SMR-2021, KP-FHR

Hinter der sperrigen Abkürzung KP-FHR (Kairos Power – Fluoride salt cooled High Temperature Reactor) verbindet sich ein eher neuartiges Konzept, das hohe Temperaturen anstrebt, aber dabei auf erprobte Komponenten setzen will: Die Kombination von TRISO-Brennelementen mit Salzschmelze als Kühlmittel. Ursprünglich wollte man damit eine konventionelle Gasturbine antreiben, indem man Luft auf etwa 700 °C erhitzt und gegebenenfalls noch durch Verbrennung von Erdgas zur Abdeckung von Spitzenlasten weiter erhitzt. Für Kernreaktoren sollte damit ein neues Einsatzgebiet erschlossen werden. Für die Grundlast wäre weiterhin billige Kernenergie eingesetzt worden (Turbine läuft nur mit Luft) und zusätzliches Erdgas bei Lastspitzen (analog eines Nachbrenners bei Flugzeugen). Insgesamt wäre ein hoher Wirkungsgrad durch die erprobte Kombination von Gasturbine mit nachgeschaltetem Dampfkreislauf gewährleistet worden. Wie schon bei anderen Hochtemperaturreaktoren ist die Nutzung von Gasturbinen (vorläufig) gescheitert. Nunmehr geht man auch hier (vorläufig?) nur von einem konventionellen Dampfkreislauf aus. Allerdings mit höheren Dampfzuständen, wie sie in konventionellen Kohlekraftwerken üblich sind.

Der Stand der (finanziellen) Entwicklung

Kairos geht auf Forschungsprojekte an der University of California, Berkeley (UCB), dem Massachusetts Institute of Technology und der University of Wisconsin zurück. Alles unter der Koordination – und finanziellen Förderung – des U.S. Department of Energy im Rahmen eines Integrated Research Project (IRP). Wie so oft, entstehen aus solchen Forschungsprojekten neu gegründete Unternehmen, in denen die maßgeblich beteiligten „Forscher“ ihre Erkenntnisse kommerzialisieren. Selbstverständlich bleiben sie ihren alten Universitäten dabei eng verbunden. Im Falle von Kairos sind die Arbeiten nun soweit fortgeschritten, daß das „Energieministerium“ (schrittweise) einen Prototyp anstrebt. Es soll innerhalb von sieben Jahren der Demonstrationsreaktor „Hermes Reduced-Scale Test Reactor“ auf dem Gelände des East Tennessee Technology Park in Oak Ridge für geplant $629 realisiert werden. Das „Energieministerium“ hat dafür $303 Millionen Dollar fest in seinem Haushalt (verteilt über sieben Jahre) eingestellt. Das Geld wird fällig, wenn Kairos die andere Hälfte von privaten Investoren auftreibt. Dies ist ein in den USA erprobtes pragmatisches Förderungsmodell: Das Risiko wird hälftig von Investoren und Staat geteilt – gegenseitig wirkt die Zusage als Qualitätskriterium. Außerdem kann bei solchen Summen davon ausgegangen werden, daß die Entwicklung zielstrebig vorangetrieben wird. Die privaten Investoren lockt schließlich der wirtschaftliche Erfolg. Anders als in Deutschland, sind Gewinne in den USA nichts unanständiges.

Der Kugelhaufen

Die Kugeln für diesen Reaktor werden wahrscheinlich etwas kleiner (3 cm) als die üblichen TRISO-Elemente (4,3 cm) und enthalten rund 1,5 gr Uran verteilt in 4750 kleinsten mit einer Schutzschicht überzogenen Körnchen. Sie können damit über 11 000 kWh elektrische Energie produzieren, was etwa dem Verbrauch von 8 to Steinkohle oder 17 to Braunkohle entspricht. Wegen ihrer hohen Energiedichte sind diese Elemente nach ca. 1,4 Jahren abgebrannt und müssen ausgewechselt werden. In einem mit Helium gekühlten Hochtemperatur-Reaktor verbleiben die Kugeln etwa 2,5 Jahre und in Leichtwasserreaktoren rund drei Jahre.

Die Kugeln sollen einen etwas anderen Aufbau als klassische TRISO-Elemente haben: Der Kern besteht aus 25 mm porösem Graphit, umgeben von einer Kugelschale aus Brennstoffkörnern und einer äußeren Schutzschicht aus besonders widerstandfähigem Graphit. Die Brennstoffkörner haben einen Durchmesser von lediglich 400 Mikrometern und enthalten auf 19,75% angereichertes Uran. Die Geschwindigkeit mit der Spaltprodukte im Graphit wandern, hängt wesentlich von der Temperatur ab. Da die Betriebstemperatur hier mit 650°C deutlich geringer als beim AVR in Deutschland mit 950°C ist und die Verweilzeit der Kugeln kleiner, kann von einer wesentlich geringeren Verunreinigung des Kühlmittels – hier reaktionsfreudige Salzschmelze, damals Edelgas Helium – ausgegangen werden. Dies ist bei einem Reaktorunglück für die Freisetzung radioaktiver Stoffe in die Umwelt von ausschlaggebender Bedeutung. Die neutronenphysikalische Auslegung des Reaktors ist so angelegt, daß bei etwa 800°C Temperatur die Kettenreaktion ohne Eingriffe in sich zusammenbricht (stark negative Temperaturkoeffizienten). Man könnte also den Reaktor jederzeit verlassen, ohne ihn abzustellen. Demgegenüber sind die Brennelemente bei bis zu 1800°C ohne größere Schäden getestet worden. Der Siedepunkt der Salzschmelze liegt bei nur 1430°C. Dies ergibt zusammen eine wesentlich höhere Sicherheitsmarge als bei Leichtwasserreaktoren.

Das Kühlmittel

Bei diesem Reaktortyp wird weder mit Wasser noch mit Helium, sondern einem geschmolzenen Salz gekühlt. Dies stellt viele sicherheitstechnische Betrachtungen auf den Kopf: Nicht ein unzulässiges Verdampfen des Kühlmittels wird zum Problem, sondern das „Einfrieren“. Das hier verwendete „FLiBe-Salz“ hat einen Schmelzpunkt von 459°C, d. h. alle Komponenten müssen elektrisch beheizbar sein um den Reaktor überhaupt anfahren zu können. Außerdem muß unter allen Betriebszuständen und an allen Orten diese Temperatur sicher aufrecht erhalten bleiben, damit sich keine Ausscheidungen und Verstopfungen bilden. Andererseits ist diese Temperatur so hoch, daß Wartungs- und Inspektionsarbeiten schnell zu einem Problem werden.

Wesentliches Problem ist aber bei allen Salzschmelzen die Korrosion. Zwar hat man heute ein besseres Verständnis der Werkstofftechnik und jahrzehntelange Erfahrungen z. B. in Raffinerien, andererseits liegen aber immer noch keine Langzeiterfahrungen bei Kernreaktoren vor. Hier versucht man zumindest das Problem durch eine scharfe Trennung von Brennelement und Kühlmittel einzugrenzen. Bei einem Kernreaktor hat man es tatsächlich mit dem gesamten Periodensystem zu tun. Wie all diese Stoffe chemisch mit der Salzschmelze, den Reaktorwerkstoffen und untereinander reagieren, ist ein ingenieurtechnischer Albtraum. Deshalb versucht man hier ganz klassisch alle Spaltprodukte etc. im Brennelement zu halten. Andererseits geht man davon aus, daß die Diffusion von Cs137, Silber etc., die zu einem radioaktiven Staub bei mit Helium gekühlten Reaktoren führen, die den gesamten Reaktor verdrecken, besser beherrschbar ist, weil diese „Schadstoffe“ sofort im Salz gelöst werden.

FLiBe ist – wie der Name schon andeutet – ein Salz mit den Bestandteilen Fluor, Lithium und Beryllium. Die Arbeitsschutzvorschriften für Beryllium (Atemschutz, Schutzkleidung etc.), sind nicht kleiner als für radioaktive Stoffe – es ist nur schwerer zu erkennen. Besonders problematisch ist jedoch das Lithium. Lithium hat die unschöne Eigenschaft, daß es durch Neutronen Tritium bildet. Man kann zwar durch eine Anreicherung von Li7 auf 99,995% die Bildung erheblich verringern, aber nicht ausschließen. So bilden FLiBe-Reaktoren etwa 1000 bis 10 000 mal soviel Tritium wie Leichtwasserreaktoren. Dies kann zu grundsätzlichen Schwierigkeiten bei der Genehmigung führen. Auch bei diesem Problem wirkt sich die Trennung von Brennstoff und Kühlmittel positiv aus. Das Graphit zieht das Tritium an und absorbiert es an dessen Oberflächen. Deshalb sind zusätzlich noch Filterkatuschen in den Kühlmittelleitungen vorgesehen.

Der Zwischenkreislauf

Das FLiBe-Salz wird – unabhängig von eindiffundierten Spaltprodukten und Tritium – während seines Durchlaufs durch den Reaktorkern immer radioaktiv. Aus Fluor wird O19(26,9s Halbwertszeit) und N16 (7,1s Halbwertszeit) gebildet. Beides γ-Strahler mit 1,4 MeV bzw. 6,1 MeV. Von ausschlaggebender Bedeutung ist F20 (11,0s Halbwertszeit). Hinzu kommen noch aktivierte Korrosionsprodukte. Um die Bereiche mit Strahlenschutz klein zu halten, ist ein Zwischenkreislauf mit „Sonnensalz“ vorgesehen. Als „solar salt“ bezeichnet man üblicherweise eine Mischung aus 60% Natriumnitrat NaNO3 und 40% Kaliumnitrat KNO3. Sie hat einen Schmelzpunkt von 240°C und eine maximale Temperatur von etwa 565°C. So ist z. B. im Solar-Turmkraftwerk „Solar One“ ein Spitzenlast-Speicher mit zwei Tanks in denen 1400 to Solar-Salz gelagert sind in Betrieb. Diese Anlage kann 107 MWhth speichern und erzeugt damit 11 MWel für drei Stunden. Damit ergibt sich ein weiteres Anwendungsfeld: Bei entsprechender Auslegung der Turbine kann ein solcher SMR auch zur Abdeckung von Lastspitzen im Netz bzw. zur Auskopplung von Wärme für industrielle Zwecke eingesetzt werden.

Der Reaktorkern

Eine weitere Besonderheit gegenüber mit Helium gekühlten Reaktoren ist, daß die Brennstoffkugeln im Reaktor schwimmen. Sie werden deshalb von unten zugeführt und oben wieder abgefischt. Insbesondere die „Abfischmaschine“ ist noch nicht im Detail konstruiert. Sie muß den Reaktor nach oben sicher abdichten, die Kugeln einfangen, transportieren, reinigen und überprüfen – das alles beständig bei 650°C. Für 100 MWel sind etwa 440 000 Brennstoffkugeln (TRISO) und 204 000 Moderatorkugeln (aus reinem Graphit) im Reaktor. Jede Brennstoffkugel durchläuft etwa 8 mal den Reaktor und verbleibt bei voller Leistung rund 1,4 Jahre im Reaktor, bis sie abgebrannt ist (gemeint ist damit, bis das in ihr vorhandene Uran gespalten ist, die Kugel erscheint unverändert). Jede Kugel braucht ungefähr 60 Tage auf ihrem Weg von unten nach oben. Nach dem Abfischen verbleibt sie noch 4 Tage zur Abkühlung, bis sie wieder zurückgeführt wird. Bei voller Leistung müssen etwa 450 Kugeln pro Stunde entnommen und überprüft werden, das ergibt ungefähr 8 Sekunden pro Vorgang. Jeden Tag sind rund 920 Kugeln verbraucht und müssen durch frische ersetzt werden. Für eine vollständige Entleerung ist ein „Schnellgang“ vorgesehen, der etwa 3600 Kugel pro Stunde entnimmt. Abgesehen von Wartungsarbeiten könnte somit der Reaktor kontinuierlich in Betrieb bleiben.

Der Reaktor ist im Wesentlichen ein Zylinder von etwa 3,5 m Durchmesser und 12 m Höhe mit einer Wandstärke von 4 bis 6 cm. Der Kern – die eigentliche Wärmequelle – ist wesentlich kleiner. Er besteht aus einem Doppel-Hohlzylinder. In dessen innerem Ring schwimmen die Brennstoffkugeln, in seinem äußeren Ringraum die Moderatorkugeln. Der Innenraum ist gefüllt mit einem Reflektor aus Graphit in dem sich auch die Regelstäbe befinden. Der gesamte Einbau ist durch Graphitblöcke von dem Reaktortank isoliert. Genau diese festen Einbauten aus Graphit sind eine bekannte Schwachstelle bei all diesen Reaktortypen. Sie sind z. B. auch der Tod der britischen AGR-Reaktoren. Unter ständigem Neutronenbeschuss altert der Graphit. Heute hat man zwar ein besseres Verständnis der Vorgänge – gleichwohl bleibt die Lebensdauer begrenzt. Hier ist deshalb vorgesehen, irgendwann die Graphiteinbauten zu erneuern. Ob das dann wirtschaftlich ist, wird sich zeigen. Im Prinzip sind die Graphit-Volumina aus einzelnen Blöcken zusammengesetzt. Diese besitzen aber wegen der nötigen Einbauten, Kanäle fürs Salz etc. und der zu berücksichtigenden Wärmedehnung eine komplizierte Geometrie und erfordern sehr enge Fertigungstoleranzen. Aber es ist ja der Sinn von SMR, all diese Arbeiten in einer Fabrik und nicht auf der Baustelle auszuführen

Werkstoffe

Alle Hochtemperaturreaktoren tragen das gleiche Problem in sich, die hohen Temperaturen. Mit der Temperatur steigen die Probleme (z B. Zeitstandsfestigkeit, Korrosion) und damit die Kosten exponentiell an. Wäre dies nicht so, hätte man bereits fossile Kraftwerke mit ganz anderen Wirkungsgraden. Es stellt sich deshalb immer die Frage, wofür man überhaupt so hohe Temperaturen braucht. Hier beschränkt man sich bewußt auf eine Spanne von 550°C bis 650°C um nicht vollständig konventionelle Werkstoffe verlassen zu müssen. Man darf ja nicht vergessen, daß alles genehmigungsfähig – d. h. berechenbar und durch Versuche nachweisbar – sein muß. Hierin liegt ja gerade der Charme von Salzschmelzen: Nicht so hohe Temperaturen ohne zusätzliche Druckprobleme, bei hoher Wärmespeicherung. Geplant ist weitesgehend SS 316 (handelsüblicher austenitischer Edelstahl) zu verwenden.

Ein wesentliches Problem aller FLiBE-Reaktoren ist die hohe Tritiumproduktion. Über den Daumen gerechnet, produziert dieser kleine SMR (100 MWel) jeden Tag soviel Tritium, wie ein Leichtwasserreaktor (1000 MWel) in einem ganzen Jahr. Will man auf gleiche Werte kommen, müßte also 99,9% des Tritium zurückgehalten werden. Man setzt hier auf die Absorption am Graphit. Das ändert aber nichts daran, daß Tritium bei solchen Temperaturen sehr gut durch Stahl hindurch diffundiert. Bisher hat man gute Erfahrung mit einer Beschichtung aller Rohrleitungen mit Aluminiumoxid gemacht. Es bildet eine Sperrschicht, die sogar beim Kontakt mit Luft selbstheilend ist. Gleichwohl ist hier noch viel Forschung nötig, wenn man die Aufregung um das Tanklager in Fukushima berücksichtigt. Es könnte sich sonst eine (politisch) unüberwindliche Hürde für die Genehmigung von FLiBe-Reaktoren ergeben.

Einschätzung

Kairos ist ein „Startup“ mit dem Selbstverständnis eines Ingenieurunternehmens. Sie haben nicht vor, jemals einen solchen SMR selbst zu fertigen. Von Anfang an haben sie starke Partner mit ins Boot geholt. So übernimmt Materion die Entwicklung und Herstellung des FLiBe-Salzes und BWXT die Produktion der Brennelemente. Für den kritischen Bereich „Tritium“ sind seit September 2020 die Canadian Nuclear Laboratories (CNL) eingestiegen. Kanada hat mit Tritium große und jahrzehntelange Erfahrungen durch den Betrieb seiner Candu-Reaktoren. Darüberhinaus will Kanada einen SMR in Chalk River bauen. Kairos ist dafür in die engere Wahl gekommen. Das Genehmigungsverfahren (stark unterschiedlich zu den USA) wird von der kanadischen Regierung mit mehreren Millionen gefördert. Seit 2018 läuft das Genehmigungsverfahren in den USA. Nächster Schritt wird der Bau eines kleinen Demonstrationsreaktors im East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Hier geht es vor allem darum, die Kosten für die Serienproduktion modellhaft zu testen.

Es dürften keine „Killer-Kriterien“ mehr im Genehmigungsverfahren auftreten. Dafür liegen zu viele Forschungsergebnisse aus mehreren Jahrzehnten vor. Besonders traurig ist, daß selbst im Genehmigungsverfahren auf die Betriebsergebnisse des AVR in Jülich zurückgegriffen wird. Deutschland hätte sicherlich auch heute noch ein geschätzter Partner sein können, wenn nicht wahnsinnige Laiendarsteller den Weg zurück ins Mittelalter propagiert hätten.

TRANSATOMIC – schon wieder ein neuer Reaktortyp?

Es tut sich wieder verstärkt etwas bei der Weiterentwicklung der Reaktortechnik in den USA.

Gänzlich anders als in Deutschland, in dem man sich mehr denn je zurück ins Mittelalter träumt, setzt man in USA verstärkt auf die Ausbildung junger Ingenieure und Wissenschaftler und ermutigt sie, eigene Unternehmen zu gründen. Eines der Programme ist das Gateway for Accelerated Innovation in Nuclear (GAIN), des U.S. Department of Energy (DOE). Vereinfacht gesagt, gibt es dort Gutscheine, die die (sonst kostenpflichtige) Nutzung staatlicher Forschungseinrichtungen durch Unternehmensgründungen ermöglichen. Acht solcher „Gutscheine“ im Gesamtwert von zwei Millionen Dollar gingen an sog. startups aus der Kerntechnik.

Eines dieser jungen Unternehmen der Kerntechnik ist Transatomic Power Corporation (TPC). Wie so oft in den USA, ist es eine Gründung von Absolventen des MIT. Glückliches Amerika, in dem noch immer tausende junger Menschen bereit sind, sich den Strapazen eines Kerntechnik-Studienganges aussetzen, während man hierzulande lieber „irgendwas mit Medien“ studiert. Allerdings kennt man in den USA auch keine Zwangsgebühren zur Schaffung von hoch dotierten Nachrichtenvorlesern und Volksbelehrern. Jeder Staat setzt halt seine eigenen Prioritäten.

Noch etwas ist in den USA völlig anders. Das junge Unternehmen hat bereits mehrere Millionen Dollar privates Risikokapital eingesammelt. Es braucht noch mehr Kapital und hat deshalb ein Papier veröffentlicht, in dem das Konzept seines Reaktors näher beschrieben ist. Sicherlich ein erhebliches wirtschaftliches Risiko. Man vertraut offensichtlich darauf, mangelnde „Geldmacht“ durch Schnelligkeit kompensieren zu können. Erklärtes Ziel ist es, möglichst schnell einen kleinen Versuchsreaktor mit 20 MWth zu bauen. Das erste kommerzielle Kraftwerk soll rund 500 MWel (1250 MWth.) Leistung haben und rund zwei Milliarden Dollar kosten.

Abgebrannte Brennelemente als Brennstoff

Der Reaktor ist vom Typ „molten salt“. Der Brennstoff wird in geschmolzenem Salz gelöst, welches gleichzeitig dem Wärmetransport dient. Populär ist dieser Reaktortyp im Zusammenhang mit Thorium gemacht worden. Man beschränkt sich hier bewußt auf Uran als Brennstoff, um auf die dafür vorhandene Infrastruktur zurückgreifen zu können. Thorium wird eher als Option in ferner Zukunft gesehen.

Der besondere Charme dieses Konzeptes liegt in der Verwendung abgebrannter Brennelemente aus Leichtwasserreaktoren als Brennstoff. Solche abgebrannten Brennelemente bestehen zu rund 95% aus Uran-238 und etwa je einem Prozent Uran-235 und Plutonium. Der Rest sind Spaltprodukte als Abfall. Das klassische Modell, wie es z.B. in Frankreich praktiziert wird, ist die Wiederaufbereitung nach dem Purex-Verfahren: Man erhält sehr reines Uran, welches als Ersatz für Natururan wieder in den Kreislauf zurückgeführt wird und reines Plutonium, welches als Mischoxid zu neuen Brennelementen verarbeitet wird. Die Spaltprodukte mit Spuren von Aktinoiden werden verglast und als Atommüll endgelagert. Für diese chemischen Prozeßschritte (Wiederaufbereitungsanlage) geht man von Kosten in Höhe von 1300 bis 3000 US-Dollar pro kg aus. Bei heutigen Preisen für Natururan eine unwirtschaftliche Angelegenheit. Deshalb füllen sich die Lager mit abgebrannten Brennelementen auch weiterhin. Allein in den USA lagern über 70.000 to ausgedienter Brennelemente. Für die „Zwischenlagerung“ in Behältern (ähnlich den Castoren in Deutschland) geht man von etwa 100 Dollar pro kg aus. Für die „Entsorgung“ haben sich bereits über 31 Milliarden US-Dollar Rücklagen angesammelt – was etwa 400 Dollar pro kg entspricht.

Wem es gelingt, einen Reaktor zu bauen, der die abgebrannten Brennelemente „frißt“, ist in der Rolle einer Müllverbrennungsanlage: Er wird für die Beseitigung des Mülls bezahlt und kann sich mit seinem Preis an den anderen Möglichkeiten (z. B. Müllkippe) orientieren. Die entstehende Wärme ist umsonst. Die elektrische Energie aus der „Müllbeseitigung“ ist ein weiteres Zubrot. Es kommt lediglich darauf an, eine besonders günstige „Müllverbrennungsanlage“ zu bauen. Genau an diesem Punkt, setzt TPC an.

Das Transatomic Konzept

Die Angst vor dem „Atommüll“ wird mit seiner Langlebigkeit begründet. Es gibt wahrlich gefährlichere Stoffe, als abgebrannte Brennelemente. Solange man sie nicht aufisst, sind sie recht harmlos. Es ist aber die berechtigte Angst, ob man diese Stoffe für Jahrmillionen sicher von der Biosphäre fern halten kann, die viele Menschen umtreibt. Spaltprodukte sind in diesem Sinne kein Problem, da sie in wenigen hundert Jahren faktisch von selbst verschwunden sind. Jahrhunderte sind aber durch technische Bauwerke (Kathedralen, Pyramiden etc.) oder natürliche Barrieren (einige hundert Meter gewachsene Erdschichten) sicher beherrschbar.

Man kann aber alle langlebigen Aktinoide durch Spaltung in kurzlebige Spaltprodukte umwandeln und dabei noch riesige Mengen Energie erzeugen – am besten in einem Kernkraftwerk. Ein solcher Reaktor muß besonders sparsam mit den bei einer Spaltung freiwerdenden Neutronen umgehen, um möglichst viele andere Kerne umzuwandeln und letztendlich zu spalten.

  • Spaltprodukte haben teilweise sehr große Einfangquerschnitte. Mit anderen Worten, sie wirken parasitär indem sie wertvolle Neutronen „wegfangen“. Die Konsequenz ist eine integrierte Wiederaufbereitung. Dies läßt sich nur über eine Brennstofflösung erreichen.
  • Es dürfen nur möglichst wenig Neutronen das System verlassen. Dazu muß man den Reaktor mit einem Reflektor versehen, der die Neutronen wieder in den Reaktor zurück streut. Idealerweise verwendet man dafür ebenfalls Uran, damit nicht zurück streubare Neutronen bei ihrem Einfang wenigstens neuen Spaltstoff – hier Plutonium – erzeugen.
  • Bei Reaktoren mit festen Brennstoffen, kann man die Spaltstoffe nicht kontinuierlich ersetzen. Man benötigt deshalb zu Anfang eine Überschußreaktivität. So zu sagen, mehr Spaltstoff als eigentlich zuträglich ist. Diese Überschußreaktivität muß durch Regelstäbe und abbrennbare Gifte kompensiert werden: Wertvolle Neutronen werden unnütz weg gefangen.

Will man mit möglichst geringer Anreicherung auskommen – was einem bereits abgebrannten Brennelement entspricht – muß man zwingend auf ein thermisches Neutronenspektrum übergehen. Sogenannte „Schnelle Brüter“ erfordern eine zweistellige Anreicherung. Also wesentlich höher, als sie in einem frischen Brennelement für einen Leichtwasserreaktor vorliegen. Man kann in einem thermischen Reaktor zwar nicht brüten – also mehr Spaltstoff erzeugen als beim Betrieb verbraucht wird – aber fast genau soviel erzeugen, wie verbraucht wird. Man muß es auch gar nicht, da ja der „Atommüll“ noch Spaltstoff enthält.

Wieviel wird nun gespart?

Ein heutiger Leichtwasserreaktor produziert pro 1000 MWel etwa 20 to abgebrannter Brennelemente pro Jahr. Geht man von einer direkten Endlagerung aus, ist dies die Menge „Atommüll“ die in ein Endlager muß. Erzeugt man die gleiche elektrische Energie aus eben solchem „Atommüll“, ist diese Menge schon mal komplett eingespart.

Gleichzeitig wird aber auch der ursprünglich vorhandene „Atommüll“ in der Form abgebrannter Brennelemente weniger. Die Energie wird durch die Spaltung von Atomkernen erzeugt. Sie sind nach der Spaltung unwiederbringlich vernichtet. Wird Uran noch von vielen Menschen als natürlich und damit relativ harmlos angesehen, ist z. B. Plutonium für sie reines Teufelszeug. Genau diese Stoffgruppe dient aber bei diesem Reaktortyp als Brennstoff und wird beständig verbraucht.

Ein solcher Reaktor produziert rund 1 to Spaltprodukte pro 1000 MWel und Jahr. Die Spaltprodukte sind darüberhinaus in einigen Jahrhunderten – gegenüber 100.000den von Jahren bei Plutonium – verschwunden. In Bezug auf die Energieversorgung sind solche Reaktoren eine echte Alternative zu sog. „Schnellen Brütern“. Bereits die vorhandenen abgebrannten Brennelemente und die absehbar hinzukommenden, wären eine schier unerschöpfliche Energiequelle.

Was ist neu bei diesem Reaktortyp?

In den USA hat man über Jahrzehnte Erfahrungen mit Salzschmelzen in Versuchsreaktoren gesammelt. Hier strebt man bewußt die Verwendung von Uran und nicht von Thorium an. Dies hat bezüglich des Salzes Konsequenzen: Lithiumfluorid kann wesentlich höhere Konzentrationen Uran gelöst halten (LiF-(Actinoid)F4) als das bekanntere FLiBe-Salz. Erst dadurch ist der Einsatz abgebrannter Brennelemente (niedrige Anreicherung) möglich. Allerdings liegt die Schmelztemperatur dieses Brennstoffs bei etwa 500 °C. Ein wesentliches Sicherheitskriterium ist daher, Verstopfungen in Kanälen und Rohrleitungen durch Ablagerungen, sicher zu vermeiden.

Als Moderator sollen Stäbe aus Zirconiumhydrid eingesetzt werden. Sie wirken wie „umgekehrte Regelstäbe“: Je tiefer sie in die Schmelze eingetaucht werden, um so mehr Neutronen werden abgebremst und die Spaltungsrate erhöht sich. Die Moderation solcher Stäbe ist gegenüber früher verwendetem Graphit so viel besser, daß fast der doppelte Raum für die Salzschmelze bei einem vorgegebenen Reaktorvolumen zur Verfügung steht. Ein weiterer wichtiger Schritt zu der Verwendung von „Atommüll“ als Brennstoff.

Die integrierte Wiederaufbereitung

Die Spaltprodukte müssen kontinuierlich aus der Salzschmelze entfernt werden. Sie wirken nicht nur parasitär, sondern stellen auch das eigentliche Sicherheitsproblem dar. Je weniger Spaltprodukte gelöst sind, um so weniger Radioaktivität könnte bei einem Störfall freigesetzt werden.

Etwa 20% der Spaltprodukte sind Edelgase. Sie sollen mit Helium aus der Salzschmelze abgeschieden werden und anschließend in Druckgasflaschen gelagert werden.

Rund 40% der Spaltprodukte sind Metalle, die Kolloide in der Schmelze bilden. Sie sollen mit Geweben aus Nickel ausgefiltert werden.

Der Rest – hauptsächlich Lanthanoide – sind sehr gut in der Salzschmelze gelöst. Sie sollen mittels flüssigen Metallen extrahiert werden und anschließend in eine keramische Form zur Lagerung überführt werden.

In der Abscheidung, Behandlung und Lagerung der Spaltprodukte dürfte die größte Hemmschwelle bei der Einführung von Reaktoren mit Salzschmelzen liegen. Welcher Energieversorger will schon gern eine Chemiefabrik betreiben? Vielleicht werden deshalb erste Anwendungen dieses Reaktors gerade in der chemischen Industrie liegen.

Zusammenfassung

Der Gedanke, „Atommüll“ möglichst direkt als Brennstoff einzusetzen, hat Charme. Wirtschaftlich kommt man damit in die Situation einer Müllverbrennungsanlage. Man kann sich an den Aufbereitungs- und Entsorgungspreisen des Marktes orientieren. Diese Einnahmen sind schon mal vorhanden. Die Stromproduktion ist ein Zubrot. Es wird noch sehr viel Entwicklungszeit nötig werden, bis ein genehmigungsfähiger Reaktor vorliegt. Auch die Kostenschätzung über zwei Milliarden Dollar für den ersten kommerziellen Reaktor, ist in diesem Sinne mit der gebotenen Vorsicht zu betrachten. Allerdings handelt es sich bei diesem Reaktor nicht um ein Produkt einer „Erfindermesse“. Man hat sehr sorgfältig den Stand der Technik analysiert und bewegt sich auf allen Ebenen auf dem machbaren und gangbaren Weg. Es ist nur zu hoffen, daß diesem jungen Unternehmen noch etwas Zeit verbleibt, bis es – wie so viele vor ihm – auf und weg gekauft wird.

Weltweit tut sich etwas in der Entsorgungsfrage: Salzbadreaktoren, Entwicklung metallischer Brennstoffe – sogar für Leichtwasserreaktoren – und abgespeckte chemische Wiederaufbereitungsverfahren in Rußland.

Peaceful Nuclear Explosives (PNE)

Am Wochenende sind mir wieder einige mehr als zwanzig Jahre alte Veröffentlichungen über die Energieerzeugung durch kontrollierte Kernexplosionen in die Hände gefallen. Sie erscheinen mal wieder erwähnenswert, weil offensichtlich vergessen. Darüber hinaus bieten sie einige Erkenntnisse zu Salzbädern, Brüt- und Hybridkonzepten. Zur Einstimmung einige Fragen: Ist es möglich durch kontrollierte Kernexplosionen – quasi Wasserstoffbomben – elektrische Energie zu erzeugen? Könnte man solch einen „Reaktor“ als Brutreaktor benützen, um Spaltmaterial für konventionelle Reaktoren zu erzeugen? Wäre das „politisch korrekt“? Die ersten beiden Fragen lassen sich ziemlich eindeutig mit ja beantworten, die letzte ebenso eindeutig mit nein – heute jedenfalls noch!

Fusion

Bei der Kernfusion werden zwei leichte Elemente zu einem neuen Element „verschweißt“. Hierfür sind extrem hohe Drücke und/oder Temperaturen nötig. Um diese erstmal zu erzeugen, sind gewaltige Energien nötig. Bisher ist es deshalb noch nicht gelungen, eine Fusionsmaschine zu bauen, die kontinuierlich mehr Energie erzeugt, als sie verbraucht. Durch die hohen Temperaturen und den hohen Druck ist das Medium sehr stark bestrebt, sich wieder auszudehnen. Bisher gibt es nur das Konzept eines extremen Magnetfelds zum dauerhaften Einschluß. Die zweite Entwicklungsschiene ist der Trägheitseinschluss: Man schießt mit mehreren Laserstrahlen gleichzeitig auf ein Wasserstoffkügelchen. Dieses Verfahren ist aber diskontinuierlich, da man immer nur einen Schuss ausführen kann. Insofern dürfte es sich weniger zur Stromerzeugung als zur Grundlagenforschung eignen.

Gleichwohl, wird bei der Kernfusion Energie erzeugt. Viel versprechend ist die Fusion von Deuterium und Tritium zu Helium. Deuterium kommt als „schweres Wasser“ in der Natur vor. Tritium hingegen, muß wegen seiner geringen Halbwertszeit von rund 12 Jahren vorher erbrütet werden.

Kernspaltung

Schwere Atomkerne können durch Neutronen gespalten werden. Bei der Spaltung werden einige Neutronen frei, wodurch eine Kettenreaktion aufrecht erhalten werden kann. Wenn man zusätzlich noch „Spaltmaterial“ z. B. U233 aus Th232 erbrüten will, muß man neben dem für die nächste Spaltung notwendigen, noch ein weiteres Neutron zur Verfügung haben. Da man aber auch unvermeidliche Verluste hat, ist es gar nicht so einfach, Brutreaktoren zu bauen.

Hybride

Wenn man beispielsweise einen Urankern spaltet, setzt man rund 200 MeV Energie und im Mittel etwa 2,2 Neutronen frei. Wenn man einen Helium-4 Kern durch Fusion erzeugt, gewinnt man nur etwa 14 MeV Energie und ein Neutron. Will man also die gleiche Energie erzeugen, muß man dafür etwa 14 mal so viele Kerne fusionieren und erhält dadurch aber auch etwa 7 mal so viele Neutronen. Mit anderen Worten: Man hat genug zum „Brüten“ übrig.

Kernexplosion

Will man nun eine Kernexplosion einer Fusion einleiten, muß man die zur Zündung erforderliche Leistung durch eine vorausgehende Kernspaltung bereitstellen. Dies ist das klassische Konzept einer „Wasserstoffbombe“. Die Kernspaltung dient dabei nur als Zünder. Sie sollte daher so klein, wie technisch möglich sein. Der gewaltige Neutronenüberschuß kann zum „Erbrüten“ von Tritium aus Lithium und Uran-233 aus Thorium genutzt werden. Beide können in einem geschlossenen Kreislauf für die nächsten Schüsse verwendet werden. Je weniger Material man zur Zündung spalten muß, je weniger Spaltprodukte erzeugt man.

Der Kernexplosions-Reaktor

Wie gesagt, „Wasserstoffbomben“ zu bauen, ist Stand der Technik. Eine Weiterentwicklung müßte nur der Kostensenkung und der Sicherheit gegen Mißbrauch dienen. Beides geht in die gleiche Richtung: In einem Kern-Explosions-Kraftwerk kommt es nur auf das „Brennelement“ an. Aus Sicherheitsgründen sollen ja gerade keine funktionstüchtigen Kernwaffen verwendet werden. Die Einleitung der Kettenreaktion bei der Zündung sollte durch eine stationäre „Maschine“ erfolgen. Insofern würde sich das „Diebstahlsrisiko“ auf das bekannte Risiko des Diebstahls von Spaltmaterial reduzieren.

Um die üblichen 1000 MWe eines konventionellen Kernkraftwerks zu erzeugen, müßte man etwa alle sieben Stunden einen 20 kT „Sprengsatz“ (etwa Atombombe über Nagasaki) zünden oder besser alle 40 Minuten einen 2 kT „Sprengsatz“. Dies mag für manchen Laien verblüffend sein, daß ein 1000 MWe Kraftwerk täglich mehr Energie erzeugt, als drei Nagasaki-Atombomben mit ihrer bekannten zerstörerischen Wirkung: Es ist der Unterschied zwischen Leistung und Energie. Eine Atombombe setzt ihre Energie in Bruchteilen von Sekunden frei. Allein dieser Zeitunterschied führt zu der verheerenden Explosion. Ganz neben bei, auch ein eindringliches Beispiel für den Unsinn, bei Windrädern und Sonnenkollektoren stets Leistung und Energie durcheinander zu rühren. Ein Windrad kann eben nicht x Personen-Haushalte versorgen, weil es den Leistugsbedarf nicht ständig erzeugen kann.

Aber nichts desto trotz, hat eine Kernwaffe eine ganz schöne Sprengkraft. Wie soll es funktionieren, damit ein Kraftwerk zu betreiben? Man fährt unterirdisch eine Kaverne auf. Für ein 1000 MWe Kraftwerk mit 2 kT-Explosionen müßte sie etwa einen Radius von 20 m und eine Höhe von 100 m haben. Um auch über einen Betrieb von geplant 30 Jahren die Stabilität zu erhalten, sollte sie komplett mit einem 1 cm Stahlblech-Containment ausgekleidet sein. Ist das Containment fest anliegend mit dem umliegenden Fels verschraubt, ergibt sich eine sehr standfeste Konstruktion. Der eigentliche Trick ist aber die Verdämmung der Explosionen. Wenn man von dem Kavernendach einen dichten Vorhang Flüssigkeitstropfen (es geht sogar Wasser) herabregnen läßt und die Explosion in diesem Schauer stattfinden läßt, wird der Feuerball regelrecht aufgefressen. Nahezu die gesamte Energie der Explosion führt auf den zahlreichen Oberflächen der Tropfen zu einer schlagartigen Verdampfung. Wählt man eine Salzschmelze mit ihrer extrem hohen Verdampfungstemperatur, wird dadurch die Explosionswelle in wenigen Metern abgebaut. Das Ergebnis ist eine Druckspitze von weniger als 30 bar, die auf die Wände wirkt. Innerhalb kürzester Zeit kondensiert der Dampf wieder und gibt seine Energie an die Salzschmelze ab. Sie ist jetzt erheblich heißer geworden. Die Salzschmelze wird kontinuierlich durch einen Wärmeübertrager gepumpt, in dem sie Dampf erzeugt. Ab dieser Stelle, beginnt ein ganz konventioneller Kraftwerksteil zur Stromerzeugung.

Die Salzschmelze

Als Salz wird das bekannte Eutektikum FLiBe Li2 – BeF4 aus 67% Berylliumfluorid BeF2 und 32,9% Lithiumfluorid LiF mit einem Schmelzpunkt von 363 °C verwendet, sodaß sich eine Arbeitstemperatur um 500 °C einstellt. Es können einige Prozent Thoriumfluorid ThF4 darin gelöst werden. Zusätzlich kann der Sprengkörper mit einer Schicht aus Beryllium als Neutronenmultiplikator und Thorium als Brutstoff umgeben werden. Wird die Salzschmelze reduzierend, das heißt mit einem Fluoridmangel angesetzt, kommt das Tritium als Tritiumgas vor und kann kontinuierlich abgezogen werden. Das erbrütete Uran-233 bildet ebenfalls Uransalz UF4. Es kann recht einfach abgeschieden werden, indem es z. B. in das gasförmige Uranhexafluorid UF6 umgeformt wird.

Bei diesem Reaktor kann der Anteil der Energieproduktion aus Spaltung und Fusion in weiten Grenzen verschoben werden. Bis zu 90 % Energie können theoretisch aus der Fusion gewonnen werden. Dies bedeutet neben einem geringen Anteil von Spaltprodukten eine sehr hohe Brutrate wegen des sehr hohen Neutronenüberschusses. Es ist zu erwarten, daß bereits auf der Basis heutiger Uran- und Strompreise, der wesentliche Erlös aus dem Verkauf von Spaltmaterial kommen würde. Dieses Reaktorkonzept bietet sich daher besonders für den Fall eines „verschlafenen“ Einstiegs in eine Brüterflotte, bei plötzlich steigenden Uranpreisen an.

Sicherheit

Wenn wirklich alles schief geht, hat man einen unterirdischen „Kernwaffentest“. Die Anlage ist dann unwiederbringlich Totalschaden. Aber das war’s auch schon. Allein die USA haben über 800 unterirdische Testexplosionen in Sichtweite von Las Vegas ausgeführt. Im Spitzenjahr 1962 praktisch an jedem dritten Tag eine.

Das Inventar an Spaltprodukten liegt bei diesem Reaktortyp unter einem Prozent gegenüber einem konventionellen Leichtwasserreaktor. Dies liegt einerseits daran, daß ein erheblicher Teil der Energie aus der Fusion mit dem Endprodukt Helium stammt und andererseits durch die Wiederaufbereitung zur Spaltstoffgewinnung auch ständig Spaltprodukte dem Kreislauf entzogen werden. Wie Simulationsrechnungen gezeigt haben, ist auch nach 30 Betriebsjahren und der Berücksichtigung von Aktivierungen durch Neutronenbeschuß von Stahlhülle und umliegenden Gestein, die Radioaktivität so gering, daß man den Rest einfach unter Beton beerdigen könnte. An dieser Stelle sei daran erinnert, daß bei der Verwendung von Thorium praktisch keine langlebigen Aktinoide entstehen.

Das Inventar an Tritium wäre unter 100 Ci, da es ja ständig abgezogen werden muß, um es verbrauchen zu können. Ein vollständiges Entweichen durch einen Unfall wäre kein besonderes Problem.

Proliferation

Es wäre ein Irrtum zu glauben, daß eine solche Anlage für Terroristen oder „Schurkenstaaten“ ein Objekt der Begierde sein könnte. Die bei diesem Reaktortyp verwendeten Sprengkörper sind als Waffe ziemlich ungeeignet. Sie wären kaum zu transportieren oder zu lagern. Sie müßten wegen ihrer Vergänglichkeit eher vollautomatisch gefertigt und unmittelbar verbraucht werden. Ebenso wird man kaum den Weg der Zündung über chemische Sprengstoffe gehen. Dies wäre viel zu teuer. Man wird eher den Weg über eine stationäre Zündmaschine gehen. Die wird aber so groß werden, daß man sie kaum stehlen könnte.

Nachwort

Manchem mag das alles wie Science Fiction vorkommen. Ist es aber gar nicht. Es gibt kaum etwas, was besser erforscht ist als Kernwaffen. Es gibt auch nach wie vor kaum ein Fachgebiet was besser ausgestattet ist. Wo stehen denn stets die schnellsten Rechner, die besten Labors, die größten Laser etc.? Wenn man wollte, könnte man diesen Reaktortyp innerhalb von zehn Jahren bauen. Es wäre ein sicherer Einstieg in die Kernfusion und es wäre für die einschlägigen „Fachabteilungen“ zumindest in USA und Rußland ein Routineauftrag. Weniger Forschung als Entwicklung.

Es geht hier nicht darum, Werbung für ein exotisches Kraftwerk zu machen. Es sollte nur an einem Beispiel gezeigt werden, wie unendlich breit das Gebiet der Kernenergie ist und welche Möglichkeiten es bieten würde. Eher geht es darum, daß der Blickwinkel – gegenüber unseren Vätern – sehr verengt worden ist. In den 1950er und 1960er Jahren hatte man noch eine Kreativität, wie sie heute vielleicht noch in der IT-Branche vorhanden ist. Technik war noch nicht negativ besetzt.

Es gab auch noch eine Hoffnung auf, und einen Willen zu einer besseren Zukunft. Die Angst- und Neidindustrie war noch gar nicht erschaffen. Der ganze Blödsinn von bald versiegenden Ölquellen, Uranvorkommen, „Treibhauseffekten“, „Ozonlöchern“ etc. konnte die Menschen noch nicht ängstigen. Es ist allerdings kein Zufall, daß sich alle Systemveränderer immer wieder auf die Energietechnik stürzen. Sie haben mehr als andere erkannt, daß Energie die „Master Resource“ ist, ohne die nichts geht, aber mit deren Hilfe, fast alles möglich ist.

Niemand zwingt uns Menschen, mit Wind und Sonne wieder zurück ins Mittelalter zu gehen. Die resultierende Armut und die entgangenen Chancen wären freiwillig gewählt.