltbedarf an elektrischer Energie zu produzieren.
  3. In thermischen Reaktoren (gemeint ist damit, Reaktoren in denen überwiegend nur sehr langsame Neutronen die Kernspaltung betreiben.) wird vorwiegend Uran-235 genutzt, das aber im Natururan nur zu 0,7 % enthalten ist. Man glaubte, durch diesen „Faktor 100“ könnte sich vielleicht früher ein Engpass ergeben. Um so mehr, da bei Leichtwasserreaktoren eine Anreicherung auf 3 bis 5 % sinnvoll ist. Wegen der erforderlichen Anreicherung benötigt man fast die zehnfache Menge Natururan für die Erstbeladung eines solchen Reaktors. In Wirklichkeit ist es weit weniger dramatisch, da bei jeder Spaltung durch die Überschußneutronen neuer Spaltstoff (Plutonium) erzeugt wird. Die Konversionsrate bei heutiger Betriebsweise beträgt etwa 0,6. Mit anderen Worten, wenn 10 Kerne gespalten werden, bilden sich dadurch 6 neue „Spaltkerne“. Dafür benötigt man eine Wiederaufbereitungsanlage, deren Betrieb aber reichlich Geld kostet. Bei den heutigen, geringen Uranpreisen am Weltmarkt (siehe oben) lohnt sich das wirtschaftlich kaum. Man läßt die abgebrannten Brennelemente erst einmal stehen. Für die Kraftwerksbetreiber sind sie Abfall (weil nicht länger mehr im Reaktor einsetzbar), aber trotzdem Wertstofflager und keinesfalls Müll. Darüber hinaus sind sie um so leichter zu verarbeiten, je länger sie abgelagert sind.

Bedenkt man diese drei Punkte und den Vorspann, hat man unmittelbar die Antwort, warum sich Reaktoren mit schnellem Neutronenspektrum bis heute nicht kommerziell durchsetzen konnten. Sie sind in Bau und Betrieb wesentlich teurer als Leichtwasserreaktoren. So muß man Natrium- oder Bleilegierungen als Kühlmittel einsetzen. Eine völlig andere Technologie. Für Pumpen, Ventile und was man noch so alles in einem Kraftwerk braucht, gibt es nur weniger als eine Handvoll Hersteller, die alles in Einzelanfertigung herstellen mußten. Selbst das Kühlmittel ist ein Problem: Für vollentsalztes Wasser findet man heute praktisch in jeder Stadt einen Lieferanten. Für „Reaktornatrium“ gibt es nach Kenntnis des Autors praktisch nur einen Hersteller weltweit – übrigens ein deutsches Unternehmen – der bis nach Rußland und China liefert. In einem „natriumgekühlten“ Reaktor hat man drei Kühlkreisläufe (einen radioaktiven durch den Kern, einen Zwischenkreis zum Strahlenschutz und einen Wasser-Dampf-Kreislauf zur eigentlichen Stromerzeugung). Demgegenüber hat ein Siedewasserreaktor nur einen, der auch ohne Umwälzpumpen auskommen kann. Der Unterschied in Investitions- und Betriebskosten dürfte auch jedem Laien nachvollziehbar sein.

Weitaus schwerwiegender ist aber das wirtschaftliche Risiko. Kein verantwortungsvoller Energieversorger auf der Welt, wird sich für einen schnellen Reaktor zur kommerziellen Stromerzeugung entscheiden. Unkalkulierbares Genehmigungsverfahren mit unbestimmten Ausgang: Dafür findet sich keine Bank, die darauf einen Kredit gibt. Es bleibt daher auf absehbare Zeit wie es ist. Solche Reaktoren können nur in Rußland, China und Indien in staatlicher Regie gebaut werden. Sollten sich in einem „westlichen“ Land tatsächlich Politiker finden, die dafür die Verantwortung tragen wollen, könnte es sofort losgehen. Das Jahrzehnte dauernde Drama in Japan (Monju, Baubeginn 1984 (!), bis heute im ständigen Umbau) ist allerdings abschreckendes Beispiel genug. Technisch, gibt es keine grundlegenden Probleme mehr. Technisch, hätte das Projekt ungefähr das Risiko und den finanziellen Aufwand eines neuen Verkehrsflugzeugs oder einer neuen Weltraumrakete – nur für Politiker ist es eben nicht attraktiv. Dies ist übrigens keine Politikerschelte, denn die werden von uns selbst gewählt.

Selbst in USA läßt man sich für zig Milliarden lieber eine Mischoxid-Brennelemente-Fabrik von Areva bauen, nur um seinen vertraglichen Pflichten gegenüber Rußland aus dem Abrüstungsprogramm nachkommen zu können. Was in Frankreich funktioniert, kann so schlecht nicht sein. Die eigene IFR-Entwicklung hat man an Japan verscherbelt. Sie lebt heute unter dem Kürzel PRISM (Power Reactor Innovative Small Module) in einem Gemeinschaftsunternehmen von GE und Hitachi Nuclear Energy (GEH) mehr schlecht als recht, weiter. 2012 hat sich GEH in Großbritannien um ein Projekt zur Beseitigung des nationalen Überschusses an Plutonium beworben. Als Alternative zu Mischoxid-Brennelementen, mit deren Fertigung man in GB keine berauschenden Erfahrungen gemacht hatte. Mal sehen, was daraus wird. Es sollte übrigens ausdrücklich kein „Brüter“, sondern ein „Brenner“ werden, der möglichst schnell, möglichst kostengünstig, große Mengen Plutonium untauglich für eine Waffenherstellung macht.

Die Hochtemperaturreaktoren

Immer wieder taucht die (zweifelhafte) Forderung nach höheren Temperaturen auf. Entweder ist die Begründung ein besserer Wirkungsgrad oder die Nutzung für die Chemie. Deutschland war nach der Ölkrise der 1970er federführend in der Entwicklung. Will man höhere Temperaturen (über 300 °C) erreichen, bleibt praktisch nur eine Gaskühlung, da bei Wasserdampf der Druck in eine nicht mehr sinnvolle Dimension ansteigt. Außerdem verläßt man im Reaktor das Naßdampfgebiet, was für die „Reaktordynamik“ nur Nachteile bringt.

In den 1950er Jahren hatte man das Problem mit „zu nassem“ Dampf im Turbinenbau. Ausserdem ging zwangsläufig der Bau von Reaktoren mit Graphit als Moderator (für die Rüstung) voran. In Großbritannien ergaben sich die MAGNOX-Reaktoren mit Natururan und CO2. als Kühlmittel. Sie wurden mit einem Druck von knapp 21 bar und 400 °C betrieben. Schon damals unwirtschaftlich. Die Entwicklung ging folgerichtig weiter, zum AGR mit rund dem doppelten Druck und einer Temperatur von 630 °C. Von diesem Advanced Gas-cooled Reactor (AGR) wurden immerhin zehn Reaktoren mit einer Gesamtleistung von fast 6.000 MWe gebaut. Die hohe Temperatur in Verbindung mit CO2. führte zwar immer wieder zu Korrosionsproblemen, aber eigentlich sind es recht robuste Kraftwerke. Bei Neuplanungen geht man aber auch in Großbritannien ausschließlich von Leichtwasserreaktoren aus.

In der Sowjetunion erschuf man einen mit Graphit moderierten Druckröhren Reaktor (RBMK). Er erlangte in Tschernobyl traurige Berühmtheit. Es sind wohl immer noch acht Reaktoren in Betrieb. Die Mehrzahl wurde aber bereits aus dem Verkehr gezogen.

Auf die „echten“, mit Helium gekühlten Hochtemperatur-Reaktoren (z. B THTR in Deutschland mit 750 °C Austrittstemperatur) wird weiter unten noch eingegangen.

Kernenergie zur Stromproduktion

Bisher hat sich die Kernenergie weltweit ausschließlich zur Produktion elektrischer Energie durchgesetzt. Warum das auch auf absehbare Zeit so bleiben wird, später.

Nun hört man immer wieder das „Modewort“ von der „Energieeffizienz“. Gegen Leichtwasserreaktoren wird von „Atomkraftgegnern“ immer gern das Argument der angeblich schlechten Wirkungsgrade angeführt. Als Wirkungsgrad ist das Verhältnis von erhaltener Energie (die elektrische Energie, die aus dem Kraftwerk ins Netz geht) zu eingesetzter Energie (Spaltung von Uran oder Plutonium) definiert. Eine solche Definition macht in diesem Fall ohnehin wenig Sinn: Zumindest Plutonium ist ein (außer als Energieträger) wertloser Stoff, der potentiell sogar gefährlich (wie z. B. Quecksilber) ist. Eine andere Situation als bei Öl, Erdgas usw., die man auch als Rohstoff für vielfältige, andere Zwecke (Treibstoff, Kunststoffe etc.) nutzen kann. Ein besserer Wirkungsgrad macht bei der Kernenergie nur als „verminderte“ Betriebskosten Sinn. Wie aber schon oben gezeigt wurde, kostet Uran (energetisch betrachtet) fast nichts, aus dem Schornstein (im Vergleich zu einem Kohlekraftwerk) kommt auch nichts und die Asche (Spaltprodukte) ist weniger, als bei einem Gasturbinen-Kraftwerk aus dem Schornstein kommt. Alles keine Anreize, damit man um Wirkungsgrad-Punkte kämpft.

Trotzdem kann es nicht schaden, wenn man mal über den Zaun schaut. Die Spitzenwerte liegen heute für Koppelprozesse in Gasturbinen-Kraftwerken, mit nachgeschaltetem Dampfkreislauf zur Abwärmenutzung, bei 60%. Die modernsten Steinkohle-Kraftwerke haben Wirkungsgrade von 46% und der EPR von Areva 37%. Wenn man den Koppelprozeß mit 1 ansetzt, verhalten sich Kombi-, zu Steinkohle-Kraftwerk und Druckwasserreaktor wie 1,0 : 0,77 : 0,62. Alles keine Zahlen, um ein völlig neues Kraftwerkskonzept zu verkaufen (Sie erinnern sich noch an den Vorspann?).

Sehr interessant in diesem Zusammenhang wäre die Kraft-Wärme-Kopplung: Ein Kernkraftwerk als Heizkraftwerk. Plötzlich hätte man die gleichen Nutzungsgrade, wie aus den Prospekten der Block-Heiz-Kraft-Werk (BHKW) Hersteller und Rot/Grünen-Parteitagen – und das auch noch ohne Abgase und Geräusche. Ja, wenn nur die Strahlenphobie nicht wäre. Wir könnten leben, wie in der Schweiz (KKW Beznau) oder einst an der Unterelbe (KKW Stade).

Kernenergie als Wärmequelle

Mit Leichtwasserreaktoren läßt sich sinnvoll nur Wärme unter 300 °C herstellen. Wärme läßt sich wirtschaftlich immer nur über kurze Strecken transportieren. Andererseits nimmt gerade die Niedertemperaturwärme (Raumheizung, Warmwasser etc.) einen beträchtlichen Anteil in der nördlichen Hemisphäre ein. Man müßte lediglich Kernkraftwerke (vielleicht SMR?) in der Nähe von Metropolen bauen um „Fernwärme“ auszukoppeln.

Sehr hohe Temperaturen braucht man nur in der Industrie (Metalle, Glas etc.) und der Chemie. Diese Anwendungen sind heute eine Domäne von Erdgas und werden es auch bleiben. Hochtemperatur-Reaktoren wurden immer nur als Angebot für das Zeitalter nach dem „Ölzeitalter“ (wann das wohl sein wird?) vorgeschlagen. In Deutschland nannte man das „Kohle und Kernenergie“ und schuf den Thorium-Hochtemperatur-Reaktor (THTR), auch Kugelhaufen-Reaktor genannt. Er hat Austrittstemperaturen von 750 °C erreicht (für die Stromerzeugung mit Trockenkühlturm), sollte aber über 1000 °C für „Kalte Fernwärme“ und Wasserstoffproduktion erreichen.

Weltweit werden mehr als 500 Milliarden Normkubikmeter Wasserstoff produziert. Hauptsächlich aus Erdgas. Größte Verbraucher sind Raffinerien und Chemieanlagen. Folgt man einmal nicht Greenpeace und Putin („Wir brauchen mehr umweltfreundliche Gaskraftwerke“), sondern ersetzt im Gegenteil Erdgaskraftwerke durch Kernkraftwerke, kann man ganz konventionell riesige Wasserstoffmengen zusätzlich produzieren. Dagegen kann nicht mal die „Klima-Schutz-Staffel aus Potsdam“ etwas einwenden, denn bei der Umwandlung von Methan fällt nur Wasserstoff und CO2 an. Das Kohlendioxid kann nach texanisch, norwegischem Muster in den alten Öl- und Gasfeldern entsorgt werden oder nach niederländischem Muster in Tomaten. Der Einstieg in die „Wasserstoffwirtschaft“ kann erfolgen. Bis uns das Erdgas ausgeht, können Hochtemperaturreaktoren warten.

Fazit

Es geht mir hier nicht darum, für die Einstellung von Forschung und Entwicklung auf dem Gebiet der Kerntechnik einzutreten. Ganz im Gegenteil. Es nervt mich nur, wenn ganz schlaue Kernenergiegegner einem im Schafspelz gegenübertreten und einem erzählen wollen, daß sie ja eigentlich gar nicht gegen Kernenergie sind: Wenn, ja wenn, nur die „ungelöste Entsorgungsfrage“ erstmal gelöst ist und es „sichere Reaktoren“ gibt. Man würde ja in letzter Zeit auch immer von ganz „interessanten Konzepten“ lesen. Was spreche denn dagegen, erstmal abzuwarten? Bis dahin könnte man ja Wind und Sonne ausbauen. Die würden ja dadurch auch ständig billiger werden (Ha, ha, ha) und wahrscheinlich bräuchte man dann auch gar keine Kernenergie mehr. Und überhaupt, die „Energieeffizienz“ sei überhaupt die größte Ressource, man vertraue da ganz auf den Erfindergeist der „Deutschen Ingenieure“. Na denn ….

Die „Dual Fluid“ Erfindung

oder Verschwörungstheoretiker versus Erfindermesse

Seit ein paar Wochen tobt im Internet ein Streit zwischen den „Reaktorerfindern“ des Instituts für Festkörper-Kernphysik gGmbH (http://dual-fluid-reaktor.de) und den „Preisstiftern“ des Greentec-Awards 2013 (http://www.greentec-awards.com). Soweit ein Außenstehender nachvollziehen kann, geht es um die Bewerbung von A bei B um irgendeine Auszeichnung. Leider wurde der „Dual Fluid Reaktor“ von A nachträglich durch B disqualifiziert, weil er angeblich die Ausschreibungsbedingungen gar nicht erfüllt. Damit hätte sich das Interesse des Autors bereits vollständig erschöpft, wenn nun nicht in allen möglichen Blogs Partei für die eine oder andere Seite ergriffen würde. Inzwischen wird die Angelegenheit zum Glaubenskrieg Pro oder Kontra Kernenergie hochstilisiert. Von beiden Lagern wird soviel Blödsinn verbreitet, daß es dem Autor notwendig erscheint, ein paar erklärende Worte zu versuchen.

Grundsätzliches

Jedes Kernkraftwerk braucht einen Brennstoff und ein Arbeitsmedium. Für die (großtechnische) Stromerzeugung hat sich bis zum heutigen Tag nur der von einer Turbine angetriebene Generator durchgesetzt. Bei den Turbinen überwiegt die Dampfturbine und in wenigen Fällen die „Luftturbine mit innerer Verbrennung“, meist kurz „Gasturbine“ genannt. Für Kernkraftwerke scheidet die zweite aus. Deshalb funktionieren alle Kernkraftwerke mit Dampfturbinen. Wie bestimmend der Wasser-Dampf-Kreislauf für Kernkraftwerke ist, hat sich vor nicht all zu langer Zeit wieder an der Weiterentwicklung des mit Helium gekühlten Kugelhaufenreaktors gezeigt: China und Deutschland haben erfolgreich auf Dampfturbinen gesetzt, das Konsortium in Südafrika ist kläglich an der Entwicklung einer mit Helium betriebenen Gasturbine gescheitert.

Beim Brennstoff wird die Sache schon bedeutend vielfältiger: Man hat unterschiedliche Stoffe (z. B. Uran, Thorium, Plutonium) in unterschiedlichen chemischen Verbindungen (Uranoxid, -nitrid, -karbid, metallisch) und Aggregatzuständen (feste Tablette, wässrige Lösung, geschmolzene Salze) verwendet. Jede Brennstoffart hat ihre ganz charakteristischen Vor- und Nachteile, die in jedem konkreten Anwendungsfall abgewogen werden müssen. Den idealen Brennstoff gibt es nicht!

Ein wenig Neutronenphysik

Prinzipiell kann man jedes „schwere Element“ mit Neutronen spalten. Allerdings ist die Wahrscheinlichkeit für eine Spaltung nicht nur eine Stoffeigenschaft, sondern hängt auch von der Geschwindigkeit der auftreffenden Neutronen ab. Man unterscheidet deshalb in der Neutronenphysik bei jedem Isotop noch Absorptions-, Streu- und Spaltquerschnitte als Maß für die Wahrscheinlichkeit, was nach einem Zusammenstoß mit einem Atomkern passiert. Diese Querschnitte sind darüber hinaus keine einzelnen Werte, sondern Funktionen der Neutronengeschwindigkeit. Umgangssprachlich ausgedrückt: Wild gezackte Kurven.

Im Zusammenhang mit der „Atommüllproblematik“ kann also festgestellt werden, man kann alle Aktinoide – also insbesondere, die gefürchteten, weil sehr langlebigen Bestandteile der benutzten Brennelemente, wie Plutonium etc. – in (speziellen) Reaktoren spalten und damit unwiederbringlich aus der Welt schaffen. Alle Spaltprodukte wären nach rund 300 Jahren verschwunden. Es geht also nicht um ein etwas anderes Endlager, sondern um eine Beseitigung unter gleichzeitiger Energiegewinnung. Erforderlich ist bei einem solchen „Reaktor zur Beseitigung von langlebigen Aktinoiden“ ein hartes Neutronenspektrum. Die Neutronen dürfen nach ihrer Entstehung möglichst wenig abgebremst werden. Wie alle Erfahrungen international gezeigt haben, läßt sich das am wirksamsten mit einem natriumgekühlten schnellen Reaktor realisieren. Dafür ist kein „Salzbad“ zwingend notwendig.

Das einzige, in der Natur vorkommende Isotop, welches in der Lage ist eine Kettenreaktion einzuleiten, ist Uran-235. Hinzu kommen noch die beiden künstlich hergestellten Isotope Plutonium-239 (gewonnen aus Uran-238) und gegebenenfalls Uran-233 (gewonnen aus Thorium). Ohne wenigstens eines der drei, funktioniert kein Reaktor! Will man darüber hinaus einen Reaktor zur Beseitigung von (allen) Aktinoiden bauen, müssen diese Isotopen in hoher Konzentration (mindestens zweistellig) vorliegen, da ihre Einfangquerschnitte für diese Neutronengeschwindigkeiten sehr klein sind. Das andere Ende der Möglichkeiten, wie z. B. Schwerwasserreaktoren, können sogar mit Natururan (U-235 – Gehalt 0,7%) und Thoriummischungen betrieben werden. Unsere heutigen Leichtwasserreaktoren werden optimal mit einer Anreicherung von etwa 3 bis 5% betrieben.

Die Uranfrage

In der 1950er-Jahren gab es weltweit eine Uranknappheit. Man glaubte daher, ohne „Brüter“ keine friedliche Nutzung der Kernenergie schaffen zu können. Man kannte das Dilemma, daß man ausgerechnet für „Brüter“, also Reaktoren, die mehr Plutonium herstellen, als sie bei der Kernspaltung selbst verbrauchen, große Mengen Spaltmaterial benötigte. „Verdoppelungszeit“ war das Wort der Stunde. Gemeint ist damit der Zeitraum, der vergeht, bis so viel Plutonium erbrütet, wiederaufbereitet und verarbeitet ist, bis man damit einen zweiten Reaktor zusätzlich in Betrieb nehmen kann.

Eine Analyse des Problems führte zu flüssigen Brennstoffen. Bei einer Flüssigkeit kann man kontinuierlich einen Strom abzweigen und wieder aufbereiten. Wässrige Uranlösungen waren nicht zielführend, da man die unkontrollierbaren Ablagerungen im Reaktor nicht in den Griff bekam. Man ging zu geschmolzenem Salz über. In diesen Salzbädern konnte man auch Thorium – als weitere Rohstoffquelle – erschließen.

Thorium als Alternative

Um es gleich vorweg zu nehmen, um Thorium zu nutzen, braucht man keinen Salzbadreaktor. Dies hat Kanada/Indien (CANDU) und Deutschland (THTR) erfolgreich unter Beweis gestellt. Andererseits braucht man für Salzbadreaktoren nicht zwingend Thorium. Es geht auch mit Uran. Ein Mißverständnis, das oft in der Öffentlichkeit zu hören ist.

Zurück zum „Brüten“. Viele Spaltstoffe sind „parasitär“. Sie absorbieren einen Teil der bei der Spaltung frei gewordenen Neutronen. Diese sind dann sowohl für eine weitere Spaltung – um die Kettenreaktion überhaupt in Gang zu halten – oder eine Umwandlung von Uran oder Thorium unwiederbringlich verloren. Neutronen sind aber äußerst kostbar. Bei der Spaltung werden nur zwei bis drei freigesetzt. Eines braucht man für die nächste Spaltung (Kettenreaktion), die anderen könnten „brüten“. An dieser Stelle wird klar, warum es so schwer ist einen „Brüter“ zu bauen, bzw. die „Verdoppelungszeit“ grundsätzlich sehr lang ist: Zwei Neutronen sind weg (für die nächste Spaltung und um das gespaltene Atom zu ersetzen), es bleibt für einen Mehrwert nur die Stelle hinter dem Komma.

Zurück in die 1950er-Jahre: Man glaubte an eine Knappheit von Natururan, welches auch noch strategisch wichtig war (atomare Aufrüstung im kalten Krieg). Man wußte ferner, daß die „Verdoppelungszeiten“ für „schnelle Brüter“ sehr lang waren und deshalb der Ausbau der Nutzung der Kernenergie gefährdet schien. Ferner wußte man, daß die Vorräte an Thorium etwa vier mal so groß, wie die Welt-Uranvorräte sein mußten. Wenn dies auch nichts über die wirtschaftliche Gewinnung aussagt.

Bei Thorium kommt noch der Vorteil hinzu, daß die „Neutronenausbeute“ bei Spaltung durch schnelle oder langsame Neutronen nicht so verschieden ist. Hohe „Konversionsraten“ sind relativ einfach möglich. Dies war der zweite Vorteil – neben der hohen Betriebstemperatur – des deutschen THTR-Reaktor-Konzepts. Man benötigte eine relativ kleine Impfung mit hoch angereichertem Uran oder Plutonium, um den Reaktor zu starten. Der größte Teil der Energie wurde dann aus dem selbst umgewandelten Thorium erzeugt. Hoher Abbrand, bei geringem Einsatz von kostbarem Uran-235 bzw. Plutonium.

Salzbadreaktor

Wenn man einen Reaktor mit flüssigem Brennstoff bauen will, kommt man sehr schnell –und immer wieder – auf die sogenannten FLiBe-Salze. Eine Mischung auf der Basis von Fluor, Lithium und Beryllium. Sie haben geringe Einfangquerschnitte (wirken also kaum parasitär für die Neutronen), besitzen einen geringen Schmelzpunkt (sehr wichtig bei jeder Inbetriebsetzung) und sind (einigermaßen) nicht korrosiv.

Allerdings ist es zumindest diskussionswürdig, ob die in der Öffentlichkeit angeführten Vorteile überhaupt solche sind. Die Herstellung des „Betriebsmediums“ innerhalb eines Kraftwerks ist nicht unproblematisch. Ein Kraftwerk ist keine Chemiefabrik. Es sei nur darauf hingewiesen, daß Beryllium und seine Verbindungen hoch giftig und krebserregend sind. Die Aufrechterhaltung eines stets homogenen Brennstoffs von gleichbleibender chemischer und neutronenphysikalischer Qualität, ist eine echte Herausforderung.

Gut ein Drittel der Spaltprodukte sind Gase. Bei festen Brennelementen ist deren sicherer Einschluß im gasdicht verschweißten Rohr ein zentraler Bestandteil der Sicherheitsphilosophie. Bei einer Flüssigkeit perlen sie naturbedingt und unkontrollierbar aus. Es muß deshalb ständig ein Teilstrom ausgeschleust werden, aus dem durch Strippung mit Helium die gasförmigen (bei dieser Temperatur) Bestandteile abgeschieden werden. Diese sind hochradioaktiv und müssen sicher zurückgehalten werden. Die Abgasstrecke ist schon in einer konventionellen Wiederaufbereitungsanlage eine recht komplexe Angelegenheit. Hier kann aber nicht mit „abgelagertem“ Brennstoff, sondern muß stets mit frischem gearbeitet werden.

Die Salze sind auch nicht ganz billig. Auch hier nur ein Hinweis: Natürliches Lithium besteht aus 92,5% Lithium-7 und 7,5% Lithium-6. Lithium-6 sollte aber nicht verwendet werden, weil aus ihm durch Neutroneneinfang Tritium entsteht. Tritium ist in der Kerntechnik äußerst unbeliebt, da es mit Sauerstoff „radioaktives“ Wasser bildet, das aus dem biologischen Kreislauf praktisch nicht mehr zu entfernen ist. Deshalb muß das natürliche Lithium erst aufwendig angereichert werden. Bisher ging das großtechnisch nur unter Verwendung von Quecksilber. In Oak Ridge ist man seit Jahrzehnten damit beschäftigt, die Quecksilberverseuchung aus der Lithiumanreicherung wieder zu beseitigen.

Aufbereitung durch Pyroprocessing

In letzter Zeit findet bei der Wiederaufbereitung ein Paradigmenwechsel statt. Es steht nicht mehr die Gewinnung von möglichst reinem Uran bzw. Plutonium im Vordergrund, sondern die Gewinnung möglichst reiner Spaltprodukte. Je reiner die Spaltprodukte, je kürzer die Lebensdauer des „Atommülls“. Ein „Endlager“ wäre überflüssig. Je „schmutziger“ das Plutonium, je ungeeigneter zur Waffenproduktion.

Ein Favorit in diesem Sinne, ist das Pyroprocessing. Im Prinzip ist es das gleiche Verfahren, wie bei der Kupfergewinnung. Die Metalle (Uran, Plutonium und im Idealfall alle minoren Aktinoide) wandern von der Atommüll-Elektrode zur Rein-Metalle-Elektrode. Die Spaltprodukte bleiben im Elektrolyt zurück. Das Aktinoidengemisch wird zu neuen Brennelementen verarbeitet. Es ist für die Waffenherstellung ungeeignet.

Auch hierfür ist kein Salzbadreaktor erforderlich. Es wurde erfolgreich für den mit Natrium gekühlten IFR eingesetzt. Man könnte sogar konventionelle Brennelemente aus Leichtwasserreaktoren damit aufbereiten. Es ist lediglich eine Zusatzstufe zur Reduktion der Uranoxide notwendig. Die Koreaner arbeiten mit Hochdruck an dieser Schiene. Sie benötigen dieses Aufbereitungsverfahren, wegen der besonderen politischen Situation auf der koreanischen Halbinsel.

Fazit

In der Kürze eines solchen Artikels läßt sich die Breite der Kerntechnik nur anreißen. Es gibt in der Technik kein gut, sondern lediglich ein besser oder schlechter geeignet – und das ist in jedem einzelnen Anwendungsfall neu zu beurteilen. Es nutzt überhaupt nichts, wenn irgendwelche Trolle Diskussionen führen, wer den besseren Reaktor kennt. Solche Diskussionen sind genauso kindisch, wie die üblichen Argumentationsschlachten der Sonnenmännchen für ihre „regenerativen Energien“. Was die „Erfindung des Dual Fluid Reaktors“ betrifft, handelt es sich eher um den Entwurf für ein neues Perry Rhodan Heft, als um ein Patent für einen genehmigungsfähigen Reaktor. Dies ändert aber auch nichts an der Schwachsinnigkeit der Begründung der Ablehnung. Warum sagt „GreenTec Awards“ nicht einfach: Wir mögen keine Kernenergie, basta! Dies wäre völlig legitim. Unanständig wird die Sache erst dadurch, daß man die Entscheidung krampfhaft versucht zu begründen und dabei sogar Tatsachen verdreht.

Brennstoffbank

Die International Atomic Agency (IAEA) hat bereits mehrere Treffen mit Regierungsstellen in Kasachstan zur Einrichtung einer Brennstoffbank abgehalten. Ziel der Verhandlung ist die Einrichtung eines international zugänglichen Lagers für leicht angereichertes Uran (Low Enriched Uran project, LEU-project). Es wurden zwölf technische Aufgabenbereiche zur erforderlichen Klärung festgelegt, von denen einige, wie z. B. Fragen zu Erdbeben, bereits in Bearbeitung sind. Ende Mai hat die IAEA ihre Mitgliedsstaaten über den Fortschritte offiziell informiert.

Ausgestaltung

Eigentümer und Verwalter der Brennstoffbank auf kasachischem Boden wird die IAEA sein. Das Lager soll anfangs Material für die Erstbeladung von zwei bis drei Leichtwasser-Reaktoren enthalten. Alle Mitgliedsstaaten der IAEA, die sich ausdrücklich verpflichten auf eigene Anreicherung und Wiederaufbereitung zu verzichten, können im „Ernstfall“ auf die Lagerbestände zurückgreifen. Sie würden dann aus dem Bestand mit Brennstoff zu aktuellen Weltmarktpreisen versorgt. Anschließend würde die Brennstoffbank wieder unverzüglich ihre Reserven durch Zukäufe am Weltmarkt aufstocken.

Die Brennstoffbank übernimmt also die Funktion einer (politischen) Rückversicherung. Ein Staat ohne eigene Anreicherung, wäre wirtschaftlich und politisch erpressbar, wenn man ihm bei „Nachladebedarf“ eine Belieferung ganz verweigern würde oder nur zu überhöhten Preisen leisten würde. Dies ist die klassische – und leider nicht ganz von der Hand zu weisende – Argumentation z. B. Irans für sein eigenes Zentrifugenprogramm gewesen. Die Versorgungssicherheit hat sogar Deutschland bewogen, eigene Anreicherungsanlagen auf deutschem Boden zu betreiben. Die „politische Glaubwürdigkeit“ ist nur ein schwaches Argument beim Verzicht auf Kernwaffen. Demgegenüber ist der völlige Verzicht auf Anreicherung und Wiederaufbereitung ein eindeutiges und leicht zu kontrollierendes Bekenntnis. Staaten die bereit sind, so konsequent zu handeln (bisher nur die Vereinigten Arabischen Emirate), müssen dafür von der internationalen Gemeinschaft abgesichert werden.

Im Sinne einer Versicherung reichen hierfür recht kleine Mengen aus. Die hohe Energiedichte von Uran erfordert einen Brennelementewechsel nur in großen zeitlichen Abständen (alle 12 bis 24 Monate) und es können leicht (kleinere) Mengen selbst vorgehalten werden. Der Versuch einer Erpressung ist somit durch die garantierte Verfügbarkeit aus der Brennstoffbank von vornherein zum Scheitern verurteilt. Dieses Konzept lebt mehr von der „Abschreckung“ als von der realen Lieferung. Es steht und fällt allerdings mit der Glaubwürdigkeit der Garantie. Deshalb ist eine strikte internationale Kontrolle und Absicherung nötig. Im Umkehrschluß gilt, daß kein Staat zur zivilen Nutzung der Kernenergie „doppeldeutige“ Anlagen oder Verfahren mehr benötigt.

Entstehung

Das Verfahren geht auf die Nuclear Threat Initiative (NTI) zurück. Eine regierungsunabhängige und gemeinnützige Privatorganisation. Sie wurde 2001 von Ted Turner (Begründer von CNN und WTBS) und Sam Nunn (demokratischer Senator von Georgia 1972–1997) begründet. Sie versteht sich als aktiv handelnde Organisation. Ihre erste spektakuläre Aktion war 2002 die Finanzierung und Organisation eines Transports von fast 50 kg hoch angereichertem Uran aus einem „Forschungsinstitut“ in der Nähe von Belgrad zurück nach Rußland. Dort wurde es mit Natururan verschnitten und anschließend in zivilen Reaktoren zur Stromerzeugung verbraucht. NTI trug maßgeblich zur Gründung und deren Finanzierung des World Institute for Nuclear Security (WINS) bei. WINS hat sich zum Ziel gesetzt, die Sicherheit vor Diebstahl und jedweden Mißbrauch von nuklearem Material durch Terroristen oder Staaten zu verbessern. In dieser Organisation sind neben Behördenvertretern auch private Unternehmen organisiert, die sich gegenseitig unterstützen, austauschen und beraten. Inzwischen haben auch Norwegen und Kanada beträchtliche finanzielle Unterstützung zugesagt.

Diese Organisationen sind ein schönes Beispiel für die Wirksamkeit von privater Initiative. Durch die Mobilisierung von privaten Mitteln (Stiftungen) konnte unmittelbar und mit durchschlagendem Erfolg mit der Arbeit begonnen werden. Der „private Charakter“ ermöglichte die Zusammenkunft und Mitarbeit losgelöst von politischer Blockbildung. Regierungen sind auf solch sensiblen Gebieten handlungsunfähig. Sie können bestenfalls auf erfolgreiche Züge aufspringen. Für grundlegende Veränderungen in festgefahrenen Sektoren sind immer Einzelpersonen notwendig. Politische Parteien etc. müssen auf die vermeintlich geltenden Meinungen Rücksicht nehmen und sind stets ihren Lagern verpflichtet.

Modellcharakter

Seit der ersten Stunde der Nutzung der Kernenergie besteht immer der Konflikt zwischen „friedlich“ und „militärisch“. Die Kernenergie ist leider erst als Massenvernichtungswaffe der breiten Öffentlichkeit bekannt geworden. Die Nutzung als nahezu unerschöpfliche Energiequelle erschien erst nachträglich aufgesetzt. Mehr als 40 Jahre „Kalter Krieg“ mit Lügen und Propaganda wirken bis heute fort. „Angst vor dem Atom“ war und ist ein wesentlicher Stellvertreter in der „Systemfrage“. Hierin liegt aber auch die Chance: Die beiden Blöcke gibt es in ihrer ursprünglichen Form nicht mehr und zahlreiche neue Akteure sind auf der Weltbühne erschienen. Es ist Zeit für ein neues Zeitalter der Aufklärung.

Ohne Übertreibung kann man sagen, daß die Bevölkerungsentwicklung inzwischen für die Menschheit einen mindestens so brisanten Stellenwert, wie die „Atombombe“ besitzt. Entweder die Menschheit ist in der Lage, der Mehrheit einen akzeptablen Lebensstandard zu bieten oder sie wird im Elend versinken. Dabei ist es egal, ob sie in einem atomaren Inferno oder endlosen „Religionskriegen“ oder schlichtweg Umweltkatastrophen versinkt. Eine – nicht die einzige, aber die wesentliche – Herausforderung ist dabei, die ausreichende Versorgung mit preiswerter Energie. An dieser Stelle muß – insbesondere in Deutschland – mal wieder betont werden, daß „ausreichend“, „preiswert“ und „umweltschonend“ absolut gleichrangige Kriterien sind! Die Bevorzugung nur eines Kriteriums, ist für die Menschheit kontraproduktiv und wird entgegen des (hier durchaus unterstellten) guten Willens, geradewegs in die Katastrophe führen. Man kann es in jedem Entwicklungsland studieren: Armut und Umweltzerstörung (z. B. Abholzung von Urwäldern) gehen Hand in Hand, Luftverschmutzung ist und war die Folge „billiger Technik“ (Kohlekraftwerke ohne Filter, Autos ohne Abgasbehandlung).

Energieverbrauch pro Kopf und Wohlstand sind untrennbar miteinander verbunden. Alles Geschwafel von „Energieeffizienz“ ist nur eine Umschreibung für Verzicht. Wer kann und soll in einer Weltordnung verzichten, in der rund zehn Prozent der Menschen den Löwenanteil der Energie verbrauchen? Selbst wenn wir, in den Wohlstandsregionen Europas und USA, auf die Hälfte der Energie verzichten würden, würde diese Umverteilung die Milliarden von „ein Dollar pro Tag Verdienern“ nicht aus ihrem Elend herausführen können. Andererseits würde eine solche „Effizienzsteigerung“ bei uns wahrscheinlich zu Aufständen führen, denn auch hier leben nicht alle Menschen auf der „Sonnenseite“. Davon abgesehen, werden uns Chinesen und Afrikaner immer weniger um unsere Meinung fragen. Sie werden tun, was sie für richtig halten und das ist auch gut so.

Wenn man die Welt realistisch und mal nicht nur durch eine rosarote ökologische Brille betrachtet, bleibt nur die Erkenntnis, daß der Verbrauch von fossilen Energien (insbesondere Kohle) und Kernenergie auf absehbare Zeit noch zunehmen muß und wird. Ja, gerade wenn man den Zuwachs im Verbrauch fossiler Energien eindämmen will, wird man die Kernenergie weiter ausbauen müssen. „Regenerative“ sind bestenfalls ergänzende Energieträger und sind wegen ihrer Unstetigkeit und ihrer geringen Energiedichte und den daraus resultieren Kosten als Ersatz völlig ungeeignet. Es ist zu bezweifeln, ob die Menschheit jemals so reich sein wird, daß sie sich „regenerative Energien“ leisten können wird. In Wahrheit, wird sie sich dann, nahezu auf ihre Anzahl im vorindustriellen Zeitalter zurück schrumpfen müssen. Wer bestimmt, wer ausscheiden muß?

Das Dilemma zwischen friedlicher und militärischer Nutzung bleibt somit weiter bestehen. Man kann weder eine Waffentechnologie der 1940er Jahre dauerhaft geheim halten, noch läßt sich der größere Teil der Menschheit dauerhaft gängeln. China ist ein deutliches Beispiel. Wer glaubt noch ernsthaft daran, China Vorschriften machen zu können, wieviel von welcher Energieform es nutzen darf? Bestenfalls führt es eine Selbstbeschränkung auf 4 Milliarden to Kohle pro Jahr selbst durch. Um dieses Ziel einhalten zu können, muß es Kernkraftwerke in Serie bauen. Es ist zum Erfolg in der Kerntechnik verdammt. Unzählige „Schwellenländer“ blicken mit großen Erwartungen auf diese Entwicklung. Vorbild wird China und nicht das „Wendeland“ Deutschland sein.

Wenn es aber so ist, wie es ist, wird man Wege finden müssen, ein atomares Wettrüsten zu verhindern. Auch Nord Korea und Iran wird seine Nachahmer finden. Wenigstens den gutwilligen Nationen muß man Möglichkeiten bieten, nicht zwangsweise mitmachen zu müssen. Insofern ist der freiwillige Verzicht der Vereinigten Emirate auf ein atomares Wettrüsten mit seinem Nachbarn Iran, ein Hoffnungsschimmer. Es ist auch kein Zufall, daß die Unterstützung dafür von Privat und nicht aus „Regierungskreisen“ kommt. Wahrscheinlich auch nicht, daß eine „junge Nation“ aus dem ehemaligen Sowjetreich begeistert den Vorschlag für eine Brennstoffbank aufgegriffen hat.