Kernenergie in Tschechien

Hin und wieder empfiehlt es sich, mal einen Blick auf seine „kleinen“ Nachbarn zu werfen. Dies gilt ganz besonders für die, die glauben immer voran gehen zu können – sonst könnten die irgendwann feststellen, daß sie ganz allein dastehen, umzingelt von Andersdenkenden. Tschechien war und ist Kohlenland. Zwar ist der Primärenergie-Anteil nach dem Zusammenbruch des Ostblocks schon deutlich geringer geworden (1990–63,2%, 2020–30,3%), aber immer noch sehr hoch. Im Ostblock war Tschechien sogar Nettoexporteur. Der Energieverbrauch an Kohle betrug 2019 rund 14 Mtoe (Millionen Tonnen Öläquivalent), von dem etwa 74% für Wärme und Stromerzeugung eingesetzt wurden. Der Anteil an Steinkohle an der inländischen Förderung ist nur noch gering und soll bis 2023 vollständig auslaufen. Bei Braunkohle sieht es noch anders aus: Die Jahresproduktion betrug 2020 über 31 Millionen Tonnen. Die laufenden Tagebaue verfügen noch über Reserven von knapp 600 Mto. Allerdings kommt der Bergbau auch in Tschechien an seine wirtschaftlichen Grenzen und die Kohleimporte nehmen stetig zu. Der Löwenanteil wird – wie in Deutschland auch – in elektrische Energie umgewandelt. Eine Besonderheit ist, daß jährlich 2 bis 3 Millionen Tonnen Braunkohle für die Gebäudeheizung verwendet werden – überwiegend in Fernwärmenetzen in den Städten – und nur in geringem Umfang als Brikett in ländlichen Regionen.

Der Druck aus Brüssel

Braunkohle ist ein heimischer Energieträger, der dem Staat sogar noch direkte Einnahmen über Royalties und indirekte über die Arbeitsplätze verschafft. Brüssel nimmt nun diese Industrie auf mehreren Wegen in die Zange:

  • Durch den Emissionshandel ETS verteuert sich der heimische Energieträger Braunkohle rapide gegenüber dem importierten Erdgas (aus Russland).
  • Die strengen Abgasvorschriften der EU für Kraftwerke zwingen Tschechien zu einem teueren Nachrüstungsprogramm oder sogar zur Schließung der Kraftwerke. So sollen bis 2023 knapp 1,6 GW Braunkohle-Kraftwerke vom Netz gehen. Das sind etwa 14% der Gesamtleistung. Konsequenz ist, daß der Kohlestrom schon 2025 nur noch 25% und ab 2030 wahrscheinlich nur noch 12,5% betragen soll. Eine enorme Bürde für ein so kleines Land mit seiner leidvollen Geschichte.

Die sozialen Verwerfungen der „Großen Transformation“ werden gewaltig sein. Wie weltfremd und absurd Brüssel dabei vorgeht, zeigt sich z. B. an den zu erwartenden Heizkostensteigerungen in den sozialen Brennpunkten der Großstädte: Man unterwirft die Heizkraftwerke der vollen ETS-Abgabe, während Individual-Heizungen davon befreit bleiben – wehe wenn Zentralismus und „Sozialpolitik“ aufeinander treffen. Die Zeche zahlen nicht nur die Mieter in den Plattenbausiedlungen, sondern letztlich auch noch die Natur, denn Kraft-Wärme-Kopplung ist einer der umweltfreundlichsten Formen der Heizung. Immerhin werden ungefähr die Hälfte der Bevölkerung durch Fernwärme versorgt.

Die Alternativen

Tschechien hat 10,7 Millionen Einwohner auf einer Fläche von 79 000 km2. 75% der Einwohner leben in Städten. „Bioenergie“ kann deshalb keine Alternative, bestenfalls eine Ergänzung sein. Offshore-Wind geht in einem Binnenstaat auch nicht. Mit Sonnenenergie ein Industrieland in solch nördlichen Breiten versorgen zu wollen ist absurd. Die totale Abhängigkeit von russischem Erdgas will auch keiner, die Verschandelung der Höhenzüge mit Windmühlen geht mangels Platz und fehlender Speicher auch nicht. Es bleibt also nur mit voller Kraft voraus ins Kernenergiezeitalter. Keine neue Erkenntnis, die Bevölkerung war und ist immer positiv gegenüber Kernkraftwerken eingestellt. Daran hat dort auch keine Flutwelle im fernen Japan etwas ändern können.

Dukovani und Temelin

Tschechien besitzt die Kernkraftwerke Dukovani (vier Blöcke mit zusammen 2040 MW) und Temelin (zwei Blöcke mit zusammen 2250 MW). Die Reaktoren in Dukovani (VVER-440/213) gingen zwischen 1985 und 1987 ans Netz. Die Reaktoren in Temelin (VVER-1000/320) wurden 2002 und 2003 – also erst nach dem Zusammenbruch des Ostblocks – fertiggestellt. Bemerkenswert ist die Kontinuität im Bau von Kernkraftwerken über alle System-Brüche hinweg. Alle Reaktoren sind noch sowjetische Konstruktionen. Sie wurden aber auf westliche Sicherheitsstandards nachgerüstet bzw. durch Westinghouse zu Ende gebaut. Verständlich, daß man sich nach dem „Prager Frühling“ gegenüber Russland etwas distanziert verhält. 2020 produzierten diese Kraftwerke etwa 37,5% der elektrischen Energie bzw. 19,5% der Primärenergie.

Bemerkenswert ist die Versorgung mit Fernwärme für zwei Nachbarstädte von Temelin. Der Ausbau für die 26 km entfernte Stadt České Budějovice (100 000 Einwohner) ist in Arbeit. Der Ausbau der Fernwärme um den Standort Dukovani in Planung (Brno mit 380 000 Einwohnern, 40 km entfernt). Ein so konsequentes Bekenntnis für Kernenergie zur Gebäudeheizung findet man sonst nirgendwo (noch nicht) in Europa.

Die tschechischen Kernkraftwerke wurden nicht nur sicherheitstechnisch auf internationalen Standard nachgerüstet, sondern auch beständig modernisiert. So wurde die Leistung des Kraftwerks Dukovani bis 2021 um 12% auf 2040 MWel gesteigert. Ein ähnliches Programm für Temelin läuft noch. Das alles ist möglich, weil Tschechien über eine bemerkenswerte Forschungs- (3 Forschungsreaktoren) und Ausbildungskapazität verfügt. Skoda war schon im Ostblock ein angesehener Lieferant für Kraftwerkskomponenten.

Neubauprogramm

In den letzten Jahrzehnten wurde immer wieder der Ausbau befürwortet und Angebote eingeholt. 2015 wurde im Rahmen eines Langzeitprogramms für die kerntechnische Industrie der Zubau von drei Reaktoren an den alten Standorten genehmigt. Priorität hat Dukovani 5 als Ersatz für die vorhandenen Blöcke nach (bisher geplant) 60 Jahren Betriebszeit. Geplant ist der Baubeginn für 2029 und die Fertigstellung 2036. Aufgerufen sind nur Modelle mit nachgewiesener Betriebserfahrung. Favorisiert werden der französische EPR, der koreanische APR1400 und der AP1000 aus den USA. Die endgültige Entscheidung wird für den Herbst 2021 – nach den Parlamentswahlen – erwartet.

Die neu gegründete Zweckgesellschaft Elektrárna Dukovany II geht von Baukosten von 6 bis 7 Milliarden USD aus (5000–5833 USD/kWe ohne Finanzierungskosten). Die tschechische Regierung beschloss 2020, daß 70% der Investitionskosten durch einen staatlichen Kredit finanziert werden, der während der Bauzeit zinslos ist und nach Inbetriebnahme mit 2% verzinst wird. Darüberhinaus verabschiedete 2020 die tschechische Regierung ein Gesetz, das es dem Staat erlaubt, ein festes Kontingent (>100 MWel) für mindestens 30 Jahre vom Erzeuger abzukaufen. Diese Energiemenge wird über den Großhandel verkauft. Etwaige Verluste oder Gewinne werden über den Einzelhandelspreis umgelegt. Bei Lichte betrachtet, entspricht dieser Ansatz einer öffentlichen Investition – z. B. für eine Autobahn, einen Kanal etc. – die zu einem Festpreis (das Risiko von Kostensteigerungen während der Bauzeit geht voll zu Lasten des Lieferanten) vergeben wird und die Nutzung (Preis der kWh) meistbietend versteigert wird. Dies ist eine besonders intelligente Lösung, wenn man bedenkt, daß Temelin z. B. nur 60 km von der deutschen und 50 km von der österreichischen Grenze entfernt ist. Diese beiden Länder können sich gern bei Dunkelflaute Strom in Tschechien (zu hohen Preisen wegen der Nachfrage) ersteigern, der „Profit“ kommt dann unmittelbar dem tschechischen Stromkunden zu gute. Energiepolitik einmal ohne Ideologie, dafür aber clever. Sie ist nicht gegen die eigene Bevölkerung gerichtet. Anders als z. B. in Deutschland, wo alle Risiken über das EEG von der Allgemeinheit (den Stromkunden) voll getragen werden müssen, die Gewinne aber ausschließlich garantiert in die Taschen der Sonnen- und Windbarone fließen.

Tschechien geht aber auch mit der Zeit. Frühzeitig wurden Kooperationen für Small Modular Reactors (SMR) mit GE Hitachi (300 MWel Siedewasserreaktor), NuScale (77 MWel Druckwasser-Module) und Rolls-Royce (477 MWel Leichtwasserreaktor) geschlossen. Kleine Reaktoren können für die Kraft-Wärme-Kopplung und die Industrie eine sinnvolle Ergänzung darstellen. Außerdem kann sich die heimische Industrie (Skoda) besser in die Lieferketten einbringen. Der Eigenanteil könnte wesentlich höher sein.

Konsequenzen für Deutschland

Man kann die Ausbaupläne mit einem lachenden und einem weinenden Auge betrachten. In Deutschland werden die Strom- und Heizkosten weiter explodieren – die momentanen Preissteigerungen bei Erdgas sind nur das Wetterleuchten. Wer auf Wind und Sonne zur Energieversorgung setzt, setzt in Wirklichkeit auf Erdgas, wenn er aus Kohle und Kernenergie aussteigt. Immer, wenn der Wind nicht weht oder die Sonne nicht scheint (ausgerechnet im Winter bis zu 16 h täglich) müssen die Erdgaskraftwerke ran. Wasserstoff aus der Nordsee oder Batterien sind in diesem Sinne reines Schlangenöl. Die Bayern können sich glücklich schätzen, wenn Tschechien vor ihrer Tür neue Kernkraftwerke baut. Teurer Strom ist immer noch besser, als gar kein Strom. Teuer wird er werden, denn der Preis richtet sich immer nach Angebot und Nachfrage, nicht nach den Produktionskosten. Warum sollte Tschechien auch Mitleid mit Deutschland haben? Der ein oder andere Deutsche kann vielleicht sogar als Gastarbeiter über die Grenze gehen, wenn er entsprechend qualifiziert ist. Glückliches Bayern, mit Rindviechern und Biobauern.

Kernenergie als Schiffsantrieb

Auch der Schiffsverkehr gerät neben Stromerzeugung und Autoindustrie unter gewaltigen Druck. So hat die IMO (United Nations International Maritime Organisation) bereits eine Verringerung der CO2-Emissionen um 50% bis 2050 (bezogen auf 2008) beschlossen. Das erfordert eine gewaltige Kraftanstrengung die unser aller Lebenshaltungskosten betrifft. Der Seehandel ist das Herz des Welthandels. Die Größe dieses „Industriezweigs“ ist der Öffentlichkeit meist gar nicht bewußt. Immerhin machen die Reedereien, Hafenbetriebe, Versorger, Werften etc. jährlich einen Umsatz von rund 7000 Milliarden US-Dollar – das ist fast das Doppelte des Bruttoinlandsprodukts von Deutschland. An einem solchen Wirtschaftsgiganten schraubt man nicht mal eben herum. Man vergleiche dies mal mit den Versuchen einer „Dekarbonisierung“ der Autoindustrie und der Stromversorgung in Deutschland. Trotzdem sind Schiffe schon heute ein sehr umweltfreundliches Verkehrsmittel. Sie haben einen Anteil am Welthandel von über 90%, bei einem Anteil von nur etwa 3% an der „Luftverschmutzung“.

Situation heute

Dominierender Antrieb bei allen Frachtschiffen ist der Dieselmotor in all seinen Varianten. Er zeichnet sich durch einen geringen Verbrauch (Wirkungsgrad bis über 50%) bei ausgesprochener Robustheit aus. So hat er auch die Dampfmaschinen bei großen Schiffen abgelöst und ist deshalb selbst im Marineschiffbau eine Ergänzung zur Gasturbine. Er konnte bisher auch – wenn auch zu erhöhten Kosten – alle Anforderungen an die Luftreinhaltung (Ruß, Stickoxide) erfüllen. Wegen seiner Robustheit war er wirtschaftlich konkurrenzlos. Bislang konnte er mit billigem Schweröl (ein anderes Wort für Raffinerierückstände) betrieben werden. Dies geschieht in vielen Gegenden noch immer – ob legal oder illegal. Ein großes Containerschiff verbraucht über 200 to Öl pro Tag. Das entspricht in etwa dem Tankinhalt von drei Mittelklassewagen pro Minute.

Will man nun dem Klimaschutz-Wahn folgen, müssen diese etwa 600 to CO2 pro Schiff und Tag mindestens um die Hälfte verringert werden. Ein schwieriges und extrem kostenträchtiges Unterfangen. Im Moment sind folgende Strategien in der Erprobung:

  • verflüssigtes Erdgas LNG (CH4), welches problemlos in konventionellen Schiffsdieseln mit verfeuert werden kann. Allerdings nehmen die Kryotanks einen erheblichen Raum ein, der als Frachtraum verloren geht. Dies ist deshalb nur eine Übergangslösung bzw. nur für die Küstenschifffahrt geeignet.
  • Methanol (CH3 OH), das wenigstens bei Umgebungsbedingungen flüssig ist und damit in den Brennstofftanks gelagert werden kann. Leider ist der Heizwert nur halb so hoch, wie der von Diesel. Deshalb auch weniger für lange Reisen geeignet.
  • Soll es CO2-frei sein, ist Ammoniak (NH3) im Gespräch. Es ist giftig, aber wenigstens bei moderaten Bedingungen (bei 20°C etwa 9 bar erforderlich oder drucklos bei -33°C) flüssig zu lagern. Allerdings ist auch sein Energiegehalt nur etwa halb so groß, wie der von Diesel. Dies bedeutet bei Langstrecken einen erheblichen Verlust an Laderaum.
  • Gänzlich ungeeignet ist der Wasserstoff als Treibstoff. Wegen seiner extrem niedrigen Temperaturen (-253°C) und seines geringen Energiegehaltes pro Volumen. Man kommt schnell in die Verlegenheit, einen Flüssiggastanker mit Containerstellplätzen zu entwerfen. Wasserstoff ist – wenn überhaupt – nur für die Küstenschifffahrt geeignet. Wahrscheinlich sogar – wegen des ungünstigen Zündverlaufs für einen Verbrennungsmotor – über den Umweg einer Brennstoffzelle als Elektroantrieb.

Außerdem sollte man neben den Kosten auch nicht die Gesamtbilanz der CO2-Freisetzung vernachlässigen. Alle CO2 freien oder armen Brennstoffe sind chemische Produkte, die mit großem Energieaufwand hergestellt werden müssen. Die Herstellung mittels Wind und Sonne ist eine eher romantische Vorstellung. Die CO2– Abscheidung und Endlagerung wiederum ist für alle „Ökos“ Teufelswerk. Auch wer diesen Weg einschlagen will, landet daher zwangsläufig bei der Kernenergie. Wird der Wasserstoff nicht über Kernenergie hergestellt und die enormen Energiemengen zur Synthese von NH3 (hoher Druck und hohe Temperaturen notwendig) nicht ebenfalls durch Kernenergie abgedeckt, wird die „Dekarbonisierung“ ein Rohrkrepierer: Es würde mehr CO2 freigesetzt, als bei der direkten Verfeuerung von Diesel. Noch absurder ist die Verwendung von Methanol, welches aus Fossiler-Energie (z. B. Erdgas) gewonnen werden muß. Auf Phantasmen, wie die Gewinnung von CO2 aus der Luft – welches wohl an anderer Stelle bei der Energiegewinnung in die Luft geblasen wurde (?) – braucht man gar nicht einzugehen.

Der Schritt zur Kernenergie

Auch bei Containerschiffen gilt eine Kostendegression mit der Größe. Vorläufig ist das Ende der Fahnenstange bei 24 000 TEU (Twenty-foot Equivalent Unit) erreicht. Interessant ist, daß nicht die Hafenwirtschaft, sondern der Antrieb die technische Grenze vorgibt. Diese Ultra Large Container Vessel (ULCV) haben etwa eine Länge von 400m, eine Breite von 61m bei einer Tragfähigkeit von 230000 tdw. Die Grenze bei Schiffsdieseln liegt heute bei über 80 MW (z. B. Emma-Maersk-Klasse mit 14 770 TEU, 14 Zylinder-Zweitakter, Höchstgeschwindigkeit 27 kn (50 km/h) dauerhaft). Containerschiffe müssen schnell sein, damit sie sich in die eingespielten Umlaufzeiten für die Perlenketten der Logistik-Branche einreihen können. Darin ist das Problem der erforderlichen Antriebsleistung begründet: Die Antriebsleistung steigt mit der 3. Potenz der Geschwindigkeit. Verdoppelt man die Geschwindigkeit, verkürzt sich zwar die Reisezeit auf die Hälfte, aber die erforderliche Antriebsleistung steigt um das Achtfache und der Energieverbrauch somit um das Vierfache. In der Tat hat der Zwang der hohen Treibstoffpreise zu längeren Umlaufzeiten geführt, was wiederum die Anzahl der notwendigen Containerschiffe erhöht hat. Selbstverständlich führt auch das zu höheren Frachtraten und damit zu steigenden Konsumentenpreisen.

Genau an dieser Stelle kommt die Kernenergie in die Sichtweise der Reeder: Die Investition für ein Schiff mit Kernreaktor dürfte wesentlich höher sein, als die für einem Dieselantrieb. Der Brennstoffverbrauch (Uran, Thorium) ist aber demgegenüber zu vernachlässigen. Plötzlich senkt die Geschwindigkeit auch noch die anteiligen Investitionskosten. Heutige Hüllen sind bereits für 30 kn (56 km/h) gut. Mit dieser Reisegeschwindigkeit verkürzt sich eine Pazifik-Überquerung von 12 Tagen auf etwa 7 Tage. Eine Rotterdam-Korea-Rundreise von heute etwa 80 bis 85 Tagen auf etwa 45 Tage. Würde man dann statt dessen den Umweg um Afrika nehmen, könnte man die 1,5 Millionen USD Transitgebühren für den Kanal von Suez plus einem notwenigen Tankstopp in Singapore sparen.

Der wahrscheinliche Weg

Kernenergie und Schiffe ist überhaupt nichts neues. Man denke nur an die unzähligen Atom-U-Boote und Flugzeugträger etc. Schließlich fing mit dem Bau der Nautilus die moderne Reaktortechnik an. Die kommerzielle Nutzung ist in USA, Deutschland und Japan allerdings kläglich gescheitert. Diese Schiffe waren mehr als Werbeträger, denn als Frachtschiffe gedacht – schön aber unbrauchbar. Eine Sonderstellung nehmen noch die erfolgreichen russischen Eisbrecher ein.

Für Containerschiffe müssen neue Reaktorkonzepte her. Sie müssen ihre gesamte Brennstoffladung (30 Jahre für 30 kn) von Anbeginn mit an Bord haben. Es ist kein Brennelementewechsel in „normalen“ Häfen möglich. Dafür gibt es eine Reihe von Gründen. So müßten solche Häfen und deren Länder alle Anforderungen an Nuklear-Staaten erfüllen. Wegen der Nutzungsdauer (2×25 Jahre) werden z. B. die Druckwasserreaktoren der US-Marine mit hoch angereichertem Uran betrieben. Mit solchem waffengrädigen Uran darf nur in den einschlägigen Marine-Werften in den USA umgegangen werden. Für Handelsschiffe wäre das aus Gründen der Proliferation ein Killerkriterium.

Im Moment werden Flüssigsalzreaktoren in der Fachpresse favorisiert. Es ist kein Zufall, daß auch in Dänemark – von dem in Deutschland immer gern das Bild eines Öko-Bullerbüs gezeichnet wird – gleich zwei Konsortien an der Entwicklung solcher Reaktoren arbeiten. Schiffsdiesel (MAN B&W Diesel) und Container-Reederei (Maersk) sind traditionelle Branchen in Dänemark, in denen die Dänen immer international in der Spitzenklasse vertreten waren und die Entwicklung maßgeblich mit vorangetrieben haben.

Der Schiffsantrieb mit Reaktoren hat noch einen Nebeneffekt. Schiffe brauchen auch im Hafen beträchtliche Mengen elektrischer Energie (Kühl-Container, Anlagentechnik usw.). Heute ist es daher üblich, zumindest Hilfsdiesel auch während der Liegezeiten weiter zu betreiben. Die Versorgung mit „Landstrom“ ist eine Totgeburt wegen der enormen Spitzenleistungen für den Hafen. Im Gegenteil könnten die Schiffe mit Reaktoren, umweltfreundlichen Strom während der Liegezeiten preiswert für die Häfen liefern.

Sicherheit

Reaktoren für Schiffe müssen inhärent sicher sein. Sie müssen einen wachfreien Betrieb ermöglichen und extrem wartungsarm sein. Auf Hoher See muß sich bei Störungen die Betriebsmannschaft mit Bordmitteln selber helfen. Es sind deshalb Seeleute mit speziellen Kenntnissen über Reaktortechnik auszubilden und entsprechende Überwachungsregime zu entwickeln. Zumindest in der Anfangszeit sollten nukleare Schiffe nur unter der Flagge von Staaten mit Kernenergie betrieben werden dürfen. Eine ausgiebige Fernüberwachung ist zu entwickeln und (international) zu praktizieren. Nur so kann den Seefahrern Hilfestellung geleistet werden und Vertrauen in der Öffentlichkeit erhalten werden.

Kernreaktoren können gut geschützt (Kollisionen) und gut abgeschirmt (Schutz der Besatzung vor Strahlung) im Innern von Schiffen eingebaut werden. Sie müssen selbst bei einem Untergang in einem gesicherten Zustand verbleiben. Mit heutigen Mitteln könnten sogar versunkene Reaktoren in der Tiefsee ferngesteuert geborgen werden. Entsprechende Konstruktionen (Haltepunkte) und Hilfsmittel (z. B. zur Fernortung) sind vorzusehen. Schiffsunglücke wird man nie ausschließen können. Wie allerdings die gesunkenen Atom-U-Boote zeigen, geht auch von untergegangenen Reaktoren nur eine sehr geringe Gefahr aus. Das Meer selbst ist eine sehr gute Abschirmung.

Versicherung und Klassifizierung

Gerade im Transportgewerbe ist die Versicherung von speziellen Risiken Alltagsgeschäft. Man ist gewohnt im Schadensfall mit außergewöhnlich hohen Summen umzugehen. So wurde z. B. für Tanker als Konsequenz des Exxon Valdez Unglücks in Alaska eine unbegrenzte Haftung eingeführt (Pollution Act of 1990, OPA90). Damit sich Versicherungen auf so etwas einlassen können, sind genaue Sicherheitsvorschriften und deren Überwachung erforderlich. Bei Schiffen sind hierfür die Klassifikationsgesellschaften maßgeblich. Sie erarbeiten Konstruktionsvorschriften, führen die Bauüberwachung durch und erstellen die Betriebsvorschriften. Ferner führen sie regelmäßig Wiederholungsprüfungen durch. Daneben führen die nationalen Küstenschützer bei jedem Einlaufen Kontrollen durch. So gilt die US-Coast-Guard beispielsweise als besonders pingelig und ist von vielen Seeleuten gefürchtet. Bei Verstößen drohen hohe Geldstrafen für die Reeder bis hin zu (oft praktizierten) Gefängnisstrafen für das verantwortliche Personal.

Der Stand der Dinge

Es geht bei diesem Thema wieder einmal nicht darum, was irgendwelche „Experten für alles und nichts“ in Deutschland glauben darüber zu wissen, sondern was der Rest der Welt denkt und will. Die Thematik der nuklearen Schiffsantriebe ist bei der UNO angesiedelt, bei der Deutschland ohnehin meist nur eine Statistenrolle einnimmt. Es gibt drei internationale Abkommen unter der Aufsicht der IMO: SOLAS (Safety of Life at Sea), MARPOL (Prevention of Polution from ships) und STCW (Standards of Training, Certifikation and Watch keeping of Seafarers). Bereits das Kapitel 8 der SOLAS bezieht sich auf Schiffe mit nuklearem Antrieb. Es wurde bereits 1981 einstimmig verabschiedet. Es ist allerdings sehr speziell für Druckwasserreaktoren geschrieben (Stand der Technik vor 40 Jahren). Die IMO arbeitet bereits daran, diese Regeln für „modernere“ Reaktoren zu erweitern. Noch älter ist die ≫Convention on the Liability of Operators of Nuclear Ships≪ aus dem Jahre 1962. Gleichwohl ist dies eine ausbaufähige Basis. Bis 2023 soll die Klassifikation für Containerschiffe mit Nuklearantrieb fertig sein. 2025 soll ein ≫proof-of-concept≪ für einen Flüssigsalzreaktor vorliegen. Ab 2024/25 soll die Arbeit bei der IMO mit dem Ziel eines ersten Schiffs um 2030 aufgenommen werden.

Aussicht auf Erfolg

Man arbeitet in verschiedenen Ländern an Flüssigsalzreaktoren (MSR). Bisher schien ein Eindringen in den Markt der Stromerzeugung eher unwahrscheinlich. Zu etabliert sind dort die Leichtwasserreaktoren. Hier liegt aber ein völlig neuer Markt im Zusammenhang mit Handelsschiffen vor. MSR scheinen für diese Anwendung entscheidende Vorteile zu besitzen. Der Markt wäre alles andere als klein. Die beständig wachsende Weltflotte besteht heute schon aus über 100 000 Schiffen über 100 to. Dabei sind die größten 7000 verantwortlich für 50% der Luftverschmutzung. Ein Schiffsreaktor wäre deshalb schlagartig ein Massenprodukt. Eine völlig neue Situation für die kerntechnische Industrie. Hält der Klima-Wahn an, wird kaum ein anderer Weg bleiben. Die Herstellung „CO2armer“ Kraftstoffe kann nur für kleinere Schiffe eine notwendige Krücke sein.

Reeder sind und waren sehr innovativ. Viele Reedereien sind immer noch Familienbetriebe. Dies ist ein nicht zu unterschätzender Vorteil gegenüber Staatsbetrieben oder Großkonzernen. Wenn man eigenes Geld einsetzt, ist man sehr erfolgsorientiert. Andererseits sind Großreedereien in der Lage, sehr schnell auch dreistellige Millionenbeträge zu mobilisieren. Risikokapital gibt es genug, es muß jedenfalls nicht zwingend in das x-te Startup für „Digitalisierung“ oder „Fahrradkuriere“ gepumpt werden.

Aktionsplan für eine saubere Energieversorgung im UK

Durch den Brexit befreit von der Engstirnigkeit der Merkel Entourage: von der Leyen, Timmermans und „Ska“ Keller, besinnt sich das Vereinigte Königreich nun wieder auf seine Zukunft und seinen Platz in der Geschichte. Gerade im Zusammenhang mit dem Brexit sollte nie vergessen werden, welch peinliche Rolle Deutschland im Hickhack auf den Neubau des Kernkraftwerks Hinkley Point C gespielt hat. Ein entscheidender Tropfen, der das Faß zum Überlaufen brachte. Während man in Deutschland eine kindliche Lust an der Zerstörung an den Tag legt – Sprengung von Kühltürmen bei funktionsfähigen Kernkraftwerken, Abschaltung modernster Kohlekraftwerke etc. – macht man sich im Vereinigten Königreich Gedanken, wie man als Industrieland weiter bestehen kann. Keine Spur von der deutschen Sehnsucht nach dem Biedermeier: Fleischlos mit dem Lastenrad durch den Windpark. Bemerkenswert ist, daß man im UK die Kernenergie nicht nur unter dem Aspekt der sicheren Energieversorgung und geringer Umweltbelastungen betrachtet, sondern sie ausdrücklich auch als Technologieträger für eine moderne industrielle Gesellschaft mit gut bezahlten Arbeitsplätzen sieht. Hier treffen zwei gänzlich unterschiedliche Vorstellungen über ein zukünftiges Gesellschaftsideal gegeneinander an.

Die Reaktorfrage

Im UK stand man der Kernenergie immer positiv gegenüber. Trotz Unglücksfällen im In- und Ausland. Diese waren stets nur Anlass die Technik zu verbessern und sicherer zu machen. Ganz so, wie die Titanic oder die Comet nicht zur Aufgabe der Seefahrt oder des Flugverkehrs geführt haben. Nur in Deutschland gelang es, eine Technik als Vehikel für eine angestrebte Gesellschaftsveränderung zu mißbrauchen. Ob dies nun an der sprichwörtlichen „German-Angst“, der Sehnsucht nach (zukünftiger) Idylle, der jahrzehntelangen Indoktrination oder einfach an dieser toxischen Mischung insgesamt liegt, mag jeder für sich entscheiden. Tatsache ist aber, daß in keinem Land der Welt Kernenergie so zwanghaft von jeder Überlegung ausgeschlossen wird. Hier regiert (wieder einmal) einfach nur der deutsche Fanatismus die Welt retten zu wollen – egal ob diese das überhaupt so will – mit der (aus deutscher Sicht) einzig wahren und edlen Sonnen- und Windenergie. Wenn dieses Ansinnen nicht so zerstörerisch wäre, könnte man einfach nur darüber lachen.

Wie gänzlich anders stellt sich die Situation im UK dar: Die Ära der ursprünglich 15 AGR (Advanced Gas-cooled Reactors) neigt sich unweigerlich dem Ende zu. Noch sind sie eine zentrale Stütze der Stromversorgung, aber ihre technische Lebensdauer ist erreicht und eine Nachrüstung ist unwirtschaftlich. Hier bahnt sich also das „natürliche“ Ende von Kernkraftwerken an – nicht zu verwechseln mit der mutwilligen Zerstörung von immer noch modernen Kernkraftwerken aus ideologischer Verblendung in Deutschland. Deshalb hat man sich längst im UK entschieden, die abgängigen Kernkraftwerke durch neue zu ersetzen. Zwei große Leichtwasser-Reaktoren sind in Hinkley Point (2×1680 MWel, Typ EPR) bereits im Bau. Über die Finanzierung einer baugleichen Anlage in Sizewell wird nächstes Jahr entschieden. Auch diese Anlage könnte längst in Bau sein, wenn der Brexit früher gekommen wäre und die Politkommissare in Brüssel nicht länger meinten, sie könnten den Briten vorschreiben, wie sie Kraftwerke zu bauen und zu finanzieren hätten. Diese vier Blöcke reichen aber nicht einmal aus, um die vorhandenen Kernkraftwerke zu ersetzen. Ursprünglich wollte man noch Siedewasserreaktoren aus Japan und sogar Druckwasserreaktoren aus China kaufen. Eine schnelle, aber politisch bzw. volkswirtschaftlich wenig sinnvolle Lösung.

Inzwischen gibt es den Trend zu SMR: Reaktoren kleinerer Leistung, aber dafür industriell herstellbar. Die „Kleinheit“ beseitigt ein altes Problem von Industriestaaten ohne geeignete Schwerindustrie. Die Reaktordruckbehälter, Rohlinge der Turbinenwellen etc. können nur noch von wenigen Herstellern weltweit geliefert werden. Geht man auf kleine Leistungen zurück, erschließt sich wieder das Potential im eigenen Land. So ist man bestrebt aus Rolls-Royce (R&R) einen vollwertigen Reaktorhersteller zu machen. Die derzeitige Planung läuft auf den Bau von 16 Kernkraftwerken im eigenen Land heraus. Es ist bereits ein Industriekonsortium gebildet worden und man geht bei etwa 16 Reaktoren von dem Aufbau einer wirtschaftlichen Serienproduktion aus. Darüberhinaus werden schon Verhandlungen mit Partnerländern gestartet. Es soll sich um einen modularen Reaktor mit etwa 475 MWel handeln. Schon eher eine mittlere Größe als ein SMR, aber genau richtig für den Weltmarkt alternder Kohlekraftwerke. Der erste Reaktor könnte Anfang der 2030er Jahre den Betrieb aufnehmen. Dies erfordert jedoch eine konzertierte Aktion zwischen Politik (Wille) und Verwaltung (Genehmigungsverfahren). Technisch, sind keine Probleme erkennbar.

Fortschrittlicher Brennstoffkreislauf

Man hat im UK immer schon großen Wert auf geschlossene Brennstoffkreisläufe vom Natururan über Recycling bis zur Lagerung radioaktiver Abfälle gelegt. Nie war es Ziel, nur etwa 1% des Natururans zu nutzen und den Rest einfach „zu entsorgen“. Heute verwendet man dafür werbewirksam das modische Wieselwort „Nachhaltigkeit“. Gemeint ist die Rückgewinnung von Uran und Plutonium aus abgebrannten Brennstäben. Manch einer kann sich vielleicht noch erinnern, daß einst Deutschland auch in UK „hat aufbereiten lassen“, bis man sich von durchtriebenen Rot-Grünen-Ideologen die Wiederaufbereitung hat abschwatzen lassen, um den Popanz der „ungelösten Atommüllfrage“ zu erschaffen. Alles begann mit dem PUREX-Verfahren. Die Entwicklung blieb aber nicht vor Jahrzehnten stehen. Die Verfahrenstechnik wurde stetig verbessert (Arbeitsschutz, Kostensenkung etc.). Für die Wiederverwendung von Plutonium und Uran in Leichtwasserreaktoren wird es weiterhin seine Bedeutung behalten. Schwerpunkt der Entwicklung liegt heute auf der Abtrennung noch verwendbarer Elemente bzw. der „Entschärfung der Endlagerfrage“ durch die Entfernung langlebiger minorer Aktinoide aus der „Spaltproduktsuppe“. Für den Übergang auf Reaktoren mit schnellem Neutronenspektrum oder Flüssigsalzen liegt auch im UK der Schwerpunkt auf der Entwicklung pyrochemischer Verfahren. Bei diesen ist das Ziel nicht möglich reines Uran und Plutonium zurück zu gewinnen, sondern einen „neuen Brennstoff“ für Reaktoren mit schnellen Neutronen, der möglichst wenig störende Spaltprodukte enthält.

Die Urananreicherung, die Herstellung von Brennelementen und deren Wiederaufbereitung – kurz Brennstoffkreislauf – steht in unmittelbarem Zusammenhang mit dem verwendeten Reaktortyp. Bei der Anreicherung geht heute die Bandbreite von etwa 1,5 bis knapp unter 20 Prozent U235. Die Brennstäbe bei Leichtwasserreaktoren bestehen heute fast ausschließlich aus Uranoxid. Diese werden stetig im Detail verbessert. Der Einsatz rein metallischer Brennstäbe und solcher mit höherer Dichte auf der Basis von Urannitrid steht unmittelbar bevor. Hinzu kommt noch die Schiene der „ummantelten Kügelchen“ für Hochtemperatur-Reaktoren und flüssiger Brennstoff, aufgelöst in einer Salzschmelze.

Das eigentlich bemerkenswerte ist die Breite und genaue zeitliche Gliederung der AFCP-Advanced-Nuclear-Roadmaps. Ganz anders als in Deutschland legt man großen Wert auf die Ausstattung der beteiligten Forschungsinstitute und die Ausbildung. Von Ausstieg aus der „Atomkraft“ kann hier nicht die Rede sein. Es sind 34 private Forschungseinrichtungen, staatliche Labore und Institute an Universitäten beteiligt. Allein im Zeitraum von 2016 bis 2021 hat man fast 600 Millionen Euro hier investiert. Darüberhinaus legt man auch viel Wert auf die Ausbildung von „Facharbeitern“ – nicht zuletzt auf Grund der Erfahrungen mit dem Projekt Hinkley Point C.

Was nun Deutschland?

In Deutschland ist es momentan erklärtes Ziel von CDU/CSU, FDP, SPD, DIE LINKE und BÜNDNIS 90/DIE GRÜNEN die Kerntechnik möglichst mit Stumpf und Stiel auszurotten. Was soll man auch von einer Hotelfachfrau als Forschungsminister erwarten? Nichts gegen diesen Beruf, aber wer geht schon bei Zahnschmerzen zum Bäcker? Was anderes, als diese Farce der „Endlagersuche“ soll herauskommen, wenn man sie einer Theaterwissenschaftlerin und einem Sozialwirt überläßt? Wobei die von uns allen bezahlten Rücklagen in Milliardenhöhe für den „Atommüll“ ausgerechnet einem verstockten Altkommunisten anvertraut werden. Wer seinem Hund den Sonntagsbraten zur Verwaltung anvertraut, muß sich nicht wundern, wenn das Essen einst sehr mager ausfallen wird. Energieversorgung ist nicht irgendeine Nebensächlichkeit, sondern ohne ausreichende und billige Energie gibt es keinen Wohlstand. Konkret bedeutet das, Lohnsenkungen, Arbeitslosigkeit und geringere Sozialleistungen. Noch stehen wir bloß am Rande des Abgrunds, aber in menschlichen Dimensionen fehlt nur noch ein kleiner Schritt.

Man könnte den Wahnsinn der „Energiewende“ noch stoppen. Gerade bei unseren Nachbarn – die vom absehbaren Absturz Deutschlands unmittelbar betroffen werden – würde man uns mit offen Armen zurück in der Realität begrüßen. Es kommt bald eine (vielleicht letzte) Möglichkeit den Wahnsinn zu stoppen. Keine einzige Stimme für die Parteien der „Energiewende“, denn der so harmlos verklärte Ausstieg aus Kohle und Kernenergie ist die zentrale Frage dieser Bundestagswahl. Corona, Klimakatastrophe etc. sind nur Ablenkungsmanöver. Der einzige Sinn einer Demokratie besteht in der Möglichkeit, eine Regierung nur durch ein Kreuz in der Wahlkabine wegzuschicken. Jedenfalls kann diesmal keiner wieder sagen, er hätte von nichts gewußt. Oder im Umkehrschluss: Wer nicht zur Wahl geht oder die sich selbst als „Demokratische Parteien“ selbst überhöhende Einheitsfront wählt, soll nicht meckern, wenn er seinen Arbeitsplatz verliert oder seine karge Rente durch steigende Preise verbrennen sieht.

SMR-2021, Linglong One (ACP100)

Im July startete offiziell der Bau des ersten Small Modular Reactors (SMR) in Changjiang auf der Insel Hainan. Es wird der weltweit erste landgestützte SMR. Das Kraftwerk besteht aus zwei Blöcken vom Typ „Linglong One“ (ACP100) mit je 125 MWel. China National Nuclear Corporation (CNNC) plant die Inbetriebnahme für 2026 (geplante Bauzeit 58 Monate). Die Entwicklung dieses Reaktors läuft seit 2010. Es war der erste SMR, der schon 2016 eine Zulassung durch die International Atomic Energy Agency (IAEA) erhielt. Der Reaktor gilt als ein „Schlüssel-Projekt“ des 12. Fünf-Jahr-Plans. Er kann über eine Milliarde kWh pro Jahr produzieren, was für über 500 000 chinesische Haushalte ausreicht. Man setzt große Hoffnungen in eine Serienproduktion für zentralchinesische Städte als Ersatz für Kohlekraftwerke. Eine schwimmende Version – nach russischem Vorbild – ist in Zusammenarbeit mit der Lloyd’s-Schiffs-Klassifikation ebenfalls in Vorbereitung. Es ist überdeutlich, daß man mit den frühzeitigen internationalen Zulassungen auch auf den Export setzt. Hat China erstmal ein Kraftwerk im Betrieb vorzuzeigen, können die Investoren kommen und Bestellungen aufgeben. Für diese Leistungsklasse gibt es in Schwellen- und Entwicklungsländern einen gewaltigen Markt. Serienproduktion wiederum senkt die Kosten – nach diesem Muster hat China schon die Weltmärkte auf ganz anderen Gebieten erobert.

Der ACP100

Dieser SMR ist kein revolutionärer Entwurf, sondern ein integrierter Druckwasserreaktor. Die Dampferzeuger sitzen ebenfalls im Reaktordruckgefäß. Dies wird möglich, da sich der Reaktorkern mit der Leistung verkleinert. Es handelt sich um 16 OTSG (once-through steam generator) als Rohr in Rohr Konstruktion. Der Bruch einer Hauptkühlmittelleitung – ein wesentliches Auslegungskriterium bei konventionellen Druckwasserreaktoren – ist damit ausgeschlossen. Der Dampf verläßt wie bei einem Siedewasserreaktor den Druckbehälter. Der Druck im Reaktor beträgt 150 bar, der Druck des Dampfes nur 40 bar. Die Eintrittstemperatur des Wassers in den Kern beträgt 286,5 °C, die Austrittstemperatur 319,5 °C. Die Austrittstemperatur des Dampfes beträgt mindestens 290 °C. Das mag nicht viel erscheinen, reicht aber für die Stromerzeugung und viele Anwendungen aus. Der Gesamtwirkungsgrad ist mit 32% gering, aber kein großer Nachteil, da Uran als Brennstoff billig ist. Andererseits sind Wandstärken und Werkstoffe besonders kostengünstig (Investition). Die vier Spaltrohrpumpen sind außen an das Druckgefäß angeflanscht.

Der Kern besteht aus 57 Brennelementen in einer 17×17 Anordnung und ist nur 2,15 m hoch. Das Druckgefäß hat eine Höhe von 10 m bei einem Durchmesser von 3,35 m. Dies führt zu einem Naturumlauf im Falle der Not- und Nachkühlung. Die Pumpen werden nur für die Umwälzung im Betrieb benötigt. Dies führt zu einer passiven Sicherheit im Falle eines Black-Out (Fukushima). Die Reaktivität wird über Regelstäbe, abbrennbare Gifte und die Borkonzentration im Kühlwasser geregelt. Die 21 Regelstäbe werden über Elektromagnete gehalten und fallen bei einem Stromausfall automatisch in den Kern. Die Urananreicherung beträgt 1,9 bis 4,95%. Damit ist ein Ladezyklus von 24 Monaten möglich (hohe Verfügbarkeit).

Sicherheitssysteme

Der ACP100 übernimmt die Sicherheitsphilosophie seiner „größeren Brüder“ der Megawatt-Klasse. Das passive Sicherheitssystem besteht wesentlich aus:

  • Abfuhr der Nachzerfallswärme. Das PDHRS (passive decay heat removal system) dient zur sicheren Abfuhr der Nachzerfallswärme auch bei einem völligen Stromausfall, dem Ausfall der Speisewasserversorgung oder dem Zusammenbruch der Wärmesenke (Tsunami in Fukushima). Die Nachwärme wird über den im Containment vorhandenen Sicherheitstank abgeführt. Der Wärmetransport geschieht über Naturumlauf. Das System ist so ausgelegt, daß sieben Tage lang keine Eingriffe nötig sind.
  • Notkühlung. Fällt die Kühlung durch z. B. eine Leckage aus, übernimmt automatisch das ECCS (emergency core cooling system). Es besteht aus den zwei Vorratstanks CST (coolant storage tanks), den zwei Druck-Einspeisungen SIT (safety injection tanks) und dem Sicherheitstank IRWST (in-refuelling water storage tank), der auch zur Abfuhr der Nachzerfallswärme dient. Ausgetretener Dampf kondensiert am Sicherheitsbehälter. Die Wärmeabfuhr geschieht passiv über dessen Oberfläche an die Außenluft.
  • Notstrom. Die Stromversorgung bei einem Störfall wird komplett für 72 Stunden aus Batterien abgedeckt. Die Batterien werden durch Notstromaggregate nachgeladen. Der Diesel-Vorrat reicht für sieben Tage.
  • Sicherheitstank. Der IRWST befindet sich auf der Grundplatte des Reaktors. Er enthält das borhaltige Wasser zur Befüllung aller Kammern bei einem Brennelementewechsel, zum Ersatz bei Kühlmittelverlusten durch Rohrbrüche etc. und zur Flutung der Reaktorkammer bei extrem schweren Störfällen. Er übernimmt auch die Niederschlagung des Dampfes beim Abblasen im Falle von Überdruck im System.
  • Brennelemente-Becken. Es befindet sich ebenfalls im Sicherheitsbehälter. Es ist so bemessen, daß es selbst bei der Lagerung von abgebrannten Brennelementen aus zehnjährigem Betrieb, keinerlei Eingriffe für sieben Tage erfordert.
  • Containment. Der Sicherheitsbehälter verhindert bei Störfällen den Austritt von radioaktiven Gasen. Er ist so groß, daß er die anfallende Kondensationswärme bei einem Störfall über seine Oberfläche an die Umgebung abgeben kann. Er umschließt den Reaktor mit all seinen Sicherheitssystemen. Zur Verhinderung von Knallgasexplosionen (Fukushima) ist er mit passiven Regeneratoren für Wasserstoff versehen.

Die ermittelte Wahrscheinlichkeit für Kernschäden CDF (Core damage frequency) wird mit einmal in einer Million Betriebsjahren angegeben und die Wahrscheinlichkeit für die Freisetzung größerer Mengen radioaktiver Stoffe LRF (Large Release frequency) mit weniger als einmal in zehn Millionen Betriebsjahren (Hinweis: 2 Reaktoren für ein Jahr, ergibt 2 Betriebsjahre in diesem Sinne). Diese Reaktoren sind nach chinesischer Auffassung so sicher, daß sie unmittelbar in chemischen Anlagen oder nahe Wohngebieten betrieben werden sollen.

Die Anwendungspalette

Die Auslegungslebensdauer beträgt 60 Jahre. Bei entsprechender Pflege und Nachrüstung kann von mindestens 100 Jahren ausgegangen werden. Photovoltaik- oder Windkraftanlagen sind nach wenigen Jahrzehnten Schrott, erfordern also vielfache Neuinvestitionen in diesem Zeitraum. Hinzu kommt, daß diese Reaktoren – wann immer man will – mit einer Verfügbarkeit von mindestens 90% laufen. Sie sind nicht wetterabhängig. Strebt man demgegenüber eine Vollversorgung nur durch Wind und Sonne an, muß man ein zigfaches dieser Leistung (Speicher- und Umwandlungsverluste) bauen und finanzieren. Wegen des gigantischen Flächenbedarfs scheidet eine dezentrale Versorgung von Großverbrauchern aus. Hinzu kommen deshalb noch die notwendigen Hochspannungstrassen. Diese SMR sind nicht exotisch, sondern bestehen aus Werkstoffen und Bauteilen die Industriestandard sind. Die integrierten Reaktoren sind dabei so klein (Länge mal Breite ca. 12m x 4m, 300 to Gewicht), daß sie problemlos über vorhandene Transportketten geliefert werden können. Durch die Fertigung in der Fabrik, sind die Montagezeiten nur gering. Die Rohbauten können durch Firmen vor Ort unter Anleitung (Schwellenländer) ausgeführt werden. Man darf auf die Preise gespannt sein.

Wer nun denkt, SMR ist gleich winzig, dem sollen einige Zahlen die möglichen Verwendungen aufzeigen. Jeder dieser Reaktoren kann z. B.:

  • als reines Kraftwerk rund eine Million MWh elektrische Energie produzieren,
  • oder eine Chemieanlage mit 600 Tonnen Heißdampf pro Stunde von 40bar und 290°C versorgen,
  • oder als „Kombi-Kraftwerk“ nur 300 to/h Heißdampf liefern, aber dafür noch zusätzlich rund 62 MW Strom,
  • oder in ariden Gebieten (Kalifornien, Israel, Golfregion) über eine angeschlossene Umkehrosmose 65 000 Kubikmeter Trinkwasser pro Tag liefern,
  • oder für landwirtschaftliche Zwecke 100 000 Kubikmeter pro Tag voll entsalztes Wasser über eine Entspannungsverdampfung herstellen und zusätzlich noch über 80 MW Strom liefern.
  • ähnliche Überlegungen gelten für eine Kraft-Wärme-Kopplung zur Fernwärme oder Fernkälte-Versorgung einer Großstadt bei gleichzeitiger Stromversorgung.
  • bzw. zur dezentralen Herstellung von Wasserstoff mit einem Elektrolyseur für den Verkehr, die Industrie oder zur Spitzenstromerzeugung in einer Region (rund 600 000 Nm3 pro Tag).

Beginn einer neuen Ära?

Im Juni 2021 begann der Bau eines neuen Reaktors im sibirischen chemischen Kombinat Seversk. Der Ort ist nicht zufällig gewählt, sondern es handelt sich um ein grundsätzlich neues System: Ein spezieller Reaktor mit angeschlossener Wiederaufbereitung. Ziel ist ein Kernkraftwerk, dem lediglich Uran (aus abgebrannten Brennelementen) zugeführt wird und nur (endlagerfähige) Spaltprodukte abgeführt werden. Der entscheidende Punkt gegenüber herkömmlichen Reaktoren ist der Abfall Spaltprodukte. Die Problematik der Endlagerung über sehr lange Zeiträume wäre damit vom Tisch, da Spaltprodukte in weniger als 300 Jahren zerfallen sind. Die sehr langlebigen Transurane werden bei diesem Reaktor kontinuierlich „mit verbrannt“. Diese „Stromfabrik“ besteht also aus drei Einheiten: Der (neuartigen) Brennelemente-Fabrik, dem Kernreaktor und der Wiederaufbereitungsanlage. Die Brennelemente-Fabrik soll 2023 und die Wiederaufbereitung 2024 gebaut werden. Der Reaktor soll 2026 in Betrieb gehen.

Der BREST-OD-300

Das Entwicklungsziel dieses Reaktors der vierten Generation war „natürliche Sicherheit“. Das Kühlmittel ist nicht Wasser unter hohem Druck, sondern nahezu druckloses Blei. Der Reaktorkern befindet sich deshalb nicht in einem dickwandigen Druckbehälter, sondern in einem (nahezu drucklosen) Tank für flüssiges Blei. Der Schmelzpunkt von Blei liegt bei rund 330°C. Dies ergibt ein neuartiges Sicherheitsproblem, denn es muß gewährleistet sein, daß das Blei an keiner Stelle einfriert und irgendwelche Kanäle verstopft. Andererseits ist der Siedepunkt mit über 1700°C so hoch, daß sich kein Druck im Reaktorkreislauf aufbauen kann. Leckagen sind unproblematisch, da Blei weder mit Luft noch mit Wasser heftig reagiert. Blei wird praktisch auch nicht aktiviert, sodaß nur ein einfacher Kreislauf nötig ist, was Kosten spart und das System vereinfacht. Die Austrittstemperatur des Blei beträgt rund 540°C. Ist also weit von der Siedetemperatur entfernt. Hinzu kommt die große Wärmespeicherfähigkeit des Blei (spezifisch und über das Tankvolumen), die alle Lastsprünge abfedert. Ein solcher Reaktor ist in seinem (sicherheitstechnischen) Verhalten sehr gutmütig.

Blei ist ein sehr schlechter Moderator, der die Neutronen kaum abbremst. Schnelle Neutronen können zwar alles Uran, Plutonium und sogar die minoren Aktinoide spalten – das allerdings mit einer weit geringen Wahrscheinlichkeit. Als Konsequenz muß man entweder eine hohe Anreicherung oder einen höheren Gehalt an Plutonium verwenden. In diesem Sinne sind solche Reaktoren sinnvollerweise als Nachfolger der Leichtwasserreaktoren anzusehen. Erst wenn man entsprechend viele abgebrannte Brennelemente besitzt – von „Atomkraftgegnern“ fälschlicherweise als „Atommüll“ bezeichnet – aus denen man das Plutonium extrahieren kann, kann man sinnvollerweise mit dem Aufbau einer Flotte schneller Reaktoren beginnen. Für jede Erstbeladung muß das Plutonium von außen kommen. Läuft ein solcher Reaktor, kann er genug neues Plutonium bilden um für seinen Weiterbetrieb selbst zu sorgen. Man muß dann nur die Spaltprodukte entfernen (die nukleare Asche) und die gespaltenen Kerne durch U238 – ebenfalls von „Atomkraftgegnern“ als „Atommüll“ bezeichnet – ersetzen. In diesem Sinne verfügen wir bereits heute über gigantische Energievorkommen in der Form abgebrannter Brennelemente aus Leichtwasserreaktoren. Bisher war die Nutzung wegen der geringen Natururan-Preise noch unwirtschaftlich. Allerdings kommen die stets steigenden Lagerkosten für abgebrannte Brennelemente einer schnelleren Nutzung entgegen.

Da Blei ein schlechter Moderator ist, kann man die Gitterabstände im Kern vergrößern. Durch den verringerten Strömungswiderstand kann man mehr Wärme über Naturkonvektion abführen, was die Notkühlung auch nach einem Blackout (Fukushima) ermöglicht. Zu diesem Zweck sind Kamine (2 von 4 genügen) vorhanden, die die Restwärme passiv an die Umgebungsluft abführen. Selbst unter vollständigem Verlust der Wärmesenke bei voller Leistung von 700 MWth erreicht die Hüllrohr-Temperatur am ungünstigsten Brennstab keine 900°C. Für die Hüllen aus Stahl kein großes Problem: Ein Unglück wie in Fukushima wäre gar nicht möglich. Es könnte kein Knallgas entstehen (Reaktion der Zirconium-Hüllen mit Wasserdampf) und es wäre keine aktive Not-Kühlung nötig. Treffender kann man nicht verdeutlichen, was mit „natürliche Sicherheit“ gemeint ist.

Die Brennstäbe

Auch hier geht man neue Wege. Bei herkömmlichen Reaktoren verwendet man Urandioxid als Brennstoff in Hüllrohren aus Zirkalloy. Uranoxid ist eine (spröde) Keramik mit schlechter Wärmeleitung. Es kann bei einem Störfall passieren, daß die Brennstäbe in ihrem Zentrum bereits aufschmelzen und Spaltprodukte frei setzen, während sie ansonsten noch intakt sind. Fallen sie kurzzeitig und lokal trocken (Kühlmittelverlust-Störfall), kann die Abschreckung durch die Notkühlung fatale Konsequenzen haben (Harrisburg, Fukushima).

Bei diesem Typ verwendet man Uran-Plutonium-Nitrid als Brennstoff. Es besitzt eine um 30% größere Dichte, eine 4 bis 8 fache Wärmeleitung, gute Rückhaltung für Spaltprodukte, gute Formstabilität und geringe Reaktionen mit der Edelstahl-Hülle. Die hohe Dichte und gute Wärmeleitung führen zu geringeren Temperaturgradienten zwischen Zentrum und Umfang. Dies führt zu einer hohen Lebensdauer der Brennelemente (Brennstoffwechsel nur alle fünf Jahre) und großen Sicherheitsreserven für Störfälle.

Der Kern besteht aus 169 Brennelementen, hat eine Höhe von lediglich 1,1m und beinhaltet rund 20 to Brennstoff. Die Brennelemente sind sechseckig, wodurch sich eine sehr dichte Packung ergibt. Sie sind rundum offen, um bei einer etwaigen Verstopfung auch Querströmung zu ermöglichen. Auf Grund der Brennstoffeigenschaften und der Konstruktion ist die Neutronenökonomie so gut, daß keine separate Brutzone erforderlich ist und trotzdem eine Konversionsrate von Eins („Selbstversorgung“) erzielt wird.

Wiederaufbereitung

Bisher wurde großtechnisch nur das PUREX-Verfahren angewendet. Dieses nass-chemische Verfahren zielt – ursprünglich aus der Rüstung kommend – auf die Rückgewinnung von möglichst reinem Uran und (insbesondere ) Plutonium ab. Alles andere ist Abfall. Dieser ist wegen der minoren Aktinoide besonders langlebig und erfordert ein geologisches Tiefenlager zur Endlagerung. Bei diesem Reaktorkonzept sieht die Fragestellung gänzlich anders aus. Hier gilt es nur die Spaltprodukte – die nukleare Asche – zu entfernen. Alles andere soll und kann als Energieträger verbleiben. Die Spaltprodukte können anschließend weiterverarbeitet oder verglast werden und in Edelstahlbehälter abgefüllt werden. Wegen der relativ geringen Halbwertszeiten kann dieser Abfall je nach Gusto „tiefengelagert“ oder „ingenieurgelagert“ werden. Auf jeden Fall, zu verschwindend geringen Kosten gegenüber der Endlagerung von kompletten Brennelementen.

Der BREST-OD-300 im Allgemeinen

Der Reaktor verfügt über eine elektrische Leistung von 300 MWel bei einer thermische Leistung von 700 MWth. Er wäre per Definition damit noch ein SMR. Der Hersteller selbst betrachtet ihn eher als Vorläufer für einen Reaktor mit 1200 MWel, der etwa Anfang der 2030er Jahre gebaut werden soll. Es ist der russische Weg der kleinen, aufeinander aufbauenden Schritte mit immer mehr gesammelten Erfahrungen, die in das jeweilige Nachfolgemodell einfließen können. In diesem Zusammenhang muß man feststellen, daß die Entwicklung bleigekühlter Reaktoren in Russland eine Jahrzehnte lange Tradition hat. Sie reicht bis auf die U-Boote der Alfa-Klasse (Bauzeitraum 1968–1975, Außerdienststellung 1983 bis 1997) zurück. Zahlreiche Probleme bezüglich Korrosion und Verschleiß konnten inzwischen gelöst werden.

Der Aufbau ähnelt klassischen Druckwasserreaktoren: In der Mitte befindet sich der Reaktor. Von ihm gehen vier Kühlkreisläufe (flüssiges Blei) ab. Jeder Kühlkreislauf versorgt zwei Dampferzeuger. Das in den beiden Dampferzeugern abgekühlte Blei wird von einer Umwälzpumpe angesaugt und dem Reaktor wieder zugeführt. Die acht Dampferzeuger produzieren etwa 1500 to/h Dampf mit einer Temperatur von über 500°C. Auf Grund der höheren Dampftemperaturen ergeben sich bessere Wirkungsgrade und andere Anwendungsgebiete (z. B. Wasserstoffherstellung durch Hochtemperatur-Elektrolyse, Raffinerien, chemische Industrie etc.). Jeder Kühlkreislauf bildet eine separate Baugruppe mit kompletter Notkühlung, Umwälzpumpe etc. in einer eigenen „Betonkammer“. Das Ganze ist von einem Betonzylinder als Schutz gegen Einwirkungen von außen umgeben.

Anders als bei Leichtwasserreaktoren wird der Kern durch eine Lademaschine versorgt. Sie kann Brennelemente entnehmen, umsetzen und durch frische ersetzen. Verbrauchte Elemente werden im Bleitank bis zum erforderlichen Abklingen zwischen gelagert. Sie stehen also stets unter dem gleichen Schutz (Fukushima) wie der Reaktorkern. Ein Brennstoffzyklus dauert fünf Jahre (Leichtwasserreaktor 9 bis 16 Monate üblich). Sind erst einmal die üblichen Kinderkrankheiten beseitigt, kann man von einer noch besseren Verfügbarkeit als heute (etwa 90%) ausgehen. Geplant ist ein Abbrand zwischen 5,5% und 9% Schwermetall. An dieser Stelle erscheint es sinnvoll, sich die Materialströme und Abfallmengen zu verdeutlichen. Wenn dieser Reaktor das ganze Jahr voll durchläuft (Grundlast) verbraucht er etwa 270 kg Uran. Das ist gleichzeitig die Menge hochaktiver Spaltprodukte die jährlich anfällt. Geht man von einem mittleren Abbrand von 8% Schwermetall aus, sind etwa 3,5 to frische Brennelemente jährlich nötig. Das alles erinnert mehr an eine Anlage im Labormaßstab. Wollte man diese Strommenge von 2,6 TWh mit einem Offshore-Windpark erzeugen, müßte dieser mindestens 1000 MW umfassen oder bei einem Photovoltaik-Park mindestens 2000 MW. Wobei dies lediglich die gleiche Energieproduktion wäre. Da aber Wind und Sonne nur zufällig und unvorhersehbar sind (Wettervorhersage), müßten noch die zwingend erforderlichen Stromspeicher (zusätzliche Investitionen) und deren Verluste (ca. 50% für längere Ausfallzeiten) hinzugerechnet werden. Diese wenigen Zahlen machen deutlich, daß zumindest Russland nicht zurück ins Mittelalter will, ob nun „Klimakatastrophe“ oder nicht.

Sicherheit

Die vierte Generation soll noch einmal um Größenordnungen „sicherer“ sein als die derzeitige dritte Generation. Gemeint ist damit die Wahrscheinlichkeit für Unglücke, bei denen Radioaktivität das Betriebsgelände überschreitet und damit Anlieger gefährdet. Diese Reaktoren sollen so sicher sein, daß sie unmittelbar in einer Chemieanlage betrieben werden können, denn sie sind nicht gefährlicher als diese Anlagen selbst, wodurch völlig neue Anwendungen für Kernenergie möglich sind.

Da diese Kernkraftwerke mit dem „Abfall“ der bisherigen Kernkraftwerke betrieben werden können, sind sie extrem „nachhaltig“. Damit sind nicht nur die abgebrannten Brennelemente gemeint, sondern auch das „Abfall-Uran-238“ aus den Anreicherungsanlagen. Ganz neben bei, löst sich auch die „Endlagerfrage“. Spaltprodukte sind im Vergleich zu den Aktinoiden kurzlebig. Diese Form von „Atommüll“ ist nach wenigen Jahrzehnten weiterverarbeitbar. In ihnen sind jede Menge wertvoller Stoffe enthalten. Schon heute werden seltene Isotope aus dem Abfall der militärischen Wiederaufbereitung für z.B. medizinische Anwendungen gewonnen. Wer aber unbedingt möchte, kann sie auch weiterhin in geologischen Tiefenlagern verschwinden lassen. Nur eben zu viel geringeren Kosten.

Flugscharen zu Schwertern?

Kaum baut China seinen dritten natriumgekühlten Reaktor mit schnellem Neutronenspektrum, kommen die einschlägigen „Atomkraftgegner“ wieder unter ihren Steinen hervorgekrochen und erzählen das Märchen von den „Bomben aus den schnellen Brütern“ neu. Diesmal in der Version ‎China. Genau dieser Henry Sokolski hat schon 2010 seine steilen Thesen bei der Heirich Böll Stiftung (Die grüne politische Stiftung) unter dem Titel Wege aus dem nuklearen Dilemma verbreitet. Eigentlich nur neuer Wein aus alten Schläuchen. Gleichwohl Hauptgift der „Atomkraftgegner“ im doppelten Sinne: Erstens, der Mythos vom nicht wiederverwendbaren Atommüll und die „Endlagerfrage“ muß aufrecht erhalten bleiben und zweitens, es gibt keine Trennung zwischen friedlicher Nutzung der Kernenergie und „Atombomben“. Genau das, was schlichte Gemüter mit guten Herzen an die Wahlurnen oder auf Demos treiben soll. Es ist deshalb nötig, die Schleier der Propaganda etwas beiseite zu schieben.

Die Rolle Chinas

Da uns Claudia Kemfert und ihre Kumpane in unzähligen Auftritten im Staatsfernsehen erklärt haben, daß Wind und Sonne die einzig wahren Energieträger sind und „Atomkraft ganz, ganz unwirtschaftlich ist“, muß natürlich eine Begründung für den Ausbau der Kernenergie in China her: Was geht da besser, als „atomare“ Aufrüstung? Die Enthüllung ist, China baut gar keine Kern-Kraftwerke für die Stromerzeugung, sondern will nur Plutonium erzeugen, um daraus Bomben zu bauen oder wenigstens die Welt zu vergiften. Klingt alles – aber bestimmt nicht zufällig – nach Dr. Fu Manchu bzw. ist einfach nur schlechte Propaganda. Aber Vorsicht, langjährige Erfahrung mit dem Ökosozialismus zeigt, daß es denen egal ist, ob wahr oder falsch, Hauptsache die Spinnereien werden so lange in allen Medien wiederholt, bis jeder sie nachplappert und sie dadurch auf mystische Art wahr erscheinen.

Man mag ja über das kommunistische China denken was man will, aber China hat es gar nicht nötig, heimlich Kernwaffen zu produzieren. China ist seit 1964 „Atommacht“ – ganz im Gegenteil z. B. zum Iran. Inzwischen mit allem was dazu gehört, wie z. B. Raketen. Niemand dürfte daran zweifeln, daß China in der Lage wäre, weltweit einen „Atomschlag“ auszuführen. Aber will es das wirklich? Zweifellos hat China imperiale Gelüste, aber gerade deshalb wird es einen Atomkrieg vermeiden. Die blitzartige Einäscherung von Shanghai (ca. 26 Millionen Menschen) oder Peking (ca. 20 Millionen) würde China schneller in die Knie zwingen, als Hiroshima und Nagasaki das japanische Kaiserreich. China ist mit seiner Bevölkerungsstruktur längst nicht mehr in der Lage einen Atomkrieg zu führen. China kann auch nur auf Abschreckung setzen. Dafür reichen seine geschätzt 350 Sprengköpfe aus. Das mag gegenüber Russland (6375 Sprengköpfe) und USA (5800) gering erscheinen, ist aber in der Größenordnung von GB und Frankreich. Gerade für seine imperialen Züge im Pazifik – und nicht zuletzt für die latente Bedrohung von Taiwan – braucht es eine starke konventionelle Armee und Marine. Ein nukleares Wettrüsten frißt aber Unmengen Geld.

Selbst wenn China einen Ausbau seiner Nuklearstreitkräfte plant, kann es sogar auf Vorräte an für Waffen geeignetem Plutonium (geschätzt 2,5 bis 3,5 to) für weitere 480 Sprengköpfe zurückgreifen. Darüberhinaus noch auf hochangereichertes Uran (geschätzt 11 bis 17 to) für weitere etwa 1000 Sprengköpfe. Wenn das nicht reicht, kann man noch entsprechende Produktionsanlagen reaktivieren.

Plutonium ist nicht gleich Plutonium

An dieser Stelle ist noch ein bißchen Neutronenphysik nötig. Plutonium wird in jedem Reaktortyp aus U238 durch das Einfangen von Neutronen gebildet. Die Typen unterscheiden sich lediglich durch ihre Konversionsrate. Bei Leichtwasserreaktoren beträgt diese etwa 0,6. Das heißt statistisch betrachtet, wenn 10 Kerne gespalten wurden, haben sich 6 Plutoniumatome neu gebildet. Ist die Konversionsrate größer 1, spricht man von Brütern. Es werden also mehr Kerne – die zu Spontanspaltungen neigen, wie U235 und Pu239 – neu gebildet als verbraucht. Mit schnellen Neutronen kann man alle Kerne spalten, braucht aber eine höhere Anreicherung als bei langsamen (abgebremsten oder moderierten) Neutronen.

Wenn nun ein Neutron auf einen Kern Pu239 (Halbwertszeit 24 110 Jahre) trifft, wird er nicht zwingend gespalten, sondern es bildet sich (manchmal) Pu240 (Halbwertszeit 6 564 Jahre), aus diesem kann sich Pu241(Halbwertszeit 14,35 Jahre) bilden und daraus sogar Pu242 (Halbwertszeit 375 000 Jahre). Wichtig ist nur, daß man je nach Fahrweise und Betriebsdauer des Reaktors ein wildes Isotopengemisch erhält, welches man chemisch nicht trennen kann. Aus verschiedenen Gründen ist aber lediglich das Isotop Pu239 für eine Kernwaffe geeignet. Man unterscheidet deshalb zwischen Reaktor-Plutonium und Waffen-Plutonium. Letzteres muß mindestens eine Reinheit von 93% Pu239 haben. Es ist deshalb Unsinn – aber immer wieder gern von „Atomkraftgegnern“ gemacht – aus der Menge an anfallendem Reaktorplutonium aus Kernkraftwerken irgendwelche „Atombomben“ zusammen zu spekulieren. Noch einmal in aller Deutlichkeit: Aus dem Reaktorplutonium üblicher Kernkraftwerke läßt sich nur eine „Atombombe“ bauen, mit der man nicht einmal Fensterscheiben zum wackeln bringen kann.

Gleichwohl ist es kein Problem, Waffen-Plutonium herzustellen, wenn man die Erzeugung verstanden hat. Aus U238 bildet sich U239, welches mit einer Halbwertszeit von 24 Minuten in Np239 zerfällt und dieses zerfällt wiederum mit einer Halbwertszeit von 2,4 Tagen in Pu239. Der wesentliche Trick ist also, man läßt die Brennstäbe nur kurz im Reaktor verweilen. Will man hochreines Waffen-Plutonium herstellen, hat man dafür immer spezielle Anlagen verwendet, in denen die entstandene Wärme einfach als Abfall an die Umgebung abgegeben wurde. Die Brennelemente waren nur so kurz „abgebrannt“, daß sie einfach in Wasserbecken fielen und früher sogar nur mit Zangen entnommen wurden. Da sie so schwach strahlen, ist die Wiederaufbereitung ebenfalls viel einfacher als bei Brennelementen aus Kernkraftwerken. Kurzum, es ist einfach idiotisch, „Atombomben“ mit Kernkraftwerken herstellen zu wollen. Ganz besonders dann, wenn man – wie China als anerkannte „Atommacht“ – Heimlichkeit gar nicht nötig hat.

Warum baut China nun Natriumgekühlte-Reaktoren?

China setzt voll auf Kernenergie. Man geht beim Ausbau langfristig und in klar definierten Schritten vor. Erst kauft und klaut man das gesamte weltweit vorhandene Wissen zusammen. Diese Phase ist bezüglich Reaktoren der dritten Generation abgeschlossen. Jetzt geht man in die Serienproduktion mit „Eigenentwicklungen“, für die man keine Lizenzgebühren mehr bezahlt und keine Einschränkungen mehr akzeptieren muß. Chinesische Druckwasserreaktoren haben inzwischen Bauzeiten von rund fünf Jahren und Baukosten auf dem Niveau modernster Kohlekraftwerke mit Rauchgaswäsche und höchsten Wirkungsgraden. Die Auslegungslebensdauer bewegt sich auf dem internationalen Standard von 60 Jahren und wird real 100 Jahre überschreiten. Die Reaktoren, die heute ans Netz gehen, werden die Jahrhundertwende noch überleben. Wie immer, wird nicht die Technik, sondern die individuelle Wirtschaftlichkeit über deren Ende entscheiden.

China hat aber von Anbeginn der Nutzung von Kernenergie ein Problem: Zumindest die wirtschaftlich förderbaren Uranvorkommen im eigenen Land sind sehr gering. Deshalb gilt schon heute die Dreierregel: Ein Drittel aus inländischer Förderung, ein Drittel durch Kauf am Weltmarkt und ein Drittel aus ausländischen, aber von China betriebenen, Minen. Man darf dabei nie aus den Augen verlieren, daß ein abgebranntes Brennelement immer noch rund 95% Energieträger enthält. Es baut sich also ein gewaltiger Schatz auf, den es (langfristig) zu heben gilt. Die einzig verfügbare erprobte Technik zur Spaltung von U238 kommt derzeit aus Russland in der Form des mit Natrium gekühlten und schnellem Neutronenspektrum betriebenen BN-600. Dieser Reaktor ist seit 1981 in Beloyarsk am Netz. Inzwischen haben umfangreiche Nachrüstungen (seit 2010) stattgefunden und drei neue Dampferzeuger sind in Vorbereitung, die die genehmigte Betriebsdauer auf 60 Jahre erhöhen. Auf der Basis dieses Typs (1500 MWth, 600 MWel) hat China zwei Reaktoren für das Kraftwerk Xiapu bestellt. Sie sind seit 2018 in Bau und sollen 2023 bzw. 2026 den kommerziellen Betrieb aufnehmen. Sie können mit Uranoxid (Anreicherung 17 bis 26%) oder Mischoxid (100 GWd/t Abbrand) bestückt werden. Später ist sogar eine Beladung mit metallischem Brennstoff (100–120 GWd/t) vorgesehen. Dies würde auch ganz neue Wege bezüglich der Wiederaufbereitung ermöglichen. Der Brennstoff für die ersten sieben Jahre kommt von TCEL aus Russland. China geht auch hier wieder extrem konservativ vor.

Eine grobe Abschätzung ergibt für diese Reaktoren bei einer Erstbeladung mit Mischoxid einen Bedarf von etwa 10 to pro Reaktor. Dabei ist ein Verhältnis von (abgereichertem) Uran und Plutonium von etwa 8:2 erforderlich. Jedes Jahr dürfte eine Nachladung von rund 5 to MOX-Brennelementen pro Reaktor nötig sein. Die tatsächlichen Werte hängen stark von der jährlichen Auslastung und dem erzielten Abbrand (Werkstoffproblematik) ab. Die Energiedichte von natriumgekühlten Reaktoren ist sehr hoch: Der Reaktorkern eines BN-600 ist nur etwa 1m hoch, bei einem Durchmesser von etwa 2m (369 Brennelemente mit je 127 Brennstäben).

Die Wiederaufbereitung

Parallel läuft ein Programm zur Wiederaufbereitung. Aufbauend auf die umfangreiche Erfahrung aus der Waffenproduktion wurde bis 2005 eine Pilotanlage zur Aufbereitung ziviler Brennelemente gebaut. Ab 2010 begann der heiße Testbetrieb. Zahlreiche Verzögerungen ergaben aber erst 2017 einen halbwegs zufrieden stellenden Betrieb. Im Jahre 2011 wurde der Bau einer Anlage mit einer Kapazität von 200 toSM/a in Jinta beschlossen. Sie sollte 2020 in Betrieb gehen. Neben dieser Anlage wird auch eine Fertigung für MOX-Brennelemente mit einer Kapazität von 20 t/a errichtet. Diese Anlagen reichen für einen BN-600 Reaktor aus. Parallel ziehen sich seit Jahren Verhandlungen mit Frankreich über eine Wiederaufbereitungsanlage mit 800 t/a für Brennelemente aus Druckwasserreaktoren hin. Bisher scheiterten die Verhandlungen an den Preisvorstellungen der EDF.

Bezüglich der Wiederaufbereitung steht China nicht unter Zeitdruck: (Noch) sind die Weltmarktpreise für Uran niedrig, China verfügt bereits über große Kapazitäten zur Anreicherung und zur Produktion von Brennelementen für Druckwasserreaktoren. Die zeitlich nahezu unbefristete Lagerung von abgebrannten Brennelementen ist kein Problem – schon gar nicht für China mit seinen Wüsten. Es ist also folgerichtig, sich auf den Zubau der konventionellen Reaktorflotte (Generation III) zu konzentrieren. Jedes neue Kernkraftwerk am Netz kann potentiell alte umweltverschmutzende Kohlekraftwerke ersetzen. Der derzeitige Einstieg in die Reaktoren mit Natriumkühlung ist vergleichbar mit dem Einstieg in die Druckwasserreaktoren in den 1980er Jahren. Auch diesmal wird weniger auf Exotik als auf erprobte Technik gesetzt – nur verengt sich hier der Weltmarkt derzeit auf Russland.

Zusammenfassung

China setzt konsequent auf den Ausbau der Kernenergie:

  • Am Ende von 2019 verfügte China über eine installierte Leistung von 50 GWel. Geplant war eine Leistung von 58 GWel. Die kleine Delle kam durch die Reaktion auf das Unglück von Fukushima. Im laufenden Fünfjahrplan (2021 – 2025) ist eine Leistung von 70 GWel geplant. Beauftragt sind vier Reaktoren vom Typ CAP1000, vier vom russischen Typ VVER- V491, ein SMR vom Typ ACP100 und ein Hualong One. Alles Druckwasserreaktoren der III. Generation.
  • Seit 2011 ist der Chinese Experimental Fast Reactor (CEFR) mit einer Leistung von 65 MWth / 20 MWel in Betrieb. Er wird mit auf 64% angereichertem Uran betrieben. Reaktor und Brennstoff kommen aus Russland.
  • Seit 2017 bzw. 2020 befinden sich zwei schnelle Reaktoren mit Natriumkühlung in Xiapu in Bau. Die beiden russischen Reaktoren mit 1500 MWth / 600 MWel sollen 2023 bzw. 2026 ans Netz gehen. Die Brennstoffversorgung für sieben Jahre erfolgt aus einer neuen Fabrik in Russland. Beide Länder erzielen dadurch für ihre Programme mit schnellen Reaktoren einen bedeutenden Kostenvorteil. Beide Länder bevorzugen zusammen eine evolutionäre Strategie in Richtung 1000 MWel. (Russland verfügt bereits über einen BN-800 in Beloyarsk).
  • Bereits 1983 hat China einen geschlossenen Brennstoffkreislauf beschlossen. Seit 2015 gibt es eine Testanlage für die Aufbereitung ziviler Brennelemente in Jinta. Sie soll eine Kapazität von 50 to/a haben. Ihr Bau und Betrieb war mit zahlreichen Schwierigkeiten verbunden.
  • In Jiuquan ist eine 200 to/a Demonstrationsanlage in Bau. Die Bauarbeiten sind fertig und letztes Jahr hat die Montage der Verfahrenstechnik begonnen. Geplante Inbetriebnahme ist 2025. Inzwischen ist ein baugleicher zweiter Strang in Arbeit, der noch vor 2030 fertiggestellt sein soll.
  • Seit 2018 sind neben den zwei Wiederaufbereitungsanlagen auch zwei Brennelementefabriken für Mischoxid mit einer Kapazität von je 20 to/a in Bau. In ihnen kann das aus der Wiederaufbereitung von abgebrannten Brennelementen aus den Druckwasserreaktoren zurückgewonnene Uran und Plutonium zu neuen Brennelementen verarbeitet werden.
  • In Beishan laufen seit Jahren die vorbereitenden Untersuchungen und Baumaßnahmen für ein geologisches Endlager für die hochaktiven Reststoffe. Geplant ist eine Inbetriebnahme bis 2050.

SMR-2021, Xe-100

Anfang April unterzeichneten X-energy, Energy Northwest, und der Grant County (Washington) Public Utility District (PUD) eine Absichtserklärung einen Hochtemperaturreaktor für geschätzt $2,4 Milliarden als Demonstrationsprojekt bis 2027 zu bauen. Das TRi Energy Partnership – ein Wortspiel aus dem TRISO-Brennstoff bzw. der Tri-Cities area – übernimmt die Projektentwicklung für die Genehmigung, den Bau und Betrieb des Kraftwerks. Der angedachte Standort ist neben dem Kernkraftwerk Columbia, einem 1,174-MWe Siedewasserreaktor nahe Richland im Bundesstaat Washington. An diesem Standort sind alle Voraussetzungen für den Transport (Schiene, Straße, Wasserweg) sowie fachkundiges Personal vorhanden. Damit sind erst einmal alle Bedingungen für eine hälftige Finanzierung (50% Staat, 50% privates Risikokapital) nach dem Advanced Reactor Demonstration Program des „US Energieministeriums“ erfüllt.

Der Entwurf

Der Xe-100 besteht aus zwei Zylindern: Dem Reaktor mit einem Durchmesser von etwa 4,9m und einer Höhe von 19,5m und dem Dampferzeuger mit einem Durchmesser von etwa 6,5m und einer Höhe von 25m. Der Reaktor dürfte etwa 200 to wiegen und der Dampferzeuger etwa 700 to. Beides Maße und Gewichte, wie sie z. B. bei Raffinerien und Chemieanlagen heute üblich sind. Insofern sind Montage und Transport für einschlägige Unternehmen kein Problem. Beide Zylinder sind nur durch ein Doppelrohr für das Helium miteinander verschraubt. Eine solche Einheit soll eine Wärmeleistung von 200 MWth und eine elektrische Leistung von etwa 75 MWel haben. Die Eintrittstemperatur in den Reaktor beträgt 260°C und die Austrittstemperatur 750°C. Um überhaupt mit dem Gas Helium ausreichend Wärme bei akzeptabler Strömungsgeschwindigkeit transportieren zu können (kein Phasenübergang), beträgt der Betriebsdruck 70bar. Damit muß man wieder die Festigkeitsprobleme beherrschen, die sich aus der Kombination von hohem Druck bei hoher Temperatur ergeben. Mit anderen Worten: Die beiden „Zylinder“ werden entsprechend dickwandig und damit teuer. Ähnliches gilt für die spiralförmigen Rohre des Dampferzeugers, da sie auf Werte (165bar, 565°C) konventioneller Kraftwerke ausgelegt sind. Alles technisch beherrschbar, aber schon vom Ansatz her teuer.

Die Leistung eines solchen Moduls ist auch durch das „Kugelhaufen-Prinzip“ begrenzt. Das Ganze funktioniert wie ein Silo: Es werden ständig oben frische Brennstoffkugeln dem Reaktor zugeführt (ca. 175 Kugeln täglich) und unten wieder die entsprechende Menge abgebrannter Brennelemente abgezogen. Da die spezifische Leistung bei diesem Prinzip etwa 30 mal geringer als in einem konventionellen Druckwasserreaktor ist, ergibt sich ein „Haufen“ aus rund 220 000 Kugeln. Je größer jedoch ein Reaktorkern ist, um so mehr neigt er zu einem „Eigenleben“. Die sich ergebenden ungleichen Zustände müssen durch Regelstäbe im Griff behalten werden. Ab einer gewissen Größe ist es aber praktisch unmöglich, Regelstäbe in solch einen Haufen einzufahren ohne die Kugeln und die Regelstäbe zu beschädigen.

Sicherheit

Zentrales Sicherheitselement sind auch hier die TRISO-Brennelemente. In jeder einzelnen „Brennstoffkugel“ (6 cm Durchmesser) befinden sich rund 18 000 einzelne „Brennelemente“. Jedes einzelne Körnchen hat seine eigene Schutzhülle aus mehreren Schichten aus denen Spaltprodukte erst einmal entkommen müssen. Hätten sie es geschafft, müßten sie noch die Speicher- und Schutzschichten der Kugel durchdringen. Erst dann könnten sie ins „Kühlmittel“ Helium – das ständig (mit einfachen Mitteln) überwacht wird – gelangen. Bis an die Umwelt müßten sie dann noch den Druckbehälter, das Gebäude etc. überwinden. Die Sicherheitsfrage konzentriert sich damit auf die Beständigkeit der Kugeln. Die Tests über Bestrahlung und Temperatur sind bereits erfolgreich abgeschlossen. Für die Freisetzung von radioaktiven Stoffen ist die Stabilität von Brennelementen (Harrisburg, Fukushima) maßgeblich. Graphitkugeln können nicht schmelzen, sondern sublimieren (unmittelbare Verdampfung ohne Verflüssigung) bei über 3900°C. Diese Temperatur kann aber unter keinen Umständen (nicht im Betrieb und auch nicht durch Nachzerfallswärme) im Reaktor erreicht werden. Jede einzelne Kugel übernimmt quasi die Funktion des Containments von konventionellen Reaktoren (Verhinderung der Freisetzung radioaktiver Stoffe an die Umgebung).

Die Menge an spaltbarem Material (auf 15,5% angereichertes Uran) bzw. der Spaltprodukte (maximaler Abbrand 160 MWd/kg) ist schon durch das Volumen des Reaktors begrenzt. Es ist nur soviel „Überschussreaktivität“ vorhanden, daß die Veränderungen im Betrieb (z. B. Xenonvergiftung im Lastfolgebetrieb) über die Regelstäbe (2 mal 9 Stück) kompensiert werden können. Selbst wenn alle Regelstäbe vollständig gezogen sind, bricht die Kettenreaktion (stark negativer Temperaturkoeffizent) lange vor Erreichen der zulässigen Temperaturen in sich zusammen – der Reaktor ist „walk away sicher“. Fehlbedienungen sind ausgeschlossen bzw. der Reaktor könnte (zeitweise) ohne Personal betrieben werden. Selbst bei einem Ausfall der Kühlung (entweichen des Heliums) reicht die passive Wärmeabfuhr über Strahlung und Wärmeleitung aus um ein Unglück zu verhindern (Fukushima).

Revolutionärer Bestandteil des Genehmigungsverfahrens wird der Nachweis sein, daß keine unzulässige Strahlenbelastung außerhalb des Betriebsgeländes (400m um den Reaktor im Gegensatz zu 10 Meilen) auftreten kann. Alle erforderlichen Nachweise und Auflagen (Besiedelungsdichte, Evakuierungspläne etc.) für eine Genehmigung würden entfallen. Mit anderen Worten: Ein solcher Reaktor könnte unmittelbar neben einem Wohngebiet (z. B. Fernwärme) oder in einem Industriegebiet (Raffinerie, Chemiepark) gebaut werden.

Geschichte

X-energy wurde 2009 von Dr. Kam Ghaffarian gegründet. Es gelang ihm einige Fachleute mit Erfahrung auf dem Gebiet der Kugelhaufenreaktoren anzuwerben. Leitender Ingenieur z. B. ist Dr. Eben Mulder, der schon in Südafrika in der Entwicklung von Hochtemperaturreaktoren tätig war und einst auf diesem Gebiet in Deutschland promovierte. X-energy wuchs schnell und hatte bis 2017 bereits über $34 Millionen Kapital eingeworben. In diesem Jahr startete das Projekt eines 320 MWel Kraftwerks, bestehend aus vier Reaktormodulen. Federführend beteiligt ist Southern Nuclear (betreibt mehrere Kernkraftwerke und baut Vogtle) als Energieversorger und Burns & McDonnell als Ingenieurunternehmen. Richtungsweisend für andere Industriezweige ist die Entwicklung eines „Digitalen Zwillings“ des Reaktors (separat gefördert durch das Energieministerium). Stark vereinfacht gesagt, ist die gesamte Konstruktion als 3D-Modell digital vorhanden und verknüpft mit einschlägigen Programmen zur probabilistischen Sicherheitsanalyse, virtual reality usw. Ziel ist die systematische Ermittlung von Schwachstellen bereits in der Konstruktionsphase und z. B. der Test von Fertigungsrobotern etc. vorab am digitalen Modell. Dieser Ansatz hat sich bereits als revolutionär bei der Entwicklung von Kampfflugzeugen gezeigt. Wie schon immer, ist die Kerntechnik das Labor des technischen Fortschritts für die gesamte Industrie. Nur hier (außerhalb der Rüstungsindustrie) arbeiten die notwendigen Spitzenkräfte aus unterschiedlichen Disziplinen eng zusammen.

Bei den gasgekühlten Hochtemperaturreaktoren handelt es sich nicht um eine neue Erfindung, sondern eine evolutionäre Entwicklung in verschiedenen Ländern: USA (1944 ORNL, 1966–1974 Peach Bottom, 1967–1988 Fort St. Vrain, ab 2005 NGNP), UK (1966–1975 Dragon), Deutschland (1967–1988 AVR, 1986–1989 THTR), Japan (ab 1998 HTTR) und China (ab 2000 HTR-10). Es kommen über 70 Jahre Forschung und Entwicklung allein in Demonstrationsanlagen zusammen. Dieser Schatz an Daten ist für ein schnelles Genehmigungsverfahren von ausschlaggebender Bedeutung.

Marktpotential

Die Demonstrationsanlage soll aus vier Reaktoren bestehen und eine Leistung von 320 MWel haben. Damit wäre der Beweis für ein funktionstüchtiges Kraftwerk zum Ersatz alter fossiler Kraftwerke an einem gegebenen Standort erbracht. Ob es allerdings eine schlaue Idee ist, ein „Großkraftwerk“ aus zig Modulen zusammenzusetzen, muß sich noch erweisen. Allerdings muß man ganz klar feststellen, daß das Prinzip Kugelhaufenreaktor aus physikalischen Gründen nicht beliebig skalierbar ist. Dieses Reaktorprinzip bleibt nur kleineren Leistungen vorbehalten. Man braucht zur Produktion elektrischer Energie auch keine hohen Temperaturen. Eine Verbesserung des Wirkungsgrades ist bei heutigen Uranpreisen eher eine akademische Fragestellung. Das (bisherige) Alleinstellungsmerkmal liegt vielmehr in der „Walk Away Sicherheit“: Gelingt es, eine Zulassung als Reaktor zu bekommen, der auch bei einem schweren Störfall nur Auswirkungen auf das Betriebsgelände, aber nicht auf die Nachbarschaft hat, eröffnen sich völlig neue Anwendungen:

  • Man kann unmittelbar neben chemischen Anlagen bauen,
  • man kann nukleare Fernwärme nahe Wohngebieten betreiben,
  • man kann einen zeitweiligen Betrieb ohne Personal anstreben,
  • man kann solche SMR dezentral einsetzen, bzw. an abgelegenen Verbrauchsschwerpunkten.

Die Produktion von Heißdampf mit 565°C erlaubt nicht nur den Kauf von Dampfturbinen von der Stange, sondern zielt auch auf typische verfahrenstechnische Anwendungen ab (Raffinerien, Grundchemikalien etc.). So hat X-energy allein in den petrochemischen Anlagen an der Golfküste 41 Dampferzeuger ermittelt. Letztendlich stellt sich die Frage, was eine MWhth bzw. MWhel aus einem Xe-100 Reaktor kostet. Liegt der Preis unterhalb einer Kesselanlage mit Erdgas, läuft das Geschäft in großem Maßstab an. Wenn nicht, ist das Reaktorkonzept eher eine Totgeburt. Die Branche steht nicht zum ersten Mal wieder vor einem Henne-Ei Problem…

Internationale Kontakte

Jordanien ist ein typischer Vertreter von Ländern, deren Mangel an Kühlwasser das Hauptproblem bei der Elektrifizierung ist. Hochtemperaturreaktoren lassen sich auch mit Trockenkühltürmen betreiben. Auch das keine ganz neue Idee: Der THTR in Hamm-Uentrop hatte bereits einen solchen. Schon 2017 hat die Jordan Atomic Energy Commission (JAEC) mit X-energy eine Kooperation abgeschlossen. Zusätzlich haben Saudi Arabien und Jordanien auch Verhandlungen mit China über Hochtemperaturreaktoren geführt.

Letztes Jahr hat X-energy auch ein Genehmigungsverfahren in Kanada gestartet. Es gibt dort die sog. Vendor Design Review (VDR). Ein Verfahren das risikoorientiert ist und drei Schritte umfaßt: Im ersten Schritt wird lediglich geprüft, ob der Reaktor grundsätzlich alle kanadischen Vorschriften erfüllt. Im folgenden zweiten Schritt werden die als kritisch empfundenen Punkte näher betrachtet und diskutiert. In der dritten Phase kann der Antragsteller alle Auflagen aus den vorhergehenden Schritten noch nachbessern. Diese Vorgehensweise erlaubt dem Antragsteller besonders bei innovativen Konzepten jederzeit die Notbremse ziehen zu können, wenn die Kosten explodieren sollten und eine Genehmigung zumindest in weiter Ferne erscheint. Da die Entwicklung des Xe-100 schon weit fortgeschritten ist, werden die ersten beiden Phasen zusammen abgehandelt. Eine Zulassung in Kanada ist für X-energy äußerst wertvoll, da Kanada über eine starke kerntechnische Industrie mit vollständigen Lieferketten verfügt. Die Zulieferer sind aber verständlicherweise erst bereit zu investieren, wenn sie genau wissen, was sie produzieren müssen. So konnte bereits Hatch als Partner für die Detailkonstruktion und den weltweiten Vertrieb gewonnen werden. Ontario Power Generation (OPG) hat in Zusammenarbeit mit anderen Provinzen federführend den (geplanten) Bau eines SMR und den Aufbau der Lieferketten in Angriff genommen. In die engere Betrachtung ist neben dem Xe-100 von X-energy, der Integral Molten Salt Reactor (IMSR) von Terrestrial Energy und der BWRX-300 von General Electric gekommen. Im Moment setzt kein Land außerhalb der USA so konsequent auf die Entwicklung von SMR, wie Kanada. Das macht Sinn, da Kanada mit dem Ausbau seiner Schwerwasserreaktoren mittlerer Größe langsam an die Grenzen stößt. Ein so weites Land mit seinen umfangreichen Bergbauaktivitäten, Ölsänden usw. braucht dringend dezentrale Einheiten. Hinzu kommt der erhebliche Heizwärmebedarf eines nördlichen Landes: Sonne geht gar nicht und mit Windparks hat man nur schlechte Erfahrungen gemacht.

SMR-2021, KP-FHR

Hinter der sperrigen Abkürzung KP-FHR (Kairos Power – Fluoride salt cooled High Temperature Reactor) verbindet sich ein eher neuartiges Konzept, das hohe Temperaturen anstrebt, aber dabei auf erprobte Komponenten setzen will: Die Kombination von TRISO-Brennelementen mit Salzschmelze als Kühlmittel. Ursprünglich wollte man damit eine konventionelle Gasturbine antreiben, indem man Luft auf etwa 700 °C erhitzt und gegebenenfalls noch durch Verbrennung von Erdgas zur Abdeckung von Spitzenlasten weiter erhitzt. Für Kernreaktoren sollte damit ein neues Einsatzgebiet erschlossen werden. Für die Grundlast wäre weiterhin billige Kernenergie eingesetzt worden (Turbine läuft nur mit Luft) und zusätzliches Erdgas bei Lastspitzen (analog eines Nachbrenners bei Flugzeugen). Insgesamt wäre ein hoher Wirkungsgrad durch die erprobte Kombination von Gasturbine mit nachgeschaltetem Dampfkreislauf gewährleistet worden. Wie schon bei anderen Hochtemperaturreaktoren ist die Nutzung von Gasturbinen (vorläufig) gescheitert. Nunmehr geht man auch hier (vorläufig?) nur von einem konventionellen Dampfkreislauf aus. Allerdings mit höheren Dampfzuständen, wie sie in konventionellen Kohlekraftwerken üblich sind.

Der Stand der (finanziellen) Entwicklung

Kairos geht auf Forschungsprojekte an der University of California, Berkeley (UCB), dem Massachusetts Institute of Technology und der University of Wisconsin zurück. Alles unter der Koordination – und finanziellen Förderung – des U.S. Department of Energy im Rahmen eines Integrated Research Project (IRP). Wie so oft, entstehen aus solchen Forschungsprojekten neu gegründete Unternehmen, in denen die maßgeblich beteiligten „Forscher“ ihre Erkenntnisse kommerzialisieren. Selbstverständlich bleiben sie ihren alten Universitäten dabei eng verbunden. Im Falle von Kairos sind die Arbeiten nun soweit fortgeschritten, daß das „Energieministerium“ (schrittweise) einen Prototyp anstrebt. Es soll innerhalb von sieben Jahren der Demonstrationsreaktor „Hermes Reduced-Scale Test Reactor“ auf dem Gelände des East Tennessee Technology Park in Oak Ridge für geplant $629 realisiert werden. Das „Energieministerium“ hat dafür $303 Millionen Dollar fest in seinem Haushalt (verteilt über sieben Jahre) eingestellt. Das Geld wird fällig, wenn Kairos die andere Hälfte von privaten Investoren auftreibt. Dies ist ein in den USA erprobtes pragmatisches Förderungsmodell: Das Risiko wird hälftig von Investoren und Staat geteilt – gegenseitig wirkt die Zusage als Qualitätskriterium. Außerdem kann bei solchen Summen davon ausgegangen werden, daß die Entwicklung zielstrebig vorangetrieben wird. Die privaten Investoren lockt schließlich der wirtschaftliche Erfolg. Anders als in Deutschland, sind Gewinne in den USA nichts unanständiges.

Der Kugelhaufen

Die Kugeln für diesen Reaktor werden wahrscheinlich etwas kleiner (3 cm) als die üblichen TRISO-Elemente (4,3 cm) und enthalten rund 1,5 gr Uran verteilt in 4750 kleinsten mit einer Schutzschicht überzogenen Körnchen. Sie können damit über 11 000 kWh elektrische Energie produzieren, was etwa dem Verbrauch von 8 to Steinkohle oder 17 to Braunkohle entspricht. Wegen ihrer hohen Energiedichte sind diese Elemente nach ca. 1,4 Jahren abgebrannt und müssen ausgewechselt werden. In einem mit Helium gekühlten Hochtemperatur-Reaktor verbleiben die Kugeln etwa 2,5 Jahre und in Leichtwasserreaktoren rund drei Jahre.

Die Kugeln sollen einen etwas anderen Aufbau als klassische TRISO-Elemente haben: Der Kern besteht aus 25 mm porösem Graphit, umgeben von einer Kugelschale aus Brennstoffkörnern und einer äußeren Schutzschicht aus besonders widerstandfähigem Graphit. Die Brennstoffkörner haben einen Durchmesser von lediglich 400 Mikrometern und enthalten auf 19,75% angereichertes Uran. Die Geschwindigkeit mit der Spaltprodukte im Graphit wandern, hängt wesentlich von der Temperatur ab. Da die Betriebstemperatur hier mit 650°C deutlich geringer als beim AVR in Deutschland mit 950°C ist und die Verweilzeit der Kugeln kleiner, kann von einer wesentlich geringeren Verunreinigung des Kühlmittels – hier reaktionsfreudige Salzschmelze, damals Edelgas Helium – ausgegangen werden. Dies ist bei einem Reaktorunglück für die Freisetzung radioaktiver Stoffe in die Umwelt von ausschlaggebender Bedeutung. Die neutronenphysikalische Auslegung des Reaktors ist so angelegt, daß bei etwa 800°C Temperatur die Kettenreaktion ohne Eingriffe in sich zusammenbricht (stark negative Temperaturkoeffizienten). Man könnte also den Reaktor jederzeit verlassen, ohne ihn abzustellen. Demgegenüber sind die Brennelemente bei bis zu 1800°C ohne größere Schäden getestet worden. Der Siedepunkt der Salzschmelze liegt bei nur 1430°C. Dies ergibt zusammen eine wesentlich höhere Sicherheitsmarge als bei Leichtwasserreaktoren.

Das Kühlmittel

Bei diesem Reaktortyp wird weder mit Wasser noch mit Helium, sondern einem geschmolzenen Salz gekühlt. Dies stellt viele sicherheitstechnische Betrachtungen auf den Kopf: Nicht ein unzulässiges Verdampfen des Kühlmittels wird zum Problem, sondern das „Einfrieren“. Das hier verwendete „FLiBe-Salz“ hat einen Schmelzpunkt von 459°C, d. h. alle Komponenten müssen elektrisch beheizbar sein um den Reaktor überhaupt anfahren zu können. Außerdem muß unter allen Betriebszuständen und an allen Orten diese Temperatur sicher aufrecht erhalten bleiben, damit sich keine Ausscheidungen und Verstopfungen bilden. Andererseits ist diese Temperatur so hoch, daß Wartungs- und Inspektionsarbeiten schnell zu einem Problem werden.

Wesentliches Problem ist aber bei allen Salzschmelzen die Korrosion. Zwar hat man heute ein besseres Verständnis der Werkstofftechnik und jahrzehntelange Erfahrungen z. B. in Raffinerien, andererseits liegen aber immer noch keine Langzeiterfahrungen bei Kernreaktoren vor. Hier versucht man zumindest das Problem durch eine scharfe Trennung von Brennelement und Kühlmittel einzugrenzen. Bei einem Kernreaktor hat man es tatsächlich mit dem gesamten Periodensystem zu tun. Wie all diese Stoffe chemisch mit der Salzschmelze, den Reaktorwerkstoffen und untereinander reagieren, ist ein ingenieurtechnischer Albtraum. Deshalb versucht man hier ganz klassisch alle Spaltprodukte etc. im Brennelement zu halten. Andererseits geht man davon aus, daß die Diffusion von Cs137, Silber etc., die zu einem radioaktiven Staub bei mit Helium gekühlten Reaktoren führen, die den gesamten Reaktor verdrecken, besser beherrschbar ist, weil diese „Schadstoffe“ sofort im Salz gelöst werden.

FLiBe ist – wie der Name schon andeutet – ein Salz mit den Bestandteilen Fluor, Lithium und Beryllium. Die Arbeitsschutzvorschriften für Beryllium (Atemschutz, Schutzkleidung etc.), sind nicht kleiner als für radioaktive Stoffe – es ist nur schwerer zu erkennen. Besonders problematisch ist jedoch das Lithium. Lithium hat die unschöne Eigenschaft, daß es durch Neutronen Tritium bildet. Man kann zwar durch eine Anreicherung von Li7 auf 99,995% die Bildung erheblich verringern, aber nicht ausschließen. So bilden FLiBe-Reaktoren etwa 1000 bis 10 000 mal soviel Tritium wie Leichtwasserreaktoren. Dies kann zu grundsätzlichen Schwierigkeiten bei der Genehmigung führen. Auch bei diesem Problem wirkt sich die Trennung von Brennstoff und Kühlmittel positiv aus. Das Graphit zieht das Tritium an und absorbiert es an dessen Oberflächen. Deshalb sind zusätzlich noch Filterkatuschen in den Kühlmittelleitungen vorgesehen.

Der Zwischenkreislauf

Das FLiBe-Salz wird – unabhängig von eindiffundierten Spaltprodukten und Tritium – während seines Durchlaufs durch den Reaktorkern immer radioaktiv. Aus Fluor wird O19(26,9s Halbwertszeit) und N16 (7,1s Halbwertszeit) gebildet. Beides γ-Strahler mit 1,4 MeV bzw. 6,1 MeV. Von ausschlaggebender Bedeutung ist F20 (11,0s Halbwertszeit). Hinzu kommen noch aktivierte Korrosionsprodukte. Um die Bereiche mit Strahlenschutz klein zu halten, ist ein Zwischenkreislauf mit „Sonnensalz“ vorgesehen. Als „solar salt“ bezeichnet man üblicherweise eine Mischung aus 60% Natriumnitrat NaNO3 und 40% Kaliumnitrat KNO3. Sie hat einen Schmelzpunkt von 240°C und eine maximale Temperatur von etwa 565°C. So ist z. B. im Solar-Turmkraftwerk „Solar One“ ein Spitzenlast-Speicher mit zwei Tanks in denen 1400 to Solar-Salz gelagert sind in Betrieb. Diese Anlage kann 107 MWhth speichern und erzeugt damit 11 MWel für drei Stunden. Damit ergibt sich ein weiteres Anwendungsfeld: Bei entsprechender Auslegung der Turbine kann ein solcher SMR auch zur Abdeckung von Lastspitzen im Netz bzw. zur Auskopplung von Wärme für industrielle Zwecke eingesetzt werden.

Der Reaktorkern

Eine weitere Besonderheit gegenüber mit Helium gekühlten Reaktoren ist, daß die Brennstoffkugeln im Reaktor schwimmen. Sie werden deshalb von unten zugeführt und oben wieder abgefischt. Insbesondere die „Abfischmaschine“ ist noch nicht im Detail konstruiert. Sie muß den Reaktor nach oben sicher abdichten, die Kugeln einfangen, transportieren, reinigen und überprüfen – das alles beständig bei 650°C. Für 100 MWel sind etwa 440 000 Brennstoffkugeln (TRISO) und 204 000 Moderatorkugeln (aus reinem Graphit) im Reaktor. Jede Brennstoffkugel durchläuft etwa 8 mal den Reaktor und verbleibt bei voller Leistung rund 1,4 Jahre im Reaktor, bis sie abgebrannt ist (gemeint ist damit, bis das in ihr vorhandene Uran gespalten ist, die Kugel erscheint unverändert). Jede Kugel braucht ungefähr 60 Tage auf ihrem Weg von unten nach oben. Nach dem Abfischen verbleibt sie noch 4 Tage zur Abkühlung, bis sie wieder zurückgeführt wird. Bei voller Leistung müssen etwa 450 Kugeln pro Stunde entnommen und überprüft werden, das ergibt ungefähr 8 Sekunden pro Vorgang. Jeden Tag sind rund 920 Kugeln verbraucht und müssen durch frische ersetzt werden. Für eine vollständige Entleerung ist ein „Schnellgang“ vorgesehen, der etwa 3600 Kugel pro Stunde entnimmt. Abgesehen von Wartungsarbeiten könnte somit der Reaktor kontinuierlich in Betrieb bleiben.

Der Reaktor ist im Wesentlichen ein Zylinder von etwa 3,5 m Durchmesser und 12 m Höhe mit einer Wandstärke von 4 bis 6 cm. Der Kern – die eigentliche Wärmequelle – ist wesentlich kleiner. Er besteht aus einem Doppel-Hohlzylinder. In dessen innerem Ring schwimmen die Brennstoffkugeln, in seinem äußeren Ringraum die Moderatorkugeln. Der Innenraum ist gefüllt mit einem Reflektor aus Graphit in dem sich auch die Regelstäbe befinden. Der gesamte Einbau ist durch Graphitblöcke von dem Reaktortank isoliert. Genau diese festen Einbauten aus Graphit sind eine bekannte Schwachstelle bei all diesen Reaktortypen. Sie sind z. B. auch der Tod der britischen AGR-Reaktoren. Unter ständigem Neutronenbeschuss altert der Graphit. Heute hat man zwar ein besseres Verständnis der Vorgänge – gleichwohl bleibt die Lebensdauer begrenzt. Hier ist deshalb vorgesehen, irgendwann die Graphiteinbauten zu erneuern. Ob das dann wirtschaftlich ist, wird sich zeigen. Im Prinzip sind die Graphit-Volumina aus einzelnen Blöcken zusammengesetzt. Diese besitzen aber wegen der nötigen Einbauten, Kanäle fürs Salz etc. und der zu berücksichtigenden Wärmedehnung eine komplizierte Geometrie und erfordern sehr enge Fertigungstoleranzen. Aber es ist ja der Sinn von SMR, all diese Arbeiten in einer Fabrik und nicht auf der Baustelle auszuführen

Werkstoffe

Alle Hochtemperaturreaktoren tragen das gleiche Problem in sich, die hohen Temperaturen. Mit der Temperatur steigen die Probleme (z B. Zeitstandsfestigkeit, Korrosion) und damit die Kosten exponentiell an. Wäre dies nicht so, hätte man bereits fossile Kraftwerke mit ganz anderen Wirkungsgraden. Es stellt sich deshalb immer die Frage, wofür man überhaupt so hohe Temperaturen braucht. Hier beschränkt man sich bewußt auf eine Spanne von 550°C bis 650°C um nicht vollständig konventionelle Werkstoffe verlassen zu müssen. Man darf ja nicht vergessen, daß alles genehmigungsfähig – d. h. berechenbar und durch Versuche nachweisbar – sein muß. Hierin liegt ja gerade der Charme von Salzschmelzen: Nicht so hohe Temperaturen ohne zusätzliche Druckprobleme, bei hoher Wärmespeicherung. Geplant ist weitesgehend SS 316 (handelsüblicher austenitischer Edelstahl) zu verwenden.

Ein wesentliches Problem aller FLiBE-Reaktoren ist die hohe Tritiumproduktion. Über den Daumen gerechnet, produziert dieser kleine SMR (100 MWel) jeden Tag soviel Tritium, wie ein Leichtwasserreaktor (1000 MWel) in einem ganzen Jahr. Will man auf gleiche Werte kommen, müßte also 99,9% des Tritium zurückgehalten werden. Man setzt hier auf die Absorption am Graphit. Das ändert aber nichts daran, daß Tritium bei solchen Temperaturen sehr gut durch Stahl hindurch diffundiert. Bisher hat man gute Erfahrung mit einer Beschichtung aller Rohrleitungen mit Aluminiumoxid gemacht. Es bildet eine Sperrschicht, die sogar beim Kontakt mit Luft selbstheilend ist. Gleichwohl ist hier noch viel Forschung nötig, wenn man die Aufregung um das Tanklager in Fukushima berücksichtigt. Es könnte sich sonst eine (politisch) unüberwindliche Hürde für die Genehmigung von FLiBe-Reaktoren ergeben.

Einschätzung

Kairos ist ein „Startup“ mit dem Selbstverständnis eines Ingenieurunternehmens. Sie haben nicht vor, jemals einen solchen SMR selbst zu fertigen. Von Anfang an haben sie starke Partner mit ins Boot geholt. So übernimmt Materion die Entwicklung und Herstellung des FLiBe-Salzes und BWXT die Produktion der Brennelemente. Für den kritischen Bereich „Tritium“ sind seit September 2020 die Canadian Nuclear Laboratories (CNL) eingestiegen. Kanada hat mit Tritium große und jahrzehntelange Erfahrungen durch den Betrieb seiner Candu-Reaktoren. Darüberhinaus will Kanada einen SMR in Chalk River bauen. Kairos ist dafür in die engere Wahl gekommen. Das Genehmigungsverfahren (stark unterschiedlich zu den USA) wird von der kanadischen Regierung mit mehreren Millionen gefördert. Seit 2018 läuft das Genehmigungsverfahren in den USA. Nächster Schritt wird der Bau eines kleinen Demonstrationsreaktors im East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Hier geht es vor allem darum, die Kosten für die Serienproduktion modellhaft zu testen.

Es dürften keine „Killer-Kriterien“ mehr im Genehmigungsverfahren auftreten. Dafür liegen zu viele Forschungsergebnisse aus mehreren Jahrzehnten vor. Besonders traurig ist, daß selbst im Genehmigungsverfahren auf die Betriebsergebnisse des AVR in Jülich zurückgegriffen wird. Deutschland hätte sicherlich auch heute noch ein geschätzter Partner sein können, wenn nicht wahnsinnige Laiendarsteller den Weg zurück ins Mittelalter propagiert hätten.

Seit 10 Jahren Fukushima

Eigentlich wollte ich nichts zum „Fukushima-Jubiläum“ schreiben. Es ist alles gesagt. Wer will, kennt die Fakten. Man muß nur ein wenig im Internet stöbern. Wäre da nicht das ZDF hinter dem Busch hervorgekrochen mit seiner Sendung „Der ewige Gau? 10 Jahre Fukushima“. Gäbe es einen Karl-Eduard Richard Arthur von Schnitzler – auch Sudel Ede genannt – Preis, das ZDF hätte ihn mit Sicherheit in der Tasche. In bester Tradition schneidet man alte Aufnahmen des West-Fernsehens neu zusammen und läßt sie von den einschlägig Verdächtigen: Green Peace, Partei Bündnis 90/Die Grünen usw. kommentieren. Selbst der alte Lehrer Arnie Gunderson mit seiner Verschwörungstheorie von dem explodierten Brennelemente-Lagerbecken darf nicht fehlen. Die Verknüpfung „Atombombe“ gleich „Atomkraftwerk“ ist einfach zu verlockend. Als Staatsfunker braucht man nicht einmal elementare handwerkliche Fähigkeiten zu beachten: Eine simple Google-Abfrage und man hätte Aufnahmen des besenreinen Lagerbeckens von Block 4 senden können. Ausgewogenheit – also die Berücksichtigung von Pro und Kontra – ist mit der Einführung der Wohnungssteuer „Rundfunkgebühr“ sowieso nicht mehr nötig. Man dient nur seinem Herrn, der die nächste Gebührenerhöhung festsetzt. Sollen die Zuschauer doch abschalten, wenn sie soviel Propaganda nicht ertragen.

Was geschah am 11. März 2011?

Um 14:46 (Japan Standard Time) erschütterte das “Tohoku Earthquake” den Osten Japans mit einer Magnitude von 9.0 auf der Richterskala. Das Epizentrum lag etwa 130 km östlich der Oshika Halbinsel in 24 km Tiefe. Quelle war ein Sprung der ineinander verhakten nordamerikanischen und pazifischen Platte. Dieser Sprung löste einen Tsunami aus, der über die japanische Küste hereinbrach. Er zerstörte mehr als eine Million Gebäude, tötete 19 729 Menschen, weitere 2 559 Opfer blieben bis heute vermißt und verletzte 6 233 Menschen zum Teil schwer. Ganze Landstriche waren innerhalb von Minuten dem Erdboden gleich gemacht. Für uns Mitteleuropäer eine unvorstellbare Naturkatastrophe von apokalyptischem Ausmaß.

Im Zusammenhang mit dem Reaktorunglück ist nur von Bedeutung, daß solche Tsunamis in Japan nicht unwahrscheinlich sind. Mit anderen (deutlichen) Worten: Dieses Kraftwerk hätte so nie an diesem Ort gebaut werden dürfen. Dies war unter Fachleuten – bitte nicht verwechseln mit „Atomexperten“ – bekannt. Es gab sogar einige wenige, die unter Inkaufnahme erheblicher beruflich Konsequenzen dabei nicht mitgespielt haben.

Die Ereignisse im Kernkraftwerk

Im Kernkraftwerk Fukushima waren drei der sechs Blöcke in Betrieb. Block 4 war bereits vollständig entladen für einen Brennstoffwechsel mit Wartungsarbeiten. Die Blöcke 5 und 6 waren in Vorbereitung zum Wiederanfahren nach erfolgtem Brennelementewechsel. Durch das Erdbeben wurden alle sechs Hochspannungstrassen unterbrochen. Die Notstromdiesel zur Eigenversorgung im Inselbetrieb starteten.

Für das Verständnis der Abläufe ist wichtig, daß zuerst alles nach Plan verlief: Durch die Erdbebensensoren wurde eine Schnellabschaltung ausgelöst und auch in Fukushima startete die Notversorgung – wie in fast allen japanischen Kernkraftwerken. Es wäre nichts passiert, wenn die Flutwelle nicht gekommen wäre oder man das Kraftwerk „wasserdicht“ gebaut hätte. Der Vorgang einer Schnellabschaltung infolge eines Erdbebens ist in Japan Routine. Die Betriebsmannschaft war allerdings bezüglich des Tsunami so ahnungslos, daß sie sogar die Abkühlung des Blocks 1 noch verzögerte, um – wie erwartet – möglichst schnell wieder ans Netz zu kommen. Dies war leider eine fatale Fehlentscheidung, wie sich bald herausstellen sollte. Es verstrich fast eine wertvolle Stunde in Ahnungslosigkeit. Hier zeigt sich, wie wichtig ein Kommunikationssystem ist, das auch bei schweren Naturkatastrophen intakt bleibt: Wäre die Betriebsmannschaft über die Gefahr eines schweren Tsunami informiert worden, hätte sie mit Sicherheit ganz anders reagiert. Bei den Reaktoren 2 und 3 wurde die Isolation der Reaktoren von dem konventionellen Teil des Kraftwerks automatisch durchgeführt und die notwendigen Notkühlsysteme ausgelöst. Bis zu diesem Zeitpunkt waren alle drei Reaktoren in einem sicheren Zustand und auch die Notkühlung funktionierte wie geplant.

Etwa 50 Minuten nach dem Erdbeben (das hätte die „goldene Stunde“ sein können) brach eine Wasserwand auf das Kraftwerk ein und schlug alle Außeneinrichtungen der Blöcke 1 bis 4 kurz und klein. Dies war die Folge des bekannten Konstruktionsfehlers: Die Lage des Kraftwerks über dem Meeresspiegel war viel zu niedrig. Bereits in den etwas abgelegenen (neueren) Blöcke 5 und 6 waren die Zerstörungen wesentlich geringer. Sämtliche Kühlwasserpumpen der Blöcke 1 bis 4 sind abgesoffen und damit war keine Außenkühlung mehr möglich. Die Notstromdiesel, die Schaltanlagen und alle Batterien im Keller des Turbinengebäudes wurden durch das hereinbrechende Meerwasser zerstört. Zunächst überlebten die Diesel von Block 2 und 4, bis sie durch die zerstörten Schaltanlagen außer Gefecht gesetzt wurden. Die Batterien von Block 3 hielten noch durch, bis sie erschöpft waren. Es gab sogar einen zusätzlichen luftgekühlten Generator für den Block 6 – wenn man nur den Strom hätte nutzen können. Durch den totalen Stromausfall (station blackout) war die Mannschaft blind und kraftlos. Man hatte bald keine Informationen durch die Messgeräte mehr und konnte auch keine elektrischen Stellglieder mehr betätigen. So ließ sich das Ventil, welches man im Block 1 geschlossen hatte, um die Abkühlung zu verringern, nun nicht mehr öffnen. Hilfe von außen ließ auf sich warten, weil die Feuerwehr erstmal die zerstörten und verschütteten Straßen räumen mußte um sich zum Kraftwerk vorkämpfen zu können. Die Kernschmelze setzte etwa 5 Stunden später in Block 1 ein. Unter den hohen Temperaturen zersetzten sich die Brennstabhüllen durch eine chemische Reaktion zwischen Wasserdampf und Zirconium. Der Kern des Reaktors – eine Konstruktion mit Toleranzen von weniger als einem Millimeter – fällt nun unkontrolliert in sich zusammen. Da die Nachzerfallswärme immer noch weiter wirkt, schmelzen Teile sogar auf. Es entsteht ein „Corium“, eine Legierung aus allen Bauteilen des Kerns, die nach dem Erkalten eine lavaähnliche Schlacke bildet. Deren Beseitigung ist die zentrale Herausforderung des Rückbaus. Man hat nicht mehr eine verfahrenstechnische Anlage vor sich, sondern einen Stahlbehälter mit einer harten, widerborstigen Masse, die man zerkleinern und bergen muß. Sinnvollerweise wird dies erst in Jahrzehnten mit noch zu entwickelnden Robotern erfolgen.

Durch den ansteigenden Druck wurde der Deckel im Reaktor 1 undicht und es entwich Wasserstoff in das obere Stockwerk. Eine ganz normale Industriehalle und kein „Betonbunker“, wie er in modernen Kraftwerken üblich ist. Etwa nach 24 Stunden explodierte das gebildete Knallgas und lieferte die spektakulären und immer wieder gern gezeigten Bilder. Nur hat dies nichts mit Kerntechnik zu tun, sondern ist eher ein Vorgeschmack auf die viel gepriesene „Wasserstoffwirtschaft“.

Im Block 2 funktionierte die Notkühlung noch drei Tage. Allerdings stieg auch dort Druck und Temperatur an, weil durch den Ausfall der Kühlwasserpumpen die Wärme nicht mehr an die Umwelt abgegeben werden konnte. Der Versuch einer Druckentlastung damit die Feuerwehr Wasser einleiten konnte, scheiterte und es kam ebenfalls zu einer Teilschmelze. Allerdings weniger schlimm als in Block 1. Es gab auch keine Knallgasexplosion, da der „Schuppen“ über dem Reaktordruckbehälter schon durch die Explosion in Block 1 soweit zerstört war, daß der Wasserstoff abziehen konnte.

In Block 3 konnte man mittels Strom aus Batterien die Notkühlung noch etwas steuern. Da aber die Wärmesenke Meerwasser nicht mehr zur Verfügung stand, kam es auch dort zu einer Kernschmelze. Hier strömte das gebildete Knallgas nicht nur in den „Schuppen“ oberhalb des Blocks 3, sondern auch über die gemeinsamen Lüftungskanäle in den „Schuppen“ des gar nicht in Betrieb befindlichen Block 4. Wieder zwei spektakuläre Explosionen von Knallgas. Nun waren alle „Schuppen“ zerstört wie nach einem Bombenangriff und der Schutt in alle Brennelemente-Lagerbecken gefallen. Um die Brennelemente bergen zu können, muß erstmal der Schutt beräumt werden. Davor wiederum mußten erstmal neue Gebäude gebaut werden um etwaige Verseuchungen bei den Bergungsarbeiten zu verhindern. Das alles brauchte und braucht Zeit.

Der Irrsinn der Evakuierung

Völlig überhastet und von „Strahlungsangst“ getrieben, ordnete man großräumige Evakuierungen an. Infolge dieser Evakuierungen kam es zu zahlreichen Todesfällen, weil man Schwerkranke von Intensivstationen und hochbetagte Pflegefälle einem Transport und Notunterkünften aussetzte. Nachweislich ist aber kein Mensch durch Strahlung gestorben. Die Strahlungsdosen sind so gering, daß man nicht einmal mit einer erhöhten Rate von Krebsfällen rechnen kann. Anfangs lagen die Strahlendosen im Sperrgebiet bei 50 bis 100mSv/year. Durch Dekontaminierung wurden die Werte auf 1 bis 20 mSv/year gesenkt. Ein wahnsinniger Aufwand, der eher an „Buße“ als an Strahlenschutz erinnert.

So ist es halt, wenn man den Weg der Wissenschaft verläßt und sich dem Populismus hingibt. Geht man den Agitatoren von Green Peace und Co auf den Leim, wird es einem nicht vergönnt, sondern die Berge von abgetragenem – und sorgfältig in Säcke verpacktem – Mutterboden (!) werden als tödliche Strahlenquellen genüßlich vorgeführt. Man hinterfragt keine Sekunde die Prognosen über „Strahlentote“ und „Krebsopfer“ unmittelbar nach dem Unglück. Nein, die gleichen Angstmacher dürfen von der „Beinahe-Katastrophe“ in Tokio schwadronieren. Man sollte das tunlichst nicht einfach als Spinnereien ewig Unbelehrbarer abtun. Ganz im Gegenteil, es ist die Vorbereitung für z. B. den Kampf gegen den Bau von Kernkraftwerken nahe Danzig. Die Antifanten müssen rechtzeitig aufgestachelt werden. Mit Angst läßt sich nicht nur hervorragend regieren, sondern auch Spannungen mit (nicht folgsamen) Nachbarländern schüren. Die „Energiewende“ ist längst zu einem politisch-wirtschaftlichen Geschwür geworden, neben dem jede „Masken-Affäre“ wie Tauschgeschäfte unter Kindern auf dem Schulhof anmuten. Gerade dieses Filmchen und die darin auftretenden Darsteller sind ein Beispiel dafür, wie inzwischen eine ganze Generation „Angstmacher“ sich lukrative Posten ergattert hat, die diese wahrscheinlich nie mit ihren studierten Berufen hätten erreichen können.

Die Moritat vom Atommüll

Unsere Filmschaffenden vom ZDF-Kollektiv „schneide und sende“ haben beharrlich alte Wochenschauberichte von Arbeitsmännern, die durch Ruinen kraxeln, endlosen Tanklagern, Berge von Plastiksäcken etc. zusammengeschnitten. Man kennt diesen Arbeitsstil noch von der Berichterstattung über Trump: Immer wurde nur Material anderer (gleichgesinnter) Sender „nachgesendet“, niemals jedoch eine Rede von Trump im Original gesendet. Ist das einfach nur Faulheit oder hat Betreutes-Denken-TV Angst, die Zuschauer könnten zu viel von der tatsächlichen Welt erfahren? Wo sind die Aufnahmen vom Kraftwerksgelände heute, wo man sich längst ohne jede Schutzkleidung bewegen kann? Wo sind die Aufnahmen von den Ingenieuren vor Ort in ihren Computer Räumen (von denen manche deutsche Universität nur träumen kann), die die Arbeiten steuern und überwachen? Es wird doch sonst so gern von künstlicher Intelligenz, Robotertechnik, Simulationstechnik etc. geschwätzt. All das hätte man im Einsatz in der Ruine von Fukushima filmen können. Dazu hätte man sich vor Ort noch mit den führenden internationalen Fachleuten auf diesen Gebieten unterhalten können. Paßt natürlich alles nicht in das ideologisch gewünschte Bild einer sterbenden Technik. Ahnungslose Rentner (die Zielgruppe des ZDF) hätten sonst noch glauben können, sie hätten einen Bericht von der Hannover Messe gesehen.

Stattdessen Luftbilder von einem Tanklager. Eigentlich ein Beweis, wie umsichtig man vorgeht. Man hat nicht einfach das radioaktive Wasser ins Meer gekippt – was nebenbei gesagt, kein großer Schaden gewesen wäre – sondern hat es aufwendig zur Aufbereitung zwischengelagert. Hat man so etwas schon mal bei einem Unfall in einem Chemiewerk gesehen? Wie wäre es gewesen, wenn man mal die Reinigungsanlagen gefilmt hätte und die betreuenden Wissenschaftler z. B. aus Russland und Frankreich befragt hätte, wieviel Gehirnschmalz dafür notwendig war, Konzentrationen in Trinkwasserqualität zu erzielen? Stattdessen minutenlanges Gejammer über Tritium. Aber Vorsicht, das Narrativ vom unbeherrschbaren Atommüll hätte bei manch einem Zuschauer hinterfragt werden können.

Die Konsequenzen

Die Welt hat nach Fukushima erstmal den Atem angehalten. Man ist wie nie zuvor in der Technikgeschichte zusammengerückt und hat die tragischen Ereignisse analysiert. Heute gehen selbstverständlich russische, chinesische und amerikanische Fachleute gegenseitig in ihren Kernkraftwerken ein und aus. Suchen Schwachstellen und beraten sich gegenseitig. Dies geschieht über alle politischen Gegensätze und Spannungen hinweg. Fukushima war ein Ereignis für die Kerntechnik, wie der Untergang der Titanic für die Seefahrt. Schrecklich, aber nicht zerstörend. Nur unsere Führerin hat den „Mantel der Geschichte wehen gespürt“. Sie, die als so bedächtig dargestellte, hat sofort fest zugegriffen. Man könnte auch sagen, wie ein Skorpion tödlich zugestochen, um ihre öko-sozialistischen Träume zu beschleunigen. Milliardenwerte mit einem Federstrich vernichtet und Deutschland international ins Abseits gespielt. Chapeau Frau Merkel, sie werden ihren Platz in der Geschichte einnehmen.

SMR-2021 Einleitung

Die Kerntechnik bekommt gerade einen unerwarteten Aufschwung: Immer mehr junge Menschen drängen in die einschlägigen Studiengänge, es entstehen unzählige neu gegründete Unternehmen und es steht plötzlich auch viel privates Kapital zur Verfügung. Darüberhinaus zeigt dieser Winter in Texas auch dem gutgläubigsten Menschen, daß eine Stromversorgung (nur) aus Wind, Sonne und Erdgas ein totes Pferd ist.

  • Texas ist nahezu doppelt so groß wie Deutschland, hat aber nur etwa ein Drittel der Einwohner, die sich überwiegend in einigen Großstädten ballen. Windparks waren deshalb höchstens ein Thema für Vogelfreunde und Landschaftsschützer. Texas ist darüberhinaus auch noch sehr windreich durch seine Lage „zwischen Golf und mittlerem Westen“.
  • Texas liegt etwa auf der „Breite der Sahara“ (Corpus Christi 27°N, Amarillo 35°N; Kanarische Inseln 28°N, Bagdad 33°N). Mal sehen, wann in Deutschland wieder von der Photovoltaik in der Sahara gefaselt wird.
  • In Texas kommt das Erdgas aus der Erde. Trotz der inzwischen gigantischen Verflüssigungsanlagen für den Export, muß immer noch Erdgas abgefackelt werden. Das alles ändert aber nichts an der Tatsache, daß im Ernstfall nur das Gas am Anschluss des Kraftwerks zählt. Kommt noch parallel zum Strombedarf der Bedarf für die Gebäudeheizungen hinzu, ist schnell die Grenze erreicht. Wohl gemerkt, das Gas kommt in Texas aus der Erde und nicht aus dem fernen Russland.

Das Kapital ist bekanntlich ein scheues Reh. Nach den Milliarden-Pleiten in Texas wird man sich schnell umorientieren. Darüberhinaus fängt die Bevölkerung an zu fragen, warum man eigentlich zig Milliarden Steuergelder mit Wind und Sonne versenkt hat.

Was sind SMR?

SMR (Small Modular Reactor) sind kleine Kernkraftwerke mit einer elektrischen Leistung von bis zu 300 MWel. Eine ziemlich willkürliche Grenze, die auf kleine Reaktoren abzielt, die gerade noch mit der Eisenbahn (in den USA) transportierbar sein sollen. Eine weitere Untergruppe sind Mikroreaktoren mit einer elektrischen Leistung von bis zu etwa 10 MWel. Bei den bisherigen Kernkraftwerken hat man immer größere Leistungen (z. B. EPR mit 1650 MWel) angestrebt, um die in der Verfahrenstechnik üblichen Skaleneffekte zu erzielen. Problem dabei ist, daß man einen erheblichen Montageaufwand auf der Baustelle hat, da alle Bauteile sehr groß werden. Bei den SMR geht man umgekehrt den Weg, das Kraftwerk weitesgehend in Fabriken in Serie zu fertigen und zu testen. Es steht also Kosteneinsparung durch Skaleneffekte gegen Serienfertigung (wie z. B. im Flugzeugbau). Welcher Weg letztlich kostensparender ist, kann vorab gar nicht gesagt werden. Vielmehr kann durch SMR ein völlig neuer Markt der „kleinen Netze“ erschlossen werden. Das betrifft beileibe nicht nur Schwellenländer, sondern vielmehr lernen wir in Deutschland gerade, welche enormen Netzkosten entstehen, wenn man zentrale Windparks baut. Ferner ist die Finanzierung wegen des kleineren (absoluten) Kapitalbedarfes weniger risikoreich und damit leichter handhabbar. Ein „Kraftwerk von der Stange“ erfordert eine wesentlich kürzere Zeitspanne – also Vorfinanzierung – von der Bestellung bis zur Inbetriebnahme. Hinzu kommt, daß die kleineren Bauteile auch nur kleinere Fertigungsanlagen erfordern. Beispielsweise baut Indien zur Zeit 15 Schwerwasserreaktoren, da dafür alle Komponenten im eigenen Land hergestellt werden können. Der ursprünglich angedachte Bau von konventionellen Druckwasserreaktoren wurde aufgegeben, da dafür wesentliche Komponenten (z.B. Reaktordruckbehälter) im Ausland gegen Devisen gekauft werden müßten. Aus gleichem Grund treffen SMR auch in Europa (z. B. Tschechien, Großbritannien) auf großes Interesse.

Die Sicherheitsfrage

Bei kleineren Kraftwerken kann man näher an die Städte heranrücken und damit Kraft-Wärme-Kopplung in vorhandenen Fernwärmenetzen abgasfrei betreiben. Finnland z. B. plant mittelfristig die vorhandenen Kraftwerke in den Ballungszentren durch SMR zu ersetzen. Analog gelten die gleichen Überlegungen für Fernkälte und Meerwasserentsalzungsanlagen z. B. in der Golfregion. Will man jedoch in der Nähe von Großstädten bauen, müssen solche Kernkraftwerke zwingend „walk away“ sicher sein, damit sie überhaupt genehmigungsfähig sind. Dazu gehört insbesondere der Verzicht auf eine aktive Notkühlung. Reaktoren kleiner Leistung kommen dem physikalisch entgegen: Um die Leistung zu produzieren, ist eine entsprechende Anzahl von Kernspaltungen notwendig. Bei der Kernspaltung entstehen radioaktive Spaltprodukte, die auch nach der Abschaltung noch Zerfallswärme produzieren. Bei kleinen Reaktoren ist diese Nachzerfallswärme so gering, daß sie problemlos passiv abgeführt werden kann – oder anders ausgedrückt, die Temperatur im abgeschalteten Reaktor steigt nur so weit an, daß keine Grenzwerte erreicht werden. Dies war z. B. beim Unfall in Fukushima völlig anders. Dort hat die Nachzerfallswärme gereicht, um eine Kernschmelze auch noch nach der Abschaltung der Reaktoren auszulösen.

Damit Kernkraftwerke in oder in unmittelbarer Nähe zu Städten akzeptiert werden, muß faktisch gewährleistet sein, daß keine (nennenswerte) Radioaktivität das Betriebsgelände überschreitet. Damit an dieser Stelle kein Missverständnis entsteht: Es gibt keine absolute Sicherheit. Es wird auch zukünftig Unfälle in Kernkraftwerken geben, genauso wie immer wieder Flugzeuge abstürzen werden. Trotzdem fliegen Menschen. Der Mensch ist nämlich durchaus in der Lage, Risiken und Vorteile für sich abzuwägen – solange er nicht ideologisch verblödet wird. Selbst eine ideologische Verblödung kann aber nicht unendlich lange aufrecht erhalten werden: Gerade durch Tschernobyl und Fukushima sind die Märchen der „Atomkraftgegner“ von „Millionen-Toten“ etc. als Propaganda entlarvt worden. Auffällig still ist es in den letzten Jahren um die „Gefahren durch Atomkraft“ geworden. Übrig geblieben ist einzig die Lüge von dem „Millionen Jahre strahlenden Atommüll, für den es keine Lösung gibt“. Auch dieser Unsinn wird sich von selbst widerlegen.

Die Vielzahl der Entwürfe

Es gibt unzählige Entwürfe von Kernreaktoren. Jeder Professor, der etwas auf sich hält, erfindet einen neuen Reaktor zu Übungszwecken. Der Weg zu einem Kernkraftwerk ist aber lang. Irgendwann stirbt die überwiegende Anzahl wegen irgendwelcher unvorhergesehenen Detailprobleme. Hier werden nur Entwürfe betrachtet, für die ausreichend Unterlagen aus Genehmigungsverfahren, Veröffentlichungen etc. zur Verfügung stehen. Immerhin blieben noch über 90 Konzepte übrig, die sich auf dem Weg zu einem Prototypen befinden. Für jedes einzelne Konzept wurde bereits mindestens ein zweistelliger Millionenbetrag investiert und ein Unternehmen gegründet. Als erstes soll etwas Systematik in dieses Angebot gebracht werden. In späteren Folgen werden dann einzelne Entwürfe näher vorgestellt und diskutiert werden.

Neutronenspektrum

Je langsamer Neutronen sind, je höher ist die Wahrscheinlichkeit einer Spaltung eines U235 – Kerns. Demgegenüber können alle schnellen Neutronen auch Kerne von U238 bzw. anderer Aktinoiden spalten. Schnelle Reaktoren haben den Vorteil, daß sie mit „Atommüll“ (so verunglimpfen „Atomkraftgegner“ immer die abgebrannten Brennelemente aus Leichtwasserreaktoren) betrieben werden können. Eine verlockende Perspektive: Betrieb der Kernkraftwerke mit „Abfall“, bei gleichzeitiger Entschärfung der „Endlagerproblematik“ auf wenige Jahrzehnte bis Jahrhunderte. Nur hat alles seinen Preis, gerade kleine Reaktoren (im räumlichen Sinne, nicht nur im übertragenen, bezogen auf die Leistung) sind schwierig als schnelle Reaktoren zu bauen. Es ist deshalb nicht verwunderlich, daß 59 Entwürfe mit thermischem Spektrum und nur 20 als schnelle Reaktoren ausgeführt sind.

Die angestrebten geringen Abmessungen (Transport) sind faktisch auch bei thermischen Reaktoren nur über eine höhere Anreicherung realisierbar. Mit der bei heutigen Druckwasserreaktoren üblichen Anreicherung von weniger als 5% lassen sich kaum SMR bauen. Man hat deshalb den neuen Standard HALEU mit einer Anreicherung von knapp unter 20% eingeführt. Der Begriff „thermisch“ im Zusammenhang mit der Geschwindigkeit von Neutronen bezieht sich auf die Geschwindigkeitsverteilung der brownschen Molekularbewegung. Je höher deshalb die Betriebstemperatur eines Reaktors ist, um so höher auch die Geschwindigkeit der Neutronen und damit um so geringer die Wahrscheinlichkeit einer Spaltung eines Urankernes. Deshalb sind „Hochtemperaturreaktoren“ schon wegen der neutronenphysikalischen Auslegung anspruchsvoller.

Moderatoren

Wenn man Neutronen abbremsen will, benötigt man einen Moderator. Bei den Leichtwasserreaktoren ist das das Arbeitsmedium Wasser. Die einfachste Konstruktion ist der Siedewasserreaktor, bei dem der im Reaktor erzeugte Dampf unmittelbar die Turbine antreibt (5 Entwürfe). Demgegenüber wird beim Druckwasserreaktor erst in einem zusätzlichen Wärmeübertrager der Dampf erzeugt (24 Entwürfe). Eine gewisse Sonderstellung nehmen Schwerwasserreaktoren ein, in denen Deuterium die Funktion des Moderators übernimmt (2 Entwürfe). Bei Mikroreaktoren kommen noch andere Moderatoren zum Einsatz.

Kühlmittel

Bei thermischen Reaktoren kommen Wasser, Helium und Salzschmelzen zur Anwendung. Bei Wasser sind die erreichbaren Temperaturen durch die abhängigen Drücke begrenzt (31 Entwürfe). Für eine reine Stromerzeugung ist das jedoch kein Hinderungsgrund. Will man hohe Temperaturen erreichen, bleibt Helium (20 Entwürfe) oder eine Salzschmelze (13 Entwürfe). Bei beiden kommt man mit relativ geringem (Helium) oder gar Atmosphärendruck (Salze) aus. Will man schnelle Reaktoren bauen, bleibt nur Helium (2 Entwürfe), Blei (9 Entwürfe), Natrium (5 Entwürfe) oder Salzschmelzen (3 Entwürfe). Tauscht man Wasser gegen andere Kühlmittel, wird man zwar den hohen Druck und den Phasenübergang los – was oft als Sicherheitsgewinn dargestellt wird – handelt sich aber damit eine Menge neuer Probleme ein: Einfrieren bei Raumtemperatur (Blei und Salzschmelzen), Korrosion (Blei und Salzschmelzen), Staub (Helium), Brandgefahr (Natrium), Zeitstandsfestigkeit usw. Es verwundert deshalb nicht, daß die Überzahl der Entwürfe bei Wasser als Moderator und Kühlmittel bleibt. Durch die überragenden thermodynamischen Eigenschaften des Wasser-Dampf-Kreisprozesses ist das für eine Stromproduktion auch kein Hinderungsgrund. Oft gehörte Argumente von möglichen höheren Wirkungsgraden sind bei den geringen Brennstoffkosten eher Scheinargumente. Anders sieht es mit der Entwicklung von schnellen Reaktoren aus. Blei und Natrium haben hier eine überragende Stellung. Allerdings sind die Preise für Natururan immer noch im Keller und die Zwischenlagerung abgebrannter Brennelemente ist ebenfalls konkurrenzlos billig. In einigen Jahren könnte jedoch ein geschlossener Brennstoffkreislauf aus politischen Gründen (Angst vor Atommüll) zum Renner werden. Momentan liegt Russland bei dieser technischen Entwicklung mit großem Abstand vorn. Die USA haben das erkannt und starten gerade eine beeindruckende Aufholjagd.

Brennstoff

Standard ist immer noch Uran. Bei schnellen Reaktoren kann man den „Abfall“ der konventionellen Reaktoren weiter nutzen. Thorium bleibt vorläufig auch weiter ein Exot. Das Uran kann in unterschiedlichen chemischen Verbindungen (metallisch, Uranoxid, Urannitrid, Legierungen usw.) im Reaktor verwendet werden und in unterschiedlichen geometrischen Formen (als Brennstäbe, als TRISO-Elemente, im Kühlmittel aufgelöst usw.) eingebaut werden. Der Brennstoff ist in seiner chemischen Zusammensetzung und seiner geometrischen Form bestimmend für die maximale Betriebstemperatur. Ferner ist er das erste Glied der Sicherheitskette: Er bindet während des Betriebs die Spaltprodukte und soll diese auch bei einem Störfall zurückhalten. SMR benötigen wegen der höheren Anreicherung mehr Natururan und sind wegen der höheren Trennarbeit teurer in der Herstellung als konventionelle Brennelemente.

Die Hersteller

Mit deutlichem Abstand sind die beiden führenden Länder in der Entwicklung von SMR Russland und die USA.

Alle Projekte befinden sich in einer unterschiedlichen Realisierungsphase von Konstruktion, Genehmigungsverfahren, über Bau bis Probebetrieb. Der chinesische SMR vom Typ ACPR50S (Druckwasserreaktor in klassischer Bauweise mit 50 MWel) ist fast fertiggestellt. Er soll bei Serienfertigung als schwimmender Reaktor auf einem Ponton verwendet werden. Der argentinische SMR Carem (integrierter Druckwasserreaktor mit 30 MWel) ist eine Eigenentwicklung und soll 2023 in Betrieb gehen.

Land LWR Gas Blei Natrium Salz Summe
Argentinien– – – – 1
China– – 7
Dänemark– – – – 
Finnland– – – 
Frankreich1– – – 
GB1– – – 
Indonesien– – – 
Japan– 
Kanada– – 
Luxemburg– – – – 
Russland11 – 17 
Schweden– – – – 
Südafrika– – – – 
Süd Korea– – – 
USA21 
Summe29 17 13 – 
Betrachtete SMR-Entwürfe nach Ländern und Typen geordnet.

Der chinesische HTR-PM (Hochtemperaturreaktor, Kugelhaufen mit Helium, 105 MWel) befindet sich im Testbetrieb. Sein Vorläufer HTR-10 von der Tsinghua University, China (Kugelhaufen mit 2,5 MWel) ist seit 2018 in Betrieb. Der japanische HTTR 1 (prismatischer Hochtemperaturreaktor, Helium, 30 MWth) ist seit 2007 mit Unterbrechungen für Umbauten in Betrieb. Der russische RITM-200M (modularer Druckwasserreaktor mit 50 MWel) ist seit 2020 auf Eisbrechern in Betrieb und soll bis 2027 in Ust-Kuyga in Sibirien als Kraftwerk in Betrieb gehen. Der russische KLT-40S (Druckwasserreaktor in klassischer Bauweise, 35 MWel) ist zweifach auf einem schwimmenden Ponton seit 2020 in Pevek in Chukotka als Heizkraftwerk in Betrieb.